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nature of the disease in conventional in 
vitro models and the excessive reliance on 
animal models partly explain the disap-
pointingly high failure rate of new candi-
date molecules in clinical trials.[1,2] New 
technological advancements have failed to 
translate into successful curative pharma-
cological options and no definitive disease-
modifying therapy is currently available.

In this scenario, human induced 
pluripotent stem cells (iPSCs) repre-
sent a promising tool for the generation 
of relevant human in vitro models, due 
to their ability to differentiate into any 
cell type of the body.[3] However, the use 
of iPSC technology alone is often not 
sufficient to account for all the limitations 
of modeling complex diseases in a dish. 
Standard 2D cell culture systems do 
not offer an ideal set-up to study highly 
ramified cells such as neurons. In 2D cul-

tures, the dendrites and growth cones are unrealistically flat-
tened, limiting the acquisition of full cellular functionality, and 
the cellular microenvironment is poorly modelled. It has been 
shown that cells in a 3D in vitro setting are subjected to mecha-
nostructural cues which bring them closer to physiological con-
ditions.[4] Surrounded by matrix surrogates, cells experience a 
more physiological equilibration and transport of soluble fac-
tors.[4,5] Notably, several groups have reported significantly dif-
ferent gene and protein expression profiles when comparing 
2D and 3D cultures.[6] Cells cultured in 2D showed ≈30% of 
differentially expressed genes compared to cells in vivo.[7] It is 

Parkinson’s disease (PD)-specific neurons, grown in standard 2D cultures, 
typically only display weak endophenotypes. The cultivation of PD patient-
specific neurons, derived from induced pluripotent stem cells carrying the 
LRRK2-G2019S mutation, is optimized in 3D microfluidics. The automated 
image analysis algorithms are implemented to enable pharmacophenomics 
in disease-relevant conditions. In contrast to 2D cultures, this 3D approach 
reveals robust endophenotypes. High-content imaging data show decreased 
dopaminergic differentiation and branching complexity, altered mitochondrial 
morphology, and increased cell death in LRRK2-G2019S neurons compared to 
isogenic lines without using stressor agents. Treatment with the LRRK2 inhibitor 
2 (Inh2) rescues LRRK2-G2019S-dependent dopaminergic phenotypes. Strikingly, 
a holistic analysis of all studied features shows that the genetic background of 
the PD patients, and not the LRRK2-G2019S mutation, constitutes the strongest 
contribution to the phenotypes. These data support the use of advanced in vitro 
models for future patient stratification and personalized drug development.
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1. Introduction

The identification of promising drug candidates in preclinical 
research, as well as personalized precision medicine, is hampered 
by the lack of sufficiently representative in vitro models. This is 
particularly true in the case of Parkinson’s disease (PD), a com-
plex neurodegenerative disorder where the most studied cells, 
associated to the onset of motor dysfunctions, are the dopamin-
ergic neurons of the substantia nigra in the midbrain.[1] PD is a 
disorder for which animal models are not sufficiently predictive of 
the human response. The difficulty of capturing the multifactorial 
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not surprising that the cellular responses to drug administra-
tion in 3D were closer to in vivo than 2D cultures.[8] This supe-
rior metabolic competent system holds the potential to enable 
pharmacological studies in personalized human-derived in 
vitro models at very early stages of the drug discovery pipeline. 
In the context of Alzheimer’s disease, it was reported that 3D 
cultivation of gene-edited stem cell-derived neurons, expressing 
mutations responsible for the familial form of the pathology, 
successfully recapitulated all key known neuronal hallmarks of 
the disease for the first time in an in vitro system.[9]

We have recently shown that iPSCs-derived neuroepithelial  
stem cells can be used for the generation of midbrain-specific 
dopaminergic neurons in a 3D microfluidics device.[10] The  
most common pathogenic mutation causing autosomal-
dominant PD is the G2019S mutation in the leucine-rich-repeat-
kinase-2 (LRRK2).[11] The LRRK2-associated familial form is 
pathologically and clinically indistinguishable from idiopathic 
PD.[12] Remarkably, wild-type LRRK2 was also found to be rel-
evant to the etiology of sporadic PD, as genome-wide association 
study analyses indicated that common variations around LRRK2 
can modulate the risk of developing the disease.[13] Mutated 
LRRK2 has been reported to alter several cellular pathways 
including cell proliferation, protein trafficking, and cytoskeletal 
integrity.[14] However, due to its two enzymatic and several inter-
action domains, the contribution of LRRK2 to the pathogenic 
mechanism causing neuronal degeneration remains elusive.[15]

Here, we demonstrated that 2D cell culture systems, without 
using stressor molecules, did not present robust endophenotypes 
affecting dopaminergic neurons. On the contrary, 3D cultures 
elicited intrinsic time-dependent dopaminergic degeneration due 
to the LRRK2-G2019S mutation. We also showed that LRRK2-
G2019S caused mitochondrial abnormalities and cell death in 
young neurons. Interestingly, the administration of the LRRK2 
inhibitor 2 (Inh2) rescued only some, but not all phenotypes. This 
indicates that other genetic factors, in addition to the LRRK2-
G2019S mutation, contribute to these phenotypes. A holistic 
analysis of all the analyzed features showed that the genetic back-
ground of the PD patients, and not the LRRK2-G2019S mutation, 
constituted the strongest contribution to the phenotypes. Our 
high-content image analysis platform also allowed for the identi-
fication of key LRRK2-G2019S-dependent and independent phe-
notypes, which can be used to test the effect of potential disease-
modifying compounds in a high-throughput manner.

2. Results

2.1. Time-Dependent Alteration of Dopaminergic Neuron 
Differentiation Associated to LRRK2-G2019S

The present study utilized eight human iPSC lines 
(Figure S1A, Supporting Information) from which human neu-
roepithelial stem cell lines (hNESCs) were derived according 
to published protocols.[16] We used hNESC lines from two PD 
patients carrying the LRRK2-G2019S mutation and from two 
healthy individuals. In the patient lines, the mutation was cor-
rected to wild-type sequence, while in the iPSC lines from healthy 
individuals the wild-type sequence was replaced by the mutated 
form (isogenic cell line pairs). Sequencing was performed to con-
firm correct editing (Figure S1B, Supporting Information). All 

eight hNESC lines used in the study were checked for expression 
of neural stem cell markers SOX1, SOX2, and Nestin (Figure S1C, 
Supporting Information). In agreement with previous reports, the 
neuronal differentiation protocol generated a mixed population of 
neural cells, including about 30% of dopaminergic neurons.[10,16] 
The experiment pipeline of the study is shown in Figure 1A.

Initially, neuronal differentiation of the hNESC lines was 
conducted in parallel in 2D and 3D. We used the exact same 
Matrigel and media cocktails for both conditions, therefore all 
observed differences are attributed to the different environ-
ments (2D vs 3D). Six weeks after the induction of neuronal 
differentiation the amount of TH+ dopaminergic neurons 
was significantly reduced in LRRK2-G2019S mutation 
lines compared to LRRK2-G2019S, but only in 3D culture 
(Figure 1B,C). This represents the first evidence for a disease-
specific and 3D-specific phenotype in our experimental setup.

