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Effect of spectrin network elasticity on the shapes
of erythrocyte doublets†

Masoud Hoore, a François Yaya,bc Thomas Podgorski,c Christian Wagner,bd

Gerhard Gompper a and Dmitry A. Fedosov *a

Red blood cell (RBC) aggregates play an important role in determining blood rheology. RBCs in plasma

or polymer solution interact attractively to form various shapes of RBC doublets, where the attractive

interactions can be varied by changing the solution conditions. A systematic numerical study on RBC

doublet formation is performed, which takes into account the shear elasticity of the RBC membrane

due to the spectrin cytoskeleton, in addition to the membrane bending rigidity. RBC membranes are

modeled by two-dimensional triangular networks of linked vertices, which represent three-dimensional

cell shapes. The phase space of RBC doublet shapes in a wide range of adhesion strengths, reduced

volumes, and shear elasticities is obtained. The shear elasticity of the RBC membrane changes the

doublet phases significantly. Experimental images of RBC doublets in different solutions show similar

configurations. Furthermore, we show that rouleau formation is affected by the doublet structure.

1 Introduction

In whole blood, red blood cells (RBCs) experience a pronounced
attractive interaction, which is mediated by plasma proteins
such as fibrinogen.1,2 Similar attraction between RBCs is also
observed in solutions of dextran3–5 or other macromolecules.
Such an attractive interaction leads to the formation of RBC
aggregates, in particular large rouleaux, which play an essential
role in the strong shear-thinning behavior of blood at low and
moderate shear rates.6–8 Thus, the interaction of RBCs with
each other and with adhesive surfaces is of great interest
to understand the rheology of blood and rouleau formation.
The first step for studying RBC assembly into rouleaux is an
aggregate of two RBCs, called a doublet. The formation and
shape of RBC doublets is determined by the competition
between bending and shear elasticity, and the adhesion energy.

The RBC membrane has a characteristic biconcave shape,
which can be well described by the Helfrich bending elasticity9,10

similar to fluid vesicles, whose shape is determined by the
bending free energy and volume and area conservation of a closed
membrane.11,12 However, in addition to bending resistance,
RBC membranes possess a shear elasticity supplied by their
spectrin cytoskeletal network, which differentiates them from
lipid vesicles.13–15

The first theoretical studies16–18 of RBC doublets considered
a flat shape for the contact surface between RBCs to simplify
the analysis. Later, numerical studies have shown that two fluid
vesicles with bending rigidity and constant volume form a
curved contact surface.19–21 Different shapes of vesicle doublets
as a function of their adhesion strength and bending rigidity
were predicted. These shapes are also qualitatively consistent
with those obtained in several two-dimensional (2D)
investigations.22–24 In recent work,25 various RBC doublet
phases have been explored depending on the dextran and
fibrinogen concentration, which modifies the attractive inter-
action between RBCs. The experimental data have been mainly
supported by two-dimensional (2D) simulations,25 and therefore,
it remains unclear whether the whole phase space of the system
has been explored or not and whether some other RBC doublet
phases exist in practice. Furthermore, another interesting ques-
tion is how the shear elasticity of the RBC membrane affects
different doublet phases, since previous investigations19,20 have
primarily focused on bending rigidity. Similar issues are impor-
tant for the complexation of vesicles with particles of similar size,
such as colloidal particles or other vesicles,26 as well as for similar
complexes of RBCs with other micro-particles.
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Here, we systematically study the phase space of RBC doublets
using simulations of high resolution triangulated membranes
with bending and shear elasticity in three dimensions (3D).
Specifically, we focus on the effect of membrane shear elasticity
in determining different RBC doublet phases and find that a
change in RBC shear elasticity significantly modifies the doublet
phase space. Furthermore, we explore the influence of the RBC
reduced volume on doublet shapes. The various phases of
RBC doublets, predicted theoretically, are also compared with
experimental results.

2 Methods & models
2.1 Membrane model

The RBC membrane is represented by a triangular mesh, as
described in detail in ref. 27–30. The important energies for
RBC doublets are the bending energy from the lipid bilayer and
the shear elasticity of the spectrin network, and the adhesive
energy between the two RBCs. The bending energy for fluid
membranes, which do not possess a preferred radius of curvature,
reads9,31–34

Ub ¼
1

2
kc

þ
A

dA c1 þ c2ð Þ2 þ kg

þ
A

dAc1c2; (1)

where kc, kg, c1, and c2 are the bending rigidity, the Gaussian
bending modulus, and principal curvatures of the membrane,
respectively. The energy is integrated over the whole membrane
area A enclosing the volume V. The integral over the Gaussian
curvature K = c1c2 is constant for a fixed topology, due to the
Gauss–Bonnet theorem.32,34

The simplest discretization of the bending energy in eqn (1)
has been proposed by Kantor & Nelson (KN)35 for every pair of
adjacent triangles,

UKN ¼
X
i; j

kb 1� nijk � nijk0
� �

; (2)

where kb is the bending constant, and nijk is the unit normal
vector of the triangle with vertices i, j, and k (see Fig. 1). The

quantity kb is related to the bending rigidity kc as kc ¼ kb
ffiffiffi
3
p

=2

for a sphere in the continuum limit.28,32,36,37 Even though such
a discretized bending model for RBCs has been quite successful
in predicting RBC behavior, including membrane fluctuations,38

RBC mechanical properties,27–29 and flow dynamics,39,40 it is not
accurate enough if the bending energy of the membrane
dominates. A similar conclusion has been also reached in a recent
investigation,41,42 where different discretizations of the bending
energy were tested.

