
ar
X

iv
:1

80
2.

08
20

1v
2 

 [
cs

.A
I]

  2
8 

Se
p 

20
18

A Polynomial Time Subsumption Algorithm for Nominal Safe

ELO⊥ under Rational Closure∗

Giovanni Casini1, Umberto Straccia2, and Thomas Meyer3

1CSC, University of Luxembourg, Luxembourg. Email: giovanni.casini@uni.lu
2ISTI - CNR, Italy. Email: umberto.straccia@isti.cnr.it

3University of Cape Town and CAIR, South Africa. Email: tmeyer@cs.uct.ac.za

Abstract

Description Logics (DLs) under Rational Closure (RC) is a well-known framework for non-
monotonic reasoning in DLs. In this paper, we address the concept subsumption decision
problem under RC for nominal safe ELO⊥, a notable and practically important DL represen-
tative of the OWL 2 profile OWL 2 EL.

Our contribution here is to define a polynomial time subsumption procedure for nominal
safe ELO⊥ under RC that relies entirely on a series of classical, monotonic EL⊥ subsumption
tests. Therefore, any existing classical monotonic EL⊥ reasoner can be used as a black box
to implement our method. We then also adapt the method to one of the known extensions
of RC for DLs, namely Defeasible Inheritance-based DLs without losing the computational
tractability.

1 Introduction

Description logics (DLs) provide the logical foundation of formal ontologies of the OWL family.1

Among the various extensions proposed to enhance the representational capabilities of DLs, endow-
ing them with non-monotonic features is still a main issue, as documented by the past 20 years of
technical development (see e.g. [8, 20, 27, 47] and references therein, and Section 6).

We recall that a typical problem that can be addressed using non-monotonic formalisms is
reasoning with ontologies in which some classes are exceptional w.r.t. some properties of their
super classes.

Example 1. We know that avian red blood cells, mammalian red blood cells, and hence also
bovine red blood cells are vertebrate red blood cells, and that vertebrate red blood cells normally
have a cell membrane. We also know that vertebrate red blood cells normally have a nucleus, but
that mammalian red blood cells normally don’t.

∗This is a preprint version of a paper accepted for publication in Information Sciences, DOI:
https://doi.org/10.1016/j.ins.2018.09.037

1https://www.w3.org/TR/owl2-overview/

1

http://arxiv.org/abs/1802.08201v2
https://doi.org/10.1016/j.ins.2018.09.037
https://www.w3.org/TR/owl2-overview/


A classical formalisation of the ontology above would imply that mammalian red blood cells do not
exist, since, being a subclass of vertebrate red blood cells, they would have a nucleus, but in the
meantime, they are an atypical subclass that does not have a nucleus. Therefore, mammalian red
blood cells would and would not have a nucleus at the same time. Unlike a classical approach, the
use of a non-monotonic formalism may allow us to deal with such exceptional classes.

Among the various proposals to inject non-monotonicity into DLs, the preferential approach
has recently gained attention [10, 12, 13, 14, 15, 16, 17, 22, 26, 28, 29, 30, 46] as it is based on one
of the major frameworks for non-monotonic reasoning in the propositional case, namely the KLM
approach [37]. One of the main constructions in the preferential approach is Rational Closure (RC)
[40]. RC has some interesting properties: the conclusions are intuitive, and the decision procedure
can be reduced to a series of classical decision problems, sometimes preserving the computational
complexity of the underlying classical decision problem.

In this paper, we address the concept subsumption decision problem under RC for nominal safe
ELO⊥ [35], a computationally tractable and practically important DL representative of the OWL
2 profile OWL 2 EL.2 In fact, (i) nominal safe ELO⊥ is the language EL [3], extended with the
bottom concept (denoted ⊥) and with the so-called ObjectHasValue construct (also denoted as B in
the DL literature), which is an existential quantification. Roughly, nominal safe ELO⊥ is as ELO⊥,
except for the fact that a nominal may only occur in concept expressions of the form ∃r.{a}, or in
inclusion axioms of the form {a} ⊑ C, stating that individual a is an instance of concept C (note
that so-called role assertions can be also expressed via {a} ⊑ ∃r.{b}); and (ii) in [35] it is shown
that many OWL EL ontologies are nominal safe and that an EL⊥ reasoner is sufficient to decide
the subsumption problem, decreasing the inference time significantly in practice.

In summary, our contributions are as follows.

1. We describe a subsumption decision procedure under RC for nominal safe ELO⊥ that runs in
polynomial time. Al feature of our approach is that our procedure relies entirely on a series
of classical, monotonic EL⊥ subsumption tests, and, thus, any existing EL⊥ reasoner can be
used as a black box to implement our method. Note that e.g., in [12] it is shown that the use
of a DL reasoners as a black box for RC under ALC is scalable in practice. We conjecture
that this property holds with respect to RC under nominal safe ELO⊥ as well.

2. We will also illustrate how to adapt our procedure to a relevant modification of RC for
DLs, namely Defeasible Inheritance-based DLs [14]. We recall that Defeasible Inheritance-
based DLs have been introduced to overcome some inference limitations of RC [13]: in fact,
in [14, Appendix A] it is shown that Defeasible Inheritance-based DLs behave better than
RC w.r.t. most of the “benchmark” examples illustrated there. A feature of our proposed
procedure is that it runs in polynomial time and maintains the advantage of the previous
point.

In the following, we will proceed as follows: for the sake of completeness, Section 2 introduces
nominal safe ELO⊥ and recaps salient notions about Rational Closure for ALC [12, 13, 46]; Section 3
we describe a polynomial time procedure to decide subsumption under RC for defeasible EL⊥; in
Section 4, we adapt our procedure for the Defeasible Inheritance-based ELO⊥. In Section 5 we
address nominal safe ELO⊥ and show how we polynomially reduce reasoning within it to defeasible
EL⊥, and thus inherit the computational complexity of reasoning of the subsumption decision

2https://www.w3.org/TR/owl2-profiles/

2

https://www.w3.org/TR/owl2-profiles/


problem from defeasible EL⊥ and its RC extensions. Section 6 discusses related work and Section 7
concludes and addresses future work.

All relevant proofs are in the appendixes.3

2 Preliminaries

To make the paper self-contained, in the following we briefly present the DLs EL⊥, ELO⊥, and
nominal safe ELO⊥, and an exponential time procedure to decide subsumption in the DL ALC under
RC via series of classical ALC subsumption tests. The latter is important here as we will adapt it
to decide the subsumption problem for nominal safe ELO⊥ in polynomial time.

2.1 The DLs EL⊥, ELO⊥, and nominal safe ELO⊥

EL⊥ is the DL EL with the addition of the empty concept ⊥ [3]. It is a proper sublanguage of
ALC. Note that considering EL alone would not make sense in our case as EL ontologies are always
concept-satisfiable, while the notion of defeasible reasoning is built over a notion of conflict (see
Example 1) which needs to be expressible in the language.

ELO⊥ is EL⊥ extended with so-called nominal concepts (denoted with the letter O in the DL
literature, while nominal safe ELO⊥ is ELO⊥ with some restrictions on the occurrence of nominals.

Syntax. The vocabulary is given by a set of atomic concepts NC = {A1, . . . , An}, a set of atomic
roles NR = {r1, . . . , rm} and a set of individuals NO = {a, b, c, . . .}. All these sets are assumed to
be finite. ELO⊥ concept expressions C,D, . . . are built according to the following syntax:

C,D → A | ⊤ | ⊥ | C ⊓D | ∃r.C | {a} .

An ontology T (or TBox, or knowledge base) is a finite set of Generalised Concept Inclusion (GCI)
axioms C ⊑ D (C is subsumed by D), meaning that all the objects in the concept C are also in the
concept D. We use the expression C = D as shorthand for having both C ⊑ D and D ⊑ C.

The DL EL⊥. A concept of the form {a} is called a nominal. EL⊥ is ELO⊥ without nominals.

The DL nominal safe ELO⊥. Nominal safe ELO⊥ is ELO⊥ with some restrictions on the
occurrence of nominals and is defined as follows [35]. An ELO⊥ concept C is safe if C has only
occurrences of nominals in subconcepts of the form ∃r.{a}; C is negatively safe (in short, n-safe) if
C is either safe or a nominal. A GCI C ⊑ D is safe if C is n-safe and D is safe. An ELO⊥ ontology
is nominal safe if all its GCIs are safe. It is worth noting that nominal safeness is a quite commonly
used pattern of nominals in OWL EL ontologies, as reported in [35].

Semantics. An interpretation is a pair I = 〈∆I , ·I〉, where ∆I is a non-empty set, called inter-
pretation domain and ·I is an interpretation function that

1. maps atomic concepts A into a set AI ⊆ ∆I ;

2. maps ⊤ (resp. ⊥) into a set ⊤I = ∆I (resp. ⊥I = ∅);

3A preliminary version of some results in Sections 3 and 4 appear in the Technical Report [18].

3



3. maps roles r into a set rI ⊆ ∆I × ∆I ;

4. maps individuals a ∈ NO into an object aI ∈ ∆I .

The interpretation function ·I is extended to complex concept expressions as follows:

(C ⊓D)I = CI ∩DI

(∃r.C)I = {o ∈ ∆I | ∃o′ ∈ ∆I s. t. 〈o, o′〉 ∈ rI and o′ ∈ CI}

{a}I = {aI} .

An interpretation I satisfies (is a model of) C ⊑ D if CI ⊆ DI , denoted I |= C ⊑ D. I satisfies
(is a model of) an ontology T if it satisfies each axiom in it. An axiom α is entailed by a T if every
model of T is a model of α, denoted as T |= α.

Remark 1. Note that a so-called concept assertion a:C (a is an instance of concept C) and a role
assertion (a, b):r (a and b are related via role r) can easily be represented in nominal safe ELO⊥ via
the mapping a:C 7→ {a} ⊑ C and (a, b):r 7→ {a} ⊑ ∃r.{b}.

In the following, we recap here some salient facts related to nominal safe ELO⊥ [35, Appendix
A], which we will use once we present our entailment decision algorithm for nominal safe ELO⊥.
Specifically, we can replace nominals in a nominal safe ELO⊥ ontology T with newly introduced
concept names, yielding an EL⊥ ontology T ′, such that T ′ supports the same entailments as T
[35]. Hence, an entailment decision procedure for EL⊥ suffices to decide entailment for nominal
safe ELO⊥ (but not for unrestricted ELO⊥).

Consider an ELO⊥ ontology T . For each individual a occurring in T consider a new atomic
concept Na. For X an ELO⊥ concept, GCI, or ontology, we define N(X) to be the result of
replacing each occurrence of each nominal {a} in X with Na. The following proposition provides a
sufficient condition to check entailment.

Proposition 1 ([35], Lemma 5 and Corollary 2). Let T be an ELO⊥ontology and α an ELO⊥ axiom
that do not contain atomic concepts of the form Na. Then

1. if N(T ) |= N(α) then T |= α;

2. if N(T ) |= Na ⊑ ⊥ for some a then T is not satisfiable.

The converse of Proposition 1 does not hold in general but holds for nominal safe ELO⊥.

Proposition 2 ([35], Theorem 4). Let T be a nominal safe ELO⊥ontology and α a safe ELO⊥ ax-
iom that do not contain atomic concepts of the form Na. Then

1. if N(T ) 6|= Na ⊑ ⊥ for all a then T is satisfiable;

2. if T |= α then N(T ) |= N(α).

Note that Proposition 2 fails if the use of nominals is not safe.

Example 2 ([35], Remark 2). Consider

T = {A ⊑ {a}, B ⊑ {a}, A ⊑ ∃r.B} .

It is easily verified that T is satisfiable and that T |= A ⊑ B. However, for

N(T ) = {A ⊑ Na, B ⊑ Na, A ⊑ ∃r.B}

we have that N(T ) is satisfiable, N(A ⊑ B) = A ⊑ B, but N(T ) 6|= A ⊑ B.

4



2.2 Rational Closure in ALC

We briefly recap RC for the DL ALC (see, e.g. [12]), which in turn is based on its original formulation
for Propositional Logic [40].

The DL ALC is the DL EL⊥ extended with concept negation, i.e. concept expressions of the
form ¬C and semantics (¬C)I = ∆I \CI . Note that by using the negation ¬ and the conjunction
⊓ we can introduce also, e.g. the disjunction ⊔, i.e. C ⊔D is a macro for ¬(¬C ⊓¬D), that is, it is
interpreted as (C ⊔D)I = CI ∪DI .

A defeasible GCI axiom is of the form C ❁
∼ D, that is read as ‘Typically, an instance of C is also

an instance of D’. We extend ontologies with a DBox D, i.e. a finite set of defeasible GCIs and
denote an ontology as K = 〈T ,D〉, where T is a TBox and D is a DBox.

Example 3. We can formalise the information in Example 1 in EL⊥ and, thus, in ALC with the
following ontology K = 〈T ,D〉, with4

T = { BRBC ⊑ MRBC,

ARBC ⊑ VRBC,

MRBC ⊑ VRBC,

∃hasN.⊤ ⊓ NotN ⊑ ⊥ }

D = { VRBC ❁
∼ ∃hasCM.⊤,

VRBC ❁
∼ ∃hasN.⊤,

MRBC ❁
∼ NotN } .

Given a KB K = 〈T ,D〉, RC satisfies some basic desiderata: the axioms in T and D are included
into the set of the derivable axioms, that moreover is closed under the following properties.

(Ref) C ❁
∼ C (LLE)

|= C = D, C ❁
∼ E

D ❁
∼ E

(And)
C ❁

∼ D, C ❁
∼ E

C ❁
∼ D ⊓ E

(Or)
C ❁

∼ E, D ❁
∼ E

C ⊔D ❁
∼ E

(RW)
C ❁

∼ D, |= D ⊑ E

C ❁
∼ E

(CM)
C ❁

∼ D, C ❁
∼ E

C ⊓D ❁
∼ E

(RM)
C ❁

∼ E, C 6❁∼ ¬D

C ⊓D ❁
∼ E

Reflexivity (Ref), Left Logical Equivalence (LLE), Right Conjunction (And), Left Disjunction (Or),
and Right Weakening (RW) are all properties that correspond to well-known properties of the clas-
sical subsumption relation ⊑. Cautious Monotonicity (CM) and Rational Monotonicity (RM) are

4The acronyms stand for: BRBC - Bovine Red Blood Cells; MRBC - Mammalian Red Blood Cells; ARBC - Avian
Red Blood Cells; VRBC - Vertebrate Red Blood Cells; hasN - has Nucleus; hasCM - has Cell Membrane.

5



constrained forms of Monotonicity that are useful and desirable in modelling defeasible reasoning.
(CM) guarantees that our inferences are cumulative, that is, whatever we can conclude about typ-
ical Cs (e.g. that they are in D), we can add such information to C (C ⊓ D) and still derive all
the information associated to typical Cs (C ⊓D ❁

∼ E). The stronger principle (RM) is necessary to
model the principle of presumption of typicality, that is, if the typical elements of a class C satisfy
certain properties (e.g. E) and we are not informed that the typical elements of C do not satisfy
the properties of D (C 6❁∼ ¬D), then we can assume that the typical elements of C ⊓D satisfy all the
properties characterising the typical elements of C (C ⊓D ❁

∼ E). We refer to [37, 45] for a deeper
explanation of the meaning of such properties and why they are desirable for modelling defeasible
reasoning.

RC is a form of inferential closure that satisfies all the properties above; it is based on the
semantic notion of ranked interpretation and on the directly connected notion of ranked entailment,
which we illustrate next.

Definition 1 (Ranked interpretation). A ranked interpretation is a triple R = 〈∆R, ·R,≺R〉, where
∆R and ·R are as in the classical DL interpretations, while ≺R is a modular preference relation
over ∆R, that is, a strict partial order satisfying the following property:

Modularity : ≺R is modular if and only if there is a ranking function rk : ∆R −→ N s.t. for every
o, p ∈ ∆R, o ≺R p iff rk(o) < rk(p).

In the definition above, o ≺R p means that the object o is considered more typical than the object
p. The order ≺R allows us to partition the domain ∆R of a ranked interpretation R into a sequence
of layers, 〈LR

0 , . . . , L
R
n , . . .〉 , where for every object o, o ∈ LR

0 iff o ∈ min≺R(∆R) and o ∈ LR
i+1 iff

o ∈ min≺R(∆R \
⋃

0≤j≤i L
R
j ).5 From this partition, we can define the height of an individual a as

hR(a) = i iff aR ∈ LR
i .

The lower the height, the more typical the individual in the interpretation is taken to be. We can
also extend this to a level of typicality for concepts: the height of a concept C in an interpretation
R, hR(C), as the lowest (most typical) layer in which the concept’s extension is non-empty: i.e.

hR(C) = min{i | (CR) ∩ LR
i 6= ∅} .

If in a model R there is no individual satisfying a concept C, we set hR(C) = ∞.

Definition 2 (Ranked model). An interpretation R = 〈∆R, ·R,≺R〉 satisfies (is a model of) C ⊑ D
(denoted R |= C ⊑ D) iff CR ⊆ DR, and satisfies (is a model of) C ❁

∼ D iff min≺R(CR) ⊆ DR

(denoted R |= C ❁
∼ D). R satisfies (is a model of) K = 〈T ,D〉 iff R |= α for all axioms α ∈ T ∪D.

Hence, C ❁
∼ D is satisfied by R iff all the most typical individuals in CR are also in DR. We say

that two ontologies are rank equivalent iff they are satisfied by exactly the same ranked models,
and that an ontology is rank satisfiable iff there is at least a ranked model that satisfies it.

Remark 2. Note that from the above definition of the satisfiability of an axiom C ❁
∼ D we obtain

the following correspondence: for every ranked model R,

R |= C ⊑ ⊥ iff R |= C ❁
∼ ⊥ .

This allows for the translation of every classical axiom C ⊑ D into a defeasible axiom C ⊓¬D ❁
∼ ⊥.

Note also that such a translation is not feasible in ELO⊥, as ¬ is not supported in EL⊥.

5Given a set X and the order ≺ defined over X, min≺(X) = {x ∈ X |6 ∃y ∈ X s.t. y ≺ x}

6



Now, the definition of ranked entailment follows directly from the notion of a ranked model. So,
let R

K be the class of the ranked models of an ontology K.

Definition 3 (Ranked Entailment). Given an ontology K = 〈T ,D〉 and a defeasible axiom C ❁
∼ D,

K rationally entails C ❁
∼ D (denoted K |=R C ❁

∼ D) iff ∀R ∈ R
K, R |= C ❁

∼ D.

The main drawbacks of ranked entailment are that it is too weak from the inferential point of view
and does not satisfy the (RM) property [12, 40]. RC is a kind of entailment that extends Ranked
Entailment, allowing us to overcome these limitations. It is based on a notion of exceptionality that
is built on Ranked Entailment.

Definition 4 (Exceptionality). A concept C is exceptional w.r.t. an ontology K = 〈T ,D〉 iff
K |=R ⊤ ❁

∼ ¬C. That is to say, C is exceptional w.r.t. K iff, for every ranked model R ∈ R
K,

CR ∩ min
≺R

(∆R) = ∅ .

An axiom C ❁
∼ D is exceptional w.r.t. K iff C is exceptional.

Intuitively, a concept is exceptional w.r.t. an ontology iff it is not possible to have it satisfied by
any typical individual (i.e., an individual in the layer 0, that corresponds to min≺R(∆R)) in any
ranked model of the ontology. Iteratively applied, the notion of exceptionality allows to associate
to every concept C a rank value w.r.t. an ontology K = 〈T ,D〉 in the following way (called RC
ranking procedure).

1. A concept C has rank 0 (rK(C) = 0) iff it is not exceptional w.r.t. K (that is, hR(C) = 0 for
some model R of K). In this case we set rK(C ❁

∼ D) = 0 for every defeasible axiom having C
as antecedent. The set of the axioms in D with rank 0 is denoted as D0.

