
Characterising Deprecated Android APIs
Li Li

1
, Jun Gao

2
, Tegawendé F. Bissyandé

2
, Lei Ma

3
, Xin Xia

1
, Jacques Klein

2

1
Faculty of Information Technology, Monash University, Australia

2
Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg

3
School of Computer Science and Technology, Harbin Institute of Technology, China

{li.li,xin.xia}@monash.edu,{jun.gao,tegawende.bissyande,jacques.klein}@uni.lu,malei@hit.edu.cn

ABSTRACT
Because of functionality evolution, or security and performance-

related changes, some APIs eventually become unnecessary in a

software system and thus need to be cleaned to ensure proper

maintainability. Those APIs are typically marked first as deprecated
APIs and, as recommended, follow through a deprecated-replace-
remove cycle, giving an opportunity to client application developers

to smoothly adapt their code in next updates. Such a mechanism is

adopted in the Android framework development where thousands

of reusable APIs are made available to Android app developers.

In this work, we present a research-based prototype tool called

CDA and apply it to different revisions (i.e., releases or tags) of

the Android framework code for characterising deprecated APIs.

Based on the data mined by CDA, we then perform an exploratory

study on API deprecation in the Android ecosystem and the asso-

ciated challenges for maintaining quality apps. In particular, we

investigate the prevalence of deprecated APIs, their annotations

and documentation, their removal and consequences, their replace-

ment messages, as well as developer reactions to API deprecation.

Experimental results reveal several findings that further provide

promising insights for future research directions related to dep-

recated Android APIs. Notably, by mining the source code of the

Android framework base, we have identified three bugs related

to deprecated APIs. These bugs have been quickly assigned and

positively appreciated by the framework maintainers, who claim

that these issues will be updated in future releases.

ACM Reference format:
Li Li

1
, Jun Gao

2
, Tegawendé F. Bissyandé

2
, Lei Ma

3
, Xin Xia

1
, Jacques Klein

2
.

2018. Characterising Deprecated Android APIs. In Proceedings of MSR ’18:
15th International Conference on Mining Software Repositories , Gothenburg,
Sweden, May 28–29, 2018 (MSR ’18), 11 pages.
https://doi.org/10.1145/3196398.3196419

1 INTRODUCTION
Android is currently dominating the smartphone market, attract-

ing 85% of global sales to end users worldwide. Among the many

potential incentives which drive Android’s competitiveness in com-

parison to other mobile operating systems, we note the rapid and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00

https://doi.org/10.1145/3196398.3196419

constant evolution of the Android framework: McDonnell et al. [1]

have reported that developers should expect a new release every

three months. This is an indication of the pace at which Android

maintainers deal with vulnerability fixes and performance improve-

ments on the one hand, and the introduction of new features on

the other hand. While these framework code changes empower app

developers to continuously provide high-quality apps, they also

bring about compatibility issues. For example, during framework

evolution, a class can be renamed or a method’s signature may be

modified (e.g., addition of an extra parameter), eventually impact-

ing the Application Programming Interfaces (APIs), and eventually

breaking the execution of developer apps [2].

To enable a graceful adaptation of developers to framework

changes, API deprecations are implemented following the so-called

deprecate-replace-remove cycle. In this scheme, APIs that will no

longer be maintained in the framework are first flagged as depre-

cated, through a proper@Deprecation Java annotation, or by insert-

ing @deprecation in the relevant Javadoc message. Subsequently,

the code of deprecated APIs are updated with replacement messages

which are meant to help developers refactor their apps in order to

migrate from deprecated APIs to their replacements [3]. Finally,

after some reasonable time (e.g., several releases of the framework),

deprecated APIs are eventually removed from the framework so

as to clean the framework and thereby reducing the maintenance

burden on the framework code base.

Unfortunately, as unveiled by several studies in the research

literature [4, 5], the deprecated-replace-remove cycle is not always
respected, leading to challenges for both framework maintainers

and app developers. A number of research works have then investi-

gated to tackle the challenges associated to API deprecation. For

example, some researchers have explored the quality of documen-

tation for deprecated APIs [6, 7]. Others have studied developer

reactions to deprecated APIs [4, 5, 8–11]. There have been also

various works on automatically migrating client code in response

to broken APIs [12–19]. Nevertheless, despite the significant at-

tention given to API deprecation in general, it is noteworthy that

the problem has not yet been extensively explored in the Android

ecosystem specifically.

Our work aims at understanding and characterising how An-

droid APIs are deprecated in practice and how developers react

to the phenomenon. The overall goal of this research is to draw

insights that (1) framework maintainers can build on to improve

strategies for deprecating APIs, and that (2) can be used to assist

app developers in dealing with compatibility issues that can arise

after API deprecation.

Towards achieving the goal of this work, we present an ex-

ploratory study on the deprecation of Android APIs. This study

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/162022571?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3196398.3196419
https://doi.org/10.1145/3196398.3196419

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Li Li et al.

builds on a systematic source code mining of the Android frame-

work, which is constituted of over 3million lines of Java code in over

7,000 Java files. The study also involved analysing 10,000 real-world

Android apps to explore questions related to the management, in

practice, of deprecated APIs by developers.

In this work, we first design and implement a prototype tool

called CDA, standing for Characterising Deprecated APIs. Then, we

apply CDA to different revisions (i.e., releases or tags) of the Android

framework code and compare the obtained results to understand

the evolution of deprecated Android APIs. Finally, we explore a set

of real-world Android apps attempting to understand the reaction

of app developers to deprecated Android APIs. Our experimental

investigation eventually finds that (1) Deprecated Android APIs are

not always consistently annotated and documented; (2) Deprecated

Android APIs are regularly cleaned-up from the framework code

base and half of the cleaned APIs are performed in a short period

of time, requiring developers to quickly react on deprecated APIs;

(3) Around 70% of deprecated Android APIs have been commented

with replacement messages, which however are rarely updated

during the evolution of Android framework code base; (4) Most

deprecated APIs are accessed by app code via popular libraries. The

accessing delay of common libraries however is generally shorter

than that of app code, and library developers are more likely to

update deprecated APIs than app developers.

To summarise, we make the following contributions:

• We design and implement a prototype tool called CDA that

automatically characterises deprecated APIs by mining the

source code of Android framework releases.

• We have identified three bugs related to deprecated APIs by

parsing the latest revision of the Android framework code.

These bugs have been further submitted to the issue tracker

system
1
of the Android Open Source Project (AOSP) and

have been quickly assigned and positively appreciated by

the framework maintainers, who claim that these issues will

be updated in future releases
2
.

• We present a quantitative study on deprecated Android APIs

along the evolution of the Android framework base.

• We harvest a comprehensive list of deprecated Android APIs

and provide also their latest replacement messages that can

be leveraged to guide the practical replacements of depre-

cated APIs.

We make available online our implementation, along with the

scripts to replicate our experiments at

https://github.com/lilicoding/CDA

It is worth to mention that although CDA targets the Android

framework code base, it is implemented generically and could be

easily migrated for the analysis of common Java repositories. Con-

cretely, the Java file parser and the API to replacement mapping

should work directly to Java projects.