A more accurate discretization for the bending energy has
been proposed by Gompper & Kroll (GK)32 as

UGK ¼
1

2
kc
X
i

1

si

X
jðiÞ

sij r̂ij

0
@

1
A

2

; (3)

where si ¼
1

4

P
jðiÞ

sijrij , sij = rij(cot yk + cot yk0)/2, rij is the distance

from vertex i to j, r̂ij is the unit vector pointing to vertex i from j,

j(i) are the vertices connected to vertex i by bonds, and yk and yk’

are the angles opposite to the bond between vertex i and j in
triangles ikj and ik0j (see Fig. 1). si and sij are the area of each
cell and the length of each bond, respectively, in the dual lattice
of the triangulated lattice of the membrane,32 as shown in
Fig. 1. Different discretization models have been explained in
more detail in ref. 41–43.

The membrane elasticity due to the spectrin bonds is
represented by a combination of the worm-like chain (WLC)
and power (POW) potentials, as described in ref. 28 and 29. The
network model of the membrane conserves its global surface
area and volume by harmonic constraint potentials with stiff-
nesses ka and kv, respectively.28,29 The local area of each triangle
is also softly constrained by a harmonic potential with a
stiffness kl.

28,29 The Young’s and shear moduli are derived
from the WLC potential and the area conservation potentials,
as described in ref. 29, 50 and 51. Since our main interest is in
final doublet configurations in equilibrium, which are deter-
mined by a minimum of the energies involved, dynamic effects
do not contribute and the effect of membrane and fluid
viscosities can be neglected. In simulations, the motion of
membranes is governed by Langevin dynamics.52 It is worth
mentioning that our simulation approach includes thermal
fluctuations, which, however, are of minor importance for
doublet shapes. The membrane properties of RBCs are provided
in Table 1.

In order to test the performance of the two discretization
schemes for bending energy, we model the equilibrium shape
of a fluid vesicle with a reduced volume n = 3V/4pRs

3 = 0.64,
where 4pRs

2 = A. For this value of the reduced volume, the
vesicle must attain a biconcave shape,53 which is also the
equilibrium shape of RBCs.44 Here, A and V correspond to
the membrane area and volume, respectively. Note that the
shape of a vesicle is determined by the bending energy and the
reduced volume.11,12,53 By removing the shear elasticity from
the membrane model (i.e. omitting the bond potential), we find

Fig. 1 Schematic of the two discretization models for the bending
energy. The KN discretization35 in eqn (2) considers the bending of each
adjacent triangle pair, while the GK discretization32 in eqn (3) represents
the bending of each vertex with respect to all of its linked vertices.
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that the KN discretization from eqn (2) does not preserve the
initial biconcave shape of the membrane (see Fig. 2 and
Movie S1, ESI†), indicating that this state does not remain
the equilibrium point for the membrane. In contrast, the GK
discretization from eqn (3) successfully keeps the biconcave
shape without the spectrin network elasticity, as shown in Fig. 2
and Movie S1 (ESI†). The shear elasticity of the RBC membrane
from the spectrin network partially compensates for the inaccuracy
of the KN model; however, the GK model is clearly more accurate
and is employed in this work.

2.2 Adhesion model

To represent aggregation between two RBCs, attractive inter-
actions between two membranes are introduced, similar to
other models19,20,25,54 of interacting membranes. Note that such
interactions cannot be directly associated with any underlying
mechanism for RBC aggregation (e.g. depletion or bridging).
Therefore, this model constitutes an effective representation of

the aggregation between RBCs, which is characterized by the
strength of the attractive interaction and the contact area.

The attractive interaction between adjacent vertices of
membranes in contact is modeled by the Lennard-Jones (LJ)
potential

ULJðrÞ ¼ 4e
s
r

� �12
� s

r

� �6� �
; (4)

where e and s are the energy and characteristic length of the
LJ interaction. The LJ potential is cut off at rcut = 2.5s.

