
Efficient Masking of ARX-Based Block Ciphers
Using Carry-Save Addition on Boolean Shares?

Daniel Dinu, Johann Großschädl, and Yann Le Corre

SnT and University of Luxembourg
Laboratory of Algorithmics, Cryptology and Security (LACS)
6, Avenue de la Fonte, L–4364 Esch-sur-Alzette, Luxembourg

{dumitru-daniel.dinu,johann.groszschaedl,yann.lecorre}@uni.lu

Abstract. Masking is a widely-used technique to protect block ciphers
and other symmetric cryptosystems against Differential Power Analysis
(DPA) attacks. Applying masking to a cipher that involves both arith-
metic and Boolean operations requires a conversion between arithmetic
and Boolean masks. An alternative approach is to perform the required
arithmetic operations (e.g. modular addition or subtraction) directly on
Boolean shares. At FSE 2015, Coron et al. proposed a logarithmic-time
algorithm for modular addition on Boolean shares based on the Kogge-
Stone carry-lookahead adder. We revisit their addition algorithm in this
paper and present a fast implementation for ARM processors. Then, we
introduce a new technique for direct modular addition/subtraction on
Boolean shares using a simple Carry-Save Adder (CSA) in an iterative
fashion. We show that the average complexity of CSA-based addition on
Boolean shares grows logarithmically with the operand size, similar to
the Kogge-Stone carry-lookahead addition, but consists of only a single
AND, an XOR, and a left-shift per iteration. A 32-bit CSA addition on
Boolean shares has an average execution time of 162 clock cycles on an
ARM Cortex-M3 processor, which is approximately 43% faster than the
Kogge-Stone adder. The performance gain increases to over 55% when
comparing the average subtraction times. We integrated both addition
techniques into a masked implementation of the block cipher Speck and
found that the CSA-based variant clearly outperforms its Kogge-Stone
counterpart by a factor of 1.70 for encryption and 2.30 for decryption.

1 Introduction

The concrete security of a cryptographic system depends not only on the crypt-
analytic complexity of the underlying algorithm, but also on the quality of its
implementation. This became apparent some 20 years ago with the emergence
of Side-Channel Analysis (SCA) [13], a special form of cryptanalysis that aims
to exploit measurable physical phenomena (e.g. variations in the response time
or power consumption) of a device executing a cryptographic algorithm so as to
reveal information about the secret key. The most advanced variant of SCA is

? Supported by FNR Luxembourg (CORE project ACRYPT, ID C12-15-4009992).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/162022464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 D. Dinu et al.

Differential Power Analysis (DPA) [14], which involves two phases, namely an
acquisition phase and an analysis phase. In the former phase, the attacker cap-
tures power consumption traces from the target device for different plaintexts
or ciphertexts under the same secret key. Thereafter, in the analysis phase, she
adopts sophisticated statistical techniques to determine the correlation between
the power consumption and certain intermediate values that depend solely on
the plaintext/ciphertext and (parts of) the secret key. Numerous case studies
reported in the literature confirm that DPA attacks pose a real-world threat to
the security of unprotected (or insufficiently protected) cryptosystems and can
be mounted in relatively short time with relatively cheap equipment.

From a high-level point of view, countermeasures to thwart DPA attacks on
symmetric cryptosystems can be broadly divided into two main categories; one
is hiding (i.e. eliminating the data-dependency of the power consumption) and
the second is masking (i.e. randomizing the intermediate values that are com-
puted) [16]. Common approaches for hiding countermeasures aim to make the
device’s power consumption profile either constant for all possible values of the
secret key or fully random (i.e. statistically independent from the key). Hiding
can be implemented in hardware (e.g. by using a so-called DPA-resistant logic
style) and software (e.g. by randomly shuffling the order in which the sensitive
operations are executed or through the insertion of dummy operations) [16]. In
both cases, the intention is to break (or, at least, to obscure) the link between
the sensitive intermediate values that are computed during the execution of an
algorithm and the power consumption traces. Masking, on the other hand, aims
to conceal every key-dependent variable with a random value, called “mask,” in
order to break the link between the intermediate values that are computed on
the device and the (unmasked) intermediate values of the algorithm. The basic
principle is related to the idea of secret sharing since every sensitive variable is
split into n ≥ 2 “shares,” so that any combination of up to d = n − 1 shares is
statistically independent of any secret value. These n shares must be processed
separately during the execution of the algorithm and then re-combined in the
end to yield the correct result. When implemented properly, masking forces an
attacker to combine n leakages originating from the n shares in order to obtain
the secret information.

Depending on the actual operation to be protected against DPA, a masking
scheme can be Boolean (using logical XOR), arithmetic (using modular addition
or modular subtraction) or multiplicative (using modular multiplication). When
a cryptographic algorithm involves arithmetic and Boolean operations, which is
generally the case for all ARX-based block ciphers, then the masks have to be
converted from one form to the other without introducing any kind of leakage
[21]. Goubin was the first to describe secure algorithms for conversion between
arithmetic and Boolean masks in [9]. While his method is very efficient for the
Boolean-to-arithmetic conversion, it introduces a high overhead for conversions
in the other direction. Coron and Tchulkine [5], as well as Debraize [6], came up
with improved variants of Goubin’s algorithm for switching from arithmetic to
Boolean masking. At FSE 2015, Coron et al. [4] introduced a novel conversion



Efficient Masking of ARX-Based Block Ciphers Using Carry-Save Addition 3

technique with logarithmic complexity based on a special “parallel-prefix” form
of a carry-lookahead adder, known as Kogge-Stone Adder (KSA) [15]. Besides
mask conversion, there exists a second principal approach for efficient masking
of ARX-based ciphers, namely to perform the necessary arithmetic operations
(e.g. modular addition/subtraction) directly on Boolean shares. This idea was
originally proposed for hardware implementation [1], but can also be applied to
protect software implementations of ARX-based block ciphers against DPA as
demonstrated in [12]. The latency of the implementations in [1] and [12] grows
linearly with the bit-length of the two operands. However, Coron et al. showed
in [4] that the KSA allows not only logarithmic-time mask conversion, but also
logarithmic-time modular addition on Boolean shares.

