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bogdan.aman@iit.academiaromana-is.ro, gabriel@info.uaic.ro

Abstract
We present an expressive but decidable first-order system (named MAV1) defined by using the calculus
of structures, a generalisation of the sequent calculus. In addition to first-order universal and existential
quantifiers the system incorporates a de Morgan dual pair of nominal quantifiers called ‘new’ and ‘wen’,
distinct from the self-dual Gabbay-Pitts and Miller-Tiu nominal quantifiers. The novelty of the operators
‘new’ and ‘wen’ is they are polarised in the sense that ‘new’ distributes over positive operators while
‘wen’ distributes over negative operators. This greater control of bookkeeping enables private names to be
modelled in processes embedded as predicates in MAV1. Modelling processes as predicates in MAV1 has
the advantage that linear implication defines a precongruence over processes that fully respects causality
and branching. The transitivity of this precongruence is established by novel techniques for handling
first-order quantifiers in the cut elimination proof.
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1 Introduction

This paper introduces a first-order non-commutative logic, of significance for modelling processes,
expressed in a formalism called the calculus of structures [17, 18, 34, 36, 37]. The calculus of
structures is effectively a term rewriting system modulo a congruence that can express proof systems
combining connectives for sequentiality and parallelism. The calculus of structures was motivated by
a desire to understand why pomset logic [30] could not be expressed in the sequent calculus. Pomset
logic is inspired by pomsets [29] and linear logic [15], the former being a model of concurrency
respecting causality [33], while the latter can be interpreted in various ways as a logic of resources and
concurrency [9, 21, 42]. Acknowledging connections between pomsets, linear logic and concurrency,
it is natural to consider the calculus of structures in the context of concurrency theory.

Initial investigations [7] relate a basic process calculus with parallel composition (P ‖ Q) and
action prefix (α.P) to a proof system in the calculus of structures called BV [17]. In that work, a
logical characterisation of completed traces is established using provability. As a consequence of this
logical characterisation and cut elimination for BV, if P implies Q and P has a completed trace then
Q has the same completed trace. Thereby, linear implication is strictly finer than completed trace
inclusion. Strictness follows since some processes related by linear implication are not related by trace
inclusion. For example, a desirable property of linear implication is that autoconcurrency [4, 40, 41]
is avoided, since the embedding of α ‖ α does not logically imply the embedding of α.α. Avoiding
autoconcurrency indicates that linear implication fully respects the causal order of events. Preorders
that respect causality are significant for various applications, not limited to soundly reasoning about
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processes deployed on large high-availability distributed systems where a consensus on interleavings
is infeasible but causality is respected [11, 22].

Recently, BV was extended with additives to obtain the system MAV [20], enabling choice in
processes to be modelled. Results concerning multi-party compatibility and subtyping in a session
type system inspired by Scribble [19] have been established using MAV [12]. The current paper
continues this line of enquiry by modelling name passing processes in a conservative extension of
MAV with first-order quantifiers, named MAV1. The system MAV1 is also a conservative extension
of first-order multiplicative additive linear logic MALL1 [23] with mix. A novelty is that MAV1
includes a pair of de Morgan dual nominal quantifiers pronounced new and wen and written И and
Э respectively. In a processes-as-predicates embedding [16], И models new name restriction in the
π-calculus. The dual nominal quantifier Э is essential for defining linear implication and models the
input of private names in a processes-as-predicates embedding for the πI-calculus [32].

Logically speaking, nominal quantifiers И and Э sit between ∀ and ∃ such that ∀x.P( Иx.P and
Иx.P( Эx.P and Эx.P( ∃x.P, where( is linear implication. The quantifier И is similar in some
respects to ∀, whereas Э is similar to ∃. A crucial difference between ∃x.P and Эx.P is that variable
x in the latter cannot be instantiated with arbitrary terms, but only ‘fresh’ names introduced by И.

The need for new quantifiers. We illustrate why neither universal quantification nor an estab-
lished self-dual nominal quantifier [14, 25, 28] are capable of soundly modelling name restriction in a
processes-as-predicates embedding. We argue that, since trace inclusion is considered to be amongst
the coarsest preorders on process [39], it makes sense to impose a minimum requirement that linear
implication cannot relate two processes that are unrelated by trace inclusion.

In the following, observe that R1 = νx.(ax ‖ bx) is a π-calculus process that can output a fresh
name twice, once on channel a and once on channel b; but cannot output two perceivably distinct
names in any execution. In contrast, observe that R2 = νx.ax ‖ νx.bx is a π-calculus process that
outputs two distinct fresh names before terminating, but cannot output the same name twice in any
execution. The processes R1 and R2 are unrelated by trace inclusion in either direction.

For an encoding using universal quantifiers for name restriction, processes R1 and R2 are re-
spectively encoded as predicates P1 = ∀x.

(
ax ‖ bx

)
and P2 = ∀x.ax ‖ ∀x.bx, where operator ‖ is

overloaded to connect parallel composition and par from linear logic. Unfortunately, the implication
P2 ( P1 is provable. However, R2 can output two perceivably distinct names but R1 cannot, so
implication would not be sound with respect to trace inclusion. Additionally, we must also avoid the
following diagonalisation property [25]: ∀x.∀y.P(x, y)( ∀z.P(z, z).

The self-dual nominal quantifiers of either Gabbay-Pitts [28] or Miller-Tiu [25, 14], as recently
investigated in the calculus of structures [31], do successfully avoid the above diagonalisation
property. Unfortunately, rather surprisingly, encoding private names using any of these self-dual
nominal quantifiers, say ∇, leads to the following problem. Suppose processes R1 and R2 are encoded
by the respective predicates Q1 = ∇x.(ax ‖ bx) and Q2 = ∇x.ax ‖ ∇x.bx. In this case, the linear
implication Q1 ( Q2 is provable. This implication is also unsound, since R1 has a trace that outputs
two identical names, whereas R2 admits no such trace.

