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A B S T R A C T

Mechanical behavior of layered materials and structures greatly depends on
the mechanical behavior of interfaces. In the past decades, the failure in such
layered media has been studied by many researchers due to their critical role
in the mechanics and physics of solids. This study aims at investigating crack-
interface interaction in two-dimensional (2-D) and three-dimensional (3-D)
layered media by a phase field model. Our objectives are fourfold: (a) to
better understand fracture behavior in layered heterogeneous systems under
quasi-static load; (b) to introduce a new methodology for better describing
interfaces by a regularized interfacial transition zone in the context of varia-
tional phase field approach, exploring its important role; (c) to show the accu-
racy, performance and applicability of the present model in modeling material
failure at the interfaces in both 2-D and 3-D bodies; and (d) to quantitatively
validate computed crack path with respect to experimental data. Phase field
models with both perfectly and cohesive bonded interfaces are thus derived. A
regularized interfacial transition zone is introduced to capture characteristics
of material mismatch at the interfaces. Numerical examples for 2-D and 3-D
layered systems with experimental validation provide fundamentals of fracture
behavior in layered structures. The obtained results shed light on the behavior
of crack paths, which are drastically affected by the elastic modulus mismatch
between two layers and interface types, and reveal the important role of the
proposed interfacial transition zone in phase field modeling of crack-interface
interactions.

c© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Background

Recent advances in engineering and structural materials have enabled the developments of modern and advanced
products that could improve the quality of our daily lives. However, they often require the usage of multi-components
and structures which are fabricated by joining different types of materials, forming layered systems. In particular,
layered structures of heterogeneous materials have thus received considerable attention, and are increasingly being
used in many engineering applications ([58]). Although layered systems have great potential in applications, their
mechanical behavior however heavily depends on the mechanical properties and performance of the interfaces. It
is well-known that in layered systems the properties vary from layer to layer, leading to property discontinuity and
therefore jumps across the interfaces. Due to the low fracture resistance, failure and defects, which are major issues
encountered in engineering practice, can occur under severe loading conditions. The presence of property jumps,
geometric discontinuity, or material mismatch at layered interfaces induces more complexities in the fracture modeling
of the media. In fact, the change of elastic properties and fracture characteristics from layer to layer, type of loading
experienced, crack orientation, etc. are certainly important factors that must be analyzed thoroughly.

The mechanical properties of layered structures generally could be tuned by manipulating the mechanical prop-
erties of interfaces. The knowledge of failure behavior at the interfaces in layered media thus is of great importance
to the design of engineering applications, and it holds one major research subject to the scientific community. In
the past decades, research efforts have been largely shifted towards the studies of this subject in both theoretical and
computational models, for instance, see ([7, 6, 28, 32]) and references therein.

Fracture of crack-interface interactions in layered media has been analyzed using different numerical approaches.
Linear Elastic Fracture Mechanics (LEFM) is the popular technique, where the fracture phenomena are often inves-
tigated through stress intensity factors (SIFs), toughness or asymptotic solutions. However, those aspects heavily
depend on the material mismatch and interfacial behavior, e.g., see ([28, 7]. Previous experimental observations show
that the interfacial region is often the origin and main source of failure ([1]), but an efficient numerical model possibly
reproducing these phenomena is still missing. Fracture mechanics based models have demonstrated great potential in
modeling crack growth in layered materials. However, this kind of approaches is relatively restricted and influenced
not only by materials but also by geometry effects. Therefore, it becomes quite difficult in modeling complex layered
structure, especially arbitrary interfaces and 3-D cases.

Cohesive zone models (CZM) is another popular technique to model the interfaces in layered systems ([53, 30,
62]). To avoid the singularity of stress at crack-tip, [23] and [8] introduced a cohesive zone where cohesive laws are
used. Imperfect interface in layered media can be well modeled by the CZM. However, this type of structures presents
different materials with different failure mechanisms, so that a complex model is needed to describe its fracture [71].
Another significant drawback of CZM is that the cohesive surfaces can only lie along element edges, which results in
mesh-dependent crack paths.

The eXtended Finite Element Method - XFEM ([43]) is also used to study fracture in bimaterials interface and
layered structures, e.g., see ([63, 39, 10, 72]). The advantage of XFEM in modeling crack propagation is that the
finite element mesh does not need to be remeshing to track crack paths. The evolution of crack is independent
of mesh, arbitrarily through elements, rather than just along the edge in CZM or classical FEM. However, those
authors employed only crack tip enrichments in 2-D and the computational meshes were aligned with the material
interfaces, reflecting its weakness. Moreover, simulating new crack formulation onset at the interface by XFEM is
challenging. Also, this technique often requires the construction of level-set functions to describe crack, which are
often cumbersome for multiple cracks interaction and/or 3-D implementation. Nevertheless, some other approaches
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have been also proposed for modeling fracture of interfaces in layered systems such as a FE model for fracture
spacing phenomena in layered rocks ([6]), a progressive fracture modeling ([64]) or a discontinuous numerical model
for layer/matrix interface properties ([60]).

1.2. Approach and Objective

In recent years, the phase field model to fracture mechanics has been emerged, which goes beyond certain limita-
tions of LEFM theory of Griffith ([24]). In phase field model, cracks should propagate along a path of least energy.
The brittle fracture is described by a diffuse approximation of discontinuities through an additional phase field vari-
able ([44, 3, 4]). In addition to the primary displacements field, this new phase field variable is defined in terms of the
energy functional to regularize the geometric discontinuity, or jump, of the displacement, representing the crack. No-
ticed that the solution of regularized phase field models converges to the solution of sharp crack description implying
discontinuities, in the Γ− convergence sense ([40, 16, 17]). The most advantage of the phase field model is its ability in
modeling crack initiation and propagation without any prescriptions of crack geometries. The crucial idea possessed
behind the approach is that no additional constitutive rules required by the theory that impose once a crack starts nucle-
ating, propagating or branching. In the phase field approach, the initiation and evolution of cracks emerges by solving
the partial differential equations of the model, representing its striking feature, which results in a significant simpli-
fication of the implementation, especially in 3-D problems. Different versions of the phase field model have been
developed and, more importantly, they can be used to model very complex, multiple crack fronts, branching in both
2D and 3D without ad-hoc numerical treatments, i.e., without fracture criteria ([31, 5, 27, 34, 41, 13, 50, 22, 69, 21]).
However, the application of phase field models to study fracture problems in layered media is rather rare in the lit-
erature and still open problem. Just a few relevant contributions recently get published, for instance, the analyses of
modulus mismatch on crack growth in bioinspired composites [45, 32] or in biomimetic composites [33]. Recently,
the finite width of the external surface was introduced into phase field theory of martensitic phase transformations
and melting/solidification ([37, 38]). This led to the multiple interesting scale effects in surface-induced phase trans-
formations. However, a detailed investigation on the interfacial effects, or crack-interface interaction, by an effective
regularized approach is still missing.

The purpose of this study is to enhance phase field model to fracture in layered heterogeneous structures with a
particular focus on the influences of interfacial properties. The effects of both perfect bonded and cohesive interfaces
in terms of phase field model, which have previously been developed by the authors ([50, 51, 47]), will be considered.
To capture the mismatch between different materials at interface region, we thus introduce an regularized interfacial
transition zone in the framework of variational approaches. The objective of proposing such a regularize transition
zone is to circumvent drawbacks of the sharp-transition models as the modeling challenging caused by the jumps
at mismatch material and geometry discontinuity effects can be treated in a straightforward way. Unlike the sharp-
transition model, the introduced regularized transition zone is much more effective. More importantly, it is particularly
suitable for interfaces as its transition zone is smeared out by defining the so-called internal size parameter, which
plays the role as regularization representing the actual width of transition zone. Additional purpose of the present
contribution is devoted to the better interpretation of fracture behavior such as crack initiation, propagation, branching,
delamination, arrest, and penetration at the interface in layered systems by the proposed model.

The primary distinction in this contribution is in the representation of interfaces by the developed regularized
interfacial transition zone in terms of phase field context. This new definition essentially resolves the main modeling
challenge in crack-interface fracture problems of layered heterogeneous media. In general, the regularized transition
zone behaves similarly to the Heaviside function, but in the smeared context instead. By this way, the sharp description
zone can also easily be recovered by setting the regularized transition length to be zero. Analogously, this feature of
the regularized interfacial transition zone is quite similar to the main concept of the phase field approaches.

