
Interference-Aware Scheduling Using
Geometric Constraints

Raphaël Bleuse1,2 , Konstantinos Dogeas1, Giorgio Lucarelli1(B) ,
Grégory Mounié1 , and Denis Trystram1

1 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, Grenoble, France
{konstantinos.dogeas,giorgio.lucarelli,gregory.mounie,

denis.trystram}@imag.fr
2 FSTC/CSC, University of Luxembourg, Luxembourg City, Luxembourg

raphael.bleuse@uni.lu

Abstract. The large scale parallel and distributed platforms produce
a continuously increasing amount of data which have to be stored,
exchanged and used by various jobs allocated on different nodes of the
platform. The management of this huge communication demand is cru-
cial for the performance of the system. Meanwhile, we have to deal with
more interferences as the trend is to use a single all-purpose intercon-
nection network. In this paper, we consider two different types of com-
munications: the flows induced by data exchanges during computations
and the flows related to Input/Output operations. We propose a general
model for interference-aware scheduling, where explicit communications
are replaced by external topological constraints. Specifically, we limit
the interferences of both communication types by adding geometric con-
straints on the allocation of jobs into machines. The proposed constraints
reduce implicitly the data movements by restricting the set of possible
allocations for each job. We present this methodology on the case study
of simple network topologies, namely the line and the ring. We propose
theoretical lower and upper bounds under different assumptions with
respect to the platform and jobs characteristics. The obtained results
illustrate well the difficulty of the problem even on simple topologies.

1 Introduction

In High Performance Computing, the demand for computational power is
steadily increasing [16]. To meet up with the challenge of greater performance the
architecture of supercomputers also grows in complexity at the whole machine
scale. This complexity arises from various factors: (i) the size of the machines
(supercomputers now integrates millions of cores); (ii) the heterogeneity of the
resources (various architectures of computing nodes, nodes dedicated to I/O);
(iii) the interconnection topology. The evolution in the interconnection networks
faces two main challenges: first, the community is proposing new topologies [12];
and second, the interconnection network is now unique within the machine (the

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 205–217, 2018.
https://doi.org/10.1007/978-3-319-96983-1_15

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/162022284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_15&domain=pdf
http://orcid.org/0000-0002-6728-2132
http://orcid.org/0000-0001-7368-355X
http://orcid.org/0000-0002-6757-7432
http://orcid.org/0000-0002-2623-6922

206 R. Bleuse et al.

network is shared for various mixed data flows). Sharing such a single multi-
purpose interconnection network creates complex interactions (e.g., network con-
tention) between running applications, which have a strong impact on their per-
formance [1,5], and limits the understanding of the system by the users [3]. As
the volume of processed data increases, so does the impact of the network.

In this work, we introduce a generic framework for interference-aware schedul-
ing. More precisely, we identify two main types of interleaved flows: the flows
induced by data exchanges for computations and the flows related to I/O. Rather
than explicitly taking into account these network flows, we address the issue
of harmful interactions by constraining the shape of the allocations. Such an
approach aims at taking into account the structure of the new platforms in a
qualitative way that is more likely to scale properly. The scheduling problem is
then defined as an optimization problem with the platform (nodes and topology)
and the jobs’ description as input. The objective is to minimize the maximum
completion time while enforcing constraints on the allocations.

2 Problem Setting

In this work, we model a platform as a set V of m nodes divided in two groups:
a set VC of mC nodes dedicated to computations, and a set VI/Oof mI/O nodes
that are entry points to a high performance file system. As a consequence, we
have m = mC + mI/O. We assume that the I/O nodes are exclusively used for
communications with the file system and hence, there is no overlap between
computing and I/O nodes, i.e., VI/O ∩ VC = ∅. Moreover, a computing or an
I/O node is exclusively allocated to a job for its lifespan, i.e., any node cannot
be used at the same time by more than one job.

The nodes can communicate using an interconnection network with a given
topology, while the localization of every node within the topology is known. In
this direction, we study here the instantiation of this framework with unidimen-
sional topologies, namely the line (Fig. 1(a)) and the ring (Fig. 1(b)). Studying
topologies of one dimension is a first step towards the more complicated state-
of-the-art platforms, while these basic topologies provide lower bounds for the
later ones. The line may indeed be seen as a degenerate tree. Fat-tree topolo-
gies are a common interconnect, and are for example used in the Curie and
Oakforest-PACS platforms. On the other hand, the torus topologies, such as the
one of Blue Waters and Titan (3D torus) or the K computer (6D torus), may be
studied from the ring with classical embedding techniques.

Batch schedulers are a critical part of the software stack managing HPC
platforms: their goal is to efficiently allocate resources (nodes from V in our case)
to the jobs submitted by the users of the platform. The jobs are queued in a set
J . The total number of jobs is n. Each job j requires qj computing nodes and
one I/O node. We distinguish two cases with respect to I/O requirements: in the
pinned model each job asks for a specific I/O node, while in the unpinned model
the jobs just need any arbitrary I/O node. The number of allocated computing
nodes is fixed, i.e., the job is rigid [6]. We denote by V(j) the set of nodes

Interference-Aware Scheduling Using Geometric Constraints 207

1 2 3 4 5 6 7

(a) Line topology.

1

2

3

4

5

6

7

8

(b) Ring topology.

Fig. 1. Example of platforms with unidimensional topologies. The nodes are numbered
using the natural order. White nodes represent computing nodes, and black nodes
represent I/O nodes.

allocated to the job j. If needed, we use VC(j) and VI/O(j) to distinguish among
the computing and the I/O nodes assigned in j, respectively. Each job j requires
a certain time pj to be processed, and it is independent of every other job. Once
a job starts being executed, it runs until completion, i.e., it is not preemptive.

As stated above, the goal of this paper is not to finely model the full context
of execution. Instead, we propose to model the platform in such a way that
the network interactions are implicitly taken into account. In this direction, we
augment the scheduling problem with geometric constraints on the allocations
of the jobs in the resources based on the platform topology and the application
requirements. Before presenting these constraints, we need to precisely define
the network flows we target. We distinguish two types of flows, directly deriving
from the fact that we are dealing with two kinds of nodes:

computational communications which are induced by data exchanges dur-
ing computations. Such communications occur between two computing nodes
allocated to the same application.

I/O communications which are induced by data exchanges between comput-
ing and I/O nodes. Such communications occur when computing nodes read
input data, checkpoint the state of the application, or save output results.

In order to avoid computational communication interactions, we consider the
following constraint.

Definition 1 (Contiguity [2,14]). An allocation is said to be contiguous if and
only if the nodes of the allocation form a contiguous range with respect to the
nodes’ ordering.

Note that the contiguity constraint relies on the nodes’ ordering. For topologies
such as lines or rings this ordering is natural (see Fig. 1).

The contiguity constraint is well suited to take into account the computa-
tional communications, but not the I/O communications. Indeed, the former
type of communications may occur between any pair of computing nodes within
an allocation: we usually describe this pattern as all-to-all communication. On

208 R. Bleuse et al.

the other hand, I/O communications generate traffic towards few identified nodes
in an all-to-one or one-to-all pattern. Hence, we propose the locality constraint,
whose goal is to limit the impact of the I/O flows to the periphery of the job
allocations. We must emphasize that the locality constraint proposed here is not
related to the locality constraint described in [14].

Definition 2 (Locality). A given allocation for a job j is said to be local iff
it is contiguous, and the I/O node VI/O(j) is adjacent to computing nodes from
VC(j), with respect to the underlying topology.