The contact interaction of two RBCs can be represented by
the adhesion free energy19,20

Eadh = �GAc, (5)

where G is the adhesion strength and Ac is the contact area.
Providing that the adhesion is modeled by a pairwise inter-
action, such as the LJ potential in eqn (4), between membrane
vertices, the adhesion strength G can be related to the potential
energy e. If Nc vertices from one RBC interact with the vertices
from another RBC, the total adhesion energy is �Nc~e, where ~e is
the effective adhesion energy of one RBC vertex with the other
RBC vertices. ~e can be calculated approximately by considering
the closest vertices to a vertex from another membrane, as
illustrated in Fig. 3. In a minimal energy state, a vertex sits on
top of three vertices in a tetrahedral configuration with equal
distance s to all of them. The adhesion energy of this vertex
with the other closest neighbors sums to about �5.37e.
Consequently, the total adhesive energy, when Nc vertices
participate in the adhesion from each membrane, is equal to
about �5.4Nce. However, this high symmetry situation of
course does not occur for all of the vertices, resulting in a
somewhat smaller adhesion energy. As vertices of a membrane
are homogeneously distributed on the membrane, Nc/Ac = N/A,
in which N and A are the total number of vertices and the total
area of the RBC membrane. Thus, the adhesion strength is
directly proportional to the vertex density N/A, i.e. G = Nc~e/Ac =
N~e/A. This implies that the adhesion strength is proportional to
the LJ parameter e via ~e.

The reduced adhesion energy, g, is defined as the ratio of the
total possible adhesion energy (i.e. when Ac = A) to the bending
energy of a sphere,

g ¼ GA
8pkc

¼ N~e
8pkc

: (6)

The ratio ~e/e as a function of g and reduced volume n (n1 = n2 = n)
is presented in Fig. 4, which shows how the effective adhesion
energy ~e is related to the pairwise LJ energy e. For different
e values, the equilibrium distance between the two membranes
may change, leading to a different relation between e and ~e.
This is the main reason for an increase in ~e/e with decreasing g.
A very weak dependence of ~e/e on the reduced volume n can be
due to the local curvature of contact. Additionally, for large
enough n, membranes in a doublet configuration are under
tension, which may contribute to the dependence of the ratio
~e/e on n. Finally, the amplitude of thermal fluctuations of a RBC
membrane is known to be spatially non-uniform along the

Table 1 Membrane properties used in simulations and related references

Property (units) Value (variability)

Number of vertices, N 3000
Surface area, A (mm2) 13428,29,44,45

Volume, V (mm3) 9428,29,44,45

Effective diameter, Deff ¼
ffiffiffiffiffiffiffiffiffi
A=p

p
ðmmÞ 6.5

Bending rigidity, kc/kBT 7028,29

Shear modulus, G (mN m�1) 4.6 (2–12)29,46–49

Global area rigidity, kaDeff
2/kc 29 60028,29

Local area rigidity, klDeff
2/kc 60328,29

Global volume rigidity, kvDeff
3/kc 19 62028,29

Fig. 2 Vesicle shapes from the two discretization schemes of the bending
energy. The elastic bond (spring) potential is turned off, so that no shear
elasticity is present. The standard biconcave shape of a RBC is maintained
if the discretization is based on the GK scheme. The KN scheme fails to
keep the RBC biconcave shape (see Movie S1, ESI†).
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surface,55,56 and to depend on the membrane shape, local
curvature, and tension.57 Membrane thermal fluctuations are

included in the model (see Movie S2, ESI†) and would effectively
introduce short-range repulsion between two membranes.

2.3 Experiments

Blood was obtained by finger pricking from healthy donors
after giving informed consent in compliance with the ethical
requirements of Saarland University, Saarbrücken, Germany
(Ärztekammer des Saarlandes, approval number 24/12). RBCs
were washed twice with Phosphate Buffered Saline (PBS,
290 mOsm) following the standard procedure.58 Then, RBCs
were resuspended in several solutions to obtain several doublet
configurations. In order to have various adhesion energies,4 we
prepared dextran solutions with different molecular weights:
� 40 kDa at a concentration of 10 mg ml�1 with an adhesion

energy close to 1 mJ m�2;
� 70 kDa at a concentration of 20 mg ml�1 with an adhesion

energy close to 4 mJ m�2;
� 500 kDa at a concentration of 10 mg ml�1 with an

adhesion energy close to 6 mJ m�2.
Fibrinogen was added with a concentration of 6 mg ml�1 to

autologous plasma as it does not induce spontaneous aggrega-
tion on its own. A hypotonic solution of NaCl at 0.6% was also
prepared to increase the RBC volume. To induce aggregation,
dextran 70 kDa was added with a concentration of 50 mg ml�1

into this solution. The hematocrit level was kept at 0.5% in
every sample. Such a low concentration of RBCs allows us to
manipulate cells freely with holographic optical tweezers. Then,
cells were held at their edge with four optical traps. RBCs were
brought together to form doublets and the traps were released,
so that they can spontaneously aggregate. As dextran is known
to induce spontaneous aggregation,59 we observe the formation
of rouleaux over time. Finally, RBCs were allowed to sediment
for 30 min and micro-photographs were taken using a 60-fold
objective. Morphologies of these aggregates were characterized
similarly to those in the simulations.