The remainder of this paper is organised as follows. Section 2

presents the necessary background information to allow readers to

better understand this work. Section 3 presents the experimental

setup of this work, including the dataset and the research ques-

tions as well as the implementation of our prototype tool CDA.

1
https://issuetracker.google.com

2
The issue IDs of the submitted bugs are 69105065, 69104762 and 69098890.

Section 4 details our quantitative studies towards answering the

aforementioned research questions. After that, Section 5 discusses

the potential implications and the possible threats to the validity

of this work. The closely related works are detailed in Section 6,

followed by our conclusion to this work in Section 7.

2 BACKGROUND
In this section, we provide the necessary background information

on the concept of Android APIs and deprecated APIs to help readers

better understand our process.

2.1 Android APIs
Android APIs, like any other APIs that are defined as publicly acces-

sible methods in the code base, are provided to support developers

for building shipping quality apps. Those APIs are usually shipped

with Software Development Kits (SDKs) that are frequently up-

dated as the Android system evolves: since the launch of Android

in 2008, Android SDKs have been released in 8 versions provid-

ing progressively 26 API levels. This SDK comes with an online

portal
3
that tracks all documentation written by Android main-

tainers to help developers correctly use the provided APIs. Fig. 1

presents the screenshot of an example documentation for API save-
Layer(RectF,Paint,int), from which app developers can learn the

main functionality of this API as well as the necessary knowledge

to correctly invoke it.

saveLayer
int saveLayer (RectF bounds,
 Paint paint,
 int saveFlags)

This behaves the same as save(), but in addition it allocates and redirects drawing
to an offscreen bitmap.

All drawing calls are directed to a newly allocated offscreen bitmap. Only when the
balancing call to restore() is made, is that offscreen buffer drawn back to the
current target of the Canvas (either the screen, it's target Bitmap, or the previous
layer).

added in API level 1

This method was deprecated in API level 26.
Use saveLayer(RectF, Paint) instead.

Note: this method is very expensive, incurring more than double rendering cost
for contained content. Avoid using this method, especially if the bounds provided
are large, or if the CLIP_TO_LAYER_SAVE_FLAG is omitted from the saveFlags
parameter. It is recommended to use a hardware layer on a View to apply an
xfermode, color filter, or alpha, as it will perform much better than this method.

Figure 1: The documentation and deprecation message of save-
Layer(RectF,Paint,int).

2.2 Deprecated APIs
With the evolution of APIs, some of them may no longer fit with

the new requirements of the SDK, e.g., because of security or per-

formance reasons [20]. SDK maintainers thus need to remove such

APIs so as to prevent their usage in client apps. Nevertheless, be-

cause of potential compatibility requirements, deprecated APIs

cannot be directly removed as it may otherwise lead to application

runtime crashes. In this context, SDK maintainers adopt a simple

convention: any to-be-removed API must first be marked as depre-

cated API via a Java annotation@Deprecated. On the one hand, this

annotation indicates that the marked API can be removed in any

future release of the SDK and is thus not recommended to be used

3
https://developer.android.com/index.html

https://github.com/lilicoding/CDA

Characterising Deprecated Android APIs MSR ’18, May 28–29, 2018, Gothenburg, Sweden

in a newly developed app. On the other hand, the annotation does

not prevent its use in legacy apps, allowing such apps to continue

to perform to some extent.

Listing 1 illustrates two real examples of deprecated Android

APIs, namely isNetworkTypeValid() and removeStickyBroadcast(),
which were implemented in classes ConnectivityManager and Con-
text of the Android framework base, respectively. The description

(cf. lines 3 and 14) explains that these two APIs are deprecated

because of function changes (i.e., there is no need to validate the

network type) and security concerns (i.e., sticky broadcast provides

no security protection).

1 //class java.android.net.ConnectivityManager
2 /**
3 * @deprecated All APIs accepting a network type are

deprecated. There should be no need to validate a network
type.

4 */
5 @Deprecated
6 public static boolean isNetworkTypeValid(int networkType)
7 {
8 return MIN_NETWORK_TYPE <= networkType &&
9 networkType <= MAX_NETWORK_TYPE;
10 }
11

12 //class android.content.Context
13 /**
14 * @deprecated Sticky broadcasts should not be used. They

provide no security (anyone can access them), no
protection (anyone can modify them), and many other
problems.

15 */
16 @Deprecated
17 @RequiresPermission(android.Manifest.permission.BROADCAST_STICKY)
18 public abstract void removeStickyBroadcast(@RequiresPermission

Intent intent);

Listing 1: Examples of deprecated Android APIs.

3 EXPERIMENTAL SETUP
Our objective in this work is to mine the Android framework code

base for characterising the deprecated Android APIs. We expect this

study to provide actionable guidelines for both app developers and

market maintainers to better deal with apps accessing deprecated

Android APIs. To this end, we present a research tool called CDA

to support our analyses on Characterising Deprecated APIs. Before

detailing the design and implementation of CDA in Section 3.2,

we first present the dataset used in this study (cf. Section 3.1). We

conclude the section by presenting some statistical highlights on

the Android framework code base (cf. Section 3.3).

3.1 Dataset
Our dataset targets two artefacts, the Android system code base,

and client code. Thus, it includes:

• GitHub repository data of the Android framework base
4
.

• A set of 10,000 apps that are randomly selected from An-

droZoo [21]. We sample 5,000 apps from the official Google

Play market (GPlay) apps and 5,000 apps from third-party

markets (NGPlay).

The Android platform code, hosted in Github since October

2008
5
, is actually a mirror of the Google source code repository

6

maintained by Google. It has since been forked 5 000 times, and has

4
https://github.com/android/platform_frameworks_base

5
commit: 54b6cfa9a9e5b861a9930af873580d6dc20f773c

6
https://android.googlesource.com/platform/frameworks/base.git

seen the contributions of over 600 developers, while being watched

for changes by almost 900 developers. The 109 git development

branches have integrated changes from 323,059 commits. Each

commit representing a revision state of the code base, the successive

changes provide a good historical view on how do the APIs evolve.

Previous studies have already investigated this evolution in other

contexts [22–24].

Over 450 revisions in the framework development are tagged as

releases. Consecutive releases can be made available without the

API level being changed. We therefore assume that such releases

(i.e., within the same API level) will be similar in terms of API

structure. In this study, for the sake of simplicity, we pick one release

(generally the latest) that is associated to each API level, to build the

evolution dataset to be investigated. Note that API levels 11, 12 and

20 are irrelevant to our study as they do not actually correspond to

new releases of the code base
7
. Eventually, as illustrated in Table 1,

we are able to consider 20 releases (associated to 20 API levels) for

our study.

Table 1: Selected Android SDK (or API) Revisions. Because there is
no release for API levels 1-3, 11 and 12 and level 20 is reserved for
other purposes, in thiswork,we donot take into account these three
API levels.