The present study focuses on numerical interpretation of mechanical behavior of crack-interface interactions in 2-
D and 3-D layered structures under quasi-static load by the proposed model, clarifying the important role of interfacial
regularized transition zone. We first study problems of single crack-interface interactions in 2-D and 3-D layered
structures, and then apply the proposed method to analyze multiple cracks-interfaces interaction in three-layered
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structures, which is aimed to show its applicability in modeling problems with more complicated configurations.
Experimental validation dealing with crack growth in a multi-layered structure is also performed and analyzed. In
this paper, we restrict our investigation to consider cracks whose direction is perpendicular to the interfaces only.
Here, different types of interfaces, i.e., the perfectly and cohesive bonded interfaces, are considered. We will show in
the numerical experiments that, by using the present approach, modeling crack growth and merging in layered media
becomes very efficient. We will additionally illustrate one important issue of the present model as it well reproduces
the analytical prediction by [35, 36]. In the subsequent sections, we first derive the variational phase field model
to fracture with cohesively bonded interface, describing the regularized interfacial transition zone, and then provide
representative numerical examples of single and multiple fracture in 2-D and 3-D layered structures, shedding light
on the characteristics of crack paths at the interfaces of layered media.

1.3. Outline

The paper begins by stating fundamentals of mechanical characteristics of interfaces in layered media in Section 2,
addressing three types of interfaces. In Section 3, we present the concepts of phase field model with a particular focus
on the application for layered material. In Section 4, approaches used for description of interfacial zone in layered
media are presented, in which a regularized interfacial transition zone is derived. In Section 5, numerical results
for single crack-interface interactions in 2-D and 3-D layered systems and multiple cracks with fracture spacing in
three-layered structures are analyzed. Experimental validation is also investigated by considering crack growth in a
multi-layered structure. Some major conclusions drawn from the study are given in Section 6.

2. Mechanical characterization of interface in layered media

It is well known that the mechanical properties of the interface play a crucial role in the fracture study of layered
materials and structures ([59, 29, 26]). The interface in layered media can be characterized using a variety of different
principles. Figure 1 schematically represents an interface in a bimaterial body. In general, it can roughly be divided
into three types of interface mainly based on the continuity of mechanical fields: (a) the perfectly bonded interface;
(b) the cohesive or the cohesively bonded interface; and (c) the debonded interface.

Material 2

Material 1

Interface

Fig. 1. Description of constitutive relations on the layered material interface. The normal and tangential stresses at the interface are
denoted by σ, τ, respectively, while the displacement in normal and tangential directions by u and v.

The perfectly bonded interface is an infinite strong interface, which can be understood for the case that different
layers are bonded by a chemical and/or physical bond. Hence, both the stresses and displacements crossing the
interface are assumed to be continuous, i.e., the following relation is established:

τ(1) = τ(2)

σ(1) = σ(2)

u(1) = u(1)

v(1) = v(2)

 on ΓI (1)
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The cohesively bonded interface is the one without any physical and/or chemical adhesive bonds between different
layers. Therefore, the stresses crossing interface are described by a function of relative displacements (or displacement
jump). The most popular cohesive interface model is the one introduced by [46], in which the constitutive relation is
defined by

σ(1) = σ(2) = tn([[u]] , [[v]])
τ(1) = τ(2) = tt([[u]] , [[v]])
with [[v]] = |v(1) − v(2)| and [[u]] = |u(1) − u(2)|

 on ΓI , (2)

where tn and tt are the cohesive traction and shear, respectively.
The debonded interface describes an interface that is subjected a loading beyond its finite strength. In this situation

the interfacial behavior primarily relates to the kinematics of the interface, such as frictional and contact phenomena.
There are a number of models that have been proposed to describe this kind of interface. An example of the simple
shear lag model [57, 68], where the constitutive relation at the interface is expressed as

σ(1) = σ(2)

|τ(1)| = |τ(2)| = f
f = −µσ(1) for − σ(1) ≥ 0

 on ΓI , (3)

where f stands for the friction surface traction and µ is the frictional coefficient.
In this contribution, we restrict our study by considering only the perfectly bonded interface and the cohesively

bonded interface. Then, the fracture phenomena depending on the characterization of each interface will be discussed
in detail.

3. Phase field models for interfaces

In this section, two phase field models associated with either the perfectly bonded interface and or the cohe-
sively bonded interface are presented. It should be noticed that, in this paper, we focus our attention on exploring
physical phenomena of the interfacial fracture problem in layered heterogeneous structures rather than the numerical
methodologies. Therefore, other issues such as the accuracy or convergence of the proposed numerical models are
not presented here as they have already been demonstrated in the previous works by the present authors, see e.g.,
Refs. [50, 51, 49] for detail.

3.1. Classical phase field model with the perfectly bonded interface
Using a phase field method we study interfacial effects on fracture mechanics of layered structures. We briefly

present here the fundamental concepts of the phase field method, and interested readers may refer to, e.g., [41, 50],
for detail and its practical implementation aspects. The phase field method is based on a regularized formulation of a
sharp crack description. A regularized variational principle describing both the evolution of the mechanical problems
and an additional field d describing the damage, which is often called as phase field, with d = 0 indicating the intact
solid, d = 1 representing the crack, is discretized by a finite element procedure and a staggered algorithm. It is noticed
that the staggered algorithm adopted here is not the only choice. Other approaches in general are also possible, for
instance, the phase-field model can be solved by using a monolithic scheme, where the displacements and the phase
field are solved simultaneously ([34, 42, 67]).

Figure 2 schematically shows smeared cracks in a heterogeneous bi-material (Ω1 and Ω2) containing an interface
ΓI in terms of the phase field framework. Basically, the method alleviates the shortcomings of re-meshing crack
geometry by using a fixed mesh and a regularized description of the discontinuities. In addition, crack initiation can
be modeled in a straightforward manner.

In the phase field method at small strains, the regularized form of the energy describing the cracked structure is
expressed as

E(u, d) =

∫
Ω

ψu(ε(u), d) dΩ +

∫
Ω

gcγ(d,∇d) dΩ, (4)
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Smeared crack Interface

Smeared crack

Smeared interface

(a) sharp interface (b) smeared interface

Fig. 2. Problem definition: phase field description of smeared cracks in a heterogeneous bi-material.

where ε is the linearized strain tensor, while ψu is the elastic strain energy density, which depends on both the
displacements u(x) and the phase field d(x) describing the damage of solid. gc defines the fracture energy describing
the amount of energy dissipated upon the creation of a unit fracture surface. γ(d,∇d) is the crack density function per
unit volume as stated in e.g., [41, 50], given by

γ(d,∇d) =
1
2`

d2 +
`

2
∇d · ∇d, (5)

in which ` is the regularization parameter.
It has shown that this kind of regularized model converges to the brittle failure theory when ` vanishes [2, 15, 12]

as a result of the Γ−convergence theory. Herein, ` can be considered as a pure numerical parameter of the regularized
model in brittle fracture or thought as a real material parameter for a gradient damage approach. It is recommended
in the first case to take ` as small as possible to better approximate brittle fracture, with regards to the size of the
investigated domain. In the second case, ` however should be identified from the experiment. Such analysis with
experimental validations has recently been studied in [49, 48].

The total energy can then be rewritten as

E =

∫
Ω

ψ dΩ, (6)

with

ψ = ψu(ε, d) + gcγ(d,∇d). (7)

The unilateral contact formulation, by following the work of [41], is chosen to ensure damage induced by traction
only, (assuming isotropic elastic behavior of the body) through:

ψu (ε, d) = g(d) ψ+ (ε) + ψ− (ε) . (8)

with

ψ±(ε) =
λ

2
[
〈tr ε〉±

]2
+ µ tr

[ (
ε±

)2 ]
, (9)

where ε+ and ε− are the extensive and compressive modes of strain field ε = ε+ + ε−. In (9), 〈x〉± = (x ± |x|) /2.
Based on the study of [12, 41], the simple form of the quadratic degradation function g(d) in Eq. (8) is chosen by
g(d) = (1 − d)2 + k. The small parameter k << 1 is introduced to maintain the well-posedness of the system for
partially broken parts of the domain [12].
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The evolution of phase field that could guarantee the irreversibility of the process is derived from the thermody-
namically consistent framework. A detailed description for that issue is outlined in the Appendix A, and here reads
as

2(1 − d)H −
(
d − `2∆d

)
= 0 in Ω, (10)

belong with a homogeneous Neumann condition ∇d(x) · n = 0 on ∂Ω.
The Euler-Lagrange equations of the variational principle for energy minimization to Eq. (4):

u(x) = Arg
{

inf
u∈Su

(
E(u, d) −Wext

)}
, (11)

where Su =
{
u|u(x) = ū on ∂Ωu, u ∈ H1(Ω)

}
and Wext =

∫
Ω

f · u dΩ +
∫
∂ΩF

F · u dΓ with f and F being body forces
and prescribed traction over the boundary ∂ΩF , yields the mechanical problem defined by

∇ · σ (u, d) + f = 0 in Ω,

u(x) = u on ∂Ωu,

σn = F on ∂ΩF .

