
Energy-Scalable Montgomery-Curve ECDH Key
Exchange for ARM Cortex-M3 Microcontrollers

Christian Franck, Johann Großschädl, Yann Le Corre, and Cyrille Lenou Tago
University of Luxembourg, Computer Science and Communications Research Unit

6, Avenue de la Fonte, L–4364 Esch-sur-Alzette, Luxembourg
{christian.franck,johann.groszschaedl,yann.lecorre}@uni.lu

cyrille.lenou.001@student.uni.lu

Abstract—The number of smart devices connected to the In-
ternet is growing at an enormous pace and will reach 30 billion
within the next five years. A large fraction of these devices have
limited processing capabilities and energy supply, which makes
the execution of computation-intensive cryptographic algorithms
very costly. This problem is exacerbated by the fact that basic
optimization techniques like loop unrolling can not (always) be
applied since cryptographic software for the IoT often needs to
meet strict constraints on code size to not exceed the program
storage capacity of the target device. In this paper we introduce
SECCCM3, a “lightweight” software library for scalable elliptic
curve cryptography on ARM Cortex-M3 microcontrollers. The
current version of SECCCM3 is able to carry out variable-base
scalar multiplication on Montgomery-form curves over pseudo-
Mersenne prime fields, such as Curve25519, and can be used to
implement static ECDH key exchange. SECCCM3 is scalable in
the sense that it supports curves of different order (as long as
certain conditions are met), thereby enabling trade-offs between
security and execution time (resp. energy dissipation). We made
an effort to protect the field arithmetic against Timing Attacks
(TAs) and Simple Power Analysis (SPA), taking into account the
so-called early-termination effect of the Cortex-M3 integer mul-
tiplier, which makes the latency of “long” multiply instructions
operand-dependent. Our experiments show that the integration
of countermeasures against information leakage caused by this
effect increases the execution time by 34%, while the code size
grows by 13%. A TA and SPA-resistant scalar multiplication on
Curve25519 has an execution time of 4.565 million clock cycles
and consumes approximately 5.1 mJ of energy when executed on
a STM32L152RE Cortex-M3 microcontroller. SECCCM3 has a
binary code size of 4.0 kB, which includes domain parameters
for curves over 159, 191, 223, and 255-bit prime fields.

Index Terms—Elliptic curve cryptography, Pseudo-Mersenne
prime, Modular arithmetic, ARM Cortex-M3 early-termination
effect, Constant-time multi-precision multiplication.

I. INTRODUCTION

The Internet of Things (IoT) is the natural next step in the
evolution of the Internet towards a network to which billions
of “smart” devices (i.e. “things” with computing capabilities)
get connected, enabling them to send and receive data [1]. In
this way, the devices can interact with each other and access
centralized resources and services in the cloud. The Ericsson
Mobility Report from November 2017 [9] forecasts the total
number of devices connected to the Internet to increase from
slightly less than 20 billion in 2018 to more than 30 billion
within the next five years (i.e. until 2023). It is remarkable
that only about one third of these 30 billion devices can be

counted as classical computers (i.e. PCs, notebooks, mobile
phones, etc), while the remaining two third represent various
kinds of smart devices (i.e. computers that do not look like
computers), such as vehicles, machines, meters, sensors, point-
of-sale terminals, consumer electronics, and wearables. The
majority of these IoT devices are significantly constrained in
terms of computing power, RAM, and program storage. This
is especially the case for battery-driven devices like wireless
sensor nodes, which are typically equipped with inexpensive
8, 16, or 32-bit microcontrollers clocked with a few MHz. In
addition, the RAM and program-storage (i.e. flash) capacities
of sensor nodes and many other IoT devices are quantified in
kilobytes rather than megabytes or gigabytes.