Next, we decided to focus only on 3D cultures and to 
better resolve the temporal dynamics of the observed defect. 
We evaluated the branching complexity of TH+ cells after 
2 and 6 weeks (w) of differentiation in 3D (Figure 1D,E 
(2w); Figure 1F,G (6w)). In the 2w cultures, no significant 
differences between LRRK2-G2019S and LRRK2-WT lines 
were detected (Figure 1E). However, after 6w, we observed 
a significant decrease in the amount of TH+ pixels (TH). 
Features describing the dopaminergic arborization com-
plexity such as skeleton pixels TH, node, and link count also 
decreased (Figure 1G, Table 1, and Figure S2 of the Supporting 
Information summarize the features assessed in the analysis). 
This highlights a time-dependent selective degeneration of 
dopaminergic neurons carrying LRRK2-G2019S. We also ana-
lyzed the levels of α-synuclein phosphorylation at serine 129 
(pS129αSNCA) and of LRRK2 at serine 935 (pS935LRRK2) 
after either 2w (Figure S1D, Supporting Information) or 6w 
(Figure S1E, Supporting Information). The pS129αSNCA 
signal was unchanged at both time points, but pS935LRRK2 
levels were increased after 2w in LRRK2-G2019S lines.

2.2. LRRK2-G2019S Induced Mitochondrial Abnormalities  
and Cell Death in Developing Neurons

As 6w old neurons showed LRRK2-G2019S-induced alterations 
in survival and neuronal complexity, we were interested in iden-
tifying the potentially underlying upstream mechanisms. Thus, 
we performed microarray gene expression analysis of hNESC 
from six healthy individuals and six PD patients carrying the 
LRRK2-G2019S mutation (Figure S3A, Supporting Information). 
Microarray gene expression analysis showed alterations associated 
with mitochondrial genes, derived from the MitoCarta database 
of genes encoding proteins with strong support of mitochondrial 
localization.[17] A subset of the most significantly altered mitochon-
drial genes according to the RankProduct method[18] is shown 
in the heat map in Figure S3B (Supporting Information). Based 
on these gene expression data and on several publications high-
lighting the contribution of mitochondrial alterations to PD,[19] 
we tested the cultures for signs of mitochondrial abnormalities 
at 2w and 3w of neuronal differentiation. In order to understand 
which mechanisms lead to degeneration, we chose time points 
before the TH+ phenotype became apparent (6w). We performed 
live imaging with tetramethylrhodamine, methyl ester (TMRM) 
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and MitoTracker Green (Figure 2A,C). The number of mitochon-
dria (MitoCount) was lower at 2w in LRRK2-G2019S than in 
LRRK2-WT neurons (Figure 2B). Mitochondrial morphometric 
features such as skeleton, perimeter, body pixels, and complexity 
of the network (number of links and nodes) were also decreased in 
LRRK2-G2019S neurons compared to LRRK2-WT (see Table 1 for 

the analyzed features). Importantly, in 2D cultures using the same 
image analysis algorithms, we did not detect any significant altera-
tion (Figure S3C,D, Supporting Information). After 3w of neu-
ronal differentiation, we observed a further progressive reduction 
in mitochondrial number, perimeter, and complexity (Figure 2D). 
This implies a detrimental effect of the LRRK2-G2019S mutation 

Adv. Sci. 2018, 1800927

Figure 1.  LRRK2-G2019S dependent phenotype was enhanced in 3D conditions. A) Schematic representation of the experimental pipeline used 
in the study. Image acquisition, segmentation, feature extraction, and data analysis were all automated. B) Amount of TH+ pixels in 2D and 3D 
cultures after 6w of neuronal differentiation. Values represent means with whiskers from min to max (number of wells in 2D: LRRK2-WT 48, LRRK2-
G2019S 39; number of bioreactors in 3D: LRRK2-WT 48, LRRK2-G2019S 34).  C) Representative maximum intensity projection of confocal images 
of LRRK2-WT and LRRK2-G2019S neurons after 6w in 2D showing TH mask after segmentation (red line) superimposed on TH raw channel.  
D) Representative confocal images of TH+ cells and consequent TH skeleton mask and branching rendering after 2w. E) Radar plot showing several 
features extracted from TH segmentation after 2w (number of bioreactors: LRRK2-WT 31, LRRK2-G2019S 32). F) Representative confocal images 
of TH+ cells and consequent TH skeleton mask and branching rendering after 6w. G) Radar plot showing several features extracted from TH 
segmentation after 6w (number of bioreactors: LRRK2-WT 48, LRRK2-G2019S 34). Scale bars 100 µm. In all cases, p-values are calculated using 
Mann Whitney test and they are adjusted (red) or not (black) according to Benjamini–Hochberg (number of total features assed 18), *p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001. For the 3D analysis, 420 fields at 20× magnification were acquired for each bioreactor (21 fields for 20 planes). For 
the 2D analysis, 45 fields at 20× magnification were acquired for each well (15 fields for 3 planes). Each data point corresponds to a bioreactor.
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on key components of mitochondrial machinery without 
impairing mitochondrial membrane potential, consistent with 
previous studies in fibroblasts.[20] The ratio between cytoplasmic 
and nuclear volumes at 3w was significantly increased in LRRK2-
G2019S lines compared to controls (Figure 2E). We hypothesized 
that this might be an indicator of nucleus shrinking resulting 
from cell death triggers. Accordingly, we then sought to analyze 
the activation of cleaved-caspase 3 (CC3) at similar points. We 
observed that the time window for increased CC3 activation was at 
2w (Figure 2F,G), while the levels at 3w were comparable between 
LRRK2-G2019S and LRRK2-WT (data not shown). The total 
amount of dead cells as detected by ethidium homodimer (EH) 
was increased in LRRK2-G2019S lines compared to LRRK2-WT. 
The levels of CC3 (CC3 Mask) were increased in LRRK2-G2019S 
compared to LRRK2-WT lines. Coherently, lactate dehydrogenase 
(LDH) release into the media was increased in 3w differentiating 
LRRK2-G2019S neurons as compared to LRRK2-WT (Figure 2H). 
The progressive decrease of extracellular Zn levels in media out-
flow of LRRK2-G2019S compared to LRRK2-WT lines might fur-
ther support the observed neuronal death (Figure S1F, Supporting 
Information). This decrease might also be due to a reduction of 
Zn-containing vesicles (see review[21]). Taken together, these results 
indicate that LRRK2-G2019S neurons are more prone to mito-
chondrial abnormalities and activation of apoptotic pathways.

2.3. Kinase Inhibitor Inh2 Rescued LRRK2-G2019S Dependent 
Dopaminergic Phenotype

Based on the established assays and observed phenotypes, we 
ran a proof-of-concept drug testing screen in our 3D system. 
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Table 1.  Features from image analysis.

Feature Description

Morphometric assay

Hoechst Count of nuclear mask pixels

Tuj1 Count of neuronal mask pixels

TH/Tuj1 Sum of TH pixel intensities/sumTuj1

pS935LRRK2 Sum of pS935LRRK2 pixel intensities/sumTuj1

pS129βSNCA Sum of pS129αSNCA pixel intensities/sumTuj1

NucHigh Sum pyknotic nuclear mask/Hoechst

NucLow Sum normal nuclear mask/Hoechst

TH Mask TH positive pixels

Skeleton Pixel TH Count of TH skeleton pixel

Node Count TH Total number of branch and end-points in the TH skeleton

Link Count TH Total number of links in the TH skeleton

Network elements Sum of all the node and link elements

TH Sum of raw TH pixel values within the Tuj1 mask

TH fragmentation Surface to volume ratio of TH mask

Mitochondrial assay

CountMito Count of mitochondria per image

TMRMinMask Background pixels were set to zero by multiplying the raw 

TMRM channel with the mitochondria mask. TMRMinMask 

corresponds to the sum of pixel values in this image divided 

by the count of mitochondrial pixels

TMRMinCC For each mitochondrium the mean TMRM intensity was 

extracted. TMRMinCC corresponds to the unweighted mean 

of mean TMRM intensities among all mitochondria  

in an image

MitoskelPixels

 

