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Abstract

In this dissertation, we explore how the interplay between transportation and mobile

networks manifests itself in mobile network billing and signaling data, and we show how

to use this data to estimate different transportation supply and demand models.

To perform the necessary simulation studies for this dissertation, we present a simula-

tion scenario of Luxembourg, which allows the simulation of vehicular Long-Term Evolu-

tion (LTE) connectivity with realistic mobility.

We first focus on modeling travel time from Cell Dwell Time (CDT), and show –

on a synthetic data set– that we can achieve a prediction Mean Absolute Percentage

Error (MAPE) below 12%. We also encounter proportionality between the square of

the mean CDT and the number of handovers in the system, which we confirmed in the

aforementioned simulation scenario. This motivated our later studies of traffic state models

generated from mobile network data.

We also consider mobile network data for supporting synthetic population generation

and demand estimation. In a study on Call Detail Records (CDR) data from Senegal,

we estimate CDT distributions to allow generating the duration of user activities, and

validate them at a large scale against a data set from China. In a different study, we

show how mobile network signaling data can be used for initializing the seed Origin-

Destination (O-D) matrix in demand estimation schemes, and show that it increases the

rate of convergence.

Finally, we address the traffic state estimation problem, by showing how handovers can

be used as a proxy metric for flows in the underlying urban road network. Using a traffic

flow theory model, we show that clusters of mobile network cells behave characteristically,

and with this model we reach a MAPE of 11.1% with respect to floating-car data as ground

truth. The presented model can be used in regions without traffic counting infrastructure,

or complement existing traffic state estimation systems.
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Chapter 1

Introduction

”Information is the oil of the 21st

century, and analytics is the

combustion engine.”

Peter Sondergaard

The ubiquity of mobile phones today is producing ever-increasing amounts of data,

providing invaluable information that can be used to study many aspects of our everyday

life. According to estimates, there were approximately 7.5 billion mobile subscriptions

in 2016, with approximately 7 billion people living within areas with mobile network

coverage [1]. Of these 7.5 billion subscribers, 4.5 billion are estimated to be unique users.

Figure 1.1 shows the trend of subscribers, world population and population in coverage

range of mobile networks. According to the 2017 Cisco Visual Networking Index [2], mobile

data traffic has grown 18-fold over the past five years, and with mobile network coverage

approaching 100% of the world population, there are increasing efforts to draw benefits

from the data that the networks generate.

As the data is generated by large parts of the population, it is representative of many

phenomena in our daily lives, and mobile network operators (MNOs) can create new rev-

enue streams and aid developing countries [3]. In this vein, MNOs have recently launched

research challenges, providing access to large data sets in an effort to extract knowledge

therefrom for the benefit of various application domains [4, 5]. An extensive survey on

the results in different fields – many of which are based on these research challenges – is

provided by Naboulsi et al. [6], showing the vast scope of analyses that mobile data can

support, ranging from social studies (e.g. demographics, land use and epidemiology) to
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Figure 1.1: Evolution of global access to mobile network connectivity [1]

mobility and performance of the mobile network itself. Examples include techniques to

facilitate urban planning [7], improve transportation networks [8, 9] and provide insights

into the epidemiology of diseases [10].

In another survey on the analysis of mobile network data sets, Calabrese et al. [11]

identify numerous topics of interest and open challenges. A common topic of interest

between both surveys is the modelling of human mobility patterns, such as the use of

mobile network data as a complementary source for estimating dynamic road traffic con-

ditions. As a particular open challenge, they mention the characterization of the interplay

between mobile networks and the actual mobility of users, while taking privacy and data

anonymity considerations into account. Naboulsi et al. confirm that this is especially

challenging for urban mobility, as it is much more heterogeneous in infrastructure and

user behaviour than highway networks [6].

A major motivation for estimating urban mobility from mobile data is that trans-

portation sensing infrastructure is costly in terms of installation and maintenance, has

limited coverage and is intrusive. Thus, it is helpful to consider using mobile networks

as a distributed sensor network for gathering data on mobility. In a mobile network, all

participants generate data, i.e. stationary and mobile users alike. From a transportation
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perspective, mobile network data can then be referred to as exogenic data, as the data

encompasses not just the transportation network agents but the entire userbase around

it. This is in contrast to endogenic data generated purely within a transportation system,

e.g. via Vehicle-to-Infrastructure Communication (V2I), and providing signals from cer-

tain types of users, such as cars or pedestrians exclusively. The main difference between

the two approaches thus lies in the way the data is collected: exogenic data is passively

generated, while endogenic data is purposefully, actively generated by a specific subset of

users.

As the discussion on the most appropriate communication technology for vehicular

communication is still ongoing [12], it makes sense to look at the passively collected exo-

genic data from mobile networks instead. In this context, and in order to leverage mobile

networks and the data generated by its users today, it is necessary to study various types

of mobile network data and their utility in estimating various transportation metrics. The

outcome of this is the following research question:

1.1 Research Question

How do mobile and transportation network behaviours correlate and

how can we leverage their interplay for transportation applications?

We want to explore how mobile network data can be used for various estimation

and modelling tasks in transportation. Essentially, by looking at mobile networks as

distributed traffic sensors, we want to show that they can serve as a complement to the

existing, traditional transportation data sources. The aim is to use mobile network data

directly, in contrast to data from connected car communication, as the latter is still sparse

due to low equipment rates and the ongoing technology dispute. Thus, in the currently

ongoing transition phase, exploiting exogenic communication data can provide significant

knowledge.

Two main aspects of this research question must be considered.

On one hand, when characterizing the links between the behaviours of transportation

networks in relation to that of the mobile network, it is important to measure the impact of

stationary users. The question is whether data concerning the full mobile network userbase

can be useful for describing only the mobile users, or whether the bias introduced by

stationary users is too high. For certain types of data, e.g. regarding connection handovers,
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stationary users may be negligible in comparison to moving users, but the error must be

quantified and is likely much higher for other types of mobile data.

On the other hand, it is necessary to investigate which estimation techniques are pos-

sible using different types of mobile network data. These types of data can be extracted

from the billing system, e.g. CDR, and the core Radio Access Network (RAN), i.e. signal-

ing data, and have different uses when it comes to transportation applications. The main

applications with respect to private transportation supply are travel time and traffic state

estimation. While these metrics are related, travel time estimation is usually concerned

only with predicting delays and finding the fastest route, while traffic state estimation

refers to the estimation of flow, density and velocity on a road (sub-)network. These

metrics are useful for traffic engineering and control, and are key inputs for any Intel-

ligent Transportation System (ITS). Demand estimation, on the other hand, typically

involves all available modes of transportation, and is most frequently delivered as a set of

dynamic O-D matrices that contain the need for transportation between different zones.

Demand estimation is relevant for transportation optimization and planning, and is the

key component for realistic simulation of transportation systems as well.

We want to explore ways of estimating supply- and demand-related metrics in a

cost-neutral and privacy-friendly way. Mobile networks, when used as distributed traffic

sensors, are one way of achieving this aim. Thus, we will present mobile network data-

based models, in order to show how the main transportation metrics can be estimated.

Mobile networks can then be used either alone or jointly with additional data sources to

provide accurate estimates of transportation metrics, in rural and urban areas alike.

This research question is of particular interest for applications in areas with little

transportation information infrastructure, e.g. in remote areas or in developing countries.

For example, according to the 2017 Cisco Visual Networking Index [2], mobile data traffic

has almost doubled in 2016 in the Middle East and Africa, a cumulative annual growth

rate of 65% is forecast for the coming five years. Combined with the current, high coverage

rate, as shown in Figure 1.1, we can expect mobile data to become increasingly valuable for

knowledge discovery. The mobile network operators’ data challenges and research efforts

show that they share this view [4,5]. Thus, the research question has commercial potential,

as there is real value to be extracted from mobile data.

In general, exploiting mobile network data is useful for transportation agencies, as it

comes at low cost and with high spatial coverage, and it can provide additional insight.
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1.2 Methodology

We evaluate the utility of mobile data for estimating transportation metrics of supply

and demand in both simulated or synthetic, and real data.

First, in Chapter 3, we introduce a simulation package that was created for the purpose

of performing studies for this dissertation, in particular for the traffic state estimation in

Chapter 6.

Before using real data we performed studies on synthetic and/or simulated data for the

main transportation metrics that we considered, i.e. traffic state, travel times and demand.

Our studies on traffic states and travel times concern road traffic (private transportation),

while we provide methods for demand estimation that can consider public transportation

as well.

The types of data that we base our studies on are the following:

❼ Call Detail Records (CDR) – Billing Data

❼ Aggregated Handover Counts – Signalling Data

❼ Floating Car Data (FCD) – Road Traffic Ground Truth

Initially, we worked on CDR data, as it is the most widely adopted type of data in

mobile data analysis. We based our first study on CDRs from the 2015 D4D challenge [4],

then proceeded to generate synthetic CDT data from Floating-Car Data (FCD) and CDR

data for the estimation of travel times and activity duration in demand estimation. The

rationale behind this choice is that CDT offers a direct way of modeling the mobility

behavior of mobile network users, conditioned on their current and/or previous or next

locations.

For road traffic state estimation, we decided to use concepts from traffic flow theory,

which rely on aggregated flows. With privacy concerns in mind, we opted for aggregated

handover data, which was kindly provided by a Luxembourgish Mobile Network Operator

(MNO). The idea behind this choice was to abstract individual user movements and instead

consider handovers inside the network to approximate flows.

To summarize, in all our studies, we built models that are privacy-neutral, as they

are based on aggregated data, and we synthesized the contained information into fitted

model parameters. We demonstrate the utility of the proposed mobile network data-based

models in predicting different transportation supply and demand metrics. In the case of

traffic state estimation, we also compare real data and simulation results.
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1.3 Contributions

The first contribution consists of a simulation scenario of Luxembourg City with LTE

mobile network infrastructure, which allows jointly simulating cars’ mobility and their

connectivity to the LTE network. This contribution is presented in Chapter 3, and was

published in [Derrmann et al., 2016a]. The simulation package is freely available online 1.

The second contribution consists of a study of the adequacy of mobile phone cell dwell

times for travel time estimation. Based on synthetic data generated from FCD, we show

that distributions of cell dwell times are a promising, privacy-friendly predictor for travel

times in an urban setting. This contribution is presented in Chapter 4, and was published

in [Derrmann et al., 2016b].

In the third contribution, we show that CDR data can serve as a valuable input

for travel demand estimation, in particular the estimation of activity durations. This

contribution models the temporal aspect of mobility, while the spatial aspect was handled

by Di Donna et al. [13] within the joint MAMBA project framework. This contribution

is presented in Chapter 5, where we additionally show how handovers can be used in

activity-based demand estimation. This work was published in [Cantelmo et al., 2017].

The final, main contribution of this work is the traffic state estimation model we present

in Chapter 6. We introduce a methodology for estimating vehicular density and flows in

analogy to the Macroscopic Fundamental Diagram, using mobile network handovers as

input data. We show that the presented model works both in simulated- and real-data

settings, and compare the results from both worlds. This contribution was published in

[Derrmann et al., 2017b,Derrmann et al., 2017a,Derrmann et al., 2017c], and the results

were consolidated in a journal article submission that is currently undergoing review.

1.4 Structure

This dissertation is organized as follows. In Chapter 2 we present research related to the

topic of using Information and Communication Technology (ICT) data analytics in ITS,

introducing the required transportation models and show how different communication

networks can be used for fitting transportation models.

In Chapter 3, we present the LuST-LTE simulation package, which produces realistic

mobile and road network traces for Luxembourg City, and we perform a preliminary

1https://github.com/tderrmann/LuSTLTE/tree/LustLTEmod
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validation of its behaviour.

Our first study in Chapter 4 shows how travel time estimation can be performed with

mobile network data, yielding some limited, but promising results based on synthetic

mobile network signaling data.

In Chapter 5, we show how mobile network data can support demand estimation

techniques, and how it can be used for generating synthetic population data.

Chapter 6 presents a novel model linking traffic flow theory and mobile network data,

which allows estimating traffic states on a macroscopic scale from mobile network signalling

data.

We conclude our work in Chapter 7, summarizing the findings and giving perspectives

for future work in this field.
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Chapter 2

Intelligent Transportation Systems

and Communication Technologies

Intelligent Transportation System (ITS) are defined as transportation systems that rely

on Information and Communication Technology (ICT) to leverage information exchange

between participants. The purpose of an ITS is the optimization of the performance of

a transportation system with respect to specific target attributes such as average travel

time or operational cost. This goal is achieved by sourcing sensor input data, evaluating

supply and demand models of the transportation network, and using actuators to influence

the behaviour of the network and enforce control policies. In the following sections, we

provide a non-exhaustive introduction of these models and the data sources which they

are based on, as well as the role of communication networks in the improvement of today’s

transportation networks.

2.1 Transportation Models

Generally speaking, the models used for transportation systems can be grouped into

three distinct groups:

❼ Supply models describe the available capacity – static or dynamic – of a trans-

portation mode or (sub-)network in terms of passengers or vehicles with respect to

different factors influencing the state of the network.

❼ Demand models describe the need for transportation in terms of passengers, freight

volume or weight, depending on different environmental and spatio-temporal factors.
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❼ Assignment models allocate demand to the available supply resources.

In this dissertation, we concentrate on supply and demand model parameters from

mobile data, which we now introduce in more detail. For a more in-depth insight into this

topic, we suggest the books by Sheffi [14], Ortuzar and Willemsen [15] and Cascetta [16].

2.1.1 Demand Models

Demand models allow synthetic representations of the need for transportation in a

given network to be created. The two main categories of demand estimation models are

the trip-based and activity-based variations.

Trip-based demand models, the most established of which is the four-step model [17],

consider trips independently from each other. The four-step model is defined by the steps

of trip generation, distribution, mode choice and network assignment. Trip generation

denotes the production and attraction of trips by zones. Trip distribution then allocates

trips between pairs of zones, e.g. using the gravity model, yielding an Origin-Destination

(O-D) matrix. Finally, mode choice and network assignment distribute the identified

demand onto different transportation modes and route alternatives.

Recently, the focus of research has shifted towards behavioural models, i.e. activity-

based demand models. They reproduce demand through the mobility needs, as defined

by activity sequences. Through the chain of individuals’ locations and the duration of

their activities in those locations, the aggregate demand can be extracted. These models

are most helpful in estimating mode choice, as they give a detailed image of user activity

chains.

In [18], Toledo et al. present a recent overview of demand estimation techniques,

both for static and dynamic (time-varying) estimation. They give an overview of the

input data and optimization methods used in both congested and uncongested networks.

The two cases are treated differently in demand modelling. In the uncongested case, a

model of the transportation network provides link travel time estimates, which are then

used for calibrating the demand estimation based on link counts and survey data. In

the congested case, link speeds need to be considered for calibration, and as there is a

bidirectional dependence between the O-D matrices and the traffic assignment, this case

is more complex to estimate. One problematic aspect in demand estimation is the need

for a seed O-D matrix providing an informative starting point that leads to a sensible

optimization outcome. We will discuss this aspect in this dissertation in Section 5. Further,
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it is difficult to compare the performance of different demand estimation techniques in the

absence of sufficient observational data. In this context, Antoniou et al. provide an

extensive survey of demand estimation methods, and propose a framework for comparing

different O-D estimation schemes [19], avoiding the problem that O-D flows are difficult

to observe in urban networks. In summary, the ground truth is difficult to establish and

different demand estimation schemes are difficult to compare.

2.1.2 Supply Models

Supply models describe the condition of the transportation infrastructure with respect

to the demand to which it is subjected. When considering private transportation, these

models typically stem from traffic flow theory, characterizing the traffic flow, density and

velocity of a given segment or sub-network, which behave in a highly non-linear way.

For public transportation, they typically describe the available transportation supply in

a given mode or on a specific corridor, described e.g. by transit schedules or real-time

passenger data.

Traffic State

Traffic State Estimation denotes the characterization of flow, density and velocity and

their relationship on a road network partition or segment.

Depending on the type of road network to be evaluated, different models are employed

for state estimation. For highways, the Lighthill-Whitham-Richards model (LWR), and

other, related PDE models are primarily used to estimate traffic states between meas-

urement points [20]. Urban road segments and networks are typically described by their

flow-density relationship, i.e. the Fundamental Diagram of Traffic Flow (FD), going back

to seminal studies by Greenshields [21]. For subnetworks, traffic measurements of a subset

of the contained individual segments can be aggregated to form the Macroscopic Fun-

damental Diagram (MFD) [22] – sometimes also called Network Fundamental Diagram

(NFD) [23] – of the region. They exhibit lower variance than the individual detectors, as

the effects of local traffic phenomena are averaged. While they only emerge under certain

conditions [24], MFDs currently are one of the main focal points of traffic flow theory

research, since they are powerful tools for traffic forecasting and control [25, 26].
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Travel Time

Travel Time Estimation considers estimating the duration – typically with quantified

uncertainty – of travel between two locations in the network. Most commonly, in Advanced

Traveller Information System (ATIS), travel time indications are used to inform users

about the prospective duration of their planned trips. Routes are typically computed

using graph-based data structures, where link weights represent segment travel times,

and in which routing can be performed using established algorithms such as A* and

Dijkstra [27].

In a data-driven approach, the predictions of link travel speeds can be made with vari-

ous supervised learning models, ranging from regression methods such as ARIMA [28], to

Kalman filters [29], neural networks (e.g. Long Short-Term Memory (LSTM) models [30]),

and boosted regression tree methods [31]. The two latter methods can automatically

identify relevant correlations between different traffic measurement points if the classi-

fiers are provided with short-term historical observations from nearby sensor locations.

In data-rich environments, i.e. transportation networks with high sensing infrastructure

coverage, this is a practical alternative to model-driven forecasting.

In cases where observations are sparse, travel time estimation can be powered by traffic

flow theory, producing better predictions than purely data-driven approaches. In highway

travel time prediction, the Lighthill-Whitham-Richards partial differential equation can be

used. Work et al. proposed a purely velocity-driven approach, by using the Greenshields

fundamental diagram [21], enabling GPS to be a sufficient data source for velocity and thus

travel time estimation on highways [20]. For arterial urban networks, Hofleitner et al. have

proposed the use of particle filters for inferring the most likely state of intersections and

subnetworks for forecasting purposes, also relying on fundamental diagrams and queuing

theory [32].

Travel time estimation is performed for ATIS applications, but also in control-based

transportation optimization, which we discuss in more detail in the following section.

2.2 Intelligent Transportation System Applications

The transportation models described above are used in the improvement of transport-

ation in two main categories, i.e. transportation planning and on-the-fly optimization of

operation through control policies.
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2.2.1 Transportation Planning

Transportation planning describes the process of designing transportation networks

and its service characteristics, such as schedules, frequency and stop locations. Depending

on the temporal scope of the planning measures, they are commonly referred to as short-,

medium- or long-term. While short- and medium-term planning involves the optimiza-

tion and extension of the existing traffic infrastructure, long-term planning involves new

infrastructure and potentially new technology, e.g. autonomous vehicles. Transportation

models enable informed decision-making in this phase. Here, we provide some examples

of aspects of transportation planning that can be supported by transportation models:

❼ Infrastructure planning and multimodality:

When using a sufficiently realistic demand model of a transportation network, the

impact of modifying different parameters of that network can be evaluated using

micro- and macroscopic simulation, using tools such as SUMO [33] and the com-

mercial software PTV VISUM, but also agent-based tools like TRANSIMS [34] and

MATSIM [35]. In this case, the increase of transportation utility can be quantified

across the entire population of interest for different target cost functions. This al-

lows multimodal transport to be assessed to measure the impact of modifications of

service parameters. Typically, agent-based simulation is performed, allowing indi-

vidual itineraries to be analyzed, regarding e.g. inter-mode waiting times, walking

distance to nearby stops and adequacy of schedules with respect to the demand. By

using different cost functions, various consequences of modifying transit supply can

then be estimated, such as economic [36] and ecological impact [37]. In the earlier

stages, i.e. during the design of a network, models can be used to support intelligent

decision-making, e.g. travel time models, allowing a faster exploration of the network

design space through search algorithms [38].