In this paper, we are interested in minimizing the maximum completion time
among all jobs (i.e., the makespan of the schedule) while enforcing the contiguity
and the locality constraints. Specifically, we aim at developing algorithms with
performance guarantees by adding geometric constraints on the allocations of
jobs into nodes.

3 Related Work

Most actual implementations of schedulers allocate resources greedily without
any topological constraint in the allocation of the computing nodes. However,
this naive solution has a bad impact on performances [5]. Constraining the
allocations to enhance performance is however not a new idea. For example,
Lucarelli et al. studied the impact of enforcing contiguity or locality in backfill-
ing scheduling [14] (for fat trees). They showed that enforcing these constraints
can be done at a small cost, and has minimum negative impact on usual metrics
such as makespan, flow-time, or stretch.

Tackling the interactions arising from the context of execution, or, more
specifically, network contention, can be done either by preventing these inter-
actions from happening or by mitigating them. Still, the approaches discussed
above require some knowledge about the application communication patterns
(either compute or I/O communications). We review briefly related work in the
prevention/mitigation of interactions before discussing monitoring techniques.

Interactions Prevention. Some steps have been taken towards integrating more
knowledge about the communication patterns of applications into batch sched-
ulers. For instance, Georgiou et al. studied the integration of TreeMatch into
SLURM [9]. Given the communication matrix of an application, the scheduler
minimizes the load of the network links by smartly mapping the application’s
processes on the resources. This approach however does not consider the tem-
porality of communications. Targeting the mesh/torus topologies, the works of
Tuncer et al. [18] and Pascual et al. [15] are noteworthy. Another way to prevent
interactions is to force the scheduler to use only certain allocation shapes with
good properties: this strategy has been implemented in the Blue Waters sched-
uler [5]. The administrators of Blue Waters let the scheduler pick a shape among
460 precomputed cuboids. Yet, the works proposed above only target compute
communications. HPC applications usually rely on highly tuned libraries such

Interference-Aware Scheduling Using Geometric Constraints 209

as MPI-IO, parallel netCDF or HDF5 to perform their I/O. Tessier et al. pro-
pose to integrate topology awareness into these libraries [17]. They show that
performing data aggregation while considering the topology allow to diminish
the bandwidth required to perform I/O.

Interactions Mitigation. Given a set of applications, Gainaru et al. propose to
schedule I/O flows of concurrent applications [7]. Their work aim at mitigating
I/O congestion once applications have been allocated computation resources. To
achieve such a goal, their algorithm relies on past I/O patterns of the applications
to either maximize the global system utilization, or minimize the maximum
slowdown induced by sharing bandwidth.

Application/Platform Instrumentation. A lot of effort have been put into devel-
oping tools to better understand the behavior of HPC applications. Character-
izing I/O patterns is key as it allows the developers to identify performance bot-
tlenecks, and allows the system administrator to better configure the platforms.
A complementary path is to predict I/O performances during execution [4].
Such instrumentation efforts allow for a better use of the scarce communication
resources. However, as they are application-centric, they fail to capture inter-
application interactions. Monitoring of the platform is a way of getting insight
on the inter-application interactions. We will not address this problem here.

4 Pinned I/O

In this section, we study the problem with respect to the pinned I/O model,
according to which each job requests a specific I/O node. Such a model is repre-
sentative of HPC platforms where the parallel file system is organized in stripes.
For example, this is the case with the configuration of the Lustre file system in
Blue Waters, where each I/O node is responsible for an address range (i.e., a
stripe). Then, the jobs will request the I/O node corresponding to their data.

4.1 Complexity

We start by proving that the studied problem is NP-complete even in the special
case where all jobs require unit processing time to be executed, while the platform
contains only three I/O nodes.

Theorem 1. The problem of scheduling in the pinned model with respect to con-
tiguity and locality constraints is strongly NP-complete even in line topologies,
with mI/O = 3 and pj = 1 for each job j ∈ J .

Proof. The problem clearly belongs to NP. We give a reduction from a special
case of the Numerical 3-Dimensional Matching (N3DM) problem [8]. An
instance of the classical N3DM problem consists of three disjoint sets W , X and
Y , each containing M positive integers, and a bound B ∈ Z

+. The objective is to
decide whether W ∪X∪Y can be partitioned into M disjoint sets A1, A2, . . . , AM

210 R. Bleuse et al.

such that each Ai contains exactly one element from each of W , X, and Y and∑
a∈Ai

a = B, for 1 ≤ i ≤ M .
Consider now SN3DM be the special case of N3DM in which all integers that

belong to the set X are at least B
2 . It is not hard to see that SN3DM is also

strongly NP-complete. Indeed, it suffices to transform an instance of N3DM to
an instance of SN3DM by setting W ′ = W , Y ′ = Y , X ′ = {x + B : ∀x ∈ X} and
B′ = 2B. Then, any solution for N3DM corresponds to a solution for SN3DM,
and vice versa.

We propose now a transformation from SN3DM to our problem as follows:

– mC = B, mI/O = 3;
– the topology is a line starting with an I/O node, followed by B

2 comput-

ing nodes, an I/O node, B
2 computing nodes, and finishing with a third

I/O node;
– for each a ∈ W ∪ X ∪ Y , we create a job j with qj = a, and pj = 1. All jobs

derived from sets W , X, and Y target the first, second, and third I/O node,
respectively.

With respect to the ordering of the line topology, we refer to the computing
nodes as 1, 2, . . . ,mC and to the I/O nodes as 1, 2, . . . ,mI/O.

We will prove that a solution to SN3DM exists if and only if there is a
schedule that satisfies all constraints and has a makespan at most M .

Assume that there is a solution for SN3DM. Then for each set Ai, 1 ≤ i ≤ M ,
we schedule the three jobs j1 ∈ W , j2 ∈ X and j3 ∈ Y corresponding to
this set at time interval (i − 1, i]. Specifically, j1 will use the computing nodes
1, . . . , qj1 , j2 the computing nodes qj1 + 1, . . . , qj1 + qj2 and j3 the computing
nodes qj1 + qj2 + 1, . . . , mC. Note that each of these three jobs is adjacent to
the targeted I/O node. Indeed, the j1 and j3 are adjacent to the leftmost and
the rightmost I/O node, respectively, while j2 is always adjacent to the middle
I/O node, since qj2 ≥ B

2 . The makespan of the created schedule is equal to M .
Assume now that there exists a schedule of makespan at most M . As the

total work is M · B, no computing node is idle during the time interval (0,M].
Hence, the partition is directly derived by assigning jobs that start at time i− 1
to Ai, 1 ≤ i ≤ M . ⊓⊔

4.2 Approximation Algorithm

In this section, we first propose a constant-factor approximation algorithm for
line topologies and then we argue that it can be used even for ring topologies.
The main idea of our algorithm is to first determine an allocation of each job to a
specific set of computing nodes. We are interested in allocations that are simulta-
neously contiguous and local, while each job j requires a specific I/O node. As a
consequence, there exist at most qj +1 = O(mC) valid allocations for each job j

(see Fig. 2). Given an allocation of all jobs to computing nodes, our problem
coincides with the well-studied Dynamic Storage Allocation (DSA) prob-
lem [10]. Then, we use a known approximation algorithm for the latter problem.

Interference-Aware Scheduling Using Geometric Constraints 211

Fig. 2. Potential allocations for a job j requesting the middle I/O node with qj = 3.