3 Doublet shapes

The theoretical adhesion strength G is related to dextran and
fibrinogen concentrations in experiments.59,60 RBC doublet shapes
are determined by the adhesion strength (G, or equivalently g), the
reduced volumes n1 and n2, and the elastic parameters such as
bending rigidity kc and shear elasticity G. The adhesion strength of
the RBC membranes is about 1mJ m�2 in plasma and about 10mJ m�2

in dextran solutions,61 corresponding to gE 4 in plasma and gE 40
in dextran. The RBC volume is also subject to change in different
solutions, and may also vary from one cell to the other.

Fig. 5 shows doublet conformations, the contact area, and
the bending energy for various n1 = n2 = n and g. The contact
area Ac is normalized by the RBC area A. The bending energy
Eb is calculated directly from simulations and normalized by
the bending energy 8pkc of a sphere,

eb ¼
Eb

8pkc
; (7)

where eb denotes the reduced bending energy.

Fig. 3 Analysis of the contact area and the approximation of adhesion
energy. The minimum adhesion energy for a vertex is obtained when it is
located at the head of an equilateral tetrahedron, one of whose faces is the
triangle of the other membrane vertices. The four closest neighbors to this
vertex are shown by different symbols with assigned numbers 1–4. The
closest neighbors are 3 vertices with distance s, and the second closest
neighbors are again 3 vertices approximately

ffiffiffi
2
p

s away from this vertex.

Also 6 neighbors with a
ffiffiffi
3
p

s and 6 other with a
ffiffiffi
5
p

s distance are
the farthest neighbors, which affect the adhesion energy. Even further
neighbors have a negligible effect on the energy and are ignored. Thus, the
effective adhesion energy ~e of one interacting vertex is equal to about
5.37e. In another configuration, where a vertex sits close to only one vertex
from the other membrane, the effective adhesion energy would be
approximately 4.1e.

Fig. 4 The ratio of the effective adhesion energy ~e to the pairwise energy
e. This ratio depends weakly on the configuration of the two adhered RBCs,
as illustrated in Fig. 3. Simulations are conducted for the system until it
reaches equilibrium. The reported data are averaged over 250 uncorre-
lated points in simulations from the equilibrium states. On average, ~e/e =
4.23 � 0.03.
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The contact area is more sensitive to the reduced adhesion
strength and the bending energy is more sensitive to the
reduced volume, see Fig. 5(a). Overall, as the reduced volume
decreases and the adhesion strength increases, both the con-
tact area and the membrane bending energy increase.

The configurations both for the initially aligned and for the
offset doublets (Fig. 5(c)) are depicted in Fig. 5(e) and (f). The
phases of RBC doublets for the initially aligned and offset
configurations match at high adhesion strengths or high
reduced volumes. However, a mismatch of doublet phases is

observed for low adhesion strengths and low reduced volumes,
see Fig. 5(d)–(f). This indicates the existence of several local
minima in the free-energy landscape, making the first point of
contact important for RBC doublets. Multiple local minima in
the free-energy should also exist for fluid vesicles, even though
this has not been demonstrated so far. In comparison to
vesicles, RBCs also possess an elastic spectrin network, which
may have anisotropic local pre-stress. This additional property
likely contributes to a complex energetic landscape for RBC
doublets with several metastable states or local minima.

Fig. 5 RBC doublet configurations as a function of n1 = n2 = n and g with aligned and offset first points of contact. (a) Contour plots for the contact area
and the reduced bending energy for the aligned RBCs. (b) Contour plot for the difference between the free energy of the doublet and the free RBCs
(the deformation energy). The change in free energy is normalized by the bending energy of a vesicle with bending modulus kc, 8pkc, and the colorbar
has a logarithmic scale. The black dots (�) in contour plots represent the values for which simulations have been conducted. (c) The configuration of a
doublet depends on the way the RBCs make their first contact. RBCs can make the first contact while they are in aligned or offset configurations. (d) The
difference between the free energy of the doublets in the aligned and offset cases. If Ealig � Eoff is positive, it means that the offset doublet has a smaller
free energy, so that it is a more favorable configuration. The phase diagrams of the (e) aligned and (f) offset cases are different in the region where
Ealig � Eoff is positive. Various phases are distinguished by their cross-sectional views. The black dots (�) in the phase diagrams represent performed
simulations. Note that the phase boundaries are drawn schematically to guide the eye.
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Various phases can be distinguished, as illustrated in
Fig. 5(e) and (f). All observed shapes are categorized by their
contact surface and their non-adhered free surfaces, as follows:
� Male–female (M–F) phase: both RBCs attain a cup shape

and plug into each other similar to the male and female
terminals of a socket. The M–F phase provides the highest
contact surface at the cost of bending energy, so that the total
energy is minimized.
� Sigmoid–concave (Yin–Yang) phase: the RBCs make a

