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Abstract—In temporal-probabilistic (TP) databases, the com-
bination of the temporal and the probabilistic dimension adds
significant overhead to the computation of set operations. Al-
though set queries are guaranteed to yield linearly sized output
relations, all of the existing solutions exhibit a quadratic runtime
complexity. They suffer from redundant interval comparisons
and additional joins for the formation of lineage expressions.
In this paper, we formally define TP set operations and study
their properties. For their efficient computation, we introduce
the lineage-aware temporal window, a mechanism that binds
intervals with lineage expressions. We suggest the lineage-aware
window advancer (LAWA) for producing lineage-aware temporal
windows, which enable direct filtering of irrelevant intervals and
finalization of output lineage expressions. This way, we compute
TP set operations in linearithmic time. A series of experiments
over both synthetic and real-world datasets show that (a) our
approach has predictable performance, which depends only on
the size of the input relations and not on the number of time
intervals per fact or the overlap of the time intervals, and that
(b) it outperforms state-of-the-art approaches.

I. INTRODUCTION

The need to manage large, temporal-probabilistic (TP)
datasets appears in a wide range of applications, such as
temporal predictions (e.g., weather) as well as in sensor
(e.g. RFID) and experimental data, due to erroneous per-
time-point measurements. The combination of the temporal
and the probabilistic dimension in databases requires that
the result of relational algebraic operators complies with the
semantics of each dimension. Probabilistic databases rely on
the possible-worlds semantics to define for which instances of
the probabilistic database an answer tuple is valid. Conversely,
temporal databases use the sequenced semantics to define at
which time points (i.e., snapshots of the temporal database) an
answer tuple is valid. The possible-worlds and the sequenced
semantics very nicely complement each other, since they both
employ the notion of data lineage to guarantee a closed and
complete representation model for temporal, uncertain data.

In this paper, we introduce a sequenced TP data model and,
under this model, we define and implement TP set operations.
In the following example, we illustrate their usefulness in an
application involving temporal predictions.

Example 1: Consider the supermarket application of Fig-
ure 1. The supermarket records data related to purchases
of clients (a), online shopping carts (b), and inventory (c).

a (productsBought)
Product λ T p

'milk' a1 [2,10) 0.3
'chips' a2 [4,7) 0.8
'dates' a3 [1,3) 0.6

b (productsOrdered)
Product λ T p

'milk' b1 [5,9) 0.6
'chips' b2 [3,6) 0.9

c (productsInStock)
Product λ T p

'milk' c1 [1,4) 0.6
'milk' c2 [6,8) 0.7
'chips' c3 [4,5) 0.7
'chips' c4 [7,9) 0.8

(a) Input Relations

−Tp

c ∪Tp

a b

(b) Query Plan

Product λ T p
'milk' c1 [1,2) 0.6
'milk' c1∧¬a1 [2,4) 0.42
'milk' c2∧¬(a1∨b1) [6,8) 0.196
'chips' c3∧¬(a2∨b2) [4,5) 0.014
'chips' c4 [7,9) 0.8

(c) Query Result

Fig. 1: The Supermarket Application Scenario

At each time point (e.g., a day), the supermarket aims at
predicting the products that clients want to buy or order versus
those that it has in stock. For example, tuple ('milk', a1, [2,10),
0.3) captures that, at each day from the 2nd to the 10th of the
month, “milk is bought" with probability 0.3. There is no other
tuple in a that predicts the probability of buying 'milk' over
an interval overlapping with [2,10). Assume the supermarket
wants to determine, at each time point, the probability that a
product is in stock but no client wants to order or buy this
product. The corresponding query is Q = c−Tp (a∪Tp b), i.e.,
the union of relations a and b, followed by a difference with
relation c (see Fig. 1b). Answer tuple ('milk', c1∧¬a1, [2,4),
0.42) (see Fig. 1c) expresses that, with probability 0.42, 'milk'
is in stock but is not ordered or bought during interval [2,4).

TP set operations are of great interest due to the overhead
added in their computation when combining the temporal
and probabilistic dimension. They are however a class of
operations that have received little attention so far: they have
not been explicitly defined in existing TP approaches [1],
with TP set difference not being supported at all. Existing
temporal techniques, on the other hand, suffer from two main
drawbacks. First, approaches used for the computation of
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temporal set operations [2], [3] replicate input tuples with
adjusted intervals before the actual algebraic operations are
applied. They rely on joins with inequality conditions that have
quadratic complexity due to unproductive tuple comparisons.
Second, stitching lineage expressions to the output tuples in
a relational manner requires additional joins in comparison
to the set operations that are available in current tempo-
ral database implementations. As far as existing temporal-
probabilistic [1] or purely probabilistic [4] approaches are
concerned, set operations are reduced to joins, since their
computation not only requires the comparison of relational
attributes among the input tuples, but also the combination of
their lineage expressions. However, the computation of TP set
operations under a sequenced TP data model requires more
sophisticated solutions for the computation of output intervals
than the use of temporal predicates in joins.
Outline & Contributions.
• We propose a sequenced temporal-probabilistic data model

that complies with both the sequenced semantics from tem-
poral databases [3], [5] and the possible-worlds semantics
from probabilistic databases [6], [7].
• We formally define TP set operations and study the proper-

ties of TP set queries under this model. To our knowledge,
TP set queries have not previously been investigated under
a sequenced temporal-probabilistic model.
• We introduce a novel lineage-aware temporal window,

a mechanism that binds an interval with the lineages
of the tuples valid during the interval. Such windows
are produced using the lineage-aware window advancer
(LAWA) and they enable finalizing lineages and filtering
out irrelevant intervals directly at the time of their creation.
This way, LAWA guarantees O(n logn) worst-case com-
plexity for the computation of TP set operations, improving
over existing implementations with quadratic complexity.
• We experimentally demonstrate that LAWA is the only

approach among both temporal and probabilistic databases
that does not deteriorate in performance as the data history
grows. In contrast to existing techniques, our solution does
not depend on the characteristics of the dataset (such as
the number of intervals per fact, or the overlap among
intervals), but only on the size of the input relations.

The remainder of this paper is organized as follows. Section
II provides an overview of related works on temporal and
probabilistic databases with a focus on set operations. Section
III introduces our TP data model, while Section IV defines the
model’s query semantics. Section V defines TP set operations
over duplicate-free input relations. Section VI introduces the
lineage-aware temporal window and our implementation of TP
set queries. Section VII presents a comprehensive performance
study that compares our implementation of TP set operations
with existing timestamp-adjustment and lineage-computation
approaches. Section VIII finally concludes the paper.

II. RELATED WORK

We next review related approaches from both temporal and
probabilistic databases and explain their limitations in terms of

supporting TP set operations. Set difference, for example, has
received little attention in temporal databases and can only be
computed using the generic normalization operator [3]. Under
a combined temporal and probabilistic data model, there is
currently no solution that supports set difference.