API Level Code Name Selected Release

26 Oreo android-8.0.0_r9

25 Nougat android-7.1.0_r7

24 Nougat android-7.0.0_r7

23 Marshmallow android-6.0.1_r9

22 Lollipop android-5.1.1_r9

21 Lollipop android-5.0.2_r3

19 KitKat android-4.4w_r1

18 Jelly Bean android-4.3_r3.1

17 Jelly Bean android-4.2_r1

16 Jelly Bean android-4.1.2_r2.1

15 Ice Cream Sandwich android-4.0.4_r2.1

14 Ice Cream Sandwich android-4.0.2_r1

13 Honeycomb android-3.2.4_r1

10 Gingerbread android-2.3.7_r1

9 Gingerbread android-2.3.2_r1

8 Froyo android-2.2.3_r2.1

7 Eclair android-2.1_r2.1s

6 Eclair android-2.0.1_r1

5 Eclair android-2.0_r1

4 Donut android-1.6_r2

In addition to the Android platform framework base, we also col-

lect Android apps to investigate how deprecated APIs are addressed

by app developers. To this end, we inspect 10,000 apps: 5,000 from

the official Google Play store (hereinafter referred as GPlay) and

5,000 from third-party markets (hereinafter referred as NGPlay)

such as AppChina. These apps are randomly
8
selected from the

AndroZoo app repository, which contains over 5 million Android

apps and is known to be so far the largest app set publicly available

7
There are no releases (or tags) for API levels 1-3, 11 and 12 while the API level 20 is

reserved for wearable devices.

8
By using gshuf | head -5000 command.

https://android.googlesource.com/platform/frameworks/base.git

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Li Li et al.

to our community. Apps from this dataset have been previously

leveraged for a variety of research studies [25–28].

0
200
400
600
800

1000
1200
1400
1600
1800

<= 2010 2011 2012 2013 2014 2015 >= 2016

Gplay NGPlay

Figure 2: Distribution of randomly selected apps based on their as-
sembled date (i.e., dex date).

Figure 2 further summarises the distribution of randomly se-

lected apps based on their assembly date, i.e., the time when the

core code classes.dex was compiled created (i.e., the last modified

time). For both GPlay and NGPlay apps, the assembly time ranges

from 2010 to 2016, indicated diversity in the apps. Figure 3 further

confirms this diversity via the size of selected apps, where both

small (less than 1 MB) and big apps (more than 20 MB) are consid-

ered. The median and mean size of considered apps are 4.7 MB and

9.1 MB, respectively.

0 5 10 15 20 25

Megabyte

Figure 3: Distribution of randomly selected apps based on their size
(in MB).

3.2 CDA
The design of CDA is straightforward: the main process is sum-

marised in Algorithm 1.

CDA first parses all Java files in a given release of the Android

framework code repository and builds a mapping between Java

methods and their documentation (cf. line 6). Then, for eachmethod,

CDA checks if it is annotated as deprecated via the Deprecated
Java annotation. Since documentation and source code annotation

must be consistent, CDA further parses the comments to match the

keyword@deprecated. Thus, in a first phase, CDA can pinpoint

inconsistency cases where a deprecated API is documented but not

annotated (lines 13-15) or is annotated but not documented (lines

17-19). In a second phase, when the API is consistently deprecated,

CDA goes one step further to infer the potential replacements of

deprecated APIs, attempting to build another mapping between dep-

recated APIs and their potential replacements which we can later

leverage to recommend changes to client app code. Such a mapping

Algorithm 1 Characterising deprecated Android APIs.

1: procedure characterise(tags)
2: r esults ← {}
3: for each t ∈ taдs do
4: inconsistentAP Is ← ()
5: method2r eplacements ← {}
6: method2comments ← construct (t)
7: for eachmethod ∈ method2comments .keySet () do
8: f laд ← isAnnotatedAsDeprecated (method)
9: comment ←method2comments .дet (method)
10: if isDocumentedAsDeprecated (comment) then
11: ▷ msg here can be null or empty

12: msд ← дetReplacementMessaдe(comment)
13: deprecatedAPIs .put (method,msд)
14: if ¬f laд then
15: inconsistentAP Is .add (method)
16: end if
17: else
18: if f laд then
19: inconsistentAP Is .add (method)
20: end if
21: end if
22: end for
23: r esults .put (t, {inconsistentAP Is,method2r eplacements })
24: end for
25: return r esults
26: end procedure

can even be leveraged for automated refactoring of Android apps

to mitigate the usage of deprecated APIs.

Once this process is completed for the first release, CDA loops

on all subsequent releases and records the results for our empirical

investigation on the evolution.

3.3 Statistics
Table 2 presents statistics on the quantity of code elements that

are parsed and analysed by CDA for the different releases of the

Android framework. We note that successive releases are constantly

increasing the different metrics (i.e., the number of files, classes,

lines of code, and API methods). Eventually, between level 4 and

level 26 (the two extreme API levels in our study), the framework

code has substantially grown: the number of classes has almost

doubled, while the number of code lines has tripled; the phenome-

non is even more acute in methods which have grown 6-fold. These

figures suggest that as time goes by, the framework code base is

growing and is potentially becoming more and more complex to

analyse and maintain.

Metrics in Table 2 reveal the number of deprecated APIs sharply

increases in the framework code base, although the ratio of depre-

cated APIs vs. the total number of methods remains low (cf. Fig 4).

Between level 19 and 21, the ratio has drastically dropped. Indeed,

as shown in Table 2, the total number of APIs in level 21 has al-

most doubled comparing to that of level 19 while the number of

deprecated APIs are more or less kept the same.

4 EMPIRICAL INVESTIGATION
Our investigations explore the data mined by CDA to answer the

following research questions:

• RQ1: Are deprecated APIs properly annotated and docu-

mented in the Android framework code base?

• RQ2: To what extent are deprecated APIs stable in the An-

droid framework code base?

Characterising Deprecated Android APIs MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Table 2: Statistic overview of selected releases. Deprecated APIs are
considered as long as they are annotated or documented.

API # Java # Total # Public # Static # Deprecated

Level Classes LoC APIs APIs APIs APIs

26 742 3244981 4478 3677 610 133

25 635 2927464 3972 3341 497 119

24 623 2864293 3910 3299 491 119

23 557 2538626 3367 2822 429 101

22 504 2376430 2993 2460 414 83

21 490 2333200 2920 2392 413 83

19 439 1381169 2864 2318 412 98

18 425 1271452 2765 2197 395 90

17 419 1248085 2624 2022 387 78

16 425 1265976 2668 2059 379 73

15 398 1151084 2464 1862 348 48

14 397 1137869 2466 1846 346 48

13 380 1028975 2433 1787 364 50

10 313 872561 1897 1340 324 58

9 303 849373 1858 1301 316 58

8 428 896503 3250 2444 425 68

7 428 841184 3129 2339 414 65

6 439 831461 3147 2326 412 68

5 439 837932 3146 2326 412 68

4 389 774426 2980 2204 360 54

0.4%
0.4%0.4%0.4%

0.3%0.3%

0.9%
0.9%0.9%

0.9%

0.7%0.7%
0.8%0.8%0.8%

0.8%
0.9%0.9%0.9%

0.7%

0.0%
0.1%
0.2%
0.3%
0.4%
0.5%
0.6%
0.7%
0.8%
0.9%
1.0%

L26L25L24L23L22L21L19L18L17L16L15L14L13L10L9L8L7L6L5L4

Figure 4: Distribution of deprecated API rate. For each API level,
all its deprecated APIs, including the ones that are deprecated in
previous levels, are considered.