sigmoid contact area, which is different from the native sigmoid
(concave) shape of a RBC membrane. This condition occurs at
high adhesion strengths, since the bending free energy of the
RBCs increases substantially, but is compensated for by the
decrease in the adhesion energy. Since the cross-sectional view
of the sigmoid–concave shape looks similar to the Yin–Yang
symbol, we also call it the Yin–Yang phase.
� Sigmoid–biconcave (S–B) phase: this phase is located

between the Yin–Yang and M–F phases. The RBCs are attached
to each other in such a way that the concave part of one RBC
fills the convex part of the other. In other words, the contact
surface is sigmoid, while the free surface remains biconcave.
� Flat–concave (F–C) phase: if both RBCs are swollen, the

M–F phase becomes unstable and both RBCs reconcile by
making a flat contact surface and keeping their free surfaces
near spherical. This phase appears at large reduced volumes.
� Flat–biconcave (F–B) phase: this phase with a flat contact

area and remaining concavities at the free surfaces is obtained
for n1 = n2 E 0.3–0.4 and g t 8 when the RBCs align with no
offset. Fig. 5(e) and (f) show that the F–B phase shrinks to a very
small region if the RBCs are initially in contact with an offset.
Thus, the F–B phase is less probable to be seen under physio-
logical conditions, where the offset contact is far more probable
than the aligned contact.

Although the F–B phase is the stable doublet configuration
for the aligned doublets, the bending energy at this state is not
at a global minimum. It can be seen from the free energy
difference between the aligned and offset configurations in
Fig. 5(d). Under physiological conditions (n E 0.64), the M–F
phase can be observed when the RBCs make the first contact in
an aligned configuration, which is unlikely to be observed
experimentally.

Fig. 6 illustrates various doublet shapes of two RBCs with
different reduced volumes for a fixed reduced adhesion energy
g = 8. Another phase, the sheath phase, appears here.
� Sheath phase: if the reduced volume of one RBC is large,

and that of the other is small, the former would swell to an
elliptical shape and the latter would bend to a cup shape.
Therefore, the best configuration for their adhesion occurs
when the inner cup of the latter RBC matches the swollen
curvature of the former RBC. This configuration corresponds to
the minimal free energy condition for almost all adhesion
strengths. Since most RBCs have a reduced volume in the range
0.4 to 0.8, such a phase does not occur under physiological
conditions.

In the case of unequal reduced volumes (see Fig. 6), the
contact area is roughly proportional to the inverse of the

average of the reduced volumes (Ac/A p (n1 + n2)�1) and varies
from about 0 to 0.7. The reduced bending energy eb,1 of the first
RBC decreases with increasing n1, but is not very sensitive to a
variation in the reduced volume n2 of the second RBC.

In order to study the effect of the spectrin network’s shear
elasticity on the doublet phases, the membrane shear modulus
G is varied. Fig. 7 shows the phase diagram together with the
contact area and reduced bending energy as a function of shear
modulus and adhesion strength for a constant reduced volume
of healthy RBCs nE 0.64. The shear modulus of healthy RBCs
lies in the range 2–12 mN m�1,29,46–49,62 which corresponds to a
reduced shear modulus m = GA/8pkc of 35–215, provided that
the bending rigidity is 70 kBT. The phases obtained for very
low shear moduli agree well with the numerical energy-
minimization study for vesicles,19 where the contact area is flat

Fig. 6 RBC doublet configurations as a function of n1 and n2 at a constant
adhesion strength g = 8. (a) Contour plots show the contact area and the
reduced bending energy of the first RBC as a function of n1 and n2. The
black dots (�) represent the values for which simulations have been
performed. (b) The side and section views of some configurations are
shown in the phase diagram, omitting some shapes for more clarity. The
different phases are separated by different colors. The S–B phase occurs in
a narrow region between the Yin–Yang and M–F phases. The membrane is
assumed to be stress-free in its biconcave shape with n = 0.64. The phase
boundaries are drawn schematically to guide the eye.
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for low adhesion strengths and it buckles as the adhesion
strength increases. The F–B phase appears in a broader range
of adhesion strengths when the shear modulus is much lower
than that for a healthy RBC. Also, the F–C phase, which has
never been detected for normal RBC reduced volumes of
nE 0.64, appears at very low shear moduli. On the other hand,
at shear moduli of healthy RBCs, the M–F and S–B phases are
found at low adhesion strengths. If the shear modulus is very
high, the RBCs do not tend to form the contact area from their
center. A high shear modulus is relevant for diseased RBCs,
such as in malaria.63

The doublet phases are determined by the balance of
deformation energies and adhesion energy. The shear elasticity
of the membrane attributed to the spectrin network has a strong
effect on the doublet phases, as shown in Fig. 7. For vesicle
doublets, the effect of shear elasticity is absent since vesicles are
made of a fluid membrane. Accordingly, the lower region of the
phase diagram (m- 0) in Fig. 7 corresponds to the previous work
on doublets with the three phases F–C, F–B, and sigmoid–concave
(Yin–Yang),19,20,25,54 characterized by the contact surface only.
A distinct difference between our results and those from previous
studies on vesicles is that the F–B phase appears only if the shear
elasticity of the RBC spectrin network is small enough, as shown
in Fig. 7(c). Therefore, such a phase cannot be observed for RBC
doublets, because they have significant shear elasticity.