TABLE I
ELLIPTIC CURVES USED IN IOT COMMUNICATION PROTOCOLS

NFC Forum [18] IEEE VT Society [13] Bluetooth SIG [4]
NFC Signature RTD Vehicular Adhoc Netw. Bluetooth Low Energy

secp192r1, secp224r1,
sect233r1, sect233k1, secp224r1, secp256r1 secp192r1, secp256r1

secp256r1

The resource constraints of common IoT devices make the
implementation of cryptographic algorithms challenging; this
is particularly the case for public-key schemes. Elliptic curve
cryptosystems, such as ECDSA and ECDH [5], are attractive
alternatives to RSA and Diffie-Hellman [7] since they provide
a higher level of security per key-bit, which enables them to
achieve faster execution times and lower RAM consumption
[12]. Recently, a number of organizations concerned with the
standardization of (wireless) communication protocols for the
IoT (including e.g. the Bluetooth Special Interest Group, the
IEEE Vehicular Technology Society, and the NFC Forum, to
name a few) have adopted elliptic curve cryptography for the
creation of shared secret keys and the generation/verification
of digital signatures. Table I gives references to the protocol
specifications and shows an overview of the deployed curves
using the nicknames of the Standards for Efficient Cryptog-
raphy Group (SECG) defined in [20]. Each protocol supports
several (at least two) elliptic curves providing different levels
of security. The specification of the NFC Forum’s Signature
Record Type Definition (RTD) [18] comes with a total of five
curves that represent security levels from 96 to 128 bits.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/162022468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Designing communication protocols for the IoT in an agile
fashion so that they can support multiple key lengths for the
used cryptographic algorithms makes a lot of sense because
different applications typically have different security require-
ments and impose different constraints on the execution time
and resource consumption (RAM, flash, etc). An application
for home automation, e.g. a sensor network that monitors the
temperature in an apartment to control a HVAC system, has
completely different security requirements than applications
in the medical or automotive domain. It is, of course, possible
to satisfy different security requirements with a single elliptic
curve, namely by simply choosing the “strongest” curve the
protocol supports (which is secp256r1 for the three protocols
in Table I), but doing so entails unnecessarily long execution
times and wastes scarce memory resources if an application
has only low or medium security requirements. To minimize
such wastage, IoT application designers normally choose the
curve that guarantees the required level of security with the
least impact on the latency of the protocol and its resource
consumption. Most state-of-the-art IoT devices that are able
to perform elliptic curve cryptosystems support only a single
curve, which is typically one of the curves in [20].

Supporting a single elliptic curve is sufficient for devices
used by current-generation IoT applications, but not for the
future IoT. In the present-day IoT, the main communication
pattern is often device-to-cloud; a typical example is a device
that sends data to a cloud service for analysis and decision
making. On the other hand, device-to-device communication
does normally only take place between devices belonging to
the same application, e.g. the nodes of a wireless sensor net-
work. Indeed, in the current IoT, there is not much interaction
between devices of different applications, in particular if the
devices come from different, competing vendors and run on
different, often incompatible platforms. However, in order to
fully realize the potential of the future IoT, it is inevitable
that diverse and heterogenous IoT devices, which may form
part of different applications from different vendors, become
able to communicate and interact with each other, either di-
rectly or via some kind of gateway1. This vision of a future
IoT with highly interoperable devices calls for a flexible and
scalable implementation of elliptic curve cryptography that is
able to handle many different curves with minimal impact on
code size. Such an implementation would allow the devices
of an application with low security requirements, which can
use e.g. secp192r1, to perform ECDH exchange with devices
of a high-security application using e.g. secp256r1.

In this paper, we present a lightweight and highly scalable
software library for variable-base scalar multiplication, called
SECCCM3 (an abbreviation of Scalable Elliptic Curve Cryp-
tography for Cortex-M3), which provides the full arithmetic
functionality needed for ECDH key exchange. As its name
suggests, SECCCM3 is optimized for the Cortex-M3 series
[21] of ARM microcontrollers and comes with hand-written

1Such IoT gateways typically support multiple (wireless) communication
protocols, e.g. Bluetooth, WiFi, and ZigBee. Note that also a smart phone
or tablet computer can serve as gateway for devices.

Assembly code for the low-level prime-field arithmetic so as
to improve the execution time and reduce the code size. The
current version of SECCCM3 supports elliptic curves given
in Montgomery form [17] because they offer computational
advantages over the Weierstrass curves specified in [20]. We
implemented the multiplication and squaring operation in the
underlying prime field Fp to have constant execution time so
that SECCCM3 can resist timing attacks, which is far from
trivial on Cortex-M3 processors due to the early-termination
effect of the integer multiplier [11]. SECCCM3 enables the
realization of energy-scalable ECDH key exchange since one
can (dynamically) switch between curves of different orders
that provide different security levels, have different execution
times, and consume different amounts of energy. We analyze
the performance and energy figures of scalar multiplication
for four different security levels ranging from 80 to 128 bits
and compare our results with that of some other libraries.