Count of mitochondrial skel-

eton pixels within an image 

(blue line)

MitoPerimPixels Count of mitochondrial 

perimeter/surface pixels per 

image

MitoBodyPixels

 

Count of mitochondrial body 

pixels per image (red area)

MitobodyCount Count of mitochondrial bodies as observed after erosion of 

the mitochondrial mask

Node Count

 

Count of nodes (red points)

Feature Description

Link Count

 

Count of links (red line)

MedianNodeDegree Median number of pixels in the mitochondrial skeleton 

image connecting adjacent nodes

CellVolume_by_
NucVolume

CellVolume/NucVolume

Cell death assay

NucMask Count of nuclear mask pixels

CC3Mask Count of cleaved-caspase 3 mask pixels

CC3ByNuc Cleaved-caspase 3 mask/NucMask

EthidMask Count of ethidiumhomodimer mask pixels

EthidByNuc EthidMask/NucMask

CalceinMask Count of calcein mask pixels

CalceinByNuc CalceinMask/NucMask

CalceinMask Count of Calcein mask pixels

CalceinByNuc CalceinMask/NucMask

CC3inLiveCells Count of cleaved-caspase 3 live mask pixels

Table 1.  Continued.
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We tested the ability of the LRRK2 kinase inhibitor Inh2[22] to 
rescue the described phenotypes. After testing concentrations 
up to 1.5 × 10−6 m (data not shown), 0.5 × 10−6 m was selected 
for all experiments in this study. The administration of Inh2 

for 6 weeks ameliorated some of the phenotypes observed 
in the dopaminergic neurons (TH, nodes, links, skeleton 
TH) (Figure 3A,B). Importantly, the selective degeneration 
of TH+ dopaminergic neurons in LRRK2-G2019S lines was 
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Figure 2.  LRRK2-G2019S induced early mitochondrial dysfunction and cell death. A) Representative maximum intensity projection of confocal images of 
LRRK2-WT and LRRK2-G2019S neurons after 2w showing TMRM raw channel, and segmented mitochondria (red line) superimposed on Mitotracker green 
channel. B) Radar plot showing several features extracted from mitochondrial segmentation after 2w (number of bioreactors: LRRK2-WT 68, LRRK2-G2019S 
63). C) Representative maximum intensity projection of confocal images of LRRK2-WT and LRRK2-G2019S neurons after 3w showing TMRM raw channel, 
and segmented mitochondria (red line) superimposed on Mitotracker green channel. D) Radar plot showing several features extracted from the mito-
chondrial segmentation after 3w (number of bioreactors: LRRK2-WT 64, LRRK2-G2019S 61). E) Bar graph showing cell volume by nuclear volume after 3w.  
F) Representative maximum intensity projection of confocal images of LRRK2-WT and LRRK2-G2019S neurons after 2w showing staining for Calcein/cleaved-
caspase 3 (CC3), and ethidium homodimer (EH)/CC3. G) Viability-related features extracted after 2w of neuronal differentiation: CC3 mask and EH mask 
(number of bioreactors: LRRK2-WT 68, LRRK2-G2019S 66). In all cases, p-values are calculated using Mann Whitney test and they are adjusted (red) or not 
(black) according to Benjamini–Hochberg, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. The number of total features assesed was 21 for (A)–(E) and 9 for (F)–(G). For 
the analysis in (B) and (D), 63 fields were acquired for each bioreactor (9 fields for 7 planes at 20× magnification). For panel G, 420 fields at 20× magnification 
were acquired for each bioreactor (21 fields for 20 planes at 20× magnification). Each data point corresponds to a bioreactor. H) LDH-increased release in 
LRRK2-G2019S compared to LRRK2-WT lines after 3w. The experiment was performed nine times, in quadruplicate, in LRRK2-WT and LRRK2-G2019S lines. 
Technical replicates were averaged. Values represent means ±SEM, p-value is calculated using Mann Whitney test *p ≤ 0.05. Scale bars 100 µm.
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ameliorated by Inh2 (TH). The restoration was further evi-
denced by detection of increased link count upon Inh2 admin-
istration (Figure 3B). Neuronal volume (Tuj1+ cells) increased 
after treatment in LRRK2-G2019S lines, indicating a general 

neuroprotective effect on nondopaminergic neurons. Notably, 
treatment with Inh2 was not effective in rescuing increased 
cell death at 2w (Ethidium Mask) or mitochondrial defects 
(mitochondrial count) at 3w. This suggests Inh2 corrected only 
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Figure 3.  Pharmacological and genetic amelioration of LRRK2-G2019S-induced morphometric defects. A) Radar plot showing the rescue of LRRK2-
G2019S-induced phenotype following Inh2 administration for 6 weeks. Inh2 increased TH levels and ameliorated branching complexity. p-values 
are calculated using Kruskal–Wallis test. They are adjusted (red) or not (black) according to Benjamini–Hochberg (number of total features assed 
18), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. The conditions tested are LRRK2-WT, LRRK2-G2019S, LRRK2-G2019S Inh2, and LRRK2-WT Inh2 (not dis-
played in the radar plot). B) Bar graphs showing, TH volume, link count TH, node count TH, and neuronal volume after 6w (number of biore-
actors: LRRK2-WT 48, LRRK2-G2019S 34, LRRK2-WT Inh2 49, LRRK2-G2019S Inh2 64). Ethidium mask after 2 weeks (number of bioreactors: 
LRRK2-WT 66, LRRK2-G2019S 68, LRRK2-WT Inh2 64, LRRK2-G2019S Inh2 71) and mitochondrial count after 3w (number of bioreactors: LRRK2-WT 
64, LRRK2-G2019S 61, LRRK2-WT Inh2 57, LRRK2-G2019S Inh2 66) are also shown. Bars represent means ± SEM, each dot represents a biore-
actor. p-values are calculated using Dunn’s post hoc test and they are adjusted (red) or not (black) according to Benjamini–Hochberg (number of 
conditions compared), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Post hoc analysis was performed on the following pairs: LRRK2-WT/ LRRK2-G2019S, 
LRRK2-G2019S/LRRK2-G2019S Inh2. For the analysis, 420 fields at 20× magnification were acquired for each bioreactor (21 fields for 20 planes).  
C) Bar graphs showing the rescue of selected features achieved with gene editing or Inh2 administration performed by bootstrapping.
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some of the pathways affected by LRRK2-G2019S. Focusing on 
TH+ morphometric analysis, we assessed Inh2 rescue effects 
by setting the LRRK2-G2019S average values to 0 and LRRK2-
WT to 100%. We then evaluated the effect of Inh2 to restore 
mutant lines toward a LRRK2-WT status after 6w of neuronal 
differentiation. Inh2 rescued TH-related features (TH+, skel-
eton TH, links, and nodes) of LRRK2-G2019S lines. The rescue 
size effect was: 82.6% for TH+, 64.4% for skeleton TH, 43% for 
links, and 48.4% for nodes (Figure 3C). The same analysis was 
performed in patient lines genetically corrected to LRRK2-WT. 
We evaluated the rescue effects of gene correction by setting 
the LRRK2-G2019S average values to 0% and the LRRK2-WT 
line to 100%. As for the pharmacological treatment, gene 
editing also resulted in a phenotype amelioration, but at a lower 
amplitude. The rescue size effect was: 19.2% for TH+, 30.1% 
for skeleton TH, 39.2% for links, and 41.1% for nodes.

