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Abstract: We present a general method to identify an arbitrary number of fluctuating quantities which
satisfy a detailed fluctuation theorem for all times within the framework of time-inhomogeneous
Markovian jump processes. In doing so, we provide a unified perspective on many fluctuation
theorems derived in the literature. By complementing the stochastic dynamics with a thermodynamic
structure (i.e., using stochastic thermodynamics), we also express these fluctuating quantities in terms
of physical observables.
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1. Introduction

The discovery of different fluctuation theorems (FTs) over the last two decades constitutes a major
progress in nonequilibrium physics [1–6]. These relations are exact constraints that some fluctuating
quantities satisfy arbitrarily far from equilibrium. They have been verified experimentally in many
different contexts, ranging from biophysics to electronic circuits [7]. However, they come in different
forms: detailed fluctuation theorems (DFTs) or integral fluctuation theorems (IFTs), and concern
various types of quantities. Understanding how they are related and to what extent they involve
mathematical quantities or interesting physical observables can be challenging.

The aim of this paper is to provide a simple yet elegant method to identify a class of finite-time
DFTs for time-inhomogeneous Markovian jump processes. The method is based on splitting the
entropy production (EP) in three contributions by introducing a reference probability mass function
(PMF). The latter is parametrized by the time-dependent driving protocol, which renders the dynamics
time-inhomogeneous. The first contribution quantifies the EP as if the system were in the reference
PMF, the second the extent to which the reference PMF changes with the driving protocol, and the
last the mismatch between the actual and the reference PMF. We show that when the system is
initially prepared in the reference PMF, the joint probability distribution for the first two terms always
satisfies a DFT. We then show that various known DFTs can be immediately recovered as special cases.
We emphasize at which level our results make contact with physics and also clarify the nontrivial
connection between DFTs and EP fluctuations. Our EP splitting is also shown to be connected to
information theory. Indeed, it can be used to derive a generalized Landauer principle identifying
the minimal cost needed to move the actual PMF away from the reference PMF. While unifying,
we emphasize that our approach by no means encompasses all previously derived FTs and that other
FT generalizations have been made (e.g., [5,8–11]).
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The plan of this paper is as follows. Time-inhomogeneous Markov jump processes are introduced
in Section 2. Our main results are presented in Section 3: We first introduce the EP as a quantifier of
detailed balance breaking, and we then show that by choosing a reference PMF, a splitting of the EP
ensues. This enables us to identify the fluctuating quantities satisfying a DFT and an IFT when the
system is initially prepared in the reference PMF. While IFTs hold for arbitrary reference PMFs, DFTs
require reference PMFs to be solely determined by the driving protocol encoding the time dependence
of the rates. The EP decomposition is also shown to lead to a generalized Landauer principle.
The remaining sections are devoted to selecting specific reference PMFs and showing that they give rise
to interesting mathematics or physics: In Section 4 the steady-state PMF of the Markov jump process
is chosen, giving rise to the adiabatic–nonadiabatic split of the EP [12]. In Section 5 the equilibrium
PMF of a spanning tree of the graph defined by the Markov jump process is chosen, and gives rise to
a cycle–cocycle decomposition of the EP [13]. Physics is introduced in Section 6, and the properties
that the Markov jump process must satisfy to describe the thermodynamics of an open system are
described. In Section 7 the microcanonical distribution is chosen as the reference PMF, leading to the
splitting of the EP into system and reservoir entropy change. Finally, in Section 8, the generalized Gibbs
equilibrium PMF is chosen as a reference and leads to a conservative–nonconservative splitting of the
EP [14]. Conclusions are finally drawn, and some technical proofs are discussed in the appendices.

2. Markov Jump Process

We introduce time-inhomogeneous Markovian jump processes and set the notation.
We consider an externally driven open system described by a finite number of states, which we

label by n. Allowed transitions between pairs of states are identified by directed edges,

e ≡ (nm, ν) , for n ν←− m, (1)

where the label ν indexes different transitions between the same pair of states (e.g., transitions due
to different reservoirs). The evolution in time of the probability of finding the system in the state n,
pn ≡ pn(t), is ruled by the master equation (ME):

dt pn = ∑mWnm pm, (2)

where the elements of the rate matrix are represented as

Wnm = ∑ewe

{
δn,t(e)δm,o(e) − δn,mδm,o(e)

}
. (3)

The latter is written in terms of stochastic transition rates, {we }, and the functions

o(e) := m , and t(e) := n , for e = (nm, ν), (4)

which map each transition to the state from which it originates (origin) and to which it leads (target),
respectively. The off-diagonal entries of the rate matrix (the first term in brackets) give the probability
per unit time to transition from m to n. The diagonal ones (second term in brackets) are the escape
rates denoting the probability per unit time of leaving the state m. For thermodynamic consistency,
we assume that each transition e ≡ (nm, ν) is reversible, namely if we is finite, the corresponding
backward transition −e ≡ (mn, ν) is allowed and additionally has a finite rate w−e. For simplicity,
we also assume that the rate matrix is irreducible at all times, so that the stochastic dynamics is
ensured to be ergodic. The Markov jump process is said to be time-inhomogeneous when the transition
rates depend on time. The driving protocol value πt determines the values of all rates at time t,
{we ≡ we(πt) }.
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The ME (2) can be rewritten as a continuity equation:

dt pn = ∑eDn
e 〈je〉, (5)

where we introduced the averaged transition probability fluxes,

〈je〉 = we po(e), (6)

and the incidence matrix D,

Dn
e := δn,t(e) − δn,o(e) =


+1 if e−→ n,

−1 if e←− n,

0 otherwise,

(7)

which couples each transition to the pair of states that it connects, and hence encodes the network
topology. On the graph identified by the vertices { n } and the edges { e }, it can be viewed as a
(negative) divergence operator when acting on edge-space vectors—as in the ME (5)—or as a gradient
operator when acting on vertex-space vectors. It satisfies the symmetry Dn

−e = −Dn
e .

Example

Let us consider the Markov jump process on the network in Figure 1, in which only the six forward
transitions are depicted. It is characterized by four states, { 00, 01, 10, 11 }, connected by transitions as
described by the incidence matrix:

D =


+1 +2 +3 +4 +5 +6

00 −1 −1 −1 0 0 0
10 1 0 0 0 −1 −1
01 0 1 1 −1 0 0
11 0 0 0 1 1 1

. (8)

Backward transitions are obtained from Dn
−e = −Dn

e .

00

10

01

11

+4

+2
+3

+1

+6
+5

Figure 1. Illustration of a network of transitions.

Notation

From now on, upper–lower indices and Einstein summation notation will be used: repeated
upper–lower indices implies the summation over all the allowed values for those indices.
Time derivatives are denoted by “dt” or “∂t”, whereas the overdot “ ˙ ” is reserved for rates of
change of quantities that are not exact time derivatives of state functions. We also take the Boltzmann
constant kB equal to 1.

3. General Results

This section constitutes the core of the paper. The main results are presented in their most
general form.
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3.1. EP Decomposition at the Ensemble Average Level

After defining the ensemble-averaged EP, we will show how to generically decompose it in terms
of a reference PMF.

A PMF pn satisfies the detailed-balance property if and only if

we po(e) = w−e po(−e) , for all transitions e. (9)

This implies that all net transition probability currents vanish: 〈je〉 − 〈j−e〉 = 0. The central
quantity that we will consider is the EP rate:

〈Σ̇〉 = 1
2 Ae

[
〈je〉 − 〈j−e〉

]
= Ae〈je〉 ≥ 0, (10)

where the affinities are given by

Ae = ln
we po(e)

w−e po(−e)
. (11)

It is a measure of the amount by which the system breaks detailed balance or, equivalently,
time-reversal symmetry. Indeed, its form ensures that it is always non-negative and vanishes if and
only if Equation (9) holds. Notice that A−e = −Ae. As we will see in Section 7, in physical systems the
EP quantifies the total entropy change in the system plus environment [15].

We now decompose the EP rate into two contributions using a generic PMF pref
n ≡ pref

n (t) as a
reference. We make no assumption about the properties of pref

n at this stage, and define the reference
potential and the reference affinities as

ψref
n := − ln pref

n (12)

and

Aref
e := ln

we pref
o(e)

w−e pref
o(−e)

= ln
we

w−e
+ ψref

n Dn
e , (13)

respectively. The former can be thought of as the entropy associated to pref
n —i.e., its self-information—,

whereas the latter measures the extent by which pref
n breaks detailed balance. By merely adding and

subtracting ψref
n Dn

e from the EP rate, the latter can be formally decomposed as

〈Σ̇〉 = 〈Σ̇nc〉+ 〈Σ̇c〉 ≥ 0, (14)

where the reference nonconservative contribution is an EP with affinities replaced by reference affinities:

〈Σ̇nc〉 := Aref
e 〈je〉, (15)

and the reference conservative contribution is

〈Σ̇c〉 := −∑ndt pn ln
{

pn/pref
n

}
. (16)

Using the ME (5), it can be further decomposed as

〈Σ̇c〉 = −dtD(p‖pref) + 〈Σ̇d〉, (17)

where the first term quantifies the change in time of the dissimilarity between pn and pref
n , since

D(p‖pref) := ∑n pn ln
{

pn/pref
n

}
(18)
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is a relative entropy, whereas the second term,

〈Σ̇d〉 := −∑n pndt ln pref
n = ∑n pndtψ

ref
n , (19)

accounts for possible time-dependent changes of the reference state, and we name it the driving
contribution. The reason for this name will become clear later, as we will request pref

n to depend
parametrically on time only via the driving protocol (i.e., pref

n (t) = pref
n (πt)).

Using these equations, one can easily rearrange Equation (14) into

〈Σ̇d〉+ 〈Σ̇nc〉 ≥ dtD(p‖pref). (20)

When pref
n (t) = pref

n (πt), one can interpret this equation as follows. The lhs describes the EP
contribution due to the time-dependent protocol, 〈Σ̇d〉, and to the break of detailed balance required
to sustain the reference PMF, 〈Σ̇nc〉. When positive, the rhs thus represents the minimal cost (ideally
achieved at vanishing EP) to move the PMF further away from the reference PMF. When negative,
its absolute value becomes the maximal amount by which the two EP contributions can decrease,
as the PMF approaches the reference PMF. This result can be seen as a mathematical generalization of
the Landauer principle, as it provides a connection between an information-theoretical measure of the
dissimilarity between two PMFs and the driving and break of detailed balance needed to achieve it.
Its precise physical formulation, discussed in detail in [14], is obtain when expressing Equation (20) in
terms of the reference PMF used in Section 8.