2. For i > 0, C has rank i iff it does not have rank i − 1 and it is not exceptional wrt Ki =
〈T ,D \

⋃i−1
j=0 Dj〉. If rK(C) = i, then we set rK(C ❁

∼ D) = i. The set of the axioms in D with
rank i is denoted as Di.

3. By iterating the previous step a finite number of times, we finally reach a (possibly empty)
subset E ⊆ D s.t. all the axioms in E are exceptional w.r.t. 〈T , E〉.6 If E 6= ∅ we define the
rank value of the axioms in E as ∞, and the set E is denoted as D∞.

As a consequence, according to the procedure above, D can be partitioned into a finite sequence
〈D0, . . ., Dn,D∞〉 (n ≥ 0), where D∞ may be possibly empty. This semantic procedure allows us
to give a rank value to every concept and every defeasible subsumption. Using the rank values, we
can define the notion of RC as follows:

Definition 5 (Rational Closure). C ❁
∼ D is in the RC of an ontology K iff

rK(C ⊓D) < rK(C ⊓ ¬D) or rK(C) = ∞ .

6Since D is finite, we must reach such a point.

7



Informally, the above definition says that C ❁
∼ D is in the rational closure of K if the most typical

instances of C happen to be all instances of C ⊓D, and not of C ⊓ ¬D.
Given an ontology K = 〈T ,D〉, distinct ways of defining models of K characterising its RC can

be found in [12] (summarised also here in A and presented also in [46, Section 4.1]) and in [29]. Both
such kinds of models can be described as minimal models of the ontology 〈T ,D〉. Paraphrasing
Definition 23 in [29], we can define a preference relation < among ranked interpretations in the
following way.

Definition 6 ([29], Definition 23). Let R = 〈∆R, ·R,≺R〉 and R′ = 〈∆R′

, ·R
′

,≺R′

〉 be two ranked
interpretations s.t. ∆R = ∆R′

and CR = CR′

for every concept C. R is preferred to R′ (R < R′) iff
for every x ∈ ∆R, hR(x) ≤ hR′(x), and there is a y ∈ ∆R s.t. hR(y) < hR′(y). An interpretation
R is minimal w.r.t. an ontology K if it is a model of K and there is no model R′ of K s.t. R′ < R.

The reason behind the use of minimal models in characterising RC is in the direct connection
between minimality and the presumption of typicality: in minimal models we maximise the amount
of typicality for each individual in the domain, modulo the satisfaction of the ontology. We will go
back to the role of minimality in Section 5.

The type of reasoning we are primarily interested in modelling is subsumption checking in
ALC under RC, that is, deciding whether a defeasible subsumption C ❁

∼ D is or is not a consequence
under RC of an ontology 〈T ,D〉. In [12] a detailed decision procedure for subsumption checking in
ALC under RC is described, which we recap here.7 This will be useful, as our subsumption decision
procedure for defeasible EL⊥ will be a variant of it. The key step in translating the semantic
procedure into a correspondent one, based on classical ALC decision steps, is given by the following
proposition.

Proposition 3. For every concept C and every ontology K = 〈T ,D〉, if

T |=
l

{¬E ⊔ F | E ❁
∼ F ∈ D} ⊑ ¬C (1)

then C is exceptional w.r.t. K.

By Proposition 3, checking exceptionality can be done by using a classical DL reasoner for ALC.
Now, consider an ALC defeasible ontology K = 〈T ,D〉 and a defeasible GCI C ❁

∼ D. In order to
decide whether C ❁

∼ D is in the RC of an ontology K, we perform two steps: the first one is a
ranking procedure, that transforms the initial ontology K = 〈T ,D〉 into a rank equivalent ontology
K• = 〈T •,D•〉, where D• is partitioned into a sequence D•

0 , . . . ,D
•
n, with each D•

i containing the
defeasible axioms with rank i; the second one uses K• to decide whether an axiom C ❁

∼ D is in the
RC of K.

Specifically, define the function e that, given any ontology 〈T ′,D′〉, returns exceptional axioms
as

e(T ′,D′) = {C ❁
∼ D ∈ D′ | T ′ |=

l
{¬E ⊔ F | E ❁

∼ F ∈ D′} ⊑ ¬C} . (2)

The function e gives back axioms in D′ that are exceptional w.r.t. 〈T ′,D′〉 (see also [12, Section
6]).

7The procedure is based on the one by Casini and Straccia [13] and paired with a proper semantics; the latter
needed to be modified slightly since it does not always give back the expected result in case Dr

∞ 6= ∅. The procedure
presented in [12] have been presented (and peer-reviewed) also in [46].

8



Now in order to decide whether C ❁
∼ D is in the RC of K, we execute the following two steps

shown below, which we will call RC.Step 1 and RC.Step 2. Note that RC.Step 1 will correspond
to procedure ComputeRanking, while RC.Step 2 is encoded in procedure RationalClosure, both
presented in Section 3 later on. Also, the execution of RC.Step 1, i.e., procedure ComputeRanking,
can be followed e.g. in Example 4), which also illustrates why Steps 1.1 and 1.2 may need to be
repeated more than once to extract all the needed information.

RC.Step 1 Let T 0 = T ,D0 = D and i = 0. Repeat Steps 1.1 and 1.2 until D∞
i = ∅.

Step 1.1 Given 〈T i,Di〉, construct the sequence E0, E1, . . .

E0 = Di

Ej+1 = e(T i, Ej) .

Since Di is finite, the iteration will terminate with (a possibly empty) fixed-point of
e(T i, ·).

Step 1.2 For a defeasible GCI E ❁
∼ F ∈ Di, define the rank of E ❁

∼ F and of concept E as

ri(E ❁
∼ F ) =

{

j if E ❁
∼ F ∈ Ej and E ❁

∼ F 6∈ Ej+1

∞ if E ❁
∼ F ∈ Ej for all j

ri(E) = ri(E ❁
∼ F ) .

Define

Di
j = {E ❁

∼ F ∈ Di | ri(E ❁
∼ F ) = j} .

It follows that Di is partitioned into sets Di
0, . . . ,D

i
m,Di

∞, for some m, with Di
∞ possibly

empty. Finally, define

T i+1 = T i ∪ {E ⊑ ⊥ | E ❁
∼ F ∈ Di

∞}

Di+1 = Di \ Di
∞ .

RC.Step 1 terminates after building a sequence of ontologies 〈T 0,D0〉, . . . , 〈T k,Dk〉 and
ranking functions r0, . . . , rk, for some k ≤ |D|, once we reach the point where Dk

∞ = ∅. Let rk

partition Dk into Dk
1 , . . . ,D

k
n for some n. Furthermore, let T • = T k, D• = Dk, and D•

i = Dk
i

for every 0 ≤ i ≤ n.

Once we have applied RC.Step 1, Proposition 3 holds also in the opposite direction.

Proposition 4. Given an ontology K• = 〈T •,D•〉, obtained from the application of RC.Step1
to an ontology K = 〈T ,D〉, then for every concept C,

T • |=
l

{¬E ⊔ F | E ❁
∼ F ∈ D•} ⊑ ¬C

if and only if C is exceptional w.r.t. K•.

RC.Step 2 So, let T • = T k,D• = Dk, r• = rk, and D• be partitioned into D•
0 , . . . ,D

•
n.

Step 2.1 For 0 ≤ i ≤ n define the concept

Hi =
l

{¬E ⊔ F | E ❁
∼ F ∈ D•

i ∪ . . . ∪ D•
n} .

Note that if j < i then |= Hj ⊑ Hi.

9



Step 2.2 Finally, given C ❁
∼ D, let HC be the first concept Hi of the sequence H0, . . . , Hn

such that T • 6|= Hi ⊑ ¬C. If there is no such Hi let HC be ⊤. Then, we say that C ❁
∼ D

is derivable from K iff T • |= C ⊓HC ⊑ D.

C ⊑ D is derivable from K iff T • |= C ⊓ ¬D ❁
∼ ⊥ (see Remark 2).

With K ⊢rc C ❁
∼ D (resp. K ⊢rc C ⊑ D) we will denote that C ❁

∼ D (resp. C ⊑ D) is derivable from
K via RC.Step 2. In [12, 46] it is shown that RC.Step 1 is correct w.r.t. the semantic definition
of ranking, and that RC.Step 2 is correct w.r.t. the semantic definition of RC (Definition 5). That
is, respectively,

Proposition 5 ([12], Proposition 7). Given an ontology K = 〈T ,D〉 and a concept C, then rK(C) =
r•(C) holds.

Proposition 6 ([12], Theorem 5). Given an ontology K = 〈T ,D〉, and concepts C,D, then C ❁
∼ D

is in the RC of K iff K ⊢rc C ❁
∼ D.

Remark 3. Note that an indispensable requirement of the above described defeasible subsumption
procedure for ALC under RC is to have a classical DL subsumption decision procedure supporting
the empty concept, concept conjunction, negation and disjunction.

From [12], the following propositions are immediate.

Proposition 7. A classical GCI C ⊑ D is in the RC of K = 〈T ,D〉 iff T • |= C ⊑ D, where T •

has been computed using RC.Step 1.

Corollary 8 ([12], Corollary 2). An ontology K = 〈T ,D〉 does not have a ranked model iff T • |=
⊤ ⊑ ⊥, where T • has been computed using RC.Step 1.

3 Rational Closure in EL⊥

We now present a subsumption decision procedure under RC for EL⊥ by adapting the procedure for
ALC under RC to EL⊥. By Remark 3, as EL⊥ does not support concept negation and disjunction,
the main problem we have to address is to find a way to overcome this limitation. Concretely, we
will define alternative ways both to

1. express whether an EL⊥ concept is exceptional using a classical EL⊥ subsumption problem
only;

2. express the subsumption problems in Steps 2.1 and 2.2 above in terms of EL⊥ subsumption
problems only.

3.1 A Subsumption Decision Procedure for EL⊥ under RC

Consider a defeasible EL⊥ ontology K = 〈T ,D〉. As for ALC, we will define two procedures.
The first one is a ranking procedure that transforms the initial ontology K = 〈T ,D〉 into a rank
equivalent ontology K∗ = 〈T ∗,D∗〉, where D∗ is partitioned into a sequence D0, . . . ,Dn, with each
Di containing the defeasible axioms with rank i. The second one uses K∗ to decide whether an
axiom C ❁

∼ D is in the RC of K.

10



The Ranking Procedure. Given an ontology 〈T ,D〉, the ranking procedure is defined by means
of two procedures: one for finding exceptional axioms and one for determining the rank value of
axioms, as defined in Section 2.2.

In the following, given an ontology 〈T , E〉, and a new atomic concept δE (with E indicating a
set of defeasible subsumptions), we define TδE as

TδE = T ∪ {E ⊓ δE ⊑ F | E ❁
∼ F ∈ E} . (3)

Informally, we introduce the atom δE as a way of representing the information that characterises
the lowest rank. Hence, its introduction is aimed at the formalisation of the typicality of the lowest
layer: C ⊓ δE is introduced to represent the individuals in C that are in the lowest layer.

Remark 4. The aim of the definition for TδE is to replace the ALC subsumption test in Proposi-
tion 3 with the EL⊥ subsumption test

TδD |= C ⊓ δD ⊑ ⊥ ,

for an ontology 〈T ,D〉.

We obtain an analogue of Proposition 3.

Proposition 9. For every concept C and every ontology K = 〈T ,D〉, if

TδD |= C ⊓ δD ⊑ ⊥ , (4)

where δD is a new atomic concept, then C is exceptional w.r.t. K.

Procedure Exceptional illustrates how to compute the exceptional axioms.

Procedure Exceptional(T , E)

Input: T and E ⊆ D
Output: E ′ ⊆ E such that E ′ is a set of exceptional axioms w.r.t. 〈T , E〉

1 E ′ := ∅;
2 TδE = T ∪ {E ⊓ δE ⊑ F | E ❁

∼ F ∈ E}, where δE is a new atomic concept;
3 foreach E ❁

∼ F ∈ E do

4 if TδE |= E ⊓ δE ⊑ ⊥ then

5 E ′ := E ′ ∪ {E ❁
∼ F};

6 return E ′

The procedure ComputeRanking instead, shows how we implement RC.Step 1 in EL⊥, which we
comment shortly on next. We start by considering an ontology K = 〈T ,D〉. Lines 8-10 loop until
we reach a (possibly empty) fixed-point of exceptional axioms. Then, each axiom C ❁

∼ D in the
fixed point of the exceptionality function is eliminated from D∗ (line 12) and we add C ⊑ ⊥ to T ∗

(line 13). We repeat the loop in lines 5 - 13 until no exceptional axioms can be found anymore (i.e.,
Ei = Ei+1 = ∅, for some i ≥ 0).

Remark 5. Note that the loop in between lines 5 - 13 allows us to move all the strict knowledge
possibly ‘hidden’ inside the DBox to the TBox. That is, there may be defeasible axioms in the DBox
that are actually equivalent to classical axioms, and, thus, can be moved from the DBox to the TBox
as classical inclusion axioms. Example 4 illustrates such a case.

11



Procedure ComputeRanking(K)

Input: Ontology K = 〈T ,D〉
Output: Ontology 〈T ∗,D∗〉, partitioning (ranking) R = {D0, . . . ,Dn} of D∗

1 T ∗:=T ;
2 D∗:=D;
3 R:=∅;
4 repeat

5 i := 0;
6 E0 := D∗;
7 E1 := Exceptional(T ∗, E0);
8 while Ei+1 6= Ei do

9 i := i + 1;
10 Ei+1 := Exceptional(T ∗, Ei);

11 D∞ := Ei;
12 D∗ := D∗ \ D∞;
13 T ∗ := T ∗ ∪ {E ⊑ ⊥ | E ❁

∼ F ∈ D∞};

14 until D∞ = ∅;
15 for j = 1 to i do

16 Dj−1 := Ej−1 \ Ej ;
17 R := R ∪ {Dj−1};

18 return 〈〈T ∗,D∗〉,R〉

Lines 15-17 determine the rank value of the remaining defeasible axioms not in D∞. That is, set
Dj−1 is the set of axioms of rank j − 1 (1 ≤ j ≤ i), which are the axioms in Ej−1 \ Ej .

The following can easily be shown.

Proposition 10. Consider an ontology K = 〈T ,D〉. Then ComputeRanking(K) returns the on-
tology 〈T ∗,D∗〉, where D∗ is partitioned into a sequence D0, . . . ,Dn, where T ∗, D∗ and all Di are
equal to the sets T •, D• and D•

0 , . . . ,D
•
n obtained via RC.Step 1.

Also, once we have applied the procedure ComputeRanking, the proposition corresponding in the
EL⊥ framework to Proposition 4 holds.

Proposition 11. Given an ontology K∗ = 〈T ∗,D∗〉, obtained from the application of the procedure
ComputeRanking to an ontology K = 〈T ,D〉, for every concept C,

T ∗
δD∗ |= C ⊓ δD∗ ⊑ ⊥ ,

if and only if C is exceptional w.r.t. K∗.

Next, we describe some examples that illustrate the behaviour of the ranking procedure. The
following example shows a case in which there is non-defeasible knowledge ‘hidden’ in a DBox and
that more than one cycle of the lines 4-14 in ComputeRanking is needed to extract this information.

12



Example 4. Let K = 〈T ,D〉 be an ontology with

T = { A ⊑ B,

B ⊓D ⊑ ⊥ }

D = { B ❁
∼ C,

A ❁
∼ D,

E ❁
∼ ∃r.A } .

It can be verified that the execution of ComputeRanking(K) is as follows:

T ∗ = T ,D∗ = D,R = ∅

repeat1 i = 0 E0 = D∗, E1 = {A ❁
∼ D}

i = 1 E2 = {A ❁
∼ D} (end while)

D∞ = E2 = {A ❁
∼ D}

D∗ = D∗ \ {A ❁
∼ D} = {B ❁

∼ C,E ❁
∼ ∃r.A}

T ∗ = T ∗ ∪ {A ⊑ ⊥} = {A ⊑ B,B ⊓D ⊑ ⊥, A ⊑ ⊥}

repeat2 i = 0 E0 = D∗, E1 = {E ❁
∼ ∃r.A}

i = 1 E2 = {E ❁
∼ ∃r.A } (end while)

D∞ = E2 = {E ❁
∼ ∃r.A}

D∗ = D∗ \ {E ❁
∼ ∃r.A } = {B ❁

∼ C}

T ∗ = T ∗ ∪ {E ⊑ ⊥} = {A ⊑ B,B ⊓D ⊑ ⊥, A ⊑ ⊥, E ⊑ ⊥}

repeat3 i = 0 E0 = D∗, E1 = ∅

i = 1 E2 = ∅ (end while)

D∞ = E2

D∗ = D∗ \ ∅ = {B ❁
∼ C}

T ∗ = T ∗ ∪ ∅ = {A ⊑ B,B ⊓D ⊑ ⊥, A ⊑ ⊥, E ⊑ ⊥} (end repeat)

for j = 1 D0 = E0 \ E1 = {B ❁
∼ C}

R = R ∪ {D0} = {D0} (end for)

Therefore, ComputeRanking(K) terminates with

T ∗ = { A ⊑ B,B ⊓D ⊑ ⊥, A ⊑ ⊥, E ⊑ ⊥ }

D∗ = { B ❁
∼ C }

R = { D0 }

D0 = { B ❁
∼ C } .

The only defeasible axiom in D∗ is B ❁
∼ C, which has rank 0. Axioms A ❁

∼ D and E ❁
∼ ∃r.A have

rank ∞ instead, and so are substituted by the classical axioms A ⊑ ⊥ and E ⊑ ⊥. Note that we

13



need to iterate the loop in lines 5-13 in procedure ComputeRanking more than once to determine
such ranking values. In fact, in the first round we get A ⊑ ⊥, while the second round we get also
E ⊑ ⊥.

Example 5. Consider the ontology K in Example 3. It can be verified that the execution of
ComputeRanking(K) is as follows:

T ∗ = T ,D∗ = D,R = ∅

repeat1 i = 0 E0 = D∗, E1 = {MRBC ❁
∼ NotN}

i = 1 E2 = ∅

i = 2 E3 = ∅ (end while)

D∞ = E3 = ∅

D∗ = D∗ \ ∅ = D

T ∗ = T ∗ ∪ ∅ = T (end repeat)

for j = 1 D0 = E0 \ E1 = {VRBC ❁
∼ ∃hasCM.⊤,VRBC ❁

∼ ∃hasN.⊤}

R = R ∪ {D0} = {D0}

j = 2 D1 = E1 \ E2 = {MRBC ❁
∼ NotN}

R = R ∪ {D1} = {D0,D1} (end for)

Therefore, ComputeRanking(K) terminates with

T ∗ = { BRBC ⊑ MRBC,ARBC ⊑ VRBC,MRBC ⊑ VRBC, ∃hasN.⊤ ⊓ NotN ⊑ ⊥ }

D∗ = { VRBC ❁
∼ ∃hasCM.⊤,VRBC ❁

∼ ∃hasN.⊤,MRBC ❁
∼ NotN }

R = { D0,D1 }

D0 = { VRBC ❁
∼ ∃hasCM.⊤,VRBC ❁

∼ ∃hasN.⊤ }

D1 = { MRBC ❁
∼ NotN } .

Defeasible axioms in D0 have rank value 0, while the axiom in D1 has rank value 1.

Remark 6. From Propositions 7 and 10, and Corollary 8, we immediately also get decision proce-
dures for EL⊥ to determine both whether classical GCIs are in the RC of an ontology and whether
an ontology has a ranked model, so we do not address these decision problems further.

The Subsumption Decision Procedure. So far, we have defined a procedure that determines
the rank value of the axioms in a KB, which is based on a sequence of classical EL⊥ subsumption
decision steps (those in the Exceptional procedure, line 4). As next, we illustrate how we are
going to implement RC.Step 2 using EL⊥ subsumption tests only and, thus, get an algorithm to
decide whether a defeasible axiom C ❁

∼ D is in the RC of an EL⊥ KB. Specifically, given a KB K,
let us assume that we have applied to it the ComputeRanking procedure and, thus, the returned
KB does not have defeasible inclusion axioms with ∞ as rank value.