Temporal Set Operations. In temporal databases, the result
of a temporal set operation opT is defined as the result of
applying op over a sequence of atemporal instances (the
so-called snapshots) of the input relations—a key concept
in temporal databases termed snapshot reducibility [8], [9],
[10]. Maximal intervals are produced by merging consecutive
time points to which the same input tuples have contributed
(change preservation). Dignös et al. [3], [2] use data lineage
to guarantee change preservation for all relational operations
under a sequenced semantics. They adapt the Normalization
operator, introduced by Toman et al. [11], to compute temporal
set queries. Intuitively, the normalization N(r,s) of a relation
r based on another relation s replicates the tuples of r and
assigns new time intervals to them. The new intervals are
obtained by splitting the original intervals based on tuples
of s with which they overlap. Normalization is a generic
operator that subsequently requires an outer join of r and s
with quadratic complexity. Since it is not symmetric, it has to
be computed once for each of the two input relations [3], [2].

Temporal joins can be used for the computation of TP set
intersection. Efficient solutions for temporal joins have been
widely discussed in the literature [12], [13], [14], [15]. Specific
solutions either partition the data [15] in ways that are not ben-
eficial for our case, since TP relations are duplicate-free (see
Section III), or they require fixed-length input schemas [14].
Timeline Index (TI) is a data structure introduced by Kaufmann
et al. [12], [16] to efficiently compute temporal aggregation,
join and time-travel operations. TI of relation r maps each
start or end point in r to a list of ids of tuples that start or end
at this time point. Timeline Join (TJ) is applied on the indexes
created for the input relations and implements a combination
of a merge- and a hash-join. The performance of TJ suffers
because the original tuples need to be fetched both for the
application of a filtering condition and for the creation of the
output tuples.

Overlap Interval Partitioning (OIP) by Dignös et al. [13]
is designed to compute a join r ./T s among tuples with
overlapping time intervals. Initially, OIP splits the time domain
into k granules of equal size. Adjacent granules are combined
to form the partitions of an input relation r so that each
tuple in r is assigned to the smallest partition into which
it fits. In order to compute the overlap join, the overlapping
partitions of r and s are identified (fast), and then a nested
loop is performed to join the tuples of these partitions (slow).
This approach finds all pairs of tuples (r, s), for r ∈ r and
s ∈ s, with overlapping time intervals. Although OIP can be
extended to apply additional filtering conditions, e.g., equality
conditions on the atemporal attributes of the tuples that are
paired, its performance deteriorates when the condition has
low selectivity (see Section VII).



Sweeping-based approaches, finally, have been widely used
for the computation of overlap joins [14], [17] in temporal
settings. A sweepline moves over all start and end points
of tuples, and determines, for each time point, the tuples of
both input relations that are valid. These approaches cannot
directly be applied for the computation of TP set operations.
First, they generally do not consider join conditions on the
non-temporal attributes. Second, they support set intersection
but cannot produce all output tuples needed for set difference
and union. The creation of output intervals through the tuples
that the sweepline intersects is not sufficient for these two set
operations.

Probabilistic Set Operations. In probabilistic databases, the
result of a probabilistic set operation opp is defined as the
result of applying op over the set of all possible instances of
the input relations. The Trio system [18] was among the first
to recognize data lineage, in the form of a Boolean formula,
as a means to capture the possible instances at which an output
tuple is valid. In an effort to provide a closed and complete
representation model for uncertain relational data, they intro-
duced Uncertainty and Lineage Databases (ULDBs) [19]. The
algebraic operators are modified to compute the lineage of the
result tuples in a ULDB, thus capturing all information needed
for computing query answers and their probabilities. Recently,
Fink et al. [4], [20] reduced the computation of probabilistic
algebraic operations to conventional operations so that these
can be performed using a DBMS, rather than by an application
layer built on top of it.

Temporal-Probabilistic Set Operations. Dylla et al. [1]
introduced a closed and complete TP database model, coined
TPDB, based on existing temporal and probabilistic concepts.
Query processing is performed in two steps. The first step,
grounding, evaluates a chosen deduction rule (formulated in
Datalog with additional time variables and temporal predi-
cates) and computes the lineage expressions of the deduced
tuples. The second step, deduplication, removes the duplicates
that could occur in the grounding step by adjusting their
intervals. Although the TPDB data model is generic, the query
processing is hindered by the grounding step (as shown in
Section VII) and cannot cover operations whose results include
subintervals that are only present in one of the two input
relations, as is the case for TP set difference. Moreover, TBDB
does not fulfill all requirements of a sequenced semantics, as
it is common in temporal databases.

III. DATA MODEL & NOTATION

We denote a temporal-probabilistic schema by RTp(F ,
λ , T , p), where F = (A1, A2, . . ., Am) is an ordered set
of attributes, and each attribute Ai is assigned to a fixed
domain Ωi. λ is a Boolean formula corresponding to a lineage
expression. T is a temporal attribute with domain ΩT ×ΩT ,
where ΩT is a finite and ordered set of time points. p is
a probabilistic attribute with domain Ωp = (0,1] ⊂ IR. A
temporal-probabilistic relation r over RTp is a finite set of
tuples. Each tuple r ∈ r is an ordered set of values in the

appropriate domains. The value of attribute Ai of r is denoted
by r.Ai. The conventional attributes F = (A1, A2, . . ., Am) of
tuple r form a so-called fact, and we write r.F to denote the
fact f captured by tuple r. For example, the base tuple ('milk',
a1, [2,10), 0.3) of relation a (see Fig. 1a) includes the fact
a1.F = ('milk'), the lineage expression a1.λ = a1, the time
interval a1.T = [2,10), and the probability value a1.p = 0.3.
The temporal-probabilistic annotations of the schema express
that (i) a1 = true with probability a1.p for every time point in
a1.T , (ii) a1 = false with probability 1− a1.p for every time
point in a1.T , (iii) and a1 is always false outside a1.T .

By following conventions from [1], [2], [3], [21], we assume
duplicate-free input and output relations. Formally, a temporal-
probabilistic relation r is duplicate-free iff ∀r,r′ ∈ r(r 6= r′⇒
r.F 6= r′.F ∨ r.T ∩ r′.T = /0)). In other words, the intervals of
any two tuples of r with the same fact f do not overlap.

A lineage expression λ is a Boolean formula, consisting of
tuple identifiers and the three Boolean connectives ¬ (“not"),
∧ (“and") and ∨ (“or"). Tuple identifiers represent Boolean
random variables among which we assume independence [1],
[21], [22]). For a base tuple r, r.λ is an atomic expression
consisting of just r itself. For a result tuple r̃ derived from one
or more TP operations, r̃.λ is a Boolean expression as defined
above. For a result tuple, lineage is determined by the tem-
poral-probabilistic operators (formally defined in Section IV)
that were applied to derive that tuple from the base tuples. The
probability of a result tuple is computed via a probabilistic
valuation of the tuple’s lineage expression, using either exact
(see, e.g., [22], [23], [24]) or approximate (see, e.g., [25], [26],
[27], [28], [29]) algorithms. For example, in the result relation
of Fig. 1c, the lineage c1∧¬a1 yields a marginal probability
of 0.6 · (1−0.3) = 0.42 by assuming independence among the
base tuples c1 and a1 (see Fig. 1a). Further, we write λ

r, f
t to

refer to the lineage expression of a tuple in relation r with fact
f that is valid at time point t. When there are no tuples in r
with fact f at time point t, we write λ

r, f
t = null.