3.2. EP Decomposition at the Trajectory Level

We now perform the analogue of the EP decomposition (14) at the level of single stochastic
trajectories.

A stochastic trajectory of duration t, nt, is defined as a set of transitions {ei} sequentially occurring
at times {ti} starting from n0 at time 0. If not stated otherwise, the transitions index i runs from i = 1
to the last transition prior to time t, Nt, whereas the state at time τ ∈ [0, t] is denoted by nτ . The whole
trajectory is encoded in the instantaneous fluxes,

je(τ) := ∑iδe,ei δ(τ − ti), (21)

as they encode the transitions that occur and their timing. Its corresponding trajectory probability
measure is given by

P[nt; πt] =
Nt

∏
i=1

wei (πti )
Nt

∏
i=0

exp
{
−
∫ ti+1

ti
dτ ∑ewe(πτ)δnτ ,o(e)

}
, (22)

where the first term accounts for the probability of transitioning along the edges, while the second
accounts for the probability that the system spends { ti+1 − ti } time in the state { nti }. When averaging
Equation (21) over all stochastic trajectories, we obtain the averaged fluxes, Equation (6),

〈je(τ)〉 =
∫
Dnt P[nt; πt] pn0(0) je(τ), (23)

where
∫
Dnt denotes the integration over all stochastic trajectories.

The change along nt of a state function like ψref
n can be expressed as

∆ψref[nt] = ψref
nt (t)− ψref

n0
(0) =

∫ t

0
dτ

{[
dτψref

n (τ)
]∣∣∣

n=nτ

+ ψref
n (τ) Dn

e je(τ)

}
. (24)
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The first term on the rhs accounts for the instantaneous changes of pref
n , while the second accounts

for its finite changes due to stochastic transitions. Analogously, the trajectory EP—which is not a state
function—can be written as

Σ[nt; πt] =
∫ t

0
dτ je(τ) ln

we(πτ)

w−e(πτ)
− ln

pnt(t)
pn0(0)

. (25)

Adding and subtracting the terms of Equation (24) from the EP, we readily obtain the fluctuating
expressions of the nonconservative and conservative contributions of the EP,

Σ[nt; πt] = Σnc[nt; πt] + Σc[nt]. (26)

The former reads
Σnc[nt; πt] =

∫ t
0 dτ Aref

e (τ) je(τ), (27)

while for the latter
Σc[nt] = −∆D[nt] + Σd[nt], (28)

where

∆D[nt] := ln
pnt(t)
pref

nt (t)
− ln

pn0(0)
pref

n0 (0)
(29)

and

Σd[nt] :=
∫ t

0
dτ
[
dτψref

n (τ)
]∣∣∣

n=nτ

. (30)

We emphasize that Equation (26) holds for any reference PMF pref
n exactly as it was for its

ensemble-averaged rate counterpart, Equation (14).

3.3. Fluctuation Theorems

We proceed to show that a class of FTs ensue from the decomposition (14)–(26). To do so, we
now need to assume that the reference PMF depends instantaneously solely on the protocol value
pref

n (τ) = pref
n (πτ). In other words, pref

n at time τ is completely determined by {we(πτ) }. This justifies
a posteriori the name driving contribution for Equation (19). Various instances of such PMFs will be
provided in the following sections. We define a forward process where the system is initially prepared in
pn(0) = pref

n (π0) at a value of the protocol π0 and then evolves under the Markov jump process driven
by a protocol πτ , for τ ∈ [0, t]. The corresponding backward process, denoted with “ † ”, is defined as
follows: the system is initially prepared in the reference PMF corresponding to the final value of the
forward process, p†

n(0) = pref
n (πt), and then evolves under the Markov jump process driven by the

forward protocol reversed in time,

π†
τ := πt−τ , for τ ∈ [0, t], (31)

see Figure 2.

reference: π0

pn(0) = expψref
n (π0)

noneq.forward protocol: πτ

backward protocol: π†
τ = πt−τ

pn(t)

reference: πt

p†
n(0) = expψref

n (πt)

Figure 2. Schematic representation of the forward and backward processes related by our detailed
fluctuation theorem (DFT).
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Our main result is that the forward and backward process are related by the following
finite-time DFT:

Pt(Σd, Σnc)

P†
t (−Σd,−Σnc)

= exp {Σd + Σnc} . (32)

Here Pt(Σd, Σnc) is the probability of observing a driving contribution to the EP Σd and a
nonconservative one Σnc along the forward process. Instead, P†

t (−Σd,−Σnc) is the probability
of observing a driving contribution equal to −Σd, and a nonconservative one −Σnc along the
backward process.

We now mention two direct implications of our DFT. First, by marginalizing the joint probability,
one easily verifies that the sum of nonconservative and driving EP contributions also satisfies a DFT:

Pt(Σd + Σnc)

P†
t (−Σd − Σnc)

= exp {Σd + Σnc} . (33)

Second, when averaging Equation (32) over all possible values of Σd and Σnc, an IFT ensues:

〈exp {−Σd − Σnc}〉 = 1. (34)

The proofs of Equations (32)–(34) are given in Appendix A, and use the generating function
techniques developed in References [12,14].

We note that the IFT holds for any reference PMF regardless of the requirement that
pref

n (τ) = pref
n (πτ) (see Appendix A). In contrast, this requirement must hold for the DFT,

else the probability P†
t (Σd, Σnc) would no longer describe a physical backward process in which

solely the protocol function is time reversed. Indeed, if one considers an arbitrary pref
n , the backward

process corresponds to not only reversing the protocol, but also the stochastic dynamics itself
(see Equation (A23)).

Another noteworthy observation is that the fluctuating quantity Σd + Σnc can be seen as the ratio
between the probabilities to observe a trajectory nt along the forward process, Equation (22), and the
probability to observe the time-reversed trajectory along the backward process:

Σnc[nt; πt] + Σd[nt; πt] = ln
P[nt; πt] pref

n0
(π0)

P[n†
t ; π†

t ] pref
nt (πt)

. (35)

The latter trajectory is denoted by n†
t . It starts from nt, and it is defined by:

j† e(τ) := ∑iδe,−ei δ(t− τ − ti). (36)

This result follows using Equation (22) and the observation that the contribution due to the
waiting times vanish in the ratio on the rhs. It can also be used to prove the DFT in two alternative
ways, the first inspired by Reference [16] and the second using trajectory probabilities (see Appendix B).
These proofs rely on the fact that both the driving and the nonconservative EP contributions satisfy the
involution property:

Σnc[n†
t ; π†

t ] = −Σnc[nt; πt] , and Σd[n
†
t ; π†

t ] = −Σd[nt; πt], (37)

viz. the change of Σd and Σnc for the backward trajectory along the backward process is minus the
change along the forward trajectory of the forward process. This result follows from direct calculation
on Equations (27) and (30) (see Appendix B).

Finally, let us get back to the generalized Landauer principle for systems initially prepared in
the reference state, as we did in this subsection for the FTs to hold. Using Equation (20), we see that
the arguments of the FTs (33) and (34) (i.e., the driving and the nonconservative contribution to the
EP) can be interpreted, on average, as the cost to generate a dissimilarity (or a lag) between the actual
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and the reference PMF at the end of the forward protocol. A special case of this result is discussed in
Reference [17].

3.4. EP Fluctuations

We now discuss the properties of the fluctuating EP and its relation to the previously derived FTs.
An IFT for the EP always holds

〈exp {−Σ}〉 = 1, (38)

regardless of the initial condition [18]. In our framework, this can be seen as the result of choosing the
actual pn(τ) as the reference for the IFT (34).

In contrast, a general DFT for the EP does not hold. This can be easily understood at the level of
trajectory probabilities. Indeed, the fluctuating EP can be written as the ratio of forward and backward
probabilities as in (35), but the initial condition of the forward process is arbitrary and that of the
backward process is the final PMF of the forward process,

Σ[nt; πt] = ln
P[nt; πt] pn0(0)
P[n†

t ; π†
t ] pnt(t)

. (39)

As a result, the involution property is generally lost, Σ[n†
t ; π†

t ] 6= −Σ[nt; πt], since p†
n0
(t) 6= pn0(0),

and hence the DFT is also lost [18].
However, in special cases the fluctuating quantity Σd + Σnc which satisfies a DFT can be

interpreted as an EP. This happens if at the end of the forward (respectively backward) process,
the protocol stops changing in time in such a way that the system relaxes from pnt to an equilibrium
pref

nt (respectively from p†
n(t) to an equilibrium pref

n (π0)) and thus without contributing to either Σd or
to Σnc (even at the trajectory level). In such cases, Σd + Σnc can be seen as the EP of the extended process
including the relaxation. On average, it is greater or equal than the EP of the same process without the
relaxation, since the non-negative EP during the relaxation is given by D(p(t)‖pref(πt)) ≥ 0.

3.5. A Gauge Theory Perspective

We now show that the decomposition in Equation (14) can be interpreted as the consequence of
the gauge freedom discussed by Polettini in Reference [19]. Indeed, in this reference he shows that the
following gauge transformation leaves the stochastic dynamics (5) and the EP rate (10) unchanged:

pn → pn exp ψn , we → we exp−ψo(e) , Dn
e → Dn

e exp ψn , and ∑n → ∑n exp−ψn. (40)

When considering a gauge term ψn changing in time, one needs also to shift the time
derivative as:

dt → dt − ∂t, (41)

where ∂t behaves as a normal time derivative but it acts only on ψn. Let us now consider the EP rate
rewritten as

〈Σ̇〉 = 〈je〉 ln
we

w−e
+ dt∑n pn [− ln pn] . (42)

One readily sees that the transformation(40)–(41) changes the first term into the nonconservative
term, Equation (15), whereas the second into the conservative one, Equation (16). We finally note that
connections between gauge transformations and FTs were also discussed in References [8,20].

