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Abstract. Boolean masking is an effective side-channel countermeasure
that consists in splitting each sensitive variable into two or more shares
which are carefully manipulated to avoid leakage of the sensitive variable.
The best known expressions for Boolean masking of bitwise operations
are relatively compact, but even a small improvement of these expres-
sions can significantly reduce the performance penalty of more complex
masked operations such as modular addition on Boolean shares or of
masked ciphers. In this paper, we present and evaluate new secure ex-
pressions for performing bitwise operations on Boolean shares. To this
end, we describe an algorithm for efficient search of expressions that have
an optimal cost in number of elementary operations. We show that bit-
wise AND and OR on Boolean shares can be performed using less instruc-
tions than the best known expressions. More importantly, our expressions
do no require additional random values as the best known expressions
do. We apply our new expressions to the masked addition/subtraction
on Boolean shares based on the Kogge-Stone adder and we report an
improvement of the execution time between 14% and 19%. Then, we
compare the efficiency of first-order masked implementations of three
lightweight block ciphers on an ARM Cortex-M3 to determine which
design strategies are most suitable for efficient masking. All our masked
implementations passed the t-test evaluation and thus are deemed secure
against first-order side-channel attacks.
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1 Introduction

The Internet of Things (IoT) is one of the technical revolutions of our time,
with many IoT devices being deployed every day to create a global network of
smart objects. According to Gartner, 8.4 billion connected things will be in use
worldwide by the end of 2017 [14]. From 2018 onwards, Gartner forecasts that
devices such as those targeted at smart buildings (LED lighting, HVAC, and
physical security systems) will have the biggest market share [14]. In light of the
very recent security vulnerabilities [8, 24] discovered in such devices, immediate
action is required to prevent large-scale security incidents similar to the Mirai
botnet [1].
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The attack surface of IoT devices is considerably larger than the attack sur-
face of classical Internet-connected systems due to the various use cases these
gadgets, sensors, and actuators are built for. Most of the IoT systems are charac-
terized by low physical security, with devices being deployed in easily accessible
places. As a consequence, attack vectors that exploit these weaknesses came to
light. Side-channel attacks, such as EM and power analysis attacks, fall in this
category of attack vectors that require physical proximity to the target system.
If the target system uses an unprotected implementation of a cryptographic al-
gorithm, the adversary can determine the secret key used by the system from the
leakage generated during the execution of the algorithm. Hence, countermeasures
against side-channel attacks are mandatory for the security of IoT devices.

There are two main categories of countermeasures against side-channel at-
tacks: masking and hiding [18]. One of the main advantages of masking over
hiding is that the security of masking schemes can be proved under certain as-
sumptions on the device leakage model and the attacker capabilities [17]. How-
ever, if the masking scheme is not correctly implemented, the implementation
can leak and therefore it is not secure against side-channel attacks [4, 21].

Boolean masking is one of the most widely used masking schemes. An (n−1)-
th order Boolean masking scheme with n ≥ 2 is based on the principle of secret
sharing, splitting each variable x into at least n shares xi such that x = x1 ⊕
x2⊕ . . . xn. Then, the protected algorithm processes the shares xi in such a way
that no information about the sensitive value x can be learned by an adversary
which can probe up to n− 1 wires. Yet, an (n− 1)-th order masking scheme can
be broken with an n-th order attack. The complexity of a such an attack grows
exponentially with the number of shares since the attacker has to combine n
points to reconstruct the leakage of the sensitive variable [7].

There are two main requirements an implementation of a cryptographic algo-
rithm to be deployed in the IoT has to satisfy. On the one hand, the implemen-
tation must be lightweight (i.e. consume few resources) because of the limited
computational resources of embedded devices for the IoT. On the other hand,
the implementation must be secure against side-channel attacks given the attack
surface specific to the IoT. Most implementations of the existing lightweight ci-
phers do not satisfy the second requirement, either because the cipher was not
designed to facilitate masking, or because the best existing masking schemes
add significant performance penalties to the unprotected implementation of the
cipher. Therefore, there is a need for more efficient masking schemes. Any im-
provement of the existing masking schemes brings us closer to the goal of a
secure IoT.

Conceptually, Boolean masking of a block cipher is done by replacing each
unprotected operation by its masked counterpart. The most common operations
used by lightweight block ciphers are logical operations (NOT, AND, OR, XOR),
rotations, and modular addition/subtraction. Masked NOT is equivalent to the
negation of a single share, while masked XOR and rotations can be realized
by simply applying the operation to each pair of shares independently. To our
knowledge, the best known expression for first-order Boolean masking of bitwise
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AND is based on the Trichina AND gate [28]. The same expression of the masked
AND was latter used by Coron et al. in their algorithm for masked addition on
Boolean shares [9]. Since there is almost no reference to a masked OR expression
in the literature, one might try to derive such an expression by applying De
Morgan’s laws to the masked AND expression. Hence, we consider the derived
expression using De Morgan’s laws as the best known expression for masked
OR, although Baek and Noh [3] proposed a masked OR gate that requires six
elementary operations and no random value. The best known masked expressions
of AND and OR require an additional random value.