In order to decide the allocation of computing nodes we use an integer linear
program. Let Aj be the set of all potential allocations for each job j, where
|Aj | ≤ qj + 1. Each allocation a ∈ Aj contains exactly qj computing nodes as
well as the required I/O node. Note that, an allocation may include more I/O
nodes that will not be used during the execution of j neither by j nor by the
other jobs due to the locality constraint. For example, in Fig. 2 the two rightmost
allocations also cover the third I/O node in order to be able to include qj = 3
computing nodes. For each job j ∈ J and allocation a ∈ Aj , we introduce a
binary indicator variable xj,a which is equal to one if j is executed according to
the allocation a, and zero otherwise. Moreover, for each node i ∈ V we introduce
a non-negative variable Li which corresponds to the total load of jobs whose
assigned allocation includes i. Finally, let Λ be the maximum load among all
nodes. Then, we propose the following integer linear program which searches for
the allocations that minimize the total load.

minimize Λ (ILP)

Λ ≥ Li ∀i ∈ V (1)

Li ≥
∑

j∈J

∑

a∈Aj

∑

i∈a

xj,apj ∀i ∈ V (2)

∑

a∈Aj

xj,a = 1 ∀j ∈ J (3)

xj,a ∈ {0, 1} ∀j ∈ J , a ∈ Aj (4)

Constraints (2) compute the total load for each node, while Constraints (3)
ensure that each job is assigned an allocation. By relaxing the integrity Con-
straints (4), we can solve the corresponding linear program in polynomial time.
Note that there are O(mn) variables and O(m + n) constraints. Moreover, an
optimal solution to the above integer linear program is a lower bound to the
makespan of an optimal solution for our problem, since it optimizes the maxi-
mum load without handling intersections of jobs in time, that is the scheduling
phase.

Let Λ̃, L̃i and x̃j,a denote the values of the variables in an optimal solution of
the relaxed linear program. Then, the solution of this linear program is rounded
to an integral feasible solution whose variables are denoted by Λ̄, L̄i and x̄j,a.
Specifically, we round the indicator variables independently for each job j ∈ J

212 R. Bleuse et al.

as follows: consider all possible allocations for the job j ordered with respect to
the processors’ ordering. The allocation chosen for j is the one with the smallest
index k such that

∑k
a=1 x̃j,a ≥ 1

2 . Then, we set x̄j,k = 1 and x̄j,a = 0 for all
a �= k. Figure 3 gives an example of this rounding procedure.

iℓ i
∗ ir

x̃j,1 = 0.1

x̃j,2 = 0.2

x̃j,3 = 0.2

x̃j,4 = 0.3

x̃j,5 = 0.2

0.1

0.3

0.5

0.8

1
0.9

0.7

0.5

0.2

Fig. 3. Rounding procedure for the variables that correspond to job j: x̄j,3 = 1 and
x̄j,1 = x̄j,2 = x̄j,4 = x̄j,5 = 0.

The following lemma provides an upper bound to the integral solution Λ̄

obtained after the rounding procedure.

Lemma 1. Λ̄ ≤ 2Λ̃.

Proof. Consider a job j and let kj be the index of the allocation of j in the
rounded solution, i.e., x̄j,kj

= 1. Moreover, let V(j) be the set of nodes (both
computing and I/O) that are included in this allocation. We will first prove the
following statement:

∑

a∈Aj : i∈a

x̃j,a ≥
1

2
for every i ∈ kj

For example, in Fig. 3 we have that kj = 3 and for each i ∈ {3, . . . , 7} the sum
of the fractional variables that correspond to j and include i is at least 0.5. In
order to prove the statement, let kj = {iℓ, . . . , ir} be the set of nodes of the
allocation kj as these are ordered in the natural way. Recall that VI/O(j) ∈ kj

is the I/O node required by j and assume that VI/O(j) coincides with i∗, where
iℓ ≤ i∗ ≤ ir. By the definition of kj , the statement is true for i = iℓ. Moreover,
the statement holds for each node i ∈ {iℓ, . . . , i

∗} since

∑

a∈Aj : i∈a

x̃j,a ≥
∑

a∈Aj : iℓ∈a

x̃j,a ≥
1

2

Interference-Aware Scheduling Using Geometric Constraints 213

It remains to prove it for i ∈ {i∗ + 1, . . . , ir}. We focus first on ir. Observe that

by the definition of kj it holds that
∑kj−1

a=1 x̃j,a < 1
2 . Then, we have that

∑

a∈Aj : ir∈a

x̃j,a =
∑

a∈Aj

x̃j,a −

kj−1∑

a=1

x̃j,a > 1 −
1

2
=

1

2

Finally, the statement holds for each node i ∈ {i∗ + 1, . . . , ir} since

∑

a∈Aj : i∈a

x̃j,a ≥
∑

a∈Aj : ir∈a

x̃j,a ≥
1

2

In order to finalize the proof of the lemma, consider the load L̄i of a node i

in the rounded solution. We have that

L̄i =
∑

j∈J

pj · 1{if i∈kj} =
∑

j∈J

pj

∑

a∈Aj : i∈a

x̄j,a ≤
∑

j∈J

pj2
∑

a∈Aj : i∈a

x̃j,a

where the last inequality holds by the proven statement and since by Con-
straint (3) we have that

∑
a∈Aj : i∈a x̄j,a ≤ 1. Hence,

L̄i ≤ 2
∑

j∈J

pj

∑

a∈Aj : i∈a

x̃j,a = 2
∑

j∈J

pj

∑

a∈Aj

∑

i∈a

x̃j,a = 2
∑

j∈J

∑

a∈Aj

∑

i∈a

x̃j,apj = 2L̃i

The lemma follows by considering the node of maximum load in the rounded
solution, i.e., Λ̄ = maxi{L̄i} ≤ 2maxi{L̃i} = 2Λ̃. ⊓⊔

As mentioned before, given the allocations of all jobs, our problem coincides
with the DSA problem [10]. An instance of the DSA problem consists of a set
of n triples. Each triple (ℓj , rj , sj) corresponds to a rectangle parallel to x-axis
of size (rj − ℓj) × sj . Specifically, ℓj and rj are the projections of its leftmost
and rightmost points, respectively, in the x-axis while sj is its size projected in
the y-axis. In other words, the position of the rectangle is fixed with respect to
x-axis, but it can be shifted in any position in y-axis. The objective is to pack
all rectangles without intersections in a strip of minimum height.

In our scheduling context, each job corresponds to a rectangle whose ℓj and
rj values are defined by a given allocation as the leftmost and the rightmost
computing nodes respectively, while pj = sj . Moreover, the makespan coincides
with the height of the strip.

Gergov [10] presented a greedy 3-approximation algorithm for the DSA prob-
lem. The important property of this algorithm is that it uses as lower bound the
maximum load over all x-coordinates, which allows as to use it in our analysis.
The following theorem describes this property in scheduling terms.

Theorem 2 [10]. There is an algorithm which computes a feasible schedule
whose makespan is at most three times the maximum load of every node.

214 R. Bleuse et al.

Algorithm 1.

1 Solve the relaxed version of (ILP)
2 for each job j ∈ J do

3 Find the smallest index k such that
∑k

a=1
x̃j,a ≥ 1

2

4 Set x̄j,k = 1 and x̄j,a = 0 for all a �= k

5 Create a feasible schedule by applying the algorithm proposed in Theorem 2
using the allocations determined by the x̄j,a variables

Due to the equivalence of our problem with DSA, we can apply the algorithm
mentioned in Theorem 2 and get a final solution to our problem. A high-level
description of the above described procedure is given in Algorithm1.