This concludes the presentation of our main results. In the following, we will consider various
specific choices for pref

n which solely depend on the driving protocol and thus give rise to DFTs. Each of
them will provide a specific meaning to Σnc and Σc. Table 1 summarizes the reference potential, affinity,
and conservative contribution for these different choices.
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Table 1. Summary of the reference potentials, affinities, and conservative EP contributions for the
specific references discussed in the text. The nonconservative EP contribution follows from 〈Σ̇nc〉 =
Aref

e 〈je〉, whereas the driving one from 〈Σ̇d〉 = ∑n pndtψ
ref
n . Overall, 〈Σ̇〉 = 〈Σ̇nc〉+ 〈Σ̇c〉 = 〈Σ̇nc〉+

〈Σ̇d〉 − dtD(p‖pref), where D is the relative entropy.

Decomposition ψref
n Aref

e 〈Σ̇c〉

adiabatic–nonadiabatic − ln pss
n ln

we pss
o(e)

w−e pss
o(−e)

−〈je〉Dn
e ln {pn/pss

n }

cycle–cocycle − ln
{

∏e∈Tn
we − Z

} {
0 , if e ∈ T ,
Ae , if e ∈ T ∗ ∑e∈T 〈Je〉 Ae

system–reservoir Smc − Sn δSr
e = − fyδXy

e [Sn − ln pn] Dn
e 〈je〉

conservative–nonconservative Φgg −
[
Sn − FλLλ

n

]
Fyf δXyf

e

[
Sn − FλLλ

n − ln pn

]
Dn

e 〈je〉

4. Adiabatic–Nonadiabatic Decomposition

We now provide a first instance of reference PMF based on the fixed point of the Markov
jump process.

The Perron–Frobenius theorem ensures that the ME (5) has, at all times, a unique instantaneous
steady-state PMF

∑mWnm(πt)pss
m(πt) = 0 , for all n and t. (43)

When using this PMF as the reference, pref
n = pss

n , we recover the adiabatic–nonadiabatic EP
rate decomposition [12,16,21–24]. More specifically, the nonconservative term gives the adiabatic
contribution which is zero only if the steady state satisfies detailed balance, and the conservative
term gives the nonadiabatic contribution which characterizes transient and driving effects. A specific
feature of this decomposition is that both terms are non-negative, as proved in Appendix C: 〈Σ̇nc〉 ≥ 0
and 〈Σ̇c〉 ≥ 0. In turn, the nonadiabatic contribution decomposes into a relative entropy term and a
driving one.

Provided that the forward and backward processes start in the steady state corresponding to
the initial value of the respective protocol, the general DFT and IFT derived in Equation (32) and
Equation (34) hold for the adiabatic and driving contributions of the adiabatic–nonadiabatic EP
decomposition [12,21].

In detailed-balanced systems, the adiabatic contribution is vanishing, 〈Σ̇a〉 = 0, and we obtain a
FT for the sole driving contribution:

Pt(Σd)

P†
t (−Σd)

= exp Σd. (44)

The celebrated Crooks’ DFT [25–27] and Jarzynski’s IFT [28] are of this type.

Additional FTs

Due to the particular mathematical properties of the steady-state PMF, additional FTs for the
adiabatic and driving terms ensue. These are not covered by our main DFT, Equation (32), and their
proofs are discussed in Appendix D.

For the former, the forward process is produced by the original dynamics initially prepared in an
arbitrary PMF. The backward process instead has the same initial PMF and the same driving protocol
as the forward process, but the dynamics is governed by the rates

ŵe := w−e pss
o(−e)/pss

o(e). (45)
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At any time, the following DFT relates the two processes,

Pt(Σa)

P̂t(−Σa)
= exp Σa, (46)

where P̂ (−Σa) is the probability of observing −Σa adiabatic EP during the backward process.
The Speck–Seifert IFT for the housekeeping heat is the IFT version of this DFT [29].

For the driving term, the forward process is again produced by the original dynamics, but now
initially prepared in a steady state. The backward process is instead produced by the rates (45) with
time-reversed driving protocol and the system must initially be prepared in a steady state. Under these
conditions, one has

Pt(Σd)

P̂†
t (−Σd)

= exp Σd, (47)

where P̂†(−Σd) is the probability of observing −Σd driving EP during the backward process.
The Hatano–Sasa IFT [30] is the IFT version of this DFT.

5. Cycle–Cocycle Decomposition

We proceed by providing a second instance of reference PMF based on the equilibrium PMF for a
spanning tree of the graph defined by the incidence matrix of the Markov jump process.

We partition the edges of the graph into two disjoint subsets: T and T ∗. The former identifies a
spanning tree, namely a minimal subset of paired edges, (e,−e), that connects all states. These edges
are called cochords. All the other edges form T ∗, and are called chords. Equivalently, T is a maximal
subset of edges that does not enclose any cycle—the trivial loops composed by forward and backward
transitions, (e,−e), are not regarded as cycles. The graph obtained by combining T and e ∈ T ∗
identifies one and only one cycle, denoted by Ce, for e ∈ T ∗. Algebraically, cycles are characterized as:

∑
e′∈Ce

Dn
e′ = ∑

e′
Dn

e′ C
e′
e = 0 , for all n, (48)

where { Ce′
e }, for e ∈ T ∗, represent the vectors in the edge space whose entries are all zero except for

those corresponding to the edges of the cycle, which are equal to one.
We now note that if T were the sole allowed transitions, the PMF defined as follows would be an

equilibrium steady state [15]:

pst
n (πt) :=

1
Z ∏

e∈Tn

we(πt), (49)

where Z = ∑m ∏e∈Tm we is a normalization factor, and Tn denotes the spanning tree rooted in n, namely
the set of edges of T that are oriented towards the state n. Indeed, pst

n would satisfy the property of
detailed balance, Equation (9):

we pst
o(e) =

we

Z ∏
e′∈To(e)

we′ =
w−e

Z ∏
e′∈To(−e)

we′ = w−e pst
o(−e) , for all e ∈ T . (50)

We now pick this equilibrium PMF as a reference for our EP decomposition, pref
n = pst

n . However,
in order to derive the specific expressions for 〈Σ̇nc〉 and 〈Σ̇c〉, the following result is necessary: the edge
probability fluxes can be decomposed as

〈je〉 = ∑
e′∈T
〈Je′〉E e

e′ + ∑
e′∈T ∗

〈Je′〉Ce
e′ , (51)

where { Ee } denotes the canonical basis of the edge vector space: E e′
e = δe′

e [31]. Algebraically,
this decomposition hinges on the fact that the set { Ce }e∈T ∗ ∪ { Ee }e∈T is a basis of the edge vector
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space [13]. Note that for e ∈ T ∗, the only nonvanishing contribution in Equation (51) comes from
the cycle identified by e, and hence 〈je〉 = 〈Je〉. The coefficients { 〈Je〉 } are called cocycle fluxes for
the cochords, e ∈ T , and cycle fluxes for the chords, e ∈ T ∗. They can be understood as follows [13]:
removing a pair of edges, e and −e, from the spanning tree (e,−e ∈ T ) disconnects two blocks of states.
The cocycle flux { 〈Je〉 } of that edge is the probability flowing from the block identified by the origin
of e, o(e), to that identified by the target of e, t(e). Instead, the cycle flux { 〈Je〉 } of an edge, e ∈ T ∗,
quantifies the probability flowing along the cycle formed by adding that edge to the spanning tree.
Graphical illustrations of cocycle and cycle currents, 〈J e〉 − 〈J −e〉, can be found in Reference [13].

We can now proceed with our main task. Using Equations (48) and (49), we verify that

ψref
n Dn

e =

{
− ln {we/w−e} , if e ∈ T ,

− ln {we/w−e}+Ae , if e ∈ T ∗,
(52)

where
Ae = ∑e′Ce′

e ln {we′/w−e′} , for e ∈ T ∗ (53)

is the cycle affinity related to Ce. It follows that

Aref
e = ln

we

w−e
+ ψref

n Dn
e =

{
0 , if e ∈ T ,

Ae , if e ∈ T ∗,
(54)

from which the nonconservative contribution readily follows:

〈Σ̇nc〉 = ∑
e∈T ∗
Ae〈je〉 = ∑

e∈T ∗
Ae〈Je〉. (55)

In the last equality, we used the property of cycle fluxes discussed after Equation (51). Hence,
the nonconservative contribution accounts for the dissipation along network cycles. In turn, combining
Equation (16) with Equations (51) and (52), one obtains the conservative contribution

〈Σ̇c〉 = ∑
e∈T

Ae〈Je〉, (56)

which accounts for the dissipation along cocycles. Using these last two results, the EP
decomposition (14) becomes the cycle–cocycle decomposition found in Reference [13]:

〈Σ̇〉 = ∑
e∈T ∗
Ae〈je〉+ ∑

e∈T
Ae〈Je〉. (57)

As for all decompositions, the conservative contribution—here the cocycle one—vanishes at
steady state in the absence of driving. The cycle contribution instead disappears in detailed-balanced
systems, when all the cycle affinities vanish. This statement is indeed the Kolmogorov criterion for
detailed balance [32,33].

The fluxes decomposition Equation (51) is also valid at the trajectory level, where the cycle and
cocycle fluxes become fluctuating instantaneous fluxes, { Je }. Obviously, the same holds true for
the cycle–cocycle EP decomposition. Therefore, if the system is in an equilibrium PMF of type (49)
at the beginning of the forward and the backward process, a DFT and an IFT hold by applying
Equations (32) and (34). Note that the fluctuating quantity appearing in the DFT, Σd + Σnc, can be
interpreted as the EP of the extended process in which, at time t, the driving is stopped, all transitions
in T ∗ are shut down, and the system is allowed to relax to equilibrium—which is the initial PMF of the
backward process.
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It is worth mentioning that one can easily extend the formulation of our DFT by considering
the joint probability distribution for each subcontribution of Σd and Σna antisymmetrical under time
reversal. This can be shown using either the proof in Appendix B [16], or that in Appendix A [14].
In the case of the cycle–cocycle decomposition, it would lead to

Pt(Σd, {Ae (je − j−e) }e∈T ∗)

P†
t (−Σd, {−Ae (je − j−e) }e∈T ∗)

= exp

{
Σd + ∑

e∈T ∗
Ae je

}
, (58)

which is a generalization of the DFT derived in Reference [34] to time-inhomogeneous systems. In turn,
the latter is a generalization of the steady-state DFT derived by Andrieux and Gaspard in Reference [35]
to finite times.