❼ Evaluation of carpooling and ride-sharing schemes:

Today’s concept of the “sharing economy” is also impacting mobility. Ride-sharing

and carpooling as alternatives or complements to existing transportation modes

are becoming commonplace. Agent-based simulation with realistic demand models

allows the assessment of the interaction of carpooling with other transportation

modes [39]. Carpooling also benefits from supply models, as this enables optimized

routing and thus better allocation of passengers and routes to drivers [40].
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2.2.2 Operational Control

Control algorithms come into play when existing networks are to be optimized. The

optimization algorithms react to the current state of the network and aim to redistribute

the demand or re-organize supply such that the overall utility of the transportation network

increases. Since, for many of these control algorithms, interaction between vehicles and a

central entity is required, both mobility and communication need to be modelled. Thus,

simulation tools like Veins [41] or LiMoSim [42] are used to evaluate the efficiency and

compare the quality of different control objectives and policies.

❼ Gating and Traffic Light Control:

Supply models – in particular of traffic state – enable the optimization of traffic

by controlling the flows between zones. This technique of managing critical in-

and outflow segments is commonly referred to as gating [25]. Another method of

mitigating traffic congestion through redistribution is dynamic traffic light control at

intersections, reducing queuing time and strategically prioritizing specific flows [26].

These methods require a precise knowledge of the traffic states in the controlled and

surrounding areas, rendered possible by ITS and ICT.

❼ Centralized Routing:

Through extensive sensor coverage, as provided e.g. by disseminated Floating-Car

Data (FCD) [43], a central entity can coordinate traffic by providing optimized

route recommendations aiming to globally optimize metrics such as travel time. The

optimization algorithms often stem from the domain of game theory, as the agents

in the system want to maximize their utility and the coordinator wants to achieve

the system equilibrium point [44]. Incentives can then reward users for taking route

alternatives that are sub-optimal from their individual point of view, but benefit the

system’s overall performance.

❼ Variable Speed Limit:

Variable Speed Limit (VSL) is a valuable control tool for highway congestion mit-

igation, and reducing the overall accident risk [45]. Central coordination allows

avoiding the onset phases of traffic jams by reducing inflow speeds, in turn reducing

the effects of over-braking and phantom traffic jam occurrence.

Traffic jam shockwaves can also be mitigated using a Cooperative Advanced Driver

Assistance System (CADAS) leveraging Vehicle-to-Vehicle Communication (V2V)
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to redistribute traffic density longitudinally [46]. This has the advantage of not re-

quiring a central supervision entity. Instead, local communication between vehicles,

i.e. V2V, is sufficient.

❼ Lane Reversal:

Lane reversal, i.e. the dynamic assignment of direction to a road segment is a prom-

ising concept in the coming availbility of autonomous vehicles. With autonomous

vehicles and Vehicle-to-Infrastructure Communication (V2I), the risk of drivers not

noticing the lane reversal and causing accidents is eliminated, and the benefits of

adapting road network infrastructure to the demand can be reaped [47]. In order to

enable lane reversal and the re-allocation of roads or areas to different directions or

transportation modes, an exact knowledge of the traffic state is required. This can

only be achieved through ITS and ICT and represents the highest level of control

of a transportation system, adjusting both supply and assignment with respect to

demand.

❼ Public Transportation Control:

Public transport can also be targeted by control algorithms to optimize quality of

service. For example, in [48], Cortés et al. show how predictive modelling of the

number of passengers boarding and exiting buses can be leveraged to control bus sta-

tion skipping and holding patterns, thus minimizing waiting times at stops and bus

bunching phenomena. In the same vein, Dessouky et al. show in a simulation-based

study how different types of information can be used for centralized coordination

of buses [49]. They compare how bus tracking, passenger counting and ICT can

enable improved transportation service over purely local observations of buses, and

demonstrate that control is a necessity for optimizing traveller experience.

2.2.3 Convential Traffic Data Sources

For the different transportation models that we mentioned above, estimation is tradi-

tionally performed using dedicated sensing systems.

❼ Loop detectors:

Induction loops embedded into roads can measure vehicular flows and the fraction

of time that they are occupied. This allows traffic states for individual links to be

computed, as density can be derived from occupancy. Loop detectors are the most
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common traffic sensing infrastructure, as they are also used for traffic light control

systems.

❼ Traffic cameras:

By means of image processing, traffic cameras can be an additional data source for

approximating velocity and traffic density. Cameras are primarily used for safety-

related applications, in particular on highways and in tunnels. Techniques for traffic

estimation based on computer vision have been available for a long time, and with the

increasing availability of consumer-grade GPUs capable of evaluating these models

in near real-time, traffic camera data has become increasingly attractive for traffic

state estimation [50].

❼ Floating Car and other GPS data:

FCD provides vehicles’ locations and movement vectors, allowing traffic engineers

to reconstruct their trajectories and give estimates of link travel speeds. However,

unless data from a significant percentage of vehicles is available, it is difficult to

accurately estimate traffic density from FCD alone, and other data sources or V2V

are used [43].

With today’s mobile phones being used for navigation and fleet management services,

Floating Phone Data has recently become more valuable. It is the main input source

for traffic information in large ATIS deployments as provided by Google Live Traffic

or Waze.

❼ Terrestrial Trunked Radio and other radio technologies:

Terrestrial Trunked Radio (TETRA) is a robust, long-range radio technology. It is

mostly used for safety-specific applications, but commercial solutions for bus tele-

metry also exist. This allows transportation agencies to let travellers know about

expected arrival times of buses at stops, but can also serve as input for controlling

holding times and distance between successive buses. Data Radio Channel (DARC)

is another technology used for bus telemetry, and uses FM radio to transmit digital

data. Depending on the specific transportation solution, buses communicate directly

with nearby panels at stops, or communicate with a central entity. In ATIS, bus

telemetry data is also integrated as real-time information, e.g. in the General Transit

Feed Specification: Real-Time (GTFS-RT) format, to provide travellers with current

bus locations and average delays by time of day.
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❼ Static Bluetooth probes:

By monitoring the Bluetooth discovery process from a stationary sensor, a Bluetooth

probe can serve in the same way as a loop detector, measuring the number of

Bluetooth-enabled mobile devices passing by [51, 52]. In this context, Friesen et

al. present a survey on applications of Bluetooth in ITS [53], showing how a typ-

ical Bluetooth probe can be designed, and presenting the results of different studies,

primarily in travel time estimation. Note that the mentioned studies are based on

stationary Bluetooth probes. In the following section, we discuss research on mobile

Bluetooth probing.

❼ Smart cards and RFID-based passenger data: Pelletier et al. [54] provide an extensive

literature review of the usage of smart cards in public transportation. The data that

these systems generate is valuable for different purposes in planning and control,

in particular demand modelling, since O-D matrices and mode choice can partially

be estimated from them [55]. Further, network performance can be assessed using

smart cards as a data source, as well as travel behaviour, i.e. trip purposes and

sequences of transit users [56, 57].

2.3 Communication Technologies for Intelligent Transport-

ation Systems

There have been multiple decades of transportation research to leverage the data

sources mentioned above to estimate transportation parameters and fit supply, demand

and assignment models. In order to make the most of the information provided by these

models, operational optimization often requires (partial) connectivity between the agents

and the transportation agencies, allowing intervention in the behaviour of the transport-

ation systems.

Intelligent Transportation Systems serve to shape supply and demand so as to guar-

antee better quality of service, or optimize other goals, e.g. ecological targets. Examples

of optimization objectives are the reduction of overall travel times in the system, the min-

imization of waiting times at stops, calming of traffic and the limitation of pollution in

cities.

Transportation agencies can intervene both on the demand and supply sides. Trans-

portation demand can be influenced through a set of policies commonly known as Trans-
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portation Demand Management (TDM). Common TDM measures are incentive-based

approaches such as congestion pricing, the modification of transit supply for temporal

demand distribution and the support and incentivization of carpooling, ride-sharing and

electric mobility.

Through central orchestration or peer-to-peer coordination, it is possible to support

these measures and enable better decision-making. In order to enable real-time interven-

tion of transportation agencies, there is a need for real-time information and interaction

between agents in the transportation system. Cooperative Intelligent Transportation Sys-

tems (C-ITS) designates the concept of coordinating transportation by the means of ICT,

in particular using V2V and V2I. There are various optimization objectives that can be

addressed through cooperative ITS, ranging from ecological footprint reduction (CO2 emis-

sions) [58] to collaborative or centrally-orchestrated routing of traffic striving for a global

traffic equilibrium [44].

Through the increased availability and use of communication technologies, the metadata

generated from them has become a valuable source of insight for various applications. In

the context of ITS, it is necessary to distinguish between two types of data. On one hand,

there is the data created within the transportation system by its agents, i.e. endogenous

data. On the other hand, there is data that is continuously generated by surrounding

devices and infrastructure, i.e. exogenous data from outside the ITS, which can serve as

an additional information medium or distributed sensing mechanism.

Due to the currently ongoing dispute about which technology will be used for V2X

communication in the future, it will take 5-10 years to be widely adopted in vehicles [12].

Consequently, in the meantime, it is sensible to look at data from existing communication

technologies and infrastructures and see how they can support the estimation of trans-

portation metrics. For transportation engineers, the main advantage of passively-collected

communication network data lies in the penetration rate of connected devices. Unlike tra-

ditional methods such as travel surveys, they cover a large proportion of the population

at the potential cost of being biased with respect to certain transportation modes and

stationary or low-mobility users. Additionally, they are mostly cost-neutral, as there is

no need for additional infrastructure to be put in place. When combined with traditional

data sources, communication network data can lead to a wide range of applications, some

of which we present in the following paragraphs.
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Bluetooth

Bluetooth, in its different versions Bluetooth Classic (BC) and Bluetooth Low En-

ergy (BLE), is a pervasive technology and increasingly popular. Today, there are over 2.5

billion Bluetooth-enabled mobile phones [59]. The main application of Bluetooth for trans-

portation sensing is by using data generated during the device discovery process, through

which devices detect each other and the services they offer, e.g. audio or data streaming.

This discovery process makes it possible to count the number of nearby devices through

the number of distinct discovered Medium Access Control (MAC) addresses, and to ap-

proximate their distance or relative speed using the Received Signal Strength Indicator

(RSSI).

Friesen et al. present a survey on applications of Bluetooth in ITS [53]. From a mobile

device perspective, Bluetooth discovery data can be used for contextualization, i.e. to

classify the type of environment that a vehicle or person is in, e.g. riding a bus or driving on

a highway. Bronzi et al. showed the feasibility of identifying the road class by considering

features extracted from BC and BLE discovery data [59].

Wireless LAN

Wireless Local Area Network (WLAN) technology is built into most mobile devices

available today, and the Access Point (AP) density in urban areas is so high that the

Service Set Identifier (SSID) names are used to improve GPS localization resolution. It is

therefore unsurprising that transportation researchers are looking at WLAN as a potential

source of information, in particular for quantifying pedestrian movements. Similar as

with Bluetooth, the probe request mechanism for discovering nearby APs is of interest for

passive sensing.

By detecting WLAN probe requests, it is possible to extract knowledge concerning

pedestrian flows in the vicinity. This is of particular interest for companies operating

multiple APs, who are able to track users’ locations and their signal quality. With respect

to ITS, WLAN probing can be leveraged in a similar manner as Bluetooth data, e.g. for

detecting pedestrian mobility behaviour, or waiting times at bus stops or train stations [60].

In this way, identifying the number of people at bus stops can help in establishing demand

patterns for public transportation.
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Figure 2.1: Simplified diagram of a UMTS and LTE network architecture [61]

Mobile Networks

Mobile phone networks, due to their pervasive coverage and hierarchical architecture,

are an invaluable source of information regarding mobility. Radio access infrastructure is

placed so as to guarantee the best possible quality of service. As the infrastructure must

scale with commuters and mobility in general, base stations cover the main corridors of

traffic and population and business centres.

Figure 2.1 shows the typical architecture of a mobile network with Universal Mobile

Telecommunications System (UMTS) and Long-Term Evolution (LTE) Radio Access Net-

work (RAN). The left side shows the LTE network, while the right shows the UMTS infra-

structure. For the sake of conciseness, we limit our discussion to the network components

relevant to the collection of data as used in this dissertation. For in-depth explanations

of the other network components and the abbreviations used, we refer the reader to [61]

and [6].
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Caller ID Callee ID Timestamp Cell ID Duration/Volume Type

123456 456789 1513344059 999 336.0 Call

234567 111144 1513344063 765 1.0 SMS

Table 2.1: Call Detail Record Example

Generally speaking, there are two categories of mobile network data that are used

in research, namely Billing Data and Signalling Data. Billing data is typically collected

from the Charging Gateway Function (CGF), which may be distributed within the SGSN

or GGSN (Serving/Gateway GPRS Support Nodes) or Serving or Packet Data Network

Gateways (S-GW and PDN-GW). The billing data usually comes in the form of Call

Detail Records (CDR). Table 2.1 shows the typical fields of a Call Detail Record. Note

that CDRs contain additional information, e.g. the call result and fault codes, which we

omitted from this listing for readability. A single CDR entry corresponds to a (usually)

billable operation performed on the network, thus individual user observations are usually

quite sparse, but the aggregate statistics are very useful. The applications of CDR data

analysis are extremely diverse, ranging from mobility modelling to social network analysis

and population density estimation, as enumerated in the surveys by Naboulsi et al. [6]

and Calabrese et al. [62].

Signalling Data is typically extracted from probes closer to the Radio Network Con-

troller (RNC) or Mobility Management Entity (MME). The signaling data that we work

with in this dissertation is handover data, which is collected using a probe on the S1-MME

and Iub interfaces of MME and RNC for LTE and UMTS, respectively. Today’s mobile

network monitoring hardware typically supports a multitude of protocols and can thus

work with input data from different Radio Access Technologies (RATs). In contrast to

Call Detail Records, handover data provides multiple sightings of an actively-connected

user device, yielding a clearer picture of user trajectories. Note that in this dissertation,

we only work with aggregated data, to avoid privacy caveats, while preserving information

on macroscopic movements of mobile network users. Table 2.2 shows an example of such

aggregated handover data, where number of handovers is summed up over an observation

period for all cell source-destination pairs in the network.

At the beginning of the chapters on travel time (Chapter 4), demand (Chapter 5)

and traffic state modelling (Chapter 6), we will specifically explore the state of the art of

using mobile network data to model each of these transportation metrics.
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Source Cell ID Destination Cell ID StartTime EndTime Count

123 456 1513344000 1513347600 250

987 123 1513344000 1513347600 720

123 456 1513347600 1513351200 340

Table 2.2: Aggregated Handover Data Example

Privacy Challenges

Both in WLAN and Bluetooth, there are significant privacy risks because many people

inadvertantly leave their devices discoverable or constantly probing. This makes the re-

construction of user trajectories a real threat, as research has recently proven that as

few as four data points locating an individual can lead to their identification [63, 64].

In Vehicular Ad Hoc Network (VANET) applications, this problem is typically avoided

through pseudonyms that are used as temporary identifiers, coupled to a digital signature

to prove message authenticity, and regularly renewed [65]. Similarly, unprocessed Call

Detail Records link the International Mobile Subscriber Identifier (IMSI) and/or Interna-

tional Mobile Equipment Identifier (IMEI) to user locations, and potentially connecting

this to the identity of an individual through the extraction of their home and work loca-

tions.

In this dissertation, we address the privacy problems through adequate aggregation of

data, removing information of individual users. We aggregate the data with the target

application in mind. By fitting different kinds of models to the data, we abstract the data

to a level where it is privacy-neutral, but the core information on the target transportation

metrics remains intact. Note, however, that there are other applications in which traject-

ories are required, and that there are anonymization techniques for user trajectories [66],

but that this is not in the scope of this dissertation.



Chapter 3

Co-Simulating the Mobile and

Road Networks

In order to study the link between mobile and road networks, simulation studies are

invaluable, as they can lend first insights into whether a certain model may work in

the field, with real data. In this dissertation, we want to show that mobile network

connectivity can be used as a basis to passively observe the road network dynamics and

mobility. However, to the best of our knowledge, there exist only few solutions to simulate

such vehicular applications, especially if interaction between the cellular and the road

networks is required. For this reason, we opted to augment the existing LuST scenario

of Luxembourg City [67] with Long-Term Evolution (LTE) connectivity. We will now

provide an overview of previous and novel simulation tools and scenarios for heterogeneous

vehicular connectivity, and then introduce the LuST-LTE project that was developed for

the purpose of performing the required studies for this dissertation.

3.1 State of the art

At the time when we performed this study, no simulation packages were available

that could jointly simulate road network mobility and LTE connectivity with handovers.

However, VeinsLTE [68] provides an environment that allows LTE communication, which

we extended by a simple handover mechanism, as described in the next section. Also,

with Luxembourg City as a potential use case study in mind, we opted to use the LuST

project [67] as a starting point.
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Other approaches involve reproducing mobility traces within a network simulator, such

as the KölnTrace project, that provides 24 hours of mobility in the city of Cologne alongside

the matching mobile network base station locations [69]. This scenario can then be used

to reproduce the connectivity of vehicles in the simulation.

While Veins and LIMoSim use OMNeT++ for simulating the wireless networking part,

there are also projects such as iTETRIS that rely on ns-3 for simulating WAVE/DSRC

and mobile networking [58,70].

Since the work on the LuST-LTE project decribed in this chapter, additional work was

performed by other researchers. Recently, the SimuLTE developers have integrated Veins

into a recent version of their project.

As a light-weight alternative for some use cases, the LIMoSim project was recently

presented [42]. LIMoSim simulates vehicular mobility directly within OMNeT++. This is

a different approach from that of Veins, which realizes on the full microscopic simulation

of traffic in SUMO.

3.2 The LuST-LTE Project

We want to provide researchers with a simulation package that enables simulating

pervasive vehicular access to LTE, enabling the evaluation of V2V and V2I protocols (e.g.

for traffic routing). The simulation scenario we propose relies on VeinsLTE [68]. VeinsLTE

is an extension of Veins [41], a software framework connecting the microscopic road traffic

simulator SUMO [33] to the network simulator OMNeT++ [71], and providing support

for the 802.11p car-to-car communication protocol. VeinsLTE extends Veins by adding

support for the SimuLTE library [72] in OMNeT++, enabling simulated vehicles to have

LTE connectivity.

Simulation tools and frameworks therefore need to use recent, realistic and scalable

scenarios, where the user has the ability to fully characterize the network topology. Indeed,

the vast amount of research in ad-hoc, mesh, sensor and cellular networks has shown that

the network topology has a strong effect on the network performance, its reliability and

its adaptation capacities [73–76]. The network density has, for instance, a direct effect

on local congestion and can be challenging for the medium access control layer. For this

reason, the scenario that we base our package on is LuST [77], a 24-hour road traffic

scenario of Luxembourg City featuring realistic traffic behavior. By adding handover

support to SimuLTE, and integrating eNodeB positions to the Luxembourg scenario, we
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Figure 3.1: Overview of the LuST-LTE simulation package.

have created this package as a base for running studies on pervasive vehicular connectivity

in a realistic setting.