Groß [16] showed how to design and implement a general purpose arithmetic
logic unit using provably secure threshold implementations. He used an exhaus-
tive search to find the best expression for efficient masking of AND and OR in
hardware using three shares.

The best known algorithm for secure addition on Boolean shares is based on
the Kogge-Stone adder [9]. Won and Han [29] presented a method to improve
the execution time of this algorithm when the register size of the target micro-
controller is smaller than the operand size. Schneider et al. described efficient
hardware modules that perform addition on Boolean shares [26].

In this paper, we study the efficiency of Boolean masking for embedded IoT
devices. Although our work is not limited to a specific microprocessor architec-
ture, we evaluate our implementations on a 32-bit ARM Cortex-M3 since these
microcontrollers are widely used for IoT applications [22].

Our Contributions. Firstly, we present an algorithm for efficient search of
Boolean masking expressions (Section 2). Thanks to several algorithmic opti-
mizations, the search is very fast. As a second contribution, we propose concrete
expressions for Boolean masking of the AND and OR operations (Section 2.2).
Our expressions use fewer elementary operations than the best known expres-
sions in the literature. At the same time, unlike the best known expressions, our
expressions for secure AND and OR on Boolean shares do no require any random-
ness. Thirdly, we improve the Kogge-Stone algorithm for addition/subtraction on
Boolean shares [9] by using our masking expressions and by processing the shares
in a clever way that does not require any randomness (Section 3.1). When imple-
mented on an ARM Cortex-M3 processor (Section 4.1), the addition/subtraction
of 32-bit values using the new algorithm is between 14% and 19% faster than
similar implementations using the original algorithm [9]. Finally, we use our
Boolean masking expressions to write first-order masked implementations of
three lightweight block ciphers, namely Simon, Speck, and RECTANGLE (Sec-
tion 4.2). By comparing the performance figures of the masked and unmasked
implementations of the three ciphers, we learn which design strategies facilitate
efficient masked implementations.

All software presented in this paper will is placed in the public domain 1 to
support reproducibility of results and to maximize reusability.

1 https://github.com/cryptolu/ofom
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2 Search Algorithm

In this section we describe our algorithm for searching optimal masking expres-
sions. We start with a high-level description, then we dive into details. We give
a pseudocode of the full search algorithm. Finally, we provide the optimal ex-
pressions we found using the algorithm.

2.1 The Algorithm

The algorithm takes as input a set of variables representing the input shares, a set
of sensitive functions (i.e. functions that combine the shares of a sensitive value
and thus leak the sensitive value) and a target function; it outputs the shortest
sequences of operations required to compute the Boolean shares of the target
function. A sequence is represented as a tuple that contains all intermediate
terms of an expression in the order they are required to compute the expression.
Moreover, any single intermediate value computed in a sequence does not leak
any information about the sensitive functions. Multiple intermediate values may
be considered for higher-order masking.

At its core, the algorithm performs a breadth-first search with several cut-off
conditions. The functions are represented by their truth tables and are stored as
integers for efficiency reasons. Initially, there is only an empty sequence available.
The algorithm expands it into multiple sequences of length one. Afterwards, all
sequences of length one are expanded into sequences of length two and so on,
until the algorithm finds a sequence for which some of its intermediate values
are the Boolean shares of the target function. The search is illustrated in Fig. 1.

()variables: a, b, c, . . .

(a⊕ b)(¬a) . . .

cost = 0

(¬a,¬a⊕ b) (¬a,¬a⊕ c) . . . (¬a, a⊕ b) . . .

cost = 1

cost = 2

. . . . . . . . .

Fig. 1: High-level scheme of the search algorithm.

The core function of the algorithm is the extension step, where a given se-
quence is extended with one operation using all possible combinations to get the
extended sequences. The new operation may take as its inputs either variables of
the input shares or intermediate values computed in the current sequence. The
cut-off conditions used to reduce the complexity of the algorithm are described
next.
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1. Leakage test. For each new function, the algorithm checks if the new func-
tion leaks information about the sensitive functions. If the function is leaking,
the extended sequence is omitted and not considered anymore. In this way,
the search space is effectively reduced only to non-leaking functions. This
significantly improves the efficiency of the search algorithm and guarantees
that the resulting sequences do not leak.
The check is very efficient since it consists of performing a few bitwise opera-
tions on the truth tables and computing the Hamming weight. For example,
a non-constant function f leaks information about function k if and only if

HW(k ∧ f)

HW(f)
6= HW(k ∧ ¬f)

HW(¬f)
,

where HW(g) denotes the Hamming weight of the truth table of function g.
2. Ignoring the order of operations. For any sequence of operations, we

exclude all other sequences that compute the same set of intermediate func-
tions. Indeed, such sequences are equivalent in terms of extension, because
an extension depends only on the set of intermediate functions but not on
the way they are computed. From each such equivalence class we keep the
representative that the algorithm reaches first. Note that this condition also
excludes sequences that compute some function multiple times.
Due to this cut-off, we may miss some optimal sequences. More precisely,
from each such equivalence class we will preserve only one representative
sequence. Since we do not allow to compute the same function twice in a se-
quence, the representative will have the shortest length. Hence, the algorithm
will find at least one sequence of optimal length. If all optimal sequences are
required, the full equivalence class can be recovered from its representative.