• RQ3: How often do maintainers swap deprecated API code

with replacement messages? Can such messages evolve over

time?

• RQ4: Do app developers quickly react to the deprecation of

APIs in the Android framework code base?

All the experiments discussed in this section are performed on a

Core i7 CPU running a Java VM with 16GB of heap size.

4.1 Code Annotation and Documentation
Code annotation and documentation are both necessary to properly

indicate that an API is deprecated. If an API is deprecated with-

out an explicit mention in the documentation (i.e., Annotated-Not-

Documented), users will not be clearly informed by this deprecation,

nor will they know the alternative, and thus may still use depre-

cated APIs. Similarly, if an API is deprecated without an explicit

annotation in the source code (i.e., Documented-Not-Annotated),

although its deprecation can still be highlighted on the documenta-

tion site (cf. Figure 1), such API will be compiled and integrated into

the released SDKs and thus popular IDEs such as Android Studio

and Eclipse cannot perform checks and warnings to developers

about this deprecation. As indicated in Figure 1, API saveLayer is
actually deprecated. However, since this method is not properly

annotated, when accessing this method via Android Studio, as pre-

sented in Figure 5, users will not be marked as deprecated (e.g., with

a cross-line). In contrast, API clipRegion(), which is annotated by

an explicit deprecation annotation, is correctly flagged by Android

Studio as deprecated.

Figure 5: Android Studio does not provide indication to such depre-
cated methods (e.g., saveLayer as indicated in Figure 1) that are not
properly annotated.

In this study, we are interested in checking whether deprecated

APIs provide consistent documentation and annotation. Surpris-

ingly, CDA unveils a small set of cases where the documentation

is not consistent with deprecation annotation presence/absence.

Table 3 summarises statistics of cases found in the various frame-

work releases. We note that deprecated APIs are generally well

documented as such: Annotated-Not-Documented cases of inconsis-
tencies are limited or nonexistent in the releases. In contrast, there

are several cases where an API documented as deprecated is not

annotated as such: until API level 15, we could find less than 10 such

cases per framework release; later releases contain several more

inconsistency cases (up to 8 times more inconsistencies between

API level 13 and API level 23). This finding suggests that Android

framework developers are not yet aware of the inconsistency prob-

lem of deprecated APIs. This observation is further confirmed by

the fact that inconsistent deprecations appear to be rarely fixed

during the evolution of the Android framework code base. For the

rare cases where inconsistent deprecations disappear during the

evolution, our further analysis reveals that all of them are due to

the removal of deprecated APIs themselves.

Finally, we have written issue reports describing the inconsis-

tency cases (2 Annotated-Not-Documented and 34 Documented-

Not-Annotated deprecated APIs) that CDA has identified for the

latest version of the Android framework base (i.e., master branch).

These issue reports were submitted to the Android issue tracker

system under developer.android.com and source.android.com compo-

nents, respectively. The submitted issues were assigned and con-

firmed by Android maintainers in a day: the engineering team

has acknowledged the issues and promised to fix them for next

releases
9
.

RQ-1 Finding

Deprecated Android APIs can be inconsistently annotated and

documented. With CDA, we have systematized the identifica-

tion of such inconsistency issues. Eventually, Android project

maintainers recognize that these inconsistency cases are indeed

issues that must addressed.

9
As footnoted before, the issue IDs of the submitted bugs are 69105065, 69104762 and

69098890, where the status of these issues so far are Fixed, Assigned and Assigned,
respectively.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Li Li et al.

Table 3: Inconsistency between annotation and documentation for deprecated Android APIs. We have submitted two issues (one for each
inconsistent type) to the Android open source project and have received positive acknowledgements on confirming these two issues.

Inconsistent Type L4 L5 L6 L7 L8 L9 L10 L13 L14 L15 L16 L17 L18 L19 L21 L22 L23 L24 L25 L26

Annotated-Not-Documented 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2

Documented-Not-Annotated 4 3 3 3 5 6 6 7 9 9 20 20 22 22 45 45 56 59 59 34

4.2 Clean-up and Survival of Deprecated APIs
We now investigate whether the code base is eventually cleaned-up

from deprecated APIs, and what is otherwise the survival time of

an API once it is marked as deprecated. To this end, we perform

pairwise comparisons between every consecutive API level releases

of the framework. Table 4 summarises the added and removed APIs

for each update (i.e., the code changes between a consecutive pair

of releases considered in our study). Over half of the updates have

performed some clean-up for deprecated APIs. This finding sug-

gests that it is important that app developers take steps to address

deprecated APIs used in their client code, or they may otherwise

face runtime crashes (hence bad user experience, and poor ratings)

on latest devices.

Table 4: Thenumber of added and removed deprecatedAPIs for each
update.

Update Additional Removal Update Additional Removal

L4→ L5 13 1 L16→ L17 2 8

L5→ L6 0 0 L17→ L18 11 4

L6→ L7 0 3 L18→ L19 8 0

L7→ L8 5 0 L19→ L21 5 20

L8→ L9 0 10 L21→ L22 0 0

L9→ L10 0 0 L22→ L23 18 1

L10→ L13 6 13 L23→ L24 16 0

L13→ L14 2 4 L24→ L25 0 0

L14→ L15 0 0 L25→ L26 27 14

L15→ L16 26 1

We further go one step deeper to check how deprecated Android

APIs are removed from the framework code base. Our investiga-

tion reveals that 25 deprecated APIs are not “actually” physically

removed from the framework but are only tagged as hidden for app

developers. Nevertheless, in this work, we still consider such depre-

cated APIs as removed. As discussed by Li et al. [22], hidden APIs

are also excluded from the public Android SDK (i.e., app developers

cannot access them) and they are known to be subject to removal

during the evolution of framework code.

As shown in Table 4 (i.e., the second column), in addition to

removal, there are new Android APIs recurrently flagged as depre-

cated as well. We therefore investigate the life expectancy of such

Android APIs once they are marked as deprecated by maintainers.

We model life expectancy as the number of releases where a depre-

cated API survives in the code base before being removed. We also

consider a release as a code “generation
10
”. It can be observed from

the results shown in Figure 6, that most deprecated APIs are not

removed immediately in the next release (i.e., generation ≥ 2) and

over 90% of deprecated APIs have survived beyond one generation.

Such a grace period is understandable, since developers must be

given time to take actions. Yet, 6.7% of deprecated APIs are removed

10
The actual time can be computed based on the released time of selected tags (e.g.,

android-7.0.0_r7 is released on 2016-08-23 while android-6.0.1_r9 is released on 2015-

12-15).

after one update. Although this rate is low, we are still surprised

that this situation does happen during the evolution of the Android

framework code base. Because of the limited time window, app

developers may not yet be informed and hence may still leverage

those deprecated APIs, resulting in immediate crashes on devices

running next framework versions.

10

20

5

21

10

17

12
10

2

15

0
2 1

15

0
2

0 0 0

9

0

5

10

15

20

25

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20

Figure 6: Life expectancy of deprecated Android APIs. Age corre-
sponds to the number of generations (e.g., G1 means one genera-
tion, or one release) before a deprecated API is removed from the
Android framework.