Fig. 7(b) shows that by increasing the adhesion strength, the
contact area exhibits two discontinuous jumps for a fixed m.
The first jump in Ac at very low gt 1 occurs when the adhesion
interaction overcomes membrane thermal fluctuations and cell
diffusion. The second discontinuity in Ac manifests a transition
when one or both RBCs lose their original biconcave shape
by forming suddenly a larger contact area in a doublet. For
example, it happens when F–B, S–B, and M–F shapes are first
attained for 1 o g o 10, such that a larger contact area is
rapidly formed. Interestingly, further transitions with increasing g
(e.g. to the Yin–Yang phase) are continuous, since the contact area
is continuously increased with an increase in adhesion strength.
Thus, buckling out of a membrane dimple and rapid formation of
a larger area of contact can be considered as signatures of a
discontinuous transition. An increase in shear elasticity generally
delays this discontinuous transition in terms of g and reduces the
contact area, as can be seen in Fig. 7(b) and Movie S2 (ESI†). These
results are qualitatively consistent with a discontinuity in Ac found
for vesicle doublets.19

Since the shear elasticity of membranes has a significant
effect on the doublet configurations, the stress-free shape of
RBCs might also play an important role in determining the
shape of RBC membranes and their doublet phases. Whether the
spectrin network of a RBC is stress-free in the biconcave or
spherical shape or something in-between is still under debate.64–67

Fig. 7 RBC doublet configurations as a function of the spectrin network’s reduced shear modulus m = GA/8pkc and reduced adhesion strength g at a
constant reduced volume n = 0.64. (a) Contour plots show the contact area and the reduced bending energy. The black dots (�) represent the values for
which simulations have been performed. (b) Dependence of the contact area on adhesion strength for different m values. A discontinuity in the contact
area is observed when one or both RBCs lose their original biconcave shape. (c) Phase diagram of RBC doublets as a function of g and m, where different
phases are separated by various colors. The phase boundaries are drawn schematically to guide the eye. The side and section views of some
configurations are shown, omitting some shapes for more clarity. The low shear moduli approximate vesicle doublets. The membrane is assumed to be
stress-free in its biconcave shape with n = 0.64.
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So far in this work, the RBCs were stress-free in their biconcave
shape. In order to study the effect of the stress-free state of RBCs on
doublet phases, the stress-free biconcave shape is compared with a
case where the network is stress-free at a deflated sphere shape with
eccentricity 0.94. The change in the configuration of the doublets is
appreciable, as shown in Fig. 8(b). The most important difference
between the two cases is the change of the S–B phase to the M–F
phase at small adhesion strengths. If the stress-free shape of RBCs is
close to a sphere, the change to the Yin–Yang phase occurs at
slightly lower adhesion strengths in comparison to the biconcave
stress-free shape, as shown in Fig. 8(b). In practice, this small
change cannot be detected experimentally, not only because of
the lack of imaging precision, but also because of the natural
variance in the mechanical properties of RBC membranes and their
reduced volumes.68,69 As discussed above, the transition from the
original biconcave shape of both RBCs to a doublet shape with a
large contact area (e.g. F–B, S–B, and M–F shapes) is discontinuous
in Ac for the biconcave stress-free shape, see Fig. 7(b) and 8(a).
Fig. 8(a) also demonstrates that this transition is discontinuous in Ac

for the stress-free shape of 0.94.
Strong changes in RBC shapes (e.g. for a Yin–Yang doublet)

likely lead to appreciable local in-plane deformations of the cell
membranes. At the contact area, it is intuitive to expect that
RBC membranes are compressed due to adhesive interactions,
while the free surfaces are presumably subject to area expansion.
These modes of deformation are mainly controlled by the area-
compression modulus of a membrane. The area-compression
modulus in our model is equal to 2G + kl + ka, where G is the
shear modulus and the other terms correspond to local and global

area-conservation constraints. Here, kl E G, while ka c G such
that the local area constraint leads to rather slight enhancement
of the area-compression modulus. Therefore, under strong
enough deformations, the local area of a membrane should
experience appreciable deformation.