(12)

In Eq. (12), σ =
∂ψ
∂ε is the second-order Cauchy stress tensor (A.3), u are the prescribed displacement on the

boundary ∂Ωu. The constitutive law is expressed as

σ =
[
(1 − d)2 + k

](
λ 〈tr ε〉+ 1 + 2µε+

)
+

(
λ 〈tr ε〉− 1 + 2µε−

)
. (13)

In the case of the perfectly bonded interface, that requires the continuity for both displacement and interfacial
stress (traction). This requirement is simply expressed as(

σ(1) − σ(2))nΓI
= 0

[[u]] = 0

}
on ΓI (14)

where nΓI
is the unit normal vector field on ΓI , the notation [[.]] denotes the jump across ΓI .

Remark: Apart from the crack density function defined in Eq. (5) above, we here denoted as (G1) for brevity, there
are other possible choices available in the literature. For instance, one proposed in [54, 14] with γ(d,∇d) = 3

8`d+ 3`
8 ∇d·

∇d (indicated by G2), which offers some advantages compared to the (G1), such as preventing diffuse damage at small
loading and showing a better Γ-convergence characteristic. However, this model seems to be more computationally
expensive (i.e., significant increase of the computational time for direct/indirect solving FEM equations of phase field
problem, requiring more iterations for Newton-Raphson method in the coupling with cohesive zone model). Although
the (G1) model shows the damage right after loading, the damage value is quasi small. This can be negligible in the
global behavior of the material and structure. Hence, the G1 formulation is kept for this study. One solution for such
problem could be pursued in future studies, for instance, is to combine the (G2) formulation with the higher-order
phase-field γ(d,∇d,∆d) introduced in [11], which is noticed to improve the accuracy and convergence of the effective
critical energy release rate and the strain energy.

3.2. Phase field model with the cohesively bonded interface

In cohesive interface model, it is assumed that only relative displacements across interface can activate stress
transfer at the interface. The interface traction (or/and shear) is then modeled as a function of the displacement jump.
This definition can introduce the normal tensile (or/and shear) stress degradation with increasing the displacement
discontinuity. Recently, the cohesive fracture has been incorporated into the phase field/gradient damage models
in several contributions, e.g., [18, 66, 51, 25, 52], which opens a new door to investigate the interfacial cracking
phenomena.



8 T.T. Nguyen, D. Waldmann and T.Q. Bui / Journal of Computational Physics (2019)

In order to account the behavior of the cohesively bonded interface into phase field model, a new energy term is
added to describe the cohesively bonded interface ψI([[u]] , κ), which depends on the displacement jump [[u]] across
the interface ΓI , and κ is a history parameter to distinguish between loading and unloading. Once the cohesive fracture
ψI is determined, the cohesive tractions are derived through its differentiation, for more detail, see e.g., [47].

t([[u]] , κ) =
∂ψI([[u]] , κ)

∂ [[u]]
(15)

The regularized description for strong discontinuities related to interfaces is also adopted. In other words, the sharp
interface is regularized by a smear interface (substituting ΓI by Γβ =

∫
Ω
γβ(β,∇β) dΩ)1, i.e., the interfacial energy will

be regularized by γβ(β,∇β), see Fig. 2(b). Further, the displacement jump [[u]] created by interfacial decohesion
is approximated as a smooth transition v(x). The two approaches have already been proposed and reported in our
previous work [47], one based on a Taylor expansion at first order of the assumed smoothed regularized displacement
field, and the other used an addition field coupled in the boundary value problems. The advantages and drawbacks of
each method have been discussed in [47]. In the present work, to the aim of numerical stability, the second method
is adopted. It is worth mentioning that the proposed approach is highly suitable for investigating complex interfaces
and be able to deal with the arbitrary geometries of interfacial region.

The infinitesimal strain tensor can be now decomposed into a part related to the bulk (elastic part) and a part
induced by the smoothed jump at the interface (inelastic part), denoted by εe and ε̃, respectively

ε = εe + ε̃, (16)

and the inelastic part can be defined following the works [66, 51]

ε̃ = nΓβ ⊗s vγβ. (17)

with nΓβ being the normal vector to Γβ, which can be directly determined from the smeared interface field, as follows

nΓβ (x) =
∇β(x)
‖ ∇β(x) ‖

. (18)

The strain energy of a damageable material is here replaced by ψe
u (εe, d). The above functional Eq. (4) is rewritten

as

E =

∫
Ω

ψe
u
(
εe, d

)
dΩ +

∫
Ω

gcγ(d,∇d) dΩ +

∫
Ω

ψI(v, κ)γβ(β,∇β) dΩ. (19)

This definition implies that for β(x) → 0 (away from the interface) then γβ → 0 and εe → ε, we recover the
regularized energy functional for brittle fracture without interfaces as Eq. (4).

The density of the total energy now is expressed as

ψ = ψe
u(εe, d) + gcγ(d,∇d) + ψIγβ. (20)

The new evolution law for phase field variable can now be thermodynamically constructed in the same manner as
the Appendix A, which yields

2(1 − d)He −
(
d − `2∆d

)
= 0 in Ω, with ∇d(x) · n = 0 on ∂Ω, (21)

and the history functionHe(x, t) is here expressed the same as the Eq. (A.13), but for elastic strain εe (see [51, 47] for
more details).

1The smeared interface is here described in the same manner as Eq. (5), by introducing γβ(β,∇β) =
1

2`β
β(x)2 +

`β

2
∇β(x) · ∇β(x), for `β → 0

this description leads to the exact representation of the sharp cohesive interface (see e.g., [51, 47] for more detail.)
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Considering the quasi-static equilibrium equations without body forces, the corresponding equations describing
the mechanical problem are derived as

∇ · σ(u, v, d) = 0 ∀x ∈ Ω,

γβ
[
t(v, κ) − nΓβ · σ(u, v, d)

]
= ζ

∂2v
∂(xn)2 ∀x ∈ Γβ,

∂v
∂xn

= 0 ∀x ∈ ∂Γβ,

u(x) = u ∀x ∈ ∂Ωu,

σ · nt = F ∀x ∈ ∂Ωt,

(22)

where xn = (x−xΓI ) ·nΓI
and xΓI = argmin

y∈ΓI
(‖ y − x ‖), the positive constant ζ is introduced to ensure that the auxiliary

displacement jump field is constant in the normal direction. t(v, κ) are the tractions at the interfaces introduced in
Eq. (15), with outward normal nΓI ; and F, u are the prescribed tractions and prescribed displacements on ∂ΩF , ∂Ωu,
respectively.

Clearly, within the context of this approach, the phase field d describes the bulk crack surface density, as well as
the interface crack density, allowing interaction between both crack types in an efficient manner. The advantages of
cohesive zone model is benefited, such as the complex interfacial behavior can be accurately described using a mixed
mode cohesive law, accounted the strength effects of interface in both normal and tangential directions. Moreover, the
numerical analysis in [51] demonstrated that the solution is convergent with respect to the mesh and the crack path is
mesh-independent, making a significant improvement compared to the classical CZM.

3.3. Numerical implementation

In general, Eqs. (10), (12), (22), (21) are solved by a standard FE procedure with a staggered scheme at each load
increment. More theoretical and practical details can be found e.g., [41, 50, 47].