In the following, given K = 〈T ,D〉 as the output of the ComputeRanking procedure, with D
partitioned into D0, . . . ,Dn, and given new atomic concepts δi (0 ≤ i ≤ n), we define Tδi as

Tδi = T ∪ {E ⊓ δi ⊑ F | E ❁
∼ F ∈ Di ∪ . . . ∪ Dn} . (5)

14



Remark 7. The purpose of definition Tδi is to encode the concepts Hi in RC.Step 2.2 as
EL⊥ GCIs. Specifically, the aim is to replace the subsumption tests

T ∗ 6|= Hi ⊑ ¬C (6)

T ∗ |= C ⊓Hi ⊑ D (7)

in Step 2.2 with the two equivalent EL⊥ subsumptions tests

T ∗
δi

6|= C ⊓ δi ⊑ ⊥ (8)

T ∗
δi

|= C ⊓ δi ⊑ D . (9)

respectively.

Proposition 12. By referring to Remark 7, the subsumption test (6) (resp. 7) is equivalent to the
subsumption test (8) (resp. 9).

Example 6 (Example 5 cont.). From 〈〈T ∗,D∗〉,R〉 in Example 5, we get by definition that

T ∗
δ0

= T ∗ ∪ { VRBC ⊓ δ0 ⊑ ∃hasCM.⊤,

VRBC ⊓ δ0 ⊑ ∃hasN.⊤,

MRBC ⊓ δ0 ⊑ NotN } .

and

T ∗
δ1

= T ∗ ∪ {MRBC ⊓ δ1 ⊑ NotN} .

Note that we get the following results:

T ∗
δ0

|= MRBC ⊓ δ0 ⊑ ⊥

T ∗
δ0

6|= VRBC ⊓ δ0 ⊑ ⊥

T ∗
δ1

6|= MRBC ⊓ δ1 ⊑ ⊥

Procedure RationalClosure illustrates how we implement the subsumption decision procedure for
ALC under RC, using EL⊥ subsumption tests only. Note that essentially lines 1 - 7 implement
RC.Step 1, while lines 8 - 18 implement RC.Step 2.

Example 7 (Example 6 cont.). We want to decide whether the red blood cells of a bovine (BRBC)
should presumably have a nucleus, that is, whether BRBC ❁

∼ ∃hasN.⊤, BRBC ❁
∼ notN, or neither of

them are in the RC of K.
First of all, we determine the rank of BRBC, then we check whether we can conclude that the

typical elements of BRBC are in hasN.⊤ (or in notN). We have that

T ∗
δ0

|= BRBC ⊓ δ0 ⊑ ⊥

T ∗
δ1

6|= BRBC ⊓ δ1 ⊑ ⊥ .

Hence BRBC is of rank 1, and we can associate with it the defeasible information of rank 1, that
is, we can use the TBox T ∗

δ1
.

T ∗
δ1

6|= BRBC ⊓ δ1 ⊑ ∃hasN.⊤

T ∗
δ1

|= BRBC ⊓ δ1 ⊑ notN .

15



Procedure RationalClosure(K, α)

Input: Ontology K and defeasible axiom α of the form C ❁
∼ D

Output: true iff C ❁
∼ D is in the Rational Closure of K

1 CL := T |= C ⊑ D //Check if α holds classically;
2 if CL then

3 return CL

4 〈〈T ∗,D∗〉, {D0, . . . ,Dn}〉 := ComputeRanking(K);
5 CL := T ∗ |= C ⊑ D //Check if α holds classically, after finding strict knowledge in D;
6 if CL then

7 return CL

8 //Compute C’s rank i;
9 i := 0; DR := D∗;

10 Tδ0 := T ∗ ∪ {E ⊓ δ0 ⊑ F | E ❁
∼ F ∈ DR}, where δ0 is a new atomic concept;

11 while Tδi |= C ⊓ δi ⊑ ⊥ and DR 6= ∅ do

12 DR := DR\Di; i := i+ 1;
13 Tδi := T ∗ ∪ {E ⊓ δi ⊑ F | E ❁

∼ F ∈ DR}, where δi is a new atomic concept;

14 // Check now if α holds under RC;
15 if Tδi 6|= C ⊓ δi ⊑ ⊥ then

16 return Tδi |= C ⊓ δi ⊑ D

17 else

18 return CL

Therefore, we conclude that it’s not the case that the red blood cells of bovines presumably have a
nucleus. That is, RationalClosure(K,BRBC ❁

∼ ∃hasN.⊤) and RationalClosure(K,BRBC ❁
∼ notN)

return respectively false and true.

By Propositions 6, 10, and 12, and by construction of the RationalClosure procedure, we imme-
diately get the following result.

Proposition 13. Consider an EL⊥ ontology K = 〈T ,D〉 and a defeasible GCI C ❁
∼ D. Then,

C ❁
∼ D is in the RC of K iff RationalClosure(K, C ❁

∼ D) returns true.

3.2 Computational Complexity

Classical subsumption can be decided in polynomial time for EL⊥ [3]. We next show that our
subsumption decision procedure under RC requires a polynomial number of classical subsumption
test and, thus, is polynomial overall w.r.t. the size of a KB.

As we have seen, the entire procedure can be reduced to a sequence of classical entailments
tests, while all other operations are linearly bounded by the size of the KB. Therefore, in order to
determine the computational complexity of our method, we have to check, given a KB K = 〈T ,D〉
as input, how many classical entailment tests are required in the worst case.

It is easily verified that Exceptional(T , E) performs at most |E| ∈ O(|D|) subsumption tests.
Now, let us analyse ComputeRanking(K). Line 7 requires O(|D|) subsumption test. Lines 8 - 10
require at most O(|D|2) subsumption tests as at each round, |Ei+1| is |Ei| − 1 in the worst case. At
each repeat round |D∗| decreases in size (at line 12), and thus the repeat loop is iterated at most

16



O(|D|) times. Therefore, ComputeRanking requires at most O(|D|3) subsumption tests. This gives
us the following proposition:

Proposition 14. Given a KB K = 〈T ,D〉, procedure ComputeRanking runs in polynomial time
w.r.t. the size of K.

Note that if the KB remains unchanged in between several defeasible subsumption tests, then the
ranking procedure needs to be executed only once.

Now consider RationalClosure(K, α). Lines 1 - 3 require one subsumption test. In line 4,
the value of n is bounded by |D| and line 4 requires at most O(|D|3) subsumption tests. Lines 5
- 7 require one subsumption test. The loop in lines 11 - 13 is executed at most |D| times (as at
each loop |DR| decreases), at each iteration we execute one subsumption test only, and there are
at most two subsumption tests between lines 15 - 18. Hence, RationalClosure(K, α) requires at
most O(|D|3 + |D|) subsumption tests. Therefore,

Proposition 15. Procedure RationalClosure, that decides whether the defeasible inclusion axiom
C ❁

∼ D is in the RC of K = 〈T ,D〉, runs in polynomial time w.r.t. the size of K.

3.3 Normal Form

Usually, a classical EL⊥ ontology is transformed into a normal form to which one then applies
a subsumption decision procedure [3]. In the following, we extend the notion of normal form
to defeasible EL⊥ ontologies, and show that our subsumption decision procedure works fine for
normalised ontologies as well.8 That is, the normal form transformation of an ontology K is a
conservative extension of K also w.r.t. RC. So, let us recap that a classical EL⊥ ontology is in
normal form if the axioms in it have the form:

• C1 ⊑ D

• C1 ⊓C2 ⊑ D

• ∃r.C1 ⊑ D

• C1 ⊑ ∃r.C2

where C1, C2 ∈ NC ∪ {⊤} and D ∈ NC ∪ {⊤,⊥}. One may transform axioms into normal form by
applying the following rules:

R1: C ⊓ D̂ ⊑ E 7→ D̂ ⊑ A,C ⊓A ⊑ E;

R2: ∃r.Ĉ ⊑ D 7→ Ĉ ⊑ A, ∃r.A ⊑ D;

R3: ⊥ ⊑ D 7→ ∅.

R4: Ĉ ⊑ D̂ 7→ Ĉ ⊑ A,A ⊑ D̂;

R5: B ⊑ ∃r.Ĉ 7→ B ⊑ ∃r.A,A ⊑ Ĉ;

R6: B ⊑ C ⊓D 7→ B ⊑ C,B ⊑ D,

8KBs in normal form are also needed in Section 4.

17



where Ĉ, D̂ /∈ NC ∪ {⊤}, and A is a new atomic concept. Rules R1-R3 are applied first, then rules
R4-R6 are applied, until no more rule can be applied. It is easily verified that the transformation is
time polynomial and entailment preserving, i.e., given a TBox T and its normal form transformation
T ′, then T |= C ⊑ D iff T ′ |= C ⊑ D for every C,D not using any of the newly introduced atomic
concepts A by the rules R1 −R6 above.

The above result is not sufficient to guarantee that we can apply this kind of transformation also
to defeasible KBs. The problem is that the notion of logical equivalence in a preferential setting, or
rank equivalence as we have called it up to now, follows rules that are slightly different from the ones
characterising logical equivalence in classical reasoning. In particular, we are allowed to substitute
a concept with a logically equivalent one on the left of a defeasible subsumption relation (LLE
allows it) and on the right (a consequence of RW). However, there are cases that are equivalent in
their classical formulation but not equivalent in the preferential one. For example, the two axioms
C ⊑ D and ⊤ ⊑ ¬C ⊔D are equivalent, while C ❁

∼ D and ⊤ ❁
∼ ¬C ⊔D are not rank equivalent (in

fact, they convey different meanings, with the former indicating that all the most typical C’s are
D’s, and the latter indicating that the most typical objects are either not C’s or D’s). Therefore,
the normal form transformation rules have to preserve rank equivalence, which we are going to
check next.

So, let K = 〈T ,D〉 be a defeasible ontology. We say that D is in normal form if each defeasible
axiom in D is of the form A ❁

∼ B, where A,B ∈ NC . We say that K is in normal form if T and
D are in normal form. We next show how to transform K = 〈T ,D〉 into normal form. First, we
replace every axiom C ❁

∼ D ∈ D with an axiom AC
❁
∼ AD (with AC , AD new atomic concepts), and

add AC = C and AD = D to the TBox T (they are both valid EL⊥ expressions); then we apply the
classical EL⊥ normalisation steps to the axioms in T . In this way, we end up with a new knowledge
base 〈T ′,D′〉 that is in normal form. This transformation still remains, of course, time polynomial.

Example 8. A normal form of the KB in Example 3 is K = 〈T ,D〉 with

T = { BRBC ⊑ MRBC,

ARBC ⊑ VRBC,

MRBC ⊑ VRBC,

∃hasN.⊤ ⊑ A1,

A1 ⊑ ∃hasN.⊤,

∃hasCM.⊤ ⊑ A2,

A2 ⊑ ∃hasCM.⊤,

A1 ⊓ NotN ⊑ ⊥ }

D = { VRBC ❁
∼ A2,

VRBC ❁
∼ A1,

MRBC ❁
∼ NotN } .

We can prove that the ranking procedure gives back equivalent results whether we apply it to
K = 〈T ,D〉 or to its normal form transformation K′ = 〈T ′,D′〉. To this end, it suffices to show the
following.

18



Proposition 16. Given an ontology K = 〈T ,D〉, C ❁
∼ D ∈ D and the corresponding ontology in

normal form K′ = 〈T ′,D′〉, then C is exceptional w.r.t. K iff AC is exceptional w.r.t. K′, where
AC is the new atomic concept introduced by the normalisation procedure to replace C ❁

∼ D with
AC

❁
∼ AD.

Therefore, given an ontology K = 〈T ,D〉, C ❁
∼ D ∈ D and the corresponding ontology in normal

form K′ = 〈T ′,D′〉, by Proposition 16 and by construction of the ComputeRanking procedure it
follows that C ❁

∼ D ∈ Di iff AC
❁
∼ AD ∈ D′

i, where R = {D0, . . . ,Dn} and R
′ = {D′

0, . . . ,D
′
n} are

the partitions computed by the ranking procedure applied to K and K′, respectively. From this, we
immediately get the following result.

Proposition 17. Given an ontology K = 〈T ,D〉 and its normal form translation K′ = 〈T ′,D′〉,
then for every pair of atomic EL⊥-concepts A,B occurring in K, K ⊢rc A ❁

∼ B iff K′ ⊢rc A ❁
∼ B.

Observe that, using a KB in normal form, all steps of our RC decision procedure use classical
EL⊥ TBoxes in normal form (as axioms AC ⊓ δi ⊑ AD are in normal form, too).

4 Defeasible Inheritance-based Description Logics

So far, we have considered RC [37, 41]: both the procedural and the semantic characterisations
are well defined, and directly model a principle that is at the core of typicality reasoning: the
presumption of typicality. Moreover, RC is a syntactically independent form of closure. That is, all
the KBs that are rank equivalent generate the same RC (to the best of our knowledge, no other
form of closure extending RC satisfies this property).

Proposition 18. Let K = 〈T ,D〉 and K′ = 〈T ′,D′〉 be rank equivalent. For every EL⊥ defeasible
GCI C ❁

∼ D, C ❁
∼ D is in the RC of K iff C ❁

∼ D is in the RC of K′.

Yet, it is well-known that the main limitation of RC, from an inferential point of view, is that an
exceptional subclass cannot inherit any of the typical properties of its superclass (also known as
Drowning Effect)

Example 9. Consider Examples 5 and 7. The mammalian red blood cells are an exceptional subclass
of the vertebrate red blood cells since they do not have a nucleus. So, the conflict determining the
exceptionality of MRBC is determined by the axioms VRBC ❁

∼ ∃hasN.⊤ and MRBC ❁
∼ NotN, while

there is no conflict w.r.t. the axiom VRBC ❁
∼ ∃hasCM.⊤. Hence, it seems still reasonable to conclude

that mammalian red blood cells have a cell membrane (i.e., MRBC ❁
∼ ∃hasCM.⊤). However, as shown

in Example 5, VRBC ❁
∼ ∃hasCM.⊤ ∈ D0 and the rank of MRBC is 1 and, thus, we cannot conclude

MRBC ❁
∼ ∃hasCM.⊤ under RC.

In order to overcome such inferential limits, some closure operations extending RC have been pro-
posed in DLs: for example, the defeasible Inheritance-based approach [14], the Relevant Closure [15],
and the Lexicographic Closure [16]. Here we consider a modification of RC based on the use of
inheritance nets to identify the axioms taking part in each specific conflict [14]. As we are going to
see, the Defeasible Inheritance-based approach is interesting when considering the EL⊥ framework
since both it allows to overcome the drowning effect and preserves computational tractability.9

9In [14, Appendix A] it is also shown that the defeasible inheritance-based approach behaves well and better than
RC w.r.t. most of the “benchmark” examples illustrated there.

19



Remark 8. At the time of writing, we neither found a tractable procedure to decide defeasible
subsumption under Relevant Closure nor for Lexicographic Closure [15, 16]. In fact, we conjecture
that no tractable procedures exist for these cases.

In the Defeasible Inheritance-based approach [14] the axioms in the TBox and in the DBox are
translated into an inheritance net [32]. Such a construction allows us to apply the RC procedure
locally, in such a way that if we want to decide whether C ❁

∼ D holds, the exceptionality ranking
and the RC are calculated considering only the information in the KB that has some connection to
C and D. For more details about the formalisation and inference properties of the approach, we
refer the reader to [14].

Basic notions on Inheritance Nets. Nevertheless, for the sake of self-containedness, we briefly
recap here some salient notions from [14]. In Defeasible Inheritance Nets, or simply Inheritance
Nets (INs) [32] there are classes (nodes), a strict subsumption relation and a defeasible subsumption
relation among such classes (links). An IN is a pair N = 〈S,D〉, where S is a set of strict links,
while D is a set of defeasible links. Every link in N is a direct link, and it can be strict or defeasible,
positive or negative. Specifically,

1. C ⇒ D: class C is subsumed by class Q [positive strict link];

2. C 6⇔ D: class C and class Q are disjoint [negative strict link];

3. C → D: an element of the class C is usually an element of the class D [positive defeasible
link];

4. C 6→ D: an element of the class C is usually not an element of the class Q [negative defeasible
link].

Definition 7 (Course, Definition 3.1 in [14]). Courses are defined as follows (where ⋆ ∈ {⇒, 6⇔,→
, 6→}):

1. every link C ⋆ D in N is a course π = 〈C,D〉 in N; and

2. if π = 〈σ,C〉 is a course and C ⋆ D is a link in N that does not already appear in π, then
π′ = 〈π,D〉 is a course in N.

Roughly, courses are simply routes on the net following the direction of the arrows, without con-
sidering if each of them is a positive or a negative arrow.

In [14], INs have been extended to, so-called Boolean Inheritance Nets (BINs), that allow addi-
tionally to represent the negation, conjunction and disjunction of nodes. For what concerns us here,
given nodes C,D and E, a conjunction link is of the form C,D ⇔∧ E (read as the conjunction of
C and D is equivalent to E). We will assume that inheritance nets containing such links are closed
according to the following rule: if there is C,D ⇔∧ E in a net, then there are also E ⇒ C and
E ⇒ D in the net. Furthermore, the notion of courses is extended to BINs, calling them ducts [14,
Definition 3.2]. That is, we consider not only ‘linear’ routes from one node to another, but also
‘parallel’ routes, in order to model the introduction of the conjunction. Roughly,

π = 〈C, σ
σ′ , D〉

will indicate a duct π that starts at node C and develops through the ducts σ and σ′, both reaching
the node D.

20



Definition 8 (Duct, Definition 3.2 in [14]). Ducts are defined as follows (where ⋆ ∈ {⇒, 6⇔,→, 6→}):

1. every link C ⋆ D in N is a duct π = 〈C,D〉 in N;

2. if π = 〈C, σ,D〉 is a duct and D ⋆ E is a link in N that does not already appear in σ, then
π′ = 〈C, σ,D,E〉 is a duct in N;

3. if π = 〈C, σ,D〉 is a duct and E ⋆ C is a link in N that does not already appear in σ, then
π′ = 〈E,C, σ,D〉 is a duct in N;

4. if 〈C, σ,D〉 and 〈C, σ′, E〉 are ducts and D,E ⇔∧ F is a link in N that does not already appear
in 〈C, σ,D〉 and in 〈C, σ′, E〉, then 〈C, σ,D

σ′,E
, F 〉 is a duct.

A Decision procedure for INs-based EL⊥. Now, the adaptation of the inheritance-based
decision procedure [14, Section 5] to EL⊥ can be formalised in the following way. First of all,
we assume that a KB 〈T ,D〉 has already been transformed into normal form, as discussed in
Section 3.3. Then, we create an inheritance net NK representing the content of the KB. The
procedure is essentially the one in [14], just constrained to EL⊥.

That is, given a KB 〈T ,D〉:

1. for every atomic concept appearing in the axioms in K, we create a corresponding node in
the net;

2. for every axiom A ❁
∼ B ∈ D, we add the defeasible link A → B to the net;

3. for every axiom A⊓B ⊑ ⊥ ∈ T we add the symmetric incompatibility link A 6⇔ B to the net;

4. for all the remaining axioms (in normal form) C ⊑ D ∈ T , we introduce (if not already
present) two nodes in the net representing the concepts C and D, respectively, and add the
strict connection C ⇒ D to the net;

5. we then complete the inheritance net NK doing a total classification of the concepts appearing
as nodes in the net. That is, for concepts C,D, where C and concept D are either atomic
concepts or of the form ∃r.F , and E (not being ⊤), that have a node representation in NK, if
T |= C ⊓D ⊑ E holds then we add also a link C,D ⇔∧ E to the net NK.