The KSA for modular addition on Boolean shares introduced in [4] comes
with a formal security proof embedded into the framework of Isai, Sahai, and
Wagner [11]. Furthermore, the authors of [4] present a software implementation
of their addition technique written in ANSI C and analyzed its execution time
on a 32-bit processor. They also report the execution time of first-order secure
implementations of HMAC-SHA1 and the Speck cipher [2]. Unfortunately, an
implementation written in C is not suitable for performance evaluations since
optimizations introduced by the compiler may break the security of a masking
scheme, even if the source code looks perfectly sound. On the other hand, when
preventing a compiler from performing sophisticated optimizations, the results
are not meaningful. Therefore, it is still unclear how fast a modular addition on
Boolean shares can be in the real world and how its execution time impacts the
performance of an ARX-based cipher. Another important question arising from
[4] is whether there exists an alternative addition technique that could lead to
better execution times than the KSA. Based on the work described in the pre-
sent paper, we can answer this question positively. We propose a new technique
for performing modular additions and subtractions directly on Boolean shares
that uses a basic Carry-Save Adder (CSA) [17] in an iterative fashion, which is
not only faster but also smaller (in terms of code size) than the KSA.

A masking scheme that uses the proposed CSA-based addition on Boolean
shares is a lightweight countermeasure with relatively low impact on execution
time and binary code size. The design of DPA countermeasures always involves
a trade-off between security (i.e. the achieved “degree” of DPA resistance) and
performance/resource requirements (RAM footprint, code size). Such trade-offs
yield a wide spectrum of countermeasures along an axis between security and
efficiency, whereby most existing proposals (including the KSA-based masking
from [4]) are at the far end towards security. These countermeasures were typi-
cally developed for smart card applications where the secret key is fixed and an
attacker can measure an arbitrary number of traces. Such applications require
advanced DPA countermeasures, which usually introduce massive overheads in
execution time [16]. However, applications outside the smart card domain can
have different threat models, different assumptions about the number of traces
the attacker can measure, and different security requirements. For example, in
the Internet of Things (IoT), the secret key used to encrypt the communication



4 D. Dinu et al.

Table 1. The cost (in number of elementary operations) of different secure operations.

Secure Operation Cost

SecNot 1

SecXor 2

SecShift 4

SecShiftFill 5

SecAnd 8

SecOr 11

between two devices is often provisioned dynamically (e.g. through ephemeral
ECDH key exchange) and the amount of transmitted data is, in general, small
(e.g. up to a few kB), which means that at most a few hundred data blocks are
encrypted with one and the same key. In this case, an attacker can just capture
a few hundred power or EM traces. The proposed masking using CSA addition
on Boolean shares is a (relatively) inexpensive DPA countermeasure that can
meet certain relaxed security requirements at significantly lower cost than the
sophisticated countermeasures used for smart cards.

2 Preliminaries

A first step towards masked implementations of ARX-based ciphers is to define
“secure” (i.e. masked) variants of the used arithmetic/logical operations: mod-
ular addition and subtraction, rotations, and bitwise exclusive OR. All bitwise
logical operations and shifts (including rotations) are relatively easy to perform
directly on Boolean shares, whereas the non-linear addition/subtraction require
more complex algorithms. Coron et al. [4] presented a provably-secure method
to perform a modular addition on Boolean shares using only secure algorithms
for AND, XOR and bit shifts.

We specify in Table 1 all secure operations required to mask an ARX design
and their cost expressed in the number of “elementary” operations, which can
normally be executed via a single instruction. SecAnd, SecShift, and SecXor are
described in detail in [4, Sect. 4]. Besides these, we need provably-secure algo-
rithms for two further operations: SecOr and SecShiftFill. The former computes
an OR on Boolean shares, while SecShiftFill shifts a sensitive value represented
by Boolean shares n bit-positions to the left and fills the n least significant bits
with 1 (see [7] for a more detailed treatment). We divide the secure operations
on Boolean shares into three classes according to their computational cost. The
first class includes all secure operations with a cost of at most six instructions
(e.g. SecXor, SecShift). Then, the second class contains operations that can be
masked using up to a dozen instructions (e.g. SecAnd, SecOr). Finally, the third
class is represented by operations that need more than 12 instructions. Secure
algorithms for modular addition/subtraction on Boolean shares belong to this
latter class since they rely on secure operations from the first two classes.



Efficient Masking of ARX-Based Block Ciphers Using Carry-Save Addition 5

Algorithm 1. Kogge-Stone Addition

Input: Operands a, b ∈ {0, 1}k
Output: Result r = a + b mod 2k

1: p← a⊕ b
2: g ← a ∧ b
3: for i from 1 to max

(
dlog2(k − 1)e, 1

)
do

4: g ←
(
p ∧ (g � 2i−1)

)
⊕ g

5: p← p ∧ (p� 2i−1)
6: end for
7: g ←

(
p ∧ (g � 2n−1)

)
⊕ g

8: r ← a⊕ b⊕ (g � 1)
9: return r

The Kogge-Stone Adder (KSA) [15] belongs to the family of parallel-prefix
carry-lookahead adders, which parallelize the computation of the carry signal in
order to reduce the carry propagation delay. The structure of a parallel-prefix
adder can be represented through prefix graphs that generate at each stage two
signals: a propagate signal p and a generate signal g. The KSA is very fast due
to its minimal depth (which grows logarithmically with respect to the size of the
operands) and minimal fan-out, but has a high node count and, thus, it suffers
from wiring congestion when implemented in hardware.

The structure of the KSA can be easily parallelized in software as specified
in Algorithm 1. If the adder does not get an input carry signal along with the
two operands a and b, then the bitwise ORs can be replaced by bitwise XORs
as in Algorithm 1. The addition on Boolean shares benefits tremendously from
this optimization because the secure SecXor operation is much faster than the
secure SecOr operation. Unfortunately, this optimization can not be applied to
the subtraction (i.e. two’s complement addition) because the input carry signal
has to be set to 1 and distributed to all stages of the adder. Hence, a software
implementation of KSA subtraction needs to fill the least significant bits of the
generate word g with the value of the input carry after each left-shift. This leads
to less efficient software implementations of subtraction versus addition.