IV. QUERY SEMANTICS

For our combined query semantics, we adopt both the
sequenced semantics [5], widely used for the temporal dimen-
sion, and the possible-worlds semantics [7], commonly used
for the probabilistic dimension. The sequenced semantics is
consistent with viewing a temporal database as a sequence
of atemporal databases (the “snapshots”), one for each time
point t in ΩT . Conceptually, query evaluation then resolves
to evaluating a query against each of these snapshots and
producing maximal output intervals according to time points
with equivalent data lineage. Thus, an output interval consists
of time points, in which the corresponding fact has been
derived based on the same input tuples. The possible-worlds
semantics defines a probabilistic database as a probability
distribution over a finite set of possible states (aka. “worlds”),
in which the probabilistic database could be. Conceptually, a
query is evaluated against each of the possible worlds. The
marginal probability of an answer tuple then is defined as the
sum of the possible-worlds probabilities, for which the answer



tuple exists. Data lineage [19], [18], in the form of a Boolean
expression, serves as a concise condition that is satisfied over
the possible worlds in which each answer tuple exists.

The query semantics of our sequenced TP data model is
based on an intriguing analogy between the temporal and
probabilistic semantics: rather than iterating over snapshots
or possible worlds, they both use the notion of data lineage
to define their operational semantics. Given a TP relation r, a
tuple r ∈ r is valid at every time point t included in its time
interval r.T with probability r.p. Thus, all the tuples of a TP
relation r that are valid at time point t with a given probability
are included in the probabilistic snapshot of r at t. Specifically,
we obtain the probabilistic snapshot of a TP relation r with
schema RTp = (F , λ , T , p) at time point t by applying the
timeslice operator τ

p
t , which is defined as:

τ
p
t (rTp) = {(r.F,r.λ , [t, t +1),r.p) |r ∈ r∧ t ∈ r.T}

Definition 1: (TP Snapshot Reducibility) Let r1, . . . ,rm
be a set of TP relations, let opTp be an m-ary temporal-
probabilistic operator, let opp be the corresponding proba-
bilistic operator, let ΩT be the time domain, and let τ

p
t (r) be

the timeslice operator. The operator opTp is snapshot reducible
to opp iff, for all t ∈ΩT , it holds that:

τ
p
t (opTp(r1, . . . ,rm))≡ opp(τ p

t (r1), . . . ,τ
p
t (rm))

Snapshot reducibility states that a probabilistic snapshot of
the result of an m-ary TP operation opTp(r1, . . . ,rm) at any time
point t is equivalent to the result derived from the correspond-
ing probabilistic operation opp on the probabilistic snapshots
of the input relations at t. Applying an atemporal operation
over all probabilistic snapshots thus is consistent with snapshot
reducibility in temporal databases and implies that the result
at any time point t, both in terms of probability values and
facts, is determined only by the input tuples that are valid at
t. The application of opp guarantees that the computations at
each time point will yield Boolean lineage expressions that
are consistent with the possible-worlds semantics [18], [19].

As example, consider the query of Fig. 1b over the relations
of Fig. 1a. According to the lineage expression of tuple ('milk',
[2,4), c1∧¬a1, 0.42), at t = 2, the fact 'milk' has been derived
from the input tuples a1 and c1, i.e., the only input tuples
valid at this time point. Since the probability of 'milk' at t = 2
is only affected by the probabilities of a1 and c1, it can be
computed based on the lineage expression c1∧¬a1.

Definition 2: (TP Change Preservation) Let r1, . . . ,rm
be a set of TP relations, let opTp be an m-ary temporal-
probabilistic operator, and let u.Ts, u.Te denote the start and
end points of an interval associated with a tuple u. For each
tuple u ∈ u, where u = opTp(r1, . . . ,rm), it holds that:

∀t, t ′ ∈ u.T (λ u,u.F
t ≡ λ

u,u.F
t ′ ) ∧

@u′ ∈ u((u′.Te = u.Ts∨u′.Ts = u.Te)∧ (u′.λ ≡ u.λ ))

Intuitively, change preservation ensures that only consecu-
tive time points of tuples with equivalent lineage expressions

are grouped into intervals. For example, the output tuples
('milk', [1,2), c1, 0.6) and ('milk', [2,4), c1 ∧¬a1, 0.42) were
not merged into the interval [1,4), since they do not have
equivalent lineages. Change preservation guarantees that a fact
is valid over the same possible worlds with maximal intervals.
The first line of Def. 2 ensures that the lineage expression at
all time points in the interval of a result tuple is the same.
The second line ensures that the time intervals produced by
coalescing time points with the equivalent lineage expressions
are maximal. 1

V. TP SET OPERATIONS & QUERIES

A. TP Set Operations

In TP databases, the result of a TP set union includes, at
each time point t ∈ΩT , the facts for which there is a non-zero
probability to be in r or in s; the result of a TP set intersection
includes, at each time point, the facts for which there is a non-
zero probability to be in r and in s; and the result of a TP set
difference between two TP relations r and s includes, at each
time point, the facts for which there is a non-zero probability
to be in r and not in s.

Definition 3: (TP Set Operations) Let r and s be temporal-
probabilistic relations with schema (F, λ , T , p), and let λ

r, f
t

denote the lineage expression of the tuple in relation r that
includes fact f and is valid at time point t. Given a result
tuple r̃ and the lineage-concatenation functions depicted in
Table I, we define the three TP set operations r∪Tp s, r∩Tp s
and r−Tp s as follows:

r̃ ∈ r∪Tp s⇐⇒ ∀t ∈ r̃.T ((λ r,r̃.F
t 6= null ∨ λ

s,r̃.F
t 6= null) ∧

r̃.λ ≡ or(λ r,r̃.F
t ,λ s,r̃.F

t )) ∧
∀t ′ /∈ r̃.T (r̃.λ 6≡ or(λ r,r̃.F

t ′ ,λ s,r̃.F
t ′ ))

r̃ ∈ r∩Tp s⇐⇒ ∀t ∈ r̃.T (λ r,r̃.F
t 6= null∧λ

s,r̃.F
t 6= null∧

r̃.λ ≡ and(λ r,r̃.F
t ,λ s,r̃.F

t )) ∧
∀t ′ /∈ r̃.T (r̃.λ 6≡ and(λ r,r̃.F

t ′ ,λ s,r̃.F
t ′ ))

r̃ ∈ r−Tp s⇐⇒ ∀t ∈ r̃.T (λ r,r̃.F
t 6= null ∧
r̃.λ ≡ andNot(λ r,r̃.F

t ,λ s,r̃.F
t )) ∧

∀t ′ /∈ r̃.T (r̃.λ 6≡ andNot(λ r,r̃.F
t ′ ,λ s,r̃.F

t ′ ))

The above definition of TP set operations specifies the
intervals and lineage expressions of a result tuple r̃. The first
line of the definition of each operation relates to Def. 1. It
states that, at any time point t ∈ r̃.T , fact r̃.F must be included
in the corresponding input tuples from r and s. Consequently,
the lineage expression of the output tuple r̃ at each time point
t ∈ r̃.T (cf. second line) is computed based on the same input
tuples, according to the lineage-concatenating functions of
Table I. In the case of set union, there must exist at least
one tuple in either one of the two input relations that also

1Rather than performing logical equivalence checks among Boolean for-
mulas, which are co-NP-complete, we resort to a syntactic comparison of the
lineage sets in our implementation.