2.4. Contribution of Patient-Specific Genetic Background  
to the LRRK2-G2019S Phenotype

We next stratified the lines for the genetic background of the 
donors (PD patients or healthy individuals). The clustergram 
shows that PD patient-derived lines cluster together indepen-
dently of the presence or absence of the mutation (Figure 4A). 
This suggests that the genetic background of cells accounts for 
most of the differences between the studied cell lines, regard-
less of pharmacological treatment or gene editing. A closer 
analysis of some of the underlying assays showed that PD 
patient-derived lines (P) presented significantly higher levels of 
CC3 in live cells compared to lines derived from healthy indi-
viduals (H) (Figure 4B). LRRK2-G2019S correction to LRRK2-
WT sequence (PGC) rescued CC3 activation without restoring 
the levels back to H. The TH pixel count was reduced in both 
the inserted mutation (HMut) and P (Figure 4C). We also 
quantified mtDNA copy number in neurons as indicators of 
mtDNA maintenance and observed a similar pattern. When 
comparing H and P neurons, the latter showed a trend toward 
reduced copy number and transcription/replication rates. 
Insertion of the LRRK2-G2019S mutation in the healthy line 
(HMut) mirrored this phenotype. By contrast, LRRK2-G2019S 
correction in the patient line (PGC) did not lead to an increase 
in mtDNA copy number comparable to LRRK2-WT levels 
(Figure 4D).

2.5. Assay Performance Based on Receiver Operating  
Characteristic (ROC) Analysis

To estimate the discriminative performance of single assays 
using ROC curve analysis, we performed the following com-
parisons: LRRK2-G2019S versus LRRK2-WT (Figure S4A, 
Supporting Information), and LRRK2-G2019S Inh2 versus 
LRRK2-WT Inh2 (Figure S4B, Supporting Information). Table S1  
(Supporting Information) indicates the number of samples 
for each group, as well as the number of features extracted for 
each assay. For cell death at 2w, and mitochondrial assays at 2w 
and 3w, we observed an acceptable trade-off between number 
of samples and features. Cell death at 3w or morphometric 

analysis at 2w and 6w did not reveal similar effects. In the 
morphometric assay, a large number of features was extracted. 
In these three cases, we applied the feature-selection approach 
as described in the Experimental Section: the chosen threshold 
was the entity yielding the best results among the values 
0.75, 0.8, 0.85, and 0.9. Except for the comparison of the 
morphometric assay at 6w between LRRK2-G2019S Inh2 and 
LRRK2-WT Inh2, where the threshold was 0.75, the chosen 
threshold was 0.8 for all the other cases. Table 2 shows the 
results for the comparison between LRRK2-G2019S and 
LRRK2-WT. The cell death assays produced a greater separa-
tion between the two conditions, as they provided an area 
under the curve (AUC) of 88.5 for 2w and 90.1 for 3w with 
high accuracies, sensitivities, and specificities. The morpho-
metric assays provided reasonable performances (77.9 at 2w 
and 79.2 at 3w). Finally, the mitochondrial assays showed low 
performance in discriminating the two conditions despite pro-
viding good values of specificity. Additionally, Table 3 shows the 
results for the comparison between LRRK2-G2019S Inh2 and 
LRRK2-WT Inh2. The cell death assays maintained the highest 
AUCs, though with lower values compared to Table 2. For the 
remaining assays, the AUCs were lower compared to Table 2, 
indicating that addition of Inh2 brought LRRK2-G2019S values 
closer to LRRK2-WT.

3. Discussion

Recapitulating the key cellular hallmarks of LRRK2-associated  
toxicity in patient-derived cells is a prerequirement to set 
up in vitro assays, which can drive personalized medicine 
approaches. Here, we developed a platform based on hNESC-
derived neurons from PD patients carrying the LRRK2-
G2019S mutation. This platform recapitulates key features 
of PD, including degeneration of dopaminergic neurons and 
preceding mitochondrial impairments. Treatment with the 
LRRK2-specific inhibitor, Inh2, rescued neurodegeneration, 
and neurite complexity phenotypes without fully reversing 
mitochondrial abnormalities. When considering all experi-
ments at all time points, genetic background of the patients 
was found to be a major discriminating factor among the lines 
and not the LRRK2-G2019S mutation.

Cells in a 3D in vitro setting are subjected to structural cues, 
which bring them closer to physiological conditions.[23] This 
confined microenvironment seems to leverage cell–cell con-
tact and extracellular matrix protein synthesis.[24] Unlike in 2D 
cultures, cells grown in 3D microenvironments exhibit gene 
expression patterns and cellular phenotypes that resemble in 
vivo conditions.[25] This metabolic-competent system, combined 
with stem cell technology tools, holds the potential to leverage 
the assessment of drug effects to a human-derived model at a 
very early stage. Classical in vitro models for PD are mainly 
comprised of PD-patient fibroblasts or immortalized cells (e.g., 
SH-SY5Y) with all the associated drawbacks, including dif-
ferent gene expression, compared to neurons.[26] The successful 
use of 3D-derived and hNESC-derived neurons for phenotype 
assessment has been demonstrated with Alzheimer’s disease.[9] 
As paracrine factors diffuse rapidly into large media volumes 
in 2D cultures, we hypothesized that neurons cultivated in 3D 
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exacerbated LRRK2-G2019S toxicity by providing a brain tissue-
like environment. We chose Matrigel as a 3D support matrix, 
as it contains high levels of brain extracellular matrix proteins 
such as laminin, collagen, and heparin sulfate proteoglycans.[27] 
The 3D scaffold given by Matrigel, but also other hydrogels 
such as collagen and alginate gels, has shown to accelerate neu-
ronal network formation.[9,28] More importantly, the support of 

the matrix permits vertical growth, which is completely lacking 
in 2D cultures and results in unwanted apical-basal polarity.[4] 
The 3D environment is also able to trigger mechanical cues 
which can be converted into biochemical signals not achievable 
in conventional flat cultures. Building on this, several brain 
organoids recapitulating cortical[29] and midbrain[30] identities 
have recently been developed and demonstrated the huge 
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Figure 4.  Contribution of genetic background to LRRK2-G2019S-induced neuronal abnormalities. A) Heatmap comprising of all the image analysis 
assays combined, showing a clear clustering of lines according to genetic background (BK). Bar graphs showing B) CC3 Mask after 2w (number of 
bioreactors: H 23, H Mut 21, P 51, PGC 45); C) TH pixels after 6w (number of bioreactors: H 18, H Mut 21, P 23, PGC 28); and D) mitochondrial 
copy number after 3w (the experiment was performed five times, in triplicates, with all the lines in Figure S1A (Supporting Information); the technical 
replicates were averaged). Bars represent means ± SEM. In (B) and (C) each dot represents a bioreactor. p-values are calculated using Kruskal–Wallis 
and Dunn’s post hoc test. They are adjusted (red) or not (black) according to Benjamini–Hochberg (number of total features assed 9 for (B) and 18 for 
(C), *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Dunn’s post hoc analysis was performed on the following pairs: H/HMut, H/P, P/PG. H = healthy lines, HMut 
= healthy lines where LRRK2-G2019S mutation was introduced, P = PD lines carrying LRRK2-G2019S mutation, PGC = PD lines where LRRK2-G2019S 
mutation was corrected. In (A)–(C), 420 fields at 20× magnification were acquired for each bioreactor (21 fields for 20 planes).
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potential of 3D systems to recapitulate disease-relevant features. 
The derivation of dopaminergic neurons in the described 3D 
set-up also has the advantage of using low volumes of media 
and the option for multiplexing and automated screening 
activities.[31] Beyond enabling larger throughput than manual 
approaches, the automation also improves reproducibility and 
the depth of available phenomic data, allowing a systems-level 
understanding of the multiple contributions of LRRK2 in deter-
mining neuronal phenotypes. A deeper understanding of the 
role of LRRK2 in PD is of interest, as the same pathways may 
be shared with idiopathic PD.[32]

