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ABSTRACT

Sparse linear arrays (SLAs), such as nested and co-prime arrays,
have the attractive capability of providing enhanced degrees of free-
dom by exploiting the co-array model. Accordingly, co-array-based
Direction of Arrivals (DoAs) estimation has recently gained con-
siderable interest in array processing. The literature has suggested
applying MUSIC on an augmented sample covariance matrix for
co-array-based DoAs estimation. In this paper, we propose a Least
Squares (LS) estimator for co-array-based DoAs estimation employ-
ing the covariance fitting method as an alternative to MUSIC. We
show that the proposed LS estimator provides consistent estimates
of DoAs of identifiable sources for SLAs. Additionally, an analyt-
ical expression for the large sample performance of the proposed
estimator is derived. Numerical results illustrate the finite sample
behavior in relation to the derived analytical expression. Moreover,
the performance of the proposed LS estimator is compared to the
co-array-based MUSIC.

Index Terms— Sparse linear arrays, directions of arrival esti-
mation, least squares estimator, performance analysis, consistency.

1. INTRODUCTION

The problem of Directions of Arrivals (DoAs) estimation is of cen-
tral importance in the field of array processing with many applica-
tions in radar, sonar, and wireless communications [1-3]. DoAs es-
timation using Uniform Linear Arrays (ULAs) is well investigated
in the literature. In this regard, a variety of algorithms such as Max-
imum Likelihood (ML) estimation, MUSIC, ESPRIT and subspace
fitting has been presented and thoroughly analyzed in [4-7]. It is
known that a ULA with M elements can identify up to M — 1 un-
correlated sources [2,6]. However, exploiting Sparse Linear Arrays
(SLAs) such as Minimum Redundancy Arrays (MRAs) [8] can dra-
matically boost the degrees of freedom such that significantly more
sources than the number of elements in the array can be identified.
Despite this feature, SLAs received little attention for a long time
due to complexity in finding MRAs geometries.

Recently, the introduction of new SLA architectures with sim-
ple closed-from expression for the array geometry, such as co-prime
arrays [9] and nested arrays [10], has spurred a renewed interest in
SLAs. These arrays allow for identification of up to O(M?) un-
correlated sources with only M elements in the array by exploit-
ing the difference co-array model [9, 10]. In a very recent paper,
the authors in [11] have provided new insights into the performance
limits of co-array-based DoAs estimation through an analysis of the
Cramér-Rao Bound (CRB). The co-array model consists of a single
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snapshot requiring preprocessing steps before an application of con-
ventional DoAs estimation methods. For instance, spatial smooth-
ing combined with the MUSIC algorithm has been proposed in [10].
However, since the augmented covariance matrix constructed after
spatial smoothing has statistical properties different from the original
sample covariance matrix, the performance analysis of conventional
MUSIC cannot be applied directly to co-array-based MUSIC. Moti-
vated by this fact, the authors in [12] recently presented an asymp-
totic mean-squared error (MSE) expression for the co-array-based
MUSIC algorithm and investigated its behavior in various scenarios.

In this paper, we propose a Least Squared (LS) estimator for co-
array-based DoAs estimation using the covariance fitting method.
We first demonstrate consistency of the proposed LS estimator.
Building on consistency of the proposed LS estimator, we then de-
rive an asymptotic closed-form expression for its covariance matrix.
This provides us with insights into the impact of different system pa-
rameters on the performance of the proposed LS estimator. Further,
we validate the analytical derivations through numerical simulations
besides comparing the performance of the proposed LS estimator
with co-array-based MUSIC. The simulations reveal that the LS
estimator largely has a performance comparable to coarray-based
MUSIC while slightly outperforming the latter in some scenarios.

Notation: Vectors and matrices are referred to by lower- and
upper-case bold-face, respectively. The superscripts *, 7', H de-
note the conjugate, transpose and Hermitian (conjugate transpose)
operations, respectively. ||A|/r and ||a||2 stand for the Frobenius-
and £2-norm of A and a, respectively. [A], ; and [a]; indicate the

(i,7)*™ and i*® entry of A and a, respectively. A and & denote
the estimate of A and a, respectively. (a1,az2, - ,an) is an n-
tuple with elements of a1,az,- - ,an. |A| represents the cardi-
nality of the set A. diag(a) is a diagonal matrix whose diago-
nal entries are equal to those of a. The M x M identity matrix
is denoted by In;. E{.} stands for the statistical expectation. ®
and © represent Kronecker and Khatri-Rao products, respectively.
Vec(A) = [a] a3
eration. AT and ITx indicate the pseudoinverse and the projection
matrix onto the null space of the full column rank matrix A, respec-
tively.