TABLE I: Definition of lineage-concatenation functions.

and(λ1,λ2) = (λ1)∧ (λ2)

andNot(λ1,λ2) =

{
(λ1) if λ2 = null
(λ1)∧¬(λ2) otherwise

or(λ1,λ2) =

 (λ1) if λ2 = null
(λ2) if λ1 = null
(λ1)∨ (λ2) otherwise

includes r̃.F over r̃.T . For set intersection, there must exist
corresponding tuples in both input relations. For set difference,
an output tuple is produced at all time points t, at which there
exists a tuple of the left relation r that is valid at t in r.T . This
happens in two cases: (a) if a fact f is included in a tuple
of r but in no tuple in s, and (b) if a fact f is included in
a tuple of r but, with a probability of less than 1, also in a
tuple of s. The first case resembles the definition of temporal
set difference, where, at each time point in the output, there
exist facts that are included in tuples of r and not in tuples of
s. The second case occurs due to the probabilistic dimension.
The result of a probabilistic set difference between r and s
includes all facts, which have a non-zero probability to be in
r and not in s.

Example 2: Figure 2 shows the relations a and c of Fig. 1a
as well as selected output tuples of a−Tp c. Different colors are
used for different facts: green is used for 'milk', blue for 'dates'
and red for 'chips'. Output tuples are drawn below the time
axis. For example, the output tuple ('milk', a1 ∧¬c2, [6,8),
0.09) satisfies Def. 3: for all time points in [6,8), it holds
that λ

a,'milk'
t = a1 6= null and λ

c,'milk'
t = c2. Thus, ∀t ∈ [6,8),

andNot(λ a,'milk'
t ,λ c,'milk'

t )≡ a1∧¬c2.

1 2 3 4 5 6 7 8 9

a1

a2a3a

c1 c2

c3 c4
c

(a3,0.6) (a2∧¬ c3,0.24) (a1∧¬ c2,0.09)

Fig. 2: Selected output tuples.

The third line of the definition of each TP set operator is a
direct consequence of Def. 2. It guarantees that, when merging
consecutive time points into an interval, we consider only the
ones for which the condition in the first line is satisfied. In
other words, a new interval is created whenever there is a
change in the validity of a tuple from either r or s at the
currently considered time point. In Example 2, at time points
t = 5 and t = 8, λ

a,'milk'
t = a1 and λ

c,'milk'
t = null. Thus, outside

the interval [6,8) of tuple ('milk', [6,8), a1∧¬c2, 0.09), there
are no time points for which andNot(λ a,'milk'

t ,λ c,'milk'
t ) ≡ a1 ∧

¬c2. Fig. 3 shows the result of all TP set operations between
relations a and c in Fig. 1a.

a∪Tp c
Product λ T p

'milk' c1 [1,2) 0.6
'milk' a1 ∨ c1 [2,4) 0.72
'milk' a1 [4,6) 0.3
'milk' a1 ∨ c2 [6,8) 0.79
'milk' a1 [8,10) 0.3
'chips' a2 ∨ c3 [4,5) 0.94
'chips' a2 [5,7) 0.8
'chips' c4 [7,9) 0.8
'dates' a3 [1,3) 0.6

a−Tp c
Product λ T p

'milk' a1 ∧¬c1 [2,4) 0.12
'milk' a1 [4,6) 0.3
'milk' a1 ∧¬c2 [6,8) 0.09
'milk' a1 [8,10) 0.3
'chips' a2 ∧¬c3 [4,5) 0.24
'chips' a2 [5,7) 0.8
'dates' a3 [1,3) 0.6

a∩Tp c
Product λ T p

'milk' a1 ∧ c1 [2,4) 0.18
'milk' a1 ∧ c2 [6,8) 0.21
'chips' a2 ∧ c3 [4,5) 0.56

Fig. 3: TP set operations computed for the relations of Fig. 1a.

B. TP Set Queries & Complexity

Having defined TP set operations, we can now move on
to TP set queries, which are expressions of TP set operations
over a set of TP relations.

Definition 4: (TP Set Query) Let r1, . . . ,rm be a set of
duplicate-free TP relations. A TP set query Q is any expression
of TP set operators that adheres to the following grammar:

Q ::= ri | Q∪Tp Q | Q∩Tp Q | Q−Tp Q | (Q)

The following theorem and corollary establish an interesting
relationship between safe queries [22], [23] in probabilistic
databases and tractable queries in our TP setting. The theorem
is based on the observation that repeated applications of TP
set operations create regular lineage expressions, which are in
one-occurrence form (1OF) [7] if none of the input relations
occurs more than once in a TP set query. Formally, a formula
is in 1OF iff no tuple identifier occurs more than once in
the formula. Correspondingly, we call a TP set query Q non-
repeating iff every input relation ri occurs at most once in
Q.

Theorem 1: Any non-repeating TP set query Q over
duplicate-free TP relations yields lineage formulas in 1OF.

Proof: Consider a TP set operation over two TP relations
r and s, both having schema (F , λ , T , p). Since r and s are
duplicate-free, we cannot have two tuples in either r or s that
share the same fact at overlapping time intervals. Assume we
have n1 tuples in r and n2 tuples in s with the same fact f , but
each with non-overlapping time intervals. Then, for n= n1+n2
input intervals, we can at most obtain 2n−1 output intervals.
According to change preservation (Def. 2), we create the same
amount of output tuples, one for each output interval and each
with a different combination of tuple identifiers in their lineage
(Def. 3). Next, inductively, during any further application
of a TP set operation (over non-repeating subgoals), change
preservation will only merge two consecutive time intervals iff
their lineages are equivalent. This cannot occur, since all of
the lineages that are created by an individual TP set operator
are different. That is, for a non-repeating TP set query, each
tuple identifier can occur at most once in the lineage of a result
tuple, which means that the lineages are in 1OF.



Corollary 1: Any non-repeating TP set query Q over dup-
licate-free TP relations has PTIME data complexity.

The proof of the corollary follows directly from Theorem 1,
since computing the marginal probability of a Boolean formula
in 1OF can be done in linear time in the size of the formula
for independent random variables [7]. Also, all temporal
alignment operations are of polynomial complexity (see [2],
[3] as well as the algorithms in Section VI).

The above class of non-repeating TP set queries over
duplicate-free TP relations nicely complements the dichotomy
theorem [22], [23] established for unions of conjunctive
queries (UCQs) in probabilistic databases. Each individual TP
set operation over two compatible relation schemas resolves
to (a union of) at most two conjunctive queries, in which no
intermediate duplicates due to a projection onto a subset of
attributes in F may arise. Although repeated applications of
TP set operations in a query do not necessarily form UCQs,
the overall query remains hierarchical [7], since all attributes
in F are propagated through the operations. Change preser-
vation, on the other hand, which is required for a sequenced
temporal semantics, preserves these complexity considerations
by merging only intervals with equivalent lineage expressions
into a single output interval. TP set queries with repeating
subgoals however remain #P-hard as shown in [30] (consider,
e.g., the query (r1∪Tp r2)−Tp (r1∩Tp r3)).