Our new quantifier И, distinct from the Gabbay-Pitts operator, addresses the above limitations
of universal quantification and established self-dual nominal quantifiers. In addition to avoiding
diagonalisation, our И quantifier does not distribute over parallel composition in either direction. In
MAV1, the predicates Иx.(ax ‖ bx) and Иx.ax ‖ Иx.bx are, correctly, unrelated by linear implication.

Outline. For a new logical system it is necessary to justify correctness, which we approach
in proof theoretic style by cut elimination. Section 2 defines MAV1 and explains cut elimination.
Section 3 illustrates a processes-as-predicates embedding in MAV1 and explains that linear implic-
ation defines a branching-time preorder that respects causality. Section 4 presents a more detailed
explanation of the rules for the nominal quantifiers and the novel strategy of the cut elimination proof.
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2 Syntax and Semantics of Predicates in MAV1

In this section we present the syntax and semantics of a first-order system expressed in the calculus of
structures, with the technical name MAV1. We assume that the reader has a basic understanding of
term-rewriting systems [24].

A term-rewriting system requires an abstract syntax, defined in Fig. 1. The rewrite rules, in Fig 3,
define rules that can be applied to rewrite a predicate of the form on the left of the long right arrow
to the predicate on the right. All rewrite rules can be applied in any context, i.e. MAV1 predicates
from Fig. 1 with a hole of the following form C{ }F { · } | C{ } � P | P � C{ } |

Q

x.C{ }, where
� ∈ {;, ‖,⊗,&,⊕} and

Q

∈ {∃,∀,И,Э}.

P ::= α (atom)
α (co-atom)
I (unit)
∀x.P (all)
∃x.P (some)
Иx.P (new)
Эx.P (wen)
P & P (with)
P ⊕ P (plus)
P ‖ P (par)
P ⊗ P (times)
P ; P (seq)

Figure 1 MAV1 syntax.

Further to rewriting according to rules, the term-rewriting system
is defined modulo a congruence, where a congruence is an equivalence
relation that holds in any context. The congruence, defined in Fig. 2,
makes par and times commutative and seq non-commutative in gen-
eral. The congruence enables α-conversion for quantifiers. In addition,
equivariance allows names bound by successive nominal quantifiers to
be swapped.

As standard, we define a freshness predicate such that a variable
x is fresh for a predicate P, written x # P, if and only if x is not a
member of the set of free variables of P, such that all quantifiers bind
variables in their scope. We also assume the standard notion of capture
avoiding substitution of a variable for a term. Terms may be constructed
from variables, constants and function symbols. When predicates model
process in the π-calculus, atoms are pairs of terms, where the first term
represents a channel and the second a message.

We postpone a discussion on the rules until after we introduce the
notion of a proof and explain cut elimination in the next section.

2.1 Linear Implication and Cut Elimination

This section confirms that MAV1 is a consistent logical system, as estab-
lished by a cut elimination theorem. Surprisingly, to date, the only direct proof of cut elimination
involving quantifiers in the calculus of structures is for a self-dual nominal quantifier [31] distinct
from any quantifier in MAV1. Related cut elimination results involving first-order quantifiers in the
calculus of structures rely on a correspondence with the sequent calculus [6, 35]. However, due to
the presence of the non-commutative operator seq there is no sequent calculus presentation [37] for
MAV1; hence we pursue here a direct proof.

A derivation is a sequence of zero or more rewrite rules from Fig. 3, where the congruence in
Fig. 2 can be applied at any point. We are particularly interested in special derivations, called proofs.

I Definition 1. A proof in MAV1 is a derivation P −→ I from a predicate P to the unit I. When such
a derivation exists, we say that P is provable, and write ` P.

(P, ‖, I) and (P,⊗, I) are commutative monoids

Q

x.P ≡

Q

y.(P{y/x}) if y #

Q

x.P (α-conversion)

(P, ;, I) is a monoid Иx.Иy.P ≡ Иy.Иx.P (equivariance) Эx.Эy.P ≡ Эy.Эx.P (equivariance)

Figure 2 Congruence (≡) for MAV1 predicates. For α-conversion

Q

∈ {∃,∀,И,Э} is any quantifier.

CONCUR 2016
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C{ α ‖ α } −→ C{ I } (atomic interaction) C{ P ‖ (Q ⊗ S ) } −→ C{ (P ‖ Q) ⊗ S } (switch)

C{ (P ; Q) ‖ (R ; S ) } −→ C{ (P ‖ R) ; (Q ‖ S ) } (sequence)

C{ (P & Q) ‖ R } −→ C{ (P ‖ R) & (Q ‖ R) } (external) C{ I & I } −→ C{ I } (tidy)

C{ (P ; Q) & (R ; S ) } −→ C{ (P & R) ; (Q & S ) } (medial)

C{ P ⊕ Q } −→ C{ P } (left choice) C{ P ⊕ Q } −→ C{ Q } (right choice)

C{ ∀x.P ‖ R } −→ C{ ∀x.(P ‖ R) } only if x # R (extrude1) C{ ∀x.I } −→ C{ I } (tidy1)

C{ ∀x.(P ; S ) } −→ C{ ∀x.P ; ∀x.S } (medial1) C{ ∃x.P } −→ C{ P{v/x} } (select1)

C{ Иx.P ‖ Эx.Q } −→ C{ Иx.(P ‖ Q) } (close) C{ Иx.I } −→ C{ I } (tidy name)

C{ Иx.P ‖ R } −→ C{ Иx.(P ‖ R) } only if x # R (extrude new)

C{ Эx.P } −→ C{ Иx.P } (fresh) C{ Иx.Эy.P } −→ C{ Эy.Иx.P } (new wen)

C{ Иx.(P ; S ) } −→ C{ Иx.P ; Иx.S } (medial new)

C{ Эx.P � Эx.S } −→ C{ Эx.(P � S ) } where � ∈ {‖, ;} (medial wen)

C{ Эx.P � R } −→ C{ Эx.(P � R) } where � ∈ {‖, ;} only if x # R (left wen)

C{ R � Эx.Q } −→ C{ Эx.(R � Q) } where � ∈ {‖, ;} only if x # R (right wen)

C
{
∀x.