Figure 7 presents the violin plot on the life expectancy distribu-

tion of deprecated Android APIs. The median number of genera-

tions a deprecated API survives in the code base is 5 (mean = 6.2).

Given the fact that the Android framework code base evolves at a

fast pace (a generation occurs every 3 months[1]), app developers

need to react quickly on replacing deprecated APIs in their client

code before they become inaccessible in updated devices.

0 5 10 15

A
ge ●

Figure 7: Violin distribution of the life expectancy of deprecated
Android APIs. Age corresponds to the number of generations (i.e.,
X-axis) before a deprecatedAPI is removed from theAndroid frame-
work.

Characterising Deprecated Android APIs MSR ’18, May 28–29, 2018, Gothenburg, Sweden

RQ-2 Finding

Deprecated Android APIs are regularly cleaned-up from the

framework code base, often by completely dropping the code,

or by making it hidden. Half of these removals are performed

in a short period of time (e.g., within 5 API level generations),

requiring developers to quickly react on deprecated APIs.

4.3 Replacements for Deprecated APIs
In order to facilitate the usage updates of deprecated APIs in An-

droid apps, and consequently to preserve backward compatibility,

APIs should always be deprecated with clear replacement messages

(i.e., how can this method be replaced by other ones?). However, in

practice, there is evidence that API elements are usually deprecated

without such messages [4–6]: developers thus may not be provided

with suggestions of how to avoid the use of deprecated APIs. We

explore in this study the availability of replacement messages for

Android deprecated APIs.

Since version 1.2, Java documentation recommends that develop-

ers should include “Use {@link Method}” to indicate the replacement

API when deprecating a given API. CDA searches this pattern
11

in

the Javadoc and builds a mapping between deprecated APIs and

their replacements. Table 5 presents some examples from the built

mapping. Replacement messages often refer to other API methods,

but may also refer to some object fields (e.g., #onReceive).

Figure 8 illustrates the distribution of deprecated APIs with/with-

out replacement messages for the considered API level releases. In

each release of the framework, a median percentage of 69.35% dep-

recated APIs have been explicitly documented with replacement

messages (mean percentage is 70.05%). The latest release (i.e., level

26) has replacement messages for 62 APIs (i.e., 68.1% of total depre-

cated methods) in line with average metrics. However, comparing

to the study of Brito et al. [6], who has investigated a large-scale

study on 661 real-world Java systems and shown that the average

replacement rate of deprecated APIs is 64%, the replacement rate

of Android framework code is slightly higher, demonstrating that

the deprecation-then-updating quality of Android framework (at

least for deprecation) is generally above the average of normal Java

programs.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

L4 L5 L6 L7 L8 L9 L10 L13 L14 L15 L16 L17 L18 L19 L21 L22 L23 L24 L25 L26

With Replacement Without Replacement

Figure 8: Distribution of deprecated APIs per release with/without
replacement messages.

11
right after the @deprecated keyword

We now investigate whether the replacement messages provided

for deprecated APIs are reliable.Concretely, we check that the pro-

vided replacement messages are stable (i.e., whether they evolve

as well). To this end, we conduct a study on two aspects: (1) Will

deprecated APIs that have no replacement messages be comple-

mented later with replacement messages? (2) Will the replacement

messages of deprecated APIs be updated by new replacements?

We find that: (1) No replacement message will be added to such

deprecated APIs that initially have no replacement message; and

(2) seldom, an existing replacement message will be updated: we

identified only three API cases (cf. Table 6) where the original

replacement messages are updated with new ones. This finding

suggests that framework maintainers need to be extremely careful

about the documentation, especially w.r.t the replacement messages

since this documentation will remain available for a long time and

will likely have an effect on app developers code.

RQ-3 Finding

About 70% of deprecated Android APIs have been commented

with replacement messages, which is slightly higher than the

average percentages in real-world Java systems. Replacement

messages however, either exist or do not exist, will be rarely

updated during the evolution of the Android framework code

base.

4.4 Developer Reactions
We study the reactions of app developers to the deprecation of An-

droid APIs. More specifically, we would like to know if deprecated

APIs are still used by app developers. Since app assembly time (the

compilation of the DEX file in the APK) is not reliable (e.g., it is

easily manipulable) [29], we resort to API level generations as the

measure of time. For each app, we extract its API level based on the

targetSDK attribute declared in app manifest files. The target SDK

version informs the system that the app has been tested against

the target version, which hence should not cause any compatibility

issues. After the extraction of targeted SDK version, CDA goes

through all the statements of the analyzed app to check if some

used APIs have been deprecated in releases prior to the declared

targeted SDK version.

Among our randomly sampled set of 10,000 apps, CDA high-

lights that 37.87% apps are making use of deprecated APIs. Among

the flagged 3,787 apps, the GPlay subset contributes 2,897 apps

while NGPlay contributes 1780 apps. This finding is very interest-

ing as we would have expected that there should be less apps in

Google Play accessing deprecated APIs than that of other markets

as normally Google Play provides high-quality apps comparing to

other alternative markets. Moreover, as shown in Fig. 9, Google

Play apps also utilise more deprecated APIs than that of alternative

markets. We ensure that this difference is significant by conducting

a Mann-Whitney-Wilcoxon (MWW) test
12
, where the resulting p-

value confirms that there is a significant difference between Google

Play and alternative markets apps at a significance level
13

of 0.001.

12
We have appended 2,007 (2,897-890) zero to third-party markets (i.e., NGPlay) to

balance the number of elements.

13
Given a significance level α = 0.001, if p-value < α , there is one chance in a thousand

that the difference between the datasets is due to a coincidence.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Li Li et al.

Table 5: Examples in the constructed mapping.

Deprecated API Replacement Message

android.database.sqlite.SQLiteClosable: void onAllReferencesReleasedFromContainer() #releaseReferenceFromContainer()

android.webkit.WebSettings: void setDefaultZoom(ZoomDensity) ZoomDensity#MEDIUM

android.app.admin.DeviceAdminReceiver: void onReadyForUserInitialization(Context,Intent) #onReceive

android.content.Context: void removeStickyBroadcast(Intent) #sendStickyBroadcast

android.database.Cursor: void deactivate() #requery

Table 6: The updated three replacement messages.

Replacement Message (original) Replacement Message (new)

#SslCertificate(String, String, Date, Date) #SslCertificate(X509Certificate)

#setTextZoom(int) #setTextZoom

#getTextZoom() #getTextZoom

●

●

●

●●

●

●●●

●

●●●●●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●●

●

●●●●

●

●

●

●

●●●

●●●●●

●

●●●

●

●●●●●●●●

●

●●●

●

●

●

●●

●

●

●

●●

●

●●●

●●

●●

●

●●●●●

●

●

●

●●

●

●●

●●

●

●

●●

●

●

●

●●

●

●●●

●●

●●●

●

●●●

●

●●●●●●●

●

●●●

●

●●●

●

●

●

●

●

●●

●●●●

●●●●

●

●●●●●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●

●

●●

●●

●

●

●●

●

●

●

●●●●

●●

●●●●

●

●●

●

●

●

●

●

●

●●

●●●

●●

●●●

●

●●

●●

●

●●

●

●

GPlay NGPlay

0
2

4
6

8

Figure 9: Distribution of the number of deprecated APIs utilised per
app.