Note that nodes in NK represent concepts that are either ⊥,⊤, atomic, of the form ∃r.F or the
conjunction of two atomic concepts.

Now, the procedure for the closure of a KB 〈T ,D〉 using the Defeasible Inheritance-based ap-
proach, adapted to EL⊥, is as follows [14]:

Step 1. Given K = 〈T ,D〉, check if K has a ranked model (see Corollary 8 and Remark 6). If yes,
then define an inheritance net NK from K, as illustrated before.

Step 2. Set Din = D. For every pair of nodes 〈C,D〉 such that C and D appear in the net NK, do
the following:

• determine the set ∆C,D of defeasible links E → F appearing in a duct from C to D;

• consider the KB K′ = 〈T ,D′〉, where D′ ⊆ D is the set of the defeasible axioms corre-
sponding to the defeasible links in ∆C,D;

21



Procedure InheritanceBasedRationalClosure(K, α)

Input: Ontology K and defeasible EL⊥ axiom α

Output: true iff K ⊢in α

1 〈K, α〉:=Normalise(K, α) //normalise both K and α;
2 CTD : = RationalClosure(K,⊤ ❁

∼ ⊥) //Check if K rank unsatisfiable;
3 if CTD then

4 return CTD

5 NK:= BuildInheritanceNet(K) //Build inheritance net NK from K;
6 Din:= D;
7 foreach C,D ∈ NK do

8 ∆C,D:= {E ⋆ F | E ⋆ F defeasible link occurring in a duct from C to D};
9 D′ := {E ❁

∼ F ∈ D | E → F ∈ ∆C,D} ∪ {E ❁
∼ ¬F ∈ D | E 6→ F ∈ ∆C,D} ;

10 K′ := 〈T ,D′〉;
11 if RationalClosure(K′, C ❁

∼ D) then
12 Din:= Din ∪ {C ❁

∼ D}

13 // Check now if α holds under Inheritance-Based RC;
14 Kin := 〈T ,Din〉;
15 IRC : = RationalClosure(Kin, α);
16 return IRC;

• if C ❁
∼ D is in the RC of K′ (i.e. K′ ⊢rc C ❁

∼ D), then add C ❁
∼ D to Din.

Step 3. Finally, let Kin = 〈T ,Din〉. We can use the decision procedure for RC on Kin, defining
the non-monotonic inference relation ⊢in as

K ⊢in C ❁
∼ D iff Kin ⊢rc C ❁

∼ D .

The above steps are implemented in procedure InheritanceBasedRationalClosure.

Remark 9. One may wonder whether the third item in Step 2 may be replaced with the simpler
form

(*) if C ❁
∼ D is in D′ then add C ❁

∼ D to Din.

Unfortunately, this choice does not provide the intended behaviour as the following variant of the
“penguin” example illustrates (see also [14, Example 3.1]). Consider K = 〈T ,D〉 with10

T = {F ⊓ NF ⊑ ⊥

D = {P ❁
∼ B,B ❁

∼ F,P ❁
∼ NF,P ❁

∼ W}

and corresponding inheritance net:

10P,B,W,F stand for Penguin, Bird, Wing and Fly, respectively.

22



B

P NF

F

W

It then can be shown (as desired) that

K ⊢in P ❁
∼ W ,

In fact, as ∆P,W = {P ❁
∼ B,B ❁

∼ W}, by item three in Step 2., we add P ❁
∼ W to Din, which is not the

case if (∗) is used instead. Therefore, as P is an exceptional subclass of B, we have

K 6⊢rc P ❁
∼ W

K 6⊢in P ❁
∼ W , if using (∗) instead .

The correspondence of this procedure to the more general ALC procedure in [14] is guaranteed by
Proposition 13, proving that the procedure RationalClosure is correct and complete w.r.t. RC,
and the fact that the present definition of ducts is just the EL⊥ restriction of the more general
definition for ALC ([14], Definition 3.2).

Example 10 (Example 8 cont.). Consider Example 8. The inheritance net NK built from K is
illustrated in Figure 1. We want to check whether K ⊢in MRBC ❁

∼ ∃hasCM.⊤ holds. To do so, we

BRBC MRBC

VRBC

ARBC

∃hasCM.⊤

∃hasN.⊤

A2

A1NotN

Figure 1: Inheritance net built from Example 10.

compute all ducts between MRBC and hasCM.⊤. There is only one and it includes the defeasible
link representing VRBC ❁

∼ A2. Therefore, in Step 10 of the InheritanceBasedRationalClosure

procedure, we set D′ = {VRBC ❁
∼ A2}. It can be verified that MRBC ❁

∼ A2 is in the RC of K′ = 〈T ,D′〉
and, thus, by Step 12, MRBC ❁

∼ A2 is added to Din, from which K ⊢in MRBC ❁
∼ ∃hasCM.⊤ follows.

23



Next, we want also to show that indeed K 6⊢in MRBC ❁
∼ ∃hasN.⊤. Now, observe that for nodes

C ∈ {MRBC} and D ∈ {A1, hasN.⊤}, D′ in line 9 of the procedure is

D′ = {MRBC ❁
∼ hasN.⊤,MRBC ❁

∼ NotN} .

Therfore, for D ∈ {A1, hasN.⊤}

K′ 6⊢rc MRBC ❁
∼ D ,

holds and, thus, MRBC ❁
∼ D is not added to Din. Consequently, for D ∈ {A1, hasN.⊤}

K 6⊢in MRBC ❁
∼ D

holds, as expected.

Computational Complexity. Let us now address the computational complexity of the
InheritanceBasedRationalClosure procedure. To start with, note that the normalisation Step 1
can be done in linear time [3], yielding a normalised KB whose size is linear in the size of K. From
the procedure described in Section 3, it follows that Step 2 of InheritanceBasedRationalClosure
requires at most O(|D|3 + |D|) subsumption tests.

Let us now estimate the cost of Step 5. The first step of the construction of NK creates as many
nodes as there are atomic concepts in K and, thus, both size and time bound are O(|K|). The
second step is obviously bounded both in time and size of number of edges by O(|D|). Similarly,
the third and fourth step can be done together and are bounded both in time and size of number
of new nodes and edges by O(|T |). Therefore, Steps 1 - 4 can be done in time O(|K|), while for
network NK, the number of both nodes and edges is bounded by O(|K|). Eventually, it can easily
be verified that, including the fifth step of the construction of NK, the overall time bound of the
construction of NK is time and size (number of nodes as well as edges) bounded by O(|K|2).

The number of iterations of Steps 7 - 12 is bounded by O(|K|4), as there are at most O(|K|2)
nodes in NK. Step 8 is the same step as illustrated in [14], in which it is shown that ∆C,D can
be computed in polynomial time w.r.t. the size of K [14, Sections 3.1.6 and 3.2.5]. For ease of
presentation, let us indicate with δK the time bound to compute ∆C,D. Moreover, the size of both
∆C,D and D′ is bounded by O(|D|) and, thus, the size of K′ is bounded by O(|K|). Therefore, Step 12
requires at most O(|D|3 + |D|) subsumption tests. In summary, the computation time of iterations
Steps 7 - 12 is bounded by O(δK · |K|4) plus the time required to perform O(|K|4|(|D|3 + |D|))
subsumption tests.

Finally, the size of Din is bounded by O(|K|2) and, thus, Step 15 may require at most O(|K|6 +
|K|2) subsumption tests. Therefore, we have the following result.

Proposition 19. Procedure InheritanceBasedRationalClosure, that decides whether a defea-
sible inclusion axiom C ❁

∼ D is in the Inheritance-based RC of K = 〈T ,D〉, i.e. decides whether
K ⊢in C ❁

∼ D holds, runs in polynomial time w.r.t. the size of K.

5 Rational Closure for Nominal Safe ELO⊥

In order to reason about individuals in a defeasible framework, more than one option is possible.
Here we present an idea in which we use concept nominals, i.e. concepts of the form {a}. There are
other options as well developed in a formal framework analogous to the one we are going to present

24



here and compatible with it [12, 13, 14]. In [27, 29] other ways of reasoning about individuals in the
preferential framework has been proposed, while in [8] a different kind of semantics is introduced.

Recall that by using nominals we can easily translate an assertion as a GCI as pointed out in
Remark 1, and that the standard interpretation of nominals is a singleton from the domain.

Our approach to deal with nominals in defeasible ELO⊥ starts with the possibility to express
defeasible information about individuals by using axioms of the form {a} ❁

∼ C (read as “presumably,
individual a is an instance of concept C”) and {a} ❁

∼ ∃r.{b} (“presumably, individual a is connected
via role r to individual b”). Since we are working in a defeasible framework, we would like to apply
the presumption of typicality (see Section 2.2) also to individuals. That is, we want to reason under
the assumption that each individual behaves in the most typical possible way, compatibly with the
information at our disposal.

A main problem in enforcing the typicality of individuals is that role connections may possibly
create situations in which the defeasible information associated with an individual prevents it from
associating some defeasible information to another individual, and vice-versa, as illustrated in the
next example.

Example 11. Consider the following defeasible ELO⊥ KB K = 〈T ,D〉 with

T = {{a} ⊑ ∃r.{b}, C ⊓D ⊑ ⊥}

D = {⊤ ❁
∼ C, ∃r.C ❁

∼ D} .

By applying the ranking procedure to K, it can be shown that D is partitioned into

D0 = {⊤ ❁
∼ C}

D1 = {∃r.C ❁
∼ D} .

Now, let’s try to create a minimal model for this KB, in order to maximise the typicality also of
the individuals (see Section 2.2). If we position the interpretation of individual a in layer 0,11 then
both ⊤ ❁

∼ C and ∃r.C ❁
∼ D may be ‘applied’ to a and, thus, a:C holds. But then we are forced to

position b on layer 1 to impose that b:C does not hold, as otherwise we would have also a:∃r.C and
a:D, and then we would be forced to conclude a:⊥ (since C ⊓ D ⊑ ⊥). On the other hand, if we
put b on layer 0 we would be forced to put a on layer 1 to impose that a:C does not hold, again to
avoid a:⊥ to hold. Therefore, we have at least two (minimal) ranked models.

Note that if we would apply the so far developed RC procedure to ELO⊥ (see page 9) we would
infer instead that both {a} ❁

∼ C and {b} ❁
∼ C hold, and, thus, {a} ❁

∼ D would follow, from which we
would conclude {a} ❁

∼ ⊥. I.e., we get an inconsistency.
Eventually, note that we face with the same problem with the following KB K′ = 〈T ′,D′〉:

T ′ = {A = {a}, B = {b}, A ⊑ ∃r.B,C ⊓D ⊑ ⊥}

D′ = {⊤ ❁
∼ C, ∃r.C ❁

∼ D} .

That is, not only individual a (resp. b) does not have the same rank among all ranked models of K′,
but the same applies to atomic concept A (resp. B).

The multiplicity of incompatible minimal configurations allows us to make a distinction between
two distinct kinds of presumptive reasoning. Roughly, on one hand we have presumptive reasoning,
that can be modelled taking under consideration all the most expected situations: an individual a

11See the definition of layers at page 6.

25



presumably satisfies a property C iff aR ∈ CR in all the minimal models R (of an ontology K). On
the other hand we have prototypical reasoning, where we associate a property C to an individual a
if all the preferred instantiations of a fall under C; that is, a property C belongs to the prototype
of an individual a if aR ∈ CR for every minimal model R of K in which aR is in the lowest possible
rank.12 We refer the reader to B (Definitions 10, 11 and 12) for a formal distinction among the two
above mentioned approaches.

While the presumptive reasoning solution can be modelled following previous proposals [12, 14],
no polynomial time algorithm of its application to ELO⊥ seems to exist so far (see also Section 6).

In this work, we rather investigate the second option. In order to model this kind of reasoning,
we propose to introduce a change in the interpretation of nominals. Our approach not only will
allow us to model prototypical reasoning, but provides us also with a simple way to use the decision
procedure presented so far. An important side effect is that we can preserve the polynomial time
result for the subsumption problem.

Specifically, our intuition is that reasoning about individuals in a defeasible framework means
to assign to them properties that we only presume to hold. In order to model such a semantics,
we interpret each individual (i.e., each nominal) not as a singleton, but as a set of objects : each
of them represents a possible instantiation of the individual, considering, on the one hand, the
information at our disposal, and, on the other, different possible levels of typicality. In this latter
case, this corresponds to consider different rankings of the individual (kind of ‘set of prototypes of
an individual).

The DL EL〈O〉⊥. Formally, we introduce a new kind of nominal, referred to as defeasible nominal,
and denoted with 〈a〉, where a ∈ NO . The interpretation function ·I of an interpretation I is
extended to defeasible nominals by mapping them into sets, i.e.

• 〈a〉I ⊆ ∆I for every individual a ∈ NO .

The defeasible version of ELO⊥, referred to as EL〈O〉⊥, is EL⊥ extended with defeasible nominals:

C,D → A | ⊤ | ⊥ | C ⊓D | ∃r.C | 〈a〉 .

Our reasoning mechanism for EL〈O〉⊥ under RC remains the same as EL⊥ under RC (and the
extension of RC we have investigated in this work), simply by treating defeasible nominals as new
classical atomic concepts in our procedures.13 Therefore, we will continue to use the entailment
notation ⊢rc also for the extension to defeasible nominals of our entailment relation for RC.

The following example illustrates the behaviour of the RC procedure applied to EL〈O〉⊥.

Example 12. Consider the ontology in Example 3 extended with the axioms 〈a〉 ⊑ BRBC and
〈b〉 ⊑ ARBC, dictating that we know that a specific cell a is a red blood cell from a cow, while b
refers to a red blood cell from a bird. Now, it can be shown that, by applying the ranking procedure,

12A similar distinction was also made by Lehmann in the framework of propositional logic [41].
13The interpretation of defeasible nominals as classical atomic concepts implies that some results required here

and valid for EL⊥extend to EL〈O〉
⊥

too: namely, the FMP and FCMP properties defined for defeasible ALC; also,
the procedures Exceptional, ComputeRanking,RationalClosure and InheritanceBasedRationalClosure remain the
same.

26



we end up with the same partition of D as in Example 5. That is

T ∗ = { 〈a〉 ⊑ BRBC, 〈b〉 ⊑ ARBC,BRBC ⊑ MRBC,

ARBC ⊑ VRBC,MRBC ⊑ VRBC, ∃hasN.⊤ ⊓ NotN ⊑ ⊥ }

D0 = { VRBC ❁
∼ ∃hasCM.⊤,VRBC ❁

∼ ∃hasN.⊤ }

D1 = { MRBC ❁
∼ NotN } .

Moreover, as for Example 6, we end up with the following entailments:

T ∗
δ0

|= 〈a〉 ⊓ δ0 ⊑ ⊥

T ∗
δ0

6|= 〈b〉 ⊓ δ0 ⊑ ⊥

T ∗
δ1

6|= 〈a〉 ⊓ δ1 ⊑ ⊥ .

Hence we have that defeasible nominal 〈a〉 has rank 1 (the most prototypical instantiation of a must
be of rank 1), while 〈b〉 has rank 0 (it is conceivably an instantiation of b in the lowest layer).

We can now check whether 〈a〉 and 〈b〉 have a nucleus, following the same procedure as in
Example 7. Since

T ∗
δ1

6|= 〈a〉 ⊓ δ1 ⊑ ∃hasN.⊤

T ∗
δ1

|= 〈a〉 ⊓ δ1 ⊑ notN

T ∗
δ0

|= 〈b〉 ⊓ δ0 ⊑ ∃hasN.⊤ ,

we can conclude now that presumably the cell a does not have a nucleus (i.e., 〈a〉 ❁
∼ notN), while b

does (i.e., 〈b〉 ❁
∼ ∃hasN.⊤).

Such an approach carries the risk to be incompatible with the classical part of our reasoning, where
nominals are assumed to be interpreted as singletons. Yet, we will show that the results in [35],
reported here as Propositions 1 and 2, justify our reasoning about nominals by interpreting them as
concepts, provided the safeness condition is satisfied. That is, for nominal safe ontologies, the strict
part of our knowledge behaves exactly as if we would have interpreted the nominals as individuals
(see Proposition 24 later on).

To start with, given an EL〈O〉⊥ concept (resp. GCI, ontology) α, we indicate with α{} the
ELO⊥ concept (resp. GCI, ontology) obtained by substituting every occurrence of each defeasible
nominal 〈a〉 with a nominal {a}. Vice-versa, given an ELO⊥ concept (resp. GCI, ontology) α, we
indicate with α〈〉 the EL〈O〉⊥ concept (resp. GCI, ontology) obtained by substituting every nominal
{a} by 〈a〉. Now, it is easy to see that one transformation is the inverse of the other. That is, for
every EL〈O〉⊥ expression α, α = (α{})〈〉, and for every ELO⊥ expression α, α = (α〈〉){}.

The notion of safeness (see Section 2.1) is naturally extended to EL〈O〉⊥:

• C is safe iff C{} is safe;

• C is n-safe iff C{} is n-safe;

• C ⊑ D is safe iff (C ⊑ D){} is safe;

• C ❁
∼ D is safe iff C is n-safe and D is safe.

27



Finally, a defeasible EL〈O〉⊥ ontology K = 〈T ,D〉 is nominal safe if it contains only safe axioms.
Next, we address two aspects of using defeasible nominals that prove that using them instead of

standard nominals does not change the classical part of our reasoning, provided that the ontology
is nominal safe.

The first observation is about the ranking procedure. With respect to this point, we can naturally
extend the notion of exceptionality to nominals as follows.

• A nominal {a} is exceptional w.r.t. an ELO⊥ ontology K = 〈T ,D〉 iff, for every ranked model
R ∈ R

K, {a}R ∩ min≺R(∆R) = ∅.

• A defeasible nominal 〈a〉 is exceptional w.r.t. an EL〈O〉⊥ ontology K = 〈T ,D〉 iff, for every

ranked model R ∈ R
K, 〈a〉R ∩ min≺R(∆R) = ∅.

The respective notion of ranking rK follows the same definition from Section 2.2.
Now, we prove the correctness of the ranking procedure ComputeRanking extended to EL〈O〉⊥

by treating defeasible nominals as atomic concepts. In particular, we prove that the axioms that
have infinite rank w.r.t. an EL〈O〉⊥ ontology correspond to the axioms that have infinite rank
w.r.t. the correspondent ELO⊥ ontology. Specifically, the following propositions can be shown.14

Proposition 20. For every n-safe ELO⊥ concept C and every nominal safe ELO⊥ ontology K =
〈T ,D〉, the following holds: rK(C) = i iff rK〈〉

(C〈〉) = i.

Proposition 21. For every n-safe EL〈O〉⊥ concept C and every nominal safe EL〈O〉⊥ ontology
K = 〈T ,D〉, rK(C) = i iff rN(K{})(N(C{})) = i.

From Propositions 20 and 21 it follows that the information of infinite rank w.r.t. an ELO⊥ defea-
sible ontology K corresponds exactly to the information of infinite rank w.r.t. K〈〉. That is,

Proposition 22. Let K = 〈T ,D〉 be a nominal safe EL〈O〉⊥ ontology, with C ❁
∼ D ∈ D. Then, the

following are equivalent:

1. rK(C ❁
∼ D) = ∞;

2. rK{}
(C{}

❁
∼ D{}) = ∞;

3. rN(K{})(N(C{}
❁
∼ D{})) = ∞.

An immediate consequence is that we can safely use ComputeRanking over EL〈O〉⊥ ontologies to
move the axioms with infinite rank into the TBox.

Corollary 23. Let K = 〈T ,D〉 be a nominal safe EL〈O〉⊥ ontology, with C ❁
∼ D ∈ D. Let T • be

the TBox obtained from K after applying RC.Step 1, while let (N(T{}))∗ be the TBox obtained
from N(K{}) using the ComputeRanking procedure. Then, the following are equivalent:

1. C ❁
∼ ⊥ ∈ T •;

2. N(C{}
❁
∼ ⊥) ∈ (N(T{}))∗;

3. rK{}
(C{}

❁
∼ D{}) = ∞.