3. Exploiting the symmetries of shares. The Boolean shares are naturally
symmetric: permuting the shares of a masked value does not change the
masked value. Moreover, when we are masking a symmetric operation (e.g.
AND, OR), swapping the input operands in the whole circuit will still give a
correct circuit. We can exploit these symmetries and explore only one of the
equivalent sequences, similarly to the cut-off condition 2. Again, the same
reasoning shows that we do not miss an optimal sequence.

The pseudocode of the search algorithm is given in Algorithm 1. For simplic-
ity and efficiency reasons, the algorithm keeps track only of computed functions
but not of the applied operations. After the optimal function sequences are found,
it is easy to recover the corresponding expressions. This approach also reduces
the memory usage of the algorithm.

Optimality. We would like to stress that the algorithm is designed to find
optimal expressions, not just to improve the existing ones. It is easy to show that
the algorithm yields optimal expressions when it reaches the optimal cost level.
Any optimal expression has (at least one) non-leaking sequence of operations to
compute it. The algorithm explores all sequences except those omitted during
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Algorithm 1 Searching for the Optimal Shares

Require:
target function t : Fn

2 → F2; . e.g. t(x0, x1, x2, x3) = (x0 ⊕ x1) ∧ (x2 ⊕ x3)
number of output shares m;
set of sensitive functions K = {ki}, ki : Fn

2 → F2; . e.g. (x0 ⊕ x1), (x2 ⊕ x3), t
set of allowed operations O = {opi}, opi : F2

2 → F2

Ensure:
set of m functions S = {si}, si : Fn

2 → F2 such that
⊕

si∈S si = t;
optimal circuits computing all si without leaking information about the value of
any ki;

1: seqs0 ← {()} . empty sequence
2: visited← {()}
3: for cost := 1 to ∞ do
4: seqscost ← {}
5: for all seq ∈ seqscost−1 do
6: for all seq′ ∈ Extensions(seq) do
7: if ShouldKeepSequence(seq′) then
8: seqscost ← seqscost ∪ {seq′}
9: if ContainsShares(seq′, t) then . impl. omitted for brevity

10: yield seq′

11: end if
12: end if
13: visited← visited ∪ {set(seq′)}
14: end for
15: end for
16: end for
17: function Extensions(seq)
18: for all a, b ∈ seq ∪ {x0, x1, . . . , xn−1} do
19: for all op ∈ O do
20: yield seq||op(a, b)
21: end for
22: end for
23: end function
24: function ShouldKeepSequence(seq)
25: if Leaks(last(seq),K) then . Cut-off 1
26: return False
27: end if
28: seq ← SymmetryRepresentative(seq) . impl. omitted for brevity; Cut-off 3
29: if set(seq) ∈ visited then . Cut-off 2, 3
30: return False
31: end if
32: return True
33: end function
34: function Leaks(f,K)
35: for all k ∈ K do
36: if HW(k ∧ ¬f)HW(f) 6= HW(k ∧ f)HW(¬f) then . fraction equality check
37: return True
38: end if
39: end for
40: return False
41: end function
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cut-offs. The first cut-off condition reduces the search to non-leaking sequences.
It is easy to see that the effect of the other two cut-off conditions can be jointly
seen as collapsing large equivalence classes into single representatives. Due to the
breadth-first nature of the algorithm, the representative chosen by the algorithm
has minimum cost.

Note that it is important to search for sequences of operations instead of
expressions. Expressions may contain repeating terms and this reduces the com-
putational cost. Moreover, this effect spreads over the output shares as well:
they also may have common terms. Because of this effect, it is unclear how long
are the expressions one has to consider to find a provably optimal expression.
Searching for sequences of operations solves this problem at the cost of increas-
ing the search space. The described cut-off conditions aim to narrow this gap
and bring the algorithm to feasible complexities.

Instruction Set Architecture (ISA). We distinguish between two classes of
IoT devices depending on the operations supported by the instruction set archi-
tecture (ISA): basic and enhanced devices. Most IoT devices have instructions
only for the following bitwise logical operations: NOT, AND, OR, and XOR. We
call these architectures basic ISAs. In addition to these operations, the enhanced
ISAs have dedicated instructions for other bitwise logical operations, such as
AND NOT or OR NOT. For example, the instruction set of ARM Cortex-M3
includes the bic (AND NOT) and orn (OR NOT) instructions that perform two
basic bitwise logical operations in a single clock cycle instead of two clock cycles.
Most microcontrollers execute all logical instructions in a single clock cycle.