Theorem 3. Algorithm1 achieves an approximation ratio of 6 for the line topol-
ogy in the pinned I/O model.

Proof. Consider a schedule created by Algorithm1 and let Cmax be the makespan
of this schedule. Due to the allocation phase, we know that the maximum load
over all nodes is equal to Λ̄. Then, by Theorem2 and Lemma 1, we have that
Cmax ≤ 3Λ̄ ≤ 6Λ̃. Hence, the theorem follows by the fact that the optimal
solution to (ILP) is a lower bound to the optimal solution for our problem. ⊓⊔

We observe that Gergov’s algorithm remains a 3-approximation even in the
case of rings. Moreover, the allocation procedure based on the rounding of (ILP)
can be also applied for rings; we just need to define an ordering of the possible
allocations of each job. Thus, by considering an clockwise ordering, we can apply
Algorithm1 and get the following theorem.

Theorem 4. Algorithm1 achieves an approximation ratio of 6 for the ring
topology in the pinned I/O model.

5 Unpinned I/O

In this section, we study the unpinned I/O model according to which each job
requires any arbitrary I/O node.

5.1 Complexity

We start by proving that the studied problem is NP-complete even in the spe-
cial case where all jobs require unit processing time to be executed, while the
platform contains only three I/O nodes. The proof is similar with the proof
of Theorem 1 with the difference that the reduction is done by the classical 3-
Partition problem [8]. For this reason, it is omitted.

Theorem 5. The problem of scheduling in the unpinned model with respect to
contiguity and locality constraints is strongly NP-complete even in line topolo-
gies, with mI/O = 3 and pj = 1 for each job j ∈ J .

Interference-Aware Scheduling Using Geometric Constraints 215

5.2 An Approximation Algorithm for Equidistant I/O Nodes

In this section, we consider both line and ring topologies and we propose an
approximation algorithm in the case where the I/O nodes are uniformly dis-
tributed. In other words, the I/O nodes are equidistant from each other. We
denote by δ the distance separating two consecutive I/O nodes. Note that, given

any instance, in line topologies δ can be either ⌊ mC

mI/O ⌋ or ⌈ mC

mI/O ⌉ while the first
value is always the case in ring topologies.

We need some additional notation. We call a job small if it requires fewer
computing nodes than the distance between two consecutive I/O nodes, i.e.,
qC
j < δ. In a similar way, we call a job big if qC

j ≥ δ. Let J≤δ and J≥δ be the sets
of small and big jobs, respectively. Our algorithm handles these sets separately.

A small job cannot be adjacent to more than one I/O nodes in any feasible
schedule. Moreover, an I/O node along with δ consecutive computing nodes
adjacent to it can be considered as a processing unit that can execute a small

job. Based on this, we partition the set VC into ⌊mC

δ
⌋ groups of consecutive

computing units, each one of size at least δ. Assume that these groups as well as
the I/O nodes are numbered from left to right and we consider the i-th such group
and the i-th I/O node to compose a processing unit. Note that, by the definition

of δ, mI/O can be either ⌊mC

δ
⌋ or ⌊mC

δ
⌋+1. In the second case, which can happen

only in line topologies, the last I/O node is not used. Then, we can transform
our problem for small jobs to an instance of the classical P || Cmax problem with

⌊mC

δ
⌋ machines [11]. Specifically, each machine corresponds to one processing

unit, while each small job has a processing time as in the initial instance and
requires only one processing unit. Then, we solve the created instance of P ||
Cmax by using any known approximation algorithm for it. The following lemma,
whose proof is omitted, summarizes the above procedure. The additional 2-factor
in the line case is due to parity issues.

Lemma 2. Any ρ1-approximation algorithm for the P || Cmax scheduling prob-
lem, can be used to obtain a 2ρ1-approximation algorithm to schedule small jobs
in a line and a ρ1-approximation algorithm to schedule small jobs in a ring.

Due to the contiguity constraint, the big jobs are structurally guaranteed
to be adjacent to at least one I/O node, i.e., we can then ignore the existence
of I/O nodes when scheduling big jobs. Hence, the objective is to pack the big
jobs and our problem reduces to the strip-packing problem [13]. The following
lemma, whose proof is omitted, summarizes the above reduction. The additional
2-factor in the ring case is due to the degeneration of the ring to a line.

Lemma 3. Any ρ2-approximation algorithm for the strip-packing problem, can
be used to obtain a ρ2-approximation algorithm to schedule big jobs in a line and
a 2ρ2-approximation algorithm to schedule big jobs in a ring.

By combining Lemmas 2 and 3 the following theorem follows.

216 R. Bleuse et al.

Theorem 6. For the unpinned model, there is a (2ρ1 +ρ2)-approximation algo-
rithm for line topologies and a (ρ1+2ρ2)-approximation algorithm for ring topolo-
gies, where ρ1 and ρ2 are the approximation ratios for the P || Cmax and the
strip-packing problems, respectively.

Note that a PTAS exists for both P || Cmax and strip-packing problems [11,
13], leading for (3 + ǫ)-approximation algorithms for line and ring topologies.

6 Conclusions

We studied the makespan minimization problem on line and ring topologies,
when the allocations are constrained to be both contiguous and local. We proved
that both the pinned and unpinned models are NP-complete and we presented
constant-factor approximation algorithms for them. The proposed algorithms
can be also applied in different settings (the proofs will be developed in an
extended version of this work). For example, in the case where the I/O nodes
can be shared by more than one jobs, then the 6-approximation algorithm of
Sect. 4.2 can be simply adapted by excluding the requested I/O node from the
allocation of the job in the definition of the indicator variables of (ILP). Note
that due to the locality constraint an I/O node cannot be shared by more than
two jobs. Another example is the case where each job requires more than one
I/O nodes. However, this assumption in conjunction with the locality constraint
could lead to several unused nodes, limiting its interest.

As future steps, one could implement the proposed algorithms, and study
their performances through simulation. From a theoretical point of view, the
tightness results show the limits of the two-phase approach in Sect. 4.2. The
approximation ratios might be improved by scheduling the problem in a single
phase. Finally, the study of more enhanced topologies, like two-dimensional ones,
is a very interesting direction. In this case, contiguity could be replaced by more
general constraints implying the convexity of the shape of the allocations.