Q

y.P
}
−→ C

{ Q

y.∀x.P
}

for

Q

∈ {И,Э} (all name)

C
{ Q

x.P &

Q

x.S
}
−→ C

{ Q

x.(P & S )
}

for

Q

∈ {И,Э} (with name)

C
{ Q

x.P & R
}
−→ C

{ Q

x.(P & R)
}

only if x # R for

Q

∈ {И,Э} (left name)

C
{

R &

Q

x.Q
}
−→ C

{ Q

x.(R & Q)
}

only if x # R for

Q

∈ {И,Э} (right name)

Figure 3 Rewrite rules for predicates in system MAV1. Notice the figure is divided into four parts. The first
part defines sub-system BV [17]. The first and second parts together define sub-system MAV [20]. The following
restrictions are placed on the rules to ensure the system is analytic [8].

The switch, sequence, medial1, medial new and extrude new rules are such that P . I and S . I.

The medial rule is such that either P . I or R . I and also either Q . I or S . I.

The rules external, extrude1, extrude new, left wen and right wen are such that R . I.
A derivation is a sequence of rewrites, where the congruence in Fig. 2 can be applied at any point in a derivation.
The length of a derivation involving only the congruence is zero. The length of a derivation involving one rule
from Fig. 3 is one. Given a derivation P −→ Q of length m and another Q −→ R of length n, the derivation
P −→ R is of length m + n. Unless we make it clear in the context that we refer to a specific rule, −→ is generally
used to represent derivations of any length.
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To explore the theory of proofs, two auxiliary definitions are introduced: linear negation and
linear implication. Notice in the syntax in Fig. 1 linear negation applies only to atoms.

I Definition 2. Linear negation is defined by the following function from predicates to predicates.

α = α P ⊗ Q = P ‖ Q P ‖ Q = P ⊗ Q P ⊕ Q = P & Q P & Q = P ⊕ Q

I = I P ; Q = P ; Q ∀x.P = ∃x.P ∃x.P = ∀x.P Иx.P = Эx.P Эx.P = Иx.P

Linear implication, written P( Q, is defined as P ‖ Q.

Linear negation defines de Morgan dualities. As in linear logic, the multiplicatives ⊗ and ‖ are
de Morgan dual; as are the additives & and ⊕, the first-order quantifiers ∃ and ∀, and the nominal
quantifiers И and Э. As in BV, sequential composition and the unit are self-dual.

The following proposition is simply a reflexivity property of linear implication in MAV1.

I Proposition 3 (Reflexivity). For any predicate P, ` P ‖ P holds.

The main result of this paper is the following, which is a generalisation of cut elimination to the
setting of the calculus of structures.

I Theorem 4 (Cut elimination). For any predicate P, if ` C
{

P ⊗ P
}

holds, then ` C{ I } holds.

The above theorem can be stated alternatively by supposing that there is a proof in MAV1 extended
with the extra rewrite rule: C{ I } −→ C

{
P ⊗ P

}
(cut). Given such a proof, a new proof can be

constructed that uses only the rules of MAV1. In this formulation, we say that cut is admissible.
The cut elimination proof for the propositional sub-system MAV appears in a companion journal

paper [20]. The current paper advances cut-elimination techniques to tackle first-order system MAV1,
as achieved by the lemmas in later sections. Before proceeding with the necessary lemmas, we
provide a corollary that demonstrates that one of many consequences of cut elimination is indeed that
linear implication defines a precongruence — a reflexive transitive relation that holds in any context.

I Corollary 5. Linear implication defines a precongruence.

3 Linear Implication as a Precongruence for Processes-as-Predicates

We highlight connections between MAV1 and the π-calculus. This illustrates the rationale behind
design decisions in MAV1. We assume the reader is familiar with the syntax of the π-calculus. For the
π-calculus define a processes-as-predicates embedding as follows.�

x(y).P
�
π = ∃y.(xy ; ~P�π)

�
xy.P
�
π = xy ; ~P�π ~P ‖ Q�π = ~P�π ‖ ~Q�π

~νx.P�π = Иx.~P�π ~P + Q�π = ~P�π ⊕ ~Q�π ~1�π = I

Notice action prefixes are captured using atoms consisting of pairs of first-order variables. We consider
preorders that do not observe τ actions and are termination sensitive [1, 41], hence distinguish between
successful termination and deadlock. Successful termination is indicated by a process 1, differing
from 0 typical of process calculi. For example P + 1 represents the process that may behave like P or
may successfully terminate, contrasting to P+0 which only may only proceed as P. This distinction is
useful for modelling protocols; for example, we can choose to perform no action in certain executions
to avoid deadlocking. Furthermore, 1 as a primitive process matches the unit inherited from BV.
Otherwise, the semantics are standard for the π-calculus.