II. BACKGROUND

The ECDH key exchange protocol [5] enables two parties
communicating over a public network to establish a common
shared secret S, which is, in our case, simply the x-coordinate
of a point on an elliptic curve. Let us assume that Alice and
Bob have the private key a and b, respectively, and that these
keys are integers in the range of [1, n− 1], where n is prime
and denotes the order of an elliptic-curve (sub)group gener-
ated by a certain point G. For sufficiently large order n, the
computation of the scalar x for a point P = xG is assumed
to be a hard mathematical problem [5]. When Alice publishes
aG and Bob publishes bG, then each of them can compute
the secret point S = a(bG) = b(aG), but an adversary who
has only access to aG and bG can not obtain S since he does
not know the secrets a and b (which he also can not compute
from aG and bG when G has large order).

A Montgomery curve [17] over a non-binary field Fq is an
elliptic curve governed by an equation of the form

EM : By2 = x3 +Ax2 + x (1)

where A,B ∈ Fq and (A2 − 4)B 6= 0. Although these curves
were originally proposed for integer factorization, it became
more and more apparent in the past ten years that they also
have some advantages for ECDH key exchange [3]. The main
attraction of Montgomery-form curves is a special algorithm
for a variable-base scalar multiplication Q = kP , the Mont-
gomery ladder [5], which is not only fast but also modest in
terms of RAM consumption and has as further benefit some
intrinsic resistance against timing attacks as well as Simple
Power Analysis (SPA). Montgomery curves feature a unique
addition law that allows one to efficiently compute the sum
P1 + P2 of two points P1, P2 whose difference P1 − P2 is
known at the cost of only three multiplications (3M) and two
squarings (2S) in Fq when using projective coordinates. This
so-called “differential” addition involves only the projective
X and Z coordinates, i.e. the Y coordinate is not used at all
[17]. The doubling of a point in projective X,Z coordinates
is even cheaper and costs only 2M and 2S. In summary, the



Montgomery ladder has to carry out 5n multiplications and
4n squarings in Fq to compute Q = kP when the scalar k is
n bits long, i.e. 5M and 4S per bit.

As demonstrated in [3], Montgomery curves are attractive
for ECDH key exchange since only the x-coordinate of the
point representing a public key needs to be transmitted when
the curve has been chosen properly. More concretely, if the
curve is twist-secure, such as Curve25519 [3], then one does
not need to care whether a received x-coordinate belongs to
a point on the curve or on the twist, i.e. it is not necessary to
validate public keys. In this way, it is possible to perform the
computation and communication part of ECDH with just the
x-coordinates of the points, which means point compression
(and costly decompression) is not necessary.

III. IMPLEMENTATION

SECCCM3 supports Montgomery curves over prime fields
that are defined by pseudo-Mersenne primes [5] of the form
p = 2k − c where k is a multiple of 32 minus 1 and c has a
length of up to 14 bits. The four specific curves we used to
generate the benchmarking results presented in this paper are
specified in [10]; they are based on pseudo-Mersenne prime
fields of a size of 159, 191, 223, and 255 bits. The curves in
[10] were specifically designed to provide consistency across
security levels (i.e. the curves and fields share various basic
properties), which facilitates a parameterized implementation
of the low-level field arithmetic and scalar multiplication. All
implementations of Fp-arithmetic functions described in this
section are parameterized in the sense that they get besides
the “actual” operands (which are typically pointers to arrays
of 32-bit words in RAM) a further parameter that specifies
the length of the operands, i.e. the number of 32-bit words
they consist of. Each function contains one or more loops to
perform an arithmetic operation, whereby the number of loop
iterations depends on the value of the length parameter. This
approach allows one and the same software implementation
of an arithmetic function to support pseudo-Mersenne prime
fields of (almost) arbitrary order, provided the prime p meets
the restrictions on k and c mentioned above.

A. Prime-Field Arithmetic

SECCCM3 comes with an efficient and scalable arithmetic
library for pseudo-Mersenne prime fields that was written in
Assembly language for the Cortex-M3 platform. We aimed to
achieve a balance between flexibility, performance, and code
size instead of optimizing purely for high speed, which was
the goal of most existing implementations. Our intention was
to have a scalable implementation that allows us to study the
(relative) impact of the security level on execution time and
energy consumption rather than setting new speed records.