Leakage Model. The power consumption of most microcontrollers is propor-
tional to the number of bits that are set in the processed sensitive value [18].
Therefore, the Hamming weight power model is a reliable method for modeling
the leakage of a sensitive variable. In addition to the bit-level leakage verification
performed by the search algorithm, we performed a t-test leakage assessment [15]
for each valid expression returned by the algorithm to confirm the absence of
any leakage.

Extension to Higher-Order Masking. Our algorithm can naturally be ex-
tended to search expressions for higher-order masking. However, further opti-
mizations might be required to ensure that the algorithm scales well for higher
values of the number of shares.

2.2 Results

We have implemented the algorithm in Python language and ran it using the fast
PyPy interpreter [11]. We searched for expressions for masked AND (SecAnd)
and masked OR (SecOr). For example, to search for masked AND on a basic
platform we used the following inputs to the algorithm:
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Table 1: Expressions, number of randoms (Rand) and number of operations
(Cost) for different secure operations. Basic cost gives the number of elementary
operations, while the ARM cost gives the number of instructions. Expressions
in parentheses have priority and operations are executed from left to right.

Source Operation Expression Rand
Cost

Basic ARM

best known

SecAnd
z1 = r

1 8 8
z2 = z1 ⊕ (x1 ∧ y1)⊕ (x1 ∧ y2)⊕

(x2 ∧ y1)⊕ (x2 ∧ y2)

SecOr
z1 = r

1 11 10
z2 = ¬z1 ⊕ (x1 ∧ y1)⊕ (x1 ∧ ¬y2)⊕

(¬x2 ∧ y1)⊕ (¬x2 ∧ ¬y2)

our
SecAnd

z1 = (x1 ∧ y1)⊕ (x1 ∨ ¬y2)
0 7 6

z2 = (x2 ∧ y1)⊕ (x2 ∨ ¬y2)

SecOr
z1 = (x1 ∧ y1)⊕ (x1 ∨ y2)

0 6 6
z2 = (x2 ∨ y1)⊕ (x2 ∧ y2)

1. target function t(x0, x1, x2, x3) = (x0 ⊕ x1) ∧ (x2 ⊕ x3);
2. number of output shares m = 2;
3. set of sensitive functions K = {s0, s1, s0 ∧ s1,¬s0 ∧ s1, s0 ∧¬s1,¬s0 ∧¬s1, },

where s0 = x0 ⊕ x1, s1 = x2 ⊕ x3;
4. set of allowed operations O = {∧,∨,⊕,¬}.

The hardest target was the search for SecAnd limited to 6 enhanced ISA
operations which took 30 minutes and 10 GB RAM on a laptop. The optimal
expressions for masked SecOr use 6 instructions on both platforms, while optimal
expressions for SecAnd have a cost of 7 on a basic device and 6 on ARM.

The optimal expressions for SecOr and SecAnd using basic instructions are
unique up to symmetries of the shares, whereas for ARM there are 48 different
optimal expressions for SecAnd and 50 different optimal expressions for SecOr.
The unique optimal expressions for a basic architecture are actually included in
the optimal expressions for the ARM architecture, which makes them universal.
A comparison of these two expressions with the best known expressions in the
literature is given in Table 1. Besides using less operations than the best known
expressions in the literature, our optimal expressions do not require a random
value. Thanks to these two properties, our expressions have a significant perfor-
mance advantage over the best known ones.

3 Applications

3.1 Modular Addition and Subtraction

Coron et al. [9] proposed a logarithmic-time algorithm for modular addition on
Boolean shares based on the Kogge-Stone adder. Their algorithm for modular
addition uses the following three secure operations: SecAnd, SecXor, and SecShift.
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The expression of SecAnd uses 8 elementary operations, the one of SecXor needs
2 elementary operations, while SecShift can be performed using 4 elementary
operations. Algorithms for all these operations are presented in [9].

Although not described in the original paper [9], the algorithm for modular
subtraction can be obtained from the algorithm for modular addition on Boolean
shares by making several changes. Namely, the SecShift operations from lines 7
and 15 of [9, Algorithm 6] have to be replaced by SecShiftFill (secure operation for
shift to the left by n followed by OR of 2n−1). Similarly, SecXor operations from
lines 9 and 17 of [9, Algorithm 6] must be replaced by SecOr. These changes affect
the performance of the modular subtraction algorithm since operations with a
lower cost are replaced by operations with a higher cost.

