
Messir: A Text-First DSL-Based Approach for UML
Requirements Engineering (Tool Demo)

Benoît Ries
University of Luxembourg

Esch-sur-Alzette, Luxembourg
benoit.ries@uni.lu

Alfredo Capozucca
University of Luxembourg

Esch-sur-Alzette, Luxembourg
alfredo.capozucca@uni.lu

Nicolas Guelfi
University of Luxembourg

Esch-sur-Alzette, Luxembourg
nicolas.guelfi@uni.lu

Abstract

This tool paper presents the design and tool-support of Mes-
sir, an approach centered on textual domain-specific lan-
guages supported by our open-source UML requirements en-
gineering tool, named Excalibur. The novelty of our approach
is the actual integration in a single workbench (Excalibur) of
textual DSLs richly covering the requirements and analysis
phases, i.e. improved use-cases, environment, conceptual
and operations models; and the read-only visualisation of
the requirements with UML-compliant views; and the gener-
ation of scientific requirements analysis documents in LATEX;
and the formal simulation of test cases requirements.

We designed our Messir language, with a grammar-based
approach generating a textual editor, using the XText frame-
work as an Eclipse plugin. Messir DSL’s static semantics is
defined as a set of validation rules guiding end-users through
the requirements analysis phase. Messir DSL’s semantics is
given as a semi-automatic translation to prolog code. We also
generate, from the requirements model elements, read-only
graphical views (using the Sirius eclipse plugin) as well as a
complete requirements analysis document in LATEX.

This approach and tool have been used as a requirements
engineering educational tool in several bachelor and master
semesters.

CCS Concepts · Software and its engineering → Do-

main specific languages; Requirements analysis; Doc-
umentation; Formal software verification;

Keywords Integrated Workbench, Generative Approaches,
Model-Driven Engineering, Domain-Specific Languages, Re-
quirements Engineering, LATEX, Prolog

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SLE ’18, November 5ś6, 2018, Boston, MA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6029-6/18/11. . . $15.00

https://doi.org/10.1145/3276604.3276614

ACM Reference Format:

Benoît Ries, Alfredo Capozucca, and Nicolas Guelfi. 2018. Messir: A

Text-First DSL-Based Approach for UMLRequirements Engineering

(Tool Demo). In Proceedings of the 11th ACM SIGPLAN International

Conference on Software Language Engineering (SLE ’18), November

5ś6, 2018, Boston, MA, USA. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3276604.3276614

1 Introduction

Due to the need for an integrated requirements engineering
tool centered on a textual specification language targeted to
our students at University of Luxembourg, and a tool support
for our Messir methodology [5], we have started to develop
the Excalibur workbench (and Messir DSLs) in 2012.
One of the main requirements for Excalibur and its DSL

was to design a custom textual requirements language hav-
ing a graphical notation. After having surveyed meta-tools
for textual and graphical DSLs modeling, we have chosen
the Eclipse framework [1] because of its extensibility, ma-
turity and it is open-source. Moreover, a number of DSL
workbenches are available on Eclipse, in particular we have
selected XText [4] for the design of our textual DSL, and
respectively Sirius [15] for the design of our graphical DSL.
This tool paper begins by a short presentation of the

Messir approach’s concepts and processes. Then, Section 3
presents the Excalibur workbench architecture. In Section 4,
we sketch the design of our Messir DSL allowing to specify
our approach’s concepts. In Section 5, we describe three gen-
erative techniques for our DSL. Lastly, we present related
works and a short feedback from students, then we conclude.

2 The Messir Approach

The Messir DSLs presented in this tool paper, are parts of the
Messir scientific approach to requirements engineering [5].
Its main contributions are that it is an integrated method
supported by a tool (Excalibur), with a flexible requirements
specification language, a declarative executable operation
language, and improved use-case modeling approach. In
short, Messir follows an iterative process composed of a
requirements & analysis phase, a documentation phase, and
a simulation phase.