Representation of field elements: The elements of a prime
field Fp are integers between 0 and p − 1. We represent the
field elements through arrays of 32-bit words (i.e. unsigned
32-bit integers), whereby in our case the number of words
amounts to l = dk/32e because our primes are of the form
p = 2k − c. For example, when p is a 255-bit prime such as

2255 − 19, then a field element consists of eight words. Note
that the functions of our arithmetic library do not insist the
operands to be less than p but accept incompletely-reduced
operands as input, as long as they fit into l words. Also the
results produced by the functions of our arithmetic library can
be slightly larger than p, but they always fit into l words.

Addition: An addition of two elements a, b ∈ Fp consists
of computing the sum r = a+ b and then reducing r modulo
p. Since both a and b can be incompletely reduced, the sum
r may be up to 32l + 1 = k + 2 bits long (recall that k is a
multiple of 32 minus 1, i.e. k = 32l − 1). The reduction op-
eration can take advantage of the special form of p, i.e. we
have 2k ≡ c mod p. In order to reduce the (k + 2)-bit sum
r modulo p, we split r up into a lower part rL that consists
of the k least significant bits of r and a higher part rH of up
to two bits in length. Consequently, the sum r can be written
as r = rH2k + rL and we can simply substitute 2k by c to
obtain a result of a length of at most k + 1 bits that fits into
l words. Our implementation follows the approach described
in [8] and starts the addition with the most significant words
of a and b, which means al−1 and bl−1 are added first. The
two most significant bits of this sum (which can be up to 33
bits long) represent rH and are multiplied by c to obtain an
up to 16 bits long product. Then, the remaining 32-bit words
of the operands a and b are summed up, beginning with the
two least significant words a0 and b0, to which also rHc is
added. The sum of a0, b0, and rHc can have a length of up
to 34 bits and, therefore, the carries that propagate from less
to more significant words are in the range of [0, 2].

Subtraction: The standard way to perform a subtraction in
Fp consists of carrying out an ordinary subtraction and then
conditionally adding p if the difference was negative. While
this approach is easy to implement, it consists of two loops
(i.e. high loop overhead) and has operand-dependent execu-
tion time. To resolve these issues, we add a multiple of p to
the difference, i.e. we realize the subtraction as an operation
of the form r = 4p+ a− b = 2k+2 + a− b− 4c mod p. The
addition of 4p does not introduce a lot of overhead because
adding 2k+2 and subtracting 4c only affects the computation
of the most and least significant word, respectively. Like the
Fp-addition described above, also the Fp-subtraction requires
a modular reduction, which can be performed in basically the
same way. The processing starts at the most significant word
of a and b, and then the main loop is executed, whereby the
carries propagating from less to more significant words are
in the range of [−2, 1]. To ensure that the final result is non-
negative, we actually compute the most significant word as
rl−1 = 233 − 2 + al−1 − bl−1, then extract rH (which can be
up to three bits long) from it, and finally add 2 to guarantee
rl−1 ≥ 2 so that a negative carry can be absorbed.

Multiplication: The most basic technique to multiply two
elements a, b ∈ Fp consists of a normal integer multiplication
t = ab, followed by a reduction of the product t modulo the
prime p. From an algorithmic point of view, there exist two
major approaches to implement a long-integer multiplication
in software, namely the Operand-Scanning (OS) method and



the Product-Scanning (PS) method [12]. These two methods
differ in their loop structure and the operation they execute in
the inner loops. Cortex-M models based on the ARMv7E-M
architecture, such as Cortex-M4 and Cortex-M7, support the
umaal instruction, which executes exactly the operation car-
ried out in the inner loop of the OS method. While umaal is
not available on Cortex-M3 processors, the umlal instruction
is supported; it multiplies the content of two 32-bit registers
and adds the 64-bit product to a 64-bit accumulator held in
two 32-bit registers. This is, in principle, the operation in the
inner loops of the PS method, but the 64-bit accumulator is
a serious limitation that makes umlal little useful for long-
integer multiplication unless one reduces the number of bits
per word from 32 to e.g. 28. A reduced-radix representation
with 28-bit words allows several word-products to be added
into a 64-bit accumulator without overflow, but increases the
number of iterations of the inner loop from l2 to (l + 1)2. In
accordance with the goals of SECCCM3, i.e. scalability and
a “good” trade-off between execution time and code size, we
decided to implement the multiplication using the PS method
with a canonical (i.e. 32 bits per word) representation of the
field elements, similar as described in [15]. In each iteration
of the inner loop, two ldr, an umull, an adds, an adcs, as
well as an adc instruction are executed.