VI. IMPLEMENTATION

In this section, we introduce the lineage-aware temporal
window, a novel mechanism that enables finalizing output
lineages and filtering out intervals when they are produced,
thus avoiding redundant computations that occur when these
two steps are decoupled [1], [2]. We present the lineage-aware
window-advancer (LAWA), an algorithm to produce lineage-
aware temporal windows, and we show that it can be used to
improve over the quadratic complexity of existing approaches
that compute TP set operations.

A. Lineage-Aware Temporal Window

A lineage-aware temporal window is a mechanism that
associates candidate output intervals with the lineage expres-
sions of the valid input tuples. It has schema (F , winTs,
winTe, λr, λs). F is a fact included in tuples over the interval
[winTs,winTe). λr and λs are the lineage expressions of the
input tuples of the left input relation r and the right input
relation s, respectively, that are valid over [winTs,winTe)
and include F . The flexibility of the lineage-aware temporal
window is based on the fact that the lineages of valid tuples
of each input relation are separately recorded. Given a TP set
operation, λr and λs can be used to determine if fact F and
interval [winTs, winTe) yield an output tuple. If this is the
case, λr and λs are combined accordingly to form the lineage
expression of this output tuple.

All lineage-aware temporal windows are produced by
LAWA, a sweeping algorithm we describe in Algorithm 1.
Traditionally, sweeping algorithms use a vertical sweepline,
and they determine the output tuples based on the input tuples

that intersect with this sweepline [17], [14]. This works well
for TP set intersection. However, for TP set difference and
set union, there are cases when the interval of an output
tuple is not determined only by the tuples that intersect
with the sweepline. In order to handle such cases, we use a
sweeping window. The left and right boundaries of the window
correspond to the start and end points of a maximal interval
that is associated with a potential output interval.

LAWA processes the tuples of two duplicate-free TP rela-
tions r and s with schema (F , λ , T , p) that are sorted by their
facts and starting points of their intervals. It produces lineage-
aware temporal windows whose left (winTs) and right (winTe)
boundaries are computed during a sweep of the start (Ts) and
end (Te) points of the tuples. The left boundary winTsi of
a window i is greater or equal to winTei−1 of the previous
window. Its right boundary winTei is the smallest among the
end points of the tuples expected to overlap with this window,
i.e., tuples with Ts ≤ winTs and Te > winTs, and the start
points of the tuples of the two relations to be processed next.

Algorithm 1: LAWA(status)
1 (prevWinTe,currFact,rValid,sValid,r,s) = status;

2 if rValid = null ∧ sValid = null then
3 if r= null∧s 6= null then return (null,null) ;
4 else if r= null∧s 6= null then
5 winTs = s.Ts; currFact = s.F;
6 else if r 6= null∧s= null then
7 winTs = r.Ts; currFact = r.F;
8 else
9 if r.F = currFact∧s.F 6= currFact then

10 winTs = r.Ts
11 if r.F 6= currFact∧s.F = currFact then
12 winTs = s.Ts
13 else if r.Ts< s.Ts then
14 winTs = r.Ts; currFact = r.F;
15 else winTs = s.Ts; currFact = s.F; ;
16 else winTs = prevWinTe ;

17 if r 6= null∧r.F = currFact∧r.Ts= winTs then
18 rValid = r; r = getNext(r);
19 if s 6= null∧s.F = currFact∧s.Ts= winTs then
20 sValid = s; s = getNext(s);

21 winTe = min(minTs(r, s), minTe(rValid, sValid));

22 λr = null; λs = null; window = null;

23 if rValid 6= null then λr = rValid.λ ;
24 if sValid 6= null then λs = sValid.λ ;

25 window = (currFact, winTs, winTe, λr , λs) ;

26 if rValid 6= null∧rValid.Te=winTe then rValid = null;
27 if sValid 6= null∧sValid.Te=winTe then sValid = null;

28 prevWinTe=winTe;
29 status = (rValid,sValid,r,s,currFact,prevWinTe);

30 return (window,status);

The input of LAWA is a structure (status) with the
necessary status information: the right boundary of the last
candidate window (prevWinTe), the fact that is currently



being processed (currFact), the current tuples of r (rValid)
and s (sValid) that are valid over the sweeping window
[winTs,winTe), and the next tuples of relations r (r) and
s (s). All variables are initialized to null except for r and
s that are initialized to the first tuples of the corresponding
relations. The value of prevWinTe is initialized to −1.

Initially, the left boundary winTs of the new window is
determined. If at least one tuple is valid, the new window
is adjacent to the previous one, with winTs = prevWinTe

(Line 16). Otherwise, winTs, and potentially currFact, are
determined by the new tuples. Three possible scenarios exist:
(a) both relations have been scanned (Line 3), (b) one of
the two relations has already been scanned (Lines 4–7), (c)
there are available tuples from both r and s, but they include
different facts (Lines 9–12) and (d) there are available tuples
from both r and s that include the same fact (Lines 13–15).

Since the input relations are duplicate-free, i.e., no two
tuples of the same relation can include the same fact and be
valid at the same time point, rValid and sValid correspond
to exactly one input tuple each. If rValid and sValid are
not null, they correspond to tuples that were also overlapping
with the previous window. Otherwise, they need to be updated
to r or s if the latter include a fact equal to currFact and have
a start point equal to winTs (Lines 17–20). The right boundary
winTe is updated to the minimum time point among the end
points of rValid and sValid and the current start points of
r and s, i.e., the next tuples to be processed (Line 21). Here,
the tuples r and s must be considered because the start point
of an unprocessed tuple marks a change in the tuples that are
valid over that interval.

After λr and λs are extracted from rValid and sValid

(Lines 23–24), all the information for the creation of a lineage-
aware temporal window is recorded (Line 25). rValid and
sValid are updated for the next call of LAWA based on
whether the tuples they correspond to are still valid outside
the window, i.e., when the end points of these tuples are larger
than winTe. Finally, LAWA also returns its status, which is
used in the implementation of the actual TP set operations.

Example 3: In Fig. 4, we illustrate three calls of LAWA
with the left and right relations being c and a of Fig.1a,
respectively. Before the first call, the input relations have been
sorted by their facts and start points. The time points used to
determine the right boundary of a window are annotated with a
blue cross. In the first call of LAWA, illustrated at the bottom,
the left and right boundary of the window are set to winTs= 1
and winTe = 2, respectively. After winTs is determined, the
only tuple valid is rValid= c1. Thus, given that there is no
valid tuple in a yet, winTe is set to the start point of a1,
i.e., the next tuple of a to be processed. This time point is
smaller than the end point Te= 4 of rValid or the start point
Ts= 6 of the upcoming tuple of c (c2). In the second call of
LAWA, illustrated in the middle, the left boundary of the next
window to be examined is equal to the right boundary of the
previous window, i.e., winTs = 2, given that the fact ('milk')
is still being processed. The tuples valid after time point t = 2
are rValid= c1 and sValid= a1. The right boundary of the

1 2 3 4 5 6 7 8 9

c1 (rValid) c2 (r)c

a1 (s)a

('milk',[1,2), c1, null)

1 2 3 4 5 6 7 8 9

c1 (rValid) c2 (r)c

a1 (sValid)a

('milk',[2,4), c1, a1)

1 2 3 4 5 6 7 8 9

c1 c2c

a1 (sValid)a

('milk',[8,10), null , a1)

Fig. 4: Three calls of LAWA for the input relations c and a.

window is the minimum of rValid.Te= 4, sValid.Te= 10
and c2.Ts= 6, and thus winTe= 4. A similar pattern goes on
until the last call of LAWA, illustrated on the top of Fig. 4,
where winTs= 8 and winTe= 10. Then, rValid and sValid

are set to null and no further windows are produced.

