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Abstract

Belief change and non-monotonic reasoning are usually
viewed as two sides of the same coin, with results showing
that one can formally be defined in terms of the other. In this
paper we investigate the integration of the two formalisms
by studying belief change for a (preferential) non-monotonic
framework. We show that the standard AGM approach to be-
lief change can be transferred to a preferential non-monotonic
framework in the sense that change operations can be defined
on conditional knowledge bases. We take as a point of depar-
ture the results presented by Casini and Meyer (2017), and we
develop and extend such results with characterisations based
on semantics and entrenchment relations, showing how some
of the constructions defined for propositional logic can be
lifted to our preferential non-monotonic framework.'

1 Introduction

Both belief change and non-monotonic reasoning deal with
the problem of handling conflicting information. For exam-
ple, suppose we know that vertebrate red-blood cells have a
nucleus (v — n), that mammalian red-blood cells are ver-
tebrate red-blood cells (m — v), but that mammalian red-
blood cells do not have a nucleus (m — —n). The existence
of mammalian red-blood cells (m) then renders our knowl-
edge base inconsistent. Belief-change operators modify the
existing knowledge base to preserve its consistency (in our
example, v — n should be weakened). On the other hand,
non-monotonic reasoning usually handles such conflicts by
introducing defeasibility (this amounts to stating that verte-
brate red-blood cells usually have a nucleus). Both mech-
anisms are deeply interconnected. Indeed, technically each
of them can be considered as a re-formulation of the other
(Makinson 1993).

At a first glance belief change seems to be superfluous in
non-monotonic settings—a revision operator can simply be
replaced with expansion, with the non-monotonic machin-
ery then ensuring consistency of some kind. This view does
not take into account that non-monotonic frameworks con-
tain a mix of defeasible and classical (non-defeasible) infor-
mation. In our example above the statement that mammalian
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red-blood cells are vertebrate red-blood cells should proba-
bly not be defeasible, while the statement about vertebrate
red-blood cells having a nucleus probably should. The chal-
lenge thus becomes one of defining belief change for the
monotonic part of the formalism, while simultaneously en-
suring that the non-monotonic part remains well-behaved.

Our goal is the characterisation of belief change in a
non-monotonic setting, that is still an open problem, since
the standard approaches to belief change usually assume
an underlying Tarskian consequence relation which is ex-
plicitly monotonic (Alchourrén, Girdenfors, and Makinson
1985). This is not the first study on belief revision in a con-
ditional framework, but it differs from most of the previ-
ous approaches, such as those by Kern-Isberner (1999) and
Wobcke (1995). These proposals give to the conditionals
a subjunctive interpretation and rely on the already-known
correspondence between them and the belief revision opera-
tors: the conditionals are interpreted as direct expressions of
the belief revision policies of the agent, and usually the main
technical problem is the definition of non-trivial revision op-
erators that avoid the well-known Gérdenfors’ impossibil-
ity result (Girdenfors 1988, Section. 7.4). Here we work on
conditional knowledge bases, and we do not assume a sub-
junctive interpretation of the conditionals. Rather, the condi-
tional knowledge base could formalise defeasible informa-
tion of a different nature, describing for example prototypi-
cal behaviour or deontic constraints, and the conditionals are
the objects of the belief change, not an alternative expression
of the belief revision policies. As we shall see, this also im-
plies that Gardenfors’ impossibility result does not apply in
our framework. The present paper extends the results on the
topic by Casini and Meyer (2017) by giving a semantic char-
acterisation and defining another class of revision operators.

In addition to the classical problem of consistency preser-
vation, we also consider belief change for the preservation of
arestricted version of coherence, as it is intended in the field
of logic-based ontologies. A knowledge base is coherent if
every class that has been introduced in the language can in
principle be populated (Qi and Hunter 2007). In our exam-
ple above the (non-defeasible) statements {v . — n,m —
v,m — —n} cause the knowledge base to be incoherent
w.r.t. m (there cannot be any mammalian red-blood cells),
but the knowledge base only becomes inconsistent when m
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in a propositional setting, the incoherence of a knowledge
base w.r.t. an atom (or any formula A, for that matter), cor-
responds to the statement —A being a consequence of our
knowledge base.

We focus on modelling belief change assuming as the un-
derlying logical framework that of non-monotonic reason-
ing developed by Kraus, Lehmann and Magidor (1990), in
which defeasible conditionals of the form C' |~ D are added
to the language of propositional logic (with C' and D being
classical propositional formulas).

The paper is structured as follows: In Section 2 we give
brief summaries of both the AGM and KLM frameworks,
and summarise the main results by Casini and Meyer (2017).
In Section 3 we present our first contribution, namely a
semantic characterisation of Casini and Meyer’s operators.
Section 4 is devoted to the characterisation of a new class of
change operators.

2 Preliminaries

We consider a propositional language £ generated by some
finite set of atoms .4, with lower case letters denoting atoms,
and capital letters denoting elements of £. We adopt the
standard semantics for propositional logic. The set V of val-
uations v are functions from the set of atoms in £ to {0, 1},
denoting truth and falsity. Satisfaction is denoted by |-, and
entailment by =, while v (respectively, S) indicates a for-
mula uniquely characterising v (a set of valuations S < V).
[A] denotes the set of valuations satisfying A.

2.1 AGM belief change

AGM belief change (Alchourrén, Girdenfors, and Makin-
son 1985) assumes an underlying logic with a propositional
language and a Tarskian consequence relation Cn(-) that
is compact and satisfies disjunction in the premises (Al-
chourrén, Gérdenfors, and Makinson 1985, p. 511-512). A
knowledge base K is assumed to be a set of formulas closed
under Cn(-). AGM is concerned with three types of opera-
tions on knowledge bases: expansion, contraction, and revi-
sion. Expansion is simply defined as adding a formula and
closing under entailment: K =gt Cn(K U {A}). The in-
tuition associated with the contraction of K by A is that it
should result in a knowledge base K, not entailing A. Du-
ally, a revision of K by A should result in a consistent knowl-
edge base K*% from which A follows.