T N
aZ] denotes the vectorization op-

2. CO-ARRAY SYSTEM MODEL

We consider an SLA with M elements located at positions (m1 %,
mQ%, cee ,mM%) with m; € M. Here M is an integer set with
cardinality |IM| = M, and X represents the wavelength of the in-
coming signals. It is assumed K narrowband signals with distinct
DOAs 6 = [01 02 HK]T impinge on the SLA from far
field. Accordingly, the vector of signals received by the SLA at time
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instance ¢ can be modeled as

y(t) = A@)x(t) +n(t) e CM*,  t=1,--- N, (D

where x(t) € C**! denotes the signal vector, n(t) € CM*! is

additive noise, and A() = [a(01), a(02), a(fx)] €
CM*X represents the SLA manifold matrix where
a(@i) = I:ej""eiml’ ej‘ff&ﬂﬂz7 ejTreimM}T, )

is the SLA steering vector for the k*® signal and 6, = sin Oy its
normalized DoA. The following assumptions are made on the source
signals and noise:

A1l The noise vector is assumed zero-mean circular complex Gaus-
sian distributed with the covariance matrix E{n(t)n (¢)} =
2
oI

A2 The signal vector is modeled as a zero-mean circular complex
Gaussian random vector with covariance matrix E{x(t)x" (t)}
= diag{p} where p = [pl, D2, pK}T e RV

A3 The signal and noise vectors are assumed mutually independent.

A4 There is no temporal correlation between the snapshots.

Based on the above assumptions, the covariance matrix of the re-
ceived signals, R = E{y(t)y” (¢)}, is given by

R = A(0)diag(p)A™ () + o*Iy € CM*M. 3)

Following [10-12], the difference co-array model of the SLA is
obtained by using the following standard steps. At first, r =

Vec (R) € CM *X1 the vectorized form of R takes the form
r=(A%(0)®A(0))p+c*Vec(I). 4)

Subsequently, duplicated entries of r are eliminated to obtain the
difference co-array model as

z=Jr=Au0)p+0’g, )

where A4(0) € CP*¥ corresponds to the array manifold matrix of
the virtual array whose elements are located at (61 % 2 % N 25 %)
with £; € D = {m, — mg|lmp,mq € M}, D = |D|, g is a col-
umn vector defined as [g]; = 6[i], and J represents a {0, 1}” xp?
selection matrix defined as

if mp —mg = {n,
otherwise,

1
w(ln)’

[J]n,p+(q—1)M = { 0 (6)

with w(£,) = |A(£,)| where A(£,) = {(mp, mg) € M?|m, —
mgq = £n}. The difference co-array model in (5) can be reckoned to
be the response of the virtual array described by A 4(0) to the deter-
ministic signals vector p. If the SLA is designed properly, A 4(6)
contains a contiguous ULA segment around the origin whose num-
ber of elements, i.e., 1, is much larger than the number of physical
elements in the SLA, enabling us to identify more sources than the
number of physical elements in the SLA [9, 10].

To estimate source DoAs based on the co-array model in (5), it
is possible to form an augmented covariance matrix and then apply
MUSIC to it [10, 12]. One possible way to obtain the augmented
covariance matrix is to divide the contiguous ULA segment of the
virtual array, described by its manifold matrix Ay(8) € C**%,

into v = 19‘2"1 overlapping subarrays, each with v elements, such

that the elements of the i'" subarray are situated at positions

978-1-5386-4752-3/18/$31.00 ©2018 IEEE

525

(—i+1)3,--+,(v —14)3) where 1 < i < v. The output of
the #*® subarray can be expressed as z; = I';z = I';Jr, where
T, — [OUX(%%) I, va<i+D2—tl>} € {0,1}"*P. Then,
the augmented covariance matrix of the co-array model, defined as

R, = [zv Zoy_1 zl}, can be formed as follows [13]

R, = A,(0)diag(p)A; (6) + o°L, @)

where A, (8) € C"** is the array manifold matrix of the first sub-
array. The matrix R, has the same structure as the covariance matrix
of the signal received by a ULA with v elements, hence by applying
MUSIC to it up to v — 1 source DoAs can be estimated.

However, in practice, the true value of R, and consequently, r, z,
and R, are not available. Therefore, we need to replace them with
their consistent estimates. R can be consistently estimated by the
sample covariance matrix R = = Ziv: Ly (t)y™ (t). Consequently,
we can also find the consistent estimates of r, z, R, by substituting
R for R in (4), (5), and (7).

