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Abstract. In this contribution, we provide the results on the low-dimensional algebraic
cohomology with values in the trivial and the adjoint module of the Witt and the Virasoro
algebra over a field K with char(K) = 0. A sketch of the various proofs is given, the details
can be found in previous articles of the authors. More precisely, we give a summary of results
known concerning the zeroth, first and second algebraic cohomology of the Witt and the Virasoro
algebra, and we present some details about the more recent results related to the third algebraic
cohomology. It has to be noted that we are dealing entirely with algebraic cohomology, meaning
that our results are valid for any concrete realization of the Witt and the Virasoro algebra.
Moreover, our results are independent of any underlying topology chosen.

1. Introduction
The Witt algebra and its universal central extension given by the Virasoro algebra are infinite-
dimensional Lie algebras of outermost importance both in mathematics and in physics. The
Virasoro algebra thus appears in two-dimensional conformal field theory and in String Theory.
Contrary to higher dimensional cohomology, the low-dimensional cohomology comes with an easy
interpretation in terms of known objects, such as invariants, central extensions, deformations,
obstructions or crossed modules, see e.g. Gerstenhaber [1–5]. The analysis of these objects is
also of interest in mathematics as they allow a better understanding of the Lie algebra itself.
Also in physics, the low-dimensional cohomology is used, for example in the study of anomalies,
see e.g. Roger [6].
The Witt and the Virasoro algebra have several concrete realizations. A geometrical realization
of the Witt algebra is for example given by the algebra of meromorphic vector fields on the
Riemann sphere CP1 that are holomorphic outside of zero and infinity. Another popular
geometrical realization corresponds to the complexified Lie algebra of polynomial vector fields on
the circle, V ectPoly(S1). This Lie algebra is a dense subalgebra of the complexified Lie algebra
of smooth vector fields on the circle, V ect(S1). The cohomology of the Lie algebra V ect(S1) is
already known, as it has been computed by Gelfand and Fuks [7, 8] in the case of the trivial
module and by Fialowski and Schlichenmaier [9] in the case of generic modules, including the
adjoint module. For this representation of the Witt and the Virasoro algebra, it is sensible to
consider continuous cohomology, i.e. to consider only continuous cochains. By restriction to
the continuous sub-complex and by using density arguments, one can transfer the results for
V ect(S1) to V ectPoly(S1), i.e. the Witt algebra. Therefore, the continuous cohomology of the
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Witt algebra is known.
However, the definition of the Witt and the Virasoro algebra is given by the Lie structure
equation and is purely algebraic. In fact, the Witt algebra also has algebraic realizations, such
as the algebra of derivations of the Laurent polynomials.
In the present article, we consider the low-dimensional algebraic cohomology of the Witt and
the Virasoro independent of any concrete realization of these Lie algebras. We only use the
primary definition via the Lie structure equation, making the results valid for any realization.
In general, algebraic cohomology is much harder to compute than continuous cohomology, as the
entire toolkit of topology and geometry cannot be used. Results on algebraic cohomology are
thus somewhat scarce in the literature. By using elementary algebraic methods, Schlichenmaier
showed in [10, 11] the vanishing of the second algebraic cohomology with values in the adjoint
module of the Witt and the Virasoro algebra, see also Fialowski [12]. This result was already
announced in the case of the Witt algebra in [13] by Fialowski, though no proof was given.
The same result was obtained via elementary algebra in the supersymmetric case by Van den
Hijligenberg and Kotchetkov in [14, 15]. The first algebraic cohomology is easy to compute, it
was done explicitly for the Witt and the Virasoro algebra in [16]. The third algebraic cohomology
with values in the trivial and the adjoint module was computed for the Witt and the Virasoro
algebra by the authors in [16] and [17]. The aim of this article is to summarize the results
obtained and to provide a sketch of the proofs involved.
In Section 2, we briefly introduce the Witt and the Virasoro algebra. The topic covered
in Section 3 consists of the cohomology of Lie algebras. More precisely, after recalling the
Chevalley-Eilenberg cohomology, we introduce the notion of the degree of a homogeneous
cochain. Subsequently, we continue by recalling results known in the case of the zeroth, first and
second algebraic cohomology of the Witt and the Virasoro algebra, with values in the adjoint
and the trivial module. We also briefly mention the interpretation of each of these cohomologies.
Finally, we end Section 3 by recalling the Theorem of Hochschild-Serre. In Section 4, we present
our results obtained for the third algebraic cohomology of the Witt and the Virasoro algebra,
with values in the adjoint and the trivial module. The results are presented along with a sketch
of the proofs involved.
So far, we restricted our work to the low-dimensional algebraic cohomology. The reason is
two-fold. On the one hand, higher dimensional cohomology such as the fourth cohomology and
above, do not come with an easy interpretation in terms of known objects. Still, it would be
interesting to see whether algebraic and continuous cohomology agree also in the case of higher
dimensional cohomology. On the other hand though, their computation becomes increasingly
difficult in the algebraic case. Comparison of the proofs provided for the first, second and third
algebraic cohomology shows that there is no straightforward generalization when increasing the
cohomological dimension.