In order to elucidate local strains, local area changes, and
the role of the local area constraint, we present in Fig. 9 a
comparison of local membrane deformations for a Yin–Yang
doublet (g E 85 and m = 80) using a RBC model with and
without the local area constraint. Fig. 9(c) confirms that the
membranes are compressed at the contact area and expanded
at the free surfaces. This is also seen in the bimodal distribu-
tions of bond and local-area strains in Fig. 9(a) and (b). Here,
the bimodality in the local area arises from the differences
between adhered and free parts of the membrane. The
bimodality in the bond lengths is related to the positive Poisson
ratio of our elastic network model, which implies that
stretching in one direction is accompanied by compression in
the orthogonal direction. The local strains remain approxi-
mately within the range [�0.3, 0.3] and their absolute values
are slightly smaller for the case with the local area constraint in
comparison to that without this constraint. However, in both
cases Yin–Yang doublets are observed and their shapes are
visually indistinguishable. Thus, for the employed strength of
the local area constraint, it plays at most a secondary role in

Fig. 8 Effect of the stress-free shape of RBCs on doublet phases for
n1 = n2 = 0.64. (a) Contact area as a function of g for biconcave and near
spherical (with eccentricity 0.94) stress-free shapes. (b) The shapes of
RBC doublets for m = 81, showing appreciable differences for the two
stress-free shapes. The boundaries between different shapes are drawn
schematically to guide the eye.

Fig. 9 Effect of the local area constraint in the membrane model on a
Yin–Yang doublet for g E 85, m = 80, and n1 = n2= 0.64. (a) Bond strain
distributions from simulations with and without a local area constraint. The
bond strain is defined as l/l0 � 1, where l is the length of a deformed bond
and l0 is its corresponding equilibrium length. (b) Distributions of local
triangular area strains. The area strain is defined as A/A0 � 1, where A is the
area of a deformed triangle in the spring network and A0 is its imposed area
at the biconcave equilibrium shape. (c) Distribution of local area strains
on RBCs within a Yin–Yang doublet. The RBC membranes show a
compressive deformation (or negative area strains) at the contact area
and are stretched primarily at the free surfaces characterized by positive
area strains.
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determining doublet shapes for the range of adhesion strengths
studied here.

4 Comparison with experiments

The experimental images of the different phases are compared
to the simulation results in Fig. 10. The F–B phase is not
observed in experiments and not predicted by simulations for
the physiological reduced volumes of RBCs. Both in simula-
tions and experiments, M–F doublets form when the adhesion
strength is intermediate and the reduced volume is small. The
Yin–Yang phase appears when the adhesion strength is high.
The S–B phase is seen as a transition state between these two
phases. The F–B phase has not been observed in experiments.
The F–C phase occurs when both RBCs are swollen and the
sheath phase happens when there is a significant difference in
the reduced volumes of the two RBCs. To see the F–C phase in
experiments, the osmolality of the solution has to increase
about two-fold. For increasing the reduced volume of RBCs
in experiments, they were immersed in a hypotonic solution
of NaCl.

At low shear rates, RBCs aggregate in stacks known as
rouleaux.1,2 The rouleaux increase substantially the viscosity

of blood at low shear rates.6–8 The nucleation of rouleaux starts
from RBC doublets. While some doublet structures allow for
large rouleau formation, others prevent the formation of large
rouleaux. Among all the doublet phases, the M–F and S–B
phases allow the RBCs to form large rouleaux with a straight
(linear) structure. However, the Yin–Yang phase prevents long
straight structures from appearing. Thus, the size of rouleaux in
a solution of RBCs depends on their adhesion strength which is
determined by the concentration of different adhesive factors
in the solution (e.g. dextran, fibrinogen). Fig. 11 shows several
experimental and simulated results of different rouleau structures.
The shapes of rouleaux for high adhesive strengths are very
different, depending on the reduced volumes of the RBCs and
the number of RBCs in the rouleau. In contrast, the M–F and
S–B phases should allow the size of straight rouleau structures
to increase with no limit. Note that at high enough adhesive
strengths, more complex RBC aggregate structures, other than
straight rouleaux, may appear.70

The limit for rouleau nucleation can be explained by the free
energy of the whole system. Doublet formation changes the free
energy of the system by 2Edef � GAc. Edef is the deformation
energy of a RBC, mostly due to bending rigidity and shear
elasticity. In principle, it is always positive since any deviation
from the equilibrium biconcave shape of a RBC must have

Fig. 10 Comparison of experimental and simulated RBC doublet shapes determined by the adhesion strength, bending modulus, and the reduced
volume of RBCs. For simulations, the side and section views are presented for each case. The phases (a) sigmoid–biconcave, (b) male–female,
(c) sigmoid–concave (Yin–Yang), (d) sheath, (e) flat–concave, and (f) flat–biconcave are shown. The sheath, F–C, and F–B phases are not probable for
RBC doublets under physiological conditions.
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a higher energy. Therefore, the adhesion energy GAc must
be larger than 2Edef for doublet formation to be favorable.
Addition of one more RBC to the doublet to make a triplet
aggregate of RBCs increases the total free energy by DE+ = Edef�
GAc + Eo

