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Abstract

In this paper we introduce a new set of general principles
for probabilistic abstract argumentation. The main principle
is a probabilistic analogue of SCC decomposability, which
ensures that the probabilistic evaluation of an argumentation
framework complies with the probabilistic (in)dependencies
implied by the graph topology. We introduce various exam-
ples of probabilistic semantics and determine which princi-
ples they satisfy. Our work also provides new insights into
the relationship between abstract argumentation and the the-
ory of Bayesian networks.

1 Introduction
Abstract argumentation deals with argumentation frame-
works (AFs) and their semantics (Dung 1995). The former
are sets of arguments together with an attack relation, and
the latter are methods to determine their extensions (i. e., sets
of acceptable arguments) or labelings (i.e., functions map-
ping arguments to an acceptance status) (Caminada 2006).
Abstract argumentation has found many applications in the
field of AI. Beyond its original role as an abstraction of var-
ious defeasible reasoning formalisms (Dung 1995), abstract
argumentation now forms a cornerstone of the interdisci-
plinary field of formal argumentation (Baroni et al. 2018).

An essential aspect of argumentation is uncertainty, which
appears, for example, in opponent or audience models in
strategic argumentation or persuasion (Rienstra, Thimm, and
Oren 2013; Grossi and van der Hoek 2013; Hunter 2015). It
therefore makes sense to consider probabilistic extensions.
One approach is to assume that arguments and attacks of
an AF are associated with probabilities (Li, Oren, and Nor-
man 2011; Rienstra 2012; Hunter 2013; Hunter and Thimm
2016b). Another approach is to use probabilities to represent
degrees of belief in whether arguments are accepted (Thimm
2012; Hunter 2013; Baroni, Giacomin, and Vicig 2014;
Hunter and Thimm 2016a; 2017). These two approaches are
often referred to, respectively, as the constellations and epis-
temic approach (a distinction introduced in (Hunter 2013)).

In this paper we present a new perspective on the
epistemic approach. Our main focus is the question of
how the topology of an AF determines probabilistic
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(in)dependencies that the probabilistic evaluation of an AF
should obey. The following example demonstrates this idea.
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Figure 1: The eating out example

Example 1 (Eating out). The AF shown in Figure 1 repre-
sents the decision making of an agent planning to eat out. He
will eat meat or fish (m or f ) and take a taxi or drive himself
(t or d). He drinks red wine (r) but not with fish or when
driving (f and d attack r). Finally, he drinks either cola or
water (c or w), but no cola if he drinks red wine (r attacks c).

The direction of the attacks imply that the agent first
chooses independently between m and f and between t
and d. Then he determines the status of r, which depends
on f and d. Finally he chooses between c and w, which
depends on r. Note that we can, of course, imagine different
scenarios, but this would involve different directions of
attack. E.g., if the decision about r came before the decision
between t and d, then the attack of d on r would be reversed.

Suppose we have probabilistic beliefs about what the
agent will do. That is, each argument is associated with a
probability that it is accepted. What happens if we learn
that the agent accepts m or f ? Clearly, this may affect
the probability of r and hence c and w. The preceding
discussion suggests, however, that t and d are unaffected.
That is, m and f are probabilistically independent of t and d.

Now suppose we learn that the agent accepts m or f, but
after having learnt that he rejects r. Since the effect of m
and f on c and w is mediated by r (whose status is now
fixed) the arguments c and w are not affected this time. In
other words, m and f are probabilistically independent of c
and w given r. On the other hand, if the agent accepts m, we
can infer that he accepts d, since this is now the only way to
account for rejection of r. Thus, after learning r is rejected,
it no longer holds that m and f are independent of t and d.

This example shows that the topology of an AF quite
naturally translates into probabilistic (in)dependence rela-
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tionships if the AF is evaluated probabilistically. So far,
this aspect has mostly been neglected. One reason is that
the epistemic approach as described in e.g. (Hunter 2013)
deals mostly with marginal probabilities without addressing
the question of what the underlying probability distribution
looks like. Therefore conditional probabilities are undefined
and questions of probabilistic independence do not arise.

Our approach consists of three steps. We fist define the
general notion of a probabilistic semantics, which is a func-
tion mapping each AF to a probability distribution over its
labelings. This will be the object of our study. We can think
of this as the probabilistic counterpart of a regular (labeling-
based) semantics, which maps each AF to a set of labelings.

Secondly, we propose some general principles that a prob-
abilistic semantics should satisfy. Here, a central principle
is a probabilistic analogue of SCC decomposability, which
states that each SCC (strongly connected component) is
evaluated independently given the status of its attackers (Ba-
roni et al. 2014). The (in)dependencies in Example 1 (where
SCCs are enclosed in rectangles) can be understood as aris-
ing from this principle. Another principle is SCC factorabil-
ity, which connects our approach to the theory of Bayesian
networks. This connection is already apparent in Exam-
ple 1, where attacks represent—like edges in a Bayesian
network—a specific kind of influence between variables.

Third, we discuss a number of concrete schemes to define
a probabilistic semantics, which we then evaluate using the
principles we proposed. Two schemes are based on uniform
distributions over the choices that can be made in selecting
labelings. Two more schemes are generalisations capable of
taking into account probabilistic strength of arguments.

The overview of this paper: Section 2 deals with basics of
argumentation and probability theory. In Section 3 we define
the general notion of a probabilistic semantics and introduce
general principles that it should satisfy. Sections 4 and 5 deal
with concrete schemes to define a probabilistic semantics,
which we evaluate using the principles from Section 3. In
Section 6 we discuss open issues and related work.

2 Preliminaries
2.1 Abstract Argumentation
The basic notion in abstract argumentation is an argumenta-
tion framework (AF for short) (Dung 1995). An AF consists
of a set of arguments and a binary attack relation between
arguments. We restrict our attention to finite AFs.

Definition 1. Let A be a set called the universe of ar-
guments. An argumentation framework (AF) is a pair
F = (AF , F ) where AF ⊆ A is a finite set of arguments,
and F⊆ AF ×AF the attack relation.