4. Description of interfacial zone in layered materials

We discuss in this section existing and new approaches that are used for modeling material properties at interfacial
region in layered structures. To this end, we introduce a regularized transition based on an internal characteristic length
which is highly suitable for capturing such interfacial zone. The material properties of bi-material layered structure
at interfacial region can be described by a classical way sharp transition, i.e., the interfacial size is here taken to be
null, which is thus expressed as follows:{

φ = 0 ∀x ∈ Ω1

φ = 1 ∀x ∈ Ω2,
(23)

where φ(x) is the material characteristic.
Alternatively, such interfacial zone could also be modeled through a regularized transition by introducing a tran-

sition region, say ΩTrans, with an internal characteristic size, which is indicated here as `Trans:
φ = 0 ∀x ∈ Ω1

0 < φ < 1 ∀x ∈ ΩTrans

φ = 1 ∀x ∈ Ω2.

(24)

In this study, the regularized transition zone is constructed as the same underlying principle of the phase field
method, which is by first solving the following boundary value problem (BVP) on Ω.

φ − `2
Trans∆φ = 0 in Ω,

φ(x) = 1 on ΓI ,

∇φ(x) · n = 0 on ∂Ω,

(25)
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1

0

Sharp transition

Regularized transition

Fig. 3. Schematic of different approaches for describing an interface region: the classical sharp transition and the regularized one.

and then

φ(x) =


1
2
φ(x) ∀x ∈ Ω1,

1
2
(
2 − φ(x)

)
∀x ∈ Ω2,

(26)

where ∆(.) is the Laplacian, the internal size `Trans plays the role as a regularization parameter describing the ac-
tual width of the transition zone, and n is the outward normal to ∂Ω. The BVP yields the solution as described in
Eq. (24). The one-dimensional illustration of both descriptions of the transition zone is schematically depicted in
Fig. 3. Interestingly, it can be seen in Fig. 3 that the sharp transition behaves similarly to the Heaviside function, but
the regularized transition smears out and its variation is fully dependent on the internal characteristic size. In other
words, the behavior of regularized transition zone is controlled by the internal characteristic size, revealing its major
distinction with respect to the classical sharp transition approach.

By introducing the interpolation function, which satisfies h(φ = 0) = 0, h(φ = 1) = 1 and ∂h(φ)
∂φ
|φ=0, φ=1 = 0; one

choice: h(φ) = −2φ3 + 3φ2. The material parameter such as the Young’s modulus E, and fracture energy gc in the
whole domain can then be approximated by{

E =
[
1 − h(φ)

]
E(1) + h(φ)E(2)

gc =
[
1 − h(φ)

]
g(1)

c + h(φ)g(2)
c ,

(27)

where E(1), g(1)
c and E(2), g(2)

c are the Young’s modulus and fracture energy for material M1 and material M2, respec-
tively. Noted that the interpolations described in Eq. (27) are to ensure that E = E(1) in Ω1, E = E(2) in Ω2, and
smooth transition from E(1) to E(2) in the interfacial zone.

For simplicity, we restrict our study in this paper by considering three types of interface modeling, which are
detailed as follows:

• (C1) Sharp transition and perfect interface

• (C2) Sharp transition and cohesive interface

• (C3) Regularized transition and perfect interface.

Remark: The other case is the regularized transition and cohesive interface, which has not been considered and
treated in this paper. It is because that, according to our observation, the sudden changes in material properties are
the origin of the discontinuity in the displacement, providing the cohesive properties of the interface. However, since
the regularized transition does not provide the displacement jump, the combination of the regularized transition and
cohesive interface is thus not the case.
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5. Representative numerical examples and experimental validation

In this section, the interfacial effects on fracture behavior of layered structure are numerically investigated. We
first consider two-layered structures containing an initial crack as shown in Fig. 42. For better interpretation of the
numerical results, both 2-D and 3-D models for the two-layered structures are thus analyzed. To this end, results of
crack propagation calculated by the proposed approach are presented and discussed. The effects of material mismatch
on fracture behavior of layered structures are also explored. To avoid the size effects on the behavior of fracture, the
size of layer here is thus chosen the same. Secondly, to show the applicability of the proposed approach, examples
with more complex configurations such as multiple crack growths in three-layered structures are then considered (see
Fig. 17). Finally, crack propagation in a multi-layered structure as depicted in Fig. 24 is studied, which serves the
purpose of experimental validation.
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(a) 2D model
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(b) 3D model

Fig. 4. Schematic of bi-material layered structures containing cracks and their geometry and boundary conditions for (a) 2-D model and
(b) 3-D model. The material information used for these two layered structures and other relevant parameters are detailed in the numerical
results section.

In the numerical implementation, an FE model using a fixed mesh with a refined mesh around crack paths has been
used, where the characteristic size hmin is taken for the region of expected crack path and larger elements whose size
are hmax mm have been employed away from initial crack. The details of those parameters are described in Table 1.
It should be noted that the mesh used here is fine enough (compared to the internal length) to obtain a converged
solution.

2In the phase field model, the length scale should be larger than the characteristic length of structure to alleviate the mesh effects. Hence, the
U-type of initial crack tip is chosen in all numerical examples to ensure this condition.
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Model hmin [mm] hmax [mm] Number of elements
2-D 0.025 0.075 3124435
3-D 0.035 0.1 5335212

Table 1. Parameters description of FE refined meshes in 2-D and 3-D models

5.1. Influences of material mismatch on fracture of layered materials
This study aims to analyze the effects of material mismatch on fracture behavior of layered structure by the present

phase field method. The 2-D model described in Fig. 4(a) is taken for the analysis. The sharp transition and perfect
interface (C1) is considered. More specifically, we investigate the influences of mismatch ratio between material M1
and material M2 on the crack crossing interface. To this aim, the elastic modulus, the Poisson’s ratio and fracture
energy for the first material (M1) is fixed as E(1) = 12 GPa, ν(1) = 0.3, g(1)

c = 1.4 × 10−6 kN/mm, while those for the
second material (M2) are taken as

E(2) = fmE(1)

ν(2) = ν(1) = 0.3
g(2)

c = fmg(1)
c ,

(28)

where fm is defined as the mismatch ratio, and various specific values of the ratio, e.g., fm = [1, 2, 3, 3.5, 5, 8, 10],
are considered, respectively.

The crack regularized parameter ` = 0.1 mm is selected for the analysis. The plane strain condition is assumed.
The monotonic compressive displacement ∆U = −5 × 10−5 mm is prescribed as long as the phase field d < 0.8 in all
elements, and ∆U = −1 × 10−5 as soon as d ≥ 0.8 in one integration point, in the total 800 increments3. The crack
paths obtained for different mismatch ratios computed by the present model are then shown in Fig. 5.

Material 2

Material 1

Interface

Initial crack

Fig. 5. Crack paths for different given values of the mismatch ratio at the same loading U = −0.0086 mm, obtained by the present
model. The mismatch ratio greatly alters the fracture behavior at the interface in layered structure. One important issue can be seen that
increasing layered contrast leads to the crack branching at the interface.

The obtained numerical results of crack paths clearly show a strong dependence of fracture behavior (i.e., crack
penetration, branching) on the characteristics of material mismatch. Through these results, it is obvious that the mate-
rial mismatch ratio significantly alters the fracture phenomena at the interfaces in layered structures. The discrepancy

3The staggered scheme seems to be dependent on incremental loading size. It could provide the problem of overestimation of the amount of
dissipation energy for large incremental loading size [67, 19]. Therefore, a small incremental value is encouraged to obtain a converging solution.
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in the fracture behavior at the interfaces is easily understood. For the first case fm = 1, the homogeneous structure
is recovered, and no interfacial effects are observed. However, the situation changes as slight effects have been seen
from the results that have low contrast between two layers, e.g., see the crack path by fm = 2, 3. In this case, the crack
can penetrate the interface quite easily. This phenomenon is restricted when the layered mismatch increases. As ob-
served from, for instance, fm = 3.5, where the crack starts unsymmetrically branching at the interface, and for a while
it propagates a bit along the interface, then the crack grows into the second layer even at low loading condition. On
the contrary, obtained results of cracks for other cases of the mismatch ratios, e.g., fm = 5, 8, 10 do not show similar
situations as the aforementioned cases. At such a loading condition, the cracks for the larger cases of the mismatch
ratio are not able to penetrate the interfaces, or to be arrested by the interface, the cracks branching are found instead.
This would be potential properties required for the application of FGM materials. Loosely speaking, to ensure well
performance of layered structures, the layered contrast must be taken rather five times. This value is consistent with
the one recently reported by [35, 36, 32].