The process for the requirements & analysis phase is com-
posed of: firstly, the delimitation of the system and its en-
vironment by specifying the actor types, their cardinalities,

103

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/162022299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3276604.3276614
https://doi.org/10.1145/3276604.3276614

SLE ’18, November 5ś6, 2018, Boston, MA, USA Benoît Ries, Alfredo Capozucca, and Nicolas Guelfi

Legend

Messir

Textual

Editor

Messir

Graphical

Viewer

Messir

Grammar

Formal

Specification

Simulation

Req.

Analysis

Document

Excalibur

Core
Sirius

XText

Generator

Tool

Generated

Artifact

Messir

Viewer

Config.

Prolog

Engine

Figure 1. Excalibur workbench architecture

their interfaces with the systems in terms of input/output op-
erations; secondly, the specification of use-cases at different
abstraction levels (summary-level, user-goal and subfunc-
tion) and the illustration of some system executions by speci-
fying use-case instances; thirdly, the modeling of the system
concepts and operations; finally, the modeling of test cases,
and some instances to illustrate important test scenarios.

The documentation phase is composed of three steps: the
specification of documentationwithin the requirements spec-
ification; the automated generation of a partial requirement
analysis document; the manual completion of the general
sections of the document, i.e. introduction, conclusion,. . .

The simulation phase is composed of four steps: the declar-
ative specification of the system operation pre/post condi-
tions with Messir OCL-like DSL and the specification of the
test cases; the automated generation of partial prolog code
from these specifications; the manual implementation in
prolog code of the pre/post conditions based on their spec-
ifications; the actual simulation of the test cases, formally
evaluating the test steps‘ oracles.

3 Excalibur Workbench Architecture

Excalibur [2] has been developed by the authors as an exten-
sion to Eclipse combining the 3 tools, as shown in Fig. 1:
XText [4] which converts an EBNF-like grammar into a

full-fledge textual editor, including syntax highlighting, auto-
completion and validation rules. This editor has been con-
figured to fit the needs of our DSL, with custom validation
rules and auto-completion features, see Section 4.2.
Sirius [15] which displays the textual files written with

our DSL in UML-like notations, see Section 5.1.
Excalibur Core which is our own development, imple-

mented in Java and XTend, providing: a dedicated Outline
allowing to navigate through the specification elements in
a tree-view style; a Requirements Analysis Document gener-
ator, see Section 5.2; a Formal Specification Simulator, see
Section 5.3.

4 Messir DSL Design

4.1 Grammar

The grammar of the Excalibur DSLs is designed in three
parts: firstly, the rules related to the general constructs of
the language (Messir DSL); secondly, the constraints rules
related to the Messir Constraint Language DSL; thirdly, our
documentation language (MessirDoc DSL).

Modularity is available in the Messir DSL with the help of
packages. Each package is defined in its own textual file (with
custom extension .msr) and may contain the specification of
one or more models. The underlying models of the Messir
method requirements concepts presented in Section 2 are
all supported in our DSL. As a first rule for designing the
Messir DSL, we have chosen to use keywords in natural lan-
guages, for example ’Use Case Model {’ to simply state the
beginning of the specification of a use-case model. Another
design rule is to provide flexibility in the specification, i.e.
the DSL should allow for partial specifications, thus we have
designed this rule by setting most grammar rules as being
optional with the cardinality of (*).
Fig. 2 is an Excalibur screenshot illustrating, with the

iCrash [6] case study, the textual specification of a use-case
and of an instance of it, together with a generated from
the instance specifications. Due to the reduced space of this
tool demo paper, it is hardly possible to illustrate all other
Messir textual specification models (concept, environment,
operation, test), nor their related views.

The Messir Constraint Language (MCL) allows specifying
declaratively the operations of Messir elements, its syntax
is inspired from OCL [10], and its semantics is defined as a
manual translation to prolog. The OCL grammatical concepts
offered in MCL are: the navigation through attributes and
association ends using dots (.); if-then-else conditional
expressions; let-in declaration expressions; the sending of
amessage from the system to input operations of actors using
(ˆ); collection types and some of their associated operations,
e.g. includes(o), size().
The documentation language is a complementary tex-

tual language that allows to give natural language descrip-
tions for each of the specification elements written in Messir
DSL, e.g. actors, classes, datatypes, . . . and also document the
created views on these specification elements, e.g. concept
model views, use-case views, . . .During the report genera-
tion process, described in Section 5.2, the content of these
descriptions will be taken as input to generate the content
of the requirements analysis document.