A semantics determines, given an AF, rational points of
view on argument acceptability. We use the three-valued
labeling-based semantics introduced in (Caminada 2006),
where a labeling maps each argument to a label I (in or ac-
cepted), O (out or rejected), or U (undecided).

Definition 2. A labeling of a set A is a function L : A →
{I,O,U}. We denote by L(A) the set of labelings of A and,
given an AF F , by L(F ) the set of labelings of AF . We

denote by I(L),U(L) and O(L) the set of arguments labeled
I, U and O by L, respectively.

A basic condition for a labeling to be regarded as a ratio-
nal point of view is completeness (Caminada 2006).

Definition 3. Let F be an AF. A labeling L ∈ L(F ) is a
complete labeling of F iff, for all x ∈ AF :

1. L(x) = O iff ∃y ∈ AF s.t. y  F x and L(y) = I.
2. L(x) = I iff ∀y ∈ AF s.t. y  F x, L(y) = O.

A semantics σ maps each AF F to a set of labelings of
F and is called universally defined if it maps each AF to a
nonempty set of labelings.

Definition 4. A semantics σ associates each AF F with a set
Lσ(F ) ⊆ L(F ) of labelings. A semantics σ is universally
defined iff for each AF F , Lσ(F ) 6= ∅.

We limit our attention in this paper to universally defined
semantics and will not make this explicit every time. Thus, if
we speak of “a semantics σ” we mean “a universally defined
semantics σ”. This implies that our results do not apply to
the stable semantics, which is not universally defined (Cam-
inada 2006). We return to this issue in Section 6.

In this paper we focus on the complete semantics, which
yields complete labelings, and the preferred, grounded
and semi-stable semantics, which yield the I-maximal,
I-minimal and U-minimal complete labelings (Caminada
2006). These semantics are all universally defined. Note
that an AF always has one grounded labeling but may have
multiple complete, preferred or semi-stable labelings.

Definition 5. The co (complete), pr (preferred), gr
(grounded) and ss (semi-stable) semantics are defined by

Lco(F ) = {L ∈ L(F ) | L is a complete labeling of F},
Lpr(F ) = {L ∈ Lco(F ) | @L′ ∈ Lco(F ), I(L) ⊂ I(L′)},
Lgr(F ) = {L ∈ Lco(F ) | @L′ ∈ Lco(F ), I(L) ⊃ I(L′)},
Lss(F ) = {L ∈ Lco(F ) | @L′ ∈ Lco(F ),U(L) ⊃ U(L′)}.

2.2 Probability Theory
In this section we present the necessary basics concerning
probability theory. We start with the general notion of a
probability distribution (Koller and Friedman 2009).

Definition 6. Let Ω be a finite set of elements called pos-
sible worlds. A probability distribution over Ω is a func-
tion P : Ω → R such that for all w ∈ Ω, P (w) ≥ 0 and∑
w∈Ω P (w) = 1. P is extended to a function over events

(i. e., subsets of Ω) by defining P (X) =
∑
w∈X P (w), for

all X ⊆ Ω. If X,Y ⊆ Ω and if P (Y ) > 0, then the proba-
bility of X conditional on Y , denoted P (X | Y ), is defined
by P (X | Y ) = P (X ∩ Y )/P (Y ).

A set of possible worlds may be associated with a setX of
variables. For simplicity we assume that every variable has
the same (finite) domain denoted by Dom.

Definition 7. A valuation of a set X of variables is a func-
tion V from X to Dom. If V is a valuation of X and B ⊆ X
then V↓B denotes the restriction of V to B. We say that Ω
is determined by X iff Ω consists of all valuations of X .
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If Ω is determined by X and if x ∈ X and v ∈ Dom, we
denote by x =Ω v the set {V ∈ Ω | V(x) = v}, omitting
the subscript Ω if clear from context. Furthermore, a valua-
tion V of a set B ⊆ X will also be used (abusing notation)
to denote the event {V′ ∈ Ω | V′↓B = V}.

Given three sets U, V,W of variables, U is said to be in-
dependent of V given W if, once W is fixed, learning U
does not affect the probability of V and vice versa (Koller
and Friedman 2009). By setting W = ∅, the following also
defines unconditional independence between U and V .

Definition 8. Let P be a probability distribution over a set
Ω determined by X and let U, V,W ⊆ X . We say that U
is independent of V given W (with respect to P ) iff, for all
valuations U, V and W ofU, V andW , respectively, we have
P (U | V ∩W) = P (U |W) if P (V ∩W) > 0.

Remark 1. The following fact will be useful in what fol-
lows: If U is independent of V given W then, for any
U ′ ⊆ U and V ′ ⊆ V , we have that U ′ is independent of
V ′ given W . This is called the decomposition property of
conditional independence (Koller and Friedman 2009).

We apply the notions defined here to abstract argumen-
tation by interpreting arguments as variables with domain
{I,U,O}. Given an AF F , a probability distribution over
L(F ) represents a probabilistic evaluation of F , and an
event like a = I represents the event that a is accepted.

3 Probabilistic Semantics
We now define a probabilistic counterpart of a regular se-
mantics. A probabilistic semantics associates each AF with
a probability distribution over its labelings and represents a
particular type of probabilistic evaluation for any AF.

Definition 9. A probabilistic semantics π maps each AF F
to a probability distribution over L(F ) denoted by Pπ(F ).

A probabilistic semantics yields absolute probabilities
(e.g. Pπ(F )(r = I) for the probability that r is accepted) as
well as joint and conditional probabilities (e.g. Pπ(F )(r =
I | f = O ∩ d = O) for the probability that r is accepted if
we learn that f and d are rejected).

We now discuss some general principles for a probabilis-
tic semantics. Like the principles studied in standard abstract
argumentation (van der Torre and Vesic 2017) these princi-
ples can be used to check whether a semantics behaves as
desired or act as guiding principles in defining one.

3.1 σ-compatibility
The first principle states that a probabilistic semantics π is
compatible with a semantics σ in the sense that a labeling
receives nonzero probability if and only if it is a σ labeling.