5.2. Influences of interfacial properties on fracture of layered materials

The effects of interface strength on the failure mode of layered heterogenous material are important and their
numerical investigation is thus presented here. By accomplishing it, the 2-D model described in Fig. 4(a) is again
considered using the sharp transition and cohesive interface model (C2). The material mismatch ratio defined in
Eq. (28) is taken as fm = 2. This chosen value ensures the fact that the crack can easily penetrate into the second
material if the delamination mode is not favorable, i.e., it makes the influences of interface strength on the failure
mode more significantly.

In the cohesive model, for the sake of simplicity, only mode-I interface law is considered in this analysis. The
interface cohesive energy is taken in accordance to the work of [70]:

ψI( [[u]]
)

= gI
c

[
1 −

(
1 +

[[u]]
vn

)
exp

(
−

[[u]]
vn

) ]
. (29)

The normal traction law is obtained as

t
(

[[u]]
)

= gI
c
[[u]]
v2

n
exp

(
−

[[u]]
vn

)
, (30)

where vn = gI
c/(tuexp(1)); tu is the fracture strength.

The fracture energy for interface is taken as gI
c = fi g(1)

c kN/mm, where fi can be considered as the mismatch
ratio of fracture resistance between interface and bulk material. Various specific values of the mismatch, e.g.,
fi = [0.01 0.1 1 10], are considered. The obtained results of crack morphology are then illustrated in Fig. 6.
A switching from purely delamination mode to bulk failure mode is clearly captured. The weak interfaces are favor-
able to the delamination behavior, while the strong interface resulted in the dominant bulk failure mode. The observed
phenomena are consistent with the existing studies in literature.

5.3. Fracture at low loading phase: 2-D model

We aim to study the mechanical characterization of interface on the fracture behavior of 2-D layered structures
under a low loading condition, considering three models of the interface (C1), (C2) and (C3). The elastic stiffness
E(2), and fracture energy g(2)

c of material M2 is taken five times larger than those of material M1. The material
parameters and other relevant model inputs for the present bi-material structures are detailed in Table 2. In essence,
this choice is to avoid the crack crossing the interface in the classical situation (i.e., (C1) perfectly bonded interface -
sharp transition) as described in the previous subsection 5.1. Therefore, we expect that the fracture phenomena will
be influenced by only the interface behavior.

In the second case (C2), the mode I described in subsection 5.2 is considered in this test. The fracture strength is
tu = 1 MPa and the fracture energy for interface is taken gI

c = 10−6 kN/mm.
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Material 2

Material 1

Interface

Initial crack

Fig. 6. Crack paths for different given values of the mismatch ratio fi of fracture resistance between interface and bulk material at the
same loading U = −0.008 mm, obtained by using sharp transition and cohesive interface model. The increase of interface strength resulted
by switching the failure mode from interfacial delamination to bulk fracture.

Material E (GPa) ν gc (kN/mm) ` (mm)
M1 12 0.3 1.4 × 10−6 0.1
M2 60 0.3 7 × 10−6 0.1

Table 2. Two layered structure: material parameters

Fig. 7 schematically shows the variation of the Young’s modulus E in the line of investigation by both the sharp
and regularized descriptions of interface. For the regularized transition, different values of `Trans/` varying from 0.75
to 2.5 are considered, which is to exhibit the characteristics and variation of the regularized transition size in the
present model. It can easily be seen in the figure that the smaller the `Trans approaches zero, the regularized transition
converges to the sharp one, and once `Trans = 0 both descriptions are identical. Unlike the classical sharp model, those
discussed features clearly reveal the more flexibility of the regularized interfacial transition approach.
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ℓTrans/ℓ = 2
ℓTrans/ℓ = 2.5

Fig. 7. Transition field across the interface on a line of investigation.

In this analysis, the monotonic compressive displacements increments prescribed on the top edge of the specimen
with U = −5 × 10−5 mm as long as the phase field d < 0.8 in all elements, and ∆U = −1 × 10−5 as soon as d ≥ 0.8
in one integration point, in the total 800 increments are taken. The plane strain condition is also assumed. Our
initial investigation is devoted to the interpretation of displacement behavior that crosses the interface. In particular,
the displacement along a line of investigation (e.g., x = 10 mm) in the y− direction at loading step U = 0.0002
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mm is considered, and its computed results are then shown in Fig. 8(a). Different states of the displacement are
depicted in the numerical results. The sharp and regularized transitions with perfect interface provide the continuity
of displacement when passing from Ω1 to Ω2. At the interface ΓI , a sudden change of the displacement is captured
by the sharp transition shown in Fig. 8(b), whereas a smooth change is obtained by the regularized transition. We can
further observe here that the increase the internal length `Trans the smoother the displacements are obtained, and more
interestingly, it converges to the sharp description of interface when `Trans → 0. The sharp transition with cohesive
interface however exhibits different behavior as compared to the previous ones. Here, the jump of the displacement
between two materials is clearly observed in the pictures. In the smeared context, this phenomenon was analytically
described in [35].
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(a) Region near interface
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(b) Zoom at the interface transition

Fig. 8. Displacement in y− direction on the line of investigation. Sharp transition stands for the (C1) while Cohesive transition for (C2).

The comparison of crack path for different considered situations is depicted in Figs. 9, 10 and 11. The first case
(C1) in Fig. 9, the sharp transition and perfect interface, shows the propagation of crack along the interface after
reaching this region and no crack onset in Ω2. The sudden change of material properties between two layers (and
g(2)

c > g(1)
c ) provides a gap in critical fracture energy gc. Therefore, a large amount of the strain energy is needed in

order to initiate crack in the second layer. However, according to our assumption, the stiffness of the second material
is stronger than that of the first one (i.e., E(2) > E(1)). In this scenarios, the second layer must be deformed less than

the first layer at interface region (see Fig. 8). With the same contrast
E(2)

E(1) =
g(2)

c

g(1)
c

, the strain energy in the second layer

under the low loading is not enough to form crack (see Fig. 12(a)). The same phenomenon is captured in the case
(C2), the interfacial delamination after crack reaches the interface as shown in Fig. 9.
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(a) (C1) - The sharp transition 
and perfect interface

(b) (C2) - The sharp transition 
and cohesive interface

(c) (C3) - The regularized transition
 and perfect interface with

Fig. 9. Analysis of transition size on fracture behaviour: comparison of crack path among three approaches.

The fracture phenomenon is different for the case (C3) as shown in Fig. 9, wherein the smooth transition zone
is added between two layers. A strong dependence on the size of the transition zone is captured. Based on our own
numerical experiments, different values of `Trans yield different crack paths. When the regularized transition length
`Trans is set to be smaller than or equal to the crack regularized length `, i.e., `Trans/` ≤ 1, the crack also propagates
along the interface after reaching the transition zone, i.e., branching. However, as shown in Fig. 10, the distance from
the point at which crack merges to the interface is different between (C3) and (C1). The regularized transition zone
makes the interface having thickness (equal twice the regularized transition length 2`Trans), hence that moves the crack
merging a bit in comparison with the sharp case.

d = 0.10 mm d = 0.15 mm

(a) (b)

Fig. 10. Comparison of crack path between two cases: (a) The sharp transition and perfect interface - (C1); (b) The regularized transition
and perfect interface - (C3) with `Trans/` = 1.

Another phenomenon can also be captured when the regularized transition length `Trans is assumed to be greater
than the crack regularized length `. Fig. 11(a) shows a bit of crack merging at the transition zone but the crack then
propagates to the second material. When `Trans/` ≥ 1.5, the crack is fully across the transition zone with a slight
influence of the interface. No crack branching holds.

To look at more insight into the effects of transition zone on the fracture phenomena, the strain energy and fracture
energy in a line of investigation along initial crack (x = 10) are hence analyzed. Their obtained results are depicted
in Fig. 12. Noted that the crack creation by means of the phase field method is controlled by the ratio between
the positive part of strain energy ψ+(x) and fracture energy gc. A material point will be cracked, provided that the
following condition ψ+/gc � 1 must be satisfied. In the case of sharp transition (see Fig. 12(a)) the sudden gap
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Fig. 11. Effects of the transition size on fracture behavior: comparison of crack path between two cases of the regularized transition.

within the material parameters leads to a large change of the displacement between two layers (see Fig. 8), inducing

also a sudden gap of the strain energy. When the ratio
E(2)

E(1) =
g(2)

c

g(1)
c

≥ 5, the strain energy produced at the interface

is not sufficient for crack propagating in the second layer. However, the smooth transition zone creates the thickness
interface, where the strain energy transmits smoothly from layer to layer (see Fig. 12(b)). Once increasing `Trans,
the more energy the transmission from the first layer to the second one is obtained. It means that, while keeping
the critical fracture energy, it is expected the propagation of the crack in the second layer when increasing the strain
energy ψ+(x) at the interface region.