4.2 Validation Rules

The first set of validation rules are syntactical validation rules,
these rules are mainly error rules, and inform the specifier
when writing specification elements not compliant with Mes-
sir. These rules are automatically generated by the XText
framework based on the Messir EBNF-like grammar.

104

Messir: A Text-First DSL-Based Approach for UML Req. Eng. (Tool Demo) SLE ’18, November 5ś6, 2018, Boston, MA, USA

Figure 2. An Excalibur screenshot with use-case textual
specifications and a use-case instance graphical view

We have defined 50 runtime validation error/warning rules
that we use as educational means to inform and teach the
specifiers on how to better follow our methodology :

• warning rules are mainly used in Excalibur to let the
end-user know about future steps to be done, or partic-
ular aspects of the methodology not to be overlooked.
An example warning validation rule is:
ś łThe operation is not defined in any Operation Modelž,
see Figure 3, this warning appears when the opera-
tion in question has not (yet) been specified by the
end-user. Thus, when the analyst declares an opera-
tion, let’s say in an actor, the declared operation will
automatically be tagged with this warning to inform
that this operation is declared, but not yet specified.

Figure 3. Warning validation rule in action

• error rules are mainly used in Excalibur to block the
specifier in his/her requirements engineering process,
ś An example is: "Infinite loop: use case can’t execute
itself !". As use-cases may refer to other use-cases
of the same abstraction level, it may happen that
infinite loop are inadvertently specified.

5 Generative Techniques for a Textual
Requirement Engineering Tool

Excalibur follows a generative approach. Requirements an-
alysts can take advantage from three types of generative
techniques. Firstly, viewing textual specifications with the
help of a graphical DSL. Secondly, generating partial and
extensible documentation for customers, e.g. for contractual
purposes. Thirdly, giving a semantics to the requirements
specifications in a formal language.

5.1 Views

In our textually-centered approach, the textual requirements
specification provide the complete specifiation. The viewing
features are offered to allow graphical illustrations of certain
important aspects of the models.

The analyst may place the specified concepts that he/she
wishes to illustrate on the views and decides on the layout
design of the selected elements. Note that we intentionally
do not allow specifiers to modify the specification elements
from the graphical views, such that all modifications are
made in the textual files and that our text-first approach is
ensured.

In terms of UML notation, our views are using the syntax
of use-case diagrams, sequence diagrams and class diagrams.
In our approach, these diagrams are used with the following
purposes :

• use-case views illustrate the specified actors and their
relations to the system operations.

• use-case instance views illustrate some carefully se-
lected scenarios of the system executions.

• concept model views illustrate the system’s structural
concepts: class types, datatypes,. . .

• environment model views illustrate how actors interact
with the system by sending and receiving events.

• operation scope views illustrate for a given system op-
eration, all the types related to it.

5.2 Requirements Analysis Document

The generation of requirements analysis specification docu-
ments takes as input the specified elements with the Messir
DSLs as well as the views created by the specifier to gener-
ate a LATEX document. The generation implementation has
been writen in XTend, an object-oriented general-purpose
language well-suited to implement model-to-text transfor-
mations. We have designed the transformation to give the
flexibility to enhance the generated LATEX document by iso-
lating the generated LATEX code from the manually added
LATEX parts. Excalibur offers a flexible report generation pro-
cess adapted to different categories of readers:

• definition-level: the generated report includes all doc-
umented specification elements described in natural
language; it also includes all documented views.

105

SLE ’18, November 5ś6, 2018, Boston, MA, USA Benoît Ries, Alfredo Capozucca, and Nicolas Guelfi

• specification-level the generated report includes all con-
tent from the definition-level, and the specification of
operations and types in MCL.

• simulation-level the generated report includes all con-
tent from the specification-level, and the prolog code
describing formally the semantics of the operations
and types.

5.3 Formal Specification Simulation

The Messir DSL allows to write test cases and instances
of test cases. The formal simulation specification generator
creates a prolog simulation project from the requirements
specified in Messir DSL, containing:

• MESSAM prolog code: the Messir Abstract Machine
(MESSAM), which is our prolog implementation of
the Messir DSL metamodel, that must be part of all
Excalibur simulation projects.