Definition 10. A probabilistic semantics π is σ-compatible
iff for all F , Pπ(F )(L) > 0 iff L ∈ Lσ(F ).

Note that a probabilistic semantics π cannot be σ-
compatible if σ is not universally defined, as this implies that
Pπ(F ) is not a probability distribution if F has no labelings.

3.2 Probabilistic SCC Decomposability
We now describe a probabilistic analogue of a principle
called decomposability w.r.t. SCC partitioning (Baroni et al.
2014). Here we call it SCC decomposability and we sim-
plify its definition somewhat. We first define the notion of
SCC formally, as well as the notion of an outparent of a set
of arguments. An outparent of a set S of arguments is any
argument attacking S but not a member of S.
Definition 11. Let F be an AF. The set of SCCs (strongly
connected components) of F , denoted SCC(F ), contains
all equivalence classes induced by the path equivalence
relation ∼F over AF defined by x ∼F y iff x = y or there
is a directed path from x to y and y to x. An argument
x ∈ AF is an outparent of a set S ⊆ AF iff there is a y ∈ S
such that x  F y, and x 6∈ S. The set of outparents of S is
denoted by OPF (S).

We also use the following auxiliary notions.
Definition 12. Let F be an AF and let S ⊆ AF . The context
of S is the set S ∪ OPF (S) and is denoted by CF (S). S is
an unattacked set iff it has no outparents. The restriction of
F to S is the AF (S, F ∩S × S) and is denoted by F↓S.

SCC decomposability states that the labelings of an AF
are determined independently for each SCC S given the out-
parents of S by means of a local function. For the following
definition, note that the set of outparents of an SCC S of an
AF F is always an unattacked set of the AF F↓CF (S).
Definition 13. (Baroni et al. 2014) A local function L is a
function that assigns to each AF F , unattacked set I of F ,
and labeling LI ∈ L(I), a set L(F,LI) ⊆ L(AF \ I). We
say that a local function L represents a semantics σ iff, for
each AF F , we have that L ∈ Lσ(F ) iff

∀S ∈ SCC(F ),L↓S ∈ L(F↓CF (S),L↓OPF (S)).

We say that a semantics σ is SCC decomposable iff there
exists a local function L that represents σ.

To prove that a semantics σ is SCC decomposable, a local
function must be defined and it must be shown that it repre-
sents σ. An important example of a local function is the one
that mimics the effect of a labeling LI of the outparents I of
an SCC S by (1) attacking O-labeled outparents; (2) making
U-labeled outparents self-attacking; and (3) ignoring attacks
between outparents (Baroni et al. 2014). We denote this lo-
cal function by Lσ .
Definition 14. Given a semantics σ we define the local func-
tion Lσ by Lσ(F,LI) = Lσ(F |(I,LI))↓(AF \ I), where
F |(I,LI) = (AF ∪{x′ | x ∈ I, L(x) = O}, ( F \(I×I))∪
{(x′, x) | x ∈ I, L(x) = O}∪{(x, x) | x ∈ I, L(x) = U}).

It was shown in (Baroni et al. 2014) that, for all σ ∈
{co,pr, gr}, σ is SCC decomposable because Lσ represents
σ. However, there is no local function that represents ss and
hence ss is not SCC decomposable.

We now define a probabilistic analogue of SCC decom-
posability. We say that π satisfies probabilistic SCC decom-
posability if for each AF F , Pπ(F ) is decomposable into the
product of local probabilities, determined by a local proba-
bility function, for each SCC given its outparents.

170



Definition 15. A local probability function P assigns to each
AF F , unattacked set I of F , and labeling LI of I , a proba-
bility distribution over L(AF \ I) denoted by P(F,LI). We
say that P represents π iff, for each AF F ,

Pπ(F )(L) =
∏

S∈SCC(F )

P(F↓CF (S),L↓OPF (S))(L↓S).

We say that π satisfies probabilistic SCC decomposability iff
there exists a local probability function P that represents π.

The following proposition establishes a link between the
two notions of SCC decomposability. Note that the only-if
direction does not hold (this is demonstrated in Section 4.1).

Proposition 1. Let π be σ-compatible. If π is probabilisti-
cally SCC decomposable then σ is SCC decomposable.

Proof. Suppose π is σ-compatible and π satisfies probabilis-
tic SCC decomposability. Let P represent π. Define L by
L ∈ L(F,LI) iff P(F,LI)(L) > 0. It can be checked that
L represents σ. Hence σ is SCC decomposable.

Note that probabilistic SCC decomposability is not just a
principle that a probabilistic semantics may or may not sat-
isfy, but also a way to define a probabilistically SCC decom-
posable semantics, i.e., via a local probability function. We
use this strategy in Section 4 and 5. Proposition 1 implies,
however, that such a semantics cannot be compatible with a
non-SCC decomposable semantics like the ss semantics.

The main benefit of probabilistic SCC decomposability is
that it ensures that the evaluation of an AF complies with the
probabilistic independencies implied by the topology of the
AF. To see why, we need to consider two additional princi-
ples, both of which follow from probabilistic SCC decom-
posability. These are the topic of the next two sections.

3.3 SCC Factorability
The next principle, called SCC factorability, precisely states
how the topology of an AF translates into probabilistic in-
dependencies when the AF is evaluated probabilistically.
It connects the well-known factorisation condition for a
Bayesian network with the probabilistic SCC decomposabil-
ity principle discussed above. We discuss the relationship
with Bayesian networks in more detail in Section 6.

We say that a probability distribution is SCC factorable if
it is decomposable into the product of conditional probabil-
ities corresponding to each SCC given its outparents.

Definition 16. Let F be an AF. A probability distribution P
over L(F ) is SCC-factorable w.r.t. F iff, for all L ∈ L(F ),

P (L) =
∏

S∈SCC(F )

P (L↓S | L↓OPF (S)). (1)

SCC factorability can be expressed equivalently by a set
of probabilistic independence statements. For this we need
to define the notion of (non)descendant. This is defined like a
(non)descendant of a variable in a Bayesian network, except
that we also consider nondescendants of sets of variables.