3 Carry-Save Addition

The design of algorithms and respective hardware architectures for the addition
of integers is one of the central research topics in computer arithmetic and has
a history stretching back more than 50 years [18]. The efficiency of the various
techniques proposed in the literature depends to a large extent on how the two
operands to be added are represented. In the most basic case, i.e. the standard
binary system, one uses a number representation radix of r = 2 and the digit
set D = {0, 1}, which means a k-bit integer a is given as

a =

k−1∑
i=0

ai 2i with ai ∈ {0, 1} (1)



6 D. Dinu et al.

Throughout this paper, we shall use indexed lowercase letters to denote the
individual bits of an integer (a0 is the least significant bit of a and ak−1 is its
most significant bit). The most basic way of adding up two k-bit integers is to
apply a so-called Ripple-Carry Adder (RCA) consisting of k Full Adders (FAs)
[18]. Each FA gets besides the two operand bits ai and bi also a carry bit cin as
input and produces a sum bit si and an outgoing carry bit cout as follows.

si = ai ⊕ bi ⊕ cin , cout = (ai ∧ bi) ∨ (ai ∧ cin) ∨ (bi ∧ cin) (2)

The carry output cout of each FA is connected to the carry input cin of the
next-higher FA. When analyzing the latency of an RCA, one needs to take into
account the maximum possible length of a carry chain. As defined in [18], the
length of a carry chain is the number of bit positions from where the carry is
generated up to (and including) where it is finally absorbed or annihilated. The
longest possible carry chain of a k-bit RCA covers all k FAs since, in the worst
case, a carry generated at the least significant position ripples all the way up to
the most significant position. As a consequence, the latency of an RCA grows
linearly with the operand size. However, a single carry chain of length k occurs
only for very few combinations of operands as we will discuss further below. In
the case of random inputs, one can normally (i.e. on average) expect to have
several, but much shorter, carry chains. It was already shown in 1946 that, on
average, the carry chains in a k-bit addition are log2(k) bits long [3].

Although RCAs are easy to implement in hardware, they are rarely used in
high-speed arithmetic circuits. The maximum frequency with which an RCA is
capable to process operands is determined by the worst-case signal propagation
path, which, in turn, is determined by the maximum length of the carry chains
(i.e. k) and not their average length (i.e. log2(k)) [18]. This has motivated the
development of advanced adder circuits having a worst-case latency that grows
logarithmically with the operand length. A good example for such an advanced
adder is the KSA described in the preceding section. A logarithmic worst-case
behavior is the optimum that one can achieve with the binary number system
[18]. However, when using a redundant number system (i.e. a number system
with a digit set D containing more than r elements), it is even possible to add
two integers in constant time, independent of their length.

A very important redundant number system is the Carry-Save (CS) system
[17], which uses a radix-2 representation with the digit set D = {0, 1, 2}. Since
any digit ai can take three possible values (namely 0, 1, and 2), it needs to be
encoded using two bits, a sum bit asi and a carry bit aci , as shown below.

0↔ (0, 0) 1↔ (0, 1) or (1, 0) 2↔ (1, 1) (3)

The actual value of a k-digit number a given in CS form is

a =

k−1∑
i=0

ai · 2i =

k−1∑
i=0

(asi + aci ) · 2i with asi , a
c
i ∈ {0, 1} (4)

A k-digit CS integer a is always composed of a sum-word as and a carry-word
ac, each of which consists of k bits. Thus, we can write as = (ask−1, . . . , a

s
1, a

s
0)



Efficient Masking of ARX-Based Block Ciphers Using Carry-Save Addition 7

and ac = (ack−1, . . . , a
c
1, a

c
0). The redundancy in the digit set D, which enables

two encodings for the digit 1, means that the CS representation of an integer is
not unique [18]. An integer a given in CS representation can be converted into
conventional binary form by simply adding up its sum-word as and carry-word
ac using e.g. an RCA or KSA, i.e. the redundant-to-binary conversion involves
always a propagation of carries. In some way, the sum-word as and carry-word
ac can be interpreted as two arithmetic shares of the integer a since their sum
as + ac is exactly a. In practice, the CS representation is typically used for the
implementation of complex arithmetic operations that require a multi-operand
addition; a typical example is the addition of partial products performed in an
integer multiplication [18]. The CS representation is attractive for this purpose
because it allows partial products to be added up in constant time, irrespective
of k, yielding a result in CS form. Only at the end of a multiplication, a single
carry-propagating addition is needed for the redundant-to-binary conversion.

Let a be a k-digit integer in CS form and b a binary integer of k bits. The
result r = a + b of a CS addition can be computed in parallel for all digits and
consists of a sum-word rs and a carry-word rc, obtained as follows.

rsi = asi ⊕ aci ⊕ bi for 0 ≤ i ≤ k − 1 (5)

rci = (asi−1 ∧ aci−1) ∨ (asi−1 ∧ bi−1) ∨ (aci−1 ∧ bi−1) for 1 ≤ i ≤ k (6)

A Carry-Save Adder (CSA) can be easily implemented in hardware through an
array of k FAs, similar to the RCA [18]. However, the carry-propagation in the
CSA is limited to a single position, which becomes immediately evident from
Eq. (6) because rci depends solely on bits with index i − 1. A carry generated
by an FA just goes to the next-higher FA, but can not ripple up further. The
overall latency of a k-digit CSA is, therefore, determined by the latency of an
FA and does not depend on k anymore. The least significant bit of the result’s
carry-word, i.e. rc0, must be set to 0 when performing an addition, and to 1 in
the case of a subtraction, as we will explain further below.