14See the RC ranking procedure at page 7 for the definition of the rank rK(C) of a concept C w.r.t. a knowledge
base K, while see page 4 for the definition of N(·).

28



Propositions 20-22 guarantee that the ranking of concepts (and nominals) done using an EL〈O〉⊥
ontology corresponds to the ranking over the correspondent ELO⊥ ontology, while Corollary 23
guarantees that we are correct in using the ComputeRanking procedure to distinguish the classical
part of an ontology from the defeasible part (provided nominal safeness is assumed).

The next step is now to prove that the classical conclusions that we derive using defeasible
nominals correspond to the conclusions we would derive using classical nominals. So, let K{} =

〈T{},D{}〉 be an ELO⊥ ontology and let D⊑
{},∞ := {C ⊑ D | C ❁

∼ D ∈ D{} and rK{}
(C ❁

∼ D) = ∞};

hence T{} ∪ D⊑
{},∞ defines the classical part of the information contained in K{}. The following

holds.

Proposition 24. Let K = 〈T ,D〉 be a nominal safe EL〈O〉⊥ ontology. For every safe GCI C ⊑ D,
we have that the following are equivalent:

1. C ⊑ D is in the RC of K;

2. N(C{} ⊑ D{}) is in the RC of N(K{});

3. T{} ∪ D⊑
{},∞ |= C{} ⊑ D{}.

This proves that, under the nominal safeness assumption (i) entailments about classical GCIs in
EL〈O〉⊥are the same as for ELO⊥; (ii) all the decision procedures we have introduced in the previous
sections can be applied without any change to EL〈O〉⊥ ontologies, provided that we replace defeasible
nominals with fresh concept names ; and (iii) the results connected to the computational complexity
shown in the previous sections remain unchanged. That is, Propositions 14, 15, and 19 remain valid
for nominal safe EL〈O〉⊥ontologies as well.

In relation to the problematic Example 11, 〈a〉 ❁
∼ C is interpreted as ‘the most prototypical

instantiation of a is an instance of concept C’, while 〈b〉 ❁
∼ C is interpreted as ‘the most prototypical

instantiation of b is instance of C’. That is, we are not inferring that it is possible to have a model
where we have at the same time a unique object representing the prototypical a and a unique object
representing the prototypical b (i.e., they are both in the lowest layer of the model), but rather that
both the most prototypical interpretation of a and the most prototypical interpretation of b are in
the layer 0. The following example illustrates the details.

Example 13. Consider the ontology in Example 11. Its translation in EL〈O〉⊥ is K〈〉 = 〈T〈〉,D〈〉〉
and, thus,

T〈〉 = {〈a〉 ⊑ ∃r.〈b〉, C ⊓D ⊑ ⊥}

D〈〉 = D = {⊤ ❁
∼ C, ∃r.C ❁

∼ D} .

As for K, D〈〉 is partitioned by the ranking procedure into D0 = {⊤ ❁
∼ C} and D1 = {∃r.C ❁

∼ D}.
Now, both 〈a〉 and 〈b〉 have rank 0 as

T ∗
〈〉,δ0

6|= 〈a〉 ⊓ δ0 ⊑ ⊥

T ∗
〈〉,δ0

6|= 〈b〉 ⊓ δ0 ⊑ ⊥

hold. Furthermore, as

T ∗
〈〉,δ0

|= 〈a〉 ⊓ δ0 ⊑ C

T ∗
〈〉,δ0

|= 〈b〉 ⊓ δ0 ⊑ C

29



hold, we can infer both 〈a〉 ❁
∼ C and 〈b〉 ❁

∼ C. But now, as defeasible nominals are interpreted as
atomic concepts, we cannot infer 〈a〉 ❁

∼ D anymore and, consequently, we do not derive 〈a〉 ❁
∼ ⊥.

Essentially, since defeasible nominals are interpreted as sets of individuals, we conclude that
the most prototypical interpretation of individual a is an instance of C, and the most prototypical
interpretation of b is instance of C as well. However, we are not forced to relate through role
r the most prototypical interpretation of a to the most prototypical interpretation of b: in fact, as
〈a〉 ⊑ ∃r.〈b〉 holds, the most prototypical elements of 〈a〉 can be related to exceptional interpretations
of b. That is, to individuals of 〈b〉 with a rank higher than 0 and not being an instance of C.

For further insights, we refer the reader to B and, specifically, to Proposition 32.

6 Related Work

While there has been extensive work by now related to non-monotonic DLs, such as [2, 4, 8,
10, 11, 13, 14, 19, 23, 27, 29, 31, 50], we will focus here on low-complexity non-monotonic DLs
extensions only. We refer the reader to e.g. [8, 27], in order to avoid an unnecessary replication, for
a general in-depth discussion on non-monotone DLs and their characteristics. Also, but somewhat
less related, are approaches based on some form of integration of non-monotone logic programs with
DLs, as [20, 33, 34, 36, 42, 43, 44, 47], although we will not address them here, except for those
cases involving tractable computational complexity.

We believe that our results are significant. Indeed, let us recap that non-monotonic DLs exten-
sions involving low-complexity DLs, such as [5, 6, 7, 9, 12, 13, 14, 15, 16, 19, 21, 24, 25], only in
few cases the tractability of the underlying DL is preserved [5, 6, 7, 8, 30].

Specifically, [7] considers circumscription in low-complexity DLs such as DL-Lite [1] and EL
and identifies few fragments whose computational complexity of the decision problem at hand is
in PTime. That is, deciding subsumption, instance checking and concept consistency decision
problems are in PTime for Circfix(LL EL), i.e. Left Local EL⊥

15 under circumscription with fixed
atomic concepts. The same holds for Circvar(EL), where all atomic concepts are varying as cir-
cumscription collapses to classical EL reasoning. The work [5] follows the same spirit of [7], by
considering EL with default attributes, i.e. defeasible GCIs of the form A ❁

∼ ∃r.B under circum-
scription with fixed atomic concepts, but where KBs are assumed to be conflict safe and without
assertions. In that case, [5] shows that one may determine the set of normalised concepts subsum-
ing a given concept in polynomial time. These results have been extended in [6], where EL++ [3]
has been considered in place of EL⊥, but requiring a further adaption of the conflict safe notion.
In [8] a non-monotone extension of DLs is proposed based on a notion of overriding and supporting
normality concepts of the form NC that denote the prototypical/normal instances of a concept C.
Defeasible GCIs are of the form C ❁

∼ D, with a priority relation ≺ among such GCIs and intended
meaning: “normally the instances of C are instances of D, unless stated otherwise” meaning that
higher-priority defeasible GCI may override C ❁

∼ D. A remarkable feature of this proposal is that
the reasoning problems are tractable for any underlying tractable classical DL, as the reasoning
algorithm, as for our case, is built up on a sequence of DL subsumption tests.

In [30], the DL SROEL(⊓,×)RT is proposed, i.e. the DL SROEL(⊓,×) [38] extended with
typicality concepts T(C), whose instances are intended to be the typical C elements. A defeasible
GCI C ❁

∼ D can be expressed in SROEL(⊓,×)RT as T(C) ⊑ D, meaning that “the typical C

15Roughly, left-hand sides of GCIs contain no qualified existential restrictions and defeasible axioms are syntacti-
cally of the form A ❁

∼ ∃r.B.

30



elements are Ds”, but additionally, SROEL(⊓,×)RT allows to express also e.g. D ⊑ T(C) (“the
Cs are typical elements of Ds”). In summary, in this work, the authors show that

1. the instance checking problem under minimal entailment is Πp
2-hard for SROEL(⊓,×)RT.

2. the instance checking problem under rational entailment and rational closure16 is in PTime for
SROEL(⊓,×)RT. The authors propose to extend the Datalog set of rules for SROEL(⊓,×) [38]
with an appropriate set of stratified Datalog rules with negation to deal with the typicality
operator. Additionally, the authors point to the fact that the correspondence between the
rational closure construction and the canonical minimal model semantics in [29] is lost if
e.g. nominals occur in an ontology and, thus, a semantical characterisation is missing so far.

Let us note that a major difference with our approach is that we may rely entirely on an EL⊥

reasoner as black box, while this is not true for the Datalog encoding of SROEL(⊓,×)RT, as in
the latter case there are interacting rules between rules dealing with defeasible knowledge and the
set of rules for SROEL(⊓,×) [38].

In [48] an extension of RC and Relevant Closure [15] for EL⊥ has been proposed, in order to
maximise also the typicality of the concepts that are under the scope of an existential quantification.
The proposal is in line with the expressivity of the proposal in [8], uses the ranking procedure defined
for ALC as presented in Section 2.2 and, thus, the procedure does not run in polynomial time.17

Concerning the somewhat related ‘hybrid’ approaches, i.e. those that in some way combine
non-monotone logic programs with (low-complexity) DLs, there are some results that still preserve
tractability (but only w.r.t. data complexity), such as [20, 33, 34, 36, 42, 43, 44]. Very roughly,
in these works data complexity tractability is preserved for some form of hybrid normal logic
programs under some well-founded semantics, provided that the underlying DL has a tractable
instance checking procedure.

7 Conclusions

Contribution. We have shown that the subsumption problem under RC in EL⊥ can be decided
in polynomial time, as is the case for the monotone counterpart, via a polynomial number of
classical EL⊥ subsumption tests and, thus, can be implemented by relying on any current reasoners
for EL⊥. Furthermore, we have adapted the algorithm also to one refinement of RC for DLs,
Defeasible Inheritance-based Closure, that overcomes the drowning effect, a main RC’s inferential
limit, showing that the subsumption problem remains polynomial. We also have presented a novel,
polynomial time decision procedure to deal with nominals. To this end, we propose the introduction
of the notion of defeasible nominals, which is compatible with monotone classical nominal safe
ELO⊥. The main result here is that we may still use the RC procedure presented for EL⊥ (and its
extension) to deal with nominal safe ELO⊥ without an increase in the computational complexity
of the subsumption problem.

Future Work. Concerning future work, one of our aims is to determine whether the subsumption
problem under RC still remains polynomial for various other tractable DLs such as those of the

16In this case, a knowledge base has to be simple, i.e. the typicality operator T occurs on the left of a GCI only.
17By personal communication, we were informed that in [49] a similar construction as the one proposed in Equa-

tion (3) (and, thus, like the one proposed in [18]) to determine exceptionality for EL⊥ has been described.

31



DL-Lite family [1] and those of the so-called Horn-DL family [39], which are at the core of the OWL
2 profiles OWL QL and OWL RL, respectively. Another direction is to implement our method and
test it in a similar way as done in [12, 46], where the latter confirmed that the use of DL reasoners
as a black box is scalable in practice.

Acknowledgements

The work of Giovanni Casini and of Thomas Meyer has received funding from the European Unions
Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agree-
ment No. 690974 (MIREL project). The work of Thomas Meyer has been supported in part by the
National Research Foundation of South Africa (grant No. UID 98019).

References

[1] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and
relations. Journal of Artificial Intelligence Research, 36:1–69, 2009.

[2] F. Baader and B. Hollunder. Priorities on defaults with prerequisites, and their application in
treating specificity in terminological default logic. Journal of Automated Reasoning, 15:41–68,
1995.

[3] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proceedings of the 19th In-
ternational Joint Conference on Artificial Intelligence (IJCAI-05), pages 364–369, Edinburgh,
UK, 2005. Morgan-Kaufmann Publishers.

[4] P. A. Bonatti, C. Lutz, and F. Wolter. The complexity of circumscription in description logic.
Journal of Artificial Intelligence Research, 35(1):717–773, 2009.

[5] P. A. Bonatti, M. Faella, and L. Sauro. EL with default attributes and overriding. In Proceed-
ings of the 9th International Semantic Web Conference (ISWC-10), volume 6496 of Lecture
Notes in Computer Science, pages 64–79, 2010.

[6] P. A. Bonatti, M. Faella, and L. Sauro. Adding default attributes to EL++. In Proceedings of
the 25th AAAI Conference on Artificial Intelligence (AAAI-11), pages 171–176. AAAI Press,
2011.

[7] P. A. Bonatti, M. Faella, and L. Sauro. Defeasible inclusions in low-complexity DLs. Journal
of Artificial Intelligence Research, 42:719–764, 2011.

[8] P. A. Bonatti, M. Faella, I. Petrova, and L. Sauro. A new semantics for overriding in description
logics. Artificial Intelligence Journal, 222:1–48, 2015.

[9] P. A. Bonatti, M. Faella, C. Lutz, L. Sauro, and F. Wolter. Decidability of circumscribed
description logics revisited. In Advances in Knowledge Representation, Logic Programming,
and Abstract Argumentation - Essays Dedicated to Gerhard Brewka on the Occasion of His
60th Birthday, number 9060 in LNCS, pages 112–124, 2015.

32



[10] K. Britz, J. Heidema, and T. Meyer. Semantic preferential subsumption. In J. Lang and
G. Brewka, editors, Proceedings of the 11th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR-08), pages 476–484. AAAI Press/MIT Press, 2008.

[11] K. Britz, T. Meyer, and I. Varzinczak. Semantic foundation for preferential description logics.
In D. Wang and M. Reynolds, editors, Proceedings of the 24th Australasian Joint Conference
on Artificial Intelligence (AI-11), number 7106 in LNAI, pages 491–500. Springer, 2011.

[12] K. Britz, G. Casini, T. Meyer, K. Moodley, U. Sattler, and I. Varzinczak. Rational defeasible
reasoning for description logics. Technical report, University of Cape Town, South Africa.
URL: https://tinyurl.com/yc55y7ts, 2017.

[13] G. Casini and U. Straccia. Rational closure for defeasible description logics. In T. Janhunen
and I. Niemelä, editors, Proceedings of the 12th European Conference on Logics in Artificial
Intelligence (JELIA-10), number 6341 in LNCS, pages 77–90. Springer-Verlag, 2010.

[14] G. Casini and U. Straccia. Defeasible inheritance-based description logics. Journal of Artificial
Intelligence Research, 48:415–473, 2013.

[15] G. Casini, T. Meyer, K. Moodley, and R. Nortjé. Relevant closure: A new form of defeasible
reasoning for description logics. In E. Fermé and J. Leite, editors, Proceedings of the 14th
European Conference on Logics in Artificial Intelligence (JELIA-14), volume 8761 of LNCS,
pages 92–106. Springer, 2014.

[16] G. Casini and U. Straccia. Lexicographic closure for defeasible description logics. In Proceedings
of the 8th Australasian Ontology Workshop (AOW), volume 969, pages 4–15. CEUR Workshop
Proceedings, 2014.

[17] G. Casini, T. A. Meyer, K. Moodley, U. Sattler, and I. J. Varzinczak. Introducing defeasibility
into OWL ontologies. In The Semantic Web - ISWC 2015 - 14th International Semantic Web
Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part II, pages 409–426,
2015.

[18] G. Casini, U. Straccia, and T. Meyer. A polynomial time subsumption algorithm for
EL⊥ under Rational Closure. CNR Technical Report cnr.isti/2015-TR-044, Italy, 2015.
http://puma.isti.cnr.it/dfdownload.php?ident=/cnr.isti/2015-TR-044&langver=it&scelta=Metadata

[19] F. M. Donini, D. Nardi, and R. Rosati. Description logics of minimal knowledge and negation
as failure. ACM Transactions on Computational Logics, 3:177–225, 2002.

[20] T. Eiter, G. Ianni, T. Lukasiewicz, and R. Schindlauer. Well-founded semantics for Description
Logic programs in the Semantic Web. ACM Transaction on Computational Logic, 12(2):11:1–
11:41, 2011.

[21] L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. Prototypical reasoning with low
complexity description logics: Preliminary results. In Proceedings of the 10th International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR-09), volume 5753
of LNCS, pages 430–436, Springer-Verlag, 2009.

[22] L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. ALC + T: a Preferential Extension
of Description Logics. Fundamenta Informaticae, 3 (96):341–372, 2009.

33

http://puma.isti.cnr.it/dfdownload.php?ident=/cnr.isti/2015-TR-044&langver=it&scelta=Metadata


[23] L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. Preferential vs rational description
logics: which one for reasoning about typicality? In 19th European Conference on Artificial
Intelligence (ECAI-10), volume 215 of Frontiers in Artificial Intelligence and Applications,
pages 1069–1070. IOS Press, 2010.

[24] L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. Reasoning about typicality in low

complexity DLs: The logics EL⊥tmin and DL-Litec tmin. In Proceedings of the 22nd Inter-
national Joint Conference on Artificial intelligence (IJCAI-11), pages 894–899. IJCAI/AAAI,
2011.

[25] L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. A tableau calculus for a nonmono-
tonic extension of EL⊥. In 20th International Conference on Automated Reasoning with Ana-
lytic Tableaux and Related Methods (TABLEAUX-11), volume 6763 of LNCS, pages 180–195.
Springer Verlag, 2011.

[26] L. Giordano, N. Olivetti, V. Gliozzi, and G. L. Pozzato. A minimal model semantics for
nonmonotonic reasoning. In L. Fariñas del Cerro, A. Herzig, and J. Mengin, editors, Proceedings
of the 13th European Conference on Logics in Artificial Intelligence (JELIA-12), number 7519
in LNCS, pages 228–241. Springer, 2012.

[27] L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. A non-monotonic description logic for
reasoning about typicality. Artificial Intelligence Journal, 195:165–202, 2013.

[28] L. Giordano, V. Gliozzi and N. Olivetti. Towards a Rational Closure for Expressive Description
Logics: the Case of SHIQ In Fundamenta Informaticae, (1-2) 159:95–122, 2018.

[29] L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. Semantic characterization of rational
closure: From propositional logic to description logics. Artificial Intelligence Journal, 226:1–33,
2015.

[30] L. Giordano and D. T. Dupré. Defeasible Reasoning in SROEL: from Rational Entailment to
Rational Closure. In Fundamenta Informaticae, (1-2) 161:135–161, 2018.

[31] S. Grimm and P. Hitzler. A preferential tableaux calculus for circumscriptive ALCO. In
Proceedings of the 3rd International Conference on Web Reasoning and Rule Systems (RR-
09), volume 5837 of LNCS, pages 40–54, Berlin, Heidelberg, 2009. Springer-Verlag.

[32] J. F. Horty. Some direct theories of nonmonotonic inheritance. In Handbook of logic in artificial
intelligence and logic programming: nonmonotonic reasoning and uncertain reasoning, Volume
3, pages 111–187. Oxford University Press, 1994.

[33] V. Ivanov, M. Knorr, and J. Leite. A query tool for EL with non-monotonic rules. In The
Semantic Web - ISWC 2013 - 12th International Semantic Web Conference, Part I, volume
8218 of Lecture Notes in Computer Science, pages 216–231. Springer Verlag, 2013.

[34] T. Kaminski, M. Knorr, and J. Leite. Efficient paraconsistent reasoning with ontologies and
rules. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intel-
ligence, IJCAI-15, pages 3098–3105. AAAI Press, 2015.

34



[35] Yevgeny Kazakov, Markus Krötzsch, and Frantisek Simancik. The incredible ELK - from poly-
nomial procedures to efficient reasoning with EL ontologies. Journal of Automated Reasoning,
53(1):1–61, 2014.

[36] M. Knorr, J. J. Alferes, and P. Hitzler. Local closed world reasoning with description logics
under the well-founded semantics. Artificial Intelligence, 175(9-10):1528–1554, 2011.

[37] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence Journal, 44:167–207, 1990.

[38] M. Krötzsch. Efficient inferencing for OWL EL. In 12th European Conference on Logics in
Artificial Intelligence (JELIA-10), volume 6341 of Lecture Notes in Computer Science, pages
234–246, 2010.

[39] M. Krötzsch, S. Rudolph, and P. Hitzler. Complexities of Horn description logics. ACM
Transaction on Computational Logic, 14(1):2, 2013.