• Types specification: all specified types and actors in
prolog in a way that is compliant with MESSAM.

Some parts of the prolog project must be completed man-
ually after the simulation project generation :

• the operation pre/post conditions must be implemented
in prolog manually based on the MCL operation speci-
fication from the requirements project.

• test cases specification: must also be translated man-
ually from the test case models specified in Messir
textual requirements.

6 Related Work

We have not found any related work on integrated work-
benches providing altogether DSLs covering a rich coverage
of the requirements and analysis phases, i.e. improved use-
cases, environment, conceptual and operations models; and
report generation in LATEX; and formal test cases require-
ments simulation in Eclipse, as in our Messir approach.

The ReSA tool [9] provides an integrated environment for
specification of structured requirements with SAT-based ver-
ification. This work targets EAST-ADL models (i.e. not UML).
Moreover, no report can be generated from the requirements.

Hoffman et al. defined Nautilus [8], a textual requirements
DSL structurally compliant with UML, supported by the
ViPER tool. The DSL is solely focused on the specification of
use-cases, in particular, Nautilus DSL is not covering the spec-
ification of concepts, system operations, nor system actors.
There is no support for simulation, nor report generation.

The work by Savic et al. on the SilabReq DSL [13] is similar
to our work, in the sense that it defines a structured DSL
for the specification of use-cases and the related concepts,
system operations, and actors and allows interpretation and
execution of the specified requirements. Themain differences
are: firstly, the system operations in SilabReq are specified
with an imperative language unlike Messir which is provid-
ing an OCL-like declarative language; secondly, the Messir

DSL offers a wider requirements specification coverage by
providing ways to specify use-case instances, test cases and
test cases instances and their related views with a syntax
inspired from UML sequence diagrams; thirdly, no report
generation is offered; lastly, a tool-support prototype is de-
scribed in [3], unfortunately with neither graphical support,
nor report generation.

Since the recent formalization of fUML [12] and its refer-
ence implementation, named Alf [11] provided by the OMG,
some UML tools have offered some textual support, compli-
ant with the fUML standard, as for instance MagicDraw [14]
and Paypyrus with theMoka framework [7]. These works dif-
fer from ours by remaining graphically-centered approaches.

7 Students Feedback

Since its first release to students in 2013, Excalibur and its
accompanying Messir DSLs have been used in more than 10
semesters for bachelor and master programs at University
of Luxembourg and partner institutions: Univ. of Rosario,
Innopolis Univ. and St Petersburg Polytechnic Univ.

Our students surveys on the lectures usingMessir/Excalibur
resulted, out of 90+ students answers, in a majority of the stu-
dents agreing (or strongly agreing) both on recommending
the lectures to others, and on the statement that the learning
resources met their needs. Shortly, what students liked most
were: the hands-on approach working on a project with tool-
support, and some particularly liked the Excalibur automatic
report generation. The students with negative comments
on the tools were mostly about the presence of bugs in the
tool. . . an unfortunate charactestic of software applications.

8 Conclusion

In this tool demo paper, we presented our solution for a
requirements engineering tool, named Excalibur, supporting
our methodology, that is centered on the Messir textual DSL
having typical features of textual editors (thanks to XText)
for which we have developped 50 custom validation rules to
guide the analyst during the requirements elicitation phase.

Excalibur implements three generative techniques tomake
the best use of the textual requirements specifications, firstly
by generating read-only views in a UML-style (thanks to
Sirius), secondly by generating an extensible requirements
analysis document compiling all textual and graphical re-
quirements information; lastly by generating a partial prolog
implementation supporting the DSL metamodel for simula-
tion purposes.

Acknowledgments

The authors would like to thank all the students from Uni-
versity of Luxembourg and from our partner institutions for
having provided valuable feedback during our lectures, as
well as bachelor and master theses, for which the Excalibur
tool and the Messir DSL were used.