In the AGM approach, any appropriate contraction opera-
tor is required to satisfy six basic postulates for contraction:
Closure (—1), Inclusion (—2), Vacuity (—3), Success (—4),
Extensionality (—5), and Recovery (—g). For details, we re-
fer the reader to one the many publications presenting the
AGM theory (Alchourrén, Gardenfors, and Makinson 1985;
Girdenfors 1988; Hansson 1999). Additionally, AGM con-
traction may be required to satisfy the two supplementary
postulates about conjunctions:

(—7) K5 nKp S K

(AAB)
(—s) WAEK

(Conjunctive Overlap)

, then K(’AAB) < K, (Conj. Inclusion)

AGM contraction operators can be constructed using so-
called partial-meet functions (Alchourrén, Girdenfors, and

Makinson 1985, Obs. 2.5). Let K| A be the remainder set
of K w.r.t. A, defined as the set containing the maximal sub-
sets K/ of K s.t. A ¢ K'. That is, K’ € K| A iff (i) K" < K,
(ii) A ¢ K’, and (iii) there is no set K” s.t. K <« K’ < K
and A ¢ K”. Let pm(-) be a partial-meet function defined
over K| A s.t. pm(K|A) € K|A and, if K|A # &, then
pm(K|A) # J. A partial-meet contraction operator — is
defined as: K, = (pm(K|A).

Observation 1 (Alchourron, Giardenfors, and Makinson
1985, Obs. 2.5) An operator — on K is a partial meet con-
traction iff — satisfies (—1)—(—¢).

Similarly, AGM revision is required to satisfy six basic
postulates (Alchourrén, Gérdenfors, and Makinson 1985;
Girdenfors 1988): Closure (*1), Inclusion (x3), Vacuity
(#3), Success (#4), Extensionality (x5), and Consistency
(#¢). Two supplementary postulates for revision are pro-
posed:

(+0) Ky, g < (KE)

(xs) If =B ¢ K3, then (K%)5 €Kiy,

Revision can be defined in terms of contraction and ex-
pansion via the Levi Identity (Levi 1977): K¥% = (KZ,)¥.

(Superexpansion)

) (Subexpansion)

Observation 2 (Alchourron, Giardenfors, and Makinson

1985; Fermé 1999) Let — be an operator on K satisfying

(—1)=(—5), and let * be defined via the Levi Identity. Then:

1. = satisfies (x1)—(*¢).

2. If — also satisfies (—¢), (—7) and (—s), then * also satis-
fies (x7) and (*g).

There are multiple ways of characterising the class of
the contraction operations satisfying the six basic postulates
plus (—7) and (—g). One way is through epistemic entrench-
ment relations <., introduced by Girdenfors (1988) to de-
fine the properties that an order over the sentences of L
should satisfy. He proposed the following set of axioms:

El ifC<.Dand D <, E,thenC <, E
E2 if C =D, then C <. D (Dominance)
E3 Either C <. C A Dor D <. C A D (Conjunctiveness)
E4 If | ¢ K, then C ¢ Kiff C' <. D for all D (Minimality)
ES If D <. C for every D, then = C

Girdenfors proposed the following connections between
orders of epistemic entrenchment and operations of contrac-
tion (Girdenfors 1988):

(Transitivity)

(Maximality)

D e K fiff D e Kand either C <. C' v Dor |=C (1)

C<.Diff C¢K;, por =ECAD )

Observation 3 (Géirdenfors 1988; Gérdenfors and
Makinson 1988) Given an epistemic entrenchment <. on
a consistent belief set K, then —e, defined via (1), is a
contraction operator satisfying (—1) — (—s). Vice versa, if
we have a contraction operator — satisfying (—1) — (—s),
there is an epistemic entrenchment <. s.t.— corresponds to
the contraction —e defined via (2).



Rott  (1991) proposed an alternative class of
entrenchment-based contraction operator:

D e K 7 iff D e Kand either C <. Dor =C  (3)

In order to relate —. and — g, let K||C be a set of preferred
remainder sets w.r.t. the epistemic entrenchment relation,

KJC =g {K' € KIC | KGF = K'}

The operator defined in (1) corresponds to the intersection
of all the elements of K||C.

Proposition 1 For every K and every C,D € L, D € K°
iff D € K’ for every K' € K||C.

Proposition 1, beyond helping in further analysing the re-
lation between Gérdenfors’ and Rott’s contractions, gives an
alternative definition of Gérdenfors’ contraction in terms of
full meet of the preferred remainder set. We will refer again
to this characterisation later on.

The semantics of the AGM model can be characterized by
a total pre-order over the set of valuations. A total pre-order
< on valuations, with the strict part <k and the symmetric
part ~, is a faithful assignment if and only if the following
conditions hold (1) If v € [K] and v" € [K], then v ~g v’
and (2) If v € [K] and v’ ¢ [K], then v <k v'.

The notion of a faithful assignment allows us to charac-
terise contraction and revision operations satisfying (—;) —
(—s) and (%1) — (*g), respectively:

Observation 4 (Katsuno and Mendelzon 1991) Ler K be
a belief set, and let

HsuanA]) =4 {v € [A] | v <k u for every u € [A]}.

An operation — on K satisfies (—1) — (—s) if and only if
there is a faithful assignment <g for K such that K} =

[K] U ming, ([—A]. An operation + on K satisfies (1) —
(#g) if and only if there is a faithful assignment <k for K
such that K¥ = ming, ([A]).