Our results are consistent with a series of past observations 
describing reduced speed of neurite outgrowth in LRRK2-
G2019S-mutant neurons within 30 min of recording in 
bright field microscopy.[33] LRRK2-G2019S or Y1699C-LRRK2 
expression led to shorter total neurite lengths compared to 
wild-type rat primary neurons.[34] However, in contrast to 
previous reports, here we were able to show a progressive 
time-dependent degeneration of TH+ neurons carrying LRRK2-
G2019S. Interestingly, at 2w, we observed an increased TH/
Tuj1 ratio, which we hypothesize is an attempt to accelerate 
dopaminergic differentiation to counteract LRRK2-induced 
defects. This compensatory mechanism has often been 
described in other pathological contexts, for instance, in Alzhei-
mer’s disease brain samples, where the synaptic protein synap-
tophysin is increased in autoptic brain stages 3 and 4 and later 
decreased in Braak stage 5–6.[35]

The hypothesis of mitochondrial dysfunction playing a 
major role in PD pathogenesis has been proposed in several 
studies.[19c,36] Interestingly, LRRK2 seems to control mito-
chondrial homeostasis via the dynamin-like protein DLP1.[37] 
We have confirmed compromised mitochondrial function in 
LRRK2-G2019S cells,[20,37,38] but also broadened its characteri-
zation in hNESC-derived neurons. It has been reported that 

overexpression of LRRK2-G2019S in SH-SY5Y cells causes 
reduced membrane potential without changes in mitochondrial 
morphology.[20] By contrast, 2D-derived LRRK2-G2019S iPSC-
derived neurons exhibited an intact electron transport chain, yet 
susceptibility to stress after chemical stressors was evident.[39] 
These differences can be reconciled in our model, where no 
tumoral lines were used and no chemical stressors were applied. 
The 3D condition was the only factor triggering a striking 
alteration in mitochondrial number and network complexity. 
LRRK2 controls microtubule stability, which is essential for 
the trafficking of mitochondria to every distal area in branched 
cells. LRRK2-G2019S was shown to increase phosphorylation of 
tubulin, thereby altering the microtubule dynamics[40] and desta-
bilizing the mitochondrial network as well.

In contrast to previous studies,[41] we also showed the occur-
rence of neuronal cell death without using neurotoxins. Only 
a modest increase in CC3 was previously observed in 2D cul-
tures even after treatments with H2O2 or 6-OHDA.[41a] The 
increased CC3 levels and LDH release observed here highlight 
the intrinsic vulnerability of neurons carrying LRRK2-G2019S 
mutation. A reason for increased cell death in LRRK2-G2019S 
neurons may lie in its interaction with 14-3-3s, a family of 
proteins that plays a role in cell survival.[42] Mutations of the 
residues S910/S935 to alanine in LRRK2 decreased its interac-
tion with 14-3-3, causing toxic cellular redistribution of LRRK2 
in HEK293 cells.[42]

Due to its involvement in familial and sporadic PD and the 
presence of a drugable kinase domain, LRRK2 has become 
an attractive pharmacological target. Initial studies focused 
on LRRK2 kinase activity as a pathological trigger.[43] Subse-
quent investigations also pointed to protein expression levels, 
focusing on posttranslational modifications such as phosphoryl-
ation at serine residues Ser910 and Ser935, located prior to the 
leucine-rich domain of LRRK2.[43b] With a view on therapeutical 

Adv. Sci. 2018, 1800927

Table 2.  Results for the comparison between LRRK2-G2019S and WT.

Assay and  
time point

Features after selection AUC [mean ± std] Accuracy [%] Sensitivity [%] Specificity [%]

Cell death 2w 11 88.5 ± 2.2 81 81.9 80.1

Cell death 3w 6 90.1 ± 3.9 85.8 81.6 89.3

Mitochondrial assay 2w 21 63.4 ± 4 59.8 46.5 71.5

Mitochondrial assay 3w 21 56.5 ± 4.9 54.9 39.4 69.1

Morphometric analysis 2w 16 77.9 ± 3.3 70.6 70.4 70.8

Morphometric analysis 6w 16 79.2 ± 3.5 75.1 63.1 84.5

Table 3.  Results for the comparison between LRRK2-G2019S Inh2 and LRRK2-WT Inh2.

Assay and time point Features after selection AUC [mean ± std.] Accuracy [%] Sensitivity [%] Specificity [%]

Cell death 2w 11 81.1 ± 2.4 67.9 66.1 70

Cell death 3w 6 74.1 ± 4.1 67.5 67 68

Mitochondrial assay 2w 21 71.7 ± 3.1 66.7 84.6 46.2

Mitochondrial assay 3w 21 65.1 ± 3.7 62.2 83.8 36.1

Morphometric analysis 2w 20 52.2 ± 5.7 54.1 54.7 53.6

Morphometric analysis 6w 14 67.7 ± 4.1 62.4 80.5 38.5
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application, we used Inh2 as a proof of concept to gain some 
mechanistic insights. In our set-up, Inh2 rescued dopamin-
ergic expression but not mitochondrial and viability abnormali-
ties. The fact that LRRK2-G2019S, the most active mutation in 
increasing kinase activity,[43b] is not fully penetrant suggests 
that its pathological function comprises of additional pathways. 
Permissive genetic background, due to cumulative genetic vari-
ants, might mediate and enhance LRRK2-induced neurodegen-
eration. From this perspective, proper patient stratification is 
essential for the identification of therapeutic choices with maxi-
mized effect probability. For example, trafficking of dopamine 
receptor 1 and 2 seems to be affected by LRRK2-G2019S leading 
to alterations in signal transduction.[44] This might result in 
resistance to the neurotrophic effect of dopamine receptor 
antagonists that could be preliminary tested for therapy prioriti-
zation. The possibility of using 3D in vitro testing to stratify PD 
patients for proper drug administration is a key opportunity to 
bring the present work to clinical application.

Despite its advantages, 3D microfluidic systems still pre-
sent several limitations including proper control of critical fac-
tors, for example, oxygen tension, pH, and gradient-dependent 
effects within the matrix. Thus, the applicability for drug 
screening purposes is currently still a proof-of-concept, which 
needs to be further validated. Moreover, in our current set-
up, only neurons were assessed, yet other cell types may be 
affected and contribute to PD pathology.[45] Cocultures of var-
ious iPSC-derived neural cells will be important to assess cell  
and noncell autonomous effects. hNESC-derived neurons 
successfully recapitulate hallmarks of LRRK2 pathogenesis 
including degeneration, cell loss, and mitochondrial impair-
ment. However, we did not detect α-synuclein accumulation 
as previously observed.[33] The improved microenvironment 
seems insufficient in overcoming the limitation of mirroring 
robust α-synuclein accumulation within 6w. A major challenge 
is to comprehensively recapitulate PD pathology in vitro over a 
short time-course, whereas in vivo, this takes decades. A more 
thorough recapitulation might come with the administration 
of aging-associated stressors such as DNA damaging agents 
or oxidative stress triggers.[46] Further studies are necessary in 
this aspect and will certainly fuel our understanding of disease 
pathogenesis and options for drug discovery.

4. Experimental Section
Cell Lines: In this paper, the cell lines used for all the experiments, 

unless otherwise indicated, are described in Figure S1A (Supporting 
Information). Two lines were obtained from two healthy individuals and 
two lines from two PD patients carrying the LRRK2-G2019S mutation. 
To create the isogenic lines, the mutation was either corrected or 
introduced. From Figures 1 to 3 and in the Supporting Information, 
the grouping for the lines was done according to the LRRK2 sequence 
(LRRK2-WT or LRRK2-G2019S), independently of the genetic background 
(healthy or PD). Only in Figure 4, the genetic background of the lines 
was taken into account. In Figure S3A,B (Supporting Information), 
the microarray analysis was performed in hNESC from six healthy 
individuals and six PD patients carrying LRRK2-G2019S.