References

1. Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There goes the neighborhood:
performance degradation due to nearby jobs. In: SC, pp. 41:1–41:12. ACM, Novem-
ber 2013

2. B�la֒dek, I., Drozdowski, M., Guinand, F., Schepler, X.: On contiguous and non-
contiguous parallel task scheduling. J. Sched. 18(5), 487–495 (2015)

3. Chen, N.-C., Poon, S.S., Ramakrishnan, L., Aragon, C.R.: Considering time in
designing large-scale systems for scientific computing. In: CSCW, pp. 1533–1545.
ACM, February 2016

4. Dorier, M., Ibrahim, S., Antoniu, G., Ross, R.B.: Using formal grammars to predict
I/O behaviors in HPC: the Omnisc’IO approach. IEEE Trans. Parallel Distrib.
Syst. 27(8), 2435–2449 (2016)

5. Enos, J., et al.: Topology-aware job scheduling strategies for torus networks. In:
Cray User Group, May 2014

Interference-Aware Scheduling Using Geometric Constraints 217

6. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory
and practice in parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.)
JSSPP 1997. LNCS, vol. 1291, pp. 1–34. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-63574-2 14

7. Gainaru, A., Aupy, G., Benoit, A., Cappello, F., Robert, Y., Snir, M.: Scheduling
the I/O of HPC applications under congestion. In: IPDPS, pp. 1013–1022. IEEE,
May 2015

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

9. Georgiou, Y., Jeannot, E., Mercier, G. Villiermet, A.: Topology-aware resource
management for HPC applications. In: ICDCN, pp. 17:1–17:10. ACM (2017)

10. Gergov, J.: Algorithms for compile-time memory optimization. In: SODA, pp. 907–
908. ACM/SIAM, January 1999

11. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: theoretical and practical results. J. ACM 34(1), 144–162 (1987)

12. Kathareios, G., Minkenberg, C., Prisacari, B., Rodŕıguez, G., Hoefler, T.: Cost-
effective diameter-two topologies: analysis and evaluation. In: SC, pp. 36:1–36:11.
ACM, November 2015

13. Kenyon, C., Rémila, E.: Approximate strip packing. In: FOCS, pp. 31–36 (1996)
14. Lucarelli, G., Mendonça, F.M., Trystram, D., Wagner, F.: Contiguity and locality

in backfilling scheduling. In: CCGRID, pp. 586–595. IEEE Computer Society, May
2015

15. Pascual, J.A., Miguel-Alonso, J., Antonio, L.J.: Application-aware metrics for par-
tition selection in cube-shaped topologies. Parallel Comput. 40(5), 129–139 (2014)

16. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: TOP500 list, June 2018
17. Tessier, F., Malakar, P., Vishwanath, V., Jeannot, E., Isaila, F.: Topology-

aware data aggregation for intensive I/O on large-scale supercomputers. In:
COMHPC@SC, pp. 73–81. IEEE, November 2016

18. Tuncer, O., Leung, V.J., Coskun, A.K.: PaCMap: topology mapping of unstruc-
tured communication patterns onto non-contiguous allocations. In: ICS, pp. 37–46.
ACM, June 2015

https://doi.org/10.1007/3-540-63574-2_14
https://doi.org/10.1007/3-540-63574-2_14

	Preface
	Organization
	Euro-Par 2018 Invited Talks
	ALGORAND: A Better Distributed Ledger
	Algorithmic Adaptations to Extreme Scale Computing
	Datacenters for the Post-Moore Era
	Euro-Par 2018 Topics Overview
	Topic 1: Support Tools and Environments
	Topic 2: Performance and Power Modeling, Prediction and Evaluation
	Topic 3: Scheduling and Load Balancing
	Topic 4: High Performance Architectures and Compilers
	Topic 5: Parallel and Distributed Data Management and Analytics
	Topic 6: Cluster and Cloud Computing
	Topic 7: Distributed Systems and Algorithms
	Topic 8: Parallel and Distributed Programming, Interfaces, and Languages
	Topic 9: Multicore and Manycore Methods and Tools
	Topic 10: Theory and Algorithms for Parallel Computation and Networking
	Topic 11: Parallel Numerical Methods and Applications
	Topic 12: Accelerator Computing for Advanced Applications
	Contents
	Support Tools and Environments
	Automatic Detection of Synchronization Errors in Codes that Target the Open Community Runtime
	1 Introduction
	2 Related Work
	3 OCR and Synchronization
	3.1 Event Driven Synchronization
	3.2 State of OCR Objects
	3.3 The happens-before Relation

	4 Automatic Checking of OCR Programs
	4.1 OCR Application Tracing and Trace Analyzer
	4.2 The happens-before Graph
	4.3 Error Detection Rules

	5 Examples
	5.1 Late Dependence Definition
	5.2 Conflicting Operations in Parallel Tasks
	5.3 SPMD Application – Synchronization Using Data Blocks
	5.4 Performance

	6 Conclusion and Future Work
	References

	A Methodology for Performance Analysis of Applications Using Multi-layer I/O
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Definitions
	3.2 Events

	4 Implementation
	5 Case Study
	6 Conclusions
	7 Future Work
	References

	Runtime Determinacy Race Detection for OpenMP Tasks
	1 Introduction
	2 Background in OpenMP Tasks
	3 Determinacy Race Detection
	3.1 Definition and Motivating Example
	3.2 Formalizing Task Operations
	3.3 Happens-Before Relations Between Task Operations
	3.4 Determinacy Race Detection Algorithm

	4 Implementation
	5 Results
	5.1 Precision Evaluation of TaskSanitizer
	5.2 Comparing Detection with Archer
	5.3 Overhead Evaluation

	6 Related Work
	7 Conclusion
	References

	Estimating the Impact of External Interference on Application Performance
	1 Introduction
	2 Approach
	3 Evaluation
	4 Related Work
	5 Conclusion
	References

	GT-Race: Graph Traversal Based Data Race Detection for Asynchronous Many-Task Parallelism
	1 Introduction
	2 GT-Race
	2.1 Computation Graph and Data Races
	2.2 Overview
	2.3 Epoch Adjacency List: A Compressed Representation for Computation Graph
	2.4 Optimization: Reachability Cache
	2.5 Optimization: Depth Filtering
	2.6 Optimization: Bounded Race Detection

	3 Implementation
	4 Performance Evaluation
	4.1 Environment and Benchmarks
	4.2 Space Overhead of GT-Race
	4.3 Performance of GT-Race

	5 Related Work
	6 Conclusion and Future Work
	References

	Performance and Power Modeling, Prediction and Evaluation
	Reducing GPU Register File Energy
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	3 GReEneR
	3.1 Compiler Analysis
	3.2 Encoding Power States
	3.3 Run-Time Optimization

	4 Experimental Analysis
	5 Related Work
	6 Conclusions and Future Work
	References

	Taxonomist: Application Detection Through Rich Monitoring Data
	1 Introduction
	2 Related Work
	3 Motivation
	4 Taxonomist: A Technique for Identifying Applications
	4.1 Monitoring
	4.2 Statistical Feature Extraction
	4.3 Classification
	4.4 Operation of Taxonomist

	5 Experimental Methodology
	5.1 Platform
	5.2 Applications
	5.3 Baseline Technique

	6 Evaluation
	7 Conclusion
	References

	Diagnosing Highly-Parallel OpenMP Programs with Aggregated Grain Graphs
	1 Introduction
	2 Background on Grain Graphs
	2.1 Structure
	2.2 Diagnosing Problems

	3 Grain Graph Aggregation Method
	3.1 Reduction
	3.2 Normalization
	3.3 Propagation
	3.4 Separation
	3.5 Navigation

	4 Prototype Implementation
	5 Evaluation
	5.1 Visible Node Count
	5.2 Reducing Distractions
	5.3 Similarity Across Runs

	6 Related Work
	7 Conclusion
	References

	Characterization of Smartphone Governor Strategies
	Abstract
	1 Introduction
	2 Background
	2.1 Governors
	2.2 DVFS Points
	2.3 Quality of Service

	3 Experimental Setup
	4 Applications and Benchmarks
	5 Results
	6 Benchmark and Application Classification
	6.1 CPU Intensive Workloads
	6.2 Intermittent CPU Workloads with I/O Operation
	6.3 Application Requiring Other Blocks in the SoC