In summary, with the mismatch ratio fm = 5, weak interface, the sharp transition - perfect/cohesive interfaces
(C1,2) exhibit the dominant delamination failure mode, while the regularized transition interface (C3) shows a con-
verging from purely bulk failure to interfacial delamination. Furthermore, in order to quantitatively obverse how
the structural stress-displacement responses of the specimens under consideration look like, and how the defined in-
terface models affect the behavior of those global responses, we show the structural stress-displacement responses
during the entire loading history for all considered models of interfaces including (C1), (C2) and (C3) with various
values of `Trans/` in Fig. 13. As can be seen from the picture that the second peak of the curves at approximately
U = 5.5 − 7 × 10−3 mm are caused by the interface, and the behavior of the curves are fully dependent on the models
defined for the interface. At low loading level, the regularized transition (C3) with `Trans/` ≤ 1 (e.g., 0.75, 1) yields
quite similar behavior with the sharp (C1) and cohesive (C2) transitions. For those cases, the behavior of the struc-
tural stress-displacement curves is reasonable, as already shown in Fig. 9, the cracks are arrested as they branch along
the interface. So no penetration into the second layer is obtained. However, when `Trans/` ≥ 1, the cracks obtained
from the regularized transition (C3) penetrate into the second layer (see Fig. 11) and continue to grow until the struc-
tures get completely destroyed at much lower stress. At high loading level, the deviations of (C1), (C2) and (C3)
with `Trans/` ≤ 1 have been captured. The cohesive interface shows its best resistance, followed by sharp transition
interface and regularized transition interface exhibited its lowest resistance. Again, the convergence of mechanical
response of regularized transition to sharp transition when `Trans → 0 is observed.

5.4. Fracture at high loading phase: comparison between 2-D and 3-D models

The numerical results shown in the last subsection 5.3 demonstrate the high dependence of crack growth on the
interfacial properties. Specially, in the case of perfectly bonded - sharp transition interface (C1), the crack propagates
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(b) (C3) - The regularized transition with `trans/` = 1

Fig. 12. Schematic of fracture and strain energies on a line of investigation. The strain energies are plotted at the same time step as that
one depicted in Fig. 9 .

along the interface after reaching this region. This phenomenon may be significantly different when the structure is
subjected to very high loading. To explore this issue more detail, we thus perform numerical simulations on both 2-D
and 3-D models at high loading condition. The fully 3-D model also allows to gain more insight into the interfacial
fracture behavior in layered structures. For simplicity, and as stated above, only the sharp transition and perfect
interface (C1) is considered and analyzed.

In the numerical computations, monotonic compressive displacements increments are again prescribed in a line
on the top edge of the specimen, with U = −5 × 10−5 mm for phase field d < 0.8, and ∆U = −1 × 10−5 as soon as
d ≥ 0.8, in the total 1600 increments. The computed results of crack propagation for different loading are depicted in
Figs. 14 and 15, respectively. In the first loading phase (U = 0 : −1.2 × 10−2mm), the fracture behavior of fully 3-D
model is almost similar to that observed in the 2-D model: the crack propagates in the first layer until reaching the
interface (see Fig. 14(a)), then it propagates along the interface (see Fig. 14(b)). In Fig. 14(c), we capture a famous
geometry of semi-elliptical surface crack, and it seems to symmetrically propagate in both directions (−x and +x) at
the interface.

In the second loading phase (U = −1.240 × 10−2 : −1.250 × 10−2mm), we capture the evolution of crack crossing
the interface but different phenomena between 2-D and 3-D simulations are obtained. In the 3-D model, the onset of
crack in the second layer occurs at both surface (x = 9.5, z = 0 and x = 10.5, z = 4 mm) of the specimen, always in
the semi-elliptical form. In the 2-D model, although the onset is quite similar to 3-D model, two cracks appeared in
the concentration regions can be seen in the second layered (at interface region, x = 9.5 and x = 10.5), the crack then
crosses the interface to second layer only at left half (x = 9.5).
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Fig. 13. Effects of the transition size on the macroscopic load-displacement responses.

At a larger loading, the symmetric geometry of the crack path in the second layer in the 3-D model loses. Instead,
a curved crack is captured but mostly at the right half. The crack shown at the structure face z = 4 is similar to that
obtained from 2-D model as depicted in Fig. 16.

5.5. Multiple cracks: Fracture spacing in three-layered structures

This example aims to show the applicability of the present phase field approach to crack propagation in complex
configurations of layered structures. We thus conduct a three-layered structure with equally spacing and parallel
cracks in 2-D as sketched in Fig. 17. This can also be considered as multiple cracks in layered structure. The 2-
D plane strain simulation is assumed. Special attention is devoted to the cracks location where four equally spacing
cracks are setup to be in parallel to the interfaces, and are perpendicular to the applied load. One should be noticed that
modeling crack propagation in such multiple cracks structures would be very challenging to the discrete approaches
such as the XFEM, e.g., see [73] and references therein. The phase field approach, on the other hand, is home to the
effective modeling techniques of these complex structures. In this section, we will show how the developed phase
field method is able to effectively simulate complex problem of multiple cracks in three-layered structures.
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Fig. 14. Crack propagation in 2D and 3D layered structures, the iso-surface of phase field d(x) > 0.95 is plotted for different loading.

The material parameters used for simulation are described in Table 3. For simplicity, we restrict our analysis here
to a particular case wherein the second material (the top and bottom layers) is setup to be weaker than the first material
(middle layer) with E(2) = E(1)/5, but the fracture energy for the middle layer however is much larger than the other
outer layers, i.e., g(2)

c = 10g(1)
c , (see eg. [64] for more detail).

Material E (GPa) ν gc (kN/mm) ` (mm)
Material 1 50 0.25 5 × 10−6 0.1
Material 2 10 0.35 5 × 10−5 0.1

Table 3. Material parameters used for the three-layered structure depicted in Fig. 17

Similarly, all phase field simulations here are conducted using an FE refined fixed mesh, where the characteristic
size hmin = 0.025 mm is taken for the region of expected crack path and larger elements whose sizes are hmax =

0.5 mm are employed away from initial crack. The final refined fixed mesh eventually reaches 369870 triangular
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Fig. 15. Crack propagation in 2D and 3D layered structures, the iso-surface of phase field d(x) > 0.95 is plotted for different loading.

elements. The monotonic compressive displacement increments are prescribed on the top edge of the specimen, with
U = 1 × 10−4 mm as long as the phase field d < 0.8 in all elements, and ∆U = −2 × 10−5 as soon as d ≥ 0.8 in one
integration point, in the total 1600 increments.

All three models of the interfaces (C1), (C2) and (C3) described above are considered for these multiple cracks
in three-layered structures. As compared with the classical case (C1) (see the discussion in subsection 5.3), here the
regularized length `Trans = 2` is taken for the smooth transition situation (C3) instead, which aims to provide new
behavior for interfacial fracture. In the cohesive interface behavior (C2), both normal and tangential components for
the cohesive law are considered. The general form in 2D is given by

t(w,α) = [tn, tt]T (31)

where tn and tt are the normal and tangential parts of the traction vector t across the interface ΓI oriented by its normal
nI . A nonlinear elastic cohesive model that is independence on the history is used [20, 66]:

tn = gI
c
[[u]]n

vn exp(−
[[u]]n

vn )exp(−
(
[[u]]t)2

(vt)2 ), (32)
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Fig. 17. Schematic of geometry and boundary conditions for a three-layered structure with spacing parallel cracks

where [[u]]n = [[u]] · nI and [[u]]t = [[u]] · mI , with mI being a tangent vector to ΓI , gI
c is the toughness associated with

the interface, and

tt = 2gI
c
[[u]]t

vt (1 +
[[u]]n

vn )exp(−
[[u]]n

vn )exp(−
(
[[u]]t)2

(vt)2 ). (33)