Definition 17. Let F be an AF, x, y ∈ AF and S ⊆ AF . x
is a descendant of y iff x = y or there is a directed path from
y to x. x is a descendant of S iff x is a descendant of some
y ∈ S. x is nondescendant of S iff x is not a descendant of
S. The set of nondescendants of S is denoted by NDF (S).

SCC factorability is equivalent to stating that every SCC S
is independent of its nondescendants given its outparents. To
see why this makes sense, note that the influence—if any—
of a nondescendant of an SCC S on S is always mediated
by the outparents of S. That is, any directed path of attacks
from a nondescendant of S to S must go through an outpar-
ent of S. Intuitively, then, the nondescendants of S should
not influence S if we fix the status of the outparents of S.

Proposition 2. Let F be an AF. A probability distribution
P over L(F ) is SCC-factorable w.r.t. F iff for all S ∈
SCC(F ), S is independent of NDF (S) given OPF (S).

Proof. (Only if) Suppose P is SCC-factorable w.r.t. F and
let S ∈ SCC(F ). Let S, OPS and NDS be valuations of
S, OPF (S) and NDF (S), respectively. Assume P (OPS ∩
NDS) > 0. Then P (S | NDS) = P (S∩NDS)/P (NDS).
(1) imples that P (S ∩ NDS) = P (S|OPS)P (NDS).
Hence P (S | NDS) = P (S|OPS). Since OPF (S) ⊆
NDF (S) and P (OPS∩NDS) > 0 we have NDS ⊆ OPS
and thus P (S | OPS ∩NDS) = P (S|OPS). Hence S is
independent of NDF (S) given OPF (S). (If) Suppose each
S ∈ SCC(F ) is independent of NDF (S) given OPF (S).
Let S1, . . . , Sn be a ordering of SCC(F ) s.t., if Sj is a de-
scendant of Si, then i < j. The chain rule yields, for all L ∈
L(F ), P (L) =

∏
Si
P (L↓Si | L↓S1 ∪ . . . ∪ Si−1) where,

for all Si, OPF (Si) ⊆ S1 ∪ . . . ∪ Si−1 ⊆ NDF (Si). Be-
cause each Si is independent of NDF (Si) given OPF (Si)
it follows that, for all L ∈ L(F ), P (L) =

∏
Si
P (L↓Si |

L↓OPF (Si)). Thus P is SCC factorable w.r.t. F .

Example 2. Let F be the AF from Figure 1. Suppose P is
SCC factorable w.r.t. F . Consider the SCC {m, f}, which
has nondescendants t and d but no outparents. Hence {m, f}
is independent of {t, d}. It also follows that the individual
members of these sets are independent (cf. Remark 1). For
example, m is independent of t. It similarly follows that c
and w are independent of m, f, t and d conditional on r. On
the other hand it is not necessarily true that m and f are
independent of t and d conditional on r. All this is in line
with what we argued for in example 1.

Any probabilistically SCC decomposable semantics pro-
duces SCC factorable probability distributions.

Proposition 3. If π satisfies probabilistic SCC decompos-
ability then for each AFF ,Pπ(F ) is SCC factorable w.r.t.F .

Proof (Sketch). Suppose π satisfies probabilistic SCC de-
composability. Let P represent π, F be an AF, S ∈ SCC(F )
and L ∈ L(F ). Rewriting Pπ(F )(L↓S | L↓OPF (S))
using definitions 6 and 15 and taking out common factors
yields P(F↓CF (S), L↓OPF (S))(L↓S). Via definitions 15
and 16 it follows that Pπ(F ) is SCC factorable w.r.t. F .
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3.4 Probabilistic Directionality
We now introduce a probabilistic version of directional-
ity (Baroni and Giacomin 2007). This principle states that,
since the members of an unattacked setB of an AF F do not
depend on arguments outside B, evaluating B in isolation
(i.e., evaluating F restricted to B) is equivalent to evaluat-
ing F , as far as the members of B is concerned. While the
co, gr and pr semantics satisfy directionality, the ss seman-
tics does not (Baroni and Giacomin 2007). Below we denote
by Lσ(F )↓B the set {L↓B | L ∈ Lσ(F )}.
Definition 18. σ satisfies directionality iff, for each AF F
and unattacked set B of F we have Lσ(F )↓B = Lσ(F↓B).

We define the probabilistic version as follows.
Definition 19. π satisfies probabilistic directionality iff, for
each AF F , unattacked setB of F , and valuation B ofB, we
have Pπ(F )(B) = Pπ(F↓B)(B).

Example 3. (Continued from Example 1) Suppose π sat-
isfies probabilisitic directionality. Because {m, f} is an
unattacked set, m and f do not depend on the remaining ar-
guments. Thus, evaluating F↓{m, f} is equivalent to evalu-
ating F , as far asm and f are concerned. More precisely, let
F ′ = F↓{m, f}. We then have, for all lm, lf ∈ {I,U,O},
Pπ(F )(m = lm ∩ f = lf ) = Pπ(F ′)(m = lm ∩ f = lf ).

Any probabilistic semantics satisfying probabilistic SCC
decomposability also satisfies probabilistic directionality.
Proposition 4. If π satisfies probabilistic SCC decompos-
ability then π satisfies probabilistic directionality.

Proof (Sketch). Suppose π satisfies probabilistic SCC
decomposability. Let P represent π. Let F be a AF,
B an unattacked set of F , and B ∈ L(B). Rewriting
Pπ(F↓B)(B) using definition 15 yields

∏
S∈SCC(F ),S⊆B

P(F↓CF (S), B↓OPF (S)) (B↓S). This can be rewritten
equivalently in terms of a product of probabilities corre-
sponding to all SCCs of F , which yields

∑
L∈L(F ),L↓B=B∏

S∈SCC(F ) P(F↓CF (S), L↓OPF (S)) (L↓S). This
implies, via definition 6 and 15, that Pπ(F↓B)(B) =
Pπ(F )(B). Hence π satisfies directionality.