2. The Witt and the Virasoro Algebra
The Witt algebraW is an infinite-dimensional Z-graded Lie algebra generated as a vector space
over a base field K with characteristic zero by the basis elements {en | n ∈ Z}, which satisfy the
following Lie algebra structure equation:

[en, em] = (m− n)en+m, n,m ∈ Z .

The Witt algebra becomes a Z-graded Lie algebra by defining the degree of an element en by
deg(en) := n. More precisely, the grading being given by one of its own elements, namely e0:
[e0, em] = mem = deg(em)em, the Witt algebra is an internally Z-graded Lie algebra.
Let us briefly comment on the most popular realizations of the Witt algebra. An algebraic
description of the Witt algebra is given in terms of the Lie algebra of derivations of the infinite-
dimensional associative K-algebra of Laurent polynomials K[Z−1, Z].



By considering K = C, we obtain a geometrical realization of the Witt algebra given by the
algebra of meromorphic vector fields on the Riemann sphere CP1 that are holomorphic outside
of 0 and∞. The generators of the Witt algebra for this realization are of the form en = zn+1 d

dz ,
where z corresponds to the quasi-global complex coordinate.
Finally, another geometrical realization of the Witt algebra is the complexified Lie algebra of
polynomial vector fields on the circle S1, in which case the generators are given by en = einϕ d

dϕ ,
where ϕ is the coordinate along S1.

It is known that the Witt algebra has a unique non-trivial central extension V, up to
equivalence and rescaling, which in fact is a universal central extension:

0 −→ K i−→ V π−→W −→ 0 , (2.1)

where K is in the center of V. This extension V corresponds to the Virasoro algebra.
On the level of vector spaces, the Virasoro algebra V is given as a direct sum V = K⊕W, with
generators ên := (0, en) and the one-dimensional central element t := (1, 0). The generators
fulfill the following Lie structure equation:

[ên, êm] = (m− n)ên+m + α(en, em) · t n,m ∈ Z ,
[ên, t] = [t, t] = 0 ,

(2.2)

where α ∈ Z2(W,K) is the so-called Virasoro 2-cocycle, a representing element of which is given
by:

α(en, em) = − 1
12(n3 − n)δn+m,0 . (2.3)

The cubic term n3 is the most relevant term, whereas the linear term n corresponds to a
coboundary1.
By defining deg(ên) := deg(en) = n and deg(t) := 0, the Virasoro algebra becomes also an
internally Z-graded Lie algebra.

3. The cohomology of Lie algebras
3.1. The Chevalley-Eilenberg cohomology
We will briefly recall the Chevalley-Eilenberg cohomology, for the convenience of the reader.
Let L be a Lie algebra, M a L-module, and Cq(L,M) the space of q-multilinear alternating
maps on L with values in M ,

Cq(L,M) := HomK(∧qL,M) .

We call q-cochains the elements of Cq(L,M), and we set by convention C0(L,M) := M . The
coboundary operators δq are defined by:

∀q ∈ N, δq : Cq(L,M)→ Cq+1(L,M) : ψ 7→ δqψ ,

(δqψ)(x1, . . . xq+1) : =
∑

1≤i<j≤q+1(−1)i+j+1 ψ([xi, xj ] , x1, . . . , x̂i, . . . , x̂j , . . . , xq+1)

+
∑q+1
i=1 (−1)i xi · ψ(x1, . . . , x̂i, . . . , xq+1) ,

(3.1)

with x1, . . . , xq+1 ∈ L, x̂i means that the entry xi is omitted and the dot · stands for the module
structure. In case of the adjoint moduleM = L, we have x·y = [x, y] for x ∈ L and y ∈M , while
in the case of the trivial module M = K, we have x · y = 0. The coboundary operators fulfill
1 The symbol δi,j is the Kronecker Delta, equaling one if i = j and zero otherwise.