The hiPSC-derived hNESCs were generated and cultured as previously 
described.[16] For the Healthy 2 line, the footprint-free isogenic LRRK2-
G2019S cell pair was established using CRISPR/Cas9 and piggyBac.[47] 
Besides the p.G2019S (c.G6055A) mutation inserted into the wild type 

LRRK2 locus, a silent mutation (c.A6087T) was also introduced to convert 
TAAA into TTAA that is required for piggyBac insertion and release. To 
make the wild type control  an authentically isogenic control, the silent 
mutation (c.A6087T) was introduced into wild type hiPSC as well, but 
without the p.G2019S mutation.  The described LRRK2-G2019S isogenic 
cells differed only by LRRK2-G2019S from the Healthy2 line and the pair 
underwent the same procedure of editing and subcloning.

For cultivation, the hNESC derived from iPSC of two PD patients 
and two healthy individuals and their isogenic controls were cultured 
in N2B27 medium: Dulbecco’s modified Eagle’s medium-F12 (Gibco)/
Neurobasal (Gibco) 50:50 supplemented with 1:200 N2 (Invitrogen), 
1:100 B27 lacking vitamin A (Invitrogen), penicillin/streptomycin, and 
glutamine (Invitrogen). 3 × 10−6 m CHIR 99  021 (Axon), 0.5 × 10−6 m 
purmorphamin (PMA), (Enzo Life Science), and 150 × 10−6 m ascorbic 
acid (Sigma) were added. Cells were maintained in Matrigel-coated 
plates. At a confluence of 70–80%, cells were detached using 
Accutase (Life Technologies) for 3 min, collected by centrifugation and 
resuspended in 80% Matrigel (BD Bioscience). 27 000 cells were loaded 
in microfluidic OrganoPlates (Mimetas) in 0.8 µL per bioreactor. The 
media perfusion was achieved by gravity, with an average fluid flow of 
1.5 µL h−1.

To achieve neuronal differentiation, cells were cultured in N2B27 
medium supplemented with 10  ng mL−1 brain-derived neurotrophic 
factor (Peprotech), 10  ng mL−1 glial cell-derived neurotrophic factor 
(Peprotech), 1  ng mL−1 transforming growth factor-β3 (Peprotech),  
200 × 10−6 m ascorbic acid, and 500 × 10−6 m dibutyryl cyclic-AMP 
(Sigma-Aldrich). For the first 6 days, 1 × 10−6 m PMA was also added 
and the media was changed every second day. From day seven onward, 
media without PMA was changed every fourth day (Figure 1A).

For 2D neuronal differentiation, 10  000 cells per well were seeded 
on Matrigel-coated 96 well cell carrier plates (PerkinElmer). The same 
differentiation protocol used in the OrganoPlates was applied.

For drug treatments, differentiation media containing 0.5 × 10−6 m  
LRRK2 Inh 2 (Merck Chemicals, CZC-25  146) or dimethyl sulfoxide 
(DMSO) (Sigma) as vehicle were added at every media change.[22] The 
final DMSO concentration in the media was 0.1% for Inh2 and vehicle. 
In this paper, cells treated with DMSO were labelled as LRRK2-G2019S 
or LRRK2-WT.

Microarray Generation and Analysis: RNA was extracted from six 
healthy and six PD LRRK2-G2019S patient-hNESC lines using miRNA 
easy kit following the manufacturer’s instructions (Qiagen). Samples 
were processed with EMBL Genomics Core Facility using Affymetrix 
Human Gene 2.0 arrays. Differential expression was analyzed in the R 
statistical programming framework (R Development Core Team 2011) 
using the RankProduct method (Breitling et  al., 2004). The data are 
accessible under the GEO accession number GSE101534. The Heat 
map shows 29 of 865 differentially expressed genes between healthy 
individuals and patients that overlap within gene lists from the Human 
MitoCarta2.0.

Mitochondria Live Imaging: Mitochondrial membrane potential (ΔΨ) 
was assessed with TMRM (Thermo Scientific). Neurons differentiated 
for 2w and 3w in OrganoPlates were subjected to TMRM (4 × 10−9 m) 
to analyze for their mitochondrial membrane potential, along with 
MitoTracker (1:10 000) Green (Invitrogen). In addition, cells were 
costained with Hoechst (1:1000) and Cell Mask (1:5000) to visualize 
nuclei and cell bodies, respectively (Invitrogen). Cells were incubated for 
30 min at 37 °C. Fluorescence images were acquired on Opera confocal 
microscope (PerkinElmer).

Immunofluorescence Staining: In both 3D and 2D groups, neuronal 
cultures were fixed with 4% paraformaldehyde (PFA) in 1x phosphate 
buffer (PBS) overnight at 4  °C. After 3 washes in PBS, cells were 
permeabilized for 15  min in 0.3% Triton-X100 in PBS at RT. After 
blocking for 1 h (2% fetal bovine serum, 2% bovine serum albumin, 
0.1% Triton-X100), the first antibodies were incubated overnight at room 
temperature. A combination of the appropriate secondary antibodies 
(Invitrogen) was then added for an additional 2 h at room temperature. 
Cells were analyzed by the neuronal marker Tuj1 (Millipore), the 
dopaminergic marker TH (Santa Cruz Biotechnology), and the dye 
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Hoechst. The semiquantitative expression of LRRK2 phosphorylated at 
the serine 935 (pS935) (Abcam) and α-synuclein phosphorylated at the 
serine 129 (pS129) (Abcam) was assessed.

To evaluate cell viability in 3D, calcein and ethidium homodimer 
costaining was used (Life Technology). Neurons were incubated for 
45 min and subsequently fixed with 4% PFA overnight at 4 °C to perform 
CC3 (Cell Signaling Technology). Fluorescence images were acquired on 
Opera confocal microscope (Perkin Elmer) with a 20× Objective.

Image Analysis of Morphometric Assays: Immunofluorescence four 
channel 3D images of hNESC derived neuronal cultures in OrganoPlates 
were analyzed in Matlab (2017a, Mathworks). The developed custom 
image-analysis algorithm automates four major steps, namely: mosaic 
stitching, segmentation of bioreactors, segmentation of nuclei and 
neurons, and feature extraction.

For stitching, normalized cross correlations between overlapping 
image sections were computed and positions of the local maxima were 
used to return x and y offsets. Positioning of images in the mosaic was 
implemented accordingly, using translation.