Algorithm 2 Improved Kogge-Stone Masked Addition

Require: x1, x2, y1, y2 ∈ {0, 1}k such that x = x1 ⊕ x2 and y = y1 ⊕ y2
Ensure: z1, z2 such that z = z1 ⊕ z2 = (x + y) mod 2k

1: p1, p2 ← SecXor(x1, x2, y1, y2)
2: g1, g2 ← SecAnd(x1, x2, y1, y2)
3: g1, g2 ←

(
(g1 ⊕ x2)⊕ g2, x2

)
4: n← max

(
dlog2(k − 1)e, 1

)
5: for i := 1 to n− 1 do
6: h1, h2 ← SecShift(g1, g2, 2

i−1)
7: u1, u2 ← SecAnd(p1, p2, h1, h2)
8: g1, g2 ← SecXor(g1, g2, u1, u2)
9: h1, h2 ← SecShift(p1, p2, 2

i−1)
10: h1, h2 ←

(
(h1 ⊕ x2)⊕ h2, x2

)
11: p1, p2 ← SecAnd(p1, p2, h1, h2)
12: p1, p2 ←

(
(p1 ⊕ y2)⊕ p2, y2

)
13: end for
14: h1, h2 ← SecShift(g1, g2, 2

n−1)
15: u1, u2 ← SecAnd(p1, p2, h1, h2)
16: g1, g2 ← SecXor(g1, g2, u1, u2)
17: z1, z2 ← SecXor(y1, y2, x1, x2)
18: z1, z2 ←

((
z1 ⊕ (g1 � 1)

)
⊕ (x2 � 1), y2

)

One can improve the algorithms for modular addition/subtraction based on
the Kogge-Stone adder by simply replacing the original expressions for SecAnd
and SecOr with our optimal expressions. Yet, the algorithm can be improved
further by replacing the expression of the SecShift operation, which requires a
random variable, by a more efficient expression that does not require any ran-
domness. Hence, the new versions of the algorithm do not require any random-
ness at all. The improved algorithm for addition on Boolean shares is described
in Algorithm 2, while the analogous algorithm for subtraction is presented in
Algorithm 3. It is important to note that lines 3, 10, and 12 from Algorithm 2
are required to prevent composition of operations that otherwise will leak. Simi-
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larly, lines 4, 10, 12, 14, and 19 of Algorithm 3 avoid composing operations that
leak.

Algorithm 3 Improved Kogge-Stone Masked Subtraction

Require: x1, x2, y1, y2 ∈ {0, 1}k such that x = x1 ⊕ x2 and y = y1 ⊕ y2
Ensure: z1, z2 such that z = z1 ⊕ z2 = (x− y) mod 2k

1: y1, y2 ← SecNot(y1, y2)
2: p1, p2 ← SecXor(y1, y2, x1, x2)
3: g1, g2 ← SecAnd(x1, x2, y1, y2)
4: g1, g2 ←

(
(g1 ⊕ x2)⊕ g2, x2

)
5: n← max

(
dlog2(k − 1)e, 1

)
6: for i := 1 to n− 1 do
7: h1, h2 ← SecShiftFill(g1, g2, 2

i−1)
8: u1, u2 ← SecAnd(p1, p2, h1, h2)
9: g1, g2 ← SecOr(g1, g2, u1, u2)

10: g1, g2 ←
(
(g1 ⊕ x2)⊕ g2, x2

)
11: h1, h2 ← SecShift(p1, p2, 2

i−1)
12: h1, h2 ←

(
(h1 ⊕ x2)⊕ h2, x2

)
13: p1, p2 ← SecAnd(p1, p2, h1, h2)
14: p1, p2 ←

(
(p1 ⊕ y2)⊕ p2, y2

)
15: end for
16: h1, h2 ← SecShiftFill(g1, g2, 2

n−1)
17: u1, u2 ← SecAnd(p1, p2, h1, h2)
18: g1, g2 ← SecOr(g1, g2, u1, u2)
19: g1, g2 ←

(
(g1 ⊕ x2)⊕ g2, x2

)
20: z1, z2 ← SecXor(y1, y2, x1, x2)

21: z1 ←
(
z1 ⊕

(
(g1 � 1) ∨ 1

))
⊕ (x2 � 1)

22: z2 ← y2

Cost. A comparison between the cost of the secure expressions used by the
original version of the algorithm and the new expressions used by the improved
version of the algorithm is provided in Table 2. Based on these values, one can
compute the total cost of these algorithms for different architectures and make
an estimation of their performance for different values of the operand size k (see
Table 3).

Security. We evaluated the secure operations presented in this section, includ-
ing the two improved algorithms for addition and subtraction on Boolean shares,
against first-order attacks using Welch’s t-test [15]. Welch’s t-test is a fast and
robust way to verify the soundness of a masking scheme [12, 25]. To determine
if there is any leakage in our first-order implementations, we used a simple tool
similar to the ones described in [20,21,23]. Firstly, we validated the correctness
of our tool by performing evaluations against a set of masking schemes known

10



Table 2: Comparison of the number of instructions required to perform different
secure operations.

Platform Source
Cost

SecNot SecXor SecAnd SecOr SecShift SecShiftFill

Basic
best known 1 2 8 11 4 6
our 1 2 7 6 2 4

gain 0 0 1 5 2 2

ARM
best known 1 2 8 10 4 6
our 1 2 6 6 2 4

gain 0 0 2 4 2 2

Table 3: Cost and random numbers (Rand) required for Kogge-Stone addi-
tion/subtraction on Boolean shares for different values of the operand size k.
Basic cost gives the number of elementary operations, while the ARM cost gives
the number of instructions.