3.2.1 Simulation Environment

The LuST-LTE simulation package bundles two components: road network and mobile

network simulation. It comes with a pre-configured scenario of Luxembourg City, but is

extensible to other scenarios as we will discuss later. Fig. 3.1 shows an overview of the pack-

age, and the interaction between the road and network simulations. LuST-LTE makes use

of the VeinsLTE framework by Hagenauer et al. [41, 68] to connect both simulators. The

road network simulation is performed by the microscopic road traffic simulator SUMO [33],

configured to run the LuST scenario [77], while the mobile and vehicular network simula-

tion uses the network simulator OMNeT++ [71], which runs SimuLTE [72]. We extended

SimuLTE to include a simple handover mechanism, to allow pervasive vehicular access to

the LTE network (e-UTRAN). We will now explain the different software components in

more detail.

Road network: SUMO and LuST scenario

The LuST scenario by Codecà et al. [77] describes the road network, buildings and

traffic demand of Luxembourg City and its highway ring, as input files for the Simulator

of Urban Mobility (SUMO [33]). It is available as an open-source scenario1 and covers a

surface area of around 150km2. The scenario includes 38 bus lines, and the number of

vehicles in a full 24-hour simulation run amounts to almost 300.000 vehicles.

1
http://vehicularlab.uni.lu/lust-scenario/
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Our goal is to enable researchers to evaluate heterogeneous vehicular applications, e.g.

collaborative routing, in a ready-to-use package with a realistic scenario. In particular,

the LuST scenario we base our package on is closer to the reality of city topologies than

the frequently used grids. Moreover, other existing scenarios are generally limited in

terms of duration and/or scalability. For instance, TAPASCologne2 is one of the largest

freely available traffic simulation scenario for SUMO. It models the city of Cologne (Köln,

Germany) based on the OpenStreetMap cartography but is only limited to two hours of

traffic (basic version). Uppoor et al. [78] studied this scenario to characterize vehicular

RAN access using a Voronoi tessellation of base stations. By contrast, we aim to co-

simulate the road and mobile networks to enable LTE-based vehicular applications.

Connecting road and network simulations: VeinsLTE

The Veins framework by Sommer et al. [41] acts as an intermediary framework to syn-

chronize both simulators (SUMO and OMNeT++), and enables interaction between them.

Additionally, Veins includes a model of IEEE 802.11p for inter-vehicular communication.

This allows the simulation of diverse applications, allowing the communication network to

influence the behavior and routing of vehicles.

LuST-LTE makes use of VeinsLTE, an extension of Veins by Hagenauer et al. [68], that

extends Veins to also work with the OMNeT++ library SimuLTE. This enables cars to

be LTE-equipped, and to communicate over E-UTRAN. The fact that VeinsLTE enables

interaction between road and communication networks further enables applications such

as intelligent traffic control using mobile network data. The next section describes the

SimuLTE library and the modifications we included for LuST-LTE.

Mobile Network: SimuLTE

The LTE user plane is implemented by SimuLTE [72], which provides the LTE stack,

i.e. physical layer, MAC, Radio Link Control (RLC), Packet Data Convergence Protocol

(PDCP), and Radio Resource Control (RRC). Currently, it offers support for device-to-

device communication, but no handover implementation yet. SimuLTE is integrated into

the OMNeT++ INET framework, which is widely adopted. SimuLTE comes with a real-

istic channel model relying and different propagation model parameterizations depending

on the type of eNodeB and environment. More precisely, SimuLTE uses the LTE path loss

2
http://sumo.dlr.de/wiki/Data/Scenarios/TAPASCologne
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models for line of sight and non line of sight situations, for different environments and cell

sizes as defined in [79]. The propagation fading can be computed with different fading

models, including the Jakes model for Rayleigh fading [80], which is an adequate model

of urban environments and was used for the simulations in this study.

Extensions: Adding handovers and LTE infrastructure

In LuST-LTE, we included the actual eNodeB locations of a Luxembourg mobile net-

work operator into the LuST scenario. That means that there is purely LTE infrastructure

- no 2G or 3G - of a single mobile network operator. This yields a total of 38 eNodeBs for

the scenario area.

Fig. 3.2 shows the distribution of eNodeBs along with the Luxembourg road network.

A common model for coverage areas is the Voronoi tessellation, splitting the territory into

areas that are closest to each eNodeB [6, 78]. Therefore, the Voronoi tessellation is also

displayed, separating the terrain into polygons that are nearest to their enclosed eNodeB.

Note that the topology of mobile phone network infrastructure is designed to optimize

coverage and capacity with respect to population mobility. Thus, by their very design,

this enables cellular networks as a distinguished data source for many studies. In Fig. 3.2,

this is particularly visible by the cell density in the city center, compared to the more

sparse coverage along the highway ring and the outskirts of the city. This means that we

expect the signal strength should be higher and more stable in the city center, where there

is a higher eNodeB density and vehicle speeds are lower. In section 3.2.2, we will take a

closer look at those aspects.

In the current version of LuST-LTE, handovers are triggered based on the Signal-to-

Noise-Ratio (SNR). In LTE, handovers and cell-reselection are based on RSRP and RSRQ

(Reference Signal Received Power and Quality) measurements3. They define signal power

and quality on a single reference signal, instead of all resource blocks as is the case for the

SNR that we consider. However, Afroz et al. have shown in [81] that SNR can be a valid

proportional substitute for RSRP. In future versions of the scenario, we might consider

moving towards Reference Signal based handovers in favor of more realistic results and

better comparability to real-world data. Also, in the current state, the scenario does not

yet include information on the eNodeBs’ transmission power levels. As this parameter is

configurable in SimuLTE, we are planning to integrate it into the scenario once it is made

3
http://laroccasolutions.com/training/78-rsrp-and-rsrq-measurement-in-lte/
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Figure 3.2: Map of eNodeB Locations and Voronoi Tessellation

available to us by the mobile network operator.

Performance

The scenario’s running time depends primarily on the LTE penetration rate, that can

be adjusted in the scenario configuration files. For the results provided in this article,

we used 5% vehicle equipment rate, as a good compromise between performance and

result precision. This configuration yielded on average 0.3 simsecs/second on a current-

generation 16-core, 32GB RAM server for the full mobility demand. While there is some

potential of future optimization, this level of performance is sufficient as simulations are

typically not dependent on real-time performance. The simulation performance can be

improved by reducing the simulation scope in OMNeT++ (considering only vehicles within

a specified geographical bounding box) or the number of vehicles in SUMO (by modifying

the simulation start- and end times).

3.2.2 Evaluation

In this section, we will provide an evaluation of the simulation scenario with respect

to cell sizes, signal strengths and network-wide statistics. The simulation was run without

data exchange over LTE, only for the purpose of gathering signaling data. As baselines,

we retrieved signal strength measurment data through the OpenCellID project, and also
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(a) Voronoi Tessellation (b) Convex Hull

Figure 3.3: Coverage area comparison: Voronoi tessellation and simulated locations (rep-

resented by their convex hull)

refer to common approximation methods and previous results to confirm the plausibility

of the simulation results.

Coverage Area

First, we look at the area covered by each eNodeB in the simulation, i.e. the area within

which simulation vehicles were associated with each eNodeB. In Fig. 3.3, we compare the

Voronoi tessellation with respect to antenna locations to the convex hulls of each eNodeB’s

coverage areas. Each color indicates a different eNodeB, and both plots follow the same

color-map. The obvious similarity of both maps confirms that the handover mechanism is

working as intended. Inversely, this also shows that the Voronoi tessellation approximates

the simulated coverage area, confirming the adequacy of Voronoi tessellation for estimating

base station coverage areas. Note that in the simulation, there is overlap between coverage

areas, which is likely to increase if additional mechanisms such as power boosting/cell

breathing are implemented.

We also looked at the number of unique UEs associated with each eNodeB over the

course of a full simulation run. Looking at Fig. 3.4, we can see that there are two eNodeBs

that are particulaly frequented. A dozen eNodeBs encounter more than 500 UEs (at 5%

LTE equipment rate). The most important eNodeBs are located in the city center and in

the south area of the ring, while the remaining two thirds of eNodeBs in the simulation

have lower relative importance.
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Figure 3.4: No. of unique associated UEs per simulated eNodeB at 5% equipment rate

Signal Strength - SNR

Fig. 3.5 shows color-coded signal strength and the contour of vehicular density levels

in a joint representation. The density is evaluated over an entire day, and we can see the

highest values on the ring and in the city center, in high coverage areas. In the south-west,

we can observe low signal strength and the absence of a nearby eNodeB. However, there

are nearby 3G base stations, so this could be due to the progressive equipment upgrade

strategy of the mobile network operator.

Fig. 3.6 shows the correlation between the simulated signal-to-noise ratio (SNR) and

real, measured RSRP as provided by the free OpenSignal.com Web-API 4. We split the

scenario territory into squares of 0.25 km2, over which we averaged SNR and queried

RSRP from the API, yielding around 100 measurement squares with available data from

the required mobile network operator. As discussed by Afroz et al. in [81], SNR is

proportional to RSRP in low network load situations, so this comparison is sensible for

evaluating the signal strength generated in the scenario. The Pearson coefficient ρ amounts

to 0.317, indicating moderate correlation between both metrics. The differences stem from

the very low network load in our evaluation (unlike real data), along with the fact that

the emission power of all eNodeBs in the simulation is identical, while it varies in practice

(between eNodeBs, but also through cell breathing).

4www.opensignal.com
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Figure 3.5: SNR vs. vehicular density kernel density estimation

Figure 3.6: Simulated SNR vs. corresponding real RSRP

We also evaluated the signal propagation characteristics. Fig. 3.7 shows the joint dis-

tribution of SNR and the linear distance to the associated eNodeB. In the central joint

distribution plot, we can observe the density following the propagation model’s charac-

teristic exponential curve. It shows how closer distance to the eNodeB results in higher

SNR values. The variance is due to line of sight and non-line of sight situations due to

buildings.
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Figure 3.7: Simulated SNR vs. distance to associated eNodeB

Note that the marginal distribution of SNR (in the histogram at the top) appears to

be following a normal distribution, with a mean at around 23dB. As this is close to the

commonly used threshold for an excellent signal quality at 20dB5, we can say that half of

the values observed correspond to excellent signal conditions, and half of the datapoints

correspond to weak to good connection signals.

6.3% of datapoints are located in the < 0dB area, which corresponds to edge-of-cell,

low connection quality. The distance to the associated eNodeB follows a heavy-tailed

distribution. This matches the intuition that the associated eNodeB is more likely to be

nearby, with distances less than 1500km representing the majority (around 80%) of cases.

The median value of 768m shows that half of the cases are likely urban, where eNodeBs

are more densely distributed and thus more likely to be nearby.

Handovers and Dwell Time

We will now evaluate the simulated signalling data from the simulation run, i.e. han-

dovers and cell dwell times. Cell dwell times are defined as the time a UE stays associated

with an eNodeB before performing a handover. In the work leading up to this study, using

floating-car data and using a Voronoi tessellation of 3G and 4G base stations, we have

identified a proportionality between squared dwell times and handover counts. A visual-

ization of this relationship between the resulting dwell times and handovers is displayed

5
http://laroccasolutions.com/training/164-rsrq-to-SINR/
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Figure 3.8: Squared mean dwell time vs. Number of handovers per minute

in Fig. 3.8. It shows squared mean dwell time with respect to the time of day (blue line)

and the number of handovers per minute (green). Both lines are plotted with 20 minute

intervals. Comparing them for the simulated data supports this with a Pearson correlation

of ρ = 0.58. This correlation between the number of handovers (∝ flow) and dwell time

(∝ speed−1) indicates that there could be potential for the development of LTE signaling

data-based road traffic estimation system.

Another interesting signaling metric is that of the number of unique eNodeBs that

a vehicle associates with during a trip. In Fig.3.9, we show, for all trips of a day, the

distribution of trip lengths and the number of distinct associated eNodeBs that the UE

was connected to. The marginal distribution of trip lengths (top histogram) has high

variance, showing the large variety in trips in the mobility. The marginal distribution of

the number of connected eNodeBs appears to be bi-modal, which could be a characteristic

separating trips that are pass by the city center (with high eNodeB density) from suburban

and highway trips (with lower eNodeB density).

Looking at individual trips allows to further inspect the behavior of handovers in the

simulation. Fig. 3.10 consists of two plots that describe a single user trip. The left-hand

side plot shows the trajectory of a single vehicle, along with the locations where handovers

performed and the associated eNodeBs. Note that the handovers are also visualized using

colored lines that match between both plots. The right-side plot shows the SNR evolution
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Figure 3.9: Number of distinct eNodeBs associated with during a trip vs. trip length

over time for a single vehicle trip (blue), along with the instants when handovers were

triggered (vertical lines). Thus, it is possible to see where, when and at which signal

strength the handovers occurred.

We can see that the signal levels along the trip are generally good and that handovers

typically bring about an improvement in signal strength. However, we also observe quick

successive reselection between 2 eNodeBs at around t = 1700s. On the map, we can

see that this is due to the fact that the trajectory passes nearly centrally between both

eNodeBs, causing a nearly immediate switch between them. This behavior can be attrib-

uted to the so-called ping-pong effect, where a User Equipment (UE) changes between 2

eNodeBs repeatedly in a single or nearby locations. It indicates that adjusting the signal

quality hysteresis thresholds would yield more stable connectivity patterns by preventing

UEs from changing between eNodeBs with immediate effect.

To summarize, we have verified that the handover mechanism works as intended, and

that signal strengths are already usably realistic. There is some potential for improvement

in the emission power of the urban eNodeBs, and we aim to include that information once

it is made available to us by the mobile network operator. Also, we identified that a higher

hysteresis factor might be considered for future revisions of the scenario, but there is a

need for further real-world data (i.e. from the network operators).
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Figure 3.10: Example trip. Left: Trajectory and handovers; Right: SNR evolution (blue),

handovers (vertical lines)
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Chapter 4

Travel Time Modelling using

Mobile Network Data

In this chapter, we investigate the potential of Cell Dwell Time (CDT) distributions in

a mobile network to serve as travel time predictors of the underlying urban road network.

At the time when this study was performed, we did not have access to a real cell dwell

time data set. Instead, we opted to synthesize such a data set from Floating-Car Data

(FCD). Thus, the prediction errors presented in this chapter are lower than what could

be achieved from real data, as they do not involve the step of filtering out local mobility

(pedestrians and bikes) and stationary users. On the other hand, the penetration rate of

users in the real data is much higher, leading to a higher statistical robustness, which may

balance these restrictions out.

We also investigate the link between handovers and travel times in the synthetic dwell

time data set, and suggest some visualization techniques for mobility based on dwell time

data.

4.1 State of the Art

In the past, most studies on travel time estimation based their analyses on floating car

data sets mainly comprising GPS data points [82], [83]. Over the last decade, research

on cellular data analysis has gained significant popularity. The survey by Naboulsi et

al. [84] provides a comprehensive overview of state-of-the-art results and methodologies.

Supplementing this, the work by Valerio et al. [85] provides a literature review of cellular-
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based road monitoring system and proposes an extended monitoring framework for both

circuit-switched (GSM) and packet-switched (3G and 4G) networks.

One method of capturing population dynamics on a city-wide scale was presented

by Reades et al. [86]. Through a collaboration with Telecom Italia and MIT, the authors

analyzed different mobility data sets of the city of Rome. The primary metric they used for

their study was the Erlang, a measure of network bandwidth usage. Although this metric

is highly aggregated and does not allow individual identities to be deduced, it provided

interesting insights into the spatial and temporal dynamics of a city. Augmenting these

methods with public and private transportation data yielded deep insights into population

mobility [87].

Similarly, Trasarti et al. [88] analyzed anonymized CDRs provided by Orange France

in order to detect connections between different locations that can be inferred by the

spatial distribution of mobile phone activities. They introduced a new correlation metric

(C-pattern) aiming to discover hidden logic of connections between different regions by

analyzing frequently co-occurring changes in population densities. The resulting visual

representation provides an aggregated view on the connection between different regions

both on the urban and national level.

Another visualization method that can be applied to large data sets was introduced by

Andrienko et al. [89]. This work tackles the problem of the processing of a large amount of

location data points (e.g. GPS trajectories) in order to extract and visualize meaningful

clusters. They propose a generic two steps approach involving a human analyst, which

directs the work of the computer towards the discovery of meaningful clusters.

A more specific study on cellular data analysis to detect highway traffic congestion

has been provided by Janecek et al. [90]. In this work, the authors propose an approach

that combines several large-scale cellular data sets in order to detect and classify road

congestion on a selected highway segment in Austria. To do this, they first rely on coarse-

grained signalling data available from all idle terminals on the network to estimate travel

time. This information is combined with fine-grained data provided by a subset of active

terminals (e.g. performing a voice call) to localize and classify the congestion events. The

results show that their approach outperforms other monitoring technologies in detecting

road traffic congestion.

Schlaich et al. [91] show that demand for traffic models can be generated from Location

Area Code (LAC) sequences. They conclude that this type of data is useful for trips with
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more than three LAC updates. With this filtered data set, it is possible to map LAC

sequences to known routes, and thus identify transport modes and path alternatives taken

by users. Using this methodology, they successfully reproduce the traffic demand in a

mixed highway/rural setting in Baden-Württemberg, Germany.

A recent work by Uppoor et al. [92] evaluates pervasive mobile vehicular access to

the cellular network in the TAPASCologne simulation scenario. The focus of this work

is on the planning of the Radio Access Network with respect to vehicular connectivity.

The authors studied cellular connectivity, dwell times and inter-arrival times, with respect

to the Voronoi tesselation of the cellular network. The results show that these metrics

exhibit considerable intra-day variability, which can be employed to improve the network

infrastructure.

Our work in this study differs from these previous works in that we want to evaluate the

feasibility of dwell-time-based travel time prediction using floating car data for validation

purposes. We want to leverage the intra-day variability of dwell times as shown in [92].

Unlike previous studies [90,93], our scope is country-wide, including both rural and urban

roads and environments, and we focus on travel time prediction.

4.2 Estimating Travel Times with Synthetic Cell Dwell Times

As stated above, we create a synthetic CDT data set from FCD. In the following

subsections, we show how the data was generated and how the graph-based model learns

and predicts travel times. Finally, we present some validation results in different settings

and provide additional findings and visualization techniques.

4.2.1 Data Set Description and Preprocessing

We base our analysis on a floating-car data set (FCD) with approximately 40 million

datapoints that was gathered during a traffic monitoring campaign performed in Luxem-

bourg in 2015. Floating-car data contains a vehicle’s geographical position, bearing and

velocity annotated with a timestamp and a vehicle identifier. We based our analysis on

data from weekdays between Monday and Thursday, as these days exhibit similar traffic

patterns [94].

The data set corresponds to a total of 27,124 trips in the Luxembourg area. Table 4.1

lists some statistics about the trips in our data set. Note that most of the trips are short,
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Figure 4.1: Overview of dwell time synthesis methodology.

with a median count of 8 visited cells and a mean trip duration of 2,122 seconds.

Overview

Starting from GPS data, we want to investigate whether cell dwell times could be an

adequate means of estimating travel times.

In order to reproduce the cell dwell times of these trips, we propose to use the spatio-

temporal preprocessing steps as described in the following subsections. Fig. 4.1 gives the

outline of how we preprocess the Floating-Car Data (FCD) into synthetic cell dwell times.

The analysis was ran on a PostGIS-enabled PostGres database [95], into which we

imported an OpenStreetMap export of Luxembourg map data using the osm2po tool1.

PostGIS was used for the spatial coarsening of the data that we will explain in the following

subsection.