The 2l-word product t = ab has to be reduced modulo p to
get a result r that consists of l words. Our implementation
of the reduction operation takes advantage of the special form
of the prime; in particular, we exploit that 2k ≡ c mod p and
2k+1 ≡ 232l ≡ 2c mod p. The first step of the reduction is to
multiply the l upper words of t by 2c and add the product to
the l lower words, which yields an intermediate result t′ of a
length of l + 1 words since c ≤ 214 − 1. Then, t′ is split into
a lower part t′L comprising the k least significant bits of the
intermediate result and a higher part t′H that is up to 16 bits
long. The final step is the multiplication of t′H by c and the
addition of t′Hc to the lower part t′L, which is similar to the
last step of the Fp-addition described above.

Squaring: Our implementation of the squaring takes into
account that the square t = a2 of an l-word integer a can be
computed using only (l2 + l)/2 umull instructions, which is
significantly less than the l2 umull instructions required to
multiply two distinct l-word integers. We refer to [15] for a
more detailed explanation of the squaring algorithm.

B. Constant-Time Multiplication

A non-trivial problem when implementing multi-precision
arithmetic for the Cortex-M3 platform is that the instructions
for (32× 32)-bit multiplication yielding a 64-bit result have
operand-dependent latency. For example, the execution of an
umull instruction takes between three and five clock cycles
depending on the actual bitlength of the operands [21]. This
micro-architectural effect is called early termination and can
make cryptographic software susceptible to Timing Analysis
(TA) and SPA attacks [11]. To prevent such attacks, one has
to perform all (32× 32)-bit multiplications in constant time
with minimum overhead. One approach to achieve this is to

prepare the operands such that the multiplication instruction
is forced to take a fixed number of cycles. Unfortunately, the
early termination mechanism of the M3 is very complex (see
[6]), which means simple techniques like the one proposed in
[2] for an ARM7TDMI-S core will not work properly.

LISTING I
CONSTANT-TIME (32× 32)-BIT MULTIPLICATION (12 CYCLES)

UMULL_CT(RLo ,RHi ,A,B):
uxth ALo , A // prepare 16 bit
uxth BLo , B
mov AHi , A, LSR 16
mov BHi , B, LSR 16
mul RLo , ALo , BLo // lo x lo
mul RHi , AHi , BHi // hi x hi
mul Tmp , ALo , BHi // lo x hi
adds RLo , RLo , Tmp , LSL 16
adc RHi , RHi , Tmp , LSR 16
mul Tmp , AHi , BLo // hi x lo
adds RLo , RLo , Tmp , LSL 16
adc RHi , RHi , Tmp , LSR 16

In order to make the prime-field arithmetic less vulnerable
to TA and SPA attacks, we decided to use only constant-time
instructions, which means we replaced the umull instruction
for (32× 32)-bit multiplication by the instruction sequence
specified in Listing I. This sequence contains four (16× 16)-
bit multiplications executed by the mul instruction that takes
exactly one cycle. Similar approaches for the Cortex-M0 are
described in [8], [16], but our code is faster on a Cortex-M3
since the M3 is less restrictive regarding register usage. The
computation takes 12 clock cycles and temporarily uses five
additional registers for ALo, AHi, BLo, BHi, and Tmp.

LISTING II
CONSTANT-TIME (32× 16)-BIT MULTIPLICATION (8 CYCLES)

UMULL2_CT(RLo ,RHi ,A,B):
uxth ALo , A // prepare 16 bit
uxth BLo , B
mov AHi , A, LSR 16
mul RLo , ALo , BLo // lo x lo
mul Tmp , AHi , BLo // hi x lo
adds RLo , RLo , Tmp , LSL 16
mov RHi , 0
adc RHi , RHi , Tmp , LSR 16

LISTING III
CONSTANT-TIME 32-BIT SQUARING (9 CYCLES)

USQRL_CT(RLo ,RHi ,A):
uxth ALo , A // prepare 16 bit
mov AHi , A, LSR 16
mul RLo , ALo , ALo // lo x lo
mul RHi , AHi , AHi // hi x hi
mul Tmp , ALo , BHi // lo x hi
adds RLo , RLo , Tmp , LSL 16
adc RHi , RHi , Tmp , LSR 16
adds RLo , RLo , Tmp , LSL 16
adc RHi , RHi , Tmp , LSR 16

The number of instructions and temporarily-used registers
can be reduced in some situations. For example, a (32× 16)-
bit multiplication, which is useful for the reduction modulo
p, can be executed in eight cycles with two extra registers as
shown in Listing II. The computation of a 32-bit square (see
Listing III) requires nine cycles and two extra registers.