With the critical normal/tangential separation are vn = gI
c/(t

n
uexp(1)) and vt = gI

c/(t
t
uexp(1)), respectively. The

normal/tangential fracture strength are tn
u = 1 MPa and tt

u = 1.5 MPa, The fracture energy for interface is taken
gI

c = 10−6 kN/mm for both components.
Fig. 18 first shows the computed result of crack propagation for the classical situation (C1). The loss of material

resistance is observed at crack onset (e.g., U = 0.0083 mm) within the central layer. As clearly shown in Fig. 18 at
U = 0.016 mm, the two outer initial cracks (IC1) and (IC4) propagate much faster than the other inner ones, (IC2)
and (IC3). The discrepancy may be due to the effects of the boundary conditions. Since the (IC1) and (IC4) locate
closely to the simply support and applied loading boundaries, and they may gain more stronger effects than the inner
cracks (IC2) and (IC3).
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The behavior of crack propagation for this complex structure becomes more complicated after the two outer initial
cracks reaching the interfaces. These two outer cracks stay at the central layer and have not been able to penetrate the
outer layers, which enables the transfer of energy from (IC1) and (IC4) to the other inner cracks (IC2), precluding the
penetration. The top and bottom layers hence still resist. Moreover, the assumed perfect interface could transmit the
loading capacity from the outer layers into the central one, exciting the growing of the two inner initial crack (IC2)
and (IC3) rather than the delamination at the interfaces. Consequently, the total loss of resistance of the central layer
is obtained at U = 0.027 mm (see Fig. 18), and beyond this range of applied loading, the penetration of the outer
cracks (IC1) and (IC4) into the top and bottom layers is found. At U = 0.032 mm, the structure gets destroyed as
sketched in Fig. 18. In general, under such a condition, the structure gets damage in terms of the onset of multiple
cracks, not that of the delamination among layers.
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Fig. 18. Sharp transition - perfect interface case (C1): Crack path and stress - displacement curve, zoom in the interested region (x =

[12 28]; y = [2 10])

Next we analyze the results that are calculated by the cohesive interface (C2). The onset of two initial cracks
(IC1) and (IC4) is observed as the previous case (C1) but at smaller loading capacity (see Fig. 19). So that after the
prescribed displacement U = 0.0083 mm, the structure has quickly lost its resistance. This phenomenon is due to
the decohesion of the interfaces between central layer and top-bottom layers, which happened at the moment of crack
reaching the interfaces U = 0.013 mm. Therefore, it reduces the supporting among those layers and effectively loses
the material resistance. The crack propagation of the outer cracks (IC1) and (IC4) significantly dominates over that
of the inner ones. The inner cracks (IC2) and (IC3) initially grow but are then arrested within the center layer (i.e., no
growth anymore), whereas severely growing is found for the outer cracks. They are even branching at the interfaces
U = 0.022 mm. However, an interesting point is captured, the interfacial decohesion oppositely avoids the crack
penetration into the top and bottom layers (see Fig. 19 at U = 0.033 mm). As a consequence, at this loading, structure
behaves as three sub-structures separately, where the center layer has lose totally its resistance but the up and down
layers is still intact. So that the structure still resist even at very high loading.

The simulation results for the last case, the regularized transition interface (C3), are depicted in Fig. 20. We
capture here the similar phenomena with the case (C1) for onset and reaching the interfaces of two initial cracks
(IC1) and (IC4). Again the same behavior of cracks propagation for (IC2) at the prescribed displacement U = 0.0162
mm is obtained. However, the smooth transition property of the interface in this case completely alters the behavior
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Fig. 19. Sharp transition - cohesive interface case (C2): Crack path and stress - displacement curve, zoom in the interested region (x =

[12 28]; y = [2 10])

of structure for the next loading period. No crack branching for the (IC1) and (IC4) holds. Instead, the cracks
penetrate into the top and bottom layers, leading to the loss of material resistance as can be observed from Fig. 20
at U = 0.0296 mm. Similar to the case (C1), the damage of structure is mainly caused by the onset of the multiple
cracks, not that by the delamination among layers.
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Fig. 20. Regularized transition - perfect interface case (C3) with `Trans/` = 2: Crack path and stress - displacement curve, zoom in the
interested region (x = [12 28]; y = [2 10])
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To further interpretation of the results, a comparison of the structural stress-displacement curves during the entire
loading history, and the final fracture state for all three situations is depicted in Fig. 21, gaining some interesting
phenomena. It is important to highlight the difference on the damage mechanism among three types of considered
interfaces. A switching of failure mode from bulk fracture to delamination along the interface (C3)→(C1)→(C2)
is obtained, providing the improvement of the structure resistance at different loading period. More specifically, the
obtained results demonstrate that the interfacial nature (C3) exhibits best mechanical performance in loading phase
1 with (U < 0.020 mm), (C1) in loading phase 2 with (U = 0.020 − 0.028 mm), and C2 in loading phase 3 with
(U > 0.028 mm). These phenomena may provide some helpful information for material manufacturing.
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Fig. 21. Comparison of crack paths and stress-displacement curves among (C1), (C2), and (C3), with `Trans/` = 2, zoom in the interested
region (x = [12 28]; y = [2 10])

5.6. Experimental validation: Crack growth in a multi-layered structure

In the last example, we investigate the crack onset and propagation in more involved test and quantitatively com-
pare the predicted crack paths with the experimental data provided by [9, 61]. Our main goal here is to quantitatively
evaluate whether the developed phase field approach is able to predict the evolution of crack in an more complex
configuration.

Let us consider a multi-layered structure (L × B = 44.5 × 4.0 mm2) as depicted in Fig. 22, consisting of 5 ATZ
layers (made of Al2O3 with 5 % tetragonal ZrO2) and 4 AMZ layers (made of Al2O3 with 30% monoclinic ZrO2).
A sharp notched sample with a length of a = 0.3 mm is considered. The structure under consideration is loaded in
four-point bending, i.e., inner and outer spans: 20 and 40 mm, respectively. The detail of the geometry and boundary
conditions of the multi-layered structure can be found in Fig. 22.

The material parameters for this example listed in Table 4 are given by [61]. As discussed above, the length-scale
parameter ` is a regularized parameter controlling the width of the smooth approximation of the crack. Nevertheless,
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Fig. 22. Schematic of geometry and boundary conditions for a multi-layered structure according to the experimental set-up in [61] (unit in
mm)

Material E (GPa) ν gc (N/m) σc (MPa) ` (mm)
ATZ 390 0.22 26 450 0.005
AMZ 280 0.22 21 110 0.005

Table 4. Material parameters used for the multi-layered structure depicted in Fig. 23.

` is also an internal parameter (related to the material properties) that influences the critical stress at which crack
nucleation occurs. The detailed investigation of its effects on the fracture phenomena can be found in [55, 65]. The
regularization parameter ` could be identified from the relation with material parameters, following [49, 5, 56]:

` =
27Egc

256σ2
c

(34)

Another constraint must be considered, the internal length ` should be taken as small as possible with respect to
characteristic length of considered structure [55, 65]. In the case of ATZ material with E = 390 GPa, gc = 26 N/m
and σc = 450 MPa, `ATZ ≈ 0.005 mm is thus obtained. This is small enough compared to the size of ATZ layer (0.685
mm). However, for the AMZ material, the internal length is about ≈ 0.050 mm. Clearly, this value is too large in
comparison with the corresponding layer size ≈ 0.1450 mm, and will not ensure the convergence to the brittle fracture
theory of phase field model. In the heterogeneous configuration, the choice of different value ` for each region (each
material) leading to the smeared crack, which is either thicker or thinner when propagating from one material to the
other. This is a critical point in terms of fracture mechanics, especially in the multi-physics problems considering the
effects of damaged zone. The fundamental of the physical meaning of the internal length in heterogeneous materials
is challenging. Accurate procedures to characterize this parameter for the heterogeneous media are still an open
question, and must be conducted.

In this work, we aim to validate qualitatively crack path with respect to the experimental observation. Hence, for
the sake of simplicity, the internal length is chosen homogeneous ` = 0.005 mm for whole domain. FE simulations
with a refined mesh of triangular elements under plane strain assumption are conducted by using the (C1) interfacial
modeling. Similarly, hmax = 0.5 mm and hmin = 0.0025 mm in the critical region to satisfy the condition hmin ≤ `/2
are taken. The monotonic compressive displacement ∆U = −3 × 10−4 mm is prescribed as long as the phase field
d < 0.8 in all elements, and ∆U = −5 × 10−5 as soon as d ≥ 0.8 in one integration point.