Bioreactors were segmented based on fluorescence intensities in 
Hoechst, Alexa488, Alexa568, and Alexa647 channels. For preprocessing, 
each channel was average filtered with a square-shaped structuring 
element of side length 5 and maximum projection. A first rough 
bioreactor segmentation to refine the bioreactor mask was used to 
remove false-positive pixels and to leverage the detection of vertical 
linear structures in the microfluidic device. To remove sparse cellular 
structures, the rough bioreactor mask was eroded with a disk-shaped 
structuring element of radius 5. Connected components with less than 
1000 pixels were removed. To enlarge the bioreactor mask, dilatation 
with a disk-shaped structuring element of radius 20 was applied. To 
close vertical gaps, the mask was dilated with a vertical rod-shaped 
structuring element with a height of 101 and width 1. To remove 
potentially remaining false-positive structures in microfluidic channels, 
erosion with a vertical rod-shaped structuring element of height 501 and  
width 1 was applied. Clipped objects with less than 100  000 pixels 
were removed. To detect the phase guide, connected components were 
identified using the function bwconncomp—resulting in three blocks 
in an increasing manner from left to right. The middle block with index 
2 was defined as phase guide. Next, the 2D- bioreactor mask was 
projected to all planes of the 3D-bioreactor mask and the phaseguide 
was clipped to the lower eight planes. Segmentation of the Matrigel 
channel (MC) and perfusion channel (PC) was based on the fact that 
the MC is located to the left of the phaseguide while the PC is located 
on the right side. The tool used for this step is the Matlab function 
imreconstruct, which reconstructs objects within a limiting mask, 
provided that they contain corresponding pixels in a seed mask. The 
limiting mask in both cases was the complement of the bioreactor mask. 
For reconstruction of the MC, the seed mask was created by dilating 
the phaseguide mask with the structuring element [1 1 0]. Similarly, 
dilatation with the structuring element [0 1 1] was used to create a seed 
mask for the reconstruction of the PC.

After segmenting the bioreactor, nuclei and neurons were also 
segmented. Image preprocessing for segmentation of nuclei was 
calculated via difference of Gaussians. Briefly, a foreground image was 
computed by convolving the raw Hoechst channel with a Gaussian 
filter of size 10 and standard deviation 2. Similarly, for background 
images, a Gaussian filter of size 60 and standard deviation 20 was 
used. The difference was computed by substracting the background 
from the foreground. The first rough-nuclei mask was defined by 
pixels with gray tone values larger than 10. To refine the nuclei mask, 
pixels overlapping with the OrganoPlate mask were removed and only 
connected components with at least 200 pixels were retained. To classify 
nuclei pixels based on fluorescence intensity, the raw Hoechst channel 
was preprocessed via average filtering with a square-shaped structuring 
element of side length 5. Pixels overlapping with the nuclei mask and 
with values above 400 were assigned to the pyknotic-nuclei mask. The 
remaining nuclei mask pixels were assigned to the normal nuclei mask.

For the segmentation of neurons, a strategy combining global and 
local thresholding was implemented. For global thresholding, image 

preprocessing was performed via low pass filtering. For this purpose, 
the raw Tuj1 channel was convolved with a Gaussian filter of size 
10 and standard deviation 3. The global neuronal mask is defined by 
threshold 150. For local thresholding, a difference of Gaussians was 
applied in the preprocessing step. Precisely, the background defined 
via convolution with a Gaussian filter of size 20 and standard deviation 
6 was substracted from the foreground defined via convolution with a 
Gaussian filter of size 10 and standard deviation 3. The local neuronal 
mask is defined by those pixels with values larger than 3. The concepts 
of global and local thresholding were combined by retaining those pixels 
in the neuronal mask, which were detected by at least one of these 
methods. For refining the neuronal mask, connected components with 
less than 200 pixels were removed.

To analyze neuronal fragmentation, the concept of erosion was 
used. Indeed, the surface of fragmented objects is larger than the 
surface of nonfragmented objects as compared to their cumulated 
volumes. For the analysis of fragmentation in the TH channel, an 
additional mask was defined by preprocessing the raw TH channel via 
convolution with a Gaussian filter of size 10 and standard deviation 1,  
and thresholding of this image by pixel value 100. Both masks were 
eroded with a 3D-structuring element corresponding to a center pixel 
and its 6-connected neighborhood. Furthermore, the surface masks were 
computed by subtracting eroded masks from corresponding original 
masks.

Some of the extracted features are summarized in Table 1.
Image Analysis for the Mitochondrial Assays: The custom image 

analysis algorithm developed for the processing of TMRM assays 
automates the same key steps as above. Since a different staining 
was used as compared to the morphometric assays, the first raw 
segmentation of the OrganoPlates was based on the rule OrganoPlate 
Mask = 10 < TMRMmax  <  30 or 30 < Hoechstmax  <  200 and 
MitoTrackerGreenFMmax > 15, where subscript max refers to maximum 
projections of size 5 average filtered raw images. The refinement of the 
OrganoPlate mask was done as described above.

The nucleus mask was defined by global thresholding (>100) in the 
raw Hoechst channel. Pixels which were not included in the OrganoPlate 
mask were removed. The CellMask was defined via a combination of 
local and global thresholding. Large and bright cellular structures were 
identified via thresholding on the raw CellMask channel (>400). Smaller 
cellular structures were detected via local thresholding by applying a 
difference of Gaussians to the raw CellMask channel. The foreground 
image was computed via Gaussian convolution with size 100 and 
standard deviation 5. The subtracted background image was defined via  
Gaussian convolution of size 100 and standard deviation 30. The cell 
mask was defined via thresholding of this difference of Gaussians 
(>10) and by removing pixels assigned to the OrganoPlate mask. The 
mitochondrial mask was defined via a difference of Gaussians. For the 
foreground image, the Gaussian size was set to 10 and the standard 
deviation to 1. For the subtracted background, a Gaussian of size 10 and  
standard deviation 3 were used. A first raw mitochondria mask was 
defined via thresholding of this difference of Gaussians (>30). To refine 
the mitochondria mask, connected components with less than 5 or 
more than 500 pixels, and the OrganoPlate mask were removed.

In order to leverage the morphometric analysis of mitochondria, the 
surface of mitochondrial-connected components and the corresponding 
mitochondrial bodies were defined via erosion of the mitochondria 
mask with a 3D-structuring element corresponding to a pixel and its 
6-connected neighborhood. The skeletonization of the mitochondrial 
mask was performed using established methods.[48] The extracted 
features are summarized in Table 1.

Image Analysis for the Cell Death Assays: The custom image 
analysis algorithm developed for the analysis of Live/Dead assays 
automates the same key steps as above. The first raw segmentation 
of OrganoPlate bioreactors was based on the rule OrganoPlate Mask 
= 50 < Calceinmax  <  300, where subscript max refers to the maximum 
projection of size 5 average filtered raw Calcein images. For the 
refinement of the OrganoPlate mask the size of the structuring element 
used for closing vertical gaps was set to height 201 and width 1 and 
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the size of the structuring element used for the subsequent erosion was 
set to height 3001 and width 1. In addition, the mask was opened with 
the function imopen, using a disk-shaped structuring element of radius 
20 and dilated using a disk-shaped structuring element of radius 22.

Segmentation of nuclei was based on global thresholding on a 
difference of Gaussians of the Hoechst channel. The foreground image 
of the difference of Gaussians was computed via a Gaussian kernel of 
size 10 and standard deviation 2. The subtracted background image 
was returned from Gaussian convolution using size 60 and standard 
deviation 20. The nuclei mask was defined via thresholding (>50). Next, 
the nuclei mask was refined by excluding pixels from the OrganoPlate 
mask and by removing connected components with less than  
200 pixels. To define the mask of EH-positive pixels, the corresponding 
channel was low-pass filtered using a Gaussian filter of size 10 and 
standard deviation 3. Next, thresholding was applied (>500) and 
pixels overlapping with the OrganoPlate were excluded. For detecting 
CC3 positive pixels, the raw CC3 channel was low-pass filtered with a 
Gaussian of size 10 and standard deviation 3. The threshold was set to 
250 and in the resulting mask, pixels overlapping with the OrganoPlate 
or nucleus masks were excluded. Furthermore, connected components 
with less than 20 pixels were removed. For the detection of Calcein-
positive pixels, an approach combining global and local thesholding 
was used. For global thresholding, the raw Calcein channel was low-
pass filtered with a Gaussian of size 10 and standard deviation 1, 
and the threshold was set to 50. For local thesholding, a difference of  
Gaussians was computed on the Calcein channel. The foreground Gaussian 
was set to size 20 and standard deviation 1. The background Gaussian 
was set to size 20 and standard deviation 5. The threshold was set 
to 10. The local and global Calcein masks were combined via Boolean 
OR operation and pixels overlapping with the nuclei mask or the 
OrganoPlate mask were removed from the Calcein mask. The live mask 
was defined by excluding the nuclei mask from the Calcein mask and 
by removing connected components with less than 200 pixels. The CC3 
live mask was defined via Boolean operations using the Calcein mask, 
the not nuclei mask, and the CC3 mask. Extracted features are shown 
in Table 1.