[40] D. Lehmann and M. Magidor. What does a conditional knowledge base entail? Artificial
Intelligence Journal, 55:1–60, 1992.

[41] D. Lehmann. Another perspective on default reasoning. Annals of Mathematics and Artificial
Intelligence, 15(1):61–82, 1995.

[42] T. Lukasiewicz. Tractable probabilistic description logic programs. In First International
Conference on Scalable Uncertainty Management (SUM-07)), volume 4772 of Lecture Notes in
Computer Science, pages 143–156. Springer Verlag, 2007.

[43] T. Lukasiewicz. and U. Straccia. Tightly coupled fuzzy description logic programs under
the answer set semantics for the semantic web. International Journal on Semantic Web and
Information Systems, 4(3):68–89, 2008.

[44] T. Lukasiewicz and U. Straccia. Description logic programs under probabilistic uncertainty
and fuzzy vagueness. International Journal of Approximate Reasoning, 50(6):837–853, 2009.

[45] D. Makinson. General patterns in nonmonotonic reasoning. In Dov M. Gabbay, C. J. Hogger,
and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Programming
(Vol. 3), pages 35–110. Oxford University Press, Inc., New York, NY, USA, 1994.

[46] K. Moodley. Practical rreasoning for defeasible description logics. PhD Thesis, University of
KwaZulu-Natal, School of Mathematics, Statistics and Computer Science, South Africa, 2015.

[47] B. Motik and R. Rosati. Reconciling description logics and rules. Journal of the ACM, 57(5),
2010.

[48] M. Pensel and A. Y. Turhan. Including quantification in defeasible reasoning for the descrip-
tion logic EL⊥. In Marcello Balduccini and Tomi Janhunen, editors, Logic Programming and
Nonmonotonic Reasoning - 14th International Conference, LPNMR 2017, Espoo, Finland,
July 3-6, 2017, Proceedings, volume 10377 of Lecture Notes in Computer Science, pages 78–84.
Springer, 2017.

35



[49] M. Pensel and A. Y. Turhan. Reasoning in the Defeasible Description Logic EL⊥- Computing
Standard Inferences under Rational and Relevant Semantics. International Journal of Approx-
imate Reasoning, 2018. Forthcoming.

[50] U. Straccia. Default inheritance reasoning in hybrid KL-ONE-style logics. In Proceedings of
th 13th International Joint Conference on Artificial Intelligence (IJCAI-93), pages 676–681,
Chambery, France, 1993.

36



Appendix

A Characteristic DL model for Rational Closure

In [12, Section 5] the following DL model characterising rational closure for ALC is introduced.
Let K = 〈T ,D〉 be a defeasible ontology and R

K be the set of all the ranked models of K. Let
∆ be any countable infinite domain, and R

K
∆ be the set of ranked models of K that have ∆ as

domain. We can use the set of models R
K
∆ to define a single model characterising rational closure.

Let R∪
K = 〈∆R∪

K , ·R
∪
K ,≺R∪

K〉 be a ranked model obtained in the following way.

• For the domain ∆R∪
K , we consider in ∆R∪

K one copy of ∆ for each model in R
K
∆. Specifically,

given ∆ = {x, y . . .}, we indicate as ∆R = {xR, yR, . . .} a copy of the domain ∆ associated
with an interpretation R ∈ R

K
∆ and define

∆R∪
K =

⋃

R∈RK
∆

∆R .

• The interpretation function and the preferential relation are defined referring directly to the
models in R

K
∆. That is, for every xR, yR′ ∈ ∆R∪

K , every atomic concept A and every role r,

– xR ∈ AR∪
K iff x ∈ AR;

– (xR, yR′) ∈ rR
∪
K iff R = R′ and (x, y) ∈ rR;

– xR ≺R∪
K yR′ iff hR(x) < hR′(y).

It is easy to check by induction on the construction of the concepts that, for every xR ∈ ∆R∪
K

and every concept C,

– xR ∈ CR∪
K iff x ∈ CR;

and that every individual xR ∈ ∆R∪
K preserves its original height, that is,

– hR∪
K

(xR) = hR(x).

R∪
K is a ranked model characterising the Rational Closure of K [12, Theorem 4 and Corollary 1].

That is, given a KB K = 〈T ,D〉, for every concept inclusion C ❁
∼ D,

C ❁
∼ D is in the RC of K iff R∪

K |= C ❁
∼ D. (10)

Remark 10. From now on, given a set of ranked models S, we will indicate the model obtained
using a procedure like the one used here above as the ranked merge of the models in S. That is, R∪

K

is the ranked merge of the models in R
K
∆.

In [12, Theorem 4] the correspondence of ⊢rc with the model R∪
K has been proved. That is,

for every ALC KB K = 〈T ,D〉 and every inclusion C ❁
∼ D (resp. C ⊑ D), K ⊢rc C ❁

∼ D (resp.,
K ⊢rc C ⊑ D) iff R∪

K |= C ❁
∼ D (resp., R∪

K |= C ⊑ D).
In what follows we are going to prove that the above characterisation of RC using the model R∪

K

is equivalent to the one introduced in [29], which we will use then in B. The following results are
valid for DL languages more expressive than EL⊥, but not containing nominals, as e.g. for ALC.

First we restrict our attention to a subset of the models in R
K
∆. Specifically, those that are:

37



1. minimal w.r.t. the relation <, as defined in [29] and reported here as Definition 6.

2. canonical, as defined in [29], which we report below for the sake of completeness.

Definition 9 ([29], Definition 24). Let K = 〈T ,D〉 be a knowledge base in defeasible ALC,
and S be the set of concepts appearing in K. A ranked model R = 〈∆R, ·R,≺R〉 of K is a
canonical model if, for every set of concepts {C1, . . . , Cn} ⊆ S consistent with K there is at
least an x ∈ ∆R s.t. x ∈ (C1 ⊓ . . . ⊓ Cn)R.

Let minc

<(RK
∆) (resp. minc

<(RK)) be the set of the minimal models in R
K
∆ (resp. R

K) w.r.t. <
that are also canonical. The following proposition shows that, for every concept C, every canonical
minimal model in R

K associates to C the same height.

Proposition 25. For every R,R′ in minc

<(RK) and every concept C,

hR′(C) = hR(C) .

Proof. Given two ranked interpretations R = 〈∆R, ·R,≺R〉 and R′ = 〈∆R′

, ·R
′

,≺R′

〉 and an ontology
K = 〈T ,D〉, let ΓK be the set of the subconcepts appearing in K and, for o ∈ ∆R, let [oRK]R′ =

{o′ ∈ ∆R′

| for every concept C ∈ Γ, o ∈ CR iff o′ ∈ CR′

}. Also, let hR′([oRK]R′) = min{hR′(o′) |
o′ ∈ [oRK]R′}.

Assume to the contrary that there are two R,R′ ∈ minc

<(RK) and a concept C s.t. hR′(C) <
hR(C). Since R,R′ are canonical, this implies that for some o ∈ CR there is an object o′ ∈ [oRK]R′

s.t. hR′(o′) < hR(o).
Let R∗ = 〈∆R∗

, ·R
∗

,≺R∗

〉 be s.t. ∆R∗

= ∆R, ·R
∗

= ·R, and, for every o ∈ ∆R∗

hR∗(o) =
min{hR(o), hR′ ([oRK]R′)}. It is easy to check that R∗ is a model of K: first check by induction on
the construction of the concepts that for every o ∈ ∆R∗

and for every concept C, o ∈ CR∗

iff o ∈ CR;
then it follows that for every strict inclusion C ⊑ D, R∗ |= C ⊑ D iff R |= C ⊑ D; eventually, using
the definition of hR∗(o), we can prove that for every C ❁

∼ D ∈ D, hR∗(C ⊓ D) < hR∗(C ⊓ ¬D) or
hR∗(C) = ∞. So R∗ is a model of K and R∗ < R, against the hypothesis that R ∈ minc

<(RK).

We can prove easily that also the following lemma holds. Let R
∪c,min

K be the ranked merge of
minc

<(RK
∆).

Lemma 26. For every KB K = 〈T ,D〉 and every concept C,

hR∪
K

(C) = h
R

∪
c,min

K

(C) .

Proof. For every concept C, hR∪
K

(C) = hR(C) for some R ∈ min<(RK
∆), that is, some R ∈ R

K
∆ that

is minimal w.r.t. <. We have to prove that if there is a model R ∈ min<(RK
∆) s.t. hR∪

K
(C) = hR(C),

then there must be a model R′ ∈ minc

<(RK
∆) s.t. hR∪

K
(C) = hR′(C).

Let R∗ be a model in minc

<(RK
∆), and R∗∗ be the ranked merge of R and R∗; it is easy to prove

that R∗∗ is still a model of K, and in particular it must be a minimal canonical model of K: it
must be minimal, otherwise R and R∗ would not be minimal, and it must be canonical, since R∗ is
canonical. Hence, for every concept C, hR∗∗(C) = min{hR(C), hR∗(C)} ≤ hR∪

K
(C), and, since R∗

38



is merged into R∪
K, hR∗∗(C) = hR∪

K
(C). Also, the domain of R∗∗, ∆R∗∗

, must be countably infinite,
since it is obtained by merging two countably infinite domains.

Since ∆R∗∗

is countably infinite, we can define a bijection b between ∆R∗∗

and ∆, and using b
we can define a model R∗∗

∆ corresponding to R∗∗ but having ∆ as domain (that is, for every C ❁
∼ D,

R∗∗ |= C ❁
∼ D iff R∗∗

∆ |= C ❁
∼ D); it is sufficient to define ·R

∗∗
∆ as:

• for every A ∈ NC , AR∗∗
∆ = {o ∈ ∆ | b−(o) ∈ AR∗∗

};

• for every r ∈ NR, rR
∗∗
∆ = {(o, o′) ∈ ∆ × ∆ | (b−(o), b−(o′)) ∈ rR

∗∗

};

and for every o ∈ ∆, set hR∗∗
∆

(o) = hR∗∗(b−(o)). R∗∗
∆ must be in minc

<(RK
∆) and hR∗∗

∆
(C) = hR∪

K
(C).

So, for every concept C there is a model R′ ∈ minc

<(RK
∆) s.t. hR′(C) = hR∪

K
(C). By Propo-

sition 25, that implies that hR(C) = hR∪
K

(C) for every R ∈ minc

<(RK
∆), that in turn implies that

h
R

∪
c,min

K

(C) = hR∪
K

(C) for every concept C.

From Lemma 26 and Definition 2 it follows that RC can be characterised merging the minimal
canonical models of K having ∆ as domain.

Proposition 27. For every inclusion C ❁
∼ D,

R∪
K |= C ❁

∼ D iff R
∪c,min

K |= C ❁
∼ D

Expression 11 here below corresponds to the semantic characterisation of RC for ALC presented
in [27, 29]. For every KB K = 〈T ,D〉 and every inclusion C ❁

∼ D,

C ❁
∼ D is in the RC of K iff R |= C ❁

∼ D, for every R ∈ minc

<(RK) . (11)

In particular, Expression 11 is a rephrasing in our framework of Theorem 8 in [29]. We want to
prove that, indeed, our characterisation of RC (Expression 10) is equivalent to the one presented
in [29] (Expression 11). First, we prove that, starting from the Expression 11, we can restrict our
attention only to the minimal canonical models in R

K
∆ (Lemma 28); then (Proposition 29) we are

going to prove that such a characterisation corresponds to the one using R
∪c,min

K .

Lemma 28. For every canonical model R of a KB K = 〈T ,D〉, there is a canonical model R∆ of
K that has a countably infinite domain ∆ and s.t. for every inclusion axiom C ❁

∼ D, R |= C ❁
∼ D iff

R∆ |= C ❁
∼ D.

Proof. Let R = 〈∆R, ·R,≺R〉 be a canonical model of K. The possible cases are three.

1. ∆R is countably infinite. Then we can build an equivalent model having ∆ as domain and
preserving the height of each concept (see the proof of Lemma 26).

2. ∆R is finite. Then we can build an equivalent model with a countably infinite domain: just
make a countably infinite number of copies of R and rank-merge them in a single model (that
preserves the height of each concept). Then the result follows from case 1.

39



3. ∆R is uncountably infinite. Also, in this case we can build an equivalent model with a
countably infinite domain. To build it we can use the Finite Model Property (FMP, [12,
Theorem 7]) and the Finite Counter-Model Property (FCMP, [12, Proposition 15]) that hold
for defeasible ALC. The latter indicates that, if there is a model of an ontology K that does
not satisfy an inclusion C ❁

∼ D, then there is a finite model of K that does not satisfy C ❁
∼ D.

FMP and FCMP are based on the following construction [12, pp. 78-79]: let Γ be a set of
concepts {C1, . . . , Cn} s.t. Γ is obtained closing under sub-concepts and negation the concepts
appearing in K (plus the concepts C and D, if we are looking for a model of K that also falsifies
C ❁

∼ D). Now we define the equivalence relation ∼Γ as

∀x, y ∈ ∆R, x ∼Γ y iff ∀C ∈ Γ, x ∈ CR iff y ∈ CR .

We indicate with [x]Γ the equivalence class of the individuals that are related to an individual
x through ∼Γ:

[x]Γ = {y ∈ ∆R | x ∼Γ y} .

We introduce a new model R′ = 〈∆R′

, ·R
′

,≺R′

〉, defined as:

• ∆R′

= {[x]Γ | x ∈ ∆R};

• for every A ∈ NC ∩ Γ, AR′

= {[x]Γ | x ∈ AR};

• for every A /∈ NC ∩ Γ, AR′

= ∅;

• for every r ∈ NR, rR
′

= {〈[x]Γ, [y]Γ〉 | 〈x, y〉 ∈ rR};

• For every [x]Γ, [y]Γ ∈ ∆R′

, [x]Γ ≺R′

[y]Γ if there is an object z ∈ [x]Γ s.t. for all v ∈ [y]Γ,
z ≺R v;

• for every a ∈ NI , aR
′

= [x]Γ iff aR = x.

It is easy to see that this construction gives back a ranked interpretation that preserves the
relative height of the concepts, that is, for every C,D ∈ Γ, hR′(C) ≤ hR′(D) iff hR(C) ≤
hR(D). Also, since the set S in Definition 9 is a subset of Γ, also canonicity is preserved.

Now, given the model R, let ❁
∼

−
R = {C ❁

∼ D | R 6|= C ❁
∼ D}. Since we have assumed a

finitely generated vocabulary (see Section 2.1), we will have a countably infinite number
of inclusion statements that can be generated (this can be proven using some Gödel-style
numerical encoding of the inclusions); hence ❁

∼
−
R must be countably infinite too (it cannot

be a finite set, since it is easy to check that for every inclusion there is in our language an
infinite number of inclusions that are logically equivalent to it).

For each inclusion C ❁
∼ D in ❁

∼
−
R, take a finite model R

C ❁
∼ D

of K that falsifies C ❁
∼ D. Let

R∗ be the interpretation obtained by merging all the models R
C ❁

∼ D
, with C ❁

∼ D ∈ ❁
∼

−
R.

It is easy to check that R∗ is a model of K that satisfies the desired constraints and has a
countably infinite domain (it is obtained by merging a countably infinite number of finite
models). Then, the result follows from case 1.

40



We can now prove that in Expression 11 we can restrict our attention from all the minimal canonical
models of an ontology K (that is, the minimal canonical models in R

K) to the minimal canonical
models of K having ∆ as domain (that is, the minimal canonical models in R

K
∆). Indeed, the

following proposition follows immediately from Lemma 28.

Proposition 29. For every KB K = 〈T ,D〉 and every inclusion C ❁
∼ D, R |= C ❁

∼ D for every
model R ∈ minc

<(RK) iff R′ |= C ❁
∼ D for every model R′ ∈ minc

<(RK
∆).

Now, the correspondence between our semantics for RC (Expression 10) and the one presented in
[29] (Expression 11) follows.

Proposition 30. model R ∈ minc

<(RK) if and only if R∪
K |= C ❁

∼ D. Expression 10 and Expres-
sion 11 are equivalent.

Proof. The following holds:

C ❁
∼ D is in the RC of K iff R∪

K |= C ❁
∼ D (Expression 10)

iff R
∪c,min

K |= C ❁
∼ D (Proposition 27)

iff R |= C ❁
∼ D for every R ∈ minc

<(RK
∆) (Proposition 25)

iff R |= C ❁
∼ D for every R ∈ minc

<(RK) (Proposition 29)

iff C ❁
∼ D is in the RC of K according to Expression 11) ,

which concludes.

B Prototypical Reasoning over the individuals

As shown in Example 11, once we introduce presumptive reasoning involving individuals, we are
faced with the possibility of multiple minimal configurations. Such an observation allows us to
distinguish two kinds of reasoning concerning the individuals (see Section 5): one is a presumptive
reasoning, modelled by a skeptical approach that takes under consideration what holds in all the
most typical situations satisfying our KB; the second possible approach is to take under considera-
tion only the most typical instantiations of the individual we are interested in. That is, we attribute
presumptively a property C to an individual a if a falls under C in all the models in which a is
interpreted in the most prototypical way. Given a nominal safe ELO⊥ ontology K = 〈T ,D〉 and
an individual a ∈ NO , the latter kind of reasoning would correspond to taking under consideration
only those minimal models of K in which also the interpretation of a is minimal.

In A we have modelled our reasoning using R∪
K, R

∪c,min

K , or, equivalently, minc

<(RK
∆), that are

equivalent options to characterise the RC of a KB, if we do not allow nominals.
We can extend the definition of <, and hence the definition of minc

<(RK
∆), also to languages

containing nominals. As Example 11 shows, Proposition 25 does not hold for the minimal models
of ontologies that have also nominals: in such an example we would have that in some minimal
models {a} is interpreted on layer 0 and {b} on layer 1, and in other minimal models the other way
around. Therefore, in presence of nominals, we have two options regarding the kind of minimality
we want to use. On one hand we can continue to use a notion of entailment relation |=rc built using
the entire set of models in minc

<(RK
∆) as done in [12, 14]. That is:

Definition 10. K |=rc C ❁
∼ D iff R |= C ❁

∼ D for every R ∈ minc

<(RK
∆).

41



Another option, and which is what we are going to analyse here, is more appropriate for modelling
prototypical reasoning. If we are investigating about which properties are to be associated to the
prototype of a certain individual a, we consider only the minimal models in which a is interpreted
in the lowest possible layer. That is, if we are wondering whether some inclusion {a} ❁

∼ C holds,
we do not refer to all the models in minc

<(RK
∆), but only to those models in which the individual a

is interpreted at its minimal height. Specifically, let us define R ∈ minc,a
< (RK

∆) iff R ∈ minc

<(RK
∆)

and hR(a) ≤ hR′(a) for every R′ ∈ minc

<(RK
∆). Based on this notion, we can now define a different

consequence relation |=′
rc to reason about nominals.

Definition 11. K |=′
rc {a} ❁

∼ C iff aR ∈ CR for every R ∈ minc,a
< (RK

∆).

To illustrate the difference between |=′
rc and |=rc, consider the knowledge base in Example 11.

According to |=′
rc we consider only the models in which a is at rank 0 if we are asking something

about a (for example, whether the prototype of a satisfies C), while we consider only the models in
which b is at rank 0, if we are asking something about b (for example, if the prototype of b satisfies
C). According to |=rc, we neither can conclude that presumably a satisfies C nor that presumably
b satisfies C (each of them is falsified in some typical situations), while according to |=′

rc we can
conclude that the prototypes of both a and b satisfy C (in the preferred situations w.r.t. a, a falls
under C, and analogously for b).

We can generalise the definition of |=′
rc to the entire language of nominal-safe ELO⊥. Specifically,

given a nominal safe ontology K = 〈T ,D〉, a ranked model R of K, and an n-safe concept C, let us

define R ∈ minc,C
< (RK

∆) iff R ∈ minc

<(RK
∆) and for every model R′ ∈ minc

<(RK
∆), hR(C) ≤ hR′(C).