1
http://www.osm2po.de

Number of trips 27,124

Shortest trip dur-

ation

164 s

Mean trip dura-

tion

2,122 s

Longest trip dur-

ation

15,905 s

Table 4.1: FCD data set: Trip Statistics
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Spatial Coarsening

In order to create a simple model of the mobile phone network, we computed the

Voronoi tesselation with respect to the locations of the mobile phone base stations. For

our test case of Luxembourg, there are 421 base stations of a single mobile phone service

provider.

The Voronoi tesselation can be described as associating the coverage polygon to each

base station. We coarsened the data spatially within PostGIS by associating the corres-

ponding base station to every floating car datapoint, and subsequently dropping the GPS

locations.

To summarize, the main purpose of this step is to transform the GPS trajectories into

a sequence of visited Voronoi cells (i.e. the expected sequence of associated mobile phone

base stations).

In Fig. 4.2a, we illustrate the tesselation of the country’s territory with respect to

the closest mobile phone cells overlaid on the Luxembourg road network [96]. Note that

the cell density increases within urban areas, i.e. especially in Luxembourg City and

Esch/Alzette (south). For travel time estimation purposes this means that a finer-grained

resolution is possible within the areas where there are more points of interest. Fig. 4.2b

shows a transition graph between the Voronoi cells, that we refer to in Section IV after

we have introduce the dwell time model.

Fig. 4.3a shows the amount of handovers between 7:20am and 7:40am, i.e. during the

morning rush. Note that most of our samples stem form highway traffic, especially from

the ring around Luxembourg City. We are confident that due to the size of our data set,

this is representative of the mobility in Luxembourg.

Fig. 4.3b shows the dwell times that resulted from the data preprocessing (algorithm 1).

In order to filter trips with intermediate stops, we removed trips containing cells with dwell

times over 500 seconds, i.e. 0.3% of the trips. We chose this threshold to remove outliers

without removing trips exhibiting typical traffic jams.

Temporal Coarsening

We aggregate for each trip the entry and exit timestamps at each Voronoi cell (as

defined above). Thus, we can compute the dwell time in this cell and associate it to an

arrival time. The aim is to create a conditional distribution of dwell times with respect

to different arrival times, and so as to keep the model simple, we group the arrival times
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(a) Voronoi Diagram of the cell sites for the

country of Luxembourg.

(b) Transition graph of Voronoi cells between

8:00am and 8:20am.

Figure 4.2: Voronoi tessellation and cell transition example for the country of Luxembourg.

temporally. We opted for 20 minute windows (temporal groups), as this value represented

a good trade-off between precision and data availability. Thus, we coarsen the data to

dwell times conditioned on approximate arrival times within 20 minute windows.

Note that we no longer look at the individual driver’s travel times, but rather a dis-

tribution over the entire trip database. We further reduce the privacy footprint as there

is no longer a need for information on the individual user.

Trip Truncation

In order to remove within-cell artifacts such as the search for parking spots, we trun-

cated the trips at the first and last handovers respectively. Otherwise, the prediction error

would be too sensitive to the exact start and end points within the cells. Furthermore, for
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(a) Cell occupancy for the time slot 7:40am-

8:00am (amount of handovers).
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(b) Histogram of cell dwell times with the

threshold value at 500 seconds.

Figure 4.3: Cell dwell time and cell occupancy summary statistics

the first and last cells visited, we have no source and destination cells to interpret in the

training phase (i.e. no transitions).

Preprocessing Procedure

We summarize the steps described in this section in Algorithm 1, where we match the

GPS beacons to the Voronoi tesselation, setting the source and destination cells, then drop

all the samples that are not transitions and finally compute the dwell times.

With this preprocessed data set, we now have artificial dwell times and in the next

section, we will proceed to perform travel time estimation using these dwell times.

4.2.2 Travel Time Estimation

In this section, we will introduce the dwell time representation as well as the travel

time estimation procedure.

Synthetic Dwell Time Model

After grouping the data according to the coarsening measures above, we propose to

capture the transition dynamics between cells using origin-destination (O/D) matrices.

Note that we store both mean and standard deviation to compute our confidence intervals
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Algorithm 1 Data Preprocessing

1: procedure Preprocess(FCDData D, V oronoi V )

2: ⊲ Annotate Dwell Times in D

3:

4: ⊲ set source cell

5: for all sample s ∈ D do

6: ssource ← sgps ∩ V

7: ⊲ set dest. cell

8: for all trip T ⊂ D do

9: for all sample s ∈ T do

10: sdest ← successor(s)source

11: ⊲ keep only handovers

12: for sample s ∈ D do

13: if ssource = sdest then

14: D ← D \ s

15:

⊲ Set dwell times and truncate first and last cell

16: for all trip T ⊂ D do

17: for all sample s ∈ T do

18: if sdest 6= ∅ ∧ ssource 6= ∅ then

19: sdwelltime ← successor(s)time − stime

20: else

21: D ← D \ s

return D

under the assumption of a normally distributed error. Since there is no covariance model

between cell transitions, we consider them as independent in the calculation of a route’s

standard deviation. The evaluation section will show that these assumptions hold (i.e. that

the confidence intervals are of use) for at least one of the three route selection methods.

For our analysis, we computed 72 sparse O/D-matrices, i.e. one for every 20 minutes

of a typical work day (we considered Monday until Thursday [94]). These matrices

represent the distribution of dwell times observed between origin and destination cells
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given an arrival within the 20 minute window. The sparsity is due to the fact that only

neighboring cells (between which a handover can take place) have transitions.

We will now introduce the notation to describe the cell dwell time graphs and the

prediction equations. Let i be the number of base stations in the prediction scope and

t ∈ [0, 71] be the 20 minute time slot index. Let µi×i
t be the sparse matrix of mean dwell

times between origin/destination base station pairs, and σi×i
t contain the corresponding

matrix of dwell time standard deviation. Assuming a sequence of cell transitions path (of

length ntransitions) as output of a routing method between the origin and destination of

our prediction request, we have the following prediction rules:

Travel Time: TTpath =
∑

(a,b)∈path

µa,b
t (4.1)

Standard Deviation: SDpath =

√

∑

(a,b)∈path (σ
a,b
t )2

ntransitions
(4.2)

In the remainder of this study, we will be using these equations to compute the travel

time estimations and confidence intervals.

Fig. 4.2b shows an example transition graph corresponding to µ25 (time slot of 8:20am-

8:40am) connecting the different mobile phone cells overlaid on top of the Luxembourg

road network. As expected most of the edges follow the major roads and highways.

In order to model the dwell times, we opted for a univariate normal distribution, thus

we compute (µ, σ) for each O/D-pair, i.e. each conditional dwell time. We chose this

solution as we are not directly interested in the distributions themselves, but rather in the

mean transition time. Otherwise, it would have been necessary to fit different probability

density functions to our dwell time data, e.g. the hyperexponential distribution [97]. While

in many cases this would have been of high importance, choosing the ideal distribution

would not have provided much added value for this study. We only need the expected value

and an approximate measure of standard deviation to see whether travel time prediction

using dwell times is feasible. In a later implementation, it will of course be useful to fit

more appropriate distributions when performing predictions on real data.

It is important to stress that in this study, due to the nature of our data, we can only

evaluate travel time predictions based on a biased sample of dwell times (only vehicles).

However, we are confident that a sensible cut-off value over the full dwell time distribu-

tions (including e.g. pedestrians and users that are not in transit) will yield comparable
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results, as it was the case in [90], where the authors succeeded in separating dwell times

corresponding to road traffic. Furthermore, most new cars are equipped with SIM-cards,

e.g. because of the eCall system. By looking only at data from this category of mobile

equipment, we could obtain purely vehicular mobile traffic data. For this approach, the

question of feasibility is more dependent on cost than technical barriers.

Prediction Procedure

The estimation of travel times using this model follows a simple procedure as listed

in algorithm 2. First, we evaluate which cells are visited on the trip from source to

destination, i.e. the routing step. Then, we use the transition matrix µt corresponding to

the departure time slot t and evaluate equations 1 and 2 to obtain estimates of the path’s

travel time and its standard deviation.

Algorithm 2 Travel Time Estimation

procedure Predict(tleave, cellorigin, celldest)

2: path← route(cellorigin, celldest)

t←
tleave
1200

4: TT ← 0

varsum← 0

6: for all ODpair (a, b) ∈ path do

TT ← TT + µa,b
t ⊲ eq. 1

8: varsum← varsum+ (σa,b
t )2

SD ←

√

varsum

len(path)
⊲ eq. 2

10: return TT, SD

In the following section, we will present the results of the evaluation of the model

described above.

4.2.3 Evaluation

For evaluation purposes, we split our data set into training (70%) and test (30%) sets,

using random sampling without replacement. We compared the prediction results with

the ground truth floating-car trip data. Fig. 4.4 shows the distribution of trip lengths

(expressed in minimum amount of cells visited) in the test data set after the preprocessing
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Figure 4.4: Number of test trips relative to the trip length in cells visited and locally

weighted regression line (blue).

step that we describe in the following subsections. Note that most trips are short with a

median cell sequence length of 8 and a mean trip duration of 2,122 seconds (as mentioned

in Section III).

It is important to note that not all of the trips in our data set corresponded to simple

one-way trips, but that some of them included detours and short stops. Thus, some of the

estimation error below is due to these indirect trips, i.e. in the situations where the cell

sequence was masked (unknown trajectories). For this reason, we refer to the median error

in Fig. 4.6, as some of the indirect trips impact the error percentage by a large margin

because the routing algorithms obviously find direct paths (cf. subsection 4.2.3 for more

details).

Results: Known cell sequence

We have compared the estimated dwell times against the original trip traces, in order

to evaluate the error.

The error can be approximated by a normal distribution, as can be seen in Fig. 4.7,

but we also observe a slight tendency of underestimating travel times, which can be due

to traffic jams that go beyond the typical slowdowns reflected in the transition matrices.
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(a) Known cell sequence
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Figure 4.5: Estimated and observed travel times 95% confidence intervals.
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Figure 4.6: Median error percentage relative

to trip length in number of cells visited and

locally weighted regression lines.
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tribution and Gaussian fit

The per-cell variability of dwell times in a trip makes for a larger relative error in

short trips as shown in figure 4.6. As indicated in the figure, the relative error drops with

growing trip length, as the impact of small perturbations (e.g. traffic lights) is cancelled

out and the error drops to about 10.5%.

Generally speaking, we can see that there is a good match between the travel time

predictions with their respective standard deviations and the observed data, even for the

longest test trips of around 5,000 seconds.
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Results: Unknown cell sequence

We also evaluated the model’s performance when removing the knowledge of the in-

termediate cells, instead using the observed paths from the training data. Thus, the only

input data remaining are the origin and destination cells as well as departure time, i.e. the

typical minimum inputs of a routing request with travel time estimation. We evaluate all

the path alternatives present in the training data set, and choose the fastest one for our

prediction. This reflects the typical user behavior of avoiding crowded paths (e.g. during

rush hour).

Fastest observed path

At first, we tried using only the fastest road paths, which we precomputed using

pgRouting. We observed that many estimated trip times differed strongly from the ob-

served trip times due to the difference in path taken. Users often take different paths to

avoid traffic at different times of day, and these do not correspond to the shortest path.

Therefore, the next step was to remove the requirement of knowing intermediate cells.

Thus, we wanted to use only origin and destination cells to determine the path travelled

and predict travel times. In order to achieve this, we learned the paths connecting O/D-

cell-pairs from the training data.

Fig. 4.5b shows the results for this type of prediction. While we can see that in the

majority of cases, the test cases fell within the 95% confidence interval, it is also clearly

observable that there is a significant proportion of trips, especially short ones, that are

over- or underestimated. This is either due to the test path being indirect (as defined

above) or the fact that (especially for the long paths) a different path was found. Thus, if

the duration was underestimated strongly, this indicates the availability of a faster path

alternative to the one the user actually took.

In Fig. 4.6, we can see that for this case (unknown route), the median error is generally

higher than in the known route case. As mentioned above, this is partially due to indirect

trips in our test data set. The other effect that we can observe is that with increasing trip

length (expressed here in terms of number of cells along the path), there is an increase

in the error. We attribute this increase to the likelihood of finding a different path than

the one taken by the user, which increases with the length of the paths, as the number of

alternative paths grows.
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Dijkstra

Finally, in order to see if a graph routing algorithm can provide valid results, we

used the Dijkstra algorithm to find for each O/D-pair the fastest path using the current

transition time matrix.

We compared the cell sequences found by running the Dijkstra algorithm on the trans-

ition matrices with the actual user cell sequences. Fig. 4.8 shows the distance in number of

cells visited between the observed test data paths taken and those suggested by the Dijk-

stra algorithm. The positive mean (full stroke red line) shows that observed paths were

longer on average in terms of cells visited. The large standard deviation of the differences

indicates that the paths found differ in the vast majority of test cases.

Indeed, our results indicated an inacceptably large mean error for this approach. The

error was mostly one of underestimation, i.e. the case where the Dijkstra algorithm finds

a seemingly faster path through the road network than was used on the actual trip.

Contrarily, in cases where the travel times were overestimated, this underestimation was

mostly due to the sparsity of data for some times of day (e.g. missing links in the adjacency

matrix of the graph at night).

Our conclusion is that one needs to be careful when relying on the Voronoi represent-

ation for routing. An existing transition in the graph does indeed show that there is a

road link, but it does not guarantee that this link can be reached from the road segment

taken on the previous transition. We will discuss this point and a potential solution in

the following subsections.

Limitations

The results in this study are subject to two kinds of limitations: On one hand, a

Voronoi tesselation is no replacement for a real propagation model, but it is commonly

accepted in mobile traffic analysis as a first approximation. On the other hand, we have

only been able to model dwell times of cars, whereas with full-population data, we would

have to work with different (phase-type) distributions, and decide on what quantiles to

consider for travel time estimation purposes. However, as mentioned previously, there are

special types of car fleets with mobile equipment that could be more easily identified and

used as a ground truth for establishing these rules.

We have observed different behaviors and prediction errors with the 3 route selection

methods. Unsurprisingly, following the exact cell sequence (the known route) delivered
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Difference in no. of cells routed through: Observed − Dijkstra
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Figure 4.8: Distribution of the path length difference using Dijkstra.

the best results, as the prediction routine will always follow the user path. Using the

data-driven best observed route method yielded usable results, that were partly worsened

by indirect paths taken by users (i.e. paths with intermediate stops of short duration).

Removing paths with dwell times over 500 seconds (which made up 0.3% of dwell times)

proved insufficient to account for some of the short stops, as further inspection showed

some trips still contained stops. However, simply reducing this threshold would also mean

cutting out direct trips with traffic jams. Therefore, over a larger data set, it would be

sensible to cluster O/D-trips into common paths and to remove the anomalous and much

longer trips, as it was proposed by Giannotti et al. [98]. On the upside, it was also

possible that the best learned route would have been faster than that taken by the user on

their actual trip. However, this approach in practice would require more data than just

the dwell time distributions, as it would require tracking some users to find out the real

cell sequence patterns along the paths.

The Dijkstra approach also proved to be problematic. On one hand, if there is insuffi-

cient data, we cannot guarantee finding a path in the first place, as the transition matrix

might be too sparse to find one. However, there is also the problem that the algorithm

can potentially find transition sequences that are not feasible on the road network, e.g. if

one transition would require changing from a highway to a secondary road and there is no

exit within the current cell.



52 Travel Time Modelling using Mobile Network Data

Summary

We found that the results along a known route delivered the best results. The dis-

advantages of using data-driven or graph-based routing were too important to neglect,

and the results were unsatisfactory. Therefore, in a practical travel planner setting, we

recommend using a routing algorithm such as Dijkstra or A* on the road network to

provide multiple path alternatives, and use the presented model to evaluate the travel

times along these paths’ cell sequences as a cost function. This way, one only needs dwell

time data and the road topology and can provide optimized (potentially real-time) path

recommendations.

As a potential addition, the Dijkstra approach with road network verification can

be added: The road network intersection with the Voronoi cells in the Dijkstra path

is computed and a routing algorithm is ran on this set of road segments. This allows

to see if there is a drivable, faster alternative, that is not necessarily short in terms of

road distance and potentially was not considered fast by a road-based routing algorithm

(which typically would be using free-flow travel times as a cost function). Otherwise, it is

possible to proceed as described above, i.e. with normal road network routing and travel

time estimation using the dwell time model. Thus we suggest, for real applications, to try

out a combination of these strategies to find the fastest possible road path, joining the

knowledge of road topology and the transition graph as a cost function.

Furthermore, scalability can be achieved through the regrouping of zones. The sparsity

of the transition matrices should, however, only make this necessary for very large predic-

tion scopes.

Generally speaking, our results indicate that signalling data could indeed be used to

make travel time predictions at a large scale, as long as we manage to identify mobile

users (e.g. drivers, passengers, etc.).

4.2.4 Visualization

In order to represent the model in a comprehensible way, we will introduce in this

section a novel flow-density graph. We want to use both the model’s spatial regrouping of

trips as well as the information on handovers that we estimated.
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Figure 4.9: Demand (number of handovers) vs. travel time.

Relation between Handover Count and Dwell Times

In Fig. 4.9 we can observe a proportionality between the amount of handovers and the

squared average dwell time (i.e. the squared mean of the entire O/D-matrix):

nhandovers ∝ tdwell
2

(4.3)

It is subject of future work to determine, at which scale this proportionality holds, and

whether it concerns rural and urban roads equally. Leveraging this relationship, we intro-

duce a novel manner of displaying traffic using our graphical representation. We visualize

simultaneously the estimated handover (and thus vehicle) density and the estimated slow-

down of cell transitions (traffic slowdown). This type of plot aims to indicate where traffic

anomalies arise and in which regions people are the most active.

We define the flow slowdown as the coefficient of the transition time with respect to

the daily mean.



54 Travel Time Modelling using Mobile Network Data

Example Plots for Luxembourg

As a means of reference, we show the population density in Luxembourg in figure 4.10.

The central high density zone corresponds to Luxembourg City, while the south-eastern

high density zone corresponds to Esch/Alzette. Note that the population density correlates

to the increased handover we estimated in the following flow-density figures.

The first flow-density figure 4.11 visualizes the flow slowdown and estimated handover

density in the morning rush peak hour, i.e. in the 7:20am-7:40am timeslot (see also

Fig. 4.9). It can be seen that significant slowdowns are observable on the main axes

pointing towards the center of the map, i.e. Luxembourg City. They are due to (cross-

border) commuters moving towards the main working areas within Luxembourg City. In

the very center of the map, we can also observe the swirl motion of flows moving around

the city center in peripheral business districts.

Fig. 4.12, by contrast, shows the off-peak flow slowdowns in the 12:40pm-1:00pm time

slot. Note that slowdowns are both less severe and less frequent, while handovers are

estimated to happen much more evenly, i.e. mobility is less centered around the business

areas.

Fig. 4.13 shows the evening rush hour for the 5:40pm-6:00pm time slot. Here, we can

observe the flows leaving the capital city over all peripheral highways. This highlights the

star-topology of flow directions in the country and the challenges the infrastructure faces

on a typical workday with a slowdown factors of up to 5.

When supplying these diagrams with real-time expected values of conditional dwell

times, it is possible to identify travel time slowdowns visually.

4.2.5 Discussion

In this study, we have evaluated whether mobile phone dwell time data is suitable to

model car travel times. We have shown that a simple, time-discrete graph can predict

car travel times with sufficient precision for many applications. We have also shown that

spatial and temporal aggregation of data allow privacy-neutral travel time estimation, that

could be provided as a service by mobile phone carriers. Furthermore, our results indicate

that using alternative routing schemes could provide users with faster travel routes when

combining knowledge of the road topology with cellular dwell times. Finally, we have

introduced a novel representation to visualise traffic flow slowdowns and handover density

allowing to observe a potential correlation between the two metrics.
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Figure 4.10: Population density:

South of Luxembourg [99].