2.2 Preferential reasoning

To introduce defeasibility we consider the language £ con-
sisting of conditionals of the form A |~ B (for A, B € L),
that can be read as ‘typically, if A then B’. The seman-
tics of £ is based on the notion of a preferential inter-
pretation: triples of the form (W,l, <) where W is a set
of objects (states), [ is a function from W to V (mapping
states into valuations), and < is a strict partial order on W,
that also satisfy the smoothness condition: for every consis-
tent propositional formula A, min- ([A]") # &, where
[A]IW =4t {s € W | I(s) I+ A} and min_ ([A]Y) =t
{s € [A]" | thereisnot € [A]" st.t < s} (Kraus,
Lehmann, and Magidor 1990). s < t is interpreted as in-
dicating that the state s represents a more typical situation
than the state ¢. A defeasible conditional A |~ B is satisfied
in a preferential interpretation P, denoted as P I+ A |~ B, iff
min_ [A]" < [B]". Observe that a propositional formula
A is satisfied in all the elements of W (i.e., [(w) I+ A for ev-
ery w € W) iff P |- —A |~ L. This means that any classical

propositional formula A can be represented as the defeasi-
ble conditional —A |~ L. Indeed, every conditional of the
form A |~ L is not defeasible, and actually represents clas-
sical propositional information. In our example, the state-
ment that vertebrate red-blood cells have a nucleus (v — n)
will be represented as —(v — n) |~ L. Because of this,
we sometimes abuse notation by referring to —A |~ L as
the propositional formula A, or using the strict conditional
A+ B toindicate A A =B |~ L. Let {l indicate the set of
all the preferential interpretations for our language £, and
B, B, ... be subsets of L. Given a preferential model P,
let |~ » be the set of all the conditionals that are satisfied by
P (l~ P =def {A ‘~ Be Ll | P+ A ‘~ B}), while |~ DY
represents the conditionals satisfied by a set of preferential
models B (~ s =qef {A|~ B e L | forevery P € B, P |-
A~ B}).

Let B indicate a finite set of defeasible conditionals. The
set of preferential models of B, preferential interpretations
satisfying B, is denoted by [B]. The obvious notion of
Tarskian entailment associated with this semantics is known
as preferential entailment (Lehmann and Magidor 1992),
represented as =, where B =, A |~ Biff [B] < [{A |~
B}]. The corresponding closure operator is known as pref-
erential closure: PC(B) = {A|~ B | B =y A~ B}. We
use the notation K, K’ etc. to refer to conditional knowledge
bases closed under preferential entailment. B is preferen-
tially inconsistent iff B \=p,, T |~ L, and B is preferentially
incoherent w.r.t. a propositional formula A iff B =, A |~ L.
Two bases are preferentially equivalent iff they have the
same preferential models.

It is widely recognised that preferential entailment is too
weak to be an appropriate form of entailment for a non-
monotonic framework (Kraus, Lehmann, and Magidor 1990,
pp. 4, 34). This is primarily because the preferential en-
tailment relation itself is monotonic (non-monotonicity oc-
curs at the object-level, within defeasible conditionals). At
the same time there is sufficient consensus that any accept-
able form of non-monotonic entailment will be an exten-
sion of preferential entailment (Kraus, Lehmann, and Magi-
dor 1990; Lehmann and Magidor 1992). Here we consider
a large class of closure operations (entailment relations) ex-
tending the preferential closure (preferential entailment), the
supra-preferential cumulative closure operators (Casini and
Meyer 2017, Section 3). A closure operator C(-), is supra-
preferential cumulative if it can be defined as follows: A |~
B e C(B) iff P I- A~ B, for every preferential model P €
s([B]), where s is a choice function s.t. (i) s([B]) < [B];
@) if [B] # &, then s([B]) # &; (i) s([B]) = s(s([B]));
and (iv) if s([B]) < [B] < [B], then s([B']) = s([B]).
The closure operators definable using such choice functions
are the ones that extend preferential closure, respect consis-
tency preservation (if T |~ L ¢ PC(B), then T |~ L ¢
C(B)), and satisfy cumulativity, that is, for every B, B, if
B < B' < C(B), then C(B') = C(B). We refer to the clo-
sure operators satisfying these properties as spc-operators
(as supra-preferential cumulative). Most of the prominent
non-monotonic closure operators proposed in the preferen-
tial framework, e.g. (Kraus, Lehmann, and Magidor 1990;
Lehmann and Magidor 1992; Lehmann 1995; Casini and



Straccia 2013), are spc-operators. Our goal is to analyse be-
lief change for the class of spc-operators.

2.3 Previous results

As mentioned in Section 1, belief change in a non-
monotonic framework seems superfluous at a first glance,
since the non-monotonic machinery usually takes care of
‘readjusting’ the inferences in order to preserve consistency
and coherence facing new unexpected evidence. Neverthe-
less, that is not always the case, as shown in Example 1.

Example 1 Let A = {a,m,n,v}, with the propositions
standing for, respectively, “(being) an avian red-blood cell”,
“(being) a mammalian red-blood cell”, “(being) a verte-
brate red-blood cell”, and “(having) a nucleous”. Assume
a knowledge base B = {v - n,al v,m - v,m | —n}.
Consider the following situations:

1. —m € C(B). But mammalian red-blood cells exist, and
we want to enforce such information. In propositional be-
lief change we would remove some piece of information,
presumably either m — v, v = n, or m — —n. In the
framework we propose we can resolve the situation by in-
troducing defeasibility. In contracting —m, we would like
to end up, for example, with B’ = {v |~ n,a - v,m |
v,m b —n} in which, instead of eliminating v  n, we
have just made it defeasible.

2. IfC(") is a well-behaved non-monotonic closure operator,
we should have a |~ n € C(B'), since, with the informa-
tion we have, we can treat avian cells as typical verte-
brate cells. Now assume we are informed that a |~ —n:
B" ={vl~nmpEv,mE —nak v,al —n}. Inthis
case, since a |~ n is a presumptive conclusion drawn by
the non-monotonic machinery, the entailment relation it-
self takes care of doing away with such a conclusion once
faced with conflicting evidence. In this case, the introduc-
tion of a |~ —n should correspond to a simple expansion.