Towards understanding the reason why Google Play apps access

deprecated APIs, we further record all the callers of deprecated

APIs. Our investigation reveals that actually most of the deprecated

APIs are accessed by third-party libraries
14
. Table 7 highlights

the top five caller packages that have invoked deprecated APIs

in Google Play and Third-party market apps, respectively. If we

exclude common libraries from consideration, the number of apps

leveraging deprecated APIs reduces to 374 and 127 respectively for

Google Play and third-party market apps. This evidence suggests

that common libraries, especially such ones that are provided by

well-known parties such as Google, are not frequently updated in

developer app code.

Table 7: The top five packages calling into deprecated Android APIs,
which account for 90% and 74% of total deprecation usages inGoogle
Play and Third-party Markets, respectively.

GPlay Apps NGPlay Apps

com.google 4,304 android.support 954

android.support 2,845 com.google 228

org.apache 364 com.tencent 191

com.facebook 320 com.facebook 80

com.unity3d 318 com.alipay 55

Total 8151 (90%) Total 1508 (74%)

We explore the gap between the targeted SDK level and the API

deprecation level, indicative of time delay, i.e.,delay = tarдetSDK−

14
In this work, we consider the common libraries revealed by Li et al. [30] as the

white-list to flag whether a caller belongs to libraries.

deprecationLevel . This delay represents the number of generations

where app developers are still able to call deprecated APIs. The

delay between the thousands deprecated APIs called by the 3,787

apps range from 1 to 18 with 5 and 4.9 generations as median and

mean, respectively. Fig. 10 further presents the distribution of API

level delays between Google Play and third-party market apps.

The callers of deprecated APIs are also separated into two folds:

app code and common library code. Interestingly, although most

deprecated APIs are leveraged by library code, their accessing delay

is however shorter than that of app code for both Google Play and

third-party market apps. This difference is also further confirmed

by a MWW test.

●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

0

5

10

15

GPlay_APP GPlay_LIB NGPlay_APP NGPlay_LIB

DATASETS

D
E

LA
Y

Figure 10: Distribution of delays between Google Play and third-
party market apps. Suffixes _APP and _LIB indicate that the caller
of deprecated APIs are from the app code and third-party library
code, respectively.

RQ-4 Finding

Most deprecated APIs are accessed by app code via popular

libraries. Developers should thus pay attention in the library

releases used in their app packages. The accessing delay of com-

mon libraries however is generally shorter than that of app code,

and library developers are more likely to update deprecated APIs

than app developers.

5 DISCUSSION
This section discusses implications of this study and promising

research directions that could be built on the characterization of

Android APIs (cf. Section 5.1). We also enumerate some potential

threats to validity in our findings (cf. Section 5.2).

Characterising Deprecated Android APIs MSR ’18, May 28–29, 2018, Gothenburg, Sweden

5.1 Implications
The findings of this study raise a number of issues and opportunities

for the research and practice communities.

=⇒ Tool support for deprecating APIs.

As unveiled by our investigations and reported in Section 4.1, dep-

recated APIs suffer from inconsistency issues in documentation

and annotation. Most probably, API deprecation remains a manual

process undertaken by framework developers. Given the conse-

quences of inconsistency issues in practice for app developers, it

is necessary that Android maintainers adopt specific tools to deal

with API deprecation. Generally, it is important for not only the

maintainers of Android framework base but also for the maintain-

ers of any other repositories that need to deal with API deprecation

to request tool support. Our research prototype, namely CDA, is

actually our first step towards providing such a general tool for

helping repository maintainers better deal with API deprecation.

=⇒ A deprecate-replace-hide-removemodel.

So far, the practice in dropping legacy APIs from the code base

consists in applying the so-called deprecate-replace-remove model,

where the legacy APIs are eventually removed after a certain period

of time. This model appears to be suitable for most cases, but would

still lead to crashes for some legacy client apps which still call

into removed APIs. In order to avoid such unnecessary crashes, the

Android framework base has introduced another means to deal with

deprecated APIs. That is, instead of directly removing deprecated

APIs, it first flags them as hidden APIs that can still live for a

while in the framework side (i.e., available in the runtime virtual

machine) but are no longer available in the client SDK. Thus, legacy

apps, which still call into hidden APIs (removed from the SDK), can

successfully run on updated devices. Meanwhile, new apps that

are developed based on latest SDK would not face the problem of

accessing “removed” APIs because those APIs are indeed removed

from the developer’s point of view. This scheme has already been

shown to be effective for other APIs in the Android framework

code base. Thus, we recommend that the community adopts a new

process model for deprecating APIs, namely deprecate-replace-hide-
remove model. We remind the readers that hidden APIs could be

promoted to public APIs eventually [31], which however should

not contradict the proposed deprecate-replace-hide-remove model

as those hidden APIs will unlikely be originated from deprecated

ones.

=⇒ Automatic fix of deprecated APIs usage in apps.

Our study in this work constructs a mapping between deprecated

APIs and their replacement alternatives. An opportune research

direction could be to invent an automated approach for fixing the

usage of deprecated APIs across apps in the wild. This direction

involves challenges beyond simple refactoring of API call sites:

indeed, alternatives can be other API methods with different pa-

rameters (how to initialize arguments based on context variables?),

suggested classes (how to infer object initialization and specific

internal method calls?), or fields of existing objects (how to identify

the right object, and use the appropriate field in replacement code?).

Nevertheless, we believe that leveraging the mapping produced in

this work and a large dataset of apps (with millions of code sam-

ples) can help systematically learn patterns for fixing the usage of

deprecated APIs.

=⇒ Evolution study on apps dealing with deprecation.

Although we found in our study that most deprecated APIs come

with replacement messages indicating alternatives, we have no

confirmation that the proposed alternatives are indeed suitable for

app developers and the scenarios in which they used the depre-

cated APIs. Building on a large dataset of apps with several release

versions per app, we can investigate how developers react to API

alternatives: do developers follow maintainer recommendations?

what has impacted API deprecation on app code maintenance? etc.

Such a study will complete the view on API deprecation in the

Android framework.

5.2 Threats to Validity
First, our investigation is conducted based on a subset of selected

releases of the Android framework base, where the selected sub-

set of releases may not be representative for the whole evolution

of deprecated APIs and hence introduce threats into the external

validity. Nevertheless, to alleviate this threat, we have considered

all the possible API level releases.

Second, the representability of our approach could potentially

be also impacted by the selection of app sets. Nonetheless, this

threat is mitigated by performing random sampling from so far the

largest and most up-to-date research dataset (a.k.a. AndroZoo) in

our community.

Third, our library-based investigation is based on a whitelist

provided by Li et al. [22], where certain libraries could be still

missing, making our corresponding findings biased to some extent.

Nevertheless, the whitelist we have leveraged contains over 1,000

libraries including at least the popular ones (e.g., all the popular

libraries presented in Table 7 are included).