Operation Platform Expressions Rand k k = 8 k = 16 k = 32 k = 64

SecAdd

Basic
best known 2 28 · log2 k + 4 88 116 144 172
our 0 22 · log2 k + 6 72 94 116 138

gain 2 6 · log2 k − 2 16 22 28 34

ARM
best known 2 28 · log2 k + 4 88 116 144 172
our 0 22 · log2 k + 4 70 92 114 136

gain 2 6 · log2 k 18 24 30 36

SecSub

Basic
best known 2 41 · log2 k + 4 127 168 209 250
our 0 32 · log2 k + 6 102 134 166 198

gain 2 9 · log2 k − 2 25 34 43 52

ARM
best known 2 40 · log2 k + 4 124 164 204 244
our 0 30 · log2 k + 6 96 126 156 186

gain 2 10 · log2 k − 2 28 38 48 58

to be either secure or broken. Then, we carefully applied the t-test to avoid false
negatives [27]. All our secure implementations passed a set of fixed vs. random
evaluations with up to 106 traces using both Hamming weight and Hamming
distance models for the simulated leakage. See Appendix A for more details.

3.2 Other Applications

The optimal expressions for secure computation of AND and OR can be used to
mask more complex structures such as S-boxes. They can also be used to effi-
ciently mask ciphers that use only logical bitwise operations such as Simon [6],
as well as bit-sliced designs such as Noekeon [10], RECTANGLE [30], or Road-
RunneR [5]. In Section 4, we evaluate how these expressions can be applied to un-
protected implementations of several lightweight block ciphers and we determine
the performance penalty of the resulting first-order protected implementations.
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4 Implementations

In this section we describe our efficient implementations of several first-order
secure algorithms and block ciphers. All our implementations are written in as-
sembly language for a Cortex-M3 processor for two reasons. Firstly, we wanted
to avoid accidental leakages introduced by the transformations made by the
gcc compiler which is not optimized for masked implementations, but only for
efficiency [4]. On the other hand, when coding in assembly language, the imple-
menter has full control of the register allocation and the sequence of instructions
executed by the microcontroller. Hence, she can avoid combining instructions
and registers in a way that leaks [4, 21]. Secondly, we wanted to get a clear pic-
ture of the performance figures of our implementations in order to conduct a
fair comparison of the first-order implementations. Hence, the effort spent by a
programmer on a more demanding assembly implementation is paid off in the
end by a better (i.e. more secure and efficient) implementation.

In line with previous work, we do not include the cost of random number
generation for the implementations that need randomness since the cost of ran-
dom number generation is different from one device to the other and we want a
device-independent comparison. We report the execution time and the code size
for protected implementations that do not leak in the Hamming weight model.
The leakage of these implementations in the Hamming distance model can be
fixed with minor changes. These changes have a similar effect on the performance
of the implementations based on our expressions and the implementations based
on the best known expression.

4.1 Masked Addition

We implemented the original algorithms for addition and subtraction on Boolean
shares as well as the improved algorithms presented in this paper. For each
algorithm we wrote a straightforward implementation and an implementation
that unrolls the main loop of the Kogge-Stone adder. The execution time and
code size of our implementations are given in Table 4.

The improved algorithms are between 14% and 19% faster than the original
ones. At the same time, the code size of the improved algorithms is between
12% and 21% smaller than the code size of the original algorithms. Unlike the
original algorithms, which require two random values, the improved algorithms
do not require any random value. The generation of a 32-bit random number
takes between 37 cycles for a XorShift RNG [19] and 85 cycles for the built-
in TRNG [2]. Hence, the improved algorithms for addition and subtraction on
Boolean shares outperform the original algorithms in all categories: execution
time, code size, and required randomness.

4.2 Lightweight Block Ciphers

We selected the top-3 block ciphers that use a 64-bit block from the performance
evaluation conducted using the FELICS benchmarking framework [13] and we
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Table 4: Execution time and code size for secure addition and subtraction on
Boolean shares using the Kogge-Stone adder.

Impl. Expressions Rand
Time (cycles) Code size (bytes)

Addition Subtraction Addition Subtraction

rolled
best known 2 275 388 292 416
our 0 228 333 232 332

gain 2 47 (17%) 55 (14%) 60 (21%) 84 (20%)

unrolled
best known 2 203 296 544 812
our 0 173 241 480 692

gain 2 30 (15%) 55 (19%) 64 (12%) 120 (15%)

protected them against first-order attacks using the best known algorithms for
secure operations on Boolean shares as well as the ones introduced in this pa-
per. Besides their very lightweight software implementations, these three ciphers
(Speck, Simon, and RECTANGLE) have different design strategies. Hence,
they facilitate an analysis of the relationship between their design strategies and
the performance figures of their masked implementations.