IV. EXPERIMENTAL RESULTS

In this section, we present implementation results for three
different versions of SECCCM3: (i) a highly portable version
written in C, (ii) an optimized version for Cortex-M3 where
the field arithmetic is written in assembler, and (iii) a secure
version for Cortex-M3 where the field arithmetic is written in
assembler using constant-time multiplication. SECCCM3 has
not been specifically optimized for high performance but we
rather tried to find a good trade-off between speed and code
size. In particular, we did not unroll any of the loops of the
field arithmetic operations to ensure SECCCM3 satisfies the
code-size constraints of IoT devices. The portable C version
and the simple assembler version for Cortex-M3 succumb to
TA and SPA attacks because they execute non-constant-time
multiplication instructions. The secure version for Cortex-M3
implements all (32 × 32)-bit multiplications as described in
Section III-B and is, thus, protected against these attacks.

The portable C version of SECCCM3 has a (binary) code
size of 5720 B; the two mixed C and assembler variants are
smaller and amount to 3544 B for the basic version with the
umull instruction and 4012 B for the secure (i.e. constant-
time) version. Consequently, the integration of constant-time
code as replacement for the variable-time umull instruction
increases the code size of SECCCM3 by about 13.2%. This
code size is still relatively small, especially when taking into
account that parameters of four different Montgomery curves
are included. For comparison, the X25519 implementation in
[6] has a size of 4140 B, but supports just a single curve and
is vulnerable to TA and SPA when executed on a Cortex-M3
processor. The prime-field multiplication of SECCCM3 has a
size of 334 B when the umull instruction is used and 550 B
when umull is replaced by constant-time instructions.

A. Execution Time

We evaluated our SECCCM3 library on a STM32 Nucleo
board equipped with a STM32L152RE Cortex-M3 microcon-
troller, which we clocked with a frequency of 8.0 MHz. The
functions we benchmarked were executed from flash with 0
wait states. Table II specifies the execution time of a single
Fp-multiplication for four fields. The basic assembler version
using umull is roughly 8.5% faster than the C code, whereas
the secure assembler variant is about 27-28% slower than the
C code. When comparing the two assembler implementations
directly we see that the proposed constant-time multiplication
introduces a performance penalty of around 38-40%.

TABLE II
COMPUTATION TIME OF A PRIME-FIELD MULTIPLICATION

Field size C Code ASM ASM (sec.)
159-bit field 717 cycles 657 cycles 911 cycles
191-bit field 957 cycles 879 cycles 1226 cycles
223-bit field 1235 cycles 1133 cycles 1585 cycles
255-bit field 1551 cycles 1419 cycles 1988 cycles

The execution time of a scalar multiplication, which is the
main operation of ECDH, is shown in Table III. We observe

that scalar multiplication on a 255-bit curve takes over three
times longer than on a 159-bit curve. The “pure” C versions
need 17-20% more execution time than the C code with the
basic assembler implementation of the field arithmetic, but is
around 8-14% faster than the C code with the constant-time
arithmetic written in assembler. This mixed version using the
secure arithmetic is between 30% and 34% slower than the
mixed version with the non-constant-time assembler code.

TABLE III
EXECUTION TIME OF A SCALAR MULTIPLICATION

SECCCM3 C Code C+ASM C+ASM (sec.)
159-bit curve 1322678 cycles 1104006 cycles 1436706 cycles
191-bit curve 2005360 cycles 1690921 cycles 2232311 cycles
223-bit curve 2884341 cycles 2445445 cycles 3262689 cycles
255-bit curve 3992944 cycles 3396699 cycles 4565428 cycles
Micro-ECC C+ASM

160-bit curve 1868312 cycles
192-bit curve 2369469 cycles
224-bit curve 3569080 cycles
256-bit curve 6817998 cycles
De Groot [6] ASM
255-bit curve 2661659 cycles