CONCUR 2016
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Define labelled transitions for the π-calculus by the following deductive system, plus the symmet-
ric rules for parallel composition and choice. Function n(.) is such that n(x(y)) = n(x(y)) = n(xy) =

{x, y}, and x # P is such that x is fresh for P where z(x).P and νx.P bind x in P.

x(y).P x(y)
I P xy.P xy

I P

P A I Q

P + R A I Q P + 1 τ I 1

P A I Q

νx.P A I νx.Q
x < n(A) ‡

P A I Q

P ‖ R A I Q ‖ R

if A = x(y) or A = x(y)
then y # R

P xy
I Q

νy.P x(y)
I Q

x , y P x(z)
I P′ Q x(z)

I Q′

P ‖ Q τ I νz.(P′ ‖ Q′)
†

P xy
I P′ Q x(z)

I Q′

P ‖ Q τ I P′ ‖ Q′{y/z}

Define (symbolic weak) completed traces inductively as follows.
For any process P formed using only the unit 1, name restriction and parallel composition (i.e.
with no actions or choice) P has the completed trace I.
If P x(y)

I Q and Q has completed trace tr then P has completed trace ∀y.(xy ; tr).
If P x(y)

I Q and Q has completed trace tr then P has completed trace Эy.(xy ; tr).
If P xy

I Q and Q has completed trace tr then P has completed trace xy ; tr.
If P τ I Q and Q has completed trace tr then P has completed trace tr.

Observe that deadlocked processes have no completed trace. Contrast for example νx.x(y) ‖ 1 and
νx.x(y) + 1, where the former has no completed trace but the later has completed trace I.

Interestingly, equivariance, in Fig. 2, is a design decision in the sense that cut elimination is still
provable for a MAV1 without equivariance. However, equivariance is a requirement for modelling
private names in process calculi. Consider π-calculus process νy.νx.(zx.wy) and the completed trace
Эx.(zx ; Эy.wy) that outputs a fresh name on channel z then a separate fresh name on channel w.
` Иy.Иx.(zx ; wy) ‖ Эx.(zx ; Эy.wy) is provable only with equivariance. Hence equivariance is
necessary for the following proposition.

I Proposition 6. If a process P has completed trace tr then ` ~P�π ‖ tr.

Proof. The proof follows by induction over the structure of the derivation for a labelled transition.
We present only two inductive cases, for the communication of an input and bound output (†), and
the extrusion of a bound output over a distinct private name (‡).

Assume the induction hypotheses, ` ~P�π ‖ ∀z
(
xy ; ~P′�π

)
and ` ~Q�π ‖ Эz

(
xz ; ~Q′�π

)
. Implic-

ation `
(
~P�π ‖ ∀z.

(
xz ; ~P′�π

))
⊗

(
~Q�π ‖ Эz.

(
xz ; ~Q′�π

))
( ~P�π ‖ ~Q�π ‖ Эz.

(
~P′�π ⊗ ~Q′�π

)
is

provable as follows, using Proposition 3.(
~P�π ⊗ ∃z.(xz ; ~P′�π)

)
‖
(
~Q�π ⊗Иz.

(
xz ; ~Q′�π

))
‖ ~P�π ‖ ~Q�π ‖ Эz.

(
~P′�π ⊗ ~Q′�π

)
−→

((
~P�π ‖ ~P�π

)
⊗ ∃z (xz ; ~P′�π)

)
‖
((
~Q�π ‖ ~Q�π

)
⊗Иz

(
xz ; ~Q′�π

))
‖ Эz.

(
~P′�π ⊗ ~Q′�π

)
−→ ∃z.(xz ; ~P′�π) ‖ Иz.

(
xz ; ~Q′�π

)
‖ Эz.

(
~P′�π ⊗ ~Q′�π

)
switch and Proposition 3

−→ ∃z.(xz ; ~P′�π) ‖ Иz.
((

xz ; ~Q′�π
)
‖
(
~P′�π ⊗ ~Q′�π

))
close

−→ Иz.
(
∃z.(xz ; ~P′�π) ‖

(
xz ; ~Q′�π

)
‖
(
~P′�π ⊗ ~Q′�π

))
extrude new

−→ Иz.
(
(xz ; ~P′�π) ‖

(
xz ; ~Q′�π

)
‖
(
~P′�π ⊗ ~Q′�π

))
select1

−→ Иz.
(
(xz ‖ xz) ;

(
~P′�π ‖ ~Q′�π ‖

(
~P′�π ⊗ ~Q′�π

)))
sequence

−→ Иz.
(
(xz ‖ xz) ;

((
~P′�π ‖ ~P′�π

)
⊗

(
~Q′�π ‖ ~Q′�π

)))
switch

−→ Иz.I −→ I Proposition 3 and tidy new

Hence by Theorem 4, ` ~P ‖ Q�π ‖ ~νz.(P′ ‖ Q′)�π, as required.
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As the induction hypothesis, assume that ` ~P�π ‖ Эz.
(
xz ; ~Q�π

)
holds, where y is such that

x , y and z , y. Thereby the following proof can be constructed directly as required.�
νy.P
�
π ‖ Эz.

(
xz ;
�
νy.Q
�
π

)
= Иy.~P�π ‖ Эz.

(
xz ; Эy.~Q�π

)
by definition

−→ Иy.~P�π ‖ Эz.Эy.
(
xz ; ~Q�π

)
right wen

≡ Иy.~P�π ‖ Эy.Эz.
(
xz ; ~Q�π

)
equivariance

−→ Иy.
(
~P�π ‖ Эz.

(
xz ; ~Q�π

))
−→ Иy.I −→ I induction and tidy

The proof concludes by inductively applying Theorem 4 to each transition forming a trace. �
The above proposition also holds for a processes-as-predicates embedding for the πI-calculus [32],

where input of private names is such that
�

x(y).P
�
πI = Эy.(xy ; ~P�πI) and output of private names is

such that
�

x(y).P
�
πI = Иy.(xy ; ~P�πI). The labelled transition system for the πI-calculus, is such that

x(y).P x(y)
I P and complete traces are such that, if P x(y)

I Q and Q has completed trace tr then P
has completed trace Иy.(xy ; tr). We envision models of processes exploiting more of the expressive
power of MAV1, such as the primitives employed for modelling session types using MAV [20].