106

Messir: A Text-First DSL-Based Approach for UML Req. Eng. (Tool Demo) SLE ’18, November 5ś6, 2018, Boston, MA, USA

References
[1] 2018. Eclipse foundation website. Retrieved September 27, 2018 from

http://www.eclipse.org.

[2] 2018. Messir and Excalibur website. Retrieved September 27, 2018

from https://messir.uni.lu.

[3] Alberto Rodrigues da Silva, Sinia Vlajic, Saa Lazarevic, Ilija Antovic,

Vojislav Stanojevic, andMiloMilic. 2014. Preliminary Experience Using

JetBrains MPS to Implement a Requirements Specification Language.

In 2014 9th International Conference on the Quality of Information and

Communications Technology. IEEE, Guimaraes, Portugal, 134ś137.

[4] Moritz Eysholdt and Heiko Behrens. 2010. Xtext: Implement Your

Language Faster Than the Quick and Dirty Way. In Proceedings of the

ACM International Conference Companion on Object Oriented Program-

ming Systems Languages and Applications Companion (OOPSLA ’10).

ACM, Reno/Tahoe, Nevada, USA, 307ś309.

[5] Nicolas Guelfi. 2016. The Messir Scientific Approach to Requirements

Engineering. Laboratory for Advanced Software Systems Technical

Report TRśLASSYś16ś01. University of Luxembourg. Retrieved

September 27, 2018 from http://messir.uni.lu.

[6] Nicolas Guelfi. 2018. iCrash: A Crisis Management Case Study - Messir

Analysis Document. Retrieved September 27, 2018 from https://messir.

uni.lu/confluence/display/EXCALIBUR/Downloads.

[7] Sahar Guermazi, Jérémie Tatibouet, Arnaud Cuccuru, Saadia Dhouib,

Sébastien Gérard, and Ed Seidewitz. 2015. Executable Modeling with

fUML and Alf in Papyrus: Tooling and Experiments. Ottawa, Canada.

[8] Veit Hoffmann, Horst Lichter, Alexander Nyßen, and Andreas Walter.

2009. Towards the Integration of UML- and Textual Use Case Modeling.

The Journal of Object Technology 8, 3 (2009), 85.

[9] Nesredin Mahmud, Cristina Seceleanu, and Oscar Ljungkrantz. 2016.

ReSA Tool: Structured Requirements Specification and SAT-Based

Consistency-Checking. 1737ś1746.

[10] OMG. 2006. Object Constraint Language (OCL). Full Specification

formal/06-05-01. Object Management Group.

[11] OMG. 2017. Action Language for Foundational UML (Alf) Concrete

Syntax for a UML Action Language Version 1.1. Full Specification

formal/2017-07-04. Object Management Group.

[12] OMG. 2017. Semantics of a Foundational Subset for Executable UML

Models Specification v1.3. Full Specification formal/17-07-02. Object

Management Group.

[13] D. Savic, S. Vlajić, S. Lazarević, I. Antović, S. Vojislav, M. Milić, and A.

Silva. 2015. Use case specification using the SilabReq Domain Specific

Language. Computing and Informatics 34 (2015), 877ś910.

[14] Ed Seidewitz. 2017. A Development Environment for the Alf Language

within the MagicDraw UML Tool (Tool Demo). ACM Press, 217ś220.

[15] V. Viyović, M. Maksimović, and B. Perisić. 2014. Sirius: A Rapid Devel-

opment of DSM Graphical Editor. In IEEE 18th International Conference

on Intelligent Engineering Systems INES 2014. 233ś238.

107

http://www.eclipse.org
https://messir.uni.lu
http://messir.uni.lu
https://messir.uni.lu/confluence/display/EXCALIBUR/Downloads
https://messir.uni.lu/confluence/display/EXCALIBUR/Downloads

	Abstract
	1 Introduction
	2 The Messir Approach
	3 Excalibur Workbench Architecture
	4 Messir DSL Design
	4.1 Grammar
	4.2 Validation Rules

	5 Generative Techniques for a Textual Requirement Engineering Tool
	5.1 Views
	5.2 Requirements Analysis Document
	5.3 Formal Specification Simulation

	6 Related Work
	7 Students Feedback
	8 Conclusion
	Acknowledgments
	References