Example

A spanning tree for the network in Figure 1 is depicted in Figure 3a. The cycles defined by the
corresponding chords are depicted in Figure 3b. Algebraically, these cycles are represented as

C =



−4 +2 +5

+1 1 0 0
+2 0 1 0
+3 −1 −1 0
+4 −1 0 0
+5 0 0 1
+6 1 0 −1


, (59)

where the negative entries must be regarded as transitions performed in the backward direction.
The corresponding affinities, which determine the nonconservative contribution (55), hence read:

A−4 = ln
w+1w+6w−4w−3

w−1w−6w+4w+3
, A+2 = ln

w+2w−3

w−2w+3
, and A+5 = ln

w+5w−6

w−5w+6
. (60)

The affinities corresponding to the cycles taken in the backward direction follow fromA−e = −Ae.
Regarding the expression of the cocycle fluxes, it can be checked that they are equal to

〈J+1〉 = 〈j+1〉 − 〈j−4〉 , 〈J+3〉 = 〈j+3〉 − 〈j−2〉 − 〈j+4〉 , 〈J+6〉 = 〈j+6〉 − 〈j−5〉 − 〈j−4〉 ,

〈J−1〉 = 〈j−1〉 − 〈j+4〉 , 〈J−3〉 = 〈j−3〉 − 〈j+2〉 − 〈j−4〉 , 〈J−6〉 = 〈j−6〉 − 〈j+5〉 − 〈j+4〉
(61)

by expanding Equation (57) into Equation (10).
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(a) Spanning Tree
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Figure 3. (a) Spanning tree, and (b) corresponding cycles for the network in Figure 1.



Entropy 2018, 20, 635 13 of 27

6. Stochastic Thermodynamics

The results obtained until this point are mathematical and have a priori no connection to physics.
We now specify the conditions under which a Markov jump process describes the dynamics of an
open physical system in contact with multiple reservoirs. This will enable us to introduce physically
motivated decompositions and derive DFTs with a clear thermodynamic interpretation.

Each system state, n, is now characterized by given values of some system quantities, {Xκ
n },

for κ = 1, . . . , Nκ , which include the internal energy, En, and possibly additional ones (see Table 2 for
some examples). These must be regarded as globally conserved quantities, as their change in the system
is always balanced by an opposite change in the reservoirs. When labeling the reservoirs with { r },
for r = 1, . . . ,Nr, the balance equation for Xκ along the transition e can be written as:

Xκ
n′D

n′
e = δiXκ

e + ∑rδX(κ,r)
e . (62)

Table 2. Examples of system quantity–intensive field conjugated pairs in the entropy representation.
βr := 1/Tr denotes the inverse temperature of the reservoir. Since charges are carried by particles,
the conjugated pair (Qn,−βrVr) is usually embedded in (Nn,−βrµr).

System Quantity Xκ Intensive Field f(κ,r)

energy, En inverse temperature, βr
particles number, Nn chemical potential, −βrµr
charge, Qn electric potential, −βrVr
displacement, Xn generic force, −βrkr
angle, θn torque, −βrτr

The lhs is the overall change in the system, whereas δiXκ
e denotes the changes due to internal

transformations (e.g., chemical reactions [36,37]), and δX(κ,r)
e quantifies the amount of Xκ supplied by

the reservoir r to the system along the transition e. For the purposes of our discussion, we introduce
the index y = (κ, r)—i.e., the conserved quantity Xκ exchanged with the reservoir r—and define the matrix
δX whose entries are { δXy

e ≡ δX(κ,r)
e }. All indices used in the following discussion are summarized

in Table 3. Microscopic reversibility requires that δXy
e = −δXy

−e. Note that more than one reservoir
may be involved in each transition (see Figure 4).

V...

β1

β...
β4

β2

µ4

system

reservoirs

β3
µ3

e

δX (E,2)
e

k1

Figure 4. Pictorial representation of a system coupled to several reservoirs. Transitions may involve
more than one reservoir and exchange between reservoirs. Work reservoirs are also taken into account.
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Table 3. Summary of the indices used throughout the paper and the object they label.

Index Label for Number

n state Nn
e transition Ne
κ system quantity Nκ

r reservoir Nr
y ≡ (κ, r) conserved quantity Xκ from reservoir r Ny

λ conservation law and conserved quantity Nλ

yp “potential” y Nλ

yf “force” y Ny −Nλ

In addition to the trivial set of conserved quantities {Xκ }, the system may be characterized by
some additional ones, which are specific for each system. We now sketch the systematic procedure to
identify these quantities and the corresponding conservation laws [14,38]. Algebraically, conservation
laws can be identified as a maximal set of independent vectors in the y-space, { `λ }, for λ = 1, . . . , Nλ,
such that

`λ
y δXy

e′ C
e′
e = 0 , for all cycles, i.e., for all e ∈ T ∗. (63)

Indeed, the quantities { `λ
y δXy

e }, for λ = 1, . . . , Nλ, are combinations of exchange contributions
{ δXy

e }, for y = 1, . . . , Nλ, which vanish along all cycles. They must therefore identify some state
variables, { Lλ }, for λ = 1, . . . , Ny, in the same way curl-free vector fields are conservative and
identify scalar potentials:

Lλ
n Dn

e = `λ
y δXy

e ≡ ∑r

{
∑κ`

λ
(κ,r) δX(κ,r)

e

}
. (64)

This equation can be regarded as the balance equation for the conserved quantities. In the absence
of internal transformations, δiXκ

e , trivial conservation laws correspond to `κ
y ≡ `κ

(κ′ ,r) = δκ
κ′ , so that the

balance Equations (62) are recovered. Notice that each Lλ is defined up to a reference value.
Each reservoir r is characterized by a set of entropic intensive fields conjugated to the exchange

of the system quantities {Xκ }, { f(κ,r) } for κ = 1, . . . , Nκ (e.g., [39] § 2–3). A short list of Xκ– f(κ,r)
conjugated pairs is reported in Table 2. The thermodynamic consistency of the stochastic dynamics is
ensured by the local detailed balance,

ln
we

w−e
= − fyδXy

e + SnDn
e . (65)

It relates the log ratio of the forward and backward transition rates to the entropy change in
the reservoirs resulting from the transfer of system quantities during that transition. This entropy
change is evaluated using equilibrium thermodynamics (in the reservoirs), and reads { δSr

e = − fyδXy
e }.

The second term on the rhs is the internal entropy change occurring during the transition, as Sn

quantifies the internal entropy of the state n. This term can be seen as the outcome of a coarse-graining
procedure over a finer description in which multiple states with the same system quantities are
collected in one single n [40]. Using Equation (65), the affinities, Equation (11), can be rewritten as:

Ae = ∑r

[
−∑κ f(κ,r)δX(κ,r)

e

]
+ [Sn − ln pn] Dn

e . (66)

This relation shows that the affinity is the entropy change in all reservoirs plus the system entropy
change. In other words, while Equation (64) characterizes the balance of the conserved quantities
along the transitions, Equation (66) characterizes the corresponding lack of balance for entropy, namely
the second law.

As for the transition rates, the changes in time of the internal entropy S, the conserved quantities
{Xκ } (hence { δXy

e }), and their conjugated fields { fy }, are all encoded in the protocol function πt.
Physically, this modeling describes the two possible ways of controlling a system: either through
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{Xκ } or S which characterize the system states, or through { fy } which characterize the properties of
the reservoirs.

Example

We illustrate the role of system-specific conservation laws by considering the double quantum
dot (QD) depicted in Figure 5a [41–43], whose network of transition and energy landscape are drawn
in Figures 1 and 5b, respectively. Electrons can enter empty dots from the reservoirs, but cannot jump
from one dot to the other. When the two dots are occupied, an interaction energy, u, arises. Energy, En,
and total number of electrons, Nn, characterize each state of the system:

E00 = 0 , E10 = εu , E01 = εd , E11 = εu + εd + u ,

N00 = 0 , N10 = 1 , N01 = 1 , N11 = 2,
(67)

where the first entry in n refers to the occupancy of the upper dot, and the second to the lower.
The entries of the matrix δX for the forward transitions are:

δX =



+1 +2 +3 +4 +5 +6

(E,1) εu 0 0 εu + u 0 0
(N,1) 1 0 0 1 0 0
(E,2) 0 εd 0 0 εd + u 0
(N,2) 0 1 0 0 1 0
(E,3) 0 0 εd 0 0 εd + u
(N,3) 0 0 1 0 0 1


(68)

(see Figure 1), whereas the entries related to backward transition follow from δXy
−e = −δXy

e .
For instance, along the first transition the system gains εu energy and 1 electron from the reservoir 1.
The vector of entropic intensive fields is given by

f =
( (E,1) (N,1) (E,2) (N,2) (E,3) (N,3)

β1 −β1µ1 β2 −β2µ2 β3 −β3µ3

)
. (69)

β1

µ1

β2

µ2

β3

µ3

u

d

(a) Scheme
00

11

01

10 εu

εd

εd + εu + u

+1 +3+2

+4 +6+5

(b) Energy Landscape

Figure 5. Double coupled quantum dot (QD) in contact with three reservoirs. Transitions related to the
first reservoir are depicted using solid lines, while those related to the second and third ones using
dashed and dotted lines, respectively. The graphical rule was applied to the network of transitions in
Figure 1. (a) Pictorial representation of the system. The upper dot u is in contact with the first reservoir,
while the lower dot d with the second and third reservoirs. Energy and electrons are exchanged, but
the dots cannot host more than one electron. (b) Energy landscape of the dot. When both dots are
occupied, 11, a repulsive energy u adds to the occupied dots energies, εu and εd.
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Since the QDs and the electrons have no internal entropy, Sn = 0 for all n, the local detailed balance
property, Equation (65), can be easily recovered from the product − f δX. From a stochastic dynamics
perspective, this property arises when considering fermionic transition rates, namely we = Γe(1 +

exp{ fyδXy
e })−1 and w−e = Γe exp{ fyδXy

e }(1 + exp{ fyδXy
e })−1 for electrons entering and leaving

the dot.
A maximal set of independent vectors in y-space satisfying Equation (63) is composed of

`E =
( (E,1) (N,1) (E,2) (N,2) (E,3) (N,3)

1 0 1 0 1 0
)

,

`u =
( (E,1) (N,1) (E,2) (N,2) (E,3) (N,3)

0 1 0 0 0 0
)

,

`d =
( (E,1) (N,1) (E,2) (N,2) (E,3) (N,3)

0 0 0 1 0 1
)

.