	7 Observations
	8 Related Work
	8.1 Race-to-Idle vs Pace-to-Idle Schemes
	8.2 Governor Design Based on Runtime Phase Behavior and QoS Deadline
	8.3 Power Sharing Among Different Resources
	8.4 Reducing DVFS Switch Time

	9 Conclusion
	Acknowledgement
	References

	HPC Benchmarking: Scaling Right and Looking Beyond the Average
	1 Introduction
	2 Experimental Environment
	2.1 Experimental Platform
	2.2 Workloads

	3 Results
	3.1 Floating-Point Performance Analysis
	3.2 Memory Bandwidth Analysis
	3.3 Discussion

	4 Related Work
	5 Conclusions
	References

	Combined Vertical and Horizontal Autoscaling Through Model Predictive Control
	1 Introduction
	2 Combined Vertical and Horizontal Autoscaling
	3 Numerical Evaluation
	4 Conclusion
	References

	Scheduling and Load Balancing
	Early Termination of Failed HPC Jobs Through Machine and Deep Learning
	1 Introduction
	2 Related Work
	3 Mistral Supercomputer Dataset
	3.1 Job Scheduler History
	3.2 Time Series Data Analysis
	3.3 Dataset Split

	4 Failed Job Analysis
	4.1 Most Meaningful Features for Prediction of Job States
	4.2 Node-Power Analysis

	5 Prevention of Failures
	5.1 Convolutional Neural Networks
	5.2 Evaluation – Static and Dynamic Job-Killing Policies

	6 Conclusions and Future Work
	References

	Peacock: Probe-Based Scheduling of Jobs by Rotating Between Elastic Queues
	1 Introduction
	2 The Peacock Scheduler
	2.1 Probe Rotation
	2.2 Probes Reordering

	3 Evaluation Methodology
	4 Experimental Results
	5 Related Work
	6 Conclusion
	References

	Online Scheduling of Task Graphs on Hybrid Platforms
	1 Introduction
	2 Related Work
	3 Lower Bound on Competitive Algorithms
	4 Competitive Algorithms
	4.1 The Quick Allocation (QA) Algorithm
	4.2 A Competitive Algorithm that Performs Well in Practice

	5 Simulations
	5.1 Baseline Heuristics
	5.2 Experimental Setup
	5.3 Results

	6 Conclusion
	References

	Interference-Aware Scheduling Using Geometric Constraints
	1 Introduction
	2 Problem Setting
	3 Related Work
	4 Pinned I/O
	4.1 Complexity
	4.2 Approximation Algorithm

	5 Unpinned I/O
	5.1 Complexity
	5.2 An Approximation Algorithm for Equidistant I/O Nodes

	6 Conclusions
	References

	Resource-Efficient Execution of Conditional Parallel Real-Time Tasks
	1 Introduction
	2 Conditional Sporadic DAG tasks BBM2015,Melani:2015
	3 Some Prior Results on Scheduling DAG Tasks
	4 Our Proposed Scheduling Approach
	4.1 Computing mN and S N

	5 Context and Summary
	References

	High Performance Architectures and Compilers
	Improving GPU Cache Hierarchy Performance with a Fetch and Replacement Cache
	1 Introduction
	2 Background
	3 Motivation
	4 FRC Approach
	5 Experimental Evaluation
	5.1 Performance Analysis
	5.2 Analysis of Memory Subsystem Metrics

	6 Related Work
	7 Conclusions
	References

	Abelian: A Compiler for Graph Analytics on Distributed, Heterogeneous Platforms
	1 Introduction
	2 Programming Model
	3 Abelian Compiler
	3.1 Graph-Data Access Analysis
	3.2 Restructuring Computation
	3.3 Inserting Communication
	3.4 Device-Specific Compilers

	4 Experimental Results
	4.1 Comparison with the State-of-the-Art
	4.2 Impact of Communication Optimizations

	5 Related Work
	6 Conclusions
	References

	Using Dynamic Compilation to Achieve Ninja Performance for CNN Training on Many-Core Processors
	1 Introduction
	2 Background
	3 Overview of Our Approach
	4 Runtime Code Specialization
	5 Optimizations for KNL Many-Core Architecture
	5.1 Key Features to Consider for Code Optimization
	5.2 Fine-Grain Parallelism and Related Optimizations
	5.3 Thread-Level Parallelism and Optimizations

	6 Performance Evaluation
	6.1 Comparison with GEMM-Based Method
	6.2 Comparison with State-of-the-Art Libraries
	6.3 Overhead of JIT Code Generation

	7 Conclusion
	References

	Parallel and Distributed Data Management and Analytics
	Privacy-Preserving Top-k Query Processing in Distributed Systems
	1 Introduction
	2 Problem Definition
	2.1 Top-k Queries
	2.2 Distributed System and Adversary Model
	2.3 Problem Statement

	3 SD-TOPK System
	3.1 System Architecture
	3.2 Data Encryption and Outsourcing
	3.3 Top-k Query Processing Algorithm

	4 Performance Evaluation
	4.1 Setup
	4.2 Effect of Database Size
	4.3 Effect of the Number of Lists
	4.4 Effect of k
	4.5 Effect of Bucket Size
	4.6 Communication Cost
	4.7 Filtering Rate

	5 Related Work
	6 Conclusion
	References

	Minimizing Network Traffic for Distributed Joins Using Lightweight Locality-Aware Scheduling
	1 Introduction
	2 Background
	2.1 Basic Approaches
	2.2 Skew Handling Methods
	2.3 The State-of-the-art

	3 Our Approach
	3.1 The LAS Method
	3.2 Comparison with Current Approaches
	3.3 Parallel Implementation

	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusions
	References

	Cluster and Cloud Computing
	VIoLET: A Large-Scale Virtual Environment for Internet of Things
	1 Introduction
	2 Design Requirements
	3 Architecture
	3.1 Compute Resources
	3.2 Network Topology
	3.3 Sensors and Virtual Observation Streams
	3.4 Resource Mapping and Deployment

	4 Evaluation
	4.1 Results for D105 and D408
	4.2 Analysis of Network Behavior

	5 Related Work
	6 Conclusions and Future Work
	References

	Adaptive Bandwidth-Efficient Recovery Techniques in Erasure-Coded Cloud Storage
	1 Introduction
	2 Background and Motivation
	3 Related Work
	4 The Proposed Cloud Storage System
	4.1 Architecture and Design
	4.2 Recovery Approach

	5 Performance Analysis
	5.1 Bandwidth Analysis
	5.2 Storage Overhead Analysis

	6 Performance Evaluation
	6.1 Results and Discussions
	6.2 Sensitivity Analysis

	7 Conclusions and Future Work
	References

	IT Optimization for Datacenters Under Renewable Power Constraint
	1 Introduction
	2 Related Work
	3 Core Problem Formulation
	3.1 The Principles of the RECO Module
	3.2 IT Management Model
	3.3 Objective

	4 Core Problem Resolution
	5 Evaluation Methodology and Results
	5.1 Methodology
	5.2 Results Evaluation

	6 Conclusion
	References

	GPU Provisioning: The 80 - 20 Rule
	1 Introduction
	2 Conceptual Datacenter Model
	3 Deciding How Many Accelerators to Deploy
	4 Exploring the 80-20 Rule
	5 Related Work
	6 Conclusion
	References

	ECSched: Efficient Container Scheduling on Heterogeneous Clusters
	1 Introduction
	2 Problem Formulation
	2.1 Model Description
	2.2 Deployment Requirements