3.1 Using a CSA for Single-Operand Addition

Traditionally, CSAs are employed for multi-operand addition, i.e. in situations
where many operands (e.g. partial products of an integer multiplication) are to
be summed up. However, in the present paper we use a CSA to perform single-
operand additions to add two k-bit integers, a and b, in standard binary form
with the goal of obtaining a binary result. Computing the sum r = a+ b in CS
form is easy and requires just a logical AND and a logical XOR operation:

rsi = ai ⊕ bi for 0 ≤ i ≤ k − 1 (7)

rci = ai−1 ∧ bi−1 for 1 ≤ i ≤ k (8)

An arithmetic circuit computing rsi and rci according to the equations above is
commonly referred to as a Half-Adder (HA). Similar as before, i.e. Eqs. (5) and
(6), the sum bits rsi are kept “in place,” whereas all the carry bits rci move one



8 D. Dinu et al.

Algorithm 2. Carry-Save Addition

Input: Operands a, b ∈ {0, 1}k
Output: Result r = a + b mod 2k

1: t← a ∧ b
2: rs ← a⊕ b
3: rc ← t� 1
4: while rc 6= 0 do
5: t← rs ∧ rc

6: rs ← rs ⊕ rc

7: rc ← t� 1
8: end while
9: return rs

position to the left. Since, in this paper, additions and subtractions are always
done modulo 2k, we can simply discard the most significant carry bit rck. When
implemented in software, a HA consists of an AND instruction, an XOR, and
a 1-bit left shift, which is a lot more efficient than the sequence of instructions
carried out by the KSA (Algorithm 1). Another advantage of the CSA over the
KSA is that a subtraction is only slightly more complex than an addition. The
most common way to perform a subtraction r = a− b is to add the two’s com-
plement of b to a. To generate the two’s complement of b, we have to first form
the one’s complement (through an inversion of all bits of b) and then add 1 to
it [18]. Fortunately, this addition of 1 can be simply realized by just setting the
least significant carry bit rc0 to 1. Adding 1 in this way is always possible when
using a CSA1, but not with a KSA. Hence, a CS subtraction is essentially the
same as a CS addition with inverted addend bits.

While the benefit of the CSA for multi-operand addition (multiplication) is
clear, it may seem counterintuitive to use a CSA for a single addition since the
result is obtained in CS form and still needs to be converted into the standard
binary representation, which requires a propagation of carries. This raises the
question of why one does not simply use a KSA or some similar kind of carry-
propagating adder in the first place. The answer lies in the rather little-known
fact that a CSA can not only be employed to perform a CS addition, but also
for the redundant-to-binary conversion of the result. Namely, when we feed the
sum-word rs and carry-word rc obtained through Eqs. (7) and (8) as input into
a CSA, we get again a result in CS representation, but with fewer 1 bits in the
carry-word rc (i.e. lower Hamming weight) or no 1 bits at all. When repeating
this procedure, all bits of the carry-word rc will eventually become 0, and the
latest sum-word rs represents the result in binary form. In each iteration, the
Hamming weight of rc is reduced by (at least) 1 since the lowest carry bit rc0 is
set to 0. Algorithm 2 specifies this addition technique in a formal fashion. The
first three lines do the actual CS addition of the operands a and b according to
Eqs. (7) and (8), yielding a sum in CS form consisting of rs and rc. Then, the
sum is converted into standard binary representation using the while-loop.

1 As mentioned before, rc0 is normally set to 0 when performing an addition.



Efficient Masking of ARX-Based Block Ciphers Using Carry-Save Addition 9

The overall execution time of Algorithm 2 depends on the number of loop-
iterations needed for the redundant-to-binary conversion of the result r, i.e. the
number of iterations that have to be executed until the carry-word rc becomes
0. Intuitively, one expects the number of iterations to be closely related to the
average length of the carry chains that occur when a is added to b, which, as
explained earlier in this section, is approximately log2(k) for k-bit operands. In
[10], Hendrickson experimentally assessed the accuracy of the log2(k) approxi-
mation and concluded that log2(5k/4) makes a better estimate for the average
length of the carry chains. This suggests an average of around 4.3 bit positions
for the carry-chain length when 16-bit operands are added, and about 5.3 bits
in the case of k = 32. However, these results are not immediately applicable to
the estimation of the number of loop iterations of Algorithm 2 since the carries
are generated outside the loop (namely in the actual CS addition of a and b in
line 1–3). Therefore, the number of iterations is one less than the length of the
carry chains, i.e. based on Hendrickson’s formula we can estimate the average
number of iterations to be about log2(5k/4) − 1. In this way, we finally obtain
log2(20) − 1 ≈ 3.3 iterations if k = 16 and log2(40) − 1 ≈ 4.3 iterations for the
redundant-to-binary conversion when k = 32. Thus, the average execution time
of the CSA addition specified in Algorithm 2 increases logarithmically with the
operand length k, similar to the execution time of the KSA.

3.2 Security Aspects

Even though both the CSA and KSA have logarithmic time complexity, there
exists a significant difference, namely that the execution time of the former is
not constant for a given operand length. Based on above analysis, the average
number of iterations of the while-loop for redundant-to-binary conversion can
be approximated as log2(5k/4)− 1. In the best case, however, the while-loop is
not iterated at all, which happens when (a ∧ b)� 1 is 0. On the other hand, in
the worst case, a total of k − 1 iterations need to be performed until all k bits
of the carry-word rc become 0. The k − 1 iterations are the absolute maximum
since, in each iteration, the least significant carry bit rc0 is set to 0. When the
operands are short, e.g. when k = 16, it is feasible to (exhaustively) determine
the exact number of iterations for all 22k combinations of input words. Figure 1
shows the probabilities of all possible iteration counts for k = 16, which ranges
from 0 to 15. Out of the total of 232 possible operand combinations, only some
1.34% (or 57,395,628 combinations to be precise) directly yield a final result in
binary form (i.e. rc = 0) such that the loop is not iterated at all. An iteration
count of three has the highest probability; it occurs for roughly 27.72% of the
input combinations, closely followed by two iterations with a probability in the
area of 27.01%. The maximum possible 15 iterations happen only with 65,536
input combinations, i.e. the probability of the worst case for k = 16 amounts to
only 2−16, or roughly 0.0015%. The average over all 232 possible combinations
of pairs of 16-bit input words is approximately 3.25 iterations, which confirms
that the estimated iteration-count of log2(5k/4) − 1 ≈ 3.3 was pretty accurate
and the same also holds for k = 8 as we experimentally verified.