(70)

The first vector identifies the energy state variable, En:

`EδX =
( +1 +2 +3 +4 +5 +6

εu εd εd εu + u εd + u εd + u
)
≡ { EnDn

e } . (71)

The other two instead give the occupancy of the upper and lower dots, Nu
n and Nd

n :

`uδX =
( +1 +2 +3 +4 +5 +6

1 0 0 1 0 0
)
≡ {Nu

n Dn
e } ,

`dδX =
( +1 +2 +3 +4 +5 +6

0 1 1 0 1 1
)
≡ {Nd

n Dn
e } .

(72)

A posteriori, we see that these conservation laws arise from the fact that no electron transfer from
one dot to the other is allowed. The total occupancy of the system, Nn, is recovered from the sum of
the last two vectors.

Now that a nonequilibrium thermodynamics has been built on top of the Markov jump process,
we can proceed by considering two physical relevant pref

n .

7. System–Reservoirs Decomposition

We start by considering a microcanonical PMF as reference:

pref
n = pmc

n := exp {Sn − Smc}, (73)

where
Smc = ln ∑m exp Sm (74)

is the Boltzmann’s equilibrium entropy. With this choice, the reference affinities become sums of entropy
changes in the reservoirs

Aref
e = δSr

e = − fyδXy
e , (75)

and hence the nonconservative contribution becomes the rate of entropy change in all reservoirs

〈Σ̇nc〉 = 〈Ṡr〉 = − fyδXy
e 〈je〉. (76)
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For the conservative contribution, one instead obtains:

〈Σ̇c〉 = [Sn − ln pn] Dn
e 〈je〉. (77)

Using Equation (17), it can be rewritten in terms of the Gibbs–Shannon entropy,

〈S〉 = ∑n pn [Sn − ln pn] (78)

and the Boltzmann entropy. Indeed,

D(p‖pmc) = Smc − 〈S〉 (79)

and
〈Σ̇d〉 = dtSmc −∑n pndtSn, (80)

so that

〈Σ̇c〉 = dt〈S〉 −∑n pndtSn. (81)

The conservative contribution thus contains changes in the system entropy caused by the
dynamics and the external drive.

The EP decomposition (14) with Equations (76) and (81) is thus the well-known system–reservoir
decomposition (i.e., the traditional entropy balance). Since the same decomposition holds at the trajectory
level, if the initial PMF of the forward and backward processes are microcanonical, the DFT and IFT
hold by applying Equations (32) and (34). When the driving does not affect the internal entropy of
the system states { Sn }, the DFT and IFT hold for the reservoir entropy alone. Finally, the fluctuating
quantity appearing in the DFT, Σd + Σnc, can be interpreted as the EP of the extended process in which,
at time t, the driving is stopped, all temperatures are raised to infinity, βr → 0, and the system is
allowed to relax to equilibrium—the initial PMF of the backward process.

8. Conservative–Nonconservative Decomposition

We now turn to a reference PMF which accounts for conservation laws: the generalized Gibbs PMF.
To characterize this PMFs, we observe that since { `λ } are linearly independent (otherwise we

would have linearly dependent conserved quantities), one can always identify a set of y’s, denoted by
{ yp }, such that the matrix whose rows are { `λ

yp }, for λ = 1, . . . , Nλ, is nonsingular. We denote by

{ `yp
λ } for λ = 1, . . . , Nλ, the columns of the inverse matrix. All other y’s are denoted by { yf }. Using

the splitting { yp }–{ yf } and the properties of { `λ
yp }, in combination with the balance equation for

conserved quantities, Equation (64), the local detailed balance (65) can be decomposed as

ln
we

w−e
= Fyf δXyf

e +
[
Sn − FλLλ

n

]
Dn

e , (82)

where
Fλ = fyp`

yp
λ (83)

are the system-specific intensive fields conjugated to the conserved quantities, and

Fyf := Fλ `
λ
yf
− fyf (84)

are differences of intensive fields called nonconservative fundamental forces. Indeed, these nonconservative
forces are responsible for breaking detailed balance. When they all vanish, Fyf = 0 for all yf, the system
is indeed detailed balanced and the PMF
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pgg
n := exp

{
Sn − FλLλ

n −Φgg

}
, (85)

with Φgg := ln ∑n exp
{

Sn − FλLλ
n
}

, satisfies the detailed balance property (9). The potential
corresponding to Equation (85), ψ

gg
n , is minus the Massieu potential which is constructed by using

all conservation laws (e.g. [39] §§ 5-4 and 19-1, [44] § 3.13). Choosing the PMF (85) as a reference,
pref

n = pgg
n , the reference affinity straightforwardly ensues from Equation (82),

Aref
e = Agg

e = Fyf δXyf
e . (86)

Hence,
〈Σ̇nc〉 = Fyf〈I

yf〉, (87)

where
〈Iyf〉 = δXyf

e 〈je〉 (88)

are the fundamental currents conjugated to the forces. For the conservative contribution, one obtains

〈Σ̇c〉 =
[
Sn − FλLλ

n − ln pn

]
Dn

e 〈je〉. (89)

When written as in Equation (17), its two contributions are:

D(p‖pgg) = Φgg −∑n pn

[
Sn − FλLλ

n − ln pn

]
, (90)

which relates the equilibrium Massieu potential to its averaged nonequilibrium counterpart; and

〈Σ̇d〉 = dtΦgg −∑n pndt

[
Sn − FλLλ

n − ln pn

]
, (91)

which quantifies the dissipation due to external manipulations of { Sn }, the fields { Fλ }, and the
conserved quantities { Lλ }. We emphasize that since ψ

gg
n encompasses all conserved quantities, 〈Σ̇c〉

captures all dissipative contributions due to conservative forces. Hence, 〈Σ̇nc〉 consists of a minimal
number, Ny − Nλ, of purely nonconservative contributions. The EP decomposition Equation (14)
with Equations (87) and (89) is the conservative–nonconservative decomposition of the EP obtained in
Reference [14].

The conservative–nonconservative splitting of the EP can also be made at the trajectory level.
Hence, if the initial condition of the forward and backward process is of the form (85), the DFT and
IFT given by Equations (32) and (34) hold.

Here too, the fluctuating quantity appearing in the DFT, Σd + Σnc, can be interpreted as the EP
of an extended process including relaxation, but for nonisothermal processes the procedure can be
significantly more involved. The details of this discussion can be found in Reference [14].

Example

We now provide the expressions of ψref
n and Aref

e for the double QD discussed in the previous
example (Figure 5). Therefore, we split the set { y } in { yp } = { (E, 1), (N, 1), (N, 2) } and { yf } =
{ (E, 2), (E, 3), (N, 3) }, which is valid since the matrix whose entries are { `λ

yp } is an identity matrix
(see Equation (70)). The fields conjugated with the complete set of conservation laws, Equation (83), are:

FE = β1 , Fu = −β1µ1 , and Fd = −β2µ2, (92)

from which the reference potential of the state n, Equation (85), follows

ψ
gg
n = Φgg −

[
−β1En + β1µ1Nu

n + β2µ2Nd
n

]
. (93)
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Instead, the fundamental forces, Equation (84), are given by

F(E,2) = β1 − β2 , F(E,3) = β1 − β3 , and F(N,3) = β3µ3 − β2µ2, (94)

from which the reference affinities follow (Equation (86)). The first two forces drive the energy flowing
into the first reservoir from the second and third ones, respectively, whereas the third force drives the
electrons flowing from the third to the second reservoir.

9. Conclusions

In this paper, we presented a general method to construct DFTs for Markov jump processes.
The strategy to identify the fluctuating quantities which satisfy the DFT consists of splitting the EP
in two by making use of a reference PMF. The choice of the reference PMF is arbitrary for IFTs, but
must solely depend on the driving protocol for DFTs. Out of the infinite number of FTs that can
be considered, we tried to select those that have interesting mathematical properties or that can be
expressed in terms of physical quantities when the Markov jump process is complemented with a
thermodynamic structure. Table 1 summarizes the terms of to the EP for each of our choices. We also
emphasized that the EP always satisfies an IFT but generically not a DFT. Connections to information
theory were also made by formulating a generalized Landauer principle.

We do not claim to have been exhaustive, and many other reference PMFs may be interesting.
We can mention at least two more interesting cases. By considering the steady-state PMF which is
obtained when removing some edges from the graph (but not all chords as in Section 5), the marginal
thermodynamic theory presented in References [45,46] emerges. One can also consider a reference
PMF in between the microcanonical PMF, which takes no conserved quantity into account, and the
generalized Gibbs one, which takes them all into account. This happens for instance when only the
obvious conserved quantities are accounted for, {Xκ }, as discussed in Reference [47]. In this case,
one uses the fields of a given reservoir to define the reference equilibrium potential

ψref
n = Φ−

[
Sn −∑κ f(κ,1)δXκ

n

]
,

where Φ is determined by the normalization. The number of nonconservative forces appearing in
〈Σ̇nc〉 will be Ny −Nκ . However, in case additional conservation laws are present (Nλ > Nκ), some of
these forces are dependent on others and their number will be larger than the minimal, Ny −Nλ.
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Appendix A. Moment Generating Function Dynamics and Proofs of the FTs

We describe the moment generating function (MGF) technique that we use to prove the finite
time DFTs (32) [14].