	3 ECSched Approach
	3.1 Minimum Cost Flow Problem
	3.2 Flow Network Structure
	3.3 Encoding Deployment Requirements
	3.4 MCFP Algorithms

	4 Evaluation
	4.1 Comparison of Placement Quality
	4.2 Overheads Evaluation

	5 Related Work
	6 Conclusion
	References

	Combinatorial Auction Algorithm Selection for Cloud Resource Allocation Using Machine Learning
	1 Introduction
	2 Related Work
	3 Formal Problem Definition
	4 Algorithm Selection
	4.1 Algorithm Portfolio
	4.2 Features
	4.3 Cost Model
	4.4 Evaluation Metrics

	5 Evaluation
	5.1 Dataset Analysis
	5.2 Classification Evaluation

	6 Conclusions
	References

	Cloud Federation Formation in Oligopolistic Markets
	1 Introduction
	2 Background
	2.1 Cooperative Game Theory
	2.2 Linear Production Games

	3 Federation Formation and Payoff Distribution Using Linear Production Games
	3.1 Federation Formation Model
	3.2 Payoff Distribution

	4 Intervention of an Oligopolist in Federation Formation
	4.1 Core Allocation for Subgames
	4.2 Influence of the Oligopolist
	4.3 Finding a Stable Coalition Structure

	5 Experimental Results
	6 Related Work
	7 Conclusions
	References

	Improving Cloud Simulation Using the Monte-Carlo Method
	1 Introduction
	2 Related Work
	3 Work Context
	4 Proposal: An Enriched Simulation Framework
	4.1 Simulation Process
	4.2 Real Observations
	4.3 Input Modeling

	5 Evaluation
	6 Perspectives
	7 Conclusion
	References

	Distributed Systems and Algorithms
	Nobody Cares if You Liked Star Wars: KNN Graph Construction on the Cheap
	1 Introduction
	2 Problem Statement: Reduce KNN Computation Time
	2.1 System Model and Problem
	2.2 Gance's Napoléon tells us more than Lucas's Star Wars
	2.3 Our Approach: Constant-Size Least Popular Sampling (LP)

	3 Experimental Setup
	3.1 Baseline Algorithms and Competitors
	3.2 Datasets
	3.3 Evaluation Metrics
	3.4 Experimental Setup

	4 Experimentations
	4.1 Reduction in Computing Time, and Quality/Speed Trade-Off
	4.2 Preprocessing Overhead
	4.3 Influence of LP at the User's Level
	4.4 Recommendations

	5 Related Work
	6 Conclusion
	References

	One-Sided Communications for More Efficient Parallel State Space Exploration over RDMA Clusters
	1 Introduction
	2 Background
	3 RDMA Architectures and the OpenSHMEM Specification
	3.1 RDMA and One-Sided Communications
	3.2 The OpenSHMEM Communication and Memory Model

	4 Distributed Reachability Analysis with One-Sided Communications
	5 Experiments
	5.1 Experimental Environment
	5.2 Implementation Details
	5.3 Scalability
	5.4 Process Workload
	5.5 Comparison with the DiVinE Model Checker

	6 Conclusion and Perspectives
	References

	Robust Decentralized Mean Estimation with Limited Communication
	1 Introduction
	2 System Model
	3 Proposed Algorithms
	3.1 Codec Basics
	3.2 Pivot Codec
	3.3 Robust Push-Pull Averaging
	3.4 Compressed Push-Pull Averaging
	3.5 Flow Compensation

	4 Simulation Results
	4.1 Experimental Setup
	4.2 Results

	5 Conclusions
	References

	Parallel and Distributed Programming, Interfaces, and Languages
	Snapshot-Based Synchronization: A Fast Replacement for Hand-over-Hand Locking
	1 Introduction
	1.1 Snapshot-Based Synchronization

	2 Snapshot-Based Synchronization Design
	2.1 Interface and Algorithms
	2.2 Locking Granularity

	3 Optimized Implementation
	3.1 Copying Snapshots
	3.2 Deferring Snapshot Creation by Trailing
	3.3 NUMA Awareness
	3.4 Reader Synchronization
	3.5 Putting it All Together

	4 Evaluation
	4.1 Experimental Setup
	4.2 Scalability
	4.3 Effect of Data Structure Size
	4.4 Effect of Read-Write Ratio
	4.5 Entrance Bottleneck Analysis

	5 Related Work
	6 Conclusions
	References

	Measuring Multithreaded Message Matching Misery
	1 Introduction
	2 Background
	2.1 Message Matching
	2.2 Multithreaded MPI

	3 Analysis of Stencil Decomposition
	3.1 9 Point Stencil
	3.2 27 Point Stencil

	4 Experimental Results
	4.1 Methods
	4.2 Results
	4.3 Discussion

	5 Related Work
	6 Conclusions
	References

	Global-Local View: Scalable Consistency for Concurrent Data Types
	1 Introduction
	2 Related Work
	3 Global-Local View Model
	4 Data Types
	4.1 Specification
	4.2 Implementation

	5 Applications
	6 Evaluation
	7 Conclusion
	References

	OpenABL: A Domain-Specific Language for Parallel and Distributed Agent-Based Simulations
	1 Introduction
	2 Background
	3 Language Design
	4 Implementation
	5 Experimental Evaluation
	6 Conclusion
	References

	Bulk: A Modern C++ Interface for Bulk-Synchronous Parallel Programs
	1 Introduction
	2 The Bulk Library
	3 Applications
	3.1 Parallel Regular Sample Sort
	3.2 Fast Fourier Transform

	4 Results
	4.1 Bulk vs. BSPlib

	5 Conclusion
	References

	SharP Unified Memory Allocator: An Intent-Based Memory Allocator for Extreme-Scale Systems
	1 Introduction
	2 Related Work
	3 Capturing User Intent
	4 SharP Unified Memory Allocator
	4.1 Unified Memory Allocator's Interface

	5 Extending Existing Programming Model Implementations
	5.1 Extending Open MPI
	5.2 Extending OpenSHMEM-X

	6 Experimental Evaluation
	6.1 Performance
	6.2 Correctness
	6.3 Graph500

	7 Conclusion
	References

	Multi-granularity Locking in Hierarchies with Synergistic Hierarchical and Fine-Grained Locks
	1 Introduction
	2 Background and Motivation
	2.1 Hierarchical Locking

	3 Our Proposal: HiFi
	3.1 Compatibility in HiFi
	3.2 Numbering Algorithm
	3.3 Main Algorithm

	4 Experimental Evaluation
	4.1 Effect of Number of Nodes
	4.2 Effect of Critical Section Size
	4.3 Effect on Real-World XML Hierarchy
	4.4 Effect of Variation in Fine-Grain Operations

	5 Related Work
	6 Conclusion
	References

	Efficient Communication/Computation Overlap with MPI+OpenMP Runtimes Collaboration
	1 Introduction
	2 Related Work
	3 Contribution: Hybrid Progress
	3.1 Hybrid Progress Method
	3.2 Implementation in an MPI+OpenMP Context

	4 Experimental Results
	4.1 Micro-benchmark
	4.2 CORAL Benchmarks

	5 Conclusion and Future Work
	References

	Multicore and Manycore Methods and Tools
	Efficient Lock-Free Removing and Compaction for the Cache-Trie Data Structure
	1 Introduction
	2 Overview of Cache-Tries
	3 Remove Operation
	3.1 Basic Implementation
	3.2 Cache-Trie Compaction
	3.3 Correctness Discussion