3. We are then informed that a |~ n actually holds, which di-
rectly conflicts with a |~ —n in our base. This kind of con-
flict cannot be handled by the non-monotonic machinery,
since a |~ —n is a (trivial) necessary conclusion from B".
So, we are forced to conclude that avian red-blood cells
do not exist (—a). We have two choices: either we are in-
terested just in general consistency (not deriving T |~ L),
and in such a case the addition of a |~ n is just an expan-
sion and we conclude that birds do not have red-blood
cells; or we are also interested in coherence and perform
a revision in order to ‘make room’ for a |~ n without being
forced to conclude —a.

What is shown in the example is that belief change in
a non-monotonic framework needs to distinguish between
the certain portion of our belief state (corresponding to the
monotonic part of our reasoning) and the uncertain, defea-
sible portion (the non-monotonic part): if new information
creates a conflict, the dynamics should be different, accord-
ing to whether the conflict is with the certain portion of
our state (hence we need to operate a non-trivial change) or
with its uncertain portion (just expand the information, and
the non-monotonic machinery will take care of resolving

the conflict). Hence, a main difference between modelling
belief change in a Tarskian or in a non-monotonic frame-
work is the one shown in Figure 1: while in the former case
we move from a closed theory K, representing our belief
state, to a new closed theory K’, in the latter, to describe our
belief state, we need to distinguish between its monotonic
part, a theory K closed under a Tarskian operator, and its
non-monotonic part, the information obtained closing K un-
der a non-monotonic operator C(-). Also, such a distinction
should be preserved at the end of the operation.

Classical
Belief Change Operation

Non-monotonic

Belief Change Operation

Figure 1: Classical vs. Non-monotonic Belief Change

Hence, it is essential to our approach that, consider-
ing some non-monotonic entailment relation, we identify
its “monotonic part”, that is, the biggest monotonic entail-
ment contained in it. We call a closure operator Cl(-) the
monotonic core of a non-monotonic operator C(-) if, for ev-
ery B, B’ we have (i) B < B’ implies Ci(B) < Cl(B’);
(i) Cl(B) < C(B); (iii) for every closure operator Cl'(-)
satisfying (i) and (if), C1'(B) < CI(B). It turns out that
the preferential closure PC is the monotonic core of every
supra-preferential closure operator (Casini and Meyer 2017,
Proposition 1).

Casini and Meyer (2017) provide a characterisation of
non-monotonic revision for spc-operators. Preferential ex-
pansion is defined as Ky, =aer PC(K U {A |~ B}).

Basic preferential contraction — is characterised by the
following postulates (where =p refers to preferential equiv-
alence):

( = PC(K )

(=2) AlBgIC

(=3) K W, A~ B, thenlCA‘ B
(=4) If £, A~ B, then A~ B ¢ K,
(=)

(=6) K

“1) Z|~B
-2
=K

A~B

+5) HAB=p A~ B, then Ky p =K, 5

~6) K< (K. B) A~B

The class of such operators corresponds to the class of pm-
contractions defined over the set of the preferential theories
(Casini and Meyer 2017, Theorem 3).

Two kinds of revision operations are introduced for the
monotonic core PC(.), one to preserve consistency, the other
aimed at the preservation of coherence. Basic preferential
revisions e for the preservation of consistency behave in such
a way that, adding a new conditional A |~ B, we obtain a



new preferential theory /C*, B that contains A |~ B and is
logically consistent (T |~ L ¢ K¢ e ). This class of opera-
tors is defined by the following postulates:

1) Kiyp = PCKY5)

. +
*2 ’CA|~B = ’CA| B

o3) FKU{A|~ B} T Lo then Ky p € K% 5
ARB
o5) If A~ B =p A’ |~ B, then Ky = Kl

og If A |"/ B I}'/:p'r T ‘N then ’C:4|~B b&p"‘ T |~ J_

(o

(e2)

(e3)

(e4) ABeK
(¢5)

(*6)

(o4) K B = (’C'.I'|~A—>B)A]~B

This class of revision operators is characterised using the
class of Basic Preferential Contraction operators via the

following re-formulation of the Levi Identity (Casini and
Meyer 2017, Theorem 4):

Kies = (K5 -p) aen )

On the other hand, basic preferential revision o aimed at
the preservation of coherence models a change such that,
adding a new conditional A |~ B, we obtain a new pref-
erential theory K% , containing A |~ B and that is co-

herent wrt. A (A |~ L ¢ ICZ\~B)‘ This class of opera-

tors is characterised by a set of postulates (o1)—(og), where
(01), (02), (04), (05) are the reformulation for o of the cor-
responding e-postulates, whereas (o3) and (og) are:

(03) K fpr A~ —B,then K¥, . < Ko

AnB S
(06) If A~ B fpr A~ L, then K5 _p pépTA ~L

This class of revision operators is characterised using
a super-class of the basic preferential contraction opera-
tors, the preferential withdrawals (satisfying the Postulates
(=1)—(=5)) via the following re-formulation of the Levi
Identity (Casini and Meyer 2017, Proposition 3):

]Cil\~B = (’C,ZJWB)A|~B (5)

The results above serve as a springboard for the definition
of belief change for the spc-operators. Let C(-) be an spc-
operator and let K now refer to knowledge bases that are
closed under C(-). We define revision for the non-monotonic
closure operator C(-) in terms of its monotonic core. Hence,
we distinguish between /C and its monotonic core (see Fig-
ure 1) that we indicate as KPC. KPC is a preferential the-
ory s.t. K = C(KPC). The agent must be aware of such
a distinction from the beginning, and our operators allow
to preserve it at every step; if we are dealing with theories
initially generated by a conditional base 3, the distinction
would be evident, since we would have X = C(B) and
KCP€ = PC(B). The postulates for the class of basic revi-
sions w.r.t. C(-) for the preservation of consistency (Casini
and Meyer 2017, Section 6), are:

(*1) ’Cijqg = C'(/C:Z‘ 5)
(#2) There is a K’ s.t. C(K') = C(}CZNB) and K’ <

(]CPC ) AB

(e3) T (P) 4y Hor T I L then C((KPO)5 ) <
Ko

(x4) ABe Ky 5

(#5) f A~ B =p A’ |~ B’, then ICAI 5= Kip

(#6) LA By T Lothen T L ¢ K%

As the following observation shows, revision for C(-) can
be defined in terms of revision of the monotonic core.