Appendix A.1. MGF Dynamics

Let Pt(n, δO) be the joint probability of observing a trajectory ending in the state n along which
the change of a generic observable, O, is δO. The changes of O along edges are denoted as { δOe },
whereas the changes due to time-dependent driving while in the state n as Ȯn. In order to write an
evolution equation for this probability, let us expand it as:

Pt+dt(n, δO) ' ∑eweδn,t(e) Pt

(
o(e), δO− δOe − Ȯo(e)dt

)
dt +

[
1−∑eweδn,o(e)dt

]
Pt(n, δO− Ȯndt). (A1)

The first term accounts for transitions leading to the state n and completing the change of O,
whereas the second describes the probability of completing the change of O while dwelling in the
state n (and not leaving it). When keeping only the linear term in dt and performing the limit dt→ 0,
we get:

dtPt(n, δO) = ∑eweδn,t(e) Pt (o(e), δO− δOe)−∑eweδn,o(e) Pt(n, δO)− Ȯn∂δOPt(n, δO). (A2)

Rather than working with this differential equation, it is much more convenient to deal with the
bilateral Laplace transform of pt(n, δO), that is, the MGF up to a sign,

Λn,t(q) :=
∫ ∞
−∞d δO exp {−qδO} Pt(n, δO), (A3)

since its evolution equation is akin to an ME, Equation (2):

dtΛn,t(q) = ∑mWnm,t(q)Λm,t(q), (A4)

where the biased rate matrix reads

Wnm,t(q) = ∑ewe

{
exp {−qδOe} δn,t(e)δm,o(e) − δn,mδm,o(e)

}
− q Ȯnδn,m. (A5)

The field q is usually referred to as a counting field. This equation is obtained by combining
Equations (A2) and (A3), and its initial condition must be Λn,0(δO) = pn(0). Note that Equation (A4)
is not an ME, since ∑nΛn,t(δO) is not conserved.

For later convenience, we recast Equation (A4) into a bracket notation:

dt |Λt(q)〉 =Wt(q) |Λt(q)〉 , (A6)

and we proceed to prove a preliminary result. A formal solution of Equation (A4) is |Λt(q)〉 =

Ut(q) |P(0)〉, where the time-evolution operator reads Ut(q) = T+ exp
∫ t

0 dτWτ(q), T+ being the
time-ordering operator. We clearly have dtUt(q) = Wt(q)Ut(q). Let us now consider the following
transformed evolution operator:

Ũt(q) := X−1
t Ut(q)X0, (A7)

Xt being a generic time-dependent invertible operator. Its dynamics is ruled by the following
biased stochastic dynamics:

dtŨt(q) = dtX−1
t Ut(q)X0 +X−1

t dtUt(q)X0 =
{

dtX−1
t Xt +X−1

t Wt(q)Xt

}
Ũt(q) ≡ W̃t(q) Ũt(q), (A8)

which allows us to conclude that the transformed time-evolution operator is given by

Ũ (q) = T+ exp
∫ t

0 dτ W̃τ(q). (A9)
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From Equations (A7), (A8), and (A9), we deduce that

X−1
t Ut(q)X0 = T+ exp

∫ t
0 dτ

[
dτX−1

τ Xτ +X−1
τ Wτ(q)Xτ

]
. (A10)

Appendix A.2. Proof of the DFT

To prove the DFT (32), we briefly recall its two assumptions: (i) the reference PMF depends on
time solely via the protocol function; (ii) for both the forward and backward processes, the system is
initially prepared in a reference PMF. Let Pt(n, Σd, Σnc) be the joint probability of observing a trajectory
ending in the state n along which the driving contribution is Σd, while the nonconservative one is Σnc.
The above probabilities, one for each n, are stacked in the ket |Pt(Σd, Σnc)〉. The time evolution of the
related MGF,

|Λt(qd, qnc)〉 :=
∫ ∞
−∞dΣddΣnc exp {−qdΣd − qncΣnc} |Pt(Σd, Σnc)〉 , (A11)

is ruled by the biased stochastic dynamics, Equation (A4),

dt |Λt(qd, qnc)〉 =Wt(qd, qnc) |Λt(qd, qnc)〉 , (A12)

where the entries of the biased generator are given by

Wnm(qd, qnc) = ∑ewe
{

exp
{
−qnc Aref

e

}
δn,t(e)δm,o(e) − δn,mδm,o(e)

}
− qddtψmδn,m. (A13)

Using the definition of reference affinity, Equation (13), one can see that the rate matrix satisfies
the following symmetry:

WT
t (qd, qnc) = P−1

t Wt(qd, 1− qnc)Pt, (A14)

where the entries of Pt are given by

Pnm,t := exp
{
−ψref

m (πt)
}

δn,m, (A15)

and “ T ” denotes the transposition. Additionally, the initial condition is given by the reference PMF:

|Λ0(qd, qnc)〉 = |pref
0 〉 = P0 |1〉 . (A16)

|1〉 denotes the vector in the state space whose entries are all equal to one.
Using the formal solution of Equation (A12), the MGF of Pt(Σd, Σnc) can be written as:

Λt(qd, qnc) = 〈1|Λt(qd, qnc)〉 = 〈1|Ut(qd, qnc)P0|1〉 = 〈1|PtP−1
t Ut(qd, qnc)P0|1〉 , (A17)

where Ut(qd, qnc) is the related time-evolution operator. Using the relation in Equation (A10), the last
term can be recast into

Λt(qd, qnc) = 〈pref
t |T+ exp

{∫ t
0 dτ

[
dτP−1

τ Pτ + P−1
τ Wτ(qd, qnc)Pτ

]}
|1〉 . (A18)

Since dτP−1
τ Pτ = diag

{
dτψref

n

}
, the first term in square brackets can be added to the diagonal

entries of the second term, thus giving

Λt(qd, qnc) = 〈pref
t |T+ exp

{∫ t
0 dτ

[
P−1

τ Wτ(qd − 1, qnc)Pτ

]}
|1〉 . (A19)

The symmetry (A14) allows us to recast the latter into

Λt(qd, qnc) = 〈pref
t |T+ exp

{∫ t
0 dτWT

τ (qd − 1, 1− qnc)
}
|1〉 . (A20)
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The crucial step comes as we time-reverse the integration variable: τ → t− τ. Accordingly, the
time-ordering operator, T+, becomes an anti-time-ordering one, T−, while the diagonal entries of the
biased generator become

Wmm,t−τ(qd, qnc) = −∑ewe(πt−τ) δm,o(e) − qd dt−τψref
m (πt−τ)

= −∑ewe(π
†
τ) δm,o(e) + qd dτψref

m (π†
τ),

(A21)

from which we conclude that

Wnm,t−τ(qd, qnc) = W†
nm,τ(−qd, qnc). (A22)

Crucially, the assumption that ψref
n depends on time via πτ ensures that W†

τ (qd, qnc) can
be regarded as the biased generator of the dynamics subject to the time-reversed protocol
(i.e., the dynamics of the backward process). If we considered an arbitrary pref

n (i.e., the forward process
would start from an arbitrary PMF), thenW†

τ (qd, qnc) would be the rate matrix of the time-reversed
stochastic dynamics:

0 = ∑m [δnmdt−τ −Wnm(πt−τ)] pm = ∑m

[
−δnmdτ −Wnm(π

†
τ)
]

pm, (A23)

which is unphysical. Equation (A20) thus becomes

Λt(qd, qnc) = 〈pref
t |T− exp

{∫ t
0 dτW†

τ
T
(1− qd, 1− qnc)

}
|1〉 . (A24)

Upon a global transposition, we can write

Λt(qd, qnc) = 〈1|T+ exp
{∫ t

0 dτW†
τ (1− qd, 1− qnc)

}
|pref

t 〉 , (A25)

where we also used the relationship between transposition and time-ordering

T+

(
∏i A

T
ti

)
= (T−∏i Ati )

T , (A26)

in which At is a generic operator. From the last expression, we readily obtain the symmetry that we
are looking for:

Λt(qd, qnc) = Λ†
t (1− qd, 1− qnc) , (A27)

where Λ†
t (qd, qnc) is the MGF of P†

t (Σd, Σnc). Indeed, its inverse Laplace transform gives the DFT in
Equation (32).

Appendix A.3. Proof of the DFT for the Sum of Driving and Nonconservative EP

Let us define Σs := Σd + Σnc as the sum of the driving and nonconservative EP contributions.
A straightforward calculation leads from (32) to the DFT for Σs, Equation (33):

Pt(Σs) =
∫

dΣddΣnc Pt(Σd, Σnc) δ (Σs − Σd − Σnc) =
∫

dΣd Pt(Σd, Σs − Σd)

= exp Σs
∫

dΣd P†
t (−Σd, Σd − Σs) = P†

t (−Σs) exp Σs.
(A28)

Appendix A.4. Proof of the IFT

We now prove the IFT (34) using the MGF technique developed in Reference [12]. We have already
mentioned that the dynamics (A12) does not describe a stochastic process, since the normalization is
not preserved. However, for qd = qnc = 1, the biased generator (A13) can be written as:

Wnm(1, 1) =
[
∑ewe pref

o(e)
{

δn,o(e)δm,t(e) − δn,mδm,o(e)
}
+ dt pref

n δn,m

] 1
pref

m
, (A29)
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from which it readily follows that

dt |pref〉 =W(1, 1) |pref〉 (A30)

viz. pref
n is the solution of the biased dynamics (A12) for qd = qnc = 1. The normalization condition

thus demands that

1 = 〈1|Λt(1, 1)〉 =
∫ ∞
−∞dΣddΣnc exp {−Σd − Σnc} 〈1|Pt(Σd, Σnc)〉 ≡ 〈exp {−Σd − Σnc}〉, (A31)

which is the IFT in Equation (34). Note that we do not assume any specific property for pref
n in

this context.