Then, Definition 11 can be generalised as follows.

Definition 12. Given a nominal safe ELO⊥ ontology K = 〈T ,D〉 and a safe inclusion C ❁
∼ D,

K |=′
rc C

❁
∼ D iff min≺R(CR) ⊆ DR for every R ∈ minc,C

< (RK
∆).

Note that if we are not using nominals, that is, we are using EL⊥, there is no difference between
|=rc and |=′

rc, since they both correspond to RC entailment.

Proposition 31. Given a defeasible EL⊥ ontology K = 〈T ,D〉 and an EL⊥ inclusion C ❁
∼ D, then

K |=′
rc C

❁
∼ D iff K |=rc C ❁

∼ D iff K ⊢rc C ❁
∼ D.

Proof. The correspondence between |=′
rc and |=rc in EL⊥ is an immediate consequence of Proposi-

tion 25. The correspondence between ⊢rc and Expression 10 has been proved in [12, Theorem 4],
Proposition 30 proves the correspondence between Expression 10 and Expression 11, and Expression
11 corresponds to |=rc by Definition 10.

We can now prove that the decision procedure defined in Section 5 using defeasible nominals cor-
responds to prototypical reasoning over the individuals, that is, it corresponds exactly to |=′

rc.

Proposition 32. Let K = 〈T ,D〉 be a nominal safe ELO⊥ ontology. For every safe C ❁
∼ D,

K |=′
rc C

❁
∼ D iff K〈〉 ⊢rc C〈〉

❁
∼ D〈〉.

Proof. Since K〈〉 and C〈〉
❁
∼ D〈〉 are EL⊥ expressions, by Proposition 31, K〈〉 ⊢rc C〈〉

❁
∼ D〈〉 iff K〈〉 |=′

rc

C〈〉
❁
∼ D〈〉. So, it is sufficient to prove that for every safe C ❁

∼ D, K |=′
rc C ❁

∼ D iff K〈〉 |=′
rc C〈〉

❁
∼ D〈〉.

(⇐). Assume K〈〉 |=′
rc C〈〉

❁
∼ D〈〉. Consider each model R in minc,C

< (RK) and extend its inter-

pretation function ·R by imposing that, for every a ∈ NO , 〈a〉R = {a}R: R becomes also a model of

42



K〈〉 and it must hold that R ∈ min
c,C〈〉

< (RK〈〉). Assume the latter is not the case: then there is an

R∗ ∈ min
c,C〈〉

< (RK〈〉) s.t. R∗ < R; extend ·R
∗

s.t., for every a ∈ NO , {a}R
∗

= 〈a〉R
∗

(Since R∗ < R,

it must be 〈a〉R
∗

= 〈a〉R, hence also in R∗ every defeasible nominal is interpreted into a single

object), and then we have R∗ ∈ R
K with R∗ < R, contrary to the assumption R in minc,C

< (RK).

Therefore, since every R in minc,C
< (RK) is also in min

c,C〈〉

< (RK〈〉), K〈〉 |=′
rc C〈〉

❁
∼ D〈〉 implies that

R |= C〈〉
❁
∼ D〈〉 and, since in every such R, for every a ∈ NO , 〈a〉R = {a}R, R |= C ❁

∼ D follows and
we can conclude K |=′

rc C
❁
∼ D.

(⇒). Assume K〈〉 6|=′
rc C〈〉

❁
∼ D〈〉. We need to prove that K 6|=′

rc C ❁
∼ D.

K〈〉 6|=′
rc C〈〉

❁
∼ D〈〉 implies that there is a model R = 〈∆R, ·R,≺R〉 in min

c,C〈〉

< (RK〈〉) s.t. R 6|=

C〈〉
❁
∼ D〈〉, and we need to prove that there is a model R∗ in minc,C

< (RK) s.t. R∗ 6|= C ❁
∼ D.

From R we define a ranked interpretation R′ = 〈∆R′

, ·R
′

,≺R′

〉 using the procedure explained in
the proof of Lemma 34. Specifically,18

• ∆R′

= {x•E , xE | R 6|= E ⊑ ⊥, where E is a safe EL〈O〉⊥ concept} ∪ {x〈a〉 | a ∈ NO};

• 〈a〉R
′

= {x〈a〉 ∈ ∆R′

}, for every defeasible nominal 〈a〉;

• AR′

= {xE ∈ ∆R′

| R |= E ⊑ A} ∪ {x•E ∈ ∆R′

| R |= E ❁
∼ A} ∪ {x〈a〉 ∈ ∆R′

| R |= 〈a〉 ❁
∼ A},

for every safe EL〈O〉⊥ concept E, every defeasible nominal 〈a〉, and every atomic EL⊥ concept
A;

• rR
′

= {〈xE , xF 〉 ∈ ∆R′

× ∆R′

| R |= E ⊑ ∃r.F} ∪ {〈x•E , xF 〉 ∈ ∆R′

× ∆R′

| R |= E ❁
∼ ∃r.F} ∪

{〈x〈a〉, xF 〉 ∈ ∆R′

× ∆R′

| R |= 〈a〉 ❁
∼ ∃r.F}, for every safe EL〈O〉⊥ concepts E and F , and

every defeasible nominal 〈a〉;

• hR′(x•E) = hR(E), for every x•E ∈ ∆R′

;

• hR′(x〈a〉) = hR(〈a〉), for every defeasible nominal 〈a〉;

• x•F ≺R′

xE for every x•F , xE ∈ ∆R′

.

We have proved in the proof of Lemma 34 that R′ is still a model of K〈〉. Specifically, for every pair
of safe EL〈O〉⊥ concepts E,F , we have

1. R |= E ⊑ F and R 6|= E ⊑ ⊥ iff xE ∈ FR′

;

2. R |= E ❁
∼ F and R 6|= E ⊑ ⊥ iff x•E ∈ FR′

.

And, for every pair 〈a〉, E where a ∈ NO and E is safe, we have,

3. R |= 〈a〉 ❁
∼ E iff x〈a〉 ∈ ER′

.

18 Recall that we introduce x•E as an object that represents a typical instance of the concept E, while xE represents
an atypical instance of the concept E.

43



This implies that for every safe concept E such that R 6|= E ⊑ ⊥, x•E , xE ∈ ER′

, and for

every 〈a〉, 〈a〉R
′

= {x〈a〉}. Moreover, by construction of R′, for every safe concept E〈〉, xE ∈

minR′

≺ (ER′

〈〉 ) (otherwise it is easy to obtain a contradiction using 2. and 3.) and, consequently,
hR′(E〈〉) = hR(E〈〉). We can conclude that R′ is a model of K〈〉 s.t. R′ 6|= C〈〉

❁
∼ D〈〉. Since in R′

every defeasible nominal 〈a〉 is interpreted into a single object, extending ·R
′

by imposing that, for

every a ∈ NO , {a}R
′

= 〈a〉R
′

= {x〈a〉}, we can conclude that R′ is a model of K s.t. R′ 6|= C ❁
∼ D,

that is, there is an object o s.t. o ∈ min≺R′ (CR′

) and o /∈ DR′

.

If R′ is in minc,C
< (RK), we conclude our proof. It could be that R′ /∈ minc,C

< (RK), and, in case,
we need to prove that the existence of R′ implies the existence of another model R∗ s.t. R∗ 6|= C ❁

∼ D

with R∗ in minc,C
< (RK).

So, let R∗ be a model in minc,C
< (RK) and such that R∗ < R′; we have to prove that R∗ 6|= C ❁

∼ D.

As above, extend ·R
∗

for defeasible nominals by imposing that, for every a ∈ NO , {a}R
′

=

〈a〉R
′

= {x〈a〉} = {x〈a〉}. R∗ is a model of K〈〉 and R∗ ∈ minc,C
< (RK) implies R∗ ∈ min

c,C〈〉

< (RK〈〉)

(as shown in the (⇐)-part of this proof).

By Proposition 25, since R and R∗ are both in min
c,C〈〉

< (RK〈〉), for every safe concept E〈〉 it holds
hR∗(E〈〉) = hR(E〈〉). We have already seen that for every safe concept E〈〉, hR′(E〈〉) = hR(E〈〉).

Hence we can conclude that, for every safe concept E〈〉, hR∗(E〈〉) = hR′(E〈〉), that is, for every
safe concept E, hR∗(E) = hR′(E). Remember that object o, introduced above, is an object s.t.
o ∈ min≺R′ (CR′

) (that is, hR′(o) = hR′(C)) and o /∈ DR′

. We have the following:

• hR∗(C) = hR′(C);

• since R∗ < R′, o ∈ CR∗

, o /∈ DR∗

, and hR∗(o) ≤ hR′(o).

So, it must be hR∗(o) = hR′(o) = hR′(C) = hR∗(C), that is, also in R∗ it is the case that
o ∈ min≺R∗ (CR∗

) and o /∈ DR∗

.

Therefore, we can conclude that R∗ ∈ minc,C
< (RK) with R∗ 6|= C ❁

∼ D, and, thus, K 6|=′
rc C ❁

∼ D.

C Various Proofs

Proposition 3 and 4 can be derived from the result [12, Proposition 7]. However, since there are no
proper statements and proofs of them, we add them here for convenience.

Proposition 3 For every concept C and every ontology K = 〈T ,D〉, if

T |=
l

{¬E ⊔ F | E ❁
∼ F ∈ D} ⊑ ¬C (12)

then C is exceptional w.r.t. K.

Proof. Let K = 〈T ,D〉 be an ontology, and assume that T |=
d
{¬E ⊔ F | E ❁

∼ F ∈ D} ⊑ ¬C, but
C is not exceptional w.r.t. K. The latter means that there is a ranked interpretation R such that
it is a model of K and there is an object o in the lower layer LR

0 of R s.t. o ∈ CR. However, since
R is a model of K and o is in the lower layer, for every axiom E ❁

∼ F ∈ D it must be that either
o /∈ ER or o ∈ FR. That is , o ∈ (

d
{¬E ⊔ F | E ❁

∼ F ∈ D} ⊓C), against T |=
d
{¬E ⊔ F | E ❁

∼ F ∈
D} ⊑ ¬C.

44



Proposition 4 Given an ontology K• = 〈T •,D•〉, obtained from the application of RC.Step 1 to
an ontology K = 〈T ,D〉, for every concept C, then

T • |=
l

{¬E ⊔ F | E ❁
∼ F ∈ D•} ⊑ ¬C

if and only if C is exceptional w.r.t. K•.

Proof. Let K• = 〈T •,D•〉 be specified as in the statement. One half of the statement is valid due
to Proposition 3. We have to prove the other half.

Assume C is exceptional w.r.t. K•, but T • 6|=
d
{¬E ⊔ F | E ❁

∼ F ∈ D•} ⊑ ¬C. Then there is
a classic DL interpretation M = 〈∆M , ·M 〉 that is a model of T • and such that there is an object
o ∈ (

d
{¬E ⊔ F | E ❁

∼ F ∈ D•} ⊓ C)M .
Now consider the canonical model of the RC of K•, R∪

K• = 〈∆R∪
K• , ·R

∪
K• ,≺R∪

K• 〉, built as described

in A (see also [12]). Define a ranked interpretation R′ = 〈∆R′

, ·R
′

,≺R′

〉 in the following way:

• ∆R′

= ∆R∪
K• ∪ ∆M ;

• for every atomic concept A, AR′

= AR∪
K• ∪ AM ;

• for every role r, rR
′

= rR
∪
K• ∪ rM ;

• for every x ∈ ∆R∪
K• , hR′(x) = hR∪

K•
(x);

• for every x ∈ ∆M , hR′(x) = i, if i is the lowest value s.t. x ∈ (Hi)
M ,

where D•
0 , . . . ,D

•
n is the partition of D• obtained by RC.Step 1 and Hi =

d
{¬E ⊔ F | E ❁

∼ F ∈
D•

i ∪ . . . ∪ D•
n}, as defined in RC.Step 2.

By induction on the construction of the concepts, it is easy to see that for every concept C and
for every x ∈ ∆R′

, x ∈ CR′

iff either x ∈ ∆M and x ∈ CM or x ∈ ∆R∪
K• and x ∈ CR∪

K• . Hence
R′ is a model of T •. Now we show that it is also a model of D•. Assume that there is an axiom
E ❁

∼ F ∈ D• s.t. R′ 6|= E ❁
∼ F ; in particular, let E ❁

∼ F ∈ D•
i for some i. That is, there is an object

p ∈ ∆R′

s.t. p ∈ min≺R′ (E
R′

) and p ∈ (E ⊓ ¬F )R
′

. As R∪
K• is a model of K•, it must be that

p ∈ ∆M . Due to our construction of R′, it must be hR′(p) > i. As R∪
K• is a minimal canonical

model of the RC of K• and E ❁
∼ F ∈ D•

i , it must be the case that hR∪
K•

(E) = i and hR∪
K•

(E⊓F ) = i

(it follows immediately from [12, Proposition 7], which by construction of R′ implies hR′(E) = i
and hR′(E ⊓ F ) = i. Hence it cannot be the case that p ∈ min≺R′ (E

R′

). Therefore, R′ must be a
model of K•.

As a consequence, we end up with an interpretation R′ that is a ranked model of K•, and such
that there is an object o ∈ (

d
{¬E ⊔ F | E ❁

∼ F ∈ D•} ⊓ C)R
′

. Due to our construction of R′, the
fact that o satisfies

d
{¬E ⊔ F | E ❁

∼ F ∈ D•}, that is, H0, implies that hR′(o) = 0. Therefore, R′

is a ranked model of K• that has an object satisfying C in the lower layer. Hence C cannot be
exceptional w.r.t. K•, and we have a contradiction.

Proposition 7 A classical GCI C ⊑ D is in the RC of K = 〈T ,D〉 iff T • |= C ⊑ D, where T • has
been computed using RC.Step 1.

Proof. C ⊑ D is in the RC of K = 〈T ,D〉 iff also C ⊓ ¬D ⊑ ⊥ is in it, that is, iff C ⊓ ¬D ❁
∼ ⊥ is in

the RC of K = 〈T ,D〉.
By RC.Step 2, C ⊓ ¬D ❁

∼ ⊥ is in the RC of K = 〈T ,D〉 iff one of two following conditions are
satisfied:

45



• there is a concept Hi, as defined in RC.Step 2 in Section 2.2, such that

T • 6|= Hi ⊑ ¬(C ⊓ ¬D) and

T • |= (C ⊓ ¬D) ⊓Hi ⊑ ⊥,

that is an impossible occurrence;

• HC⊓¬D = ⊤ and, thus, T • |= (C ⊓ ¬D) ⊑ ⊥, and this must be the case.

The proofs of Propositions 9, 10, 11, and 12 are immediate once we prove the following lemma.

Lemma 33. Consider any DL that is closed under boolean operators. Given a finite set of defeasible
axioms D and a concept C, the following two subsumption tests are equivalent:

T |=
l

{¬E ⊔ F | E ❁
∼ F ∈ D} ⊑ ¬C (13)

T ∪ {E ⊓ δD ⊑ F | E ❁
∼ F ∈ D} |= C ⊓ δD ⊑ ⊥ . (14)

where δD is a new atomic concept.

Proof. It is easily verified that (13) is equivalent to

T |= C ⊓
l

E ❁
∼ F∈D

(¬E ⊔ F ) ⊑ ⊥ . (15)

Therefore, it suffices to show the equivalence among (15) and (14).
So, assume (15) holds and assume to the contrary that (14) does not hold. Then there is an

interpretation I such that I |= T , I |= E ⊓ δD ⊑ F , for all E ❁
∼ F ∈ D and o ∈ (C ⊓ δD)I for some

o ∈ ∆I , i.e., o ∈ CI and o ∈ δID. But, I |= E ⊓ δD ⊑ F means that ∆I = (¬E ⊔ ¬δD ⊔ F )I . As
o ∈ δID, o ∈ (¬E ⊔ F )I follows. It follows that

o ∈ (C ⊓
l

E ❁
∼ F∈D

(¬E ⊔ F ))I , (16)

which is absurd as (15) holds by assumption
Conversely, assume that (14) holds and assume to the contrary that (15) does not hold. There-

fore, there is an interpretation I such that I |= T and (16) holds for some o ∈ ∆I . Now, extend I
to δD by setting

δID = (
l

E ❁
∼ F∈D

(¬E ⊔ F ))I .

Note that o ∈ δID. Then, by construction I |= E⊓δD ⊑ F , for all E ❁
∼ F ∈ D holds. Therefore, I is a

model of the antecedent in (14) with o ∈ (C⊓δD)I , which is absurd as (14) holds by assumption.

Proposition 9 For every concept C and every ontology K = 〈T ,D〉, if

TδD |= C ⊓ δD ⊑ ⊥ , (17)

where δD is a new atomic concept, then C is exceptional w.r.t. K.

46



Proof. It is an immediate consequence of Lemma 33 and Proposition 3.

Proposition 10 Consider an ontology K = 〈T ,D〉. Then ComputeRanking(K) returns the ontology
〈T ∗,D∗〉, where D∗ is partitioned into a sequence D0, . . . ,Dn, where T ∗, D∗ and all Di are equal
to the sets T •, D• and D•

0 , . . . ,D
•
n obtained via RC.Step 1.

Proof. By Lemma 33, e(T ′, E ′) is the same set retuned by Exceptional(T ′, E ′), for any T ′ and E ′.
Now, the only difference between RC.Step 1 and ComputeRanking procedures is in the way to
compute the exceptional concepts. But, since these are the same, ComputeRanking(K) returns the
ontology 〈T ∗,D∗〉, where D∗ is partitioned into a sequence D0, . . . ,Dn, where T ∗, D∗ and all Di

are equal to the sets T •, D• and D•
0 , . . . ,D

•
n obtained via RC.Step 1.

Proposition 11 Given an ontology K∗ = 〈T ∗,D∗〉, obtained from the application of the procedure
ComputeRanking to an ontology K = 〈T ,D〉, for every concept C,

T ∗
δD∗ |= C ⊓ δD∗ ⊑ ⊥ ,

if and only if C is exceptional w.r.t. K∗.

Proof. It is an immediate consequence of Lemma 33, Proposition 4 and Proposition 10.

Proposition 12 By referring to Remark 7, the subsumption test (6) (resp. 7) is equivalent to the
subsumption test (8) (resp. 9).

Proof. As in Sections 2.2 and 3, Ei = Di ∪ . . . ∪ Dn and Hi =
d
{¬E ⊔ F | E ❁

∼ F ∈ Ei}. We have
to show that both the two subsumption tests

T ∗ 6|= Hi ⊑ ¬C (18)

T ∗ ∪ {E ⊓ δi ⊑ F | E ❁
∼ F ∈ Ei} 6|= C ⊓ δi ⊑ ⊥ (19)

are equivalent, and that

T ∗ |= C ⊓Hi ⊑ D (20)

T ∗ ∪ {E ⊓ δi ⊑ F | E ❁
∼ F ∈ Ei} |= C ⊓ δi ⊑ D (21)

are equivalent. The proof is essentially the same as for Lemma 33. For illustrative purpose, we
show that (18) and (19) are equivalent. The other case can be shown in a similar way.

Assume (18) holds. Let us show that (19) holds as well. By (18), there is a model I of T ∗ with

o ∈ (C ⊓
l

E ❁
∼ F∈Ei

(¬E ⊔ F ))I , (22)

for some o ∈ ∆I . Now, let us extend I to δi by defining

δIi = (
l

E ❁
∼ F∈Ei

(¬E ⊔ F ))I .

Note that by definition o ∈ CI and o ∈ δIi . By construction, I |= E ⊓ δi ⊑ F , for all E ❁
∼ F ∈ Ei.

Therefore, I is a model of the antecedent in (19) with o ∈ (C ⊓ δi)
I and, thus, (19) holds.