LDH Viability Test: Cell death was assessed in 3D microfluidic 
devices at 3 weeks of neuronal differentiation by measuring the 
amount of LDH released into cell culture media by plasma membrane-
damaged cells. The assay was conducted following manufacturer’s 
instructions (Pierce LDH Cytotoxicity Assay kit, Thermo Scientific). 
Briefly, the absorbance was measured at 490 and 680 nm (background 
signal from the instrument). To calculate % of cytotoxicity, for each 
experiment the LDH activity of the spontaneous release control (water-
treated) was subtracted from the LDH activity of the lysis buffer-treated 
samples and multiply by 100 in the case of the LRRK2-WT cells. The 
increase in the release of LDH in LRRK2-G2019S was expressed as % 
of LRRK2-WT. The experiment was performed in quadruplicate, nine 
times in LRRK2-WT and LRRK2-G2019S lines. Technical replicates were 
averaged.

Zn Concentration Determination: Zn concentration was evaluated in 
the media collected in the outlet well of the bioreactors over the course 
of the neuronal differentiation. 200 µL of medium outflow was collected 
into 2 mL polypropylene vials (Nalgene cryogenic vials, Merck) for each 
condition at 3 different time points (1st, 3rd, and 6th week). 20  µL 
of nitric acid (HNO3) 65% were added for sample stabilization. Prior 
instrumental analysis, these samples were digested at 60  °C for 48 h  
in 200  µL of 1  +  1 mixture of 30% H2O2 s.p. and 65% HNO3 s.p. 
(Merck, Darmstadt, Germany). The obtained clear solutions were then 
diluted with milliQ water up to 2 mL. Concentrations of Zn in digested 
media outflow samples were determined by inductively coupled 
plasma mass spectrometry (Agilent 7900 series, Tokyo, Japan) under 
the following operating parameters: forward power 1550W, plasma 
gas flow 15.0 L min−1, carrier gas flow 0.95 L min−1, dilution gas flow  
0.1 L min−1, sample depth 8.0  mm, He gas flow 4.5  mL min−1, and 
energy discrimination 5  V. The isotope monitored was Zn66 and the 
isotopes of internal standards 103Rh and 193Ir. Because of the sample 
preparation, the Zn levels were assessed independently from the metal 

oxidation state. Time-dependent quantification of Zn was expressed 
as ng mL−1. The experiment was performed three times and the 
media of four technical replicates was pulled each time. Healthy1 and 
Healthy1-Mut lines (see panel Figure S1A, Supporting Information) 
were used.

Mitochondrial Genome Analysis: In order to collect sufficient material, 
this analysis was performed in 3D thick cultures embedded in Matrigel 
in a 24-well plate with inserts as previously described.[9] 1 million 
hNESC were seeded inside the inserts in 50% Matrigel. mtDNA copy 
number analysis was performed according to a previously published 
protocol using TagMan probes (Applied Biosystems) targeting MT-ND1 
and the nuclear gene B2M.[49] In addition, the multiplex real-time PCR 
assay was employed to quantify 7S DNA relative to MT-ND1.[50] 7S 
DNA is a DNA strand that is incorporated in the D-Loop region during 
transcription and replication of the mitochondrial genome and can 
therefore serve as an indicator of “active” mtDNA molecules.[51] The 
experiment was performed five times, in triplicates, with all the lines 
in Figure S1A (Supporting Information). The technical replicates were 
averaged.

Multivariate Classification Methods: To study the potential of the 
described assays in robustly discriminating the different groups, 
multivariate classification methods were used. The performance was 
first measured in terms of accuracy in classification, sensitivity, and 
specificity. However, since the dataset includes different numbers 
of samples per group, a ROC analysis was additionally performed, 
which measures the true-positive rate (sensitivity) against the false-
positive rate (specificity). From the generated ROC curves, the 
area under the ROC curve (AUC) was computed. AUC is a reliable 
measure of performance, which takes the skewness in the sample 
distribution into account. For the binary classification between 
the groups of interest, support vector machines were applied with 
a radial basis function (RBF) kernel to boost accuracy. The results 
were evaluated using a fivefold cross validation. We randomly split 
the set of LRRK2-G2019S and LRRK2-WT samples in two subsets: 
a training set that comprises 4/5 of the samples, and a test subset 
with the remaining 1/5 samples. Then, the classifier was trained 
using the training set, and its accuracy was estimated by testing 
its performance on the test set. This was run for the five different 
combinations of training and test sets. This process was repeated 
200 times to ensure statistical robustness for both accuracy and 
AUC estimation. We also address the tendency of the RBF kernel to 
overfit during the training process. Hence, we additionally trained 
the classifier using a wide range of values of the two parameters 
the classifier depends on. For the parameter that controls the 
overfitting, we generated 21 values ranging from 10−5 to 105,  
and for the parameters that scales the RBF kernel, we produced 
ten values between 10−3 and 10. Equal spacing was ensured 
logarithmically. For the two comparisons presented in the current 
paper (LRRK2-G2019S vs LRRK2-WT and LRRK2-G2019S Inh2 vs 
LRRK2-WT Inh2), all considerations previously stated helped ensure 
the validity of the obtained results for cell death and mitochondrial 
assays at their two time points, since there was a fair trade-off 
between number of samples and number of features. Nevertheless, 
for the morphometric analysis assay, the number of samples for each 
comparison was insufficient compared to the number of features, 
which might have led to strong overfitting. Therefore, we decided 
to additionally proceed with a stage of feature selection before the 
classification. We took advantage of the existing high correlation 
between some of the designed features in the morphometric assay 
by removing one of each pair of highly correlated features at a time. 
We repeated this process iteratively until the remaining features 
produced cross-correlations below the given threshold. For the 
generation of the results, we used Matlab (R2017a).

Statistics: In all the image analysis data, every data point 
corresponds to the analysis of the cells in one entire bioreactor 
chamber. The overall number of bioreactors analyzed is indicated in 
the figure legend. The data extracted from the image analysis was 
not normalized but it was kept as a raw value. Outliers were removed 
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using Matlab according to the interquartile rule where an outlier is 
bigger than the third quartile plus the interquartile range (1 × IQR) 
or smaller than the first quartile minus 1 × IQR. The statistical 
analysis was performed in R using either Mann Whitney test when 
2 conditions were compared or Kruskal–Wallis when more than 
2 conditions were compared. Dunn’s post hoc test was performed 
on selected comparisons indicated in the figure legends. Adjustment 
of p-values was performed using Benjamini–Hochberg method 
based on the number of features analyzed and on the number of 
comparisons performed. Graphs were generated in GraphPad Prism 
software. Levels of significance are as follows: *p ≤ 0.05, **p ≤ 0.01,  
***p ≤ 0.001. α value was for all statistics 0.05. Data in dot plots 
are expressed as mean values  ±  S.E.M. In all box-plots the whiskers 
represent the minimum and maximum values of the distribution. To 
analyze the rescue size effect given by Inh2 or gene editing, a bootstrap 
method with 1 × 105 iterations and ten randomly chosen samples per 
iteration was used.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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