3. CO-ARRAY-BASED LS ESTIMATOR AND ITS
PERFORMANCE

3.1. Formulation of LS Estimator in Co-Array Scenario

In this section, as an alternative to co-array-based MUSIC, we derive
the LS estimates of source DOAs based on the co-array model and
analyze its performance. Using the augmented covariance matrix
introduced in Section 2, we can formulate the co-array-based LS
estimates of @, p, o2 as

[é?;, ﬁﬂ,&fs}T = argminHRv — AU(G)diag(p)Af(O) - O’QIH%.
6’,p,(f2
(8)

Using the separability property [14], we can first solve (8) with
respect to o2 and then substitute the result into (8). To this end, we
rewrite (8) as

07, B, 2] = argmin|[ R, — U,AUY - 0" U U7, )
6,p,o

where U, U, are the eigenvectors of R, corresponding to its K
largest and v — K smallest eigenvalues, respectively. Equation (9)
leads to the following estimate of o

52 _ tr{U,UYR,} t{U,UfR,}
tr{U,, UH} v—K

10)

where U, represents the eigenvectors of R, corresponding to its
v — K smallest eigenvalues.

Remark 1. Using consistency of R, it can be readily deduced that
&2 is a consistent estimate of o2 [14].

Inserting (10) into (8) and performing certain algebraic manipu-
lations leads to

612, BL)T = argmin|[QVec (Ro ) — (A (6) © A (6) pll,
P
11
A ec(l)VecH (U, UF s e
where Q = I — % Towards further simplifying
(11) to obtain pys, it can be shown from (2) and (7) that

Vec (R, ) = Vec [Tz Tz Tiz]) =TJi, (12)
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whereI' = [T} T,

that

-~ IT] " In addition, it can be shown

A5 (0) ©A,(0) =TAy(0), (13)

where T € {0, 1}”2 *? is the selection matrix, defined as

o 1, f p—g=n-—w,
[Tlp+(a=1)0.n = { 0, otherwise, (14)
with 1 < p, ¢ < v. Inserting (12) and (13) into (11), we get
[0, L] " = argmin||QTIE — TA(O)p[3. (1)
P
Solving (15) with respect to p yields
Pis = (TA(0))" QI Js. (16)

Remark 2. Similar to 52, consistency of P;s can also be deduced

from consistency of  and R, [14].

Finally, inserting (16) into (15), results in the LS estimator of 6,
Vec (I) Vec™ (ﬂnﬂf) 2

TJr
v— K r

0, = argmin HffAﬂ(g) I-—
0

2
an

In general, the above optimization is a nonlinear problem, which
seems to be computationally complex. However, it is possible to
be reparameterized as a linear problem in a manner similar to [15],
where the DoA estimates are obtained by finding roots of a polyno-
mial function.

Having derived the estimator, we enumerate the properties influ-
encing its performance.

3.2. Properties of LS Estimator

In the following, we comment on the key attributes of the LS esti-
mator including its consistency, bias and covariance matrix. Asymp-
totics are resorted to yield tractable analytical results.

Lemma 1. éls is a consistent estimator of @ if K < v — 1.

Proof. The proof is omitted due to lack of space. O
Remark 3. Unbiased It readily follows from Lemma 1 that éls is
asymptotically unbiased.

Remark 4. Relation to the CRB The condition K < v — 1 in
Lemma 1 corresponds to the rank condition mentioned in [11] for
the nonsigularity of Fisher information matrix. Hence, it can be con-
cluded that the LS estimator is consistent whenever the CRB exists.

We exploit consistency of 8;, to obtain its asymptotic covariance
matrix, which is given in the following theorem.

Theorem 1. If K < v — 1, the asymptotic (N — o0) covariance
matrix of the LS estimator 0,5 is given by

. R H 1
Cis —E{("ls ~0) (6.~ 0) }— N
<diag (p) 2" Ila, 0y 02
Hyr L T Hn~H Hyr L -1
x (Q TT4a () QLT (R ® R) JiTHQ HTAM)Q)
-1
x Qllza, 0) Q" diag (p)) , (18)

where Q = Tdiag (9) Ay (8) with9 = [0,1,2,--- ,9 — 1]7.
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Proof. The proof is omitted due to the lack of space. O

Remark 5. Dependence on array geometry Theorem 1 implies
that the MSE of the LS estimator is dependent on both of the physical
and virtual arrays geometries through A (0) and J (R ® RT) JH,
respectively. This means that two SLAs with identical virtual array
geometries could still have different MSEs.

In addition, it can be deduced from Theorem 1 that the MSE
of the LS estimator depends on the Signal-to-Noise Ratios (SNRs)
instead of source powers and noise variance. In order to assess the
impact of the SNR on the MSE of the proposed estimator, we intro-
duce the following corollary.

Corollary 1. Assuming the powers of all sources are equal, each
entry of Cys decreases monotonically as SNR increases, and has the
following asymptotic behavior,

1. imsNr—00 Cis =0 if K =1.