B. Basic TP Set Algorithms

Exploiting the flexibility of a lineage-aware temporal win-
dow, we reduce the implementation of TP set operations into
a four-step process (Fig. 5). The sorting step is a prerequisite
for the creation of windows using LAWA. When a window
is created, a lineage-based filter (λ f ilter) is directly applied.
The λ f ilter is different for each TP set operation. In contrast
to previous works of either temporal or probabilistic set
operations, this step involves no application of additional
algebraic operations, no tuple replication and no redundant
interval comparisons. After the filtering step, the final lineage
expression of an output tuple is created by applying the
lineage-concatenating function (λ f unction) of the respective TP
set operation (Def. 3) on λr and λs.

sort LAWA λ f ilter λ f unction
r,s,op

Fig. 5: Process overview.

The algorithms Intersect(r, s), Union(r, s) and Except(r, s)
correspond to r∩Tp s, r∪Tp s and r−Tp s, respectively. In all
algorithms, input relations are initially sorted based on their
facts F and start points Ts (Line 1) when the status of LAWA
is initialized. As long as the terminating condition (Line 3)
is satisfied, LAWA passes through all start and end points in
a smaller-to-larger fashion and produces candidate windows
(Line 4). The windows produced by LAWA are filtered based
on the lineages of the tuples that are valid during the interval
it covers (Line 5). The filter used for each operation, as well
as the terminating condition and the lineage-concatenating



function, directly stem from the definitions of the operation.
For example, in the case of set difference r−Tp s, windows are
produced as long as there are tuples in the outer relation (i.e.,
while r 6= null). The interval of a lineage-aware temporal
window corresponds to an output tuple only if there is a tuple
of the outer relation that is valid over [winTs,winTe) (i.e.,
when λr 6= null).

For Union(r, s) and Except(r, s), when the while-loop ter-
minates, there might still be one more window, corresponding
to the subinterval of the last valid tuple of r (rValid) or the
last valid tuple of s (sValid). Thus, LAWA is called one more
time (Line 8).

Algorithm 2: Intersect(r, s)
1 sort(r{F,Ts}); sort(s{F,Ts});
2 status= (−1,null,null,null,fetchRow(r),fetchRow(s));
3 while status.r 6= null∧status.s 6= null do
4 (w,status) = LAWA(status);
5 if w.λr 6= null ∧ w.λs 6= null then
6 o = o ∪ {(F , and(w.λr, w.λs), [w.winTs, w.winTe))};
7 return o;

Algorithm 3: Union(r, s)
1 sort(r{F,Ts}); sort(s{F,Ts});
2 status= (−1,null,null,null,fetchRow(r),fetchRow(s));
3 while status.r 6= null∨status.s 6= null do
4 (w,status) = LAWA(status);
5 if w.λr 6= null ∨ w.λs 6= null then
6 o = o ∪ {(w.F , or(w.λr, w.λs), [w.winTs, w.winTe))};
7 if status.rValid 6= null∨status.sValid 6= null then
8 (w,status) = LAWA(status);
9 o = o ∪ {(w.F , or(w.λr, w.λs), [w.winTs, w.winTe))};

10 return o;

Algorithm 4: Except(r, s)
1 sort(r{F,Ts}); sort(s{F,Ts});
2 status= (−1,null,null,null,fetchRow(r),fetchRow(s));
3 while status.r 6= null do
4 (w,status) = LAWA(status);
5 if w.λr 6= null then
6 o = o ∪ {(w.F, andNot(w.λr,w.λs), [w.winTs, w.winTe))};
7 if status.rValid 6= null then
8 (w,status) = LAWA(status);
9 o = o ∪ {(w.F, andNot(w.λr, w.λs), [w.winTs, w.winTe))};

10 return o;

Example 4: In Fig. 6, we illustrate the computation of set
difference σF = 'milk'(c)−TP σF = 'milk'(a) for relations c and a in
Fig. 1a. The first candidate window [1,2) has λs = null and
λr = c1. For set difference the current window yields a result
tuple, since, over interval [1,2), the fact ('milk') is included
in a tuple of the left input relation c with lineage λs = c1.
In contrast, the candidate ('milk', [4,6), null, a1) is rejected
since ('milk') is not included in a tuple of the left input relation
c over [4,6).
Time and Space Complexity: The time complexity of all TP
set operations is determined by the complexity of the blocks
presented in Fig. 5. Sorting has complexity O(|r| log |r|+

1 2 3 4 5 6 7 8 9

a1a

c1 c2c

F='milk'
T = [1,2)
λr = c1

λs = null

F='milk'
T = [2,4)
λr = c1
λs = a1

F='milk'
T = [4,6)
λr = null

λs = a1

F='milk'
T = [6,8)
λr = c2

λs = null

F='milk'
T = [8,10)
λr = null

λs = a1

3 3 7 3 7

('milk', c1)
('milk', a1∧¬c1) ('milk', a1∧¬c2)

Fig. 6: σ F = 'milk'(c)−TP σ F = 'milk'(a)

|s| log |s|) if it is comparison-based. A variant of counting-
based sorting could also be used [12] (which is the case if ΩT

fits into main-memory), and in this case the corresponding
complexity is even linear. After sorting, LAWA will sweep
over all tuples in the sorted input relations r and s, accessing
two input tuples at a time to determine the next window.

Proposition 1: Let r, s be two duplicate-free temporal-
probabilistic relations. The upper bound of the number of
windows produced by the window advancer is nr + ns − fd
where nr, ns are the number of start and end points in r and
s, and fd is number of distinct facts in these relations.

By Proposition 1, the number of candidate windows con-
sidered by the algorithm is linear in the number of time
intervals, and thus to the size of the input relations. Thus,
LAWA has a time complexity of O(|r|+ |s|), given that |r|
and |s| are the numbers of tuples in the input relations r and s,
respectively. Moreover, the filtering and lineage-concatenation
step for each candidate output tuple is performed in O(1).
Thus, the overall time complexity for computing TP set
operations is O(|r| log |r|+ |s| log |s|), but may even be reduced
to O(|r|+ |s|) if counting-based sorting is applicable. The
use of lineage-aware temporal windows not only avoids the
use for time-consuming additional operations for the filtering
and lineage-concatenation steps, but also allows them to be
performed directly at the time a window is created. That is, no
intermediate buffers need to be maintained (apart from very
few pointers), and thus the space complexity of all TP set
operators is constant.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate LAWA in comparison to both
temporal and temporal-probabilistic approaches that can be
used for the computation of TP set operations. We perform ex-
periments with real datasets as well as with synthetic datasets
in which we vary (i) the number of facts in the input relations
and (ii) the percentage of tuples whose intervals overlap. In
all experiments, our approach empirically scales according to
the bounds we provide in Section VI-B. LAWA is the only
scalable approach that can be used for the computation of
all three TP set operations, outperforming all state-of-the-
art approaches for input relations of more than 10M tuples.
In contrast to existing techniques, LAWA is robust, i.e., its



performance behaves in a predictable manner with respect to
the aforementioned characteristics of the datasets.