4 Uniform Probabilistic Semantics
In this section we discuss two schemes that define a prob-
abilistic semantics. They are both based on the principle of
indifference. According to this principle, if there are n pos-
sibilities and no way to distinguish them, then each receives
probability 1/n. In other words, we consider uniform distri-
butions over the different choices we can make in selecting
labelings. We show, however, that this idea can be applied in
two ways. We evaluate the resulting semantics on the basis
of the principles discussed in the previous section.

4.1 The σ-uniform semantics
The first scheme simply produces uniform distributions over
the labelings of an AF under a given semantics σ. This has
been done earlier in (Thimm et al. 2017) and was justified
empirically in (Toniolo, Norman, and Oren 2017). We call it
the σ-uniform semantics and denote it by σu.

Definition 20. Let σ be a semantics. The σu probabilistic
semantics of an AF F is defined by

Pσu(F )(L) =

{
1

|Lσ(F )| , if L ∈ Lσ(F )

0, otherwise.

We first note the following.
Proposition 5. For any semantics σ, σu is σ-compatible.

Does a semantics defined by the σ-uniform scheme sat-
isfy probabilistic SCC decomposability? The gru semantics
does. However, this is a degenerate case: gru always ass-
ings probability 1 to the grounded labeling. In general, the
answer is no. For the semantics we consider, we have:
Proposition 6. The cou, pru and ssu semantics do not sat-
isfy probabilistic SCC decomposability.

This is demonstrated by the following example. It is based
on the pru semantics but also applies to cou and ssu.
Example 4. (Continued from Example 1) The AF F shown
in Figure 1 has seven pr labelings. Thus, according to
Ppru(F ) each receives probability 1/7 (see Table 1). First
note that m is not independent of t:
Ppru(F )(m = I) = 3/7 Ppru(F )(m = I | t = I) = 1/3.

It follows that {m, f} is not independent of {t, d} (cf. Re-
mark 1) and hence that Ppru(F ) is not SCC factorable. Fur-
thermore, pru fails probabilistic directionality. To see why,
consider the unattacked set B = {m, f} and note that

Ppru(F↓B)(m = I) = Ppru(F↓B)(f = I) = 1/2.

On the other hand we have
Ppru(F )(m = I) = 3/7 and Ppru(F )(f = I) = 4/7.

m f t d r c w P
L1 I O I O I O I 1/7
L2 I O O I O I O 1/7
L3 I O O I O O I 1/7
L4 O I I O O I O 1/7
L5 O I I O O O I 1/7
L6 O I O I O I O 1/7
L7 O I O I O O I 1/7

Table 1: The distribution Ppru(F ) for F shown in Figure 1

Thus, the straightforward application of the principle of
indifference in this scheme does not generally lead to well-
behaved semantics with respect to the principles discussed
in Section 3. The semantics we consider next fixes this.

4.2 The σ-SCC-uniform semantics
The next scheme is, like the σ-uniform scheme, based on
the principle of indifference, but now applied to each SCC
separately. We call it the σ-SCC-uniform scheme and define
it it in terms of a local probability function that, in turn, is
defined in terms of Lσ (see definition 14).
Definition 21. Let σ be a semantics. We denote by Psuσ the
local probability function defined by

Psuσ (F,LI)(L) =

{
1

|Lσ(F,LI)| , if L ∈ Lσ(F,LI)

0, otherwise.

We call the semantics represented by Psuσ the σ-SCC-
uniform semantics and denote it by σsu.
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Earlier we saw that, for any semantics σ, σu is σ-
compatible. The same does not apply to σsu. The following
example demonstrates that sssu is not ss-compatible.
Example 5. Define F by AF = {a, b, c} and a  F b,
b  F a, b  F c, and c  F c. Define L ∈ L(F ) by
L(a) = I, L(b) = O and L(c) = U. While L 6∈ Lss(F ), we
do have Psssu(F )(L) = 1/2.

However, we do have that compatibility is guaranteed if
we use an SCC decomposable semantics:
Proposition 7. If σ is SCC decomposable then σsu is
σ-compatible.

Proof (Sketch). Definitions 13 and 21 imply that, if σ is
SCC decomposable, then we have L ∈ Lσ(F ) iff for all
S ∈ SCC(F ), Psuσ (F↓CF (S),L↓OPF (S)) > 0. Hence
L ∈ Lσ(F ) iff P suσ (F )(L) > 0.

Unlike the σ-uniform scheme, any semantics defined by
the σ-SCC-uniform scheme satisfies probabilistic SCC de-
composability. This follows directly from how it is defined.
Proposition 8. For any semantics σ, σsu satisfies proba-
bilistic SCC decomposability.

The following example demonstrates how the prsu se-
mantics deals with our running example.

m f t d r c w P
L1 I O I O I O I 1/4
L2 I O O I O I O 1/8
L3 I O O I O O I 1/8
L4 O I I O O I O 1/8
L5 O I I O O O I 1/8
L6 O I O I O I O 1/8
L7 O I O I O O I 1/8

Table 2: The distribution Pprsu(F ) for F shown in Figure 1

r

fm

dt

c w

m f P
I O 1/2
O I 1/2

t d P
I O 1/2
O I 1/2

f d r P
O O I 1
O I O 1
I O O 1
I I O 1

r c w P
I O 1/2O O I 1/2

I O I 1

Figure 2: An AF with local conditional probabilities

Example 6. (Continued from Example 1) Table 2 shows the
distribution Pprsu(F ). To see how this distribution is deter-
mined, consider Figure 2. Here, each SCC S is annotated
with a table showing, for all the relevant labelings LI of the
outparents of S, the distribution Psupr (F↓CF (S),LI) over S.
Columns containing labelings of the outparents of S (if any)
are gray. We can use these tables to verify the probability of
a labeling by multiplying entries according to Definition 15.
For example Pprsu(F )(L1) = 1/2× 1/2× 1× 1 = 1/4.

Since prsu satisfies probabilistic SCC decomposability it
satisfies probabilistic directionality. Indeed, we now have

Pprsu(F )(m = I) = Pprsu(F )(f = I) = 1/2.