Observation 5 (Casini and Meyer 2017, Th. 6) = is a revi-
sion operator satisfying (1)—(xg) iff there is a preferential
revision e satisfying (e1)—(e¢) s.t. K% _p = =C((KP¢ ) )

The postulates for the revision operations ® for preserv-
ing coherence under spc-operators are (®1 ), (®2), (®4) and
(®s), which are direct reformulations of, respectively, (1),
(#2), (%4), and (x5), plus the following two:

(®3) If K€ j£,,. A~ —B, then C((ICPC)A| 5
(®6) If A~ By A~ L then K e A~ L

And then we obtain the analogue of Observation 5:

Observation 6 (Casini and Meyer 2017, Theorem 7) An
operator ® is a revision operator satisfying (®1)—(®s) iff
there is a preferential revision o satisfying (o1)—(og) s.t.

KS5 = CUK™) oy p)-

The latter Observation is valid only for the spc-operators
that satisfy an extra property, that is satisfied by most of the
prominent entailment relations in the preferential framework
(Casini and Meyer 2017, Sect. 6): for every A and every K,
AR LeKiff A Le KPC.

) € Kis

3 A Semantics for the Basic Operations

In this section we provide a semantic characterisation of the
classes of operators presented in Section 2.3. Once we have
characterised preferential contraction and expansion, the re-
sults for the revision operators will follow immediately from
the Observations in the previous section.

As it is usually the case, the semantic characterisation of
the expansion operator is straightforward:

’CZ|iB =def {C |~D | Pi-C |~D
for every P € [K] n [A |~ B]}.

where [K] and [A |~ B] are the sets of all preferential
models of K and A |~ B, respectively.

Proposition 2 For every conditional theory K and every

] +c  _ 1t
conditional A |~ B, K s = Kip

The proof is immediate from the fact that ICZJ";B contains

all the preferential models satisfying K and A |~ B. Mov-
ing to the class of preferential contractions, its semantic
characterisation is quite straightforward; characterisations
of basic contraction on the same line have been done also
in the propositional case (Grove 1988; Hansson 1999). Let
]A |~ B[ denote the set of the counter-models of A |~ B

JAR B[ =¢r {PeU|P It A B}



Let ¢ : 2(LM) x (L) — Z2(4) be a choice function.
For every K and every pair of conditionals A |~ B, C |~ D,
¢(K, A~ B) is such that:

(01) If € t#prAl"’ B, then C(’C,A|~ B) = Q,

(c2) Ky AvBand ), A~ B, then & # c(KC, A |~
B) < JA|~ B[;

(03) IfA ‘~ B=p C |~ D, then |~ c(K,A~B) =|~ ¢(KC,CI~D)
(c4) If=pr AB,¢(K,AMB) = .

Notice that, under Proposition 4 below, in Property (c3)
above we refer to the conditionals holding in the selected
interpretations (|~ e(K,A~B))> instead of referring to the se-
lected interpretations themselves (¢(K, A |~ B)), since dis-
tinct sets of models can characterise the same set of condi-
tionals. Using the function ¢, we can define a semantic con-
traction operator —c as follows:

Definition 1 Given a knowledge base K and a conditional
A~ B, for every conditional C |~ D:

C|“D€’CZ\ZB iff P I+ Cl~D forevery
Pel[K]ueceK, A~ B)

The following representation theorem connects ~ to ~c.

Theorem 1 For every basic preferential contraction oper-
ator — there is a semantic contraction operator —c s.t. for
every K and every conditional A |~ B:
- _ -—c
K ANB = K AnB
Conversely, for every semantic contraction operator —c
there is a basic preferential contraction operator — s.t., for
every K and every conditional A |~ B:
;C _ -
’CA|~B - ICA|~B
It is also possible to give a characterisation of the class
of preferential withdrawals, i.e., the contraction operations
satisfying (=1)—(=5), but not (=¢) (recovery). It is suffi-
cient to define a class of choice functions ¢*(-) that differ
from ¢(+) in that (c4) is dropped and (¢2) is reformulated.

(c*1) if K ¥pr A~ B, then ¢(K, A~ B) = &;

(cv2) if K &, A~ Band ¥, A |~ B, then ¢(K, A |~
B)n]A|~ B[# &.

(c*3) if A B =p C'|~ D, then~ c(c anp) =P cc,cpp)-

Proposition 3 For every preferential withdrawal opera-

tor =" there is a semantic contraction operator —c" s.t.
for every K and every A |~ B:

- w _ =%
’CA|~B = ICA|~B
Conversely, for every semantic contraction operator —c"
there is a basic preferential contraction operator —" s.t. for
every KC and every A |~ B:

Lew o ew
Koas =Kap

Once we have representation results for expansion and
basic contraction, the analogous results for both classes of
preferential revision presented by Casini and Meyer (2017)
are straightforward. We just need to consider a semantic
difference between the preferential interpretations and the
propositional ones: the former ones do not necessarily sat-
isfy complete theories, so there are pairs of interpretations
Py, Pa st~ p, € |~ p,. It is an immediate consequence
of the monotonicity of PC and the representation result by
Kraus et al. (1990, Theorem 3), proving that for every pref-
erential theory there is a preferential model characterising it.
As a consequence, we have that a preferential theory is not
characterised by a unique set of interpretations.

Proposition 4 There are sets of preferential models Ry, Ro
such that SRy # Ro but Ry and Ry satisfy exactly the same
set of conditionals, i.e., |~ %, =~ n,.