For a basic process calculus with only parallel composition and prefix the converse to Proposition 6
is known to hold [7]. The converse direction for the π-calculus relies on techniques beyond cut
elimination, hence will receive separate attention in a future paper.

Linear implication v.s. completed traces. We re-emphasise that the above completed trace
semantics is a minimal justification for design decisions. Completed traces and linear implication are
at the opposite ends of the linear-time/branching-time [39] and interleaving/causal [33] spectra.

A characteristic distinction between linear-time and branching-time preorders is in how processes
of the form α.(P + Q) and α.P+α.Q are related. For completed traces they are equivalent but for linear
implication, only the direction ` ~α.(P + Q)�π ( ~α.P + α.Q�π holds. Hence linear implication is at
the branching-time end of the spectrum.

Simulation preorders are also at the branching-time end of the spectrum. However, many simula-
tion preorders interleave events as characterised by expansion rules [26] which equate processes with
identical interleavings. For linear implication, expansion holds in one direction only. For example,
processes α.α and α ‖ α have the same interleavings, but linear implication holds only in the direction
` ~α.α�π ( ~α ‖ α�π. As a further example, processes α.(α.β ‖ β) and α.β ‖ α.β have identical
interleavings but linear implication holds only in the direction established by the following proof.�

α.(α.β ‖ β)
�
π (
�
α.β ‖ α.β

�
π =

(
α ;

((
α ; β

)
⊗ β

))
‖ (α ; β) ‖ (α ; β) by definition

−→
(
(α ‖ α) ;

(((
α ; β

)
⊗ β

)
‖ β

))
‖ (α ; β) sequence

−→
((
α ; β

)
⊗ β

)
‖ β ‖ (α ; β) interaction

−→
(
α ; β

)
⊗

(
β ‖ β

)
‖ (α ; β) switch

−→
(
α ; β

)
‖ (α ; β) interaction

−→ (α ‖ α) ;
(
β ‖ β

)
sequence

−→ I interaction

By not identifying interleavings, we argue that linear implication respects the causal order of events.
Existing notions of simulation that respect the causal order of events, such as history preserving
simulation [4, 40, 41], have not yet been extended to the setting with private names. Thereby MAV1
enables us to objectively explore the properties of fresh names in this part of the spectrum. For
example, the implication `

�
νx. (P ‖ Q{y/z})

�
π (

�
νx.(xy.P ‖ x(z).Q)

�
π is provable. However, the

converse is not provable. Intuitively, although no other process can communicate on channel x, the
processes can be distinguished by a network partition interrupting communication the private channel.

Observe that no bisimulation can be complete with respect to logical equivalence. To see this
observe that the embeddings

�
α.(β + γ) + α.β

�
π and

�
α.(β + γ)

�
π are logically equivalent; whereas
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any bisimulation distinguishes these processes. Logical equivalence, as with mutual simulation [39],
is checked using a preorder in each direction, by proving predicate (P( Q) & (Q( P).

Questions formally relating observational preorders and linear implication rely on cut elimination
for MAV1. This leads us to the cut elimination result of this paper.

4 Logical Properties of the Pair of Nominal Quantifiers

This section offers deeper insight into the nature of the nominal quantifiers И and Э, and sketches the
cut elimination proof.1 Cut elimination (Theorem 4) is achieved by advancing methods developed in
the propositional sub-system MAV [20]. A direct proof of co-rule elimination for universal quantifiers
(Lemma 11) simplifies splitting (Lemma 16), and context reduction (Lemma 20) is adapted for
existential quantifiers by working up-to substitutions. Lemmas check the interplay between nominal
quantifiers and other connectives, as illustrated by the discussion in the following subsection.

4.1 Discussion on the Rules for Nominal Quantifiers

The rules for the nominal quantifiers new И and wen Э require some justification. The close and tidy
name rules ensure the reflexivity of implication for nominal quantifiers. Using the extrude new rule
(and Proposition 3) we can establish the following proof, and its dual statement ` Эx.P( ∃x.P.

∀x.P( Иx.P = ∃x.P ‖ Иx.P −→ Иx.
(
∃x.P ‖ P

)
−→ Иx.

(
P ‖ P

)
−→ Иx.I −→ I

Using the fresh rule we can establish the following implication between new and wen.

Иx.P( Эx.P = Эx.P ‖ Эx.P −→ Иx.P ‖ Эx.P −→ Иx.
(
P ‖ P

)
−→ Иx.I −→ I

This completes the chain ` ∀x.P ( Иx.P, ` Иx.P ( Эx.P and ` Эx.P ( ∃x.P. These linear
implications are strict unless x # P, in which case, for

Q

∈ {∀,∃,И,Э},

Q

x.P is logically equivalent
to P. For example, using the fresh and extrude new rules, the following holds given x # P.

Иx.P( P = Эx.P ‖ P −→ Иx.P ‖ P −→ Иx.
(
P ‖ P

)
−→ Иx.I −→ I

Alternatively, the extrude new and fresh rules could be replaced by extending the congruence with
Иx.P ≡ P ≡ Эx.P, where x # P. However, this has the disadvantage that an arbitrary number of
nominal quantifiers can be introduced during proof search thereby jeopardising analyticity [8].

The medial new rule is particular to handling nominal quantifiers in the presence of the self-dual
non-commutative operator seq. To see why this rule cannot be excluded, consider the following.

(a ; Эx.(b ; c)) ⊗ (d ; Эx.(e ; f ))( (a ; ∃x.b ; ∃x.c) ⊗ (d ; ∃x.e ; ∃x. f )
(a ; ∃x.b ; ∃x.c) ⊗ (d ; ∃x.e ; ∃x. f )( ((a ; ∃x.b) ⊗ (d ; ∃x.e)) ; (∃x.c ⊗ ∃x. f )

Without using the medial new rule, the above predicates are provable but the following predicate
would not be provable; hence cut elimination cannot hold without the medial new rule.