Appendix B. Alternative Proofs of the DFT

We here show two alternative proofs of the DFT (32) which rely on the involution
property (37). For the nonadiabatic contribution, this property can be proved as follows. By time-reversing
Equation (27), τ → t− τ, we obtain

Σnc[nt; πt] =
∫ t

0 dτ Aref
e (πτ) je(τ) =

∫ t
0 dτ Aref

e (πt−τ) je(t− τ). (A32)

Since Aref
e is solely determined by the state of protocol at each instant of time, the reference

affinities correspond to those of the backward process, Aref
e (πt−τ) = Aref

e (π†
τ). Using the property that

je(t− τ) = j†−e(τ), see Equation (36), and Aref
e = −Aref

−e, we finally obtain

Σnc[nt; πt] = −
∫ t

0 dτ Aref
e (π†

τ) j† e(τ) = −Σnc[n†
t ; π†

t ]. (A33)

Concerning the driving contribution, Equation (30), we obtain

Σd[nt; πt] =
∫ t

0
dτ
[
dτψref

n (πτ)
]∣∣∣

n=nτ

=
∫ t

0
dτ
[
−dτψref

n (πt−τ)
]∣∣∣

n=nt−τ

. (A34)

It is here again crucial that ψref
n depends solely on the protocol value, so that ψref

n (πt−τ) = ψref
n (π†

τ).
Therefore,

Σd[nt; πt] = −
∫ t

0
dτ
[
dτψref

n (π†
τ)
]∣∣∣

n=n†
τ

= −Σd[n
†
t ; π†

t ]. (A35)

Appendix B.1. Alternative Proof 1

Inspired by Reference [16], we here use an alternative approach to derive the symmetry of the
MGF which underlies our DFT, Equation (A27). In terms of trajectory probabilities, the MGF (A11) can
be written as:

Λt(qd, qnc) =
∫
Dnt P[nt; πt] pref

n0
(π0) exp {−qdΣd[nt; πt]− qncΣnc[nt; πt]} . (A36)

Using the relation between the EP contributions and the stochastic trajectories in forward and
backward processes, Equation (35), we can recast the MGF into

Λt(qd, qnc) =
∫
Dnt P[n†

t ; π†
t ] pref

nt (πt) exp {(1− qd)Σd[nt; πt] + (1− qnc)Σnc[nt; πt]} , (A37)

so that using the property of involution, Equation (37), we get

Λt(qd, qnc) =
∫
Dnt P[n†

t ; π†
t ] pref

nt (πt) exp
{
− (1− qd)Σd[n

†
t ; π†

t ]− (1− qnc)Σnc[n†
t ; π†

t ]
}

. (A38)
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Hence, changing and renaming the integration variable, nt → n†
t , and using the fact that the

Jacobian determinant of this transformation is one, we finally get

Λt(qd, qnc) =
∫
Dnt P[nt; π†

t ] pref
nt (πt) exp

{
− (1− qd)Σd[nt; π†

t ]− (1− qnc)Σnc[nt; π†
t ]
}

= Λ†
t (1− qd, 1− qnc) ,

(A39)

which proves Equation (A27). With respect to the previous proof, this one is based on Equation (35) and
on the property of involution, which follow from the specifications of forward and backward processes.

Appendix B.2. Alternative Proof 2

The joint probability distribution Pt(Σd, Σnc) written in terms of trajectory probabilities,
Equation (22), reads

Pt(Σd, Σnc) =
∫
Dnt P[nt; πt] pref

n0
(π0) δ (Σd[nt; πt]− Σd) δ (Σnc[nt; πt]− Σnc) . (A40)

Using Equation (35) and then the involution property (37), we finally obtain the DFT (32):

Pt(Σd, Σnc) = exp {Σd + Σnc}
∫
Dnt P[n†

t ; π†
t ] pref

nt
(πt) δ (Σd[nt; πt]− Σd) δ (Σnc[nt; πt]− Σnc)

= exp {Σd + Σnc}
∫
Dnt P[n†

t ; π†
t ] pref

nt
(πt) δ

(
−Σd[n

†
t ; π†

t ]− Σd

)
δ
(
−Σnc[n†

t ; π†
t ]− Σnc

)
= exp {Σd + Σnc} P†

t (−Σd,−Σnc).

(A41)

Appendix C. Adiabatic and Nonadiabatic Contributions

We now prove that both the adiabatic and nonadiabatic EP rates are non-negative. Concerning
the adiabatic contribution, using the log-inequality, − ln x ≥ 1− x, one obtains

〈Σ̇a〉 = ∑
e

we po(e) ln
we pss

o(e)

w−e pss
o(−e)

≥∑
e

we po(e)

[
1−

w−e pss
o(−e)

we pss
o(e)

]

= ∑
e

[
we pss

o(e) − w−e pss
o(−e)

] po(e)
pss
o(e)

= ∑
e,n

De
nwe pss

o(e)

[
− pn

pss
n

]
= 0.

(A42)

The last equality follows from the definition of steady-state PMF, Equation (43). For the
nonadiabatic, instead, using the same inequality and similar algebraic steps, one obtains:

〈Σ̇na〉 = ∑
e

we po(e) ln
po(e)pss

o(−e)

pss
o(e)po(−e)

≥∑
e

we po(e)

[
1−

pss
o(e)po(−e)

po(e)pss
o(−e)

]

= ∑
e

[
we pss

o(e) − w−e pss
o(−e)

] po(e)
pss
o(e)

= 0.
(A43)

Appendix D. Proofs of the DFTs for the Adiabatic and Driving EP Contributions

We here prove the DFTs in Equations (46) and (47) using the same MGF technique described in
Appendix A.

Appendix D.1. Proof of the DFT for the Adiabatic Contribution

The biased generator ruling the sole adiabatic term reads:

Wnm(qa) = ∑ewe

{
exp {−qa Ass

e } δn,t(e)δm,o(e) − δn,mδm,o(e)

}
. (A44)
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It satisfies the following symmetry:

W(qa) = Ŵ(1− qa), (A45)

where Ŵ(qa) is the biased generator of the fictitious dynamics ruled by the rates in Equation (45).
Crucially, pss

n is also the steady state of this dynamics:

∑eDn
e ŵe pss

o(e) = ∑m ∑eŵe

{
δn,t(e)δm,o(e) − δn,mδm,o(e)

}
pss

m = 0 , for all n. (A46)

This fact guarantees that the escape rates of the fictitious dynamics coincide with those of the
original ones:

−∑eŵeδn,mδm,o(e) = −∑eweδn,mδm,o(e) , for all n. (A47)

We can now proceed to prove the FT (46):

Λt(qa) = 〈1|Λt(qa)〉 = 〈1|Ut(qa)|p〉 = 〈1|T+ exp
{∫ t

0 dτWτ(qa)
}
|p〉

= 〈1|T+ exp
{∫ t

0 dτ Ŵτ(1− qa)
}
|p〉 .

(A48)

In the last equality, we made use of the symmetry in Equation (A45). Following the same
mathematical steps backward, we readily get

Λt(qa) = Λ̂t(1− qa), (A49)

from which the DFT in Equation (46) ensues.

Appendix D.2. Proof of the DFT for the Driving Contribution

Concerning the DFT of the driving term, Equation (47), the generator of the related biased
dynamics reads:

Wnm(qd) = ∑ewe

{
δn,t(e)δm,o(e) − δn,mδm,o(e)

}
− qddtψ

ss
m δn,m, (A50)

and it satisfies the following symmetry:

ŴT
t (qd, qnc) = P−1

t Wt(qd, 1− qnc)Pt, (A51)

where Pt := diag {exp−ψss
m}. The finite-time DFT ensues when following the mathematical steps of

the main proof and using Equation (A51) at the step at Equation (A20).

References

1. Harris, R.J.; Schütz, G.M. Fluctuation theorems for stochastic dynamics. J. Stat. Mech. Theor. Exp. 2007, 7,
P07020. [CrossRef]

2. Esposito, M.; Harbola, U.; Mukamel, S. Nonequilibrium fluctuations, fluctuation theorems, and counting
statistics in quantum systems. Rev. Mod. Phys. 2009, 81, 1665–1702. [CrossRef]

3. Jarzynski, C. Equalities and Inequalities: Irreversibility and the Second Law of Thermodynamics at the
Nanoscale. Annu. Rev. Condens. Matter Phys. 2011, 2, 329–351. [CrossRef]

4. Campisi, M.; Hänggi, P.; Talkner, P. Colloquium: Quantum fluctuation relations: Foundations and
applications. Rev. Mod. Phys. 2011, 83, 771–791. [CrossRef]

5. Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012,
75, 126001. [CrossRef] [PubMed]

6. Van den Broeck, C.; Esposito, M. Ensemble and trajectory thermodynamics: A brief introduction. Phys. A
Stat. Mech. Appl. 2015, 418, 6–16. [CrossRef]

http://dx.doi.org/10.1088/1742-5468/2007/07/P07020
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140506
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://www.ncbi.nlm.nih.gov/pubmed/23168354
http://dx.doi.org/10.1016/j.physa.2014.04.035


Entropy 2018, 20, 635 26 of 27

7. Ciliberto, S. Experiments in Stochastic Thermodynamics: Short History and Perspectives. Phys. Rev. X 2017,
7, 021051. [CrossRef]

8. Chetrite, R.; Gupta, S. Two Refreshing Views of Fluctuation Theorems through Kinematics Elements and
Exponential Martingale. J. Stat. Phys. 2011, 143, 543. [CrossRef]

9. Pérez-Espigares, C.; Kolton, A.B.; Kurchan, J. Infinite family of second-law-like inequalities. Phys. Rev. E
2012, 85, 031135. [CrossRef] [PubMed]

10. Verley, G.; Chétrite, R.; Lacoste, D. Inequalities Generalizing the Second Law of Thermodynamics for
Transitions between Nonstationary States. Phys. Rev. Lett. 2012, 108, 120601. [CrossRef] [PubMed]

11. Baiesi, M.; Falasco, G. Inflow rate, a time-symmetric observable obeying fluctuation relations. Phys. Rev. E
2015, 92, 042162. [CrossRef] [PubMed]

12. Esposito, M.; Harbola, U.; Mukamel, S. Entropy fluctuation theorems in driven open systems: Application
to electron counting statistics. Phys. Rev. E 2007, 76, 031132. [CrossRef] [PubMed]

13. Polettini, M. Cycle/Cocycle Oblique Projections on Oriented Graphs. Lett. Math. Phys. 2014, 105, 89–107.
[CrossRef]

14. Rao, R.; Esposito, M. Conservation laws shape dissipation. New J. Phys. 2018, 20, 023007. [CrossRef]
15. Schnakenberg, J. Network theory of microscopic and macroscopic behavior of master equation systems.