Given this result, we introduce additional notation: for a
given a set of interpretations 3, with [J3] we denote the set
of all models of the conditionals that are satisfied by all in-
terpretations in B ([B] =qer [~ p])-

We start by addressing the class of operators e, which add
a conditional to a knowledge base while preserving logical
consistency. We define the corresponding semantic revision
operator as follows:

Koip =aet (]C‘;HiAAﬂB)X\iB (6)
That is,
K = [(IKT 0 ek, TR An =B)] n [ARB] (7)

Proposition 5 For every revision operator e there is a se-
mantic revision operator ec s.t. for every K and A |~ B:

. _ oC
Kas = Kis

Conversely, for every semantic revision operator ec there is
a revision operator e s.t. for every K and every A |~ B:

oC _ 1e
Kis = Ky

Notice that, unlike in the propositional setting, under
Proposition 4 we need to apply the closure operation [-]
on the interpretations selected by the contraction (that is,
using [([K] v ¢(K, T |~ A A —B)] instead of simply
[K]ue(l, T |~ AA—DB)) before intersecting with [A |~ B].
Otherwise we could end up with an empty set of inter-
pretations, violating Postulate (eg). The following example
should clarify the issue.

Example 2 Let Py be built by a single propositional val-
uation w, while Py is composed by a pair of distinct val-
uations w,v, with w < v. It follows that |~ p, |~ p,.
Let B1 = {P1} and Py = {P1,Pa}. P1 # Po, but
g, = g, Let K = o, = w,, and assume we
want to expand KC with 0 |~ L. Both By and *Bo characterise
the same preferential theory K, and T |~ L is preferentially
consistent with IC, since we have Ps satisfying both IC and
U |~ L. However, from the semantical point of view, if we
model ICX\~B as P1 N [A |~ B] we obtain a consistent result

(P2), while if we use Bo N [A |~ B] we obtain .



We proceed in a analogous way if we are interested in
modelling a revision operation that, while adding A |~ B,
preserves not only consistency but also coherence w.r.t. the
formula A. As seen in Section 2.3, the class of operations o
was characterised only w.r.t. the class of preferential with-
drawals (Casini and Meyer 2017, Proposition 3), not w.r.t.
the preferential basic contractions. We reformulate the class
of the basic revision operators preserving coherence using
semantic contractions: that is, as

s =aet [([B] v ¢ (K, AR =B n[A~B]  (8)

Proposition 6 For every revision operator o there is a se-
mantic revision operator oc” s.t., for every K and A |~ B,

o oc"

K A]~B = K A‘~B‘

Conversely, for every semantic revision operator oc® there
is a revision operator o s.t., for every K and every A |~ B,

oc® o

A~B T KA\~B'

Also, using this semantic characterisation, it becomes
very easy to strengthen the previous representation result
(Casini and Meyer 2017, Proposition 3), using the class of
preferential basic contractions = instead of simply using
preferential withdrawals. First, we can prove that we can use
the class of choice functions c instead of the choice func-
tions cv, still referring to the same semantic construction:

Kip =aer [([B] v e(K; A =B)] n [ARB] 9

Theorem 2 For every revision operator o there is a seman-
tic revision operator oc s.t., for every K and A |~ B,

o _ oc
AB = N aARB-

Conversely, for every semantic revision operator oc there is
a revision operator o s.t., for every K and every A |~ B,

C;lT~B = K,O4\~B~
An easy consequence of Theorems 1 and 2 is a strenghten-
ing of Proposition 3 by Casini and Meyer (2017), using ba-
sic preferential contractions (satisfying (=1)—(-¢)) instead
of preferential withdrawals ((=1)—(=5)).

Theorem 3 For every revision operator o there is a pref-
erential basic contraction operator = s.t., for every K and
every A~ B,

K?4|~B = (KX‘WB)LB

Vice versa, for every preferential basic contraction opera-
tor = there is a revision operator o s.t., for every K and
every A |~ B,

?41~B = (KE\WB)ZNB

Regarding the class of spc-closures, we have seen in Sec-
tion 2.2 that each closure C(-) corresponds on the seman-
tic side to a choice function s¢ : Z(U) — P (Y) s.t.
A~ B € C(K) iff A |~ B is satisfied by every prefer-
ential interpretation in s¢([K]). Given a theory K, closed

under C(+), and its monotonic core K¢, the class of re-
vision operators = for consistency preservation is charac-
terised using the class of preferential revision operators e
as Ky p = C ((ICPC);“NB) (see Observation 5). Given (6)
and Proposition 5, it is immediate to conclude that the class
of non-monotonic revision operators = for a spc-closure C(-)
can be characterised via the class of preferential contractions

~cas
’CZTLB =def C(((Kpc)ﬂiAAﬂB)zﬁB) (10

That is, IC";‘CNB is equal to:

se(IKT v (K, TR An =B)] A [AR B]) (1)

We proceed analogously for the class of non-monotonic
revisions ® to preserve coherence, characterised via o as
’C%Na = C((K7€)%y.p) (see Observation 6).

Given (9) and Theorem 2, the class of revision opera-
tors ® for an spc-closure C(-) can be characterised via the
class of preferential contractions ~c as

K& 5 =aer CUKT) 4 p) o) (12)
That is,
K4 = se([([KTJue(K, A =B)|n[A R B]) (13)

4 Beyond the Basic Postulates

We move to explore possible classes of interesting operators
beyond the basic forms of contraction and revision. As seen
in Section 2, in the AGM approach there are two extra pos-
tulates for contraction, (—7) and (—g), and for revision, (x7)
and (xg), that can be associated with an ordering between the
formulas (entrenchment) and an order between the interpre-
tations. (—7) and (—g) define a way of preferring some con-
traction operations to others, in particular favouring the con-
traction operators that respect the relevance of certain pieces
of information, corresponding to more entrenched formulas
and/or more preferred interpretations. We aim at an analo-
gous characterisation in the conditional framework of oper-
ations respecting the relevance of the information.