A. Experimental Setup

All of the following experiments were deployed on a
2xIntel(R) Xeon(R) CPU E5-24400 @2.40GHz machine with
64GB main memory, running CentOS 6.7. LAWA has been
implemented in C++ 2, and all experiments were performed
in main-memory. No indexes were used. In cases where Post-
greSQL implementations were used, the maximum memory
for sorting as well as for shared buffers was set to 1GB.

TABLE II: Approach Overview

Approach r∪Tp s r−Tp s r∩Tp s

LAWA 3 3 3
NORM 3 3 3
TPDB 3 7 3
OIP 7 7 3
TI 7 7 3

The TP set operations that different approaches can compute
are presented in Table II. Set difference is the least-supported
operation, followed by set union and set intersection. Set in-
tersection is the most-supported operation among the available
systems, since it can be reduced to an interval join with an
equality condition on the non-temporal attributes. Specifically,
we compare our implementation of TP set operations using
LAWA against:

Temporal-Probabilistic Database (TPDB) [1]: The imple-
mentation of TPDB is an application connected with a DBMS
and consists of three stages. The first stage parses Datalog
rules with temporal predicates and translates them to SQL
queries. The second stage executes the SQL queries in the
DBMS. Base relations are stored in the DBMS, while lineage
is kept as an internal data structure in main-memory. The third
stage focuses on lineage processing by processing the base
tuples with their Boolean connectives. We use the authors’
original implementation, connected to PostgreSQL 9.4.3.

Normalize (NORM) [2]: The Normalize operator is imple-
mented in the kernel of PostgreSQL by modifying its parser,
executor and optimizer. We migrated the authors’ implementa-
tion to PostgreSQL 9.4.3 for a fair comparison. To support TP
set operations, we introduced reduction rules that are proper
combinations of the temporal and probabilistic reduction rules
(cf. [2], [26]).

Timeline Index (TI) [12]: This approach was used, in its
original implementation, for the computation of TP set in-
tersection, by applying a temporal join with an additional
condition on the non-temporal attributes as well as the lineage-
concatenating function and (see Table. I).

Overlap Interval Partition Join (OIP) [13]: This approach
is designed for overlap joins but does not support an ad-
ditional filtering condition. For our experimental evaluation,
we extended the authors’ implementation, so that an equality

2http://www.ifi.uzh.ch/en/dbtg/research/tpset.html

condition on the non-temporal attributes of the tuples can be
applied. In order to use OIP to compute set intersection, we
first split each input relation into groups based on the facts
included in each tuple. We then applied the OIP partitioning
and join over each of these groups and merged the results.

B. Synthetic Dataset

The parameters that we consider to populate a relation
of our dataset are: (a) the length of the tuples’ intervals,
(b) the maximum time distance between two tuples that are
consecutive and include the same fact, and (c) the number of
different facts included in tuples of the relation. Assume all
tuples of relations r and s have the same fact f . We define the
overlapping factor of f as the number of maximal subintervals
during which a tuple from r and s overlap, divided by the
total number of maximal subintervals. Its value thus ranges
in [0,1]. The higher the value of this metric, the more pairs
of input tuples form output tuples, and therefore the more we
stress-test the performance of the various approaches for TP
set operations. According to Definition 3, overlapping time
points are relevant for all set operations, whereas time points
for which a fact is only included in the left input relation are
only relevant for TP set difference.

1. Runtime. In the first setting, we fix the input tuples of all
datasets to a single fact. We fix the overlapping factor to 0.6,
and we randomly select the length of the intervals and the
distance between two consecutive intervals in [0,3]. We then
systematically increase the number of input tuples. In Fig. 7
and Fig. 8, we illustrate the performance of all the approaches
for the computation of TP set operations for smaller datasets
with up to 100K tuples and for larger datasets with up to 50M
tuples, respectively.

Smaller Datasets [20K–200K]: In Fig. 7, the datasets range
from 20K to 200K tuples. Fig. 7a focuses on TP set intersec-
tion. The runtimes of LAWA and OIP hardly increase for the
small datasets. Both outperform NORM, TI and TPDB by a
large margin. OIP is specifically designed for the computation
of an overlap join, to which TP set intersection is reduced.
NORM exhibits poor performance even if the number of
input tuples is only 50K. In this approach, regardless of the
operation, the two input relations need to first be normalized,
such that, in their adjusted versions, the intervals would
be either equal or disjoint. The most expensive part of the
normalization of a relation r using relation s is an outer join
that uses inequality conditions on the start and end points to
guarantee an overlap of the intervals. Although an additional
inner join is applied in the case of TP set intersection, the
performance of NORM suffers because of the outer join. Since
all tuples include the same fact, but not all of them overlap,
such a join has quadratic complexity [31].

In TPDB, queries are expressed using Datalog. Each rule
may contain a conjunction of literals over the arithmetic
predicates =T , 6=T and ≤T . In order to express TP set
intersection, we use 6 reduction rules, one for each overlap
relationship defined by Allen [32]. TPDB then translates each
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Fig. 7: Synthetic Dataset [20K–200K]

rule to an inner join that is submitted to PostgreSQL. Although
there is an equality condition on the non-temporal attributes,
it is not used in the cases examined in Fig. 7 where all the
tuples include the same fact. Thus, the joins are only based
on the inequality conditions and perform a larger number of
comparisons. TPDB is slower than the other approaches, but
it is still faster than NORM, because the latter has to adjust
each relation.

Although TI is faster than NORM and TPDB, it is one of the
slowest approaches for set intersection. The index allows for
the avoidance of redundant comparisons related to the interval
overlap condition, and its creation cost is a small percentage
of its runtime. Given the indexes of the input relations, TI
performs a merge-join on them and produces (rid , sid) pairs. In
order to form the output tuples, the input tuples corresponding
to each pair need to be retrieved. Given the value of the
overlapping factor and the existence of only one fact, a higher
number of joined pairs is produced and thus a higher number
of lookups is required. OIP splits the tuples of each input
relation into partitions, based on the start/end points of their
interval and its duration. Consequently, it offers a mechanism
that performs interval comparisons between tuples only if their
partitions overlap. If the partitions overlap, OIP performs a
nested loop between the tuples of the two relations. As the
overlapping factor is 0.6, which indicates that most of the
pairs produced in the nested loop will indeed be output pairs,
OIP has a very small percentage of false hits. Although OIP is
tailored for an overlap join, for datasets of up to 200K tuples
LAWA’s performance is competitive, being on average 30 ms
slower.