10 D. Dinu et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
ro
b
a
b
ili
ty

Fig. 1. Probability of each possible number of iterations of the loop for redundant-to-
binary conversion when k = 16.

An attacker may be able to count the number of iterations executed in the
redundant-to-binary conversion, which raises the question of what information
the iterations reveal about the operands or the result. Let us first consider the
scenario that the loop is not iterated at all, which can only happen if after the
left-shift operation (line 3 of Algorithm 2), the carry-word rc is 0. This means
an attacker learns that a ∧ b is either 0 or 2k−1 because only in these two cases
rc can become 0. Answering the question of what information the attacker can
learn about the obtained result r (i.e. the sum-word rs) in this scenario is less
obvious and boils down to the question of whether r can take all 2k possible
values between 0 and 2k − 1 or not. Due to our experiments with k = 16 from
above, we know already that there are 57,395,628 different input combinations
for which the loop is not executed at all. A further analysis reveals that these
combinations cover all 216 possible values for the resulting sum, i.e. r can have
any value between 0 and 216 − 1. However, this does not hold any longer when
the redundant-to-binary conversion consists of exactly one loop iteration since
now only 216 − 2 = 65,534 different values for the sum can be obtained. In the
most extreme case, i.e. when the maximum number of k − 1 = 15 iterations is
performed, the resulting sum can only be either 0 or 215, which means that an
attacker has a 50% chance to simply guess the value of the sum. However, the
probability of 15 iterations is extremely small, namely 2−16 ≈ 0.0015%.

The above analysis of the iteration counts is based on an exhaustive testing
of all possible pairs of input words, which is feasible for k = 16, but not when
k = 32 anymore since the number of combinations of 32-bit words amounts to
264. However, one can expect that for k = 32, the distribution of probabilities
for iteration counts will be similar to Fig. 1, meaning the highest probabilities
are centered around four iterations and the probability of k − 1 = 31 iterations
is extremely small, namely 2−32. Concretely, an attacker would have to observe
on average some 4.29 · 109 CS additions to reduce the guessing entropy for the
result to 1. However, the attacker can “trade” the number of guesses she has to
make for the number of traces she has to acquire to mount a DPA attack. The
relation between the guessing entropy and the number of iterations, as well as
the probability of each of the 32 iteration counts, is graphically represented in



Efficient Masking of ARX-Based Block Ciphers Using Carry-Save Addition 11

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of iterations

0

16

32

48

64

80

96

112

128

G
u
e
ss
in
g
 e
n
tr
o
p
y

101
102
103
104
105
106
107
108
109
1010
1011

N
u
m
b
e
r 
o
f 
tr
a
ce
s

Fig. 2. The number of traces necessary to reduce the guessing entropy of a 128-bit key
for different number of iterations of four 32-bit CS additions protected against DPA.

Fig. 2. We generated the information shown in this figure through experiments
with 246 pairs of 32-bit words since exhaustively testing all 264 combinations is
not feasible. Concretely, in these experiments, we added a 128-bit secret key to
a 128-bit state consisting of four 32-bit words.

Due to our experiments, we can confirm that an iteration count of four has
the highest probability among the 32 possible counts and occurs in about 25%
of the 32-bit CS additions. In a real DPA attack on a 128-bit key addition, one
can therefore expect approximately one out of 16 power consumption traces to
contain four additions with four iterations each. As indicated by the yellow line
in Fig. 2, an exponentially increasing number of power traces must be captured
as the number of iterations gets larger. For example, an attacker would need to
measure (at least) 106 power traces before she can expect to encounter a trace
with more than 20 iterations. The blue line in Fig. 2 shows that the larger the
number of iterations gets, the more information about the sum is “leaked.” As
analyzed before for k = 16, the number of distinct values that the result of an
addition can take decreases with the number of loop iterations executed in the
redundant-to-binary conversion. In the most extreme case of k − 1 iterations
(which happens with a very small probability of 2−32 for k = 32), the result can
only take two distinct values, namely 0 and 2k−1. Fortunately, the restriction
of the value space for the result is much lower for the iteration counts with the
highest probabilities, which are centered around four iterations. Nonetheless, it
is possible to exploit the number of iterations in our experiments to reduce the
guessing entropy for the 128-bit key. For example, our results show that if an
attacker is able to observe some 600,000 additions, the guessing entropy would
be reduced from 128 to 64 bits. Similarly, the ability to measure power traces
of roughly 62,000 additions would reduce the guessing entropy to 80 bits. How-
ever, the assumption that an attacker is capable to measure power traces from
several 10,000 or even 100,000 encryptions with one and the same key may be
reasonable for smart cards, but is extremely unrealistic in many other contexts
(we discussed in Sect. 1 secure communication in the IoT as an example where
secret keys are ephemeral and only used to encrypt small amounts of data).



12 D. Dinu et al.

0 1000 2000 3000 4000 5000 6000 7000 8000
Number of traces

0

16

32

48

64

80

96

112

128

G
u
e
ss
in
g
 e
n
tr
o
p
y

Fig. 3. The evolution of the guessing entropy for a Correlation Power Analysis (CPA)
attack against four unprotected 32-bit modular additions.