(a ; Эx.(b ; c)) ⊗ (d ; Эx.(e ; f ))( ((a ; ∃x.b) ⊗ (d ; ∃x.e)) ; (∃x.c ⊗ ∃x. f )

1 Details of proofs appear in a technical report at: http://iit.iit.tuiasi.ro/TR/reports/fml1502.pdf

http://iit.iit.tuiasi.ro/TR/reports/fml1502.pdf
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In contrast, with the medial new rule the above predicate is provable, verified by the following proof.(
a ; Иx.

(
b ; c

))
‖
(
d ; Иx.

(
e ; f

))
‖ ((a ; ∃x.b) ⊗ (d ; ∃x.e)) ; (∃x.c ⊗ ∃x. f )

−→
(
a ; Иx.b ; Иx.c

)
‖
(
d ; Иx.e ; Иx. f

)
‖ ((a ; ∃x.b) ⊗ (d ; ∃x.e)) ; (∃x.c ⊗ ∃x. f )

−→
((

a ; Иx.b
)
‖
(
d ; Иx.e

))
;
(
Иx.c ‖ Иx. f

)
‖ ((a ; ∃x.b) ⊗ (d ; ∃x.e)) ; (∃x.c ⊗ ∃x. f )

−→
((

a ; Иx.b
)
‖
(
d ; Иx.e

)
‖ ((a ; ∃x.b) ⊗ (d ; ∃x.e))

)
;
(
Иx.c ‖ Иx. f ‖ (∃x.c ⊗ ∃x. f )

)
−→

(((
a ; Иx.b

)
‖ (a ; ∃x.b)

)
⊗

((
d ; Иx.e

)
‖ (d ; ∃x.e)

))
;
(
(Иx.c ‖ ∃x.c) ⊗

(
Иx. f ‖ ∃x. f

))
−→

((
(a ‖ a) ;

(
Иx.b ‖ ∃x.b

))
⊗

((
d ‖ d

)
; (Иx.e ‖ ∃x.e)

))
;
(
(Иx.c ‖ ∃x.c) ⊗

(
Иx. f ‖ ∃x. f

))
−→

((
(a ‖ a) ; Иx.

(
b ‖ ∃x.b

))
⊗

((
d ‖ d

)
; Иx.(e ‖ ∃x.e)

))
;
(
Иx.(c ‖ ∃x.c) ⊗Иx.

(
f ‖ ∃x. f

))
−→

((
(a ‖ a) ; Иx.

(
b ‖ b

))
⊗

((
d ‖ d

)
; Иx.(e ‖ e)

))
;
(
Иx.(c ‖ c) ⊗Иx.

(
f ‖ f

))
−→ (Иx.I ⊗Иx.I) ; (Иx.I ⊗Иx.I) −→ I

Notice that the above proof uses only the medial new, extrude new and tidy name rules for nominals.
These three rules are of the same form as the rules for universal quantifiers, hence the same argument
holds for the necessity of the medial1 rule.

Including the medial new rule forces the medial wen rule to be included. To see this ob-
serve that (Иx.a ; Иx.b) ⊗ (Иx.c ; Иx.d) ( Иx.(a ; b) ⊗ Иx.(c ; d) and Иx.(a ; b) ⊗ Иx.(c ; d) (
Иx.((a ; b) ⊗ (c ; d)) are provable. However, without the medial wen rule the following implication is
not provable, which would contradict the main cut elimination result of this paper.

(Иx.a ; Иx.b) ⊗ (Иx.c ; Иx.d)( Иx.((a ; b) ⊗ (c ; d))

Fortunately, including the medial wen rule ensures that the above implication is provable. A similar
argument justifies the inclusion of the left wen and right wen rules.

As with focussed proof search [3, 10], assigning a positive or negative polarity to operators
explains certain distributivity properties. Consider ‖, &, ∀ and И to be negative operators, and ⊗, ⊕,
∃ and Э to be positive operators, where seq is neuter. The negative quantifier И distributes over all
positive operators. Considering positive operator times for example, ` Иx.α ⊗Иx.β( Иx. (α ⊗ β)
holds but the converse implication does not hold. Furthermore, assuming x appears free in α and β,
Эx.α⊗Эx.β and Эx. (α ⊗ β) are unrelated by linear implication. Dually, for the negative operator par
the only distributivity property that holds for nominal quantifiers is ` Эx. (α ‖ β)( Эx.α ‖ Эx.β. The
new wen rule completes this picture of new distributing over positive operators and wen distributing
over negative operators. From the perspective of embedding name-passing process calculi in logic,
the above distributivity properties of new and wen suggest that processes should be encoded using
negative operators И and ‖ for private names and parallel composition (or perhaps dually, using
positive operators Э and ⊗), so as to avoid private names distributing over parallel composition, which
we have shown to be problematic in the introduction.

The control of distributivity exercised by new and wen contrast with the situation for universal and
existential quantifiers, where ∃ commutes in one direction over all operators and ∀ commutes with
all operators in the opposite direction. For a system with equivariance some of these distributivity
properties for И over & and ∀ are explicit rules all name, with name, left name, right name. These
rules allow И quantifiers to propagate to the front of certain contexts. In the sense of control of
distributivity, new and wen behave more like multiplicatives than additives, but are unrelated to
multiplicative quantifiers in the logic of bunched implications [27].

4.2 Preliminary Lemmas and Killing Contexts

We extend a trick employed for MAV [20] to MAV1 where with & and all ∀ receive a more direct
treatment than other operators. The proof for with has a knock on effect for the nominal quantifiers
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requiring some vacuous new and wen quantifiers to be removed; while the proof for all requires
closure of rules under substitution of terms for variables. This leads to the following five lemmas,
established directly by functions over predicates.