Fourth, the developer reactions study is conducted based on the

targetedSDK version, which has been used by app developers to test

against the functionality of the apps, resulting in a limited view of

the use of deprecated APIs as ideally the full range of supported SDK

versions should be considered. Nevertheless, our empirical findings

should not be significantly impacted as the targetedSDK version

generally represents the framework version the corresponding app

is developed upon.

Finally, our empirical investigations are performed purely on

software artefacts (e.g., the source code and documentation of the

Android framework base, or the bytecode of Android apps), the cor-

responding findings may only reflect the output of those artefacts

and hence may not reflect the opinions of framework maintainers

and app developers. To alleviate this, in our future work, we plan

to contact both framework maintainers and app developers for a

more comprehensive understanding on how are deprecated APIs

treated in practice.

6 RELATEDWORK
Recent studies have explored the problem of deprecating APIs from

various aspects. In this section, we discuss some of the most repre-

sentative ones.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Li Li et al.

6.1 API Deprecation
As a common knowledge, deprecatedAPIs should follow the deprecate-
replace-remove cycle where an API is first marked as deprecated

and then replaced by a new API and eventually removed from the

source code base [32–34]. However, many deprecated APIs are not

removed despite having remained as deprecated for years. For exam-

ple, Zhou et al. [32] present a retrospective analysis of deprecated

APIs and find that the traditional deprecate-replace-remove cycle is
often not respected in open source Java frameworks and libraries.

They also argue that, because of API deprecation, coding exam-

ples on the web can easily become outdated. Consequently, they

present a prototype tool named Deprecation Watcher to automati-

cally flag coding examples of deprecated APIs so that developers

can be informed of such usages before spending time and energy

into interpreting them. Kapur et al. [34] further reveal that depre-

cated entities do not always get removed eventually while removed

entities are not always deprecated beforehand.

For some Java systems on Maven Central Repository, deprecated

APIs are even never removed, as discovered by Raemaekers et

al. [35]. Unfortunately, in their study, only@Deprecated annotation

is considered, i.e.,@deprecation Javadoc tag is ignored, which could

have missed some deprecated APIs. As demonstrated in this work,

it is quite common that these inconsistencies appear in Java source

code repository such as the Android framework code base.

Brito et al. [6] argue that APIs should always be deprecated

with clear replacement messages so that client systems can cor-

respondingly update. However, based on their investigation, this

philosophy is not always respected. Similarly, Ko et al. [7] investi-

gate the relationship between API documentation quality and the

resolved deprecated APIs. Their empirical investigation reveals that

deprecated APIs with documented replacement messages are more

likely to be updated comparing to such deprecated APIs that have

no documentation indicating their alternatives.

Espinha et al. [8] provide a systematic and extensible study on

the deprecation of web APIs. Their experimental results show that

many web developers are not able to keep their app up-to-date

even with a long deprecation time given. Taking Google Maps API

version 2 as an example, Google gives three years for its developers

to upgrade but turns out that three years are not enough. The

authors then argue that three years are rather short but too long that

leaves developers too relaxed to migrate their code. This interesting

finding could also happen in Java-based systems including the

Android framework code base. However, to explore this direction is

out of the scope of this work, we therefore consider it as our future

work.

6.2 API Evolution
McDonnell et al. [1] investigate the stability and adoption of An-

droid APIs and find that Android APIs evolve fast and app devel-

opers do not follow the evolution momentum. For example, they

disclose that around 28% of APIs used by Android apps are outdated

where the median lagging time is 16 months. Linares-Vásquez et

al. [10] further explore the relationship between fault- and change-

prone APIs and the success of Android apps and empirically demon-

strates that there is a negative impact between these two parts [36].

Furthermore, they also empirically show that change-prone An-

droid APIs are more likely discussed on social media such as Stack

Overflow [10].

Li et al. [22] explore the evolution of inaccessible Android APIs,

where both internal and hidden APIs are considered. Like our ap-

proach, they also investigate the inaccessible APIs based on the

historical changes of the Android framework code base. They have

taken into account 17 prominent releases and reveal that inaccessi-

ble APIs are commonly implemented in the Android framework.

In this work, we find another reason, which is yet not disclosed by

their approach, that certain deprecated APIs are eventually marked

as hidden. This modification is quite intelligent as from app de-

veloper’s point of view those deprecated APIs have been removed

from the SDK while from the framework’s point of view those

deprecated APIs are still retained to avoid potential compatibility

issues.

In addition to Android framework code base, several approaches

are also proposed to investigate the evolution of general framework

code [37–39]. Dagenais and Robillard [37] present a client-server

tool called SemDiff that automatically recommends adaptations

such as replacing no longer existed methods to client programs

by mining the evolution of framework changes. Similarly, Wu et

al. [38] introduce AURA, a hybrid approach that integrates call

dependency analysis with text similarity comparison together, to

automatically identify change rules to further benefit client pro-

grams to keep their code up-to-date. Meng et al. [39] present a novel

approach named HiMa, which performs pairwise comparisons for

each consecutive revisions recorded in the evolutionary history and

aggregates revision-level rules to construct framework-evolution

rules. Although HiMa takes more computing powers than AURA,

it achieves higher precision and recall in most circumstances.

7 CONCLUSION
In this work, we have conducted an exploratory study of deprecated

Android APIs. In particular, we have built a prototype research tool

called CDA and applied it to different revisions (i.e., releases or

tags) of the Android framework code base to investigate all the

deprecated APIs (how are they annotated and documented? or how

are they cleaned up or survived during the evolution of the frame-

work base?) and infer the mapping with their potential replacement

alternatives. Finally, we explore a set of real-world Android apps

attempting to understand the reaction of app developers to depre-

cated Android APIs.

Our experimental investigation eventually finds that (1) Dep-

recated Android APIs are not always consistently annotated and

documented, which can have severe consequences in app develop-

ment and user experience; (2) The Android framework code base is

regularly cleaned-up from deprecated APIs, often in a short period

of time; (3) In general, Android framework ensure that deprecated

APIs are commented to provide alternatives, although this docu-

mentation is rarely updated. (4) In practice, most usage sites of

deprecated APIs in app code are located in popular libraries, al-

though, library developers are more likely to update deprecated

APIs than app developers.

Characterising Deprecated Android APIs MSR ’18, May 28–29, 2018, Gothenburg, Sweden

REFERENCES
[1] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study of api

stability and adoption in the android ecosystem. In Software Maintenance (ICSM),
2013 29th IEEE International Conference on, pages 70–79. IEEE, 2013.

[2] Mojtaba Bagherzadeh, Nafiseh Kahani, Cor-Paul Bezemer, Ahmed E Hassan,

Juergen Dingel, and James R Cordy. Analyzing a decade of linux system calls.

Empirical Software Engineering, pages 1–33, 2017.
[3] Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. On the

use of replacement messages in api deprecation: An empirical study. Journal of
Systems and Software, 137:306–321, 2018.

[4] Romain Robbes, Mircea Lungu, and David Röthlisberger. How do developers

react to api deprecation?: the case of a smalltalk ecosystem. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, page 56. ACM, 2012.

[5] André Hora, Romain Robbes, Nicolas Anquetil, Anne Etien, Stéphane Ducasse,

and Marco Tulio Valente. How do developers react to api evolution? the pharo

ecosystem case. In Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on, pages 251–260. IEEE, 2015.