Nishinaga [19] C+ASM (sec.)
255-bit curve 6245448 cycles

Besides SECCCM3, we also benchmarked Micro-ECC, an
open-source library for elliptic curve cryptography written in
C with “inlined” assembler code for ARM2. Micro-ECC can
perform a variable-base scalar multiplication on five of the
curves specified in [20]. We see in Table III that SECCCM3
compares well with Micro-ECC since, for similar curves, it is
10-20% faster and it furthermore is protected against attacks
exploiting the early termination effect. De Groot presents in
[6] a carefully tuned implementation of scalar multiplication
on Curve25519 that uses Karatsuba’s technique [14] to speed
up the multiplication in the underlying prime field, which is
an optimization not (yet) supported by SECCCM3. The full
scalar multiplication takes only 2661659 clock cycles on the
Cortex-M3, but is vulnerable to early-termination attacks. In
[19], Nishinaga and Mambo ported µNaCl to the Cortex-M3
and managed to perform a full 255-bit scalar multiplication
in 6245448 cycles, which is 36% slower than SECCCM3.

B. Energy Consumption

In our experiments, we supplied the STM32 Nucleo board
with an external voltage of Vdd = 3.3 V and an internal vol-
tage of Vcore = 1.8 V. To determine the energy consumption
we used a setup as shown in Figure 1. During the execution
of a scalar multiplication on the M3, we measured a voltage
of Vm = 17 mV on a 6.2 Ω resistor, which means we have
a current of Idd = 2.74 mA (this is very close to the typical
current of 2.2 mA given in the data sheet). Thus, the M3 has
a power consumption of Idd · (Vdd − Vm) = 9.0 mW.

2Micro-ECC is available on GitHub at https://github.com/kmackay/micro-
ecc. We compiled it for the Cortex-M3 using the options Thumb2, native little
endian, fast squaring, and optimization level 4.



STM32
L152RER

Idd

Vdd

Vm

Fig. 1. Setup used for power measurement

When we combine these 9.0 mW with the cycle counts in
Table III (whereby the clock frequency of 8 MHz needs to
be taken into account), we obtain the energy required for the
computation of a scalar multiplication, which is specified in
Table IV. Unsurprisingly, the energy values are closely tied
to the execution times. Taking the secure (i.e. constant-time)
implementations as example, we observe the energy cost of a
scalar multiplication to range from 1.62 mJ to 5.14 mJ. The
255-bit elliptic curve is in terms of energy over three times
more expensive than the 159-bit curve. Note that the overall
energy consumption of the ECDH protocol includes besides
the computation energy for the scalar multiplication also the
communication energy consumed for the transmission of the
public key, which is outside the scope of this paper.

TABLE IV
ENERGY CONSUMPTION PER SCALAR MULTIPLICATION ON STM32

SECCCM3 C Code C+ASM C+ASM (sec.)
159-bit curve 1.49 mJ 1.24 mJ 1.62 mJ
191-bit curve 2.26 mJ 1.90 mJ 2.51 mJ
223-bit curve 3.25 mJ 2.75 mJ 3.67 mJ
255-bit curve 4.49 mJ 3.82 mJ 5.14 mJ
Micro-ECC C+ASM

160-bit curve 2.10 mJ
192-bit curve 2.67 mJ
224-bit curve 4.02 mJ
256-bit curve 7.67 mJ
De Groot [6] ASM
255-bit curve 2.99 mJ

Nishinaga [19] C+ASM (sec.)
255-bit curve 7.03 mJ

V. CONCLUDING REMARKS

We introduced SECCCM3, a lightweight cryptographic li-
brary to compute scalar multiplication on Montgomery-form
elliptic curves of different order. All arithmetic operations in
the underlying pseudo-Mersenne prime fields were written in
ARM assembly language and optimized for the Cortex-M3
platform with the goal to achieve a sensible balance between
scalability, performance, and code size. SECCCM3 includes
domain parameters for elliptic curves over 159, 191, 223 and
255-bit prime fields, whereby the parameters can be adapted
dynamically (i.e. at run-time without the need to re-compile
the software) to guarantee high scalability and enable various
trade-offs between security and energy consumption.

A non-trivial problem with Cortex-M3 microcontrollers is
that the latency of long multiply instructions (e.g. umull) is
not constant but depends on the value of the operands. This

variable latency can make cryptographic software vulnerable
to timing and SPA attacks, even if it was specifically written
to be able to resist such attacks. We presented a constant-time
multiplication routine for 32-bit operands that executes in 12
cycles on the Cortex-M3 and forms the basis for our secure
implementation of the prime-field arithmetic.