Figure 4.11: Flow-density graph:

7:20am-7:40am (morning peak).

Figure 4.12: Flow-density graph:

12:40pm-1:00pm (off-peak).

Figure 4.13: Flow-density graph:

5:40pm-6:00pm (evening peak).
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Chapter 5

Supporting Demand Modeling

with Mobile Network Data

Intuitively, mobile network data has great potential for improving demand estimation,

as users appear in the data based on where they are. In this chapter, we want to show

ways of supporting demand estimation models using mobile network data. We suggest

methods of imputing user trajectories in incomplete data, in order create the temporal

component for synthetic population generation. This is a complementary work to that

of Di Donna et al. [100], who presented a CDR-based Markov Chain of user movements,

that can provide the corresponding spatial component of the synthetic population model.

Applied to demand estimation, the estimated CDT distributions can be used for likelihood

computation of activity durations in activity-based demand estimation methods.

Next, we show how aggregated handover counts can be used in an activity-based

demand modeling framework. Thus, we want to show that mobile network data can serve

for conditioning purposes to improve the reliability and convergence of existing demand

estimation schemes.

5.1 State of the Art

In activity-based demand modelling, estimating user locations and the duration of

their activities there are a common approach to reproducting their intermediate mobility

and mode choices. With respect to mobile traffic data, activity locations can be modelled

through the distribution of visited cell sites. In this context, Halepovic et al. [101] found
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that for the majority of mobile phone users, mobility is sparse and that a small, but

non-negligible percentage of the population exhibits a high mobility behaviour, i.e. the

distribution of user mobility is heavy-tailed. Subsequent studies have confirmed this trend

[102], [103]. The work of Kung et al. [104] studies the commuting behaviour between home

and work locations using, among others, CDR data sets. In order to identify the home

and work location they first constructed and Individuals’ Travel Portfolio, which consists

of a list of frequently visited cells. This and other parameters are then used to identify

the home and work cells. These results can be used for the generation of demand models

of human mobility, which are typically expressed using Origin-Destination Matrices.

Tizzoni et al. [105] show how census data and mobile network data can create similar

demand and thus mobility patterns, and used the results in an epidemiological study on

the countries of France, Spain and Portugal. They emphasize that mobile traffic data is

important for studying disease spread in countries where census data is unavailable. Zhang

et al. [106], on the other hand, show how mobile traffic data can be enriched in open-data

environments. They augment CDR data with floating-car data from Taxi and Bus fleets

and add Smart Card Data from Buses and Subway. They use this rich data stream to

perform online inference on the amount of flows between origins and destinations, showing

significant estimation improvements over CDR data alone.

Another interesting application of CDR-based demand models is traffic optimization

via iterative simulations. Zilske at al. [9] show that mobile phone transactions without

any layer of interpretation provide plausible traffic patterns. It has however been pointed

out that further verifications would be needed to validate their assumption. For simplicity

they used the great circle distance to estimate the commuting distance between the home

and work location. Along with demand estimation, the analysis of cell dwell times, i.e.

the time a user spends at one location, provides important insights on human mobility.

Over the past decades different probability distributions have been used to model cell

dwell times [107]. Fang [108] found that Phase-Type (PH) distributions provide a very

good description of the dwell times. Among PH distributions, Coxian and Hyper-Erlang

provide the best fit due to their universality property. Similarly, in [109], the authors found

that there is a relationship between channel holding time, i.e the time a user remains in

the same cell during a call, and cell dwell time by taking the assumption that cell dwell

times are Coxian or Hyper-Exponentially distributed. They also presented Extreme Value

Distributions (EV) for modeling cell dwell times, such as the Generalized EV Distribution.
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Hidaka et al. [110] perform an analysis on the cell dwell times observed in a taxi fleet. They

found that in their data set, the cell dwell time distributions can be approximated by a log-

normal distribution. All the previously mentioned distributions are heavy-tailed and can

express both transition and activity cell dwell times of network users. There is however no

single distribution that works best in all use cases, as the dwell time distributions depend

on a country’s infrastructure.

In [111], the authors propose for example to infer transportation modes based on CDRs.

They determine, for a given origin and destination, the percentage of travelers using each

transportation mode based on their travel times (e.g. walking, public transit, driving

cars). The authors of [112] use CDRs generated from mobile phones in Tallinn (Estonia)

to estimate the composition of traffic flows. In [113], the authors focus on characterizing

the population living in dense urban areas from CDRs using a Voronoi tessellation to

define the coverage area of cell towers.

Finally, the work presented by Apolloni et al. [114] at the D4D Ivory Coast Challenge

provide some interesting insights on the limitations regarding the generation of synthetic

populations using only CDR data. They make the assumption that the inter-site time is

proportional to the lengths of the intersections of the straight line between the two cell

sites. Further, they used simple assumptions regarding the composition of households and

mobility patterns to build a demand model. Due to the lack of alternative data sources

their results could not be validated.

Toole et al. propose a full OD-estimation framework based on CDR, geographical and

census data [115]. By contrast, we focus on generating cell dwell time distributions, thus

obtaining a generative conditional model of activity durations in different locations.

In the methodology used in this study we introduce two new attractivity metrics to

characterize the mobility of both an individual user and the entire population, combin-

ing some of the ideas from [104] and [105]. The motivation is to estimate dwell time

distributions during periods where no, or limited data is available (e.g. between two

consecutive network activities), enabling the construction of a synthetic population. In

contrast to [114], we add knowledge of the road topology and the attractivity metrics to

produce realistic dwell times from CDR data. Our approach defines a first step towards a

realistic synthetic population that can be used as an input to perform traffic simulations

and optimizations, while relying on publicly available roadmap data to better estimate

distance and travel time between distant cell sites.
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5.2 Synthetic Cell Dwell Times from Call Detail Records

Knowing the geographical location of cell towers allows the reconstruction of users’

spatio-temporal activities on a countrywide scale, providing important insights into human

mobility. This is especially relevant in developing countries, as alternative data sources

are often very limited. Further, the mobile phone penetration in these countries is usually

very high, which implies that these data sets are representative of their populations. As

an example, the mobile phone penetration rate in Senegal recently exceeded 100% [116].

One limitation of CDR data sets is that they only provide information about the

location of a user when a transaction is being made, e.g. during call or messaging activity.

It is therefore interesting to estimate the spatio-temporal paths travelled by users between

their consecutive appearances in the CDR data, the path imputation problem. The state

of the art work was carried out by Apolloni et al. [114] in the context of the D4D Ivory

Coast Challenge, who provided some interesting insights into the generation of synthetic

populations using only CDR data. The limitation of their approach is that they consider

unrealistic paths that are independent from the underlying road topology. This method

also does not take into account places of interest and user behavior.

Two other major limitations in the use of CDR data sets are privacy concerns due to

the traceability of (pseudonymized) customers and the typical size of the data sets in the

order of multiple gigabytes of data per day [103,117], even in aggregated form over several

months [4].

In this article, we address the limitations mentioned above, allowing the network dy-

namics to be described in a more compact, privacy-neutral manner, and enabling mobile

networks operators to share them. More specifically, we present a novel methodology for

path imputation and cell dwell time estimation that improves upon the aforementioned

approach by Apolloni et al. [114]. We model the trajectories as the fastest road paths

between consecutive recorded activities. This is achieved through a combination of Open-

StreetMap data used for the routing, and a Voronoi tesselation of the base stations to

determine the visited cell sequences.

Further, it is necessary to weigh the proportions of time spent in the different cells along

the path between consecutive activities. In our proposal, we introduce two attractivity

metrics to weigh the importance of locations both for individual users and the entire

user base. As in [104], we separate day- and nighttime activity to identify users’ work

and home locations, respectively. By combining the aforementioned metrics in a weight
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Figure 5.1: Synthetic CDT from CDR: Methodology overview

function, it is possible to estimate dwell times between CDR activities, creating full user

trajectories. From these full trajectories, we can then group the dwell times by base

station conditioned on arrival time and destination base station. To each group, we then

fit the parameters of conditional probability distributions (which can then be shared and

are privacy-neutral). Using this model, we can reconstruct user trajectories from CDRs

by imputing intermediate locations and times of arrival. Our analysis is based on the

Data For Development (D4D) Challenge data set from 2014, which consists of CDR data

provided by Orange for the country of Senegal. This model is to be seen as the temporal

component for synthetic population generation, while the spatial component could be

generated through a Markov Chain model, as presented by Di Donna et al. in [100].

The remainder of this article is structured as follows. In Section II, we present our

model and introduce the necessary notation. In Section III, we describe the D4D Senegal

data set [4] and perform a numerical case study using our model on its. Finally, in Section

IV, we provide a discussion of our results, comparing them to other data sets and related

work, and conclude in Section V with directions for future work.

5.2.1 Methodology and Notation

This section introduces our methodology for path imputation and dwell time estimation

in CDRs, along with the necessary notation. Note that the presented steps are intended to

be performed by mobile network operators (MNOs) to compute a compact, privacy-neutral

model representation of the mobility in their network. Figure 5.1 shows an overview of

the methodology. Note that we use the road and network topology as inputs, as well
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as the CDR data sets that we describe in the following subsection. We perform path

imputation from these inputs in Algorithm 3 to construct the imputed SET2, from which

we extract the parametric representation of the network dynamics by fitting probability

density functions (PDFs) to the imputed dwell times. In the remainder of the section, we

introduce our assumptions on which we build our model. We then introduce attractivity

CDR metadata, which allows the imputation of user positions in CDR data sets, along

with the necessary Algorithms 1-3.

Necessary Input Data

In order to model cell dwell time distributions for a given mobile network, we propose

to use two data sets that can be made available by the network operator, typically through

the billing system in the form of CDRs, as provided in the D4D Challenge data sets [4].

We go into further detail regarding these data sets in the numerical case study in Section

III.

❼ SET1: Aggregate data set of hourly traffic between mobile antenna pairs – call

and SMS activity of the entire customer base

❼ SET2: data set of individuals’ consecutive call and SMS locations for a small

subsample of the mobile customer base

Assumptions

We will now introduce three assumptions necessary to build our dwell time model.

They underlie the rules that allow the inter-activity times to be systematically split.

Assumption 1. We assume that the amount of call activity in a site reflects the

amount of people and mobility present in that area. That means that the probability

(Pt(s)) of a user being located in a site (s) within a time window (t) is proportional to

the aggregate amount of call activity in that site during t:

Pt(s) ∝ AG(s, t) , (5.1)

where the aggregate amount of activity is denoted as global (objective) site attractivity

(AG) and is computed using the metadata generated using Algorithm 3,as described in

detail in subsection 5.2.1.

Assumption 2. We also introduce a measure of individual (subjective) attractivity,

i.e. how often a user has performed a call or messaging activity from a site. This serves to
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increase the estimated dwell time in frequently-visited locations, such as home and work.

Such a measure is required because pseudonymized CDR traces are generally not available

for the entire population, but only a subsample for which we want to identify points of

interest (POI). We distinguish between daytime and nocturnal POIs and identify them

using the metadata obtained from Algorithm 4. The following expression translates the

idea behind this assumption, i.e. that a user is more likely to remain at a location where

he/she more frequently performs network activity:

Pt(s) ∝ AI(s, t) (5.2)

Note that these assumptions influence the dwell time distributions. AI in particular is

used to create a certain bias for users’ favourite locations, e.g. home and work, and to make

sure that we allocate longer dwell times to these locations. Some transportation models

allow for dynamic route choice. This allows the movement of some individuals without

using the fastest path (e.g. a less occupied path to the same destination). However, it is

not in the scope of this study to use randomized route and mode choices. Using these basic

assumptions, we will describe in the next section the exact computation of the attractivity

metrics AG and AI .

Assumption 3. We also assume that users travel on the shortest road network path

between two consecutive call locations. During our research on the Senegalese trans-

portation infrastructure, we found that the prevalent means of transportation is via the

road network using private cars, buses or taxis1. While this is a significant assumption,

we believe that it is the obvious and most reasonable choice in the absence of ground

truth regarding user movement between cells. Its effect is mitigated on an aggregate level

by the two previous assumptions, since cells with high activity are allocated more of the

inter-activity time of users, thus reducing the importance of the path taken between them.

Assumptions 1 and 2 are needed to perform the temporal split between activities, and

Assumption 3 is needed for the spatial reconstruction of the inter-activity paths that we

estimate users took.

SET1 and SET2 Data Extraction

In order to create realistic movement patterns, it is necessary estimate the interme-

diate movements of users between their call and messaging activities. Having computed

1http://worldbank.org/transport/transportresults/regions/africa/senegal-output-eng.pdf
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routes between consecutive activities, we now propose to combine our knowledge about

the general population from the aggregated data set (SET1) with the knowledge about

individual users (SET2) to estimate the dwell times along the routes. We now introduce

the necessary pre-processing of the data sets, which creates the metadata for computing

the attractivities AG and AI of the different sites.

For SET1, the precomputations involve calculating the total call count and duration

at each site and hour of day (cf. Algorithm 3).

Algorithm 3 SET1 Global Attractivity Computation
1: group data set by sitesource, hour

2: for all [sitesource, hour] do

3: aggregate callcount, callduration

For SET2, successive user locations and timestamps are put into a sequence of tuples of

[location, timestamp] (a zip-list) of each user in Algorithm 4. This set of metadata allows

us to quickly count which locations were the most frequented by a user, which we need

for the computation of the per-individual site attractivity that is introduced in subsection

5.2.1.

Algorithm 4 SET2 User Trajectory Extraction
1: for all userid do

2: group by userid

3: aggregate ziplist(siteid, timestamp)

Attractivity Computation

The attractivity measures serve to estimate the amount of time a user has spent within

a certain site. We propose two different measures, i.e. the global attractivity (spanning

all users of the network) and the individual attractivity (concerning a single user). The

purpose of these metrics is to enable the combination of both the behaviour of the whole

population, and the individual behaviour of the the user. According to the assumptions

from the previous section, we propose the following attractivity measures:

Global Site Attractivity

The global attractivity of a site in a given hour of day (see Equation 5.3) represents

the overall call activity that exists in this site, i.e. the sum of the number of calls (ncalls)
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to all destination antennas (d) from a given site (s) and in a given hourly time slot (t).

We base this computation on the data obtained from the precomputation Algorithm 3.

AG(s, t) =
∑

d∈Antennas

ncalls(s→ d, t) (5.3)

The AG metric gives us a measure of the importance of a site at a given time with

respect to the entire network.

Individual Site Attractivity

The AI metric gives us a measure of the importance of a site at a given time of day

with respect to a single user.

We distinguish night and day attractivity according into two different time categories.

We consider the daily attractivity of a user (u) at a site (s), the number of activities

(nact) between 7:00 and 21:59. The nightly attractivity corresponds to the amount of

activities between 22:00 and 6:59. We retrieve nact from the metadata generated earlier

using Algorithm 4.

AI(u, s)Day =
∑

t∈[7:00−21:59]

max(1, nact(u, s, t)) (5.4)

AI(u, s)Night =
∑

t∈[22:00−6:59]

max(1, nact(u, s, t)) (5.5)

Depending on the starting time of the two successive activities, between which we

want to impute intermediate locations, we choose the corresponding attractivity measure.

Note that we normalize all the attractivity measures, in order to use them as weights for

estimating the times spent in intermediate sites.

Dwell Time Model and SET2 Imputation

In the numerical case study (section 5.2.2), we explore different functions F combining

both attractivity metrics (AG and AI) into weights that split up the inter-call times into

dwell times. They are used in Algorithm 5 to build an imputed SET2: We iterate over all

user’s trajectories and each pair of successive user activity cells. The travel route between

them is queried from the spatial database, i.e. a sequence of cells on the road path between

them (sitesintermediate). Then, both attractivity metrics are evaluated for all of these sites
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Algorithm 5 SET2 Trajectory Completion

1: for all [user, trajectory] in data set do

2: trajfull ← [ ]

3: for all [[site1, tsite1 ], [site2, tsite2 ]] in trajectory do

4: ∆T ← tsite2 − tsite1

5: sitesintermediate ← CellsBetween(site1, site2)

6: Dwell← [ ]

7: for all site in sitesintermediate do

8: AG ← GetAttrGlobal(site, hour)

9: AI ← GetAttrIndiv(user, site, hour)

10: Weights← F (AG, AI)

11: Weights←Weights/
∑

Weights

12: for all site in sitesintermediate do

13: Dwell.append(Weightssite ×∆T )

14: trajfull.append(ziplist(sitesintermediate, Dwell))

15: Output [user, trajfull]

and the time difference ∆T is split according to the attractivity weights computed using

a weight function F (AI , AG), the formulation of which is subject to the model selection

that is performed in section 5.2.2.

Finally, we obtain the dwell times for each individual site and can compute the arrival

times in sequence by summing up the dwell times. This yields the fully imputed user

trajectories.

Dwell Time Model

The temporal split of inter-activity time ∆T spanning over an inter-antenna route

(path) can be decomposed into dwell times d for each segment s of path:

ds∈path :=

tend
∑

t=tstart

F (AG(s, t), AI(s, t))
∑

p∈path F (AG(p, t), AI(p, t))
∆T (5.6)

This equation links the SET1 and SET2 information (AG and AI) into the dwell time

split through the F function, which we explore in the model selection section, 5.2.2.

To summarize, we have established a linear combination based on both attractivity

metrics that decomposes the inter-activity time into separate dwell times. This gives us

the arrival and dwell times of each user in each cell along a path.
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5.2.2 Numerical Case Study: Senegal

In this section, we run the proposed imputation Algorithm 5 on real data, with different

weight functions and fit different probability density functions, to identify the optimal

model.

The 2014 D4D Challenge data sets

This study is based on the 2014 D4D Challenge data sets [4] provided by Orange

Senegal.

❼ D4D SET1 (Inter-site communications). SET1 explains the macroscopic net-

work behaviour. This part of the data set consists of aggregate call/SMS activities

per hourly time slot and source-destination base stations. This data set includes the

entire user base of the network.

❼ D4D SET2 (User trajectories). SET2 explains the microscopic, per-user view.

This part of the data set consists of successive user activities with truncated timestamps

(rounded to 10 minutes) and the identifier of the associated antenna. This data set

encompasses 300,000 sampled users over a period of 2 weeks, and provides access to

more fine-grained information on this user subset.

Inter-Antenna Road Paths

We imported the Senegalese road network from OpenStreetMap and added the location

of the provided antenna sites into a spatial database. We precomputed the inter-antenna

routes with their distances and temporal costs using the Dijkstra algorithm within the spa-

tial database framework2.Using the (about 2.5 million) inter-antenna routes, we computed

their intersection with the Voronoi polygon geometries of the base station sites. Thus, we

obtained the sequences of expected sites visited along all the inter-antenna routes .

Examples: Attractivity Metrics

Global Attractivity

Figure 5.2 shows a heatmap of global attractivities (expressed as a square root for

visualization purposes) in Senegal for an example time slot (12:00-13:00). Note the low

2The computations were performed using the open source PostGIS and pgRouting packages
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Figure 5.2: Voronoi representation of the Global (objective) Cell Attractivity (AG) of sites

in SET2, 12:00-13:00 time slot

attractivity of desert areas in contrast to the higher attractivity in the coastal regions, the

capital Dakar peninsula and the mining regions in the south east.

Individual Attractivity

In Figure 5.3, we can see a single user’s daytime attractivity metric overlaid on a map

of Dakar. Note that there are three cells with particularly high attractivity (highlighted

with white circles), which are likely to be the home and/or work locations.

Model Selection of Attractivity Weight Function

We now evaluate how to combine information from SET1 and SET2, which means

comparing different functions to combine AI and AG.