δq+1 ◦ δq = 0 ∀ q ∈ N, giving us a cochain complex (C∗(L,M), δ) called the Chevalley-Eilenberg
complex. The corresponding cohomology is the Chevalley-Eilenberg cohomology:

Hq(L,M) := Zq(L,M)/Bq(L,M) ,

where elements in Zq(L,M) := ker δq are called q-cocycles and elements in Bq(L,M) :=
im δq−1 are called q-coboundaries. For more details, we refer the reader to the original literature
by Chevalley and Eilenberg [18].

3.2. Degree of a homogeneous cochain
We consider L to be a Z-graded Lie algebra, L =

⊕
n∈Z Ln, and M a Z-graded L-module, i.e.

M =
⊕
n∈ZMn. A q-cochain ψ is homogeneous of degree d if there exists a d ∈ Z such that for

all q-tuple x1, . . . , xq of homogeneous elements xi ∈ Ldeg(xi), we have:

ψ(x1, . . . , xq) ∈Mn with n =
q∑
i=1

deg(xi) + d .

Everything is compatible with the coboundary operator and hence the cohomology can be
decomposed for all q:

Hq(L,M) =
⊕
d∈Z

Hq
(d)(L,M) .

In the case of internally graded Lie algebras and modules, the cohomology reduces to the degree-
zero cohomology according to the result of Fuks [7]:

Hq
(d)(L,M) = {0} for d 6= 0 ,

Hq(L,M) = Hq
(0)(L,M) .

(3.2)

In our case, the result can be applied as both the Witt algebra and the Virasoro algebra are
internally graded Lie algebras. Besides, the modules considered here are also graded. This is
obvious in the case of the adjoint module. In case of the trivial module K, we have that K has
a trivial grading given by K =

⊕
n∈ZKn with K0 = K and Kn = {0} for n 6= 0.

3.3. Results on the algebraic cohomology of the Witt and the Virasoro algebra
For future reference, we briefly summarize in this section known results on the low-dimensional
algebraic cohomology of the Witt and the Virasoro algebra, including the results highlighted
in this contribution. Moreover, we shortly recall the interpretations of the low-dimensional
cohomology in order to highlight its importance.
Let L be a Lie algebra and M a L-module. The zeroth cohomology H0(L,M) corresponds to
the space of elements of M invariant under L, i.e. the L-invariants of M . In the case of the
Witt and the Virasoro algebra, we immediately obtain:

H0(W,K) = K and H0(W,W) = {0} ,
H0(V,K) = K and H0(V,V) = K t ,

where t is the central element of the Virasoro algebra.
The first cohomology with values in the trivial module corresponds to H1(L,K) = (L/[L,L])∗
where ∗ stands for the dual space. The first cohomology with values in the adjoint module
corresponds to outer derivations, H1(L,L) = Out(L). In [16], the first algebraic cohomology of
the Witt and the Virasoro algebra was computed:

H1(W,K) = {0} and H1(W,W) = {0} ,
H1(V,K) = {0} and H1(V,V) = {0} .



The second cohomology with values in the trivial module H2(L,K) classifies central extensions
of L up to equivalence. In the case of the adjoint module, the second cohomology H2(L,L)
classifies infinitesimal deformations of L modulo equivalent deformations. In fact, the vanishing
of this cohomology H2(L,L) = {0} implies that the Lie algebra L is infinitesimally and formally
rigid, see Fialowski and Fuchs [19], Fialowski [13, 20], Gerstenhaber [2–4], and Nijenhuis and
Richardson [21]. However, contrary to the finite-dimensional case [2–4, 22], H2(L,L) = {0} does
not imply other types of rigidity in the infinite-dimensional case, see [9, 23–26]. Concerning the
second cohomology for the Witt and the Virasoro algebra, the following results are known:

dim(H2(W,K)) = 1 and H2(W,W) = {0} ,
H2(V,K) = {0} and H2(V,V) = {0} .