As future work, we plan to speed up the Fp-multiplication
through the integration of Karatsuba’s technique and analyze
the communication energy cost of ECDH key exchange.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito. The Internet of Things: A survey.
Computer Networks, 54(15):2787–2805, Oct. 2010.

[2] F. Ben Hamouda. Exploration of effciency and side-channel security of
different implementations of RSA. Technical report, available for down-
load at http://www.normalesup.org/∼fbenhamo/files/stage2011/report.
pdf, 2011.

[3] D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In
Public Key Cryptography — PKC 2006, vol. 3958 of Lecture Notes in
Computer Science, pp. 207–228. Springer Verlag, 2006.

[4] Bluetooth Special Interest Group. Specification of the Bluetooth System
(Version 4.2). Available for download at http://www.bluetooth.com/
specifications/bluetooth-core-specification, 2014.

[5] H. Cohen and G. Frey. Handbook of Elliptic and Hyperelliptic Curve
Cryptography. Chapmann & Hall\CRC, 2006.

[6] W. de Groot. A performance study of X25519 on Cortex-M3 and M4.
M.Sc. thesis, Eindhoven University of Technology, 2015.

[7] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[8] M. Düll, B. Haase, G. Hinterwälder, M. Hutter, C. Paar, A. H. Sánchez,
and P. Schwabe. High-speed Curve25519 on 8-bit, 16-bit and 32-bit
microcontrollers. Designs, Codes and Cryptography, 77(2–3):493–514,
2015.

[9] Ericsson. Ericsson Mobility Report November 2017. Available for down-
load at http://www.ericsson.com/assets/local/mobility-report/documents/
2017/ericsson-mobility-report-november-2017.pdf, 2017.

[10] J. Großschädl. A family of implementation-friendly MoTE elliptic
curves. Technical Report TR-LACS-2013-01, Laboratory of Algorith-
mics, Cryptology and Security, University of Luxembourg, 2013.

[11] J. Großschädl, E. Oswald, D. Page, and M. Tunstall. Side-channel
analysis of cryptographic software via early-terminating multiplications.
In Information Security and Cryptology — ICISC 2009, vol. 5984 of
Lecture Notes in Computer Science, pp. 176–192. Springer Verlag, 2009.

[12] D. R. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide to Elliptic
Curve Cryptography. Springer Verlag, 2004.

[13] IEEE Vehicular Technology Society. IEEE Std 1609.2-2013: IEEE Stan-
dard for Wireless Access in Vehicular Environments—Security Services
for Applications and Management Messages. Available for download at
http://standards.ieee.org/findstds/standard/1609.2-2013.html, 2013.

[14] A. A. Karatsuba and Y. P. Ofman. Multiplication of multidigit numbers
on automata. Doklady Akademii Nauk SSSR, 145(2):293–294, 1962.

[15] Z. Liu, J. Großschädl, L. Li, and Q. Xu. Energy-efficient elliptic curve
cryptography for MSP430-based wireless sensor nodes. In Information
Security and Privacy — ACISP 2016, vol. 9722 of Lecture Notes in
Computer Science, pp. 94–112. Springer Verlag, 2016.

[16] Z. Liu, H. Seo, A. Castiglione, K.-K. R. Choo, and H. Kim. Memory-
efficient implementation of elliptic curve cryptography for the internet-
of-things. IEEE Transactions on Dependable and Secure Computing (to
appear).

[17] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of Computation, 48(177):243–264, 1987.

[18] NFC Forum. NFC Signature RTD Technical Specification 2.0 and Certifi-
cate Policy. Available for download at http://nfc-forum.org/product/nfc-
signature-rtd-certificate-policy, 2015.

[19] T. Nishinaga and M. Mambo. µNaCl on 32-bit ARM Cortex-M3. In
Proceedings of the 2015 Computer Security Symposium, pp. 102–109,
2015.

[20] Standards for Efficient Cryptography Group (SECG). SEC 2: Recom-
mended Elliptic Curve Domain Parameters (Version 2). Available for
download at http://www.secg.org/sec2-v2.pdf, 2010.

[21] J. Yiu. The Definitive Guide to the ARM Cortex-M3. Newnes, 2009.