It also follows that Pprsu(F ) is SCC factorable. Indeed, m
is now, unlike in Example 4, independent of t:

Pprsu(F )(m = I) = Pprsu(F )(m = I | t = I) = 1/2.

On the other hand m is not independent of t given r,
since we have Pprsu(F )(m = I | r = O) = 1/3 and
Pprsu(F )(m = I | r = O ∩ t = I) = 0. However in
Example 1 we argued that this is to be expected.

In sum, the σ-SCC uniform scheme defines probabilistic
semantics that are well-behaved with respect to the princi-
ples discussed in Section 3. However, σsu is σ-compatible
only if σ is SCC decomposable. In this sense, the σ-SCC
uniform scheme cannot be combined with a non-SCC de-
composable semantics like the ss semantics.

5 Parameterised Probabilistic Semantics
So far we only considered purely abstract AFs, where each
argument is treated equally. We now consider semantics for
AFs where each argument x is associated with a probability
p(x). This probability can be thought of as being associated
with the event that x is a valid argument. A probabilistic
semantics should, in this setting, take these probabilities into
account. To motivate this, consider the following example.

Example 7 (Alcohol and antibiotics). Let F be the AF
shown in Figure 3. The scenario described here is similar to
the one in Example 1, except that it only deals with choice
between m and f, which affects r, which in turn affects c
and w. Furthermore we believe that the agent might have
taken antibiotics (a), implying that he cannot have alcohol
and therefore does not drink red wine (a attacks r). How-
ever, we are uncertain about this; a is valid only with proba-
bility 3/4. All the other arguments are valid with probability
1. In evaluating this AF, similar considerations apply as in
Example 1. For example, learning that the agent chose m or
f should not affect our belief about whether he took antibi-
otics: {m, f} is independent of a.

r
1

f
1

m
1

a
3/4

c
1

w
1

Figure 3: The alcohol and antibiotics example

The AF in Figure 3 is an example of what (Li, Oren, and
Norman 2011) call a probabilistic AF. Formally, this is a
pair (F, p) where F is an AF and p assigns to each x ∈
AF a probability. However, to obtain a compatible notion of
probabilistic semantics, we model it differently. First of all,
we take a probability assignment to be a function assigning
a probability to each member of the universe of arguments.
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Definition 22. A probability assignment (PA) is a function
p : A → [0, 1].

Instead of pairing p with F , we use p as a parameter of
a parameterised probabilistic semantics. Thus, a parame-
terised probabilistic semantics πp (i. e., π parameterised by
p) is a probabilistic semantics in the sense of definition 9.
This does introduce some redundancy, since p must assign
probabilities to arguments that we may not be interested in.
To solve this we assume that p(x) = 1 whenever p(x) is not
specified. If one insists on thinking in terms of probabilis-
tic AFs, one can substitute Pπp(F ) with Pπ((F, p)) on the
understanding that p(x) is specified for all x ∈ AF .

5.1 The σ-Constellations Semantics
We now describe a scheme for defining a parameterised
probabilistic semantics that generalises the σ-uniform
scheme. We call this the σ-constellations scheme. It is based
on the constellations approach (Li, Oren, and Norman 2011;
Hunter 2013). Here, the idea is that the probabilities of the
arguments of an AF F induce a probability distribution over
the subsets of AF . In this context we refer to these subsets
as framework states. Intuitively, a framework state B repre-
sents the situation that the members of B are valid and that
the members of AF \ B are not. Given a PA p, the distribu-
tion over the framework states of F (denoted by J(AF ,p)) is
determined by assuming that events of different arguments
being valid are independent:

J(A,p)(B) = (
∏
x∈B

p(x))×
∏

x∈A\B

(1− p(x)).

Each framework state B of F gives rise to a sub-graph F↓B
and hence (given a semantics σ) to the set Lσ(F↓B) of la-
belings. We assume that invalid arguments are labeled O,
which leads to the following definition.
Definition 23. Let σ be a semantics, let F an AF and let
B ⊆ AF . The set of σ/B labelings of F is denoted by
Lσ/B(F ) and consists of all L ∈ L(F ) satisfying

L↓B ∈ Lσ(F↓B) and ∀x ∈ AF \B,L(x) = O.

If we follow (Li, Oren, and Norman 2011) then the prob-
ability of a labeling L of F is the sum of the probabilities of
all framework states that produce L:

P (L) =
∑

B⊆AF ,L∈Lσ/B(F )

J(AF ,p)(B).

But if we use this formula, the probabilities of the labelings
of F may sum up to more than 1, since the same labeling
may be produced by more than one framework state. Instead,
we uniformly distribute the probability of a framework state
over the set of labelings it produces. Given a PA p, the σ-
constellations semantics (denoted σcp) is therefore defined as
follows.
Definition 24. Let σ be a semantics and p a PA. The σ-
constellation semantics σcp of an AF F is defined by

Pσcp(F )(L) =
∑

B⊆AF ,L∈Lσ/B(F )

J(AF ,p)(B)

|Lσ/B(F )|
.

The σ-constellation scheme generalises the σ-uniform
scheme in the following sense.
Proposition 9. If σ is a semantics, F an AF, and p a PA
where, for all x ∈ AF , p(x) = 1, then Pσcp(F ) = Pσu(F ).

Proof (Sketch). If for all x ∈ AF , p(x) = 1 then J(AF ,p)

(B) = 1 iff B = AF . Hence Pσcp(F ) = Pσu(F ).

Obviously, if p assigns probability less than one to an
argument, then σcp may assign nonzero probability to a la-
beling that is not a σ labeling. In this case, σcp is not σ-
compatible. What remains is to check whether a semantics
defined by the σ-constellations scheme satisfies probabilistic
SCC decomposability. For the grounded semantics it does:
Proposition 10. For each PA p, grcp satisfies probabilistic
SCC decomposability.

Proof (Sketch). Using the fact that the grounded seman-
tics is SCC decomposable and that the grounded labeling
is unique, we can show that, for all F , Pgrcp(F ) equals
Pgrcsp (F ) as defined in definition 26. Proposition 12 estab-
lishes that Pgrcsp is probabilistically SCC decomposable.