The first result dim(H2(W,K)) = 1 is a well-known result, which states that the Witt algebra
admits, up to equivalence and rescaling, only one non-trivial central extension, namely the
Virasoro algebra. For an algebraic proof of this result, see e.g. the book by Kac, Raina and
Rozhkovskaya [27]. The second result H2(W,W) = {0} was shown in [10, 11] and [12]. This
result leads to the fact that the Witt algebra is infinitesimally and formally rigid. The third
result H2(V,K) = {0} and the fourth result H2(V,V) = {0} were shown in [10]. They imply
that the Virasoro algebra admits no non-trivial central extensions and that it is infinitesimally
and formally rigid, respectively.
The third cohomology with values in the adjoint module H3(L,L) contains obstructions to the
lifting of an infinitesimal deformation to a formal deformation. However, the third cohomology
with values in a module M , H3(L,M), also comes with a more constructive point of view in
terms of crossed modules. In fact, the third cohomology H3(L,M) classifies equivalence classes
of crossed modules associated to L and M , see Wagemann [28] and Gerstenhaber [3, 5].
In the case of the Witt and the Virasoro algebra, we obtained the following results for the third
cohomology with values in the trivial and the adjoint module:

dim(H3(W,K)) = 1 and H3(W,W) = {0} ,
dim(H3(V,K)) = 1 and dim(H3(V,V)) = 1 .

We proved the second result H3(W,W) = {0} algebraically in [16]. This result states that there
are no crossed modules associated to the Lie algebraW and the moduleW. The remaining three
results were proven by the authors in [17]. The three results imply that there is an equivalence
class of a crossed module associated to W and K, V and K, as well as V and V, respectively.
For H3(W,K) and H3(V,K), an explicit algebraic expression of the generating cocycle of these
spaces was given.

3.4. The Hochschild-Serre Spectral Sequence
For the convenience of the reader, we will recall the Hochschild-Serre spectral sequence, which
will be used in the proofs later on.

Theorem [Hochschild-Serre [29, 30]] 3.4.1. For every ideal h of a Lie algebra g, there is a
convergent first quadrant spectral sequence:

Epq2 = Hp(g/h,Hq(h,M)))⇒ Hp+q(g,M) ,

with M being a g-module and via h ↪→ g also a h-module.

A concise proof of this well-known result can be found for example in the textbook of Weibel
[31]. The original literature is given by the articles [29, 30] by Hochschild and Serre.



4. Results for the third algebraic cohomology of the Witt and the Virasoro algebra
In [16], the authors proved the vanishing of the third algebraic cohomology of the Witt algebra
with values in the adjoint module.
Theorem 4.1. The third algebraic cohomology of the Witt algebra W over a field K with
char(K) = 0 and values in the adjoint module is zero, i.e.

H3(W,W) = {0} .

Sketch of the proof. The proof is accomplished in three steps.
• In a first step, the entire analysis can be reduced to the degree zero cohomology. In fact, the

Witt algebra is an internally graded algebra, and in that case the same obviously holds true
for the adjoint module. Therefore, due to the result of Fuks (3.2), we only need to consider
degree zero cochains, meaning we can write the 3-cochains as ψ(ei, ej , ek) = ψi,j,k ei+j+k
with suitable coefficients ψi,j,k ∈ K. The coboundary and the cocycle condition can be
rewritten in terms of these coefficients. The main aim of the proof thus reduces to proving
that all the coefficients have to be zero up to coefficients from a coboundary.
• The second step consists in performing a cohomological change ψ′ = ψ − δ2φ, where
φ(ei, ej) = φi,j ei+j is a degree zero 2-cochain. The aim is to put as many coefficients
ψ′i,j,k as possible equal to zero by defining φi,j in an appropriate and consistent way. This
is achieved by using recurrence relations obtained from the coboundary condition.
• In the last step, we use the cocycle condition evaluated on suitable combinations of the
basis elements ei in order to find non-trivial relations between the coefficients ψ′i,j,k, which
finally lead to the result ψ′i,j,k = 0 ∀ i, j, k ∈ Z.

In [17], the authors proved that the third algebraic cohomology of the Virasoro algebra with
values in the adjoint module is one-dimensional.
Theorem 4.2. The third algebraic cohomology of the Virasoro algebra V over a field K with
char(K) = 0 and values in the adjoint module is one-dimensional, i.e.

dim(H3(V,V)) = 1 .

Proof. The short exact sequence (2.1) of Lie algebras is also a short exact sequence of V-modules,
leading to a long exact sequence in cohomology,

· · · → H2(V,W)→ H3(V,K)→ H3(V,V)→ H3(V,W)→ . . . . (4.1)

Concerning the second cohomology, it is known that H2(V,W) ∼= H2(W,W) and also
H2(W,W) = {0}, see Section 3.3 and the original literature [10].
Concerning the third cohomology, we have H3(V,W) ∼= H3(W,W) due to Theorem 4.3 below
and H3(W,W) = {0} due to Theorem 4.1. Consequently, the long exact sequence (4.1) reduces
to:

0→ H3(V,K)→ H3(V,V)→ 0 . (4.2)
Since dim(H3(V,K)) = 1 by Theorem 4.4 below, the two-term exact sequence (4.2) above yields
the announced result dim(H3(V,V)) = 1.