Fig. 23 shows the computed numerical prediction of crack propagation at several loading steps. It can be observed
from the figures that, under such loading and boundary conditions, the crack starts propagating from the designed
notch, reaches the interface and then branches at the second layer of AMZ. The crack in one wing subsequently
penetrates through the next ATZ layers. Again, a small crack branching was observed at second AMZ layer before
across the third ATMZ layer. The phenomena of crack delamination and deflection at the interface can be explained
as the same principle discussed in subsection 5.3.
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Fig. 23. Crack propagation in a multi-layered structure at several loading steps obtained by the present phase field model.

In Fig. 24, we show a qualitative comparison of crack path profile between the numerical simulation and the
experimental result ([61]). Clearly, the developed numerical prediction based on the phase filed model captures well
the ”step-like” fracture of a layered ceramic structure. The crack path profile agrees well with the experimental
observation ([61]), which further confirms the applicability and accuracy of the proposed model in studying complex
fracture phenomena in layered heterogeneous structures.

Fig. 24. Comparison of crack morphologies between numerical prediction (left) and experiment (right) ([61]). The step-like fracture
obtained by the present model agrees well with experimental observation.

6. Conclusions and outlook

This contribution has outlined the development of a variational phase field model for simulation of crack-interface
interactions in 2-D and 3-D layered structures, exploring the effects of the interface on fracture behavior. In general,
this variational phase field model offers self-consistent descriptions of fracture, without the need for ad hoc fracture
criteria, conventionally capturing the onset of cracks, especially multiple cracks and 3-D case. On the theoretical
aspect, we address the characteristics of the interfaces, highlighting the constitutive relations on the layered material
interfaces. The regularized interfacial transition zone in terms of the regularized phase field model is introduced.
The phase field models for both perfectly bonded and cohesive interfaces with sharp and regularized transitions are
described. On the computational and numerical aspects, we analyze the role of the regularized interfacial transition
zone and its performance fulfilling both 2-D and 3-D layered systems. Different fracture phenomena depending on
mechanical characterization of interface are investigated and observed. The crack growth, merging and branching
are modeled in the very efficient way. The obtained results reproduce very well the analytical prediction given by
[35, 36]. Specially, the numerical simulation captures a complex phenomenon of crack crossing the interface between
two layers, that is a difficult and challenging task to the previous models.

This work provides a feasible phase field approach based on the regularized interfacial transition to model the
interface regions, where the smooth transition may exist. It is to underline that the regularized transition model
behaves similarly to the Heaviside function, but in the smeared phase field context instead. It means that the sharp
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description model can be recovered by the new definition in a straightforward manner, which is by simply setting the
defined regularized transition length to be null. This description to the interface modeling is, we believe, more flexible
and effective compared with the conventional approaches. We have analyzed the effects of interfacial transition zone
on the crack onset of simple and complex situation, wherein layered structures evolve single or multiple cracks. Some
major conclusions drawn from the study can be summarized as follows:

• The developed phase field approach has proved to be effective in modeling crack-interface interactions in 2-D
and 3-D structures, reflecting the more flexibility of the proposed regularized interfacial transition approach.

• The material mismatch ratio has a strong influence on the fracture behavior at the interface in layered structures,
showing a substantial dependence of crack penetration and branching on the material mismatch.

• The characteristics of fracture at the interface in layered structures generally depend on the defined interface
modelings. In this study, the developed models such as (C1), (C2) and (C3) greatly affect the crack paths (e.g.,
penetration, branching) at the interfaces. In addition, our studies also indicate a strong influence of transition
zone on crack paths and damage mechanism, and especially on the ability of crack crossing the interface.

• Damage mechanisms of multiple cracked specimens are very complex. It is again found the significant influence
of the three considered interface models on the evolution of cracks in multiple layered structures. The observed
results on engineering applications to multiple cracks with fracture spacing in three-layered structure and ex-
perimental validation of a multi-layered structure one more time confirm the important role of the interfacial
behavior on the structure resistance. Different kinds of interface can reinforce the material at different loaded
period. Note that these properties evidently play a key point on the design of functionally graded materials.

With the confidence established by the favorable investigations to 2-D and 3-D models, and to simple and complex
crack structures, it is believed that the variational phase field models for fracture in layered heterogeneous structures
can stand as a robust and effective tool in understanding many of the more complex fracture behavior that occur in a
wide range of advanced engineering materials such as functionally graded media and laminated structures.

The current work is devoted to the analysis of mechanical fracture characteristics of interfacial transition zone
problems under quasi-static loading condition. However, the effects of dynamic loads on fracture in layered heteroge-
neous structures in terms of phase field model are important and interesting. Extension of the present models to take
into account dynamic loading condition effects is in general quite possible, but such a dynamic fracture model would
be very challenging in both physical fundamentals and numerical implementation. This interesting work is out of the
scope of the current study but has already been scheduled for our future studies.
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Appendix A. Fundamental of thermodynamics and evolution of phase field

In this section, we present formulation for a crack phase field evolution law that can guarantee the irreversibility
of the process. Assuming isothermal process and without the external mircoforces, the Clausius-Duhem inequality
can be written by introducing a specific dissipation function per unit volumeD as follows:

D = σ : ε̇ − ψ̇ ≥ 0. (A.1)
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By using the definition of the energy density ψ given in Eq. (7), the local dissipation (A.1) can be rewritten as

D =

(
σ −

∂ψ

∂ε

)
: ε̇ +Adḋ ≥ 0, (A.2)

whereAd = −
δψ
δd = −

∂ψ
∂d + ∇.

(
∂ψ
∂∇d

)
is the variational derivative of ψ with respect to the phase field d.

With the assumption that the elastic strain rate ε̇ can have arbitrarily prescribed values and is independent of the
rate of the order parameter, and applying the Coleman’s exploitation, Eq. (A.2) yields the constitutive relation for the
stress σ as

σ = ∂εψ. (A.3)

A reduced form of the Clausius-Duhem inequality can be now re-written by

Adḋ ≥ 0. (A.4)

At this stage, a threshold function F(Ad) such that

F(Ad) ≤ 0, (A.5)

is introduced. Assuming the principle of maximum dissipation requires the dissipation Adḋ to be maximum under
the above constraint Eq. (A.5). Using the method of Lagrange multipliers, which defines the following Lagrangian

L = −Adḋ + λF(Ad), (A.6)

yields the Kuhn-Tucker equations

∂L

∂Ad
= 0, λ ≥ 0, F ≤ 0, λF = 0. (A.7)

The first equality in Eq. (A.7) gives

ḋ = λ
∂F(Ad)
∂Ad

. (A.8)

Without loss of generality, the threshold function F(Ad) is assumed in the form F(Ad) = Ad. From Eq. (A.8) and
using the second inequality in Eq. (A.7), we reach

ḋ = λ ≥ 0. (A.9)

For ḋ > 0, and from Eqs. (A.4), (A.9) and the third equality in Eq. (A.7), which give F = 0, implying

F = −
δψ

δd
= −

∂ψu

∂d
− gcδγ(d,∇d) = 0. (A.10)

with (see e.g., [41])

δγ(d,∇d) =
d
`
− `∆d. (A.11)

From Eqs. (8) and (A.10), one obtains

2(1 − d)ψ+
u − gcδγ(d,∇d) = 0. (A.12)

The local crack driving force H(t) is introduced to describe a dependence on history [41] and to make possible
loading-unloading

H(x, t) = max
τ∈[0,t]

{
`

gc
ψ+ (x, τ)

}
, (A.13)
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Basically,H(x, t) contains the maximum reference energy, or a measure for the maximum tensile strain obtained
in the loading history, which provides a very transparent representation of the balance equation that governs the
diffusive crack topology. For more detail, curious readers should refer to references, e.g., [41, 50]. From (A.11),
(A.12), and (A.13).

The evolution law for phase field is finally expressed as

2(1 − d)H −
(
d − `2∆d

)
= 0 in Ω, (A.14)

belong with a homogeneous Neumann condition ∇d(x) · n = 0 on ∂Ω.
The irreversible character of the crack evolution law described in Eq. (A.14) can be verified by following. As

H(x, t) ≥ 0, the Eq. (A.12) implies

δγ(d,∇d) ≥ 0. (A.15)

We can thus check that due to Eqs. (A.9), (A.15) the variation of crack length

Γ̇l =

∫
Ω

δγ(d,∇d)ḋ dΩ ≥ 0, (A.16)

satisfying the criteria of irreversible evolution of cracks.
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