I Lemma 7 (Substitution). If P −→ Q holds then P{v/x} −→ Q{v/x} holds.

I Lemma 8 (Vacuous new). If ` C{ Иx.P } holds and x # P then ` C{ P } holds.

I Lemma 9 (Vacuous wen). If ` C{ Эx.P } holds and x # P then ` C{ P } holds.

I Lemma 10 (Branching). If ` C{ P & Q } holds then both ` C{ P } and ` C{ Q } hold.

I Lemma 11 (Universal). If ` C{ ∀x.P } holds then, for all terms v, ` C{ P{v/x} } holds.

We require a restricted form of context called a killing context (terminology is from [10]). A killing
context is a context with one or more holes, defined as follows.

I Definition 12. A killing context is a context defined by the following grammar.

T { }F { · } | T { }& T { } | ∀x.T { } | Иx.T { }

In the above, { · } is a hole into which any predicate can be plugged. An n-ary killing context is a
killing context in which n holes appear.

A killing context represents a context that cannot in general be removed until all other rules in a proof
have been applied, hence the corresponding tidy rules are suspended until the end of a proof. A killing
context has properties that are applied frequently in proofs, characterised by the following lemma.

I Lemma 13. For any killing context T { }, ` T { I, . . . , I } holds; and, assuming the variables of T { }
and the free variables of P are disjoint, P ‖ T { Q1,Q2, . . .Qn } −→ T{ P ‖ Q1, P ‖ Q2, . . . P ‖ Qn }.

For readability of large predicates involving an n-ary killing context, we introduce the notation
T { Qi : 1 ≤ i ≤ n } as shorthand for T { Q1,Q2, . . . ,Qn }; and T { Qi : i ∈ I } for a family of predicates
indexed by finite subset of natural numbers I. Killing contexts also satisfy the following property that
is necessary for handling the seq operator, which interacts subtly with killing contexts.

I Lemma 14. Assume that I is a finite subset of natural numbers, Pi and Qi are predicates, for
i ∈ I, and T { } is a killing context. There exist killing contexts T 0{ } and T 1{ } and sets of natural
numbers J ⊆ I and K ⊆ I such that the following derivation holds.

T { Pi ; Qi : i ∈ I } −→ T 0
{

P j : j ∈ J
}

; T 1{ Qk : k ∈ K }

The following lemma checks that wen quantifiers can propagate to the front of a killing context.

I Lemma 15. Consider an n-ary killing context T { } and predicates such that x # Pi and either
Pi = Эx.Qi or Pi = Qi, for 1 ≤ i ≤ n. If for some i such that 1 ≤ i ≤ n, Pi = Эx.Qi, then
T { P1, P2, . . . Pn } −→ Эx.T { Q1,Q2, . . . ,Qn }.

4.3 The Splitting Technique for Simulating the Sequent Calculus

The technique called splitting [17, 18] generalises the application of rules in the sequent calculus.
In the sequent calculus, any root connective in a sequent can be selected and some rule for that
connective can be applied. In this setting, a sequent corresponds to a shallow context of the form
{ · } ‖ Q. Splitting proves that a distinguished principal predicate P in a shallow context { P } ‖ Q can
always be rewritten to a form such that a rule for the root connective of the principal predicate may be
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applied. The cases for times, seq, new and wen are treated together in a Lemma 16. These operators
give rise to commutative cases, where rules for these operators can permute with any principal
predicate, swapping the order of rules in a proof. Principal cases are where the root connective of
the principal predicate is directly involved in the bottommost rule of a proof. As with MAV [20], the
principal cases for seq are challenging, demanding Lemma 14. The principal case induced by medial
new demands Lemma 15. The cases where two nominal quantifiers commute are also interesting,
particularly where the case arises due to equivariance.

I Lemma 16 (Core Splitting). The following statements hold.
If ` (P ⊗ Q) ‖ R, then there exist predicates Vi and Wi such that ` P ‖ Vi and ` Q ‖ Wi, where
1 ≤ i ≤ n, and n-ary killing context T { } such that R −→ T{ V1 ‖ W1,V2 ‖ W2, . . . ,Vn ‖ Wn } and
if x appears in T { } then x # (P ⊗ Q).
If ` (P ; Q) ‖ R, then there exist predicates Vi and Wi such that ` P ‖ Vi and ` Q ‖ Wi, where
1 ≤ i ≤ n, and n-ary killing context T { } such that R −→ T{ V1 ; W1,V2 ; W2, . . . ,Vn ; Wn } and
if x appears in T { } then x # (P ; Q).
If ` Иx.P ‖ Q, then there exist predicates V and W where x # V and ` P ‖ W and either V = W
or V = Эx.W, such that derivation Q −→ V holds.
If ` Эx.P ‖ Q, then there exist predicates V and W where x # V and ` P ‖ W and either V = W
or V = Иx.W, such that derivation Q −→ V holds.

Furthermore, for all 1 ≤ i ≤ n, in the first two cases the size of the proofs 2 of P ‖ Vi and Q ‖ Wi are
bounded above by the size of the proofs of (P ⊗ Q) ‖ R and (P ; Q) ‖ R. In the third and fourth cases,
the size of the proof P ‖ W is bounded above by the size of the proofs of Иx.P ‖ Q and Эx.P ‖ Q.

The final three splitting lemmas mainly involve checking commutative cases, which follow a pattern.

I Lemma 17. If ` ∃x.P ‖ Q, then there exist predicates Vi and values vi such that ` P{vi/x} ‖ Vi,
where 1 ≤ i ≤ n, and n-ary killing context T { } such that Q −→ T{ V1,V2, . . . ,Vn } and if y appears
in T { } then y # (∃x.P).