In the case of TP set difference, as illustrated in Fig. 7b,
LAWA clearly outperforms NORM, for the same reasons as
for TP set intersection. Fig. 7c compares LAWA with NORM
and TPDB during the computation of TP set union. LAWA
has the lowest runtime, whereas NORM has the highest one,
being 5 orders of magnitude slower than LAWA. The window
that sweeps over all the input tuples in LAWA makes no
false hits in this case, since all of the subintervals that the
window defines correspond to output intervals. NORM no
longer requires a join but a union after the relations have
been normalized. However, as in all the previous operations,
NORM’s performance is hindered by the computation of the
timestamp adjustment. TPDB can also compute TP set union
by using a deduction rule that corresponds to a conventional

union instead of joins, and thus its performance is significantly
better in comparison to TP set intersection.
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Fig. 8: Synthetic Dataset [5M–50M]

Larger Datasets [5M–50M]: LAWA is the only scalable
approach that can be used for the computation of all three TP
set operations. In Fig. 8, we depict the performance of LAWA
for the computation of TP set intersection for larger datasets.
The overlapping factor of the datasets remains fixed to 0.6,
and the dataset sizes vary from 5M to 50M tuples. While OIP
is also considered, the other approaches that were included in
Fig. 7a are not taken into consideration, since their runtimes
were already two to five orders of magnitude higher when
applied on the smaller datasets. After 30M tuples, LAWA is at
least 2 times faster than OIP and continues to scale better. OIP
produced a small number of partitions that contain many tuples
each. Such partitions are likely to overlap and the nested loop
that matches their tuples is computationally expensive. As far
as TP set difference and TP set union are concerned, LAWA
has similar runtime as in the case of TP set intersection and
it is the only scalable approach suitable for their computation
within at most 100 seconds.
2. Robustness. In this experiment, we show that LAWA is
a scalable operator whose runtime only depends on the size
of the dataset and not on its other characteristics (i.e., neither
on the value of the overlapping factor nor on the number of
distinct facts captured by the input tuples).

TABLE III: Dataset Characteristics

Overlapping Factor 0.03 0.1 0.4 0.6 0.8
Max. Interval Length (R) 100 100 50 3 10
Max. Interval Length (S) 3 10 10 3 10

Max. Time Distance 3

In Fig. 9a, the performance of LAWA for set intersection
is compared with the one of OIP, which has been the most
competitive approach for datasets where all the tuples include
the same fact. This time, the size of the dataset is fixed to



30M, and the overlapping factor is assigned to four different
values in [0,1]. Table III depicts the overlapping factor of
the datasets as well as their maximum interval lengths (in
terms of the number of time points). The runtime of OIP
increases as the overlapping metric increases. The reason
is that the higher the overlapping factor, the more tuples
occur in a partition and the nested loop performed in each
partition is very time consuming. On the other hand, only
minor variations are observed in the runtime of LAWA for the
different values of the overlapping factor, thus demonstrating
that the performance of LAWA is not negatively affected by
interval-related characteristics of the dataset.
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Fig. 9: Robustness Tests

In Fig. 9b, we show how the number of distinct facts in
the input relations affects the performance of LAWA and
all other approaches during a TP set intersection. The size
of the dataset is set to 60K, so that the runtimes of the
approaches are comparable, and the overlapping metric is set
to 0.6. The number of facts is set to values much less than
the size of the dataset, but also to a value that is equal to
half the size of the dataset. The runtime of LAWA remains
stable as the number of the facts included in the input tuples
decreases, whereas the performance of the other approaches
deteriorates. OIP is an exception since, if the number of facts
becomes comparable to the number of tuples, it suffers from
the overhead of partitioning the tuples of each fact, performing
the corresponding join and merging the results. Concerning
the other approaches, TI has a better performance than LAWA
but only in the case of 30K facts. This behaviour is expected,
since there is a low number of joined pairs, thus reducing the
number of required lookups. NORM’s performance improves
as well when the number of facts increases, but this approach
does not scale to datasets with more than 30K tuples. TPDB,
on the other hand, appears to have diminishing improvements.

C. Real-World Datasets

In this subsection, we compare the runtimes of TP set
operations using two real-world temporal datasets. The main
properties of these datasets are summarized in Table IV. The

Meteo Swiss dataset3 includes temperature predictions that
have been extracted from the website of the Swiss Federal Of-
fice of Meterology and Climatology. The measurements were
taken at 80 different meteorological stations in Switzerland
from 2005 to 2015. Measurements are 10 minutes apart and –
in order to produce intervals – we merged time points whose
measurements differ by less than 0.1. The Webkit dataset4

[13], [14], [15] records the history of 484K files of the SVN
repository of the Webkit project over a period of 11 years
at a granularity of milliseconds. The valid times indicate the
periods when a file remained unchanged. For both datasets
we produced a second relation by shifting the intervals of the
original dataset, without modifying the lengths of the intervals.
The start/end points of the new relation were randomly chosen,
following the distribution of the original ones.

TABLE IV: Real-World Dataset Properties

Meteo Webkit
Cardinality 10.2M 1.5M
Time Range 347M 7M

Min. Duration 600 0.02
Max. Duration 19.3M 6M
Avg. Duration 152M 1.7M
Num. of Facts 80 484K
Distinct Points 545K 144K

Max Num. of Tuples (per time point) 140 369K
Avg Num. of Tuples (per time point) 37 21

In Fig. 10 and Fig. 11, we perform TP set intersection,
difference and union over two equally sized relations created
from random subsets of the initial dataset and its shifted
counterpart, respectively. The runtime of each approach is
based on the number of tuples in the input relations. In
all cases, LAWA has the best performance. All approaches
perform similarly to the synthetic dataset, with the exception
of TI and NORM for the Webkit dataset. In this dataset, the
maximum number of tuples starting or ending at a certain time
point is very high, thus negatively affecting the performance of
TI that has to make pairs among all of the tuples at a time point
before it rejects the ones that do not match the nontemporal
condition. Also, the number of facts is much higher than in
the Meteo Swiss Dataset, making NORM significantly faster.

VIII. CONCLUSIONS

We proposed a novel data model that—for the first time
in the literature—unifies the two areas of temporal and proba-
bilistic databases under a sequenced semantics. We defined and
implemented TP set operations, which can be supported very
efficiently for a wide range of queries but received only very
little attention so far. We introduced the lineage-aware tem-
poral window as a mechanism to accelerate the computation
of TP set operations. Our LAWA algorithm produces lineage-
aware temporal windows that can be filtered directly by the
time of their creation based on input lineage expressions.
Using a generic window-sweeping technique, LAWA manages
to produce all output intervals, not only for TP set intersection

3Federal Office of Meteorology and Climatology: http://www.meteoswiss.ch (2016)
4The WebKit Open Source Project: http://www.webkit.org (2012)
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Fig. 10: Meteo Swiss Dataset
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Fig. 11: Webkit Dataset

but also for TP set difference and TP set union, in a scalable
and predictable manner. A thorough experimental evaluation
reveals that our implementation is robust and outperforms
comparable approaches from both temporal and probabilistic
databases. As future work, we intend to investigate both tuple
correlations and support for full relational algebra.
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