Candidate Functions

We evaluated five functions for F (AG, AI) within Algorithm 5 from Section 5.2.1.

We chose them on the criteria of being simple, linear functions that include one or both

attractivity metrics either linearly or squared:

❼ F1(AG, AI) := AG as a baseline approach using only aggregate activity (i.e. global

attractivity)
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Figure 5.3: Daytime Individual (subjective) Cell Attractivity (AI) of a single user from

Dakar (favourite Voronoi cells)

❼ F2(AG, AI) := AI as a baseline approach using only the per-user activities (i.e.

individual attractivity)

❼ F3(AG, AI) := AGAI as a multiplicative model of both metrics (thus giving equal

impact to both global and subjective attractivity)

❼ F4(AG, AI) := A2
GAI similar to F3 but giving more impact to global attractivity

❼ F5(AG, AI) := AGA
2
I similar to F3 but giving more impact to individual attractivity.

Precomputation

We ran our model on one month’s data from SET2, omitting inter-activity times longer

than 24h, in order to avoid large spatio-temporal “gaps” that are hard to impute in absence

of additional data. We imputed the intermediate locations of users, and substituted the

dwell time weight functions F1 through F5 for each visited site and arrival time. This

means that the sites visited are identical for the different models, but that the dwell times

are different, as the temporal split of the time between activity differs, depending on the

attractivity weight function F used.
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Dwell Time Percentiles

We list the ranges of the resulting dwell time percentiles in Table 5.1. These ranges

represent the minimum and maximum percentile value over all antennas and the entire

day, i.e. 24 hourly time slots. E.g., F1 = AG produces a median (percentile 50) dwell

time over all antennas ranging from 300 to 1,300 seconds depending on the time of day.

We can see the impact of AI (assumption 2) on the longest dwell times (percentile 95).

We reject F1 = (AG) on the basis that the resulting dwell times are too evenly distributed

and do not represent the heavy-tailed distribution that we need to model nightly stays, as

only < 5% of dwell times are longer than 19,000s (≈ 5 hours and 20 minutes). Based on

these results, we continue our analysis on F2, F3, F4 and F5.

P F1 = AG F2 = AI F3 = AGAI F4 = A
2

GAI F5 = AGA
2

I

50 [300;1,300] [200;1,000] [160;820] [120;600] [50;210]

95 [6,000;19,000] [5700;27,800] [5500;30,000] [5400;32,000] [5500;35,590]

Table 5.1: Rounded dwell time percentiles (in seconds) over all sites resulting from different

attractivity weight functions

Cell Dwell Time Probability Density Function

To further evaluate which of these functions is the best formula for our model, we

fit different probability density functions (PDFs) to the data generated by the four re-

maining candidate functions. The goal is to find a weight function F that produces dwell

times that are distributed according to one of the PDFs that have been observed in real

data. These are heavy-tailed distributions, as there are typically short transitionary dwell

times from moving users, and longer dwell times from stationary users. In the relevant

literature, among the most commonly used distributions are the exponential [109, 118],

lognormal [117] and power-law [117,119] distributions.

Sampling

We uniformly sampled 500 tuples of [hour, site] with hour ∈ [0, 23] and site ∈ [1; 1, 666].

For these spatio-temporal samples, we evaluated how many dwell time samples were avail-

able, each one corresponding to a single site visit of a user travelling between activities.

We rejected tuples for which there were less than 100 user dwell time datapoints, to ensure
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PDF

Model F2 F3 F4

p̄AI
%AI

>0.05 p̄AGAI
%AGAI

>0.05 p̄A2

G
AI

%
A2

G
AI

>0.05

Power-Lognormal 0.585 90.4 0.592 90.0 0.572 89.2

Johnson SU 0.511 87.6 0.529 88.6 0.518 88.4

Fisk 0.506 91.0 0.499 88.4 0.447 84.0

Log-Normal 0.496 87.6 0.516 87.8 0.508 87.2

Johnson SB 0.484 87.0 0.497 85.6 0.485 82.8

Burr 0.486 88.0 0.470 86.6 0.440 81.2

Mielke’s Beta-Kappa 0.455 85.4 0.459 87.2 0.422 83.0

Lomax 0.436 85.6 0.444 87.8 0.398 84.4

Generalized Pareto 0.440 85.6 0.439 88.0 0.409 86.0

Beta Prime 0.442 86.0 0.431 83.6 0.383 78.8

Table 5.2: Comparison of mean p-values for the 10 best-fitting probability density func-

tions and attractivity weight functions calculated on 500 [site, hour] tuples

the significance of the statistical test. We compared the P-Values of the four different at-

tractivity weight functions F2 through F5 and of different probability distributions using

a Kolmogorov-Smirnov-Test.

Distribution Fitting

In Table 5.2, we summarize the results of this statistical test on both data sets, listing

the 10 best-fitting distributions. We omitted F5 = AGA
2
I from the table since the best

mean p-value we could obtain was < 0.004. Thus, we also reject it for our model. As

we can see, the power-lognormal distribution performed best in combination with the

F3 = AGAI function at an average p-value of 0.592, with 90% of sites and hours tested

passing the KS-Test. The power-lognormal distribution is a generalization of the lognormal

distribution which has been used in other studies to model dwell times obtained from real

data, both as single distributions [117] and in mixtures of multiple lognormals [120]. As

a heavy-tailed distribution, it captures both long- and short-term stays within cells, as

users are either on the move or stationary when performing an activity. This supports the

adequacy of our model for dwell time estimation.
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Figure 5.4: The estimated number of sites visited in SET2 between user activities

5.2.3 Results and preliminary validation

Having identified the model as the attractivity weight function F = AGAI and the

power-lognormal distribution, we now present the results based on using this model.

As we do not have the matching precise ground truth data, we will consider different other

data sets and studies and compare our results as a preliminary validation.

Aggregate Mobility

We can see in Figure 5.4 that most inter-activity trips correspond to short trips of fewer

than 10 sites visited. The distribution follows an exponential decay, as is to be expected

if we assume that the number of sites visited is correlated to the distance travelled, as

this occurs similarly in human mobility, e.g. in taxis, as studied by Liang et al. [119]. It

also follows the same pattern as the number of distinct cells visited per day in the Orange

France 3G data set examined by Hess et al. [103]; due to the symmetric nature of most

commuting trips, both statistics are comparable.

Figure 5.5 represents the mean number of locations (base stations) visited per hour,

which we compute as 3600×mean(DwellT ime(t))−1. The aspect of the curve corresponds

to other studies of human mobility, e.g. the findings of Demissie et al. concerning handover
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Figure 5.5: The estimated mean number of base stations visited per hour

and mobility data from Lisbon [121], and those from Sagl et al. on data from Amsterdam

[122]. There is a significant slow-down of mobility at night (between 0:00 and 6:00), and

an increase in mobility at daytime, with two peaks at 11:00 and 19:00, indicating the

rush hour commuter traffic and the effect of increased mobility within cities. The order

of magnitude of the mean number of locations in [0.8; 2.4] is sensible in comparison to

the findings of Hess et al. [103], with values within [1.05; 1.5], considering that we get all

intermediate locations instead of only connected locations.

Dwell Times

Figure 5.6 displays the quantiles 0.5, 0.8, 0.9 and 0.95 of the estimated dwell times for

all antennas over an entire day. As expected, we can see that dwell times are much longer

at night, while between 10:00 and 19:00, they are shorter due to the increased daytime

mobility.

In Figure 5.7, we can see the mean dwell times between 12:00 and 13:00 on a country-

wide scale. We omitted the bottom 10% of sites ordered by the estimated number of

user movements in the site to improve readability. The estimated mobility is concentrated

along borders and main roads. In the west, there is significant mobility in the coastal

regions, but there is also arterial and rural mobility, of which we see less in the east.
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Figure 5.6: Quantiles of dwell times generated for all antennas by hour of day
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Figure 5.7: Heatmap of estimated dwell time means given arrival between 12:00 and 13:00

Figure 5.8 shows the same type of map, but for the midnight timeslot, corresponding

to dwell times given an arrival between 0:00 and 1:00. Mean dwell times are higher than

at noon (on Fig.5.7) because users arrive at their home location and stay there for the

night. Most cities and suburban regions exhibit long dwell times.
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Figure 5.8: Heatmap of estimated dwell time means given arrival between 0:00 and 1:00

Comparison to real-world dwell time data

We compared the resulting dwell times to signalling data from China Mobile’s GSM

and UMTS networks as published by Zhou et al. [117]. Their data set encompasses 15,000

base stations covering 3,000 km2. We extracted data from their dwell time distribution

plots, which were aggregated by day- and nighttime between 9:00-17:00 and 22:00-6:00,

respectively. As their PDF parameters were fitted on the majority of samples in the

short dwell time regions, we created a logarithmic-scale regression model from the data

points we extracted to capture the long dwell times more adequately, as formulated in

Table 5.3. The results indicate that there is a significant shift in cumulative distribution

Day Night

Intercept -0.249 -0.565

t -1.720 -1.296

Table 5.3: Logarithmic scale regression for day- and nighttime dwell times in the China

Mobile data [117]

in the shorter (0 to 10 minute) dwell time region. This is due to the ping-pong effect of

terminals changing between cells rapidly in presence of low differences in signal strength

(only encountered in real data), and the fact that inter-activity times are truncated to 10

minute precision in the D4D data set (cf. Section 5.2.2). This means that our inter-activity

times are at least 10 minutes, and thus exclude accurate estimation of the shortest dwell
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Figure 5.9: Comparison between day- and nighttime dwell time ECDFs (dwell times > 10

minutes), China (real data) and Senegal (modelled)

time percentiles. We plotted the Empirical Cumulative Distribution Function (ECDF) of

dwell times longer than 10 minutes in Fig. 5.9. As in [117], we aggregated dwell times from

our model by day- and nighttime between 9:00-17:00 and 22:00-6:00, respectively. We can

see that our modelled dwell times closely reflect those encountered in the real world, both

at day- and nighttime, within a distance of 5% cumulative probability.

5.2.4 Discussion

In this study we have presented a model of mobile network cell dwell times exploiting

information from two anonymized CDR data sets of the D4D Challenge. We have intro-

duced a novel way of estimating cell dwell times based on cell attractivity factors, both

at single-user and network scale. This enables the creation of cell dwell time distribu-

tions using trajectory data from only a small part of the population. We identified the

product of individual and population-wide activity metrics to be the best weight factor

for temporal imputation. The generated data could be fit best by the power-lognormal

distribution, for which the distributions passed the KS-Test in over 90% of cases. The fact

that this distribution fits our data best is in strong agreement with results on real dwell

time distributions.
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Currently, a direct validation of our model is not possible due to the lack of ground

truth data that we would require, i.e. handover data corresponding to a CDR data set, in

this case Senegal. This could only be achieved with the direct support of a mobile network

operator. It is for this reason that we opted to validate our results with dwell time data

and related statistics from other countries: Most importantly, we compared our resulting

dwell times to the study by Zhou et al. [117] on data from China Mobile (section 5.2.3).

We observed that, on an aggregate level, the cumulative dwell time distributions generated

by our model at day- and nighttime only differed from those in the China Mobile data set

by less than 5% for dwell times longer than 10 minutes. Also, we have shown that our

results agree in the number of distinct cells visited per day and the corresponding hourly

mean in the Orange France 3G data set as examined by Hess et al. [103] (section 5.2.3).

Additionally, we compared the mobility patterns we observed in our modelled data to the

findings of Demissie et al. regarding data from Lisbon [121], and findings from Sagl et al.

on data from Amsterdam [122], and found that our mobility followed similar within-day

trends.For some applications, our model eliminates the necessity of handling and mining

large CDR data sets, and replaces it by the use of a simple, parameterized model, e.g.

for modelling population mobility in epidemiology. Another advantage is that the model’s

input CDR data can be generated effortlessly by mobile network operators. If they were to

make use of a model like the one we proposed, they could make the population dynamics

inside their coverage area available for a wide range of studies, to the benefit of the research

community.

5.3 Constraining Demand Estimation Models with Signal-

ing Data

One critical step in demand estimation is creating the seed matrix, i.e. the initializa-

tion matrix (or matrices) serving as a starting point for the optimization problem. In order

to facilitate the process of generating the seed matrix, we evaluated how mobile network

signaling data can constrain this problem. In [Cantelmo et al., 2017], we used signaling

data from POST Luxembourg, i.e. hourly aggregated handovers between base stations.

We took all radio access technologies into consideration, and span a border around Lux-

embourg City to evaluate the amount of flows entering and exiting the city. Fig. 5.10

shows the hourly proportions of flows in both directions.
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Figure 5.10: Proportions of handovers entering and leaving the Luxembourg City area.

Fig. 5.11 shows the difference between both directions, clearly highlighting both peak

commuting hours. These metrics can be used for attraction and generation in the de-

mand generation step, and support creating informative initial Origin-Destination (O-D)

matrices for subsequent optimization.

The results obtained in [Cantelmo et al., 2017] showed that using mobile network

handovers as an additional constraint allowed for a much faster convergence of the O-D

estimation, supporting our claim that mobile network data is a valuable source for demand

estimation and activity-based modelling.

5.3.1 Application Case Study: Multimodal Trip Planner

In [Faye et al., 2017], we show how a calibrated demand can be used in an Advanced

Traveller Information System (ATIS) and simulation setting. In particular, we setup a

multimodal trip planner based on the OpenTripPlanner framework. As shown in Fig-

ure 5.12, the platform is composed of three main components. At the core, a multimodal

route planner evaluates multiple data sources and computes travel itineraries through a

graph-based routing approach. The trip planning service, which is publicly available on-

line, is directly connected to two other modules. One module is a calibrated multimodal

network model of Luxembourg in PTV VISUM, which makes it possible to estimate real-
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Figure 5.11: Directional Difference between handovers entering and leaving the Luxem-

bourg City area.

istic traffic demand or to generate high-demand scenarios on-the-fly. The link travel times

computed in VISUM are then used to update the routing graph of OpenTripPlanner. The

other module is a mobile application that allows users to anonymously estimate differ-

ent aspects of their daily mobility and to personalise the route planner settings and its

interface.

The system considers private and public transportation, including the Luxembourg

bike-sharing system along with rental bike availability. The main strength of the system

lies in the possibility to integrate the simulated reaction of the network to perturbations (as

computed in VISUM) in the routing graph. This leads to adapted route recommendations,

even in the absence of large sets of FCD. This platform is available online3 and also offers

multimodal isochrone maps for different modes. To summarize, in absence of large-scale

FCD, calibrating a realistic demand with the help of mobile phone data and integrating this

demand model in a simulator can enable a realistic evaluation of various traffic anomalies.

The simulation can then serve as an input for ATIS and estimate e.g. the anticipated

impact of road construction sites and provide users with better path alternatives, avoiding

the concerned road segments.

3
http://otp.mamba-project.lu
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Figure 5.12: Trip Planner Overview

To summarize, the presented system leverages conventional and mobile network data to

produce realistic travel time estimates and useful route recommendations using simulation.



Chapter 6

Traffic State Modeling using

Mobile Network Data

Estimating traffic states from mobile network data –especially in urban environments–

is a new and promising research topic. It involves identifying links between traffic flow

theory and the observations in the mobile network. In this chapter, we want to define how

urban traffic states can be estimated using mobile network signaling data, in particular

aggregated handover counts.

6.1 State of the Art

Mobile network handovers exist in two varieties: on one hand, passive handovers of

phones that are currently not in an active phone call or data session; their location is

known to the network at Location or Region Area (LA/RA) level, encompassing potentially

hundreds of mobile cells. On the other hand, active handovers of phones in a connected

state provide information of the exact currently associated mobile cell.

A lot of research has been focusing on passive handovers, i.e. coarse-grained Location

Area Code (LAC) updates which can be useful in predicting highway travel times [6]. The

main work in this area is a study by Janecek et al. [90], who combine location updates to

the handovers of active calls along a specific highway in Austria. They study the rate of

LAC updates from idle mobile phones and augment this knowledge with the rate of active

connection handovers to clearly identify and precisely locate the source of congestion.

However, this methodology is valid for highways only and it is difficult to extract the



82 Traffic State Modeling using Mobile Network Data

required data for larger areas.

In general, passive handovers (LAC updates) cannot be used for state estimation in

urban environments. They are useful for long-range travels, as studied by Hui et al. [123].

In this work we want to investigate how mobile network data can be used for estimating

congestion within cities, by using only aggregated active connections. For these connec-

tions, the precise cell rather than a large location area is known, leading to a much higher

spatial resolution even when computing aggregate statistics. In this vein, Bar-Gera [124]

ran a study on using active connection handovers to predict freeway travel times, using

probe mobile phones to record both the handover events and travel times and comparing

the measurements to loop detector data. Again, this study focused on highways and not

on urban settings. Another limitation of cellular datasets for traffic flow estimation is that

they include mobile and static nodes. To overcome this limitation, Caceres et al. [125]

proposed a set of models to infer the volume of vehicles from the cellular data by calibrat-

ing them with data collected by loop detectors. On average their best model achieves an

absolute relative error of less than 20% for highway scenarios. They conclude that cellular

data can be used as a complement to traditional fixed sensors to enhance the available

information for mobility monitoring.

Generally speaking, there is little research regarding traffic states in urban environ-

ments, as Naboulsi et al. identify in their survey [6]. The main study in the urban traffic

area was done by Calabrese et al. [62], who performed analyses of the Telecom Italia data-

set for the city of Rome, in particular Erlang data (a unitless metric of the intensity of

mobile network usage) alongside taxi and bus data. This allowed them to build a platform

to estimate what they call the pulse of a city, and to compare the availability of public

transportation to their estimated population location density.

The correlation between the road traffic state and the observed reaction of the mo-

bile network is an interdisciplinary topic, connecting transportation and telematics. It

is therefore sensible to rely on concepts from traffic flow theory such as the Macroscopic

Fundamental Diagram (MFD), which describes the traffic profile of an urban area from

a macroscopic, aggregated perspective. MFDs are synthetic but powerful metrics that

quantify and explain the interaction between road capacity, travel and driving behavior-

related parameters such as routing/rerouting, as well as characteristic vehicle speeds and

car following behavior. It postulates that if a sufficiently large amount of data about

traffic states in a network is collected, and the (sub) road network topology has a suffi-
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cient level of regularity in terms of route flow distribution, then state variables such as

vehicle density and the total network throughput are clearly related by a concave function.

This function expresses the transition between uncongested conditions to congested states,

characterized in urban systems by frequent conditions of queue blocking and gridlock phe-

nomena. Theoretical and empirical studies contributing to gain insight into the properties

of MFD focused on deriving relations starting from analytical and simulation-based Dy-

namic Traffic Assignment theory [23], on assessing the impact of traffic control [126], and

on capturing hysteresis phenomena in congested networks [127].

6.2 Traffic State Estimation from Signaling Data

In this study, we want to estimate traffic flows from a 4G mobile network dataset. The

dataset is composed of two components. The first is the position of LTE base stations

(eNodeBs) and the corresponding cell identifiers hosted on this base station. The second

is the number of handovers between any given cell pair per hour. In the remainder of this

section we will refer to the handovers within a set of cells as internal flows (i) of that

set, and to the handover count leaving a set of cells as its exiting flows (o). Both metrics

are scaled into [0, 1] with respect to their daily maxima. We will also refer to the traffic

state t as the space-mean of the ratio between actual velocity and the legal speed limit

(v ÷ vmax). Further details on the different datasets used will be provided in Sections 6.2.3

and 6.2.4.