	4 Evaluation
	5 Related Work
	6 Conclusion
	7 Data Availability Statement and Acknowledgments
	References

	NUMA Optimizations for Algorithmic Skeletons
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Stencil Computations
	3.2 Page Placement Schemes

	4 Stencil Aware Page Placement and Work Distribution for NUMA Systems
	5 Experimental Setup
	6 Evaluation
	6.1 Stencil Aware Page Placement
	6.2 Performance Degradation Through NUMA Balancing
	6.3 Bad Work Distribution and Stencil Aware Work Distribution
	6.4 NUMA and Stencil Aware Work Distribution

	7 Related Work
	8 Conclusion and Future Work
	References

	Improving System Turnaround Time with Intel CAT by Identifying LLC Critical Applications
	1 Introduction
	2 Intel Cache Allocation Technology
	3 Application Characterization
	4 The Critical-Aware Partitioning Approach
	4.1 Cache Warm-Up and Application Classification
	4.2 Partition Allocation
	4.3 Dynamic Adjusting of Partitions

	5 Experimental Framework
	6 Evaluation
	6.1 LLC Dynamic Occupancy and MPKI with the CA Approach
	6.2 Performance and Fairness

	7 Related Work
	8 Conclusions
	References

	Dynamic Placement of Progress Thread for Overlapping MPI Non-blocking Collectives on Manycore Processor
	1 Introduction
	2 Related Works
	3 A Split-Tree Algorithm for MPI Collective Operations
	4 Modeling and Tuning
	5 Implementation
	6 Experimental Results
	7 Conclusion and Future Work
	References

	Efficient Load Balancing Techniques for Graph Traversal Applications on GPUs
	1 Introduction
	2 Background and Related Work
	3 Load Balancing Techniques and Support Strategies
	3.1 The Vertex-Based Mapping with Warp Shuffle
	3.2 The Scan-Based Mapping with PTX Prefix-Sum
	3.3 Device-Wide Binary Search with Unordered Prefix-Sum
	3.4 Load Balancing Support Strategies

	4 Experimental Results
	5 Conclusions
	References

	Energy Efficient Stencil Computations on the Low-Power Manycore MPPA-256 Processor
	1 Introduction
	2 Background
	2.1 MPPA-256
	2.2 Stencil Pattern and PSkel

	3 PSkel-MPPA
	4 Experimental Evaluation
	4.1 Platforms, Applications and Inputs
	4.2 Overhead of PSkel
	4.3 Sizing the Ghost Zone
	4.4 Tile Size vs. Performance
	4.5 Scalability Analysis
	4.6 Comparison with CPU and GPU: Performance vs. Energy

	5 Related Work
	6 Conclusion
	References

	Theory and Algorithms for Parallel Computation and Networking
	High-Quality Shared-Memory Graph Partitioning
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Related Work

	3 Multi-level Graph Partitioning
	4 Parallel Multi-level Graph Partitioning
	4.1 Coarsening: Parallel Size-Constraint Label Propagation
	4.2 Initial Partitioning
	4.3 Uncoarsening/Local Search
	4.4 Differences to Mt-Metis
	4.5 Further Optimization

	5 Experiments
	5.1 Quality Comparison
	5.2 Speed-Up and Running Time Comparison
	5.3 Influence of Algorithmic Components

	6 Conclusion and Future Work
	References

	Design Principles for Sparse Matrix Multiplication on the GPU
	1 Introduction
	2 Background and Preliminaries
	2.1 GPUs
	2.2 Sparse Matrix Formats and SpMM

	3 Design Principles
	3.1 Latency Hiding with TLP and ILP
	3.2 Load-Balancing

	4 Parallelizations of CSR SpMM
	4.1 Algorithm I: Row-Splitting SpMM
	4.2 Algorithm II: Merge-Based SpMM

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Algorithm I: Row-Split
	5.3 Algorithm II: Merge-Based
	5.4 Heuristic

	6 Conclusion and Future Work
	References

	Distributed Graph Clustering Using Modularity and Map Equation
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Preliminaries
	2.1 Thrill

	3 Algorithm
	3.1 Distributed Synchronous Local Moving (DSLM)
	3.2 Distributed Contraction and Unpacking

	4 Experiments
	4.1 Weak Scaling
	4.2 Quality
	4.3 Real-World Graphs

	5 Conclusion
	References

	Improved Distributed Algorithm for Graph Truss Decomposition
	1 Introduction
	2 Preliminaries
	3 Prior Algorithms
	4 Algorithm Hybrid
	5 Distributed Implementation
	6 Experimental Evaluation
	7 Conclusions
	References

	Parallel Numerical Methods and Applications
	Exploiting Data Sparsity for Large-Scale Matrix Computations
	1 Introduction
	2 Related Work
	3 The HiCMA Software Library
	4 Definition of Matrix Kernels
	5 Implementation Details
	6 Performance Results
	7 Conclusion
	References

	Hybrid Parallelization and Performance Optimization of the FLEUR Code: New Possibilities for All-Electron Density Functional Theory
	1 Introduction
	2 Density Functional Theory and the FLAPW Method
	2.1 FLAPW Method
	2.2 Hamiltonian and Overlap Matrices
	2.3 Scaling and Time Requirements

	3 Parallelization and Optimization
	3.1 MPI Parallelization
	3.2 Hybrid Parallelization and Optimized Matrix Setup

	4 Benchmarks
	4.1 Computational Environment
	4.2 Efficient Usage of a Single Node
	4.3 Internode Hybrid Scaling

	5 Conclusions
	References

	Efficient Strict-Binning Particle-in-Cell Algorithm for Multi-core SIMD Processors
	1 Introduction
	2 An Efficient, Strict-Binning, Multicore PIC Algorithm
	3 Performance Results
	4 Numerical Results
	5 Technical Comparison to Related Work
	6 Future Work
	References

	Task-Based Programming on Emerging Parallel Architectures for Finite-Differences Seismic Numerical Kernel
	1 Introduction
	2 Numerical Background and Classical Implementation
	2.1 Numerical Scheme
	2.2 Standard Implementation

	3 A Fully Task-Based Model of the Linear Seismic Kernel
	4 A Hierarchical Implementation Tailored for Modern Architectures
	4.1 Implementation on Top of PaRSEC
	4.2 Building Generic Optimized Computational Kernels

	5 Experiments
	5.1 Tuning Single Node Performances
	5.2 Distributed Memory Scaling

	6 Conclusion
	References

	Accelerator Computing for Advanced Applications
	CEML: a Coordinated Runtime System for Efficient Machine Learning on Heterogeneous Computing Systems
	1 Introduction
	2 Background and Motivation
	2.1 Heterogeneous Computing
	2.2 The TensorFlow Machine-Learning System
	2.3 Need for Coordinated Runtime Support

	3 Experimental Methodology
	4 Design and Implementation
	4.1 Performance Estimator
	4.2 Power Estimator
	4.3 Runtime Manager

	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	Stream Processing on Hybrid CPU/Intel® Xeon Phi™ Systems
	1 Introduction
	2 The Marrow Streaming Framework
	2.1 Programming Model
	2.2 Execution Model

	3 Experimental Results
	4 Related Work
	5 Conclusion and Future Work
	References

	Tile Low-Rank GEMM Using Batched Operations on GPUs
	1 Introduction
	2 Related Work
	3 Background
	4 Design of Tile Low-Rank GEMM Kernels
	5 Implementation Details
	6 Experimental Results
	7 Conclusions and Future Work
	References

	Author Index