The best attack against a protected (i.e. masked) version of the CSA takes
the number of loop-iterations performed in the redundant-to-binary conversion
into account to reduce the guessing entropy of the key. This raises the question
of how much harder a protected CSA implementation is to attack in relation to
an unprotected 32-bit modular addition. To answer this question, we mounted
a Correlation Power Analysis (CPA) attack against an unprotected implemen-
tation of modular addition executed on an ARM Cortex-M3 processor clocked
at 33 MHz. The result, depicted in Fig. 3, shows that four 32-bit additions can
be attacked with some 6,800 power traces on average. On the other hand, when
using a similar amount of traces (namely 7,467), to attack a protected imple-
mentation of the CSA, the guessing entropy of a single 32-bit addition can be
reduced by only 5.18 bits. Therefore, the protected CSA considerably increases
the attacker’s effort compared to an unprotected modular addition.

The leakage caused by the operand-dependent number of loop-iterations in
the redundant-to-binary conversion reduces the guessing entropy of the secret
key and, hence, the effective security level, depending on the number of traces
an attacker is able to capture. However, for an effective security level of e.g. 96
bits, a masked implementation of 128-bit Speck (i.e. Speck-64/128) based on
the protected CSA is still much faster (namely about 17.5% for encryption and
roughly 42.4% for decryption) than a masked implementation of 96-bit Speck
(i.e. Speck-64/96) using the protected KSA, as we will see in Subsect. 4.2.

Although the protected CSA could be applied to operands of any size, the
trade-off between the number of traces and the guessing entropy must be taken
into account. This trade-off must be particularly carefully analyzed for operand
lengths below 32 bits. As a general guideline, we only recommend the protected
CSA for operands with a bitlength of k ≥ 32 as otherwise the security margin
might become too tight. Yet, even with this restriction, the protected CSA can
be used to efficiently mask numerous cryptographic primitives that are used in
practice, including a diverse range of ARX-based lightweight symmetric ciphers
(like Chaskey, Speck, RECTANGLE, LEA, etc.) and the keyed-hash message
authentication code based on SHA-256 (HMAC-SHA-256).



Efficient Masking of ARX-Based Block Ciphers Using Carry-Save Addition 13

Table 2. Execution time and code size of secure addition on Boolean shares using the
secure Kogge-Stone Adder (KSA) and the secure Carry-Save Adder (CSA). Since the
execution time of the CSA is not constant, we specify the average number of cycles
over 100,000 executions with random inputs.

Adder
Time (cycles) Code size (bytes)

Addition Subtraction Addition Subtraction

KSA rolled 282 369 292 408

KSA unrolled 202 291 544 808

CSA (average) 161.75 165 136 148

4 Implementation Details and Evaluation

We implemented secure addition/subtraction on Boolean shares using both the
KSA and CSA algorithm in Assembly language for a 32-bit ARM Cortex-M3
processor. Then, we applied the mentioned addition techniques to protect two
variants of the block cipher Speck [2] against first-order DPA attacks.

4.1 Secure Addition on Boolean Shares

The implementation results for secure addition/subtraction on Boolean shares
are shown in Table 2. Before discussing the results in detail, we briefly describe
the implementations. Like other 32-bit ARM processors, the Cortex-M3 has 13
general-purpose registers, which we allocate as follows: Four registers hold the
shares of the two masked inputs. Either two or three registers (depending on the
algorithm) store the randomly generated 32-bit values needed for the execution
of the secure Boolean functions like SecureAnd and SecureShift. Each algorithm
also occupies a certain number of registers for intermediate results: three in the
case of the CSA and four for the KSA. A special property of ARM processors is
their ability to execute a shift operation together with most arithmetic/logical
instructions within a single clock cycle. We exploited this feature to reduce the
execution time of both the CSA-based and KSA-based addition technique.

The secure KSA performs additions in constant time and can be implemen-
ted with either “rolled” or unrolled loops. The entirely unrolled version of the
KSA is between 28% (addition) and 21% (subtraction) faster than a standard
implementation with rolled loops, but this gain in speed comes at the expense
of almost doubling the binary code size. In both cases, the KSA subtraction is
significantly slower than the addition because the SecureXor operation has to be
replaced by the less efficient SecurOr and the left-shifts by n bits performed on
the shares of the generate word require the insertion of n bits set to 1 (i.e. the
SecShift must be replaced by SecShiftFill). However, in the unrolled version, the
execution time of SecShiftFill can be sightly reduced by using immediate values
instead of registes (see [7] for further implementation details).

The secure CSA is very efficient thanks to its simple structure that involves
only SecXor, SecAnd, and SecShift operations. Unlike the “rolled” version of the
KSA, it does not need a separate register to hold a loop counter. However, the



14 D. Dinu et al.

Table 3. Execution time, code size and performance penalty factor of different imple-
mentations of Speck-64/96 and Speck-64/128. Since the execution time of the CSA
is not constant, we specify the average number of cycles over 100,000 executions with
random inputs.

Implementation
Time (cycles) Code size (B) Penalty factor
Enc Dec Enc Dec Enc Dec

Unprotected Speck-64/96 306 510 44 52 1 1

Speck-64/96 (KSA rolled) 6639 9525 340 480 21.69 18.67
Speck-64/96 (KSA unrolled) 4921 7447 592 876 16.08 14.60

Speck-64/96 (CSA average) 3902.9 4071.8 180 204 12.75 7.98

Unprotected Speck-64/128 318 530 44 52 1 1

Speck-64/128 (KSA rolled) 6892 9889 340 480 21.67 18.65
Speck-64/128 (KSA unrolled) 5108 7731 592 876 16.06 14.58

Speck-64/128 (CSA, average) 4061.3 4290.8 180 204 12.77 8.09

main advantage of the CSA over the KSA is that a subtraction is only slightly
slower than an addition since it requires just two extra operations, namely an
inversion and the insertion of a 1 at the LSB-position of the carry-word.

A direct comparison of the results of the rolled version of the KSA and the
CSA allows us to conclude that the carry-save approach is not only faster, but
also notably smaller than the Kogge-Stone technique. While the CSA addition
is, on average, about 43% faster than the KSA addition (162 vs. 282 cycles as
per Table 2), the difference increases to some 55% for subtraction (165 vs. 369
cycles). The benefit of the CSA over the KSA is even more significant in terms
of code size since the difference amounts to a factor of about 2.14 for addition
and 2.75 for subtraction. However, as we mentioned before, the execution time
of the KSA can be improved by full loop unrolling, but the resultant code-size
penalty may be undesirable for certain highly constrained environments where
every single byte matters. In summary, using the proposed carry-save technique
to directly perform a modular addition or subtraction on Boolean shares shows
clear speed and size advantages over the KSA.