6.2.1 Methodology

We want to establish a model in the form of v = q÷k, i.e. the fundamental flow-density

relationship for partitions of the road network, in analogy to the concept of MFDs. Since

in mobile networks the phone’s precise serving cell is only known during an active data or

call connection, we cannot access the density of mobile phones directly (as the majority

of them typically are in a passive, disconnected state). Thus, we propose a three-stage

approach:

First, we partition the road network in areas that are large enough to capture the

traffic dynamics of MFDs. Next, we model each partition’s density using handovers within

and from the partition. Finally, we use linear regression to estimate the traffic state from

exiting flows and approximated density, thus optimizing the regression coefficients globally
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Figure 6.1: Luxembourg City road network partitions used in both simulation and real

data study

for all time intervals and partitions.

Stage 1: Network Partitioning

In this chapter, we will focus on theoretically and empirically studying the traffic and

mobile networks of Luxembourg City1. Fig. 6.1 shows the partitioning we opted for, which

we will use both in the simulation and real-data studies. The study area covers approxim-

ately 45 km2. According to Daganzo and Geroliminis [22], MFDs emerge in areas larger

than 10km2. Thus, we opted for 4 partitions, representing the main geographical zones

of Luxembourg City, i.e. physically separated plateaux, independent from the number

of flows. Note, however, that road network partitioning can also be done algorithmically

and depending on the flows, e.g. using the normalized cuts [128] or spectral cluster-

ing algorithms [Derrmann et al., 2017a], or be based on data concerning mobile phone

calls [13, 129].

1Center coordinates: 49.611634, 6.129451
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6.2.2 Stage 2: Traffic state and density models

We want to define density and flow proxy functions to predict the traffic state in analogy

to the fundamental equation of traffic flow (v = q÷ k). The goal is to use each partition’s

scaled internal (i) and exiting flows (o) and a density proxy function characteristic of it

– referred to as k(i, o) below – so as to obtain an estimate of the current traffic state

(t) within the partition. We express this idea using linear regression with a logarithmic

transformation:

log(t) ∼ a log(o) + b log(k(i, o)) + c (6.1)

t ∼
oa

k(i, o)−b
exp(c) (6.2)

In Eq. 6.2, we require a density modeling function k(i, o) based on the ratio between

the scaled inner and exiting flows (i, o ∈ [0, 1]). Following some preliminary results with a

simple quadratic relationship, we propose to model the relationship using a more expressive

polynomial with interaction, where the degrees (pi, po, pix, pox) and coefficients (ci, cx, co)

are the parameters characteristic of each partition:

k(i, o) := ci i
pi + cx ipix opox + co opo (6.3)

This model can then be easily interpreted by visually inspecting the surface of the

polynomial in the three dimensions (i,o and their resulting modelled density k(i, o)).

On the level above the density proxy function, we then have three global parameters

that are shared between all the partitions ([a, b, c]) and need to be estimated to link the

flow and density proxy functions into a traffic state:

q̃ := oa (6.4)

k̃ := k(i, o)−b (6.5)

The unit of k is (veh. m−1)−
a

b . An approximation of the space-mean density ρ with

respect to the space-mean speed limit velocity vlimit is given by:

ρ = k̃(i, o) o(1−a) vlimit
−1 (6.6)



86 Traffic State Modeling using Mobile Network Data

t

k

N partitions

T time intervals

pi pix pox po ci cx co

i

o

a b c

Figure 6.2: Graphical representation of the model: p and c are characteristic of each

partition, [a, b, c] are common parameters.

Fig. 6.2 gives an overview of our full model in graphical form. The shaded circles

represent observed variables (in the training set) and the unshaded circles are latent es-

timated parameters or dependent variables in the case of k. For each of the N partitions,

we estimate the parameters of the polynomial density model k, i.e. the p and c paramet-

ers. Its inputs are the scaled internal and exiting handovers i and o for each interval. The

density k is then used alongside o as input for the linear regression model, that is globally

parameterized (i.e. for all partitions and across the entire time range T ) by its coefficients

a, b and c. Essentially, we approximate density, then use the flow-density relationship to

estimate the traffic state.

Parameter Estimation

In order to estimate the four degree parameters (pi, pix, pox, po) and three coefficients

(ci, cx, co) in the density polynomial of each partition (Eq. 6.2.2), we implemented a hill-

climbing optimizer.

Fig. 6.3 shows how the data set is used in this approach. We start from a random

vector of density polynomial parameters in [0, 2]. During each iteration, we update the

density parameter by adding a random offset sampled from Uni[−0.01, 0.01] to a single

parameter. Next, we run linear regression on our model (Eq. 6.2) and evaluate the resulting
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Merged Dataset

partition timeframe avg. traffic state total internal flows total exiting flows

Training set Test set

Hill-Climbing Optimizer

1. Update density poly. params. → [p, c]

2. Fit regression model → [a, b, c]

3. Evaluate validation set error (RMSE)

Validation 
set

RMSE 
converged?

Split

Evaluate test error 

[yes]

[no]

Figure 6.3: Parameter estimation: Hill-climbing optimizer

Root Mean Square Error (RMSE) of the validation set. The goal is to find the density

proxy polynomials of each partition that allow the best regression performance. We accept

parameter updates that lead to a lowering in validation RMSE, and that yield a > 0 and

b < 0 in the linear regression step. The latter conditions are to assert that the density

model can be interpreted as intended, i.e. k(i, o) is a directly proportional proxy of the

true density and ṽ = q̃ ÷ k̃ is respected.

Validation Techniques

In order to validate the model, we evaluate its predictive power on test data sets.

We use the same methodology – i.e. partitioning and prediction model – for both the

simulation and real-world studies so as to be able to compare them, and to be able to

quantify the impact and limitations of the simulation.

6.2.3 Simulation Study

The LTE network configuration consists in a mapping of 113 eNodeBs (LTE base

stations) to the simulation coordinates. The original coordinates of the eNodeBs were
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Figure 6.4: Simulation Study Mobile Network Macroscopic Fundamental Diagrams: Flow-density

relationships by partition

provided by POST Luxembourg. Note that each eNodeB hosts multiple cells, but that

the simulation does not account for the precise associated cell. The simulation framework,

LuST-LTE, is published in [Derrmann et al., 2016a].

The simulation scenario we base our study on is the LuST scenario by Codecà et

al. [77] for the microscopic traffic simulator SUMO [33]. The scenario provides 24 hours

of mobility consisting of almost 300000 vehicle trips in a wider area around Luxembourg

City (155 km2). As we are studying urban environments only, we limit our study to the
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inner city (within the highway ring), approximately 50km2.

Artificial Datasets

From the SUMO simulator, we obtain vehicle positions and velocities, i.e. simulated

floating car data. This information is augmented with the currently connected cell, allow-

ing us to compute the Space-Mean Traffic State t = (v ÷ vmax) within the coverage area

of a set of mobile base stations.

From OmNET++ and SimuLTE, we extract the number of handovers between cell

pairs observed. Since we know the mapping between base stations and road partitions, we

can compute the internal flows (i) and exiting flows (o).

In order to construct the data set, we ran the scenario with 50% re-routing probability

of vehicles and 300 second re-routing interval, which were the most realistic parameters

according to the validation by Codecà et al. [67]. The penetration rate of vehicles in

active calls was defined as 1%, which is in line with a previous study by Caceres et

al. [125]. The data set split was defined as a 50-50 split of the data, where validation and

training sets both make up 25% and the test data is 50%. We opted for this split because

otherwise modifying the demand and running an additional simulation day would have

made the prediction error directly dependent on the degree of modification of the demand

distribution.

As temporal scale, we chose 1 hour, yielding sufficient number of training and test data

points (48 of each, i.e. 12 hours with 4 partitions), and matching the real data studies

that we perform in the second stage.

Results: Mobile Network MFD Proxy

As described in Section 6.2.2, we estimated each partition’s density proxy polynomial

functions and the regression coefficients jointly using a hill-climbing optimizer.

Figure 6.4 shows the flow-density relationship resulting from the parameter estimation

(as described in Sec. 6.2.2). We can see that Partitions 0, 1 and 2 show a tendency

of saturation, and similar profiles in general. The resulting density proxy polynomials,

however, differ strongly between the partitions, meaning that different ratios of internal-

to-exiting handovers are characteristic of their traffic state profiles. The MFD of Partition

3 on the other hand, exhibits a quasi-linear flow-density relationship, indicating that this

partition does likely not reach critical capacity and thus there is no reduction in flows
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caused by congestion. Thus, we do not observe the descending phase of the flow-density

relationship, as we do for the other partitions. Overall, we do not observe the very harsh

congestion MFD profiles that would be produced by grid-lock phenomena, but this is not

the case in Luxembourg City, and is in line with other real-world results from other cities.

The fact that these smooth, low-variance profiles result from our methodology is a first

encouraging result, as they match the expected MFD shapes.

Results: Prediction

Fig. 6.5 shows the model predictions on the simulated data. On the y-axis, we see

the actual mean traffic states of a partition during a 1-hour window, as computed by

SUMO. The x-axis represents the predictions computed by the model using the simulated

LTE signaling data, namely the internal and exiting flows (i) and (o) and the derived

density proxy (k). The blue line shows the trend between both measures, which should

ideally coincide with the green identity line. Since trend and identity lines are close,

and the variance (error) appears to be stable across the range of true traffic states, we

can conclude that the model fits the data reasonably well. The Mean Absolute Percentage

Error (MAPE) is 10.2%, which is an encouraging result given the simplicity of the proposed

model and the low amount of training data.

Limitations

There are several limitations in the simulation study.

On the road network side, there are only vehicles, no pedestrians. There are also

no stationary users, that might impact mobile network handovers by moving minimal

distances and triggering ping-pong handovers.

On the mobile network side, there is the inherent error of our model of purely SNR-

based handovers versus real handovers, that are much more complex in nature. Further,

we only simulate the LTE network connectivity, thus omitting the other radio access

technologies, which influence handover behavior as well, e.g. through interference, and

intra-RAN handovers. The fact that we only associate vehicles to eNodeBs, not cells,

leads to additional error. Most importantly, we have a static penetration rate of 1% of

vehicles in an active connection. While this is a realistic percentage on average, it is

dynamic in reality in the course of a day as described by Caceres et al. in [125].
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Figure 6.5: Simulated mobile data-based traffic state predictions vs ground-truth simu-

lated floating car data

However, for the simulation study, we are interested in the general feasibility of handover-

based traffic state estimation using our methodology, and not as much in the precise at-

tainable error. Thus the limitations above should be considered but not overvalued.Having

shown the performance of the model on simulated data, we will now evaluate it using real

data to show its performance without the simulation limitations.

6.2.4 Real Data Study

Ground Truth Data Set: Floating-Car Data

As ground truth data, we use Floating Car Data (FCD) that was made available for a

whole week at the end of September 2016. This is a set of time-stamped location updates

and travel speeds which were collected in the area of Luxembourg City, and consists of

600 trips and 220000 location updates. In particular, we are interested in Traffic States,

i.e. the ratio between actually driven speeds and the speed limit (v ÷ vmax). Thus, we

performed map-matching on the FCD to obtain the values of vmax for every location

update.
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Figure 6.6: Normalized number of handovers observed in the study area vs. number of

floating car data entries

Mobile Data Set: LTE Handovers

The mobile data set contains aggregate data from 436 LTE (4G) cells within the

Luxembourg City. The data consists of the number of handovers between cell pairs per

hour. The data was made available for the same time period as the FCD.

Fig. 6.6 shows that the number of handover and floating car observations correlates

strongly, except for the off-peak daytime, when there are relatively more handovers, likely

due to pedestrian movement and increased mobile phone usage. This correlation is a

strong motivational aspect to our work, and we found similar correlations between mean

travel speed and artificial handover counts in previous work [Derrmann et al., 2016b].

Mapping FCD to the Mobile Network

In order to enable the use of FCD for validation purposes, we need to map the most

likely associated mobile network cell to each FCD data point.

Fig. 6.7 shows an example of the method we used: First, we can easily find the nearest

Base Station (BTS) of each location by distance. In the example, that is BTS1 for the
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Figure 6.7: Floating-Car Data and Mobile Network Mapping: Every vehicle position is

matched with its most likely associated mobile cell (cf. Sec. 6.2.4).

first three floating car data points, and BTS2 for the next three. Usually, a BTS hosts a

set of mobile network cells emitting into different directions, e.g. cell 1, 2 and 3 for the

first part of the trajectory and cell 4 and 5 for the second part.

From an FCD trajectory, we can thus identify a sequence of these sets of potentially

associated cells corresponding to the taken road path. Now, in order to identify the single,

most likely visited cell sequence, we choose the most frequent cell transition during that

day to be the likely cell pair visited. That way, we build a chain of visited cells over the

entire trip. In the example above, the most likely cell transition (handover) is 3 → 5,

because most handovers are between these two cells. Thus, we pick these two cells as the

most likely occurred sequence.

Using this method, we get a single likely associated cell for each FCD entry, i.e. the

cell that the driver’s phone was most likely connected based on the current location. This

allows to compute road traffic statistics relative to the connected cell.

In the last step, in order to compute the Traffic State variable t, i.e. the ratio between

the actual observed link speeds and their respective speed limits, we perform map-matching

of the Floating-Car Data entries to the OpenStreetMap (OSM) road network to obtain the

speed limit at each entry.

Finally, the resulting merged data set contains the partition number, hour of day,

internal and exiting flows ([i, o]) and the traffic state (t).
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Figure 6.8: Real Data Study: Mobile Network Macroscopic Fundamental Diagrams: Flow-density

relationships by partition

Results: Mobile Network MFD Proxy

Using the merged data set as described above, we trained our model on the data of

Monday, Tuesday and Wednesday, validated it on Thursday and tested it on Friday data.

The linear regression model resulted in the following parameters:



















a = 0.26

b = −0.32

c = 0
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Since there is no intercept (c = 0), the scale factor is 1 (i.e. exp(c) in Eq. 6.2). Thus

the prediction equations of the space-mean traffic state t proportional to the space-mean

velocity v yields the direct ratio of q̃ ÷ k̃:

t ∼
o0.26

k0.32

We plot the MFDs given by q̃ = o0.26 and k̃ = k0.32 in Fig. 6.8. Unlike in the simulation

study, all the MFDs exhibit very low variance and as is expected, they all follow a concave

shape as the outflow rate saturates at increasing density levels. Partition 1 (green plot)

exhibits this behavior clearly.

The lower variance is likely due to the larger training set, as well as the larger number

of handovers observed in the real world in comparison to the simulation, reducing the

impact of noise. We can also see that there is no severe congestion in the network, caused

by possible grid-lock phenomena, that would manifest itself in the descending phase of the

MFD diagram. Instead, we only observe saturation of the network.

Results: Correlation and Prediction

Table 6.1 shows the Pearson correlation coefficient between the model’s predictions and

the real traffic states observed from the FCD. We observe moderate to strong correlations

for all four partitions. The correlation values are slightly higher than for the simulation

run, which we attribute primarily to the larger aggregation samples and time windows.

They highlight the information content of the mobile network MFDs, and the fact that

all four partitions could reflect the underlying traffic states well. As in the simulation

study, the more heterogeneous Partition 0 shows the weakest fit. With a more adequate

partitioning method, this could potentially remedied, as presented by Ji et al. [128].

Partition Pearson−ρ

0: Kirchberg 0.24

1: Cessange 0.63

2: Gare 0.53

3: Merl 0.58

Table 6.1: Real Data Study: Pearson correlation between estimated and real traffic states

by partition
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Figure 6.9: Real Data Study: Mobile data-based traffic state predictions vs ground-truth

floating car data

In Fig. 6.9, we can see the scatter of predicted and true traffic states. We can see that

the error appears to be independent from the traffic state, which is likely due to noise in

the FCD and the relatively low resolution of our data set. The Mean Absolute Percentage

Error (MAPE) amounts to 10.02%, which is comparable to other mobile network-based

traffic state estimation techniques [6], but in an urban setting and with a much more

interpretable model.

Limitations

The main limitation of our data sets is the temporal aggregation resolution of 1 hour

of the mobile network data set. However, we are confident that the results will transfer

onto higher temporal resolutions, and will go into some of the specific reasons of this in

the following section. Another limitation is the low amount of congestion observed in both

studies. However, in previous work, we observed that in deliberately congested situations,

there is evidence that the mobile network data also reflects low-throughput/high-density

situations [Derrmann et al., 2017a].

The results achieved in this work considering urban areas are much better than pre-

vious work on real-world data [Derrmann et al., 2017c], where we encountered very low
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correlation in some of the non-highway partitions. Thus, we believe that the polynomial

density model introduced in this work is the key to adequately estimating urban MFDs

from mobile network signaling data.

6.2.5 Discussion

The main promising result of this work is that even in complex, realistic networks

with heterogeneous zones and unequally spaced mobile base stations, MFDs emerge from

mobile phone data. The density proxy functions and MFDs we computed proved to show

significant predictive power, leading to a MAPE of 11.12% on real data, which can compete

with prior studies on (less complex) highway scenarios [6, 90, 125].

As expected, the real data prediction errors exceed those from the simulation run.

This is due to the various limitations and simplified aspects in the simulation, avoiding

e.g. stationary users and ping-pong handovers. Generally speaking, the simulated results

were surprisingly similar in prediction quality to the real-data ones, which gives rise to a

promising direction for future work.

The most important questions that arise from this work are whether complete MFDs

can be extracted from mobile network data if there is a significant amount of congestion,

and which is the spatio-temporal scale this is possible.

Regarding the first of these questions, we have confirmed the emergence of flow-density

proxy relationships similar to MFD in the uncongested and saturated phases, as partially

observed in the simulation study and more clearly in the real data study. The fact that

our urban study regions do not exhibit heavy congestion and thus do not produce the

descending phase of the flow-density diagram is a limitation of this work. Higher density

traffic conditions will have to be studied in future work, to allow comparing mobile data-

based results with studies on loop detectors by Buisson et al. [24] and Geroliminis et

al. [130]. It is critical to investigate how precisely density can be approximated with mobile

network in low-throughput traffic conditions, to verify whether distinguishing between low

and high density situations is possible. However, in a previous simulation study involving

artificially high traffic demand, we have shown that there is some evidence that this is

likely the case [Derrmann et al., 2017a], but it has yet to be shown using pure handover

data.

Regarding the second question, Geroliminis and Daganzo [22] have indicated 10 km2 as

lower bound on the spatial scale for the emergence of MFD from conventional loop detector
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signals. Therefore, in this study, we opted for creating 4 partitions with an average area

of 12km2. However, it would be necessary to investigate the impact of partition size on

the flow-density approximation and their variance, and to evaluate the temporal scale at

which the traffic states can be reasonably estimated from handover counts when using

real-world data.

Fig. 6.10 shows the differences between the MFDs generated from both studies. For

this purpose, we scaled all flow and density proxies into the ranges [0, 1] so as to be able

to compare both curves. The difference between both studies’ results is surprisingly low,

as they follow similar, mostly linear trends in partitions 0 and 3, and approaching satur-

ated states in partitions 1 and 2. This indicates that the impact of ping-pong handovers,

pedestrians and stationary users is not as high as feared, supporting the utility of han-

dover data for mobility studies. Both studies also yielded comparable space-mean density

values ρ ∈ [0.015, 0.05]
veh.

m
. These mean density values also indicate that the observed

congestion is not severe or covering the majority of any partition, as can also be seen from

the plots in Fig. 6.10 that reach the saturated but not the descending phase.

While there are some differences between reality and simulation, we could show the

predictive power of MFDs in both studies. However, we could also observe the need to

partition the network in a more homogeneity-based approach. While in past studies [?,

?], we focused on clustering the mobile network based on handovers and partitioning

the road network according to these clusters, we have now identified that going in the

opposite direction (road network first) is a more promising method. Different approaches

of partitioning road networks into homogeneous partitions have been published and are

being used [128,131,132]. The methodology in this study would certainly benefit from such

improved partitioning, and we are convinced that with higher temporal resolution data

and homogeneity-focused spatial partitioning, the correlation between road and mobile

networks will be even stronger.