However, propositions 6 and 9 imply that this does not
hold in general. Here we demonstrate failure of probabilistic
SCC decomposability under the prcp semantics.

m f a r c w P
L1 I O O I O I 1/12
L2 O I O O I O 1/12
L3 O I O O O I 1/12
L4 I O I O O I 3/16
L5 I O I O I O 3/16
L6 O I I O O I 3/16
L7 O I I O I O 3/16

Table 3: The distribution Pprcp(F ) for F shown in Figure 3

Example 8. (Continued from Example 7) Let F be the AF
shown in Figure 3. Let p be a PA that assigns probabil-
ity 3/4 to a and probability 1 to all other arguments. The
probability distribution Pprcp(F ) is shown in Table 3. Ex-
planation: the two framework states with nonzero probabil-
ity are B1 = {m, f, r, c, w} and B2 = {m, f, r, c, w, a}
with J(AF ,p)(B1) = 1/4 and J(AF ,p)(B2) = 3/4. We
have Lpr/B1

(F ) = {L1, L2, L3} and Lpr/B2
(F ) =

{L4, L5, L6, L7}. Thus we distribute 1/4 uniformly over
L1, L2 and L3 and 3/4 uniformly over L4, L5, L6 and L7.

Note that m is not independent of a:

Pprcp(F )(m = I) = 11/24 Pprcp(F )(m = I | a = O) = 1/3.

This is a violation of SCC factorability. Therefore prcp does
not satisfy probabilistic SCC decomposability.

5.2 The σ-SCC-Constellations Semantics
We now consider a scheme that adapts the σ-constellations
scheme similarly to how the σ-SCC-uniform scheme adapts
the σ-uniform scheme. Like the σ-constellations scheme, it
is based on the constellations approach, but now applied to
each SCC separately. We first define the following function,
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which we use to determine the labelings of an SCC given a
valuation of its outparents and a “local framework state”.
Definition 25. Given a semantics σ we denote by Cσ the
function that assigns, to each AF F , unattacked set I of F ,
labeling LI ∈ L(I) and setB ⊆ AF \I , a set Cσ(F,LI , B)
containing all L ∈ L(AF \ I) such that L↓B ∈ Lσ(F↓B ∪
I,LI) and ∀x ∈ AF \ (B ∪ I),L(x) = O.

We define the σ-SCC-constellations semantics in terms of
a local probability function parameterised by a PA p. Note
the similarity with Definition 24.
Definition 26. Let σ be a semantics and p a PA. We define
the local probability function Pcs(σ,p) by

Pcs(σ,p)(F,LI)(L) =
∑

B⊆AF \I,
L∈Cσ(F,LI ,B)

J(AF \I,p)(B)

|Cσ(F,LI , B)|
.

We call the semantics represented by Pcs(σ,p) the σ-SCC-
constellations semantics and denote it by σcsp .

The σ-SCC-constellation semantics generalises the σ-
SCC-uniform semantics in the following sense.
Proposition 11. If σ is a semantics, F an AF, and p a PA
where, for all x ∈ AF , p(x) = 1, then Pσcsp (F ) = Pσsu(F ).

Proof (Sketch). If for all x ∈ AF , p(x) = 1 then J(AF ,p)

(B) = 1 iff B = AF . Hence Pcs(σ,p)(F ) = Psuσ (F ).

Since σcsp is represented by Pcs(σ,p), we have:

Proposition 12. For any semantics σ and PA p, σcsp satisfies
probabilistic SCC decomposability.

The following example shows how this approach deals
with our running example.

m f a r c w P
L1 I O O I O I 1/8
L2 O I O O I O 1/16
L3 O I O O O I 1/16
L4 I O I O O I 3/16
L5 I O I O I O 3/16
L6 O I I O O I 3/16
L7 O I I O I O 3/16

Table 4: The distribution Pprcsp (F ) for F shown in Figure 3

r
1

f
1

m
1

a
3/4

c
1

w
1

m f P
I O 1/2
O I 1/2

a P
I 3/4
O 1/4

f a r P
O O I 1
O I O 1
I O O 1
I I O 1

r c w P
I O 1/2O O I 1/2

I O I 1

Figure 4: Local conditional probabilities for Example 9

Example 9. (Continued from Example 8) The probability
distribution Pprcsp (F ) is shown in Table 4. Figure 4 shows,
for each SCC S of F and all the relevant input label-
ings LI of S, a table depicting the probability distribution
Pcs(pr,p)(F↓CF (S),LI). Like in Example 6, we can use these
tables to verify the probabilities shown in Table 4 by multi-
plying entries according to Definition 15.

Since prcsp satisfies probabilistic SCC decomposability it
also satisfies probabilistic directionality. Thus, we now have

Pprcsp (F )(m = I) = Pprcsp (F )(f = I) = 1/2.

Furthermore, Pprcsp (F ) is SCC factorable, implying that
{c, a} is independent of a. Indeed we have, for example

Pprcsp (F )(m = I | a = O) = Pprcsp (F )(m = I) = 1/2.

Thus, unlike the σ-uniform scheme, the σ-SCC uniform
defines parameterised probabilistic semantics that are well-
behaved with respect to the principles discussed in Section 3.

6 Discussion and Related Work
In this section we discuss a number of open questions, possi-
ble directions for future work, and connections with related
approaches in the literature.

6.1 Bayesian Networks
In Section 3.3 we mentioned that the notion of SCC fac-
torisation connects our approach to the theory of Bayesian
networks. Let us first recall the definition. A Bayesian net-
work over a set X of variables is a directed acyclic graph
G = (X ,→) (Koller and Friedman 2009). A probability dis-
tribution over X is factorable with respect to a G if P can
be decomposed into the product of conditional probabilities
corresponding to each variable given its parents:
Definition 27. Let X be a set of variables. A Bayesian net-
work over X is a directed acyclic graph G = (X ,→). A
probability distribution P over the set Ω determined by X is
factorable with respect to G iff for all V ∈ Ω,

P (V) =
∏
x∈X

P (x = V(x) | V↓PaG(x)) (2)

where PaG(x) denotes the parents of x in G.
A crucial difference between AFs and Bayesian networks

is that AFs may contain cycles. However, if we consider
acyclic AFs, the two notions of factorability coincide. In this
sense factorability is a special case of SCC factorability.
Proposition 13. If F is acyclic then a distribution P over
L(F ) is SCC-factorable w.r.t. F iff it is factorable w.r.t. F .