[6] Gleison Brito, Andre Hora, Marco Tulio Valente, and Romain Robbes. Do devel-

opers deprecate apis with replacement messages? a large-scale analysis on java

systems. In Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE
23rd International Conference on, volume 1, pages 360–369. IEEE, 2016.

[7] Deokyoon Ko, Kyeongwook Ma, Sooyong Park, Suntae Kim, Dongsun Kim, and

Yves Le Traon. Api document quality for resolving deprecated apis. In Software
Engineering Conference (APSEC), 2014 21st Asia-Pacific, volume 2, pages 27–30.

IEEE, 2014.

[8] Tiago Espinha, Andy Zaidman, and Hans-Gerhard Gross. Web api growing

pains: Stories from client developers and their code. In Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution
Week-IEEE Conference on, pages 84–93. IEEE, 2014.

[9] Daqing Hou and Xiaojia Yao. Exploring the intent behind api evolution: A case

study. In Reverse Engineering (WCRE), 2011 18th Working Conference on, pages
131–140. IEEE, 2011.

[10] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,

and Denys Poshyvanyk. How do api changes trigger stack overflow discussions?

a study on the android sdk. In proceedings of the 22nd International Conference on
Program Comprehension, pages 83–94. ACM, 2014.

[11] Anand Ashok Sawant, Romain Robbes, and Alberto Bacchelli. On the reaction to

deprecation of 25,357 clients of 4+1 popular java apis. In Software Maintenance
and Evolution (ICSME), 2016 IEEE International Conference on, pages 400–410.
IEEE, 2016.

[12] Kingsum Chow and David Notkin. Semi-automatic update of applications in

response to library changes. In icsm, volume 96, page 359, 1996.

[13] Danny Dig, Stas Negara, Ralph Johnson, and Vibhu Mohindra. Reba: refac-

toringaware binary adaptation of evolving libraries. In In ICSEâĂŹ08: Proceedings
of the 30th International Conference on Software Engineering. Citeseer, 2008.

[14] Johannes Henkel and Amer Diwan. Catchup!: capturing and replaying refactor-

ings to support api evolution. In Proceedings of the 27th international conference
on Software engineering, pages 274–283. ACM, 2005.

[15] Marius Nita and David Notkin. Using twinning to adapt programs to alternative

apis. In Software Engineering, 2010 ACM/IEEE 32nd International Conference on,
volume 1, pages 205–214. IEEE, 2010.

[16] Zhenchang Xing and Eleni Stroulia. Api-evolution support with diff-catchup.

IEEE Transactions on Software Engineering, 33(12):818–836, 2007.
[17] Roman Štrobl and Zdeněk Troníček. Migration from deprecated api in java. In

Proceedings of the 2013 companion publication for conference on Systems, program-
ming, & applications: software for humanity, pages 85–86. ACM, 2013.

[18] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. How

to break an api: cost negotiation and community values in three software ecosys-

tems. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 109–120. ACM, 2016.

[19] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. Why and how

java developers break apis. arXiv preprint arXiv:1801.05198, 2018.
[20] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. Parameter

Values of Android APIs: A Preliminary Study on 100,000 Apps. In Proceedings
of the 23rd IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER 2016), 2016.

[21] Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F Bissyandé, Alexandre

Bartel, Jacques Klein, and Yves Le Traon. Androzoo++: Collecting millions of

android apps and their metadata for the research community. arXiv preprint
arXiv:1709.05281, 2017.

[22] Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein. Accessing

inaccessible android apis: An empirical study. In The 32nd International Conference
on Software Maintenance and Evolution (ICSME 2016), 2016.

[23] Roberta Coelho, Lucas Almeida, Georgios Gousios, and Arie van Deursen. Un-

veiling exception handling bug hazards in android based on github and google

code issues. In Mining Software Repositories (MSR), 2015 IEEE/ACM 12th Working
Conference on, pages 134–145. IEEE, 2015.

[24] Fabio Palomba, Mario Linares-Vásquez, Gabriele Bavota, Rocco Oliveto, Massim-

iliano Di Penta, Denys Poshyvanyk, and Andrea De Lucia. Crowdsourcing user

reviews to support the evolution of mobile apps. Journal of Systems and Software,
137:143–162, 2018.

[25] Geoffrey Hecht, Omar Benomar, Romain Rouvoy, Naouel Moha, and Laurence

Duchien. Tracking the software quality of android applications along their

evolution (t). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on, pages 236–247. IEEE, 2015.

[26] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,

Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-

daniel. IccTA: Detecting Inter-Component Privacy Leaks in Android Apps. In

Proceedings of the 37th International Conference on Software Engineering (ICSE
2015), 2015.

[27] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David Lo,

and Lorenzo Cavallaro. Understanding android app piggybacking: A systematic

study of malicious code grafting. IEEE Transactions on Information Forensics &
Security (TIFS), 2017.

[28] Xinli Yang, David Lo, Li Li, Xin Xia, Tegawendé F Bissyandé, and Jacques Klein.

Characterizing malicious android apps by mining topic-specific data flow signa-

tures. Information and Software Technology, 2017.
[29] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. Wukong: A scalable and

accurate two-phase approach to android app clone detection. In Proceedings of
the 2015 International Symposium on Software Testing and Analysis, pages 71–82.
ACM, 2015.

[30] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. An investigation

into the use of common libraries in android apps. In The 23rd IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER 2016), 2016.

[31] Andre Hora, Marco Tulio Valente, Romain Robbes, and Nicolas Anquetil. When

should internal interfaces be promoted to public? In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 278–289. ACM, 2016.

[32] Jing Zhou and Robert J Walker. Api deprecation: a retrospective analysis and

detection method for code examples on the web. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 266–277. ACM, 2016.

[33] Danny Dig and Ralph Johnson. The role of refactorings in api evolution. In

Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International
Conference on, pages 389–398. IEEE, 2005.

[34] Puneet Kapur, Brad Cossette, and Robert J Walker. Refactoring references for
library migration, volume 45. ACM, 2010.

[35] Steven Raemaekers, Arie van Deursen, and Joost Visser. Semantic versioning

versus breaking changes: A study of the maven repository. In Proceedings of
the 2014 IEEE 14th International Working Conference on Source Code Analysis and
Manipulation, pages 215–224. IEEE Computer Society, 2014.

[36] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Mas-

similiano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. The impact of api

change-and fault-proneness on the user ratings of android apps. IEEE Transactions
on Software Engineering, 41(4):384–407, 2015.

[37] Barthélémy Dagenais and Martin P Robillard. Recommending adaptive changes

for framework evolution. ACM Transactions on Software Engineering and Method-
ology (TOSEM), 20(4):19, 2011.

[38] Wei Wu, Yann-Gaël Guéhéneuc, Giuliano Antoniol, and Miryung Kim. Aura:

a hybrid approach to identify framework evolution. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 1, pages 325–
334. ACM, 2010.

[39] SichenMeng, XiaoyinWang, Lu Zhang, and HongMei. A history-based matching

approach to identification of framework evolution. In Software Engineering (ICSE),
2012 34th International Conference on, pages 353–363. IEEE, 2012.