I Lemma 18. The following statements hold, for any atom α, where if x appears in T { } then x # α.
If ` α ‖ Q, then there exist n-ary killing context T { } such that Q −→ T{ α, α, . . . , α }.
If ` α ‖ Q, then there exist n-ary killing context T { } such that Q −→ T{ α, α, . . . , α }.

I Lemma 19. If ` (P ⊕ Q) ‖ R, then there exist predicates Wi such that either ` P ‖ Wi or ` Q ‖ Wi

where 1 ≤ i ≤ n, and n-ary killing context T { } such that R −→ T{ W1,W2, . . . ,Wn } and if x appears
in T { } then x # (P ⊕ Q).

4.4 Context Reduction and the Admissibility of Co-rules

Splitting is always performed in a shallow context, i.e. a hole directly inside a parallel composition.
Context reduction extends rules simulated by splitting to any context.

I Lemma 20 (Context reduction). If ` Pσ ‖ R yields that ` Qσ ‖ R, for any predicate R and
substitution of terms for variables σ, then ` C{ P } yields ` C{ Q }, for any context C{ }.

The subtlety of context reduction is to accommodate plus and some by the following stronger induction
invariant: If ` C{ T }, then there exist predicates Ui and substitutions σi such that ` Tσi ‖ Ui, for
1 ≤ i ≤ n; and n-ary killing context T { } such that for any predicate V there exist Wi such that either
Wi = Vσi ‖ Ui or Wi = I, for 1 ≤ i ≤ n, and the following holds: C{ V } −→ T{ W1,W2, . . . ,Wn }.

2 For the multiset measure of the size of a proof see http://iit.iit.tuiasi.ro/TR/reports/fml1502.pdf.
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For every rule there is a co-rule, where for rule P −→ Q, the co-rule is of the form Q −→ P.
For example close has co-rule C{ Эx.(P ⊗ Q) } −→ C{ Эx.P ⊗Иx.Q } and extrude1 has co-rule if
x # Q then C{ ∃x.(P ⊗ Q) } −→ C{ ∃x.P ⊗ Q }. The following eight lemmas establish that a co-rule
is admissible in MAV1. In each case, the proof proceeds by applying splitting in a shallow context,
forming a new proof, and finally applying Lemma 20.

I Lemma 21 (Co-close). If ` C{ Эx.P ⊗Иx.Q } holds then ` C{ Эx.(P ⊗ Q) } holds.

I Lemma 22 (Co-tidy name). If ` C{ Эx.I } holds then ` C{ I } holds.

I Lemma 23 (Co-extrude1). If x # Q and ` C{ ∃x.P ⊗ Q } holds then ` C{ ∃x.(P ⊗ Q) } holds.

I Lemma 24 (Co-tidy1). If ` C{ ∃x.I } holds then ` C{ I } holds.

The above four lemmas are particular to MAV1. The proofs for the four lemmas below are similar to
the corresponding cases in MAV [20].

I Lemma 25 (Co-external). If ` C{ P ⊗ (Q ⊕ R) } holds then ` C{ (P ⊗ Q) ⊕ (P ⊗ R) } holds.

I Lemma 26 (Co-tidy). If ` C{ I ⊕ I } holds, then ` C{ I } holds.

I Lemma 27 (Co-sequence). If ` C{ (P ; Q) ⊗ (R ; S ) } holds then ` C{ (P ⊗ R) ; (Q ⊗ S ) } holds.

I Lemma 28 (Atomic co-interaction). If ` C{ α ⊗ α } holds then ` C{ I } holds.

The Proof of Theorem 4. The main result of this paper follows by induction on the structure of P
in a predicate of the form ` C

{
P ⊗ P

}
, by applying the above eight co-rule elimination lemmas and

also Lemma 10 in the cases for with and plus, and Lemma 11 in the cases for all and some.
Co-rules are interesting in their own right, since derivations extended with all co-rules coincide

with provable linear implications. Suppose that SMAV1 is the system MAV1 extended with all
co-rules. The following corollary is a consequence of Theorem 4.

I Corollary 29. ` P( Q in MAV1 if and only if Q −→ P in SMAV1.

An advantage of defining linear implication using provability, is that MAV1 is analytic [8]; hence,
with some care taken for existential quantifiers [5, 23], each predicate gives rise to finitely many
derivations up-to congruence. Consequently, proof search is decidable.

I Proposition 30. It is decidable whether a predicate in MAV1 is provable.

5 Conclusion

This paper makes two significant contributions: a novel de Morgan dual pair of nominal quantifiers
and the first direct cut elimination result for first-order quantifiers in the calculus of structures. As a
consequence of cut-elimination (Theorem 4), we obtain the first consistent proof system that features
both non-commutative operator seq and first-order quantifiers. The novelty of the nominal quantifiers
new and wen is in how they distribute over positive and negative operators. This greater control of
bookkeeping of names enables private names to be modelled in direct embeddings of processes as
predicates in MAV1.

This paper continues a line of work on logical systems defined using the calculus of structures with
applications to modelling processes [7, 12, 20]. Our approach is distinct from related work on nominal
logic [2, 13, 38] where processes are terms, rather than predicates, and an operational semantics is
given either as an inductive definition or a logical theory. The related approach is capable of encoding
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observational preorders and bisimulations, but has the drawback that implication cannot be directly
used to compare processes. Our approach is also distinct from the proofs-as-processes Curry-Howard
inspired approach to session types [9, 42]. Instead, we adopt a processes-as-predicates approach,
setting up a discussion on the relationship between linear implication in MAV1 and observational
preorders. Amongst the consequences of cut elimination (Theorem 4) is that linear implication defines
a branching-time precongruence over processes that fully respects causality.
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