4.2 Masked Implementation of Speck

Speck is a family of lightweight block ciphers designed by cryptographers from
the U.S. National Security Agency [2]. Speck-64/128 uses a two-branch Feistel
network to encrypt 64-bit plaintexts with a 128-bit master key. Its round func-
tion is iterated 26 times and consists of simple operations on 32-bit words: two
rotations, a modular addition, and two XORs. In the case of a straightforward
(i.e. unprotected) implementation, the cipher’s state fits into two registers, and
a third register is needed for the round key. The remaining eleven registers are
available for other purposes, e.g. the implementation of a masking technique to
protect the cipher against DPA attacks.

The implementation results presented in Table 3 show that the unprotected
version of Speck-64/128 is quite efficient compared to the secure addition on



Efficient Masking of ARX-Based Block Ciphers Using Carry-Save Addition 15

Boolean shares (Table 2). Concretely, the encryption time is just a little worse
than the execution time of the slowest addition on Boolean shares (i.e. rolled
KSA), while the code size is at least six times smaller than the code size of the
KSA. The code size of the unprotected implementation of Speck is also more
than three times smaller than the size of the CSA, which is the adder with the
smallest footprint. This high-level comparison clearly illustrates the enormous
cost of masking just a single nonlinear operation, the modular addition. It can
therefore be expected that the integration of masking will entail a massive per-
formance degradation and also inflate the code size. Hence, any effort spent on
optimizing masking is well spent. Even a modest improvement by a few cycles
when performing a masked addition has the potential to yield a non-negligible
overall performance gain.

A masked implementation of Speck occupies four registers to store the two
shares of the 64-bit state. Depending on the implementation methodology, one
or two registers have to be used to manipulate the shares of the round key. An
ARM Cortex-M3 processor does not provide enough general-purpose registers
to hold all operands needed during the execution of a masked implementation
of Speck-64/128 using the secure KSA algorithm. Thus, at the beginning of an
addition (or subtraction), two registers have to be spilled to RAM so that the
necessary number of registers becomes available for the KSA. The original con-
tent of these registers is recovered at the end of the operation. However, for the
fully unrolled implementation, it suffices to save only a single register onto the
stack. These stack instructions (i.e. push and pop) add quite some overhead to
each execution of the secure KSA-based modular addition/subtraction. On the
other hand, the protected implementations of Speck-64/128 using the secure
CSA are able to execute all operations directly on registers (i.e. no push/pop is
required) since the underlying algorithm operates on fewer variables.

We compare in Table 3 the execution time and code size of an unprotected
implementation of Speck-64/96 and Speck-64/128 with three DPA-protected
versions2. All implementations have received a similar amount of optimization
and perform a single iteration of the round function in a loop, i.e. we refrained
from full loop unrolling to keep the code size small. The penalty factor on the
execution time of Speck-64/128 introduced by the different masking schemes
varies between 8.09 and 21.67. As expected, the efficiency of the three variants
reflects the performance of the underlying method for addition or subtraction
on Boolean shares. When comparing the masked implementation based on the
CSA with the two KSA versions, it turns out that the encryption time of the
former is more than 20% better than that of the unrolled KSA and 3.28 times
smaller in size. The performance gain even doubles to 41% (which corresponds
to a considerable speed-up factor of 1.70) when we compare the CSA with the
rolled-loop KSA version. Furthermore, the CSA-based Speck implementation
clearly outperforms its two KSA-based Speck counterparts in decryption; it is
1.80 times faster than the unrolled KSA variant (4291 vs. 7731 cycles) and 2.30
times faster than the KSA with a “rolled” loop (9889 cycles).

2 The results exclude the generation of (pseudo-)random numbers for masking.



16 D. Dinu et al.

103 5 · 103 104 5 · 104 105 5 · 105 106

number of traces

0

1

2

3

4

5

6

t 
v
a
lu
e

Fig. 4. T-statistic (absolute values) of the CSA under a HW leakage model.

4.3 Leakage Assessment

We evaluated the DPA-protected implementation of CSA addition on Boolean
shares as well as the masked implementation of Speck based on the CSA using
Welch’s t-test [8] on simulated power traces. Doing the test on simulated traces
facilitates experiments with a large number (e.g. millions) of traces and reduces
time and memory complexity in relation to real measurements. Our evaluation
framework is inspired by the tool described in [19], but applies a “fixed versus
random” leakage detection methodology. We eliminated the leakage related to
the number of loop iterations performed in the redundant-to-binary conversion
by simply executing the maximum number of iterations (i.e. 31) for all possible
combinations of 32-bit input words. Then, we judiciously applied the t-test to
avoid any wrong outcome [20]. Yet, we did not observe any significant leakage
above the ±4.5 threshold (which corresponds to a high statistical significance
level of α = 0.001) in our evaluation.

The maximum absolute value of the t-statistic of the secure implementation
of the CSA addition is graphically represented in Fig. 4 for different numbers
of simulated traces under a Hamming Weight (HW) leakage model. The t value
is always well below the threshold of 4.5 in all our experiments and only shows
small variations when increasing the number of traces from 103 to 106. To give
a concrete example, the result of the t-test applied to 106 power traces of the
secure CSA addition is depicted in Fig. 5. Again, we can observe that the value
of the t-statistic is inside the ±4.5 interval for each point in time, which implies
that the null hypothesis holds. In other words, the masking scheme is effective
against first-order DPA attacks because it passes the t-test evaluation. All these
results strongly indicate that the implementation will also not leak when more
than 106 traces are used for the t-test. Therefore, the described implementation
of CSA addition can be deemed secure against first-order DPA attacks.