Rev. Mod. Phys. 1976, 48, 571–585. [CrossRef]
16. García-García, R.; Domínguez, D.; Lecomte, V.; Kolton, A.B. Unifying approach for fluctuation theorems

from joint probability distributions. Phys. Rev. E 2010, 82, 030104. [CrossRef] [PubMed]
17. Vaikuntanathan, S.; Jarzynski, C. Dissipation and lag in irreversible processes. Europhys. Lett. 2009, 87, 60005.

[CrossRef]
18. Seifert, U. Entropy Production along a Stochastic Trajectory and an Integral Fluctuation Theorem.

Phys. Rev. Lett. 2005, 95, 040602. [CrossRef] [PubMed]
19. Polettini, M. Nonequilibrium thermodynamics as a gauge theory. Europhys. Lett. 2012, 97, 30003. [CrossRef]
20. Garrahan, J.P. Classical stochastic dynamics and continuous matrix product states: Gauge transformations,

conditioned and driven processes, and equivalence of trajectory ensembles. J. Stat. Mech. Theory Exp. 2016,
2016, 073208. [CrossRef]

21. Esposito, M.; Van den Broeck, C. Three Detailed Fluctuation Theorems. Phys. Rev. Lett. 2010, 104, 090601.
[CrossRef] [PubMed]

22. Esposito, M.; Van den Broeck, C. Three faces of the second law. I. Master equation formulation.
Phys. Rev. E 2010, 82, 011143. [CrossRef] [PubMed]

23. Ge, H.; Qian, H. Physical origins of entropy production, free energy dissipation, and their mathematical
representations. Phys. Rev. E 2010, 81, 051133. [CrossRef] [PubMed]

24. García-García, R.; Lecomte, V.; Kolton, A.B.; Domínguez, D. Joint probability distributions and fluctuation
theorems. J. Stat. Mech. Theor. Exp. 2012, 2012, P02009. [CrossRef]

25. Crooks, G.E. Nonequilibrium Measurements of Free Energy Differences for Microscopically Reversible
Markovian Systems. J. Stat. Phys. 1998, 90, 1481–1487. [CrossRef]

26. Crooks, G.E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy
differences. Phys. Rev. E 1999, 60, 2721–2726. [CrossRef]

27. Crooks, G.E. Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 2000,
61, 2361–2366. [CrossRef]

28. Jarzynski, C. Equilibrium free-energy differences from nonequilibrium measurements: A master-equation
approach. Phys. Rev. E 1997, 56, 5018–5035. [CrossRef]

29. Speck, T.; Seifert, U. Integral fluctuation theorem for the housekeeping heat. J. Phys. A Math. Gen. 2005,
38, L581. [CrossRef]

30. Hatano, T.; Sasa, S.I. Steady-State Thermodynamics of Langevin Systems. Phys. Rev. Lett. 2001, 86, 3463–3466.
[CrossRef] [PubMed]

31. Knauer, U. Algebraic Graph Theory: Morphisms, Monoids and Matrices; Walter de Gruyter: Berlin, Germany,
2011; Volume 41.

32. Kolmogoroff, A. Zur Theorie der Markoffschen Ketten. Math. Ann. 1936, 112, 155–160. [CrossRef]
33. Kelly, F.P. Reversibility and Stochastic Networks; John Wiley & Sons: New York, NY, USA, 1979.
34. Polettini, M.; Esposito, M. Transient fluctuation theorems for the currents and initial equilibrium ensembles.

J. Stat. Mech. Theor. Exp. 2014, 2014, P10033. [CrossRef]

http://dx.doi.org/10.1103/PhysRevX.7.021051
http://dx.doi.org/10.1007/s10955-011-0184-0
http://dx.doi.org/10.1103/PhysRevE.85.031135
http://www.ncbi.nlm.nih.gov/pubmed/22587066
http://dx.doi.org/10.1103/PhysRevLett.108.120601
http://www.ncbi.nlm.nih.gov/pubmed/22540564
http://dx.doi.org/10.1103/PhysRevE.92.042162
http://www.ncbi.nlm.nih.gov/pubmed/26565223
http://dx.doi.org/10.1103/PhysRevE.76.031132
http://www.ncbi.nlm.nih.gov/pubmed/17930224
http://dx.doi.org/10.1007/s11005-014-0732-z
http://dx.doi.org/10.1088/1367-2630/aaa15f
http://dx.doi.org/10.1103/RevModPhys.48.571
http://dx.doi.org/10.1103/PhysRevE.82.030104
http://www.ncbi.nlm.nih.gov/pubmed/21230014
http://dx.doi.org/10.1209/0295-5075/87/60005
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://www.ncbi.nlm.nih.gov/pubmed/16090792
http://dx.doi.org/10.1209/0295-5075/97/30003
http://dx.doi.org/10.1088/1742-5468/2016/07/073208
http://dx.doi.org/10.1103/PhysRevLett.104.090601
http://www.ncbi.nlm.nih.gov/pubmed/20366974
http://dx.doi.org/10.1103/PhysRevE.82.011143
http://www.ncbi.nlm.nih.gov/pubmed/20866601
http://dx.doi.org/10.1103/PhysRevE.81.051133
http://www.ncbi.nlm.nih.gov/pubmed/20866211
http://dx.doi.org/10.1088/1742-5468/2012/02/P02009
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.61.2361
http://dx.doi.org/10.1103/PhysRevE.56.5018
http://dx.doi.org/10.1088/0305-4470/38/34/L03
http://dx.doi.org/10.1103/PhysRevLett.86.3463
http://www.ncbi.nlm.nih.gov/pubmed/11327999
http://dx.doi.org/10.1007/BF01565412
http://dx.doi.org/10.1088/1742-5468/2014/10/P10033


Entropy 2018, 20, 635 27 of 27

35. Andrieux, D.; Gaspard, P. Fluctuation Theorem for Currents and Schnakenberg Network Theory.
J. Stat. Phys. 2007, 127, 107–131. [CrossRef]

36. Schmiedl, T.; Seifert, U. Stochastic thermodynamics of chemical reaction networks. J. Chem. Phys. 2007,
126, 044101. [CrossRef] [PubMed]

37. Rao, R.; Esposito, M. Conservation Laws and Work Fluctuation Relations in Chemical Reaction Networks.
2018. Available online: https://arxiv.org/abs/1805.12077 (accessed on 22 August 2018).

38. Polettini, M.; Bulnes Cuetara, G.; Esposito, M. Conservation laws and symmetries in stochastic
thermodynamics. Phys. Rev. E 2016, 94, 052117. [CrossRef] [PubMed]

39. Callen, H. Thermodynamics and an Introduction to Thermostatistics; John Wiley & Sons: New York, NY,
USA, 1985.

40. Esposito, M. Stochastic thermodynamics under coarse graining. Phys. Rev. E 2012, 85, 041125. [CrossRef]
[PubMed]

41. Sánchez, R.; Büttiker, M. Detection of single-electron heat transfer statistics. Europhys. Lett. 2012, 100, 47008.
[CrossRef]

42. Strasberg, P.; Schaller, G.; Brandes, T.; Esposito, M. Thermodynamics of a Physical Model Implementing a
Maxwell Demon. Phys. Rev. Lett. 2013, 110, 040601. [CrossRef] [PubMed]

43. Thierschmann, H.; Sánchez, R.; Sothmann, B.; Arnold, F.; Heyn, C.; Hansen, W.; Buhmann, H.; Molenkamp,
L.W. Three-terminal energy harvester with coupled quantum dots. Nat. Nanotechnol. 2015, 10, 854–858.
[CrossRef] [PubMed]

44. Peliti, L. Statistical Mechanics in a Nutshell; Princeton University Press: Princeton, NJ, USA, 2011.
45. Polettini, M.; Esposito, M. Effective Thermodynamics for a Marginal Observer. Phys. Rev. Lett. 2017,

119, 240601. [CrossRef] [PubMed]
46. Polettini, M.; Esposito, M. Effective Fluctuation and Response Theory. 2018. Available online: https:

//arxiv.org/abs/1803.03552 (accessed on 22 August 2018).
47. Bulnes Cuetara, G.; Esposito, M.; Imparato, A. Exact fluctuation theorem without ensemble quantities.

Phys. Rev. E 2014, 89, 052119. [CrossRef] [PubMed]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10955-006-9233-5
http://dx.doi.org/10.1063/1.2428297
http://www.ncbi.nlm.nih.gov/pubmed/17286456
https://arxiv.org/abs/1805.12077
http://dx.doi.org/10.1103/PhysRevE.94.052117
http://www.ncbi.nlm.nih.gov/pubmed/27967081
http://dx.doi.org/10.1103/PhysRevE.85.041125
http://www.ncbi.nlm.nih.gov/pubmed/22680437
http://dx.doi.org/10.1209/0295-5075/100/47008
http://dx.doi.org/10.1103/PhysRevLett.110.040601
http://www.ncbi.nlm.nih.gov/pubmed/25166147
http://dx.doi.org/10.1038/nnano.2015.176
http://www.ncbi.nlm.nih.gov/pubmed/26280407
http://dx.doi.org/10.1103/PhysRevLett.119.240601
http://www.ncbi.nlm.nih.gov/pubmed/29286715
https://arxiv.org/abs/1803.03552
https://arxiv.org/abs/1803.03552
http://dx.doi.org/10.1103/PhysRevE.89.052119
http://www.ncbi.nlm.nih.gov/pubmed/25353751
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Markov Jump Process
	General Results
	EP Decomposition at the Ensemble Average Level
	EP Decomposition at the Trajectory Level
	Fluctuation Theorems
	EP Fluctuations
	A Gauge Theory Perspective

	Adiabatic–Nonadiabatic Decomposition
	Cycle–Cocycle Decomposition
	Stochastic Thermodynamics
	System–Reservoirs Decomposition
	Conservative–Nonconservative Decomposition
	Conclusions
	Moment Generating Function Dynamics and Proofs of the FTs
	MGF Dynamics
	Proof of the DFT
	Proof of the DFT for the Sum of Driving and Nonconservative EP
	Proof of the IFT

	Alternative Proofs of the DFT
	Alternative Proof 1
	Alternative Proof 2

	Adiabatic and Nonadiabatic Contributions
	Proofs of the DFTs for the Adiabatic and Driving EP Contributions
	Proof of the DFT for the Adiabatic Contribution
	Proof of the DFT for the Driving Contribution

	References