2. limgNrs0Cis =0 if 2< K < M.

3. limsNR—o0 Cis = 0 if K > M and rank(A(0)) < M.
4. limsNR—o0 Cis = 0 if K > M and rank(A(0)) = M.

Corollary 1 indicates that the asymptotic behavior of the LS esti-
mator with respect to the SNR affected by the actual value of source
DoAs when multiple sources are present. Indeed, for some DoA
values, C;s could be saturated and could monotonically decrease for
others.

4. SIMULATION RESULTS

In this section, we numerically analyze the performance of the pro-
posed LS estimator. Throughout this section, we consider nested
arrays with M = M; 4 M- elements whose locations are given by

IM:{LQ-“ ,Ml}U{M1+1,2(M1+1)“' ,MQ(M1+1)}.
(19)

The sources are also assumed to have equal powers and normalized
DoAs evenly selected between —0.4 and 0.4. In addition, in all ex-
periments, 1000 independent Monte Carlo realizations are used to
generate the empirical plots.

Fig. 1 depicts the MSE versus the number of snapshots at
SNR = 5 dB when K = 7 sources impinge on a nested array
with % = M; = M, = 3. It can be seen that the LS estimator
performs slightly better than co-array-based MUSIC in this case, but
the MSEs of both are far from the CRB indicating their statistical
inefficiency. Moreover, Fig. 1 reveals that there is a good agree-
ment between the analytical MSE obtained using Theorem 1 and the
empirical results even for the finite number of snapshots.

Fig 2 shows the MSE of the LS estimator versus the SNR for
nested arrays with different physical array but the same virtual array
geometries. We set N = 500. The number of sources, i.e., K, is
selected so as to be respectively smaller and greater than the number
of physical array elements in Figs. 2(a) and 2(b). It can be seen that
while the nested arrays share the virtual array geometry, they have
different MSEs due to difference in their physical array geometries.
These observations agree with Remark 5. In addition, Fig. 2 shows
the relationship between the MSE and the SNR. It can be observed
that for both of the cases investigated in Figs. 2(a) and 2(b) , i.e.,
K = 3 and K = 13, the MSE monotonically decreases with in-
crease in the SNR, but is eventually saturated at some point. This
behavior was already predictable considering Corollary 1.
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——— MUSIC - analytical
——— LS - analytical
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O LS - empirical
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MSE

107
10’
Number of snapshots

Fig. 1. MSE versus the number of snapshots for SNR = 5 dB,
K =7, and a nested array with % = M, = My = 3.

MSE

5 20
SNR (dB)

()

5 20
SNR (dB)

(b)

Fig. 2. MSE versus the SNR for different nested array configurations
with identical virtual array geometries. The number of snapshots is

N =500,and: (@) M > K =3(b)M < K =13.

In Fig 3, we plot the MSE versus the SNR for 500 snapshots. We
consider K = 5 sources whose DoAs are estimated by a nested array
with % = M; = M = 5. Itis seen that, as opposed to the MSEs
of the LS estimator and co-array-based MUSIC saturated when the

SNR is over 10 dB, the CRB goes to zero with increase in the SNR.

This behavior of the CRB with respect to the SNR for K < M
was already predicted in [11, Theorems 3]. This implies that both
of the LS estimator and co-array-based MUSIC can become highly
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Fig. 3. MSE versus the SNR for N = 500, and K = 5, and a nested
array with % =M, =Ms =5.

statistical inefficient in the high SNR regime. Fig 3 also shows the
MSE of a Weighted LS (WLS) estimator, heuristically defined as
A . 1 A2
6,15 = argmin||W 2 ITga , 0) QT IR}, (20)
0
with W being a positive definite Hermitian matrix. We see that WLS
estimator is superior to both of the LS estimator and co-array-based
MUSIC. This is just a preliminary investigation of the prospect of
performance improvement over the LS estimator and co-array-based

MUSIC using a weighting matrix. However, determination of the
optimal weighting matrix remains as the topic of the future work.

5. CONCLUSION

In this paper, we proposed a Least Squares (LS) estimator for
co-array-based DoAs estimation employing the covariance fitting
method and analyzed it performance. It was shown that the proposed
LS estimator provides consistent estimates of DoAs of identifiable
sources for SLAs. Further, the relationship between the MSE of the
proposed LS estimator and the SNR was investigated by exploiting
the analytical expression derived for the large sample performance
of the proposed estimator. Numerical results showed that the LS
estimator has a comparable performance to co-array-based MUSIC,
but preliminary investigation of a weighted LS variant with heuristic
weights was undertaken and the results were better than the LS
estimator and MUSIC. The optimization of these weights is left for
the future work.
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