We obtained similar results when we applied the t-test to the secure imple-
mentation of KSA addition on Boolean shares and the masked implementation
of the Speck cipher based on the KSA. This suggests that our implementation
of the KSA can be considered secure against first-order DPA attacks.



Efficient Masking of ARX-Based Block Ciphers Using Carry-Save Addition 17

0 100 200 300 400 500
sample

−8

−4

0

4

8

t 
v
a
lu

e

Fig. 5. The result of the t-test applied to the CSA under a HW leakage model.

5 Conclusions

The implementation of lightweight symmetric cryptosystems requires a careful
balance between efficiency and security, including a certain degree of resistance
against DPA attacks. In this context, we introduced a new masking technique
for block ciphers that involve both arithmetic and Boolean operations, which is
the case for Speck and many other ARX designs. Our main contribution is an
algorithm for performing CSA-based modular addition/subtraction directly on
Boolean shares, which makes expensive mask conversions obsolete. The CSA is
much simpler and, hence, faster than the KSA presented at FSE 2015, but has
operand-dependent execution time. Concretely, a CSA-based 32-bit addition on
Boolean shares requires 162 clock cycles when executed on an ARM Cortex-M3
processor, which is between 20% and 41% faster than the KSA, depending on
whether the loops are unrolled or not. We integrated both addition techniques
into a masked implementation of Speck and found the CSA to outperform the
“looped” KSA by a factor of 1.70 for encryption and 2.30 for decryption. The
main drawback of the CSA is its operand-dependent execution time, which can
be exploited to reduce the guessing entropy of the secret key. Nonetheless, the
CSA is a practical and useful alternative to the KSA, especially for applications
that encrypt only small amounts of data with one and the same key.

References

1. Y.-J. Baek and M.-J. Noh. Differential power attack and masking method. Trends
in Mathematics, 8(1):53–67, June 2005.

2. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers.
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404, 2013. Available for download at http://eprint.iacr.
org/2013/404.

3. A. W. Burks, H. H. Goldstine, and J. von Neumann. Preliminary discussion of the
logical design of an electronic computing instrument. Report to U.S. Army Ord-
nance Department, 1946. Available for download at http://library.ias.edu/

files/Prelim_Disc_Logical_Design.pdf.
4. J.-S. Coron, J. Großschädl, M. Tibouchi, and P. K. Vadnala. Conversion from

arithmetic to Boolean masking with logarithmic complexity. In Fast Software
Encryption — FSE 2015, vol. 9054 of Lecture Notes in Computer Science, pp.
130–149. Springer Verlag, 2015.



18 D. Dinu et al.

5. J.-S. Coron and A. Tchulkine. A new algorithm for switching from arithmetic to
Boolean masking. In Cryptographic Hardware and Embedded Systems — CHES
2003, vol. 2779 of Lecture Notes in Computer Science, pp. 89–97. Springer Verlag,
2003.

6. B. Debraize. Efficient and provably secure methods for switching from arithmetic
to Boolean masking. In Cryptographic Hardware and Embedded Systems — CHES
2012, vol. 7428 of Lecture Notes in Computer Science, pp. 107–121. Springer Ver-
lag, 2012.

7. D. Dinu. Efficient and Secure Implementations of Lightweight Symmetric Crypto-
graphic Primitives. PhD thesis, University of Luxembourg, 2017.

8. G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for side-
channel resistance validation. In Proceedings of the NIST Non-Invasive Attack
Testing Workshop (NIAT 2011), pp. 158–172, Sept. 2011. Available for download
at http://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-

workshop/documents/08_goodwill.pdf.
9. L. Goubin. A sound method for switching between Boolean and arithmetic mask-

ing. In Cryptographic Hardware and Embedded Systems — CHES 2001, vol. 2162
of Lecture Notes in Computer Science, pp. 3–15. Springer Verlag, 2001.

10. H. C. Hendrickson. Fast high-accuracy binary parallel addition. IRE Transactions
on Electronic Computers, 9(4):465–469, Dec. 1960.

11. Y. Ishai, A. Sahai, and D. A. Wagner. Private circuits: Securing hardware against
probing attacks. In Advances in Cryptology — CRYPTO 2003, vol. 2729 of Lecture
Notes in Computer Science, pp. 463–481. Springer Verlag, 2003.

12. M. Karroumi, B. Richard, and M. Joye. Addition with blinded operands. In
Constructive Side-Channel Analysis and Secure Design — COSADE 2014, vol.
8622 of Lecture Notes in Computer Science, pp. 41–55. Springer Verlag, 2014.

13. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Advances in Cryptology — CRYPTO ’96, vol. 1109 of Lecture
Notes in Computer Science, pp. 104–113. Springer Verlag, 1996.

14. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
Cryptology — CRYPTO ’99, vol. 1666 of Lecture Notes in Computer Science, pp.
388–397. Springer Verlag, 1999.

15. P. M. Kogge and H. S. Stone. A parallel algorithm for the efficient solution of a
general class of recurrence equations. IEEE Transactions on Computers, 22(8):786–
793, Aug. 1973.

16. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer Verlag, 2007.

17. G. Metze and J. E. Robertson. Elimination of carry propagation in digital com-
puters. In Proceedings of the International Conference on Information Processing,
Paris, France, June 15-20, 1959, pp. 389–395. UNESCO, 1960.

18. B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford
University Press, 2000.

19. O. Reparaz. Detecting flawed masking schemes with leakage detection tests. In
Fast Software Encryption — FSE 2016, vol. 9783 of Lecture Notes in Computer
Science, pp. 204–222. Springer Verlag, 2016.

20. F.-X. Standaert. How (not) to use Welch’s t-test in side-channel security evalua-
tions. Cryptology ePrint Archive, Report 2017/138, 2017. Available for download
at http://eprint.iacr.org/2017/138.

21. P. K. Vadnala and J. Großschädl. Faster mask conversion with lookup tables.
In Constructive Side-Channel Analysis and Secure Design — COSADE 2015, vol.
9064 of Lecture Notes in Computer Science, pp. 207–221. Springer Verlag, 2015.