Theorem 4.3.

If Hj(W,W) = 0 for k − 2 ≤ j ≤ k − 1 ,
then Hk(V,W) ∼= Hk(W,W) .

In particular, H3(V,W) ∼= H3(W,W) .



Sketch of the proof. The proof is obtained via the Hochschild-Serre spectral sequence. Taking
g = V and h = K in Theorem 3.4.1, the second page of the Hochschild-Serre spectral sequence
becomes Ep,q2 = Hp(W,Hq(K,M)). Using W as a V-module and denoting by ϕi : Hi(W,W)→
Hi+2(W,W) the maps on the E2 level, we obtain from the third page E3 = E∞ the following
result:

Hk(V,W) ∼=
Hk(W,W)
im ϕk−2

⊕
ker

(
ϕk−1 : Hk−1(W,W)→ Hk+1(W,W)

)
,

and in particular, if Hj(W,W) = {0} for k − 1 ≤ j ≤ k, then

Hk+1(V,W) ∼= Hk+1(W,W) .

Applying this to k = 2 and using H1(W,W) = H2(W,W) = {0}, see Section 3.3 or [16] and
[10], we obtain H3(V,W) ∼= H3(W,W).

Theorem 4.4. The third algebraic cohomology of the Witt and the Virasoro algebra over a field
K with char(K) = 0 and values in the trivial module is one-dimensional, i.e.

dim(H3(W,K)) = dim(H3(V,K)) = 1 .

Sketch of the proof. The proof of dim(H3(W,K)) = 1 can easily be extended to the proof of
dim(H3(V,K)) = 1, so that both results can be obtained simultaneously.
The proof consists basically of three steps. In a first step, we use the fact that both the
Witt algebra and the Virasoro algebra are internally graded Lie algebras, and that the trivial
module K comes with a trivial grading, which allows us to reduce the analysis to the degree zero
cohomology due to (3.2).
In a second step, the aim is to find a degree zero 3-cocycle of H3(W,K) which is not a coboundary.
The definition of this 3-cocycle can easily be extended to a non-trivial 3-cocycle of H3(V,K).
Inspired by the result dim(H3(V ect(S1),R)) = 1 in continuous cohomology, we consider the
generator of this space given by the so-called Godbillon-Vey 3-cocycle, see e.g. the book by
Guieu and Roger [32] and also the original literature [8]. Expressed in our basis and in our
algebraic setting, the Godbillon-Vey cocycle becomes:

Ψ(en, em, ek) =


0 for k 6= −(n+m)

A

∣∣∣∣∣∣
1 1 1
n m −(n+m)
n2 m2 (n+m)2

∣∣∣∣∣∣ for k = n+m

⇔ Ψ(en, em, ek) =
{

0 for k 6= −(n+m)
A(m− n)(2m+ n)(m+ 2n) for k = n+m

,

where A is a non-vanishing constant. Inserting this definition of Ψ into the cocycle condition,
it is straightforward to verify that Ψ is a 3-cocycle for H3(W,K). Furthermore, evaluating Ψ
on the combination of generators given by e1, e0 and e−1, we obtain a value different from zero
for Ψ. However, every coboundary evaluated on the same combination of generators e1, e0 and
e−1, gives zero. Hence, the 3-cocycle Ψ cannot be a coboundary. The map Ψ can be trivially
extended to a cochain of H3(V,K) by defining Ψ(en, em, t) = 0. A similar direct verification to
the one done in the case of the Witt algebra shows that the extended Ψ is a non-trivial cocycle
of H3(V,K).
In the final step, we show that there are no other non-trivial 3-cocycles than Ψ in H3(W,K)
or H3(V,K), up to equivalence. Let ψ be any arbitrary degree zero 3-cocycle of W or V. We
consider the linear combination given by:

ψ′ = ψ − ψ(e−1, e1, e0)
2 Ψ . (4.3)



Obviously, ψ′ satisfies ψ′(e−1, e1, e0) = 0. In a separate proposition, we prove that any degree
zero 3-cocycle ψ̃ satisfying ψ̃(e−1, e1, e0) = 0 must be a coboundary. The proposition is proved
by elementary but tedious algebraic computations, similar to the ones used in the proof of
Theorem 4.1. The proposition and (4.3) together then imply that every arbitrary ψ must be a
multiple of Ψ up to coboundaries, which allows to conclude.
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