Speck. Speck [6] is an ARX-based family of lightweight block ciphers designed
for performance in software. Nevertheless, all ciphers of this family perform very
well in hardware also. Speck-64/128 refers to the version of Speck characterized
by a 64-bit block, a 128-bit key, and 27 rounds. The round function of Speck-
64/128 uses only bitwise XOR, addition modulo 232, and rotations:

Rk(x, y) =
((

(x≫ 8)� y
)
⊕ k, (y≪ 3)⊕

(
(x≫ 8)� y

)
⊕ k

)
,

where x and y are the two 32-bit branches of a Feistel network.
While the unprotected implementation of Speck requires only four registers

in order to process the cipher’s state, the protected implementations need all
13 general-purpose registers of the Cortex-M3 microcontroller. Moreover, the
rolled implementations have to save the content of a register onto the stack at
the beginning of the secure addition/subtraction. The initial value of this register
is recovered at the end of the addition/subtraction operation. A pair of stack
operations (i.e. push and pop) adds 4 cycles to the total execution time of the
algorithm.

The implementations of Speck based on the improved algorithms for modu-
lar addition and subtraction on Boolean shares are faster and use less code space
than the implementations of Speck based on the original versions of the same
algorithms as can be seen in Table 5. When comparing the gain of the improved
expressions over the original ones for rolled and unrolled implementations, we
can see that the gain in the case of rolled implementations is higher than the
gain in the case of unrolled ones. For example, the gain of rolled decryption is
27%, while the gain of unrolled decryption is only 17%.
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Table 5: Execution time, code size and performance penalty factor for differ-
ent secure implementations of Speck-64/128. For each set of expressions (best
known, our) we wrote two implementations that correspond to the two imple-
mentation strategies of the Kogge-Stone adder (KSA): rolled/unrolled KSA.

Impl./Expr. Rand
Time (cycles) Code size (bytes) Penalty factor
Enc Dec Enc Dec Enc Dec

unprotected 0 318 530 44 52 1 1

rolled KSA/best known 2 7131 11368 340 488 22.42 21.44
rolled KSA/our 0 5686 8258 272 400 17.88 15.58

gain 2 1445 3110 68 88 4.54 5.86
% 21% 27% 20% 18%

unrolled KSA/best known 2 4945 7431 588 876 15.55 14.02
unrolled KSA/our 0 4666 6188 536 712 14.67 11.67

gain 2 279 1243 52 164 0.87 2.34
% 6% 17% 9% 19%

Simon. Simon [6] is a family of lightweight block ciphers designed primarily
for optimal performance in hardware, but its instances perform very good in
software as well. The round function of Simon uses only bitwise XOR, bitwise
AND, and rotations:

Rk(x, y) =
(
y ⊕ f(x)⊕ k, x

)
,

where f(x) = (x≪ 1) ∧ (x≪ 8) ⊕ (x≪ 2). Simon-64/128 is the instance of
Simon that processes a 64-bit block using a 128-bit key in 44 rounds.

The two protected implementations of Simon are very efficient since the
operations used by the cipher can be masked with a little impact on the ex-
ecution time and code size. The most costly operation is secure bitwise AND
which, depending on its expression, can be evaluated using 6 or 8 instructions.
The other secure operations require only 2 instructions each. The unprotected
implementation of Simon needs only four registers. The first-order protected
implementation based on the best known expression of AND requires ten regis-
ters, while the one based on our optimal expression of AND takes nine registers.
Consequently, the gain in execution time of the implementation based on the
improved expression of AND over the implementation based on the best known
expression of AND is modest (i.e. 5%). Nevertheless, the gain in code size is
about 25%. The results of these implementations is presented in Table 6.

RECTANGLE. RECTANGLE [30] is a block cipher designed to facilitate
lightweight and fast implementations, both in hardware and software, using
bit-slicing. RECTANGLE processes a 64-bit block in 25 rounds and supports
keys of 80 and 128 bits. We refer to the 128-bit version of RECTANGLE as
RECTANGLE-64/128. The cipher’s state is represented as a matrix of 4 × 16
bits. Each round of RECTANGLE uses three transformations: AddRoundKey (bit-
wise XOR), SubColumn (application of a 4-bit S-box to the state columns), and
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Table 6: Execution time, code size and performance penalty factor for different
secure implementations of Simon-64/128.

Impl./Expr. Rand
Time (cycles) Code size (bytes) Penalty factor
Enc Dec Enc Dec Enc Dec

unprotected 0 1068 1069 60 64 1 1

best known 1 1736 1737 152 156 1.62 1.62
our 0 1648 1649 136 140 1.54 1.54

gain 1 88 (5%) 88 (5%) 16 (27%) 16 (25%) 0.08 0.08

Table 7: Execution time, code size and performance penalty factor for different
secure implementations of RECTANGLE-64/128.