Vice-versa, assume (19) holds. Let us show that (18) holds as well. By (19), there is a model I
of T ∗ such that I |= E ⊓ δi ⊑ F , for all E ❁

∼ F ∈ Ei and o ∈ (C ⊓ δi)
I for some o ∈ ∆I , i.e., o ∈ CI

47



and o ∈ δIi . But, I |= E ⊓ δi ⊑ F means that ∆I = (¬E ⊔ ¬δi ⊔ F )I . As o ∈ δIi , o ∈ (¬E ⊔ F )I

follows. Therefore,

o ∈ (
l

E ❁
∼ F∈Ei

(¬E ⊔ F ))I (23)

with o ∈ CI and, thus, (18) holds.

Proposition 16 Given an ontology K = 〈T ,D〉, C ❁
∼ D ∈ D and the corresponding ontology in

normal form K′ = 〈T ′,D′〉, then C is exceptional w.r.t. K iff AC is exceptional w.r.t. K′, where
AC is the new atomic concept introduced by the normalisation procedure to replace C ❁

∼ D with
AC

❁
∼ AD.

Proof. By Proposition 9 we have that C is exceptional w.r.t. K iff TδD |= C ⊓ δD ⊑ ⊥, where δD is
a new atomic concept. From this it suffices to show that TδD |= C ⊓ δD ⊑ ⊥ iff T ′

δD
|= AC ⊓ δD ⊑ ⊥.

So, let 〈T +,D+〉 the KB obtained adding to T the axioms AE = E and AF = F for every axiom
E ❁

∼ F ∈ D (AE , AF being new atomic concepts), while D+ is obtained by replacing in D every
axiom E ❁

∼ F with AE
❁
∼ AF . Now, let us prove that TδD |= C ⊓ δD ⊑ ⊥ iff T +

δD
|= AC ⊓ δD ⊑ ⊥.

The proof from left to right is immediate: assume I |= T +
δD

. Then I |= AC = C, I |= TδD and,
thus, I |= C ⊓ δD ⊑ ⊥ and I |= AC ⊓ δD ⊑ ⊥.

From right to left, if TδD 6|= C ⊓ δD ⊑ ⊥ then there is a model I of TδD (that interprets only
the concepts appearing in TδD ) s.t. (C ⊓ δ0)I 6= ∅. Now, extend the interpretation function ·I of I
in such a way that AI

E = EI for all E ❁
∼ F ∈ D; Then I |= T +

δD
with (AC ⊓ δD)I 6= ∅ and, thus,

T +
δD

6|= AC ⊓ δD ⊑ ⊥.

Since T ′
δD

is the normal form of T +
δD

, that preserves satisfaction, it follows that for every C ❁
∼ D ∈

D, TδD |= C ⊓ δ0 ⊑ ⊥ iff T ′
δD

|= AC ⊓ δ0 ⊑ ⊥, which concludes the proof.

Proposition 18 Let K = 〈T ,D〉 and K′ = 〈T ′,D′〉 be rank equivalent. for every EL⊥ defeasible
GCI C ❁

∼ D, C ❁
∼ D is in the RC of K iff C ❁

∼ D is in the RC of K′.

Proof. In the following, we refer to the semantic construction in A. Now, K = 〈T ,D〉 and K′ =
〈T ′,D′〉 being rank equivalent means that, for every ranked interpretation R, R is a model of K
iff it is a model of K′ (see Section 2). In turn, this implies that, given a countably infinite domain
∆, the set of models of K having ∆ as domain corresponds to the set of models of K′ having ∆ as
domain (RK

∆ = R
K′

∆ ). The latter implies that the characteristic model of the RC of K, R∪
K, is also

a characteristic model of the RC of K′, which suffices to conclude.

In order to prove Proposition 20, we need the following lemma.

Lemma 34. An n-safe ELO⊥ concept C is exceptional w.r.t. a safe ELO⊥ ontology K = 〈T ,D〉 iff
the n-safe concept C〈〉 is exceptional w.r.t. the nominal safe EL〈O〉⊥ ontology K〈〉 = 〈T〈〉,D〈〉〉.

Proof. Assume C is not exceptional w.r.t. K. So, there is a ranked model R of K s.t. CR ∩
min≺R(∆R) 6= ∅. Now, extend the interpretation function ·R of R imposing that for every a ∈ NO ,

〈a〉R = {a}R; then R is model of K〈〉 and C〈〉 is not exceptional, i.e. CR
〈〉
∩ min≺R(∆R) 6= ∅.

For the other direction, assume C〈〉 is not exceptional w.r.t. K〈〉. So, there is a model R of

K〈〉 s.t. CR
〈〉
∩ min≺R(∆R) 6= ∅. Now, we build a ranked interpretation R′ = 〈∆R′

, ·R
′

,≺R′

〉 in the
following way:

48



• ∆R′

= {x•D, xD | R 6|= D ⊑ ⊥, where D is a safe EL〈O〉⊥ concept} ∪ {x〈a〉 | a ∈ NO};

• 〈a〉R
′

= {x〈a〉 ∈ ∆R′

}, for every defeasible nominal 〈a〉;

• AR′

= {xD ∈ ∆R′

| R |= D ⊑ A} ∪ {x•D ∈ ∆R′

| R |= D ❁
∼ A} ∪ {x〈a〉 ∈ ∆R′

| R |= 〈a〉 ❁
∼ A},

for every safe EL〈O〉⊥ concept D, every defeasible nominal 〈a〉, and every atomic EL⊥ concept
A;

• rR
′

= {〈xD, xE〉 ∈ ∆R′

×∆R′

| R |= D ⊑ ∃r.E}∪{〈x•D , xE〉 ∈ ∆R′

×∆R′

| R |= D ❁
∼ ∃r.E}∪

{〈x〈a〉, xE〉 ∈ ∆R′

× ∆R′

| R |= 〈a〉 ❁
∼ ∃r.E}, for every safe EL〈O〉⊥ concepts D and E, and

every defeasible nominal 〈a〉;

• hR′(x•D) = hR(D), for every x•D ∈ ∆R′

;

• hR′(x〈a〉) = hR(〈a〉), for every defeasible nominal 〈a〉;

• x•D ≺R′

xE for every x•D, xE ∈ ∆R′

.

Note: using x•D we want to introduce an object that represents a typical instance of a concept D,
while with xD we want to represent an atypical instance of a concept D. Only for defeasible nominals
we introduce a single object representing them. What we need to impose in the interpretation R′

is that every object x•D is more typical (is positioned in a lower layer) than any atypical objects
xE satisfying the concept D; such a condition is easily satisfied if we impose the last constraint in
the above definition of R′: for every pair of concepts D and E, x•D ≺R′

xE ; that is, we move all
the objects xE , representing an atypical occurrence of some concept E, to the upper layer.

As next, we prove that R′ is still a model of K〈〉. The first step is to prove that for every pair
of concepts D,E where D and E are safe, we have,

1. R |= D ⊑ E and R 6|= D ⊑ ⊥ iff xD ∈ ER′

;

2. R |= D ❁
∼ E and R 6|= D ⊑ ⊥ iff x•D ∈ ER′

.

And, for every pair 〈a〉, E where a ∈ NO and E is safe, we have,

3. R |= 〈a〉 ❁
∼ E iff x〈a〉 ∈ ER′

.

The proofs are by induction on the construction of E. The only relevant steps are E = ∃r.F (case
a) and E = ∃r.〈b〉 (case b).

1. a. If R |= D ⊑ ∃r.F and R 6|= D ⊑ ⊥ then 〈xD, xF 〉 ∈ rR
′

. By induction hypothesis,
xF ∈ FR′

, hence xD ∈ (∃r.F )R
′

. Vice-versa, if xD ∈ (∃r.F )R
′

, then 〈xD, xG〉 ∈ rR
′

for some xG ∈ FR′

. By construction, R 6|= D ⊑ ⊥, R |= D ⊑ ∃r.G, and by induction
hypothesis, R |= G ⊑ F , hence R |= D ⊑ ∃r.F .

b. If R |= D ⊑ ∃r.〈b〉 and R 6|= D ⊑ ⊥ then 〈xD, x〈b〉〉 ∈ rR
′

. Clearly x〈b〉 ∈ (〈b〉)R
′

,

and xD ∈ (∃r.〈b〉)R
′

. Vice-versa, if xD ∈ (∃r.〈b〉)R
′

, then 〈xD, x〈b〉〉 ∈ rR
′

and, by

construction, R |= D ⊑ ∃r.〈b〉 and R 6|= D ⊑ ⊥.

49



2. a. If R |= D ❁
∼ ∃r.F and R 6|= D ⊑ ⊥ then 〈x•D, xF 〉 ∈ rR

′

. By induction point 1, xF ∈ FR′

,
and consequently xD ∈ (∃r.F )R

′

. Vice-versa, if x•D ∈ (∃r.F )R
′

, then 〈x•D, xG〉 ∈ rR
′

for some xG ∈ FR′

. By construction, R 6|= D ⊑ ⊥, R |= D ❁
∼ ∃r.G, and by point 1,

R |= G ⊑ F , hence R |= D ❁
∼ ∃r.F .

b. If R |= C ❁
∼ ∃r.〈b〉 and R 6|= D ⊑ ⊥ then 〈x•D, x〈b〉〉 ∈ rR

′

. By construction, x〈b〉 ∈

(〈b〉)R
′

, hence xD ∈ (∃r.〈b〉)R
′

. Vice-versa, if x•D ∈ (∃r.〈b〉)R
′

, then 〈x•D, x〈b〉〉 ∈ rR
′

,

and, by construction, R |= D ❁
∼ ∃r.〈b〉 and R 6|= D ⊑ ⊥.

3. Analogously to point 2.

Now we prove that R′ satisfies the safe EL〈O〉⊥ ontology 〈T〈〉,D〈〉〉:

• Case D ⊑ E ∈ T〈〉. If xF ∈ DR′

, with F a safe concept, by point 1, R |= F ⊑ D, that,

combined with R |= D ⊑ E, implies R |= F ⊑ E, and, again by point 1, xF ∈ ER′

. If
x•F ∈ DR′

, with F a safe concept, by point 2, R |= F ❁
∼ D, that, combined with R |= D ⊑ E,

implies R |= F ❁
∼ E, and, again by point 2, xF ∈ ER′

. Eventually, if x〈a〉 ∈ DR′

, by point 3,

R |= 〈a〉 ❁
∼ D, that, combined with R |= D ⊑ E, implies R |= 〈a〉 ❁

∼ E, and, again by point 3,
x〈a〉 ∈ ER′

.

• Case D ❁
∼ E ∈ D〈〉. By construction of R′, for any F , it cannot be xF ∈ min≺R′ (DR′

):

only an object of kind x•F or x〈a〉 can be in min≺R′ (DR′

). If x•F ∈ min≺R′ (DR′

) then

hR′(x•F ) = hR′(x•D), and by construction hR(F ) = hR(D). Also, by point 2 R |= F ❁
∼ D. It

can then be verified that hR(F ) = hR(D), R |= F ❁
∼ D and R |= D ❁

∼ E together imply that
R |= F ❁

∼ E, that by point 2 implies x•F ∈ ER′

. Analogously, if x〈a〉 ∈ min≺R′ (DR′

) then

hR′(x〈a〉) = hR′(x•D), and by construction hR(〈a〉) = hR(D). Also, by point 3 R |= 〈a〉 ❁
∼ D.

Then it can be verified that hR(〈a〉) = hR(D), R |= 〈a〉 ❁
∼ D and R |= D ❁

∼ E together imply
that R |= 〈a〉 ❁

∼ E, that by point 3 implies x〈a〉 ∈ ER′

.

Therefore, the ranked interpretation R′ is a model of 〈T〈〉,D〈〉〉. Note that since we imposed that

C〈〉 is not exceptional in R, in R′ we have the object xC〈〉
in layer 0, with xC〈〉

∈ (C〈〉)
R′

; hence C〈〉

is not exceptional also in R′.
Now we can trivially extend the interpretation R′ to classical nominals:

• {a}R
′

= 〈a〉R
′

= {x〈a〉} for every a ∈ NO .

It can easily be proved now that R′ is also a model of K = 〈T ,D〉. To prove it, it is sufficient to
check that for every n-safe concept D and every object x, x ∈ DR′

iff x ∈ (D{})R
′

. This can be
proved by induction on the construction of the concept D; the only relevant steps are

• D = 〈a〉. By construction, x ∈ 〈a〉R
′

iff x ∈ {a}R
′

.

• D = ∃r.〈a〉. x ∈ (∃r.〈a〉)R
′

iff 〈x, x〈a〉〉 ∈ rR
′

iff x ∈ (∃r.{a})R
′

.

Hence R′ is a model of K. Since in Layer 0 we have xC〈〉
, and xC〈〉

∈ (C〈〉)
R′

, we also have

xC〈〉
∈ (C)R

′

. That is, CR′

∩ min≺R′ (∆R′

) 6= ∅, i.e. C is not exceptional in w.r.t. K.

50



Now we can easily prove Proposition 20.

Proposition 20. For every n-safe ELO⊥ concept C and every nominal safe ELO⊥ ontology
K = 〈T ,D〉, rK(C) = i iff rK〈〉

(C〈〉) = i.

Proof. Consider a nominal safe ELO⊥ ontology K = 〈T ,D〉 and the nominal safe EL〈O〉⊥ ontology
K〈〉. Lemma 34 tells us that for every safe ELO⊥ GCI C ❁

∼ D, C ❁
∼ D is exceptional w.r.t. K iff

C〈〉
❁
∼ D〈〉 is exceptional w.r.t. K〈〉. Then we can easily prove the proposition by induction on the

construction of the ranking.

Next, we address Proposition 21.

Proposition 21. For every n-safe EL〈O〉⊥ concept C and every nominal safe EL〈O〉⊥ ontology
K = 〈T ,D〉 the following holds: rK(C) = i iff rN(K{})(N(C{})) = i.

Proof. The proof of this proposition is quite immediate. Assume that there is a ranked interpreta-
tion R that is a model of K and such that there is an object in layer 0 satisfying C. Now define
an EL⊥ ranked interpretation R′ that is identical to R, by imposing that for every atomic concept

Na, Na
R′

= 〈a〉R. It is easy to check by induction on the construction of a concept D that, for
every object o ∈ ∆R, o ∈ DR iff o ∈ (N(D{}))R

′

. Hence R′ is a model of N(K{}) and N(C{})
is not exceptional in R′. Repeating exactly the same transformation and reasoning in the other
direction, we can conclude that C is exceptional in K iff N(C{}) is exceptional in N(K{}). This
property can be immediately extended to the definition of the rankings (Section 2.2), proving the
proposition.

Corollary 23. Let K = 〈T ,D〉 be a nominal safe EL〈O〉⊥ ontology, with C ❁
∼ D ∈ D. Let T • be

the TBox obtained from K after applying RC.Step 1, while let (N(T{}))∗ be the TBox obtained
from N(K{}) using the ComputeRanking procedure. Then, the following are equivalent:

1. C ❁
∼ ⊥ ∈ T •;

2. N(C{}
❁
∼ ⊥) ∈ (N(T{}))∗;

3. rK{}
(C{}

❁
∼ D{}) = ∞.

Proof. The extension of Proposition 10 from EL⊥ ontologies to EL〈O〉⊥ ontologies is immediate:
since defeasible nominals behave exactly like atomic concepts, it is sufficient to go through the
proof of Proposition 10 by taking into account also defeasible nominals. This, combined with
Proposition 21, guarantees that the application of the above-mentioned procedures gives back the
same results for an EL〈O〉⊥ ontology K and the correspondent ELO⊥ ontology N(K{}).

The following Lemma is needed to prove Proposition 24.

Lemma 35. Let K = 〈T ,D〉 be a nominal safe EL〈O〉⊥ ontology. Then N(T{}∪D⊑
{},∞) is logically

equivalent to (N(T{}))∗ (where (N(T{}))∗ is defined as in Corollary 23).

Proof. From Proposition 21 we know that C ❁
∼ D ∈ D{},∞ iff N(C ❁

∼ D) ∈ (N(D{}))∞ (that is, the
axioms in D{} that have infinite rank w.r.t. K{} correspond to the axioms in N(D{}) that have

infinite rank w.r.t. N(K{})), hence N(T{} ∪ D⊑
{},∞) is the same as to N(T{}) ∪ (N(D{}))⊑∞.

51



Now, we have to prove that N(T{}) ∪ (N(D{}))⊑∞ is logically equivalent to (N(T{}))∗. To this
purpose, it is sufficient to prove that every axiom in (N(D{}))⊑∞ is derivable from (N(T{}))∗ and
every axiom in (N(T{}))∗ \N(T{}) is derivable from N(T{}) ∪ (N(D{}))⊑∞.

So, assume C ⊑ D ∈ (N(D{}))⊑∞. Then C ❁
∼ D ∈ (N(D{}))∞. By procedure ComputeRanking,

an axiom C ⊑ ⊥ has been added to (N(T{}))∗ \ N(T{}) (line 13 of the procedure). If C ⊑ ⊥ ∈
(N(T{}))∗, then (N(T{}))∗ |= C ⊑ D.

Vice-versa, assume C ⊑ ⊥ ∈ (N(T{}))∗ \N(T{}) (due to line 13 of procedure ComputeRanking,
only axioms with the form C ⊑ ⊥ can be in (N(T{}))∗ \N(T{})). This implies that an axiom C ❁

∼ D
is in (N(D{}))∞ (due to the construction of N(T{}))∗ in the line 13 of procedure ComputeRanking),
and so C ⊑ D ∈ (N(D{}))⊑∞. By Proposition 10, we know that C ❁

∼ D ∈ (N(D{}))∞ iff it is in the
fixed point of the exceptionality procedure: that is, C ❁

∼ D ∈ (N(D{})) and

(N(T{})) |=
l

{¬E ⊔ F | E ❁
∼ F ∈ (N(D{}))∞} ⊑ ¬C

Since

N(T{}) ∪ (N(D{}))⊑∞ |= ⊤ ⊑
l

{¬E ⊔ F | E ❁
∼ F ∈ (N(D{}))∞}

we end up with N(T{}) ∪ (N(D{}))⊑∞ |= ⊤ ⊑ ¬C, that is,

N(T{}) ∪ (N(D{}))⊑∞ |= C ⊑ ⊥

for every C ⊑ ⊥ ∈ (N(T{}))∗ \N(T{}), which concludes.

Proposition 24. Let K = 〈T ,D〉 be a nominal safe EL〈O〉⊥ ontology. For every safe GCI C ⊑ D,
we have that the following are equivalent:

1. C ⊑ D is in the RC of K;

2. N(C{} ⊑ D{}) is in the RC of N(K{});

3. T{} ∪ D⊑
{},∞ |= C{} ⊑ D{}.

Proof. That C ⊑ D is in the RC of K iff N(C{} ⊑ D{}) is in the RC of N(K{}) follows easily
from Proposition 21 and from the fact that RationalClosure is invariant to the substitution
of every 〈a〉 with an atomic concept Na (it can be proven semantically in a similar way as in
the proof of Proposition 21). From Proposition 7 we know that N(C{} ⊑ D{}) is in the RC of
N(K{}) iff (N(T{}))∗ |= N(C{} ⊑ D{}), that, by Propositions 1 and 2 and Lemma 35 holds iff

T{} ∪ D⊑
{},∞ |= C{} ⊑ D{}.

52


	1 Introduction
	2 Preliminaries
	2.1 The DLs EL, ELO, and nominal safe ELO
	2.2 Rational Closure in ALC

	3 Rational Closure in EL
	3.1 A Subsumption Decision Procedure for EL under RC
	3.2 Computational Complexity
	3.3 Normal Form

	4 Defeasible Inheritance-based Description Logics
	5 Rational Closure for Nominal Safe ELO
	6 Related Work
	7 Conclusions
	A Characteristic DL model for Rational Closure
	B Prototypical Reasoning over the individuals
	C Various Proofs