Since Postulates (—7) and (—g), and (#7) and (xg) use
conjunction, their translation into the conditional framework
is not immediate. Girdenfors’ entrenchment contraction (1)
uses disjunction, but Proposition 1 gives us an alternative
characterisation in terms of partial-meet contraction. Kat-
suno and Mendelson’s (1991) semantic characterisation (see
Section 2 here) looks more immediately implementable in
the conditional framework as a ranking of preferential mod-
els, but we have to take under consideration Proposition 4 in
the definition of the ranking.

Given the difficulties in reformulating the postulates (—7)
and (—g) in the conditional framework, we leave them aside
for the moment. Still, our goal here is to define classes of
contraction and revision operators that constrain the basic
operators in a form that is analogous to what we obtain in
the propositional case when adding (—7) and (—g). Here we
propose to bypass the postulates and investigate the corre-
spondence between an entrenchment relation over the con-
ditionals and a preference relation over the preferential in-
terpretations, reformulating in the conditional environment



Girdenfors’ entrenchment and Katsuno and Mendelson’s
ranking of interpretations. In this way, we can give a char-
acterisation of a class of contraction operators constraining
the class of basic contraction operators in a similar way as
postulates (—7) and (—g) do in the propositional framework.

Conditional Entrenchment. We define in the conditional
framework an entrenchment relation >.: £~ x £ satisfying
the following constraints:

PE1ifC~D <. ERFand E F
ChD<.GrH (Transitivity)

PE2 if {01 I~D1,...,Cp |~ Dy} |=pr E |~ F , then there
isani, 1 <7< n, st C D; <. E|~F (Dominance)

PE3 Either C |~ D <. E~Fo ERF <. C |~ D
(Connectivity)

PE4 If K is consistent, then C' |~ D ¢ Kiff C'|~ D <. E |~
F forevery E |~ F (Minimality)

PES If E|~ F <. C |~ D forevery E |~ F, then =, C |~
D (Maximality)

<. G |~ H, then

Let A |~ B~ =g {C |~ D | A |~ B <, C |~ D}
By Compactness of PC(:) and Dominance, A |~ B~¢ =
PC(A|~ B~<), thatis, A |~ B~ < is a preferential theory.

For lack of expressivity, we substitute Conjunctiveness
with Connectivity. In Gérdenfors’ entrenchment the latter is
implied by (E1)-(E3) (Gérdenfors 1988, Lemma 4.20). Con-
nectivity, (E1) and the property

fC<.,DandC <. E, thenC <. DA FE

together imply Conjunctiveness (Girdenfors 1988, Lemma
4.21). A restricted forms of the above property and of the
Conjunctiveness property are derivable from PE1-PE3.

Proposition 7 The following two properties are a con-

sequence of PE1-PE2. For every tuple of propositions

A,B,C,D,E:

(@ IfArB<.CpKDand A|~B
B<.CDAnE;

(b) Either Al~B <. A~BaCorAp~C <. A~BAC.
LetKCID =4t {E~F|CpD <. E|~ F} and

K| C |~ D be the set of the preferred remainder sets w.r.t.

the entailment relation, that is:

<. C|~E, then A |~

KIAR B =gt {K e K|A~ B K:]iB c K’}
We define the contraction —e using preferential entrench-
ment as follows:

Ky p =ar [ |KIAR~ B (14)

This entrenchment-based conditional contraction —e¢ is a
reformulation in the conditional framework of Girdenfors’
entrenchment-based propositional contraction —e: Kz‘i B

corresponds to Rott’s contraction (3) in the conditional en-
vironment, and consequently (14) is a conditional reformu-
lation of the propositional entrenched-based contraction —e,
following the version used in Proposition 1.

Semantic Characterisation. On the semantic side, we in-
troduce a ranking of preferential interpretations in the spirit

of Katsuno and Mendelzon (1991). With { being the set
of all the preferential interpretation for language £, let
r : 4 — N be a function associating with every model
a natural number, and let £; indicate the i-th layer of the
ranking (£; =g {P € U | r(P) = i}). Let £; be the
set of conditionals satisfied by all the interpretations in £;.
Given a set of conditionals B and an interpretation P, let
B =4t {C|~D e K| P I C |~ D}. We want the ranking
to satisfy the following constraints:

(rl) Vie Nandi > 0, if £; # ¢, then £;_; # J:
(r2) VP e, if P |- Lo, then P € £o;
(r3) VP, P, P* e landi > 0,if P e £ and P’ € £;_1,

E3 /

then ifSTOP -] 27073 N ,87079 ,

then P* € £;.

Let us consider £( as our knowledge base /C, and let, for
every P,P' € i, P <, P iff r(P) < r(P’). It is very
easy to check that <, is a faithful assignment (as described
in Sect. 2.1). That is, (1) if P I £9 and P’ | £, then
P ~, P'sand 2) if P I £9 and P’ ¥ Lo, then P <, P'.

(r3) is necessary to deal with the peculiarity of preferen-
tial models, as indicated by Proposition 4, and it is equiva-
lent to the combination of the following two properties:

and P* ¢ £; forany j < 1,

—_ ___p*
(¥3) VP, P* e landi > 0,if P e £, &g < Lo, and
P* ¢ £, forany j < i, then P* € L;.

x3’) VP,P' € landi > 0,if P € L; and R’ € LJ,

j< z then there is an interpretation P* € L; s.t. 20 =
2 M 20

Proposition 8 The condition (r3) is equivalent to the com-
bination of the conditions (r3') and (r3").

Given a set of interpretations *J3 < 4l, a ranking r, and a
preferentially closed set of conditionals K, let min,.() =
{(PePnl [Pk #JandVj <i,Pn L =F}and
maxy (P) = {P e P | }P’ € Ps.t. K o KP}.