def, where Eo
def is the additional deformation energy of

the original aggregate, Edef is the deformation energy of the
newly added RBC to the original aggregate and �GAc is the
adhesion energy due to it. Assuming that the other RBCs in the
aggregate do not deform substantially leads to Eo

def E 0;
otherwise, the deformation and adhesion energy of all RBCs
must be considered in the rearranged configuration. This
rearranged configuration has definitely a higher energy for
the RBCs already in the aggregate, since they get away from
their equilibrium configuration. For S–B and M–F phases,
addition of an RBC to the aggregate adds a constant negative
DE+ to the free energy so that the growth of the rouleau is
energetically favorable. DE+ is nearly constant since the contact
area and curvature of the newly added RBC is similar to the
other RBCs in the aggregate. On the contrary, DE+ grows as a
new RBC is added to a Yin–Yang doublet, because the contact
area for the new RBC is less than the contact area of a doublet,
and the new RBC deforms much more in order to fit to the
concave shape of a rouleau. As a result, DE+ becomes positive
at some point preventing more RBCs from adhering to the
aggregate. This limiting point occurs for larger cluster sizes as
the adhesion strength G increases.

5 Conclusion

A systematic study of RBC doublet formation has been performed.
The model employs a triangulated membrane with a polymerized

mesh as a representation of the spectrin network. The simulation
results demonstrate various doublet phases, namely, the male–
female, sigmoid–biconcave, Yin–Yang, sheath, flat–concave,
and flat–biconcave phases, with their stability determined by
the adhesion strength between two membranes and the
reduced volume of each RBC. The male–female phase implies
a curved contact area of two RBCs similar to a female–male
socket connection. The sigmoid–biconcave phase refers to the
condition that two RBCs make a sigmoid S-shape contact while
they keep their biconcave curvature. The Yin–Yang phase, then,
refers to the same condition, but when the free surfaces of
RBCs swell or bend to a concave form. The section view of the
doublets in this phase looks like Yin–Yang symbol. The sheath
phase occurs when one RBC is swollen so that the other RBC
makes a sheath by contacting with it. The flat–concave phase is
referred to the flat contact area case and occurs mostly when
both RBCs are swollen. The predicted phases are compared
with the experimental images obtained from optical imaging of
RBCs in different solutions.

The RBC doublet phases are mainly defined by the interplay
of the bending energy and the adhesion energy, and are closely
related to the reduced volume of RBCs, which is a dimensionless
ratio between the volume and the area of RBCs. However, the shear
elasticity of the RBC membranes, due to the spectrin network
beneath their lipid bilayers, affects their doublet phases. At very low
shear moduli, the flat–biconcave shape appears at low adhesion
strengths, while this phase is never stable for healthy RBCs with
normal shear moduli. The very peculiar flat–concave phase at the
normal reduced volumes of RBCs is also reported for very low shear
moduli. This shows that the spectrin network’s shear elasticity is a
key player in defining the RBC doublet phases, differentiating them
from previously studied fluid vesicle doublets.

Fig. 11 Various rouleau phases in experiments and simulations. The doublet S–B and M–F phases impose no limit on the size of the rouleau. However,
the F–C rouleaux are strongly dependent on the number of interacting RBCs and their reduced volumes. The nucleation point of a F–C rouleau is a
Yin–Yang doublet.
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Rouleau nucleation depends on how RBCs make doublets
first. Aggregation of RBCs always brings a rise in the bending
free energy and a decrease in the adhesive energy. Depending
on the doublet shape, this pair of energy-changes determines
whether rouleau formation is allowed or not. As a result, at high
adhesion strengths, the doublets tend to prevent large stacks,
since the Yin–Yang phase makes the positive change of the
bending energy so large that it cannot be compensated for
by the adhesion energy related to the contact area of the
membranes. At low and moderate adhesion strengths, the
sigmoid–biconcave and male–female phases allow the growth
of the rouleaux, since the addition of a RBC to the aggregate
does not change the shapes of the other RBCs, which have
already adhered to the aggregate. These results can be used for
determining the adhesion strength and membrane properties
of healthy and diseased RBCs.
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66 T. Švelc and S. Svetina, Cell. Mol. Biol. Lett., 2012, 17,
217–227.

67 D. Cordasco, A. Yazdani and P. Bagchi, Phys. Fluids, 2014,
26, 041902.

68 P. B. Canham and A. C. Burton, Circ. Res., 1968, 22, 405–422.
69 G. B. Nash and S. J. Wyard, Biochim. Biophys. Acta, 1981, 643,

269–275.
70 R. W. Samsel and A. S. Perelson, Biophys. J., 1982, 37,

493–514.

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
6 

Ju
ly

 2
01

8.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
t d

es
 S

aa
rl

an
de

s 
on

 1
1/

20
/2

01
8 

9:
36

:4
1 

A
M

. 
View Article Online

http://dx.doi.org/10.1039/c8sm00634b