Moreover, if F is acyclic, Proposition 2 implies that F
gets interpreted as a Bayesian network: each argument is in-
dependent of its nondescendants given its parents.

Finally, a probabilistically SCC decomposable seman-
tics describes the evaluation of an AF similarly to how a
Bayesian network plus a set of conditional probability tables
(CPTs) describe a distribution. This can be seen in Figures 2
and 4, which include tables playing the role of the CPTs, but
defined over sets of variables rather than single variables.
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We believe that abstract argumentation theory can profit
from the extensive theory of Bayesian networks. The in-
sights obtained here establish a connection between the two
formalisms on a formal level and can be understood as lay-
ing the foundations for future investigations in this direc-
tion. One example is to look at hybrid approaches, based on
graphs that combine arguments and attacks (an “AF part”)
as well as random variables whose relation is described us-
ing CPTs (a “BN part”). This is an example of fibring as
considered in (Gabbay 2009).

Other work combining argumentation with Bayesian net-
works includes approaches to do argumentation based on
Bayesian networks (Timmer et al. 2017; Vreeswijk 2004)
or fusing Bayesian networks using argumentation (Nielsen
and Parsons 2007). All this is quite different from what we
do. An exception is (Gabbay and Rodrigues 2016), which
deals with translating Bayesian nets into a kind of numerical
AFs, but leaves handling of cycles to future work. A quali-
tative version of SCC factorability called SCC stratification
was considered before in (Rienstra and Thimm 2018) in the
context of ranking-based semantics for argumentation.

6.2 Decomposition based on SCC Recursiveness
Suppose we extend our earlier example as shown in Figure 5.
We now have two SCCs. Hence, SCC factorability no longer
implies independence between the SCCs of the original AF.
However, these independencies arguably should still hold,
because the argument y, which is responsible for making the
original SCCs interdependent, is “neutralised” by x.

r

fm

dt

c w y x

Figure 5: An AF consisting of two SCCs

We can deal with this example using the SCC recursive
scheme (Baroni, Giacomin, and Guida 2005). This means
that we first evaluate the SCC {x} and assign to x the la-
bel I. Then we remove any argument attacked by arguments
previously labeled I. Thus, we remove y, thereby eliminat-
ing the dependencies introduced by y, ending up again with
the original SCCs {m, f}, {t, d}, {r} and {c, w}, In future
work we plan to address the question of how the SCC recur-
sive scheme can be applied in a probabilistic setting.

6.3 Properties Based on Marginal Probabilities
Various rationality postulates for the epistemic approach
were discussed in (Hunter and Thimm 2017). These pos-
tulates also apply to the our setting but deal purely with
marginal probabilities of arguments. In our setting, the
marginal probability of an argument x is simply the prob-
ability of x = I. Consistent with their notation we write,
given an argument x and distribution P , P (x) as shorthand
for P (x = I). We consider only the most basic postulates
considered in (Hunter and Thimm 2017). Let F be an AF
and let P be a probability distribution over L(F ). Then:

FOU P is founded wrt. F if P (x) = 1 for every x ∈ AF
s.t. there is no y ∈ AF s.t. y  F x.

RAT P is rational wrt. F if for every x, y ∈ AF , if x F y
then P (x) > 0.5 implies P (y) ≤ 0.5.

COH P is coherent wrt. F if for every x, y ∈ AF , if x F

y then P (x) ≤ 1− P (y).

The intuition behind these properties is as follows. FOU:
if x is not attacked, then x is believed without doubt (i. e.
P (x) = 1). RAT: if x attacks y, and x is somewhat believed
(i. e. P (x) > 0.5), then y is somewhat not believed (i. e.
P (y) ≤ 0.5). COH: if x attacks y, then the degree to which
x is believed caps the degree to which y can be believed.

These postulates were already shown to hold for uniform
distributions over labelings in (Thimm et al. 2017). These
results carry over to the σ-uniform semantics:
Proposition 14. Let F be an AF. If σ ∈ {gr, co, pr, ss} then
Pσu(F ) is founded, rational, and coherent.

We now turn to the σ-SCC-uniform semantics. For that,
we actually get the same result as above.
Proposition 15. Let F be an AF. If σ ∈ {gr, co, pr, ss} then
Pσsu(F ) is founded, rational, and coherent.

Thus, our approach satisfies at least some basic postulates
from the epistemic approach. Additional postulates from this
approach will be considered in future work.

6.4 Further Semantics and Principles
While in this paper we focus on the complete, grounded,
preferred and semi-stable semantics, our approach does not
depend on this restriction. What matters in our approach is
whether a semantics is SCC decomposable or not. Apart
from SCC decomposability, many other principles for se-
mantics of abstract AFs have been studied (van der Torre and
Vesic 2017). What these principles mean in a probabilistic
setting is a topic for future work. Finally, we have consid-
ered only universally-defined semantics, ruling out the sta-
ble semantics. This restriction can be lifted if we require that
a principle is valid only for AFs admitting at least one label-
ing, as done in (Baroni, Dunne, and Giacomin 2011).

7 Conclusion
We formalised the requirement that the probabilistic evalu-
ation of an AF should comply with probabilistic indepen-
dence relationships implied by the topology of the AF. Our
formalisation is based on probabilistic analogues of the SCC
decomposability and directionality principles known from
abstract argumentation. Probabilistic SCC decomposability
can be used to determine whether a given probabilistic se-
mantics is well-behaved but can also be used to define a
(well-behaved) probabilistic semantics. A related principle
called SCC factorability furthermore provides new insights
into the relationship between abstract argumentation and the
theory of Bayesian networks. We believe that these insights
can guide future investigations into the connection between
these formalisms.
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