We define the choice function ¢, over this ranking as:

cr(Lo, C' I~ D) =ger ijX(mTiﬂ(]C ~DJ))
0

That is, given a knowledge base K and a conditional
C' |~ D to be contracted, we first pick the preferred models
that do not satisfy C' |~ D (min,.(]C |~ DJ)). Between such
models, we choose only the ones that satisfy more condition-
als from L (maxz(min,(]C |~ D[))); the use of maxz(.)
is due to the property of preferential interpretations indicated
in Proposition 4. Having defined the selection function ¢,
we can define contraction in the usual way.

ChkDe ’C:qi% iff P I+ C |~ D for every
Pe[K]ue (K, A~ B).
Now we can prove the correspondence between the two

classes of contraction operations we have defined using the
entrenchment and semantic rankings, respectively.



Theorem 4 For every entrenchment contraction operator
e there is a semantic contraction operator —c, S.t., for ev-
ery KB K and every conditional A |~ B,

e e

AB T ]CA\~B'
Conversely, for every semantic contraction operator —c,
there is an entrenchment contraction operator e s.t., for
every KB K and every conditional A |~ B,

’CZ&; = KZ\iB'

Our aim was for a full characterisation of AGM-like op-
erations in the framework of preferential conditional logic.
Ideally, we would also have provided postulates correspond-
ing to (—7), (—s), (*7), and (*g), but since they refer to
the conjunction of formulae, their translation in a condi-
tional language is not immediate, and we have omitted that.
We have considered two alternative and equivalent charac-
terizations of the class of contraction operations satisfying
(=1) — (=3), using Gardenfors’ entrenchment and Katsuno
and Mendelson’s rankings, and we have reformulated them
accordingly for the conditional framework, showing that the
correspondence is preserved, as Theorem 4 proves.

We can easily give a semantic characterisation of the revi-
sion operators, using the choice functions ¢, defined earlier
in this section, instead of the choice functions ¢ (which were
defined in Section 3). First the ones for preferential revision.
The only constraint is that, starting from a preferential the-
ory K, the ranking r must be defined with £3 = [K].

[Kos] = [(IK] v er (K, T An =B)[ n [A]~ B]

That is,
[K%s] = [(IX]vmax(min(T ~ Ar=B[))]n[A ~ B]
which implies

[K4p] = [max(min(JT ~A A =B))] n [A|~ B]

Proceeding analogously for o, we obtain
[C5] = [(IX] v max(min(JA ~ =B[))] n [A |~ B]

Given a theory K closed under a spc-closure C, the choice
function s¢ associated at C, and the monotonic core K¢,
using the two last equations we can define the two corre-
sponding classes of non-monotonic revision operators. The
two classes of operators * and ® can then be defined as fol-
lows. IC*AfLB corresponds to the conditionals satisfied by the

set of interpretations

se([max(min(T A » ~B[)] ~ [4 B])

K%ﬁ’é corresponds to the conditionals satisfies by the set

se([(IK] v max(min(J4 r ~B)))] » [A ~ B])

Since the contraction is to be defined on K¢, the only
constraint is for the ranking r to be built with £, = [K7C].

5 Conclusions

This paper, in combination with previous work by Casini and
Meyer (2017), provide the basis for the definition of belief
change in a (preferential) non-monotonic framework. Build-
ing on the characterisation in terms of entrenchment and the
ranked semantics of the AGM approach, we define and char-
acterise preferential expansion, contraction and revision (for
both consistency and coherence preservation) on the mono-
tonic core of the class of the spc-operators.

Most of the previous works dealing with the revision of
conditionals, such as those by Kern-Isberner (1999) and
Wobcke (1995), is connected to the revision of subjunctive
conditionals, which are used to represent the revision poli-
cies themselves. Here, instead, we do not consider the con-
ditionals as linked to the revision policies, and leave their
interpretation quite open (see Section 1). Other recent con-
tributions to revision in a non-monotonic framework have
come from Hunter (2016), dealing with highly implausible
conditionals, and Delgrande and others (2013), that analysed
belief change in the non-monotonic framework of ASP.

Regarding future developments, there are some obvious
steps, such as modelling iterated revision and some forms
of base revisions. An initial step in this direction has been
made by Casini and Meyer (2016). In recent years there has
been particular interest in preferential non-monotonic rea-
soning in the framework of Description Logics (Britz, Hei-
dema, and Meyer 2008; Britz, Meyer, and Varzinczak 2011;
Casini and Straccia 2010; 2013; Casini et al. 2014; Giordano
et al. 2013; 2015; Lukasiewicz 2008), and in such a frame-
work the notion of coherence, as we use it here, is very rel-
evant. Hence a major goal is to reformulate the present ap-
proach for Description logics.

An important aspect of belief change in non-monotonic
frameworks is contraction. The present paper and the previ-
ous work by Casini and Meyer (2017) are focused on revi-
sion for non-monotonic theories, and we have reduced it to
revision of its monotonic core, that in turn can be analysed
in terms of contraction and expansion of the monotonic core.
Hence, the only form of contraction that we have analysed
up to this point is the one related to the monotonic core,
while we have still to develop an analysis of the contraction
of a conditional from a non-monotonic closure. The inter-
esting aspect is that if we want to eliminate some piece of
defeasible information, we have two possibilities: either we
contract information from the monotonic core (as our con-
traction operations do), or we can actually add information
to it. Consider Example 1, Step 2, where a |~ n € C(B').
Assume we are just interested in eliminating a |~ n from our
conclusions. In a non-monotonic framework we can proceed
in two ways. Either we eliminate some pieces of information
from B’, preventing the derivation of a |~ n (e.g., eliminating
v |~ n or a - v), or we can add some information to 5 that
conflicts with a |~ n (e.g., adding a |~ —n, as it happens in
the example). To the best of our knowledge, the only attempt
to at modelling this kind of contraction (in the KLM frame-
work) is by Booth and Paris (1998), in which they introduce
negated conditionals A |« B into the language. However,
a proper analysis of this kind of contraction operation still
needs to be done.
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