We are convinced that with higher temporal resolution data and spatial partitioning

conditioned on homogeneity, the correlation between road and mobile networks will even

be stronger. The potential impact for ITS applications of enabling mobile networks as a

data source in this way is vast. In particular, our results pave the way for future studies

that might generalize our findings to other cities and confirm mobile network signaling data

as an invaluable source of insights for transportation engineers, either as a complement to

existing solutions or even as the sole predictor. Urban areas in developing countries could
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Figure 6.10: Comparison of Mobile Network MFD approximations: Normalized Flow-density

relationships by partition

benefit particularly from this, in cases where mobile network infrastructure is relatively

good and it is desirable to introduce or improve traffic sensing.
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Chapter 7

Conclusions

In this dissertation, we have explored the links between mobile and transportation

networks. We have used different kinds of mobile network data, and shown that they can

indeed be used to model transportation supply and demand factors. We focused on data

from the entire mobile network, which was collected using standard equipment. Specific-

ally, we used both Call Detail Record (CDR) data and signalling data, more specifically

handover statistics. Such data is readily available to the Mobile Network Operator (MNO),

and although it contains information on stationary users as well as the moving popula-

tion, we have demonstrated its utility in this dissertation. Both transportation supply and

demand models proved to benefit from both types of mobile network data.

Before using real mobile network data, we created a simulation scenario that runs on

VeinsLTE [41,68], linking the road and mobile networks of Luxembourg City. This gave us

first insight into the possibilities that mobile network data offers, in particular signalling

data in the form of aggregate handovers. Based on these findings, we continued with real

data studies on data from Luxembourg. In the following section, we present the main

conclusions of our simulation and real-data studies with respect to our research question,

and subsequently discuss the conclusions from the different models we studied, along with

relevant privacy considerations. Finally, we give perspectives for future work.

7.1 General Conclusions

Initially, we set out to answer the following research question:
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How do mobile and transportation network behaviours correlate, and

how can we leverage their interplay for transportation applications?

The following are the main conclusions we have drawn, with respect to this question,

from the studies in this dissertation:

❼ The link between the behaviour of mobile and road networks is strong, and it can be

leveraged to model macroscopic traffic phenomena from mobile network data. In all

of our studies, we were able to identify strong links between mobile network data

and the underlying population mobility. In Chapters 3 and 4, we showed that the

square of the mean Cell Dwell Time (CDT) and travel time are proportional both in

the case of Luxembourg City and of our synthetic data. This effect was present at

a large spatial aggregation scale. At a smaller scale, a similar link between mobile

and road networks was explored in Chapter 6. We showed that handovers in mobile

networks are strong predictors for flows and density in partitions of the network.

Based on these findings, we transferred the concept of Macroscopic Fundamental

Diagrams (MFDs) into the domain of mobile network data.

❼ Simulating vehicles only is sufficient for modelling macroscopic phenomena and the

interaction between mobile and road networks. The bias brought about by low-mobility

and stationary users is negligible when looking at large-scale traffic characteristics.

In Chapter 6, we were able to show that the Macroscopic Fundamental Diagrams

(MFDs) generated from simulation and real data were almost identical. This is in

line with the motivation of the work, i.e. to reduce the impact of low-mobility users

(e.g. pedestrians) by considering handovers spanning large partitions of the mobile

and road networks. Handover data was also used in Chapter 5, enabling the gener-

ation of an informative seed matrix of the flows entering and exiting Luxembourg

City. Thus, in demand modelling, the effect of low-mobility users is also negligible.

With respect to the research question, this means primarily that it is possible to

simulate road traffic ITS solutions that rely on mobile network data, without the

direct need to model all the modes. Our assumption that low-mobility users produce

fewer handovers holds, as our methods are based on spatio-temporal aggregation and

model only macroscopic traffic phenomena. Thus, low-mobility users and ping-pong

handovers only contribute a small noise factor to our observed traffic variables.
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❼ Privacy can be preserved through the use of adequate aggregation schemes. We were

able to show – in all of the studies described in this dissertation – that aggregated

data is sufficient to derive traffic parameters and fit models to the macroscopic

behaviour of traffic. This is a significant result, as we have shown that no information

on individual users needs to be shared by the MNO in order to publish models of the

large-scale phenomena that transportation professionals are interested in for many

of their applications. Instead, they only need to share the model parameters learned

from their data (e.g. CDT distribution parameters or aggregated handover statistics).

In related work, it was shown that for some technologies such as Bluetooth and

Wireless LAN, unique identifiers expose a lot of information [133,134]. Few recurring

observations of an individual – in some cases as few as four – can be sufficient to

uniquely recognize that individual [63,64]. From a privacy perspective, the way that

Bluetooth and WLAN work is potentially more concerning than mobile networks

when it comes to passive data collection by individuals. This may change in the

future, however, with direct connectivity between LTE-D2D enabled mobile devices.

Generally speaking, when it comes to user trajectory data, it is essential to be

wary of the potential implications [66]. Using the aggregation methods and models

presented in this dissertation, these problems can be avoided, as MNOs need only

share summarized parameters and aggregate statistics.

In the following sections, represented in chronological order as featured in this thesis,

we discuss the specific conclusions of the studies concerning travel time, demand and

traffic state modelling. We also present some conclusions on privacy and give directions

for future related work.

7.2 Travel Time Modeling

In Chapter 4, we showed the potential of using CDT distributions for urban travel time

prediction. We proposed a simple model of dwell times by cell pair, thus constructing a

graph of dwell time distributions conditioned on the source cell. These findings build

upon those by Janecek et al. [90] for highways. However, as we were limited to using

synthetic data, the results are preliminary: they are to be confirmed with real data, where

the distributions must be sliced so as to separate vehicular and stationary users. We also

produced visualizations for the dwell time graphs, allowing quick assessment of which cell
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transitions are slowed down relative to their usual state. In theory, dwell time based travel

time estimation can work well, but in practice, obtaining the necessary data can be costly,

as this type of data is not as readily available as handover counts or CDRs. Consequently

we decided to focus on traffic states based on handover counts in our later studies.

At a large aggregation scale, we found proportionality between the squared average of

dwell times and the number of handovers in our synthetic data set, that was present in

both the studies in Chapters 3 and 4. This further motivated us to look into handover

data in order to model traffic states, and led to the research in Chapter 6.

7.3 Demand Modelling

In Chapter 5, we proposed a methodology for imputing intermediate user positions into

Call Detail Records (CDR) data, and subsequently fitting a model of cell dwell times to the

imputed data. The resulting cell dwell times lend themselves for the temporal component

in the trip generation and distribution phases of a four-step demand estimation model. Our

methodology, which we applied to the D4D Senegal data set, yielded data which was very

similar in distribution to real-world cell dwell time data (up to a 5% shift in cumulative

probability across the full data range). While the exact corresponding validation data was

missing, we were able to show that the model-produced statistics correspond to results

from other studies on different countries. In this context, future work will need to show

whether or not the resulting dwell times from CDR-based models are realistic enough for

demand estimation, but the results of this study strongly suggest that this is the case.

In another study, we demonstrated that aggregated handovers can serve as a valuable,

privacy-friendly tool when estimating dynamic traffic flows between zones. Mobile phone

data can help with initializing valid seed Origin-Destination (O-D) matrices, which allow

a faster convergence of demand estimation algorithms. In this study, we observed a signi-

ficant speed-up of the estimation of the O-D matrices, supporting the idea that reasonable

initial values for the seed matrix can be derived from mobile phone data.

7.4 Traffic State Modelling

We have shown that there is significant similarity between simulated and actual traffic

state models in Chapter 6, supporting the claim that the LuST-LTE scenario [Derrmann

et al., 2016a] is a useful tool for simulating the interplay between the road and mobile
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phone networks. Following the simulation study, we proceeded to using real handover

data for the traffic state estimation problem. To do this, we proposed a novel methodology

to link mobile network signalling data to the underlying road network. We showed that

it is possible to compute approximations of the road network partitions’ Macroscopic

Fundamental Diagrams (MFDs) using only aggregated mobile phone handover counts. To

the best of our knowledge, ours is the first work to show that this link exists and that it

can be reliable for real-world data in urban areas.

We first evaluated our methodology in a simulation study, which was limited by the

absence of pedestrians and the difficulty of adequately simulating the demand in the net-

work, yielding a low Mean Absolute Percentage Error (MAPE) of 10.2% in prediction. We

then generalized our findings using the corresponding real-world data sets. While estimat-

ing the traffic states observed in the Floating Car Data (FCD) using mobile signaling data

from an LTE network covering Luxembourg City, we achieved a MAPE of 11.12%, which

compares well with previous studies (even those focusing on highways only) [6,90,125], but

with the added advantage of being a simple, easily-interpretable model. The interpretabil-

ity stems from the fact that the model only uses partitions’ internal and exiting handovers

as aggregate measures, and yields approximate measures for space-mean density, velo-

city and flows. The approximated MFDs exhibit low variance with respect to a concave

flow-density function, which is in line with previous theoretical results on MFDs [130].

We also compared the resulting flow-density relationships of the simulation and real-

data studies, and were able to show that they match and that the effect of the absence

of pedestrians and stationary users from the simulation was negligible. These results are

very encouraging as they show that the presented methodology is able to capture the

traffic dynamics independently from the moving-to-stationary user ratio, at least in the

low-to-moderate congestion situations given in Luxembourg City. The fact that pedestrian

signals do not significantly influence flow-density approximation also lends more credibility

to previous results of simulation studies, where we showed that mobile networks can also

detect situations of low throughput and high traffic density [Derrmann et al., 2017a].

Using only two input variables from a set of base stations of a mobile network, it

is possible to express their coverage area’s traffic profile and make reasonably precise

predictions of its traffic state. In this context, it is noteworthy that the predictive power

that was achieved in this work is not its only quality.

One particular strength of this model is its privacy-friendliness, as it uses only ag-
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gregated data instead of data on individuals, thus avoiding a common pitfall of using

mobility-related data, and mobile network data in particular.

Most importantly, this study has shown that the uncongested and saturation density

regions of MFDs can be approximated using signalling data. Thus, it is desirable to find out

whether highly congested networks exhibiting grid-lock phenomena could be approximated

similarly. Such highly congested networks cover the full traffic density range of a classical

MFD as shown e.g. by Geroliminis and Daganzo on the Yokohama network [22]. Note,

however, that fully congested cases (i.e. gridlock) is not observed in most urban road

networks, and that our results for Luxembourg City resemble those of other cities, e.g,

Toulouse [24] and Brisbane [135]. Urban freeways also do not always produce strongly

congested phase MFDs, e.g. Minneapolis, Chicago and Portland, as described by Saberi

et al. in [136].

Currently, transportation researchers are actively looking for novel ways of obtaining

MFDS, because they enable various planning and control measures. In this vein, there

are active initiatives looking for novel data sources that show the emergence of MFDs,

e.g. the MFD Dataquest [137]. We believe that our work is a first indicator that mobile

network signaling data is a potential candidate to be such a data source, and this line

of research should be continued for other networks to confirm our findings at a higher

temporal resolution.

7.5 Privacy Considerations

The key element to leveraging communication network data in a privacy preserving

manner is to perform adequate aggregation that suits the requirements of the target ap-

plication. Ideally, this is performed close to the source, avoiding the exposure of sensitive

data beyond the data provider’s facilities. For some applications, fully aggregating data

can be sufficient, as we have shown e.g. for the MFD models computed from aggregated

mobile handover counts. In terms of privacy, the most important concept that we followed

in the studies in this dissertation is that a MNO only shares or publishes aggregated data

and the parameters of statistical models. E.g., for the CDT model, these are the paramet-

ers of the dynamic dwell time distributions, and for the MFD models these are the density

model coefficients and the aggregate number of inter-cell handovers. This means no direct

information regarding an individual mobile network subscriber needs to be shared outside

the MNO. Instead, the data is aggregated over a large area or number of subscribers.
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In the studies presented in this dissertation, we have worked on data that was aggreg-

ated in both the temporal and spatial domains. In the spatial dimension, it is important to

know which model will be used and at which scale this model performs best. For example,

for the MFD model, a spatial scale of 10 km2 per zone is reasonable according to the

related literature [22]. Thus, the spatial aggregation step can greatly reduce the amount

of data and thus the privacy footprint. Concerning the exact aggregation technique, in

Chapter 3, we have confirmed that the Voronoi tesselation is a useful approximation of LTE

cell coverage even if buildings and a realistic propagation model are taken into account.

Thus, the wide adoption of this computationally-efficient method in mobile network data

analysis is justified. The fact that this is a readily-available algorithm on most platforms

allows a rapid deployment of spatial aggregation in this manner.

For mobility purposes, temporal aggregation is a crucial step. A high temporal res-

olution is very important for numerous applications, most importantly real-time traffic

forecasting. While we have shown in Chapter 6 that hourly data can provide some value

there is also significant interest in having a higher temporal resolution. In other set-

tings, the temporal component of the data can be rounded to the closest anchor point;

for example, the D4D challenge CDR data sets are truncated to 10-minute precision. In

Chapter 5, based on one of the D4D data sets, we impute user trajectories and then pro-

ceed to aggregate that data across the entire user base, thus avoiding the privacy-critical

characteristic of CDR data [63,64,66].

Essentially, no direct (meta-)data should leave a communication network operator’s

facilities; instead, following the aggregation process, the model-fitting process can be run

at the data acquisition source. This ensures that the output data is simply the para-

meterization of a model, such as the dwell time distribution parameters in Chapter 5.

A potential attacker has little use for mobility model parameters, while researchers and

traffic engineers can use them for estimation or simulation purposes. It is important,

however, to make sure that the aggregation zones (i.e. the spatial aggregation scale) are

sufficiently large and densely populated to avoid re-identification [63,66].

To summarize, we have shown that there are efficient aggregation methods that can

enable mobile network data as a reliable and privacy-neutral data source for ITS applic-

ations. With suitable methods, as presented in this thesis, the data can be transformed

within the perimeter of the providing network operator, and provide real value for mobile

network operators and transportation agencies.
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7.6 Future research perspectives

Using heterogeneous simulators like VeinsLTE [41] [68] and scenarios such as LuST-

LTE, as presented in this thesis, there is a significant potential for running realistic studies

on (potentially multimodal) mobility in a realistic setting in terms of demand and con-

nectivity. One major application of this is traffic optimization, ranging from gating with

traffic light control to incentive-based methods.

In general, the privacy and legal aspects of measuring mobility are important chal-

lenges, especially when considering the next generations of communication networks that

will enable more precise user localization. There are significant challenges in anonymizing

user data while still making use of the data [63,66], and we believe that a legal framework

within which MNOs can share their data would be beneficial to research and to society in

general.

As for the results that we achieved with real data, future research can address the

questions of spatiotemporal resolution. Eventually, we see great potential in a holistic

traffic estimation approach combining exo- and endogenic communication data, i.e. the

fusion of e.g. V2I and cellular data. This will allow an accurate picture of the distribution

of stationary and moving users to be obtained. The traffic state model that we have

proposed is very promising in the low-congestion network of Luxembourg City. Based on

the work presented in this dissertation, new directions in the modelling of macroscopic

traffic phenomena from mobile network data have emerged. We have shown its vast

potential for smart city and transportation planning efforts with data available today,

and we encourage mobile network operators to grasp the opportunity of making their

data available for research efforts. We are convinced that for MNOs, sharing aggregated

statistics and/or mobility models computed from their data with public agencies is a win-

win situation, as both parties can profit from the increasing value and insights that today’s

mobile network data offers.
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[27] R.-P. Schäfer, K.-U. Thiessenhusen, E. Brockfeld, and P. Wagner, “A traffic inform-

ation system by means of real-time floating-car data,” 2002.

[28] B. M. Williams and L. A. Hoel, “Modeling and forecasting vehicular traffic flow

as a seasonal arima process: Theoretical basis and empirical results,” Journal of

transportation engineering, vol. 129, no. 6, pp. 664–672, 2003.

[29] J.-S. Yang, “Travel time prediction using the gps test vehicle and kalman filtering

techniques,” in American Control Conference, 2005. Proceedings of the 2005. IEEE,

2005, pp. 2128–2133.

[30] Y. Liu, Y. Wang, X. Yang, and L. Zhang, “Short-term Travel Time Prediction by

Deep Learning: A Comparison of Different LSTM-DNN Models,” in Proceedings of

the 2017 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2017,

pp. 2083–2090.

[31] Y. Hou, P. Edara, and Y. Chang, “Road Network State Estimation Using Random

Forest Ensemble Learning,” in Proceedings of the 2017 IEEE Intelligent Transport-

ation Systems Conference (ITSC). IEEE, 2016, pp. 2091–2096.

[32] A. Hofleitner, R. Herring, P. Abbeel, and A. Bayen, “Learning the dynamics of arter-

ial traffic from probe data using a dynamic bayesian network,” IEEE Transactions

on Intelligent Transportation Systems, vol. 13, no. 4, pp. 1679–1693, 2012.

[33] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent development and

applications of SUMO - Simulation of Urban MObility,” International Journal On

Advances in Systems and Measurements, vol. 5, no. 3&4, pp. 128–138, December

2012.



Bibliography 119

[34] K. S. Lee, J. K. Eom, and D.-s. Moon, “Applications of transims in transportation:

A literature review,” Procedia Computer Science, vol. 32, pp. 769–773, 2014.

[35] A. Horni, K. Nagel, and K. W. Axhausen, The multi-agent transport simulation

MATSim.
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[109] A. Corral-Ruiz, F. Cruz-Pérez, and G. Hernández-Valdez, Cell Dwell Time and

Channel Holding Time Relationship in Mobile Cellular Networks. INTECH Open

Access Publisher, 2012. [Online]. Available: http://books.google.lu/books?id=

cs7hoAEACAAJ

[110] H. Hidaka, K. Saitoh, N. Shinagawa, and T. Kobayashi, “Statistical properties of

measured vehicle motion and teletraffic in cellular communications,” in Multiaccess,

Mobility and Teletraffic in Wireless Communications: Volume 5, G. Stber

and B. Jabbari, Eds. Springer US, 2000, pp. 291–303. [Online]. Available:

http://dx.doi.org/10.1007/978-1-4757-5916-7 25

[111] H. Wang, F. Calabrese, G. Di Lorenzo, and C. Ratti, “Transportation mode infer-

ence from anonymized and aggregated mobile phone call detail records,” in Intelli-

gent Transportation Systems (ITSC), 2010 13th International IEEE Conference on.

IEEE, 2010, pp. 318–323.

[112] O. Jarv, R. Ahas, E. Saluveer, B. Derudder, and F. Witlox, “Mobile phones in a

traffic flow: a geographical perspective to evening rush hour traffic analysis using

call detail records,” PLoS One, vol. 7, no. 11, 2012.

[113] M. R. Vieira, V. Frias-Martinez, N. Oliver, and E. Frias-Martinez, “Characterizing

dense urban areas from mobile phone-call data: Discovery and social dynamics,”

in Social Computing (SocialCom), 2010 IEEE Second International Conference on.

IEEE, 2010, pp. 241–248.



128 Bibliography

[114] A. Apolloni, A. Camacho, K. Eames, J. W. Edmunds, and S. Funk, “First steps for

a Synthetic Population of Ivory Coast,” in D4D Challenge Submissions, NetMob,

2013. [Online]. Available: http://perso.uclouvain.be/vincent.blondel/netmob/2013/

D4D-book.pdf

[115] J. L. Toole, S. Colak, B. Sturt, L. P. Alexander, A. Evsukoff, and M. C. González,
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