Impl./Expr. Rand
Time (cycles) Code size (bytes) Penalty factor
Enc Dec Enc Dec Enc Dec

unprotected 0 945 994 200 160 1 1

best known 1 3661 3422 632 444 3.87 3.44
our 0 2584 2954 564 372 2.73 2.97

gain 1 1077 (19%) 468 (14%) 68 (11%) 72 (16%) 1.13 0.47

ShiftRow (rotations of the state rows by 1, 12 and 13 bits). The S-box of RECT-
ANGLE can be described using a sequence of 12 basic logical instructions and
hence the SubColumn transformation can be implemented in a bit-sliced fashion.

The unprotected implementation of RECTANGLE requires seven registers
for encryption and eight for decryption. The protected implementations use all
available registers of the microcontroller and several pairs of stack operations
(i.e. push and pop). The protected implementation based on the best known
expressions uses five pairs of stack operations, while the one based on our optimal
expressions uses only three pairs for encryption and four pairs for decryption.
The stack operations are necessary because the protected implementations have
to keep track of more intermediate variables than they can fit into the registers
of the ARM microcontroller.

In summary, the implementation based on our optimal expressions uses less
instructions and less stack operations compared to the implementation based on
the best known expression. The performance figures given in Table 7 show that
the gain in execution time is 19% for encryption and 14% for decryption.

Comparison. When comparing the performance results of the unprotected im-
plementations of the three ciphers (see Fig. 2), one can see that Speck is the
fastest, followed by RECTANGLE and Simon; each of them takes about three
times more cycles than Speck. On the other hand, when comparing first-order
protected implementations, the implementations of Simon and RECTANGLE
take the lead, while the implementation of Speck is the last one. The perfor-
mance degradation of the first-order protected implementation of Speck stems
from the high overhead associated with masking modular addition (see Table 4).
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Fig. 2: Performance comparison of unprotected and first-order protected imple-
mentations of Speck, Simon, and RECTANGLE.

The protected implementation of RECTANGLE is roughly three times slower
than its unprotected implementation. Finally, the protected implementation of
Simon is only 54% slower than its unprotected implementation.

From this analysis, we learn that lightweight block ciphers that are very fast
in unprotected software implementations (e.g. Speck), might not be the most
suitable ones for first-order masking in software. A second key remark is that a
cipher that uses only bitwise operations can have an efficient first-order masked
implementation only if it has a small number of intermediate variables.

Discussion. Our implementations explored how far one can push the optimiza-
tion level in Boolean masking of various algorithms and ciphers. Consequently,
we lost the benefit of being able to provide strong security proofs for our imple-
mentations. In other words, one can insert a random value in our expressions for
masked AND and OR and they will still be a little bit more efficient than the
best known ones, but provably secure. On the other hand, if one removes the
randomness from the best know expressions for masked AND and OR, they will
leak. We kept the amount of randomness at a minimum level (i.e. one or two
random values for algorithms using the best known expressions and no random
for our expressions). In these settings, the composition problem (i.e. chaining
basic secure operations in an unsecure way) is similar for algorithms and ci-
phers masked using the previously best known expressions and our expressions.
Finally, we stress that we put a similar effort in all our implementations.

5 Conclusion

We described an efficient algorithm for searching of optimal Boolean masking
expressions. Then, we proposed optimal expressions for the first-order masking
of bitwise AND and OR. They require less elementary operations and no random
values compared to the best known expressions in the literature. Based on these
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optimal expressions, we presented an improved version of the algorithm for mod-
ular addition on Boolean shares proposed by Coron et al. [9]. We implemented
the original and improved algorithms for modular addition/subtraction of 32-bit
values on an ARM Cortex-M3. Our results show that the improved algorithm
is between 14% and 19% faster than the original algorithm of Coron et al. [9].
Finally, we used our optimal Boolean masking expressions to write first-order
protected implementations of three lightweight block ciphers, namely Simon,
Speck, and RECTANGLE. The evaluation of these implementations revealed
that ciphers with a simple structure, based solely on bitwise logical operations
and rotations, facilitate efficient software implementations of first-order masking.
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A Leakage Assessment

The tool we used to assess the security of our implementations against first-order
attacks is inspired from similar tools such as ELMO [20], ASCOLD [21], and the
one described in [23]. The simulated leakages are computed as follows. For each
register ri we store its previous value rj−1

i and its current value rji . At each

step j we dump the leakage as HW(rji ) or HD(rj−1
i , rji ) = HW(rj−1

i ⊕ rji ), where
HW(r) is the Hamming weight of r.

The result of the t-test applied to 106 simulated traces (using the HW model)
from our first-order protected implementation of Speck is exemplarily shown
in Fig. 3. Similar results for Simon and RECTANGLE are given in Fig. 4 and
Fig. 5, respectively. All results use our expressions to compute secure AND and
OR. We can see that the value of the t-statistic is inside the ±4.5 interval for
each point in time, which implies that the protected implementations are secure
against first-order attacks.
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Fig. 3: The result of the t-test applied to our implementation of Speck.

Fig. 4: The result of the t-test applied to our implementation of Simon

Fig. 5: The result of the t-test applied to our implementation of RECTANGLE.
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