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Abstract—Smart contracts have recently attracted interest
from diverse fields including law and finance. Ethereum in par-
ticular has grown rapidly to accommodate an entire ecosystem
of contracts which run using its own crypto-currency.

Smart contract developers can opt to verify their contracts
so that any user can inspect and audit the code before executing
the contract. However, the huge numbers of deployed smart
contracts and the lack of supporting tools for the analysis
of smart contracts makes it very challenging to get insights
into this eco-environment, where code gets executed through
transactions performing value transfer of a crypto-currency.
We address this problem and report on the use of unsupervised
clustering techniques and a seed set of verified contracts, in
this work we propose a framework to group together similar
contracts within the Ethereum network using only the con-
tracts publicly available compiled code. We report qualitative
and quantitative results on a dataset and provide the dataset
and project code to the research community.

1. Introduction

Ethereum [1] is a blockchain based cryptocurrency sys-
tem that aims to provide a decentralized general purpose
computer. The programs that run on this decentralized com-
puter are referred to as smart contracts and are automatically
enforced through the blockchain validation process that is
carried out independently by all full nodes. Full nodes are
those that download and validate the whole blockchain.
These nodes do not need to trust any other node since they
can validate the whole transaction history.

The underlying currency of Ethereum is called ether, and
each contract that resides in the blockchain can store ether
and bytecode that represents the application. Contracts in
Ethereum have a single block of bytecode that is executed
by calls, but high level languages like Solidity automatically
define a function selector at the beginning of the block
that redirects calls to the appropriate part of the bytecode.

Users use accounts to execute code in a smart contract
by sending messages (i.e. transactions), which include their
account address and, as the destination address, the smart
contract identifier. If the destination address is not specified,
the transaction will result in a new contract being created
instead. Unlike accounts, which are managed by users, con-
tracts cannot initiate transactions themselves unless executed
by a respective command in the code. In this way, contracts
are reactive to transactions sent by the users (i.e. accounts).

The Ethereum blockchain stores the current state of the
Ethereum state machine, and the transactions accepted in a
block are what moves the state machine to the next state.
An example of this state transition can be seen in Figure 1.

Figure 1: Transitions in Ethereum State machine

In order to execute code in the contract, each execution
requires a certain amount of ”gas” which is specified in each
transaction together with the rate that defines the price in
ether for each unit of gas. The rationale for the usage of
gas is to avoid contracts executing code without any special
purpose or costs, which avoids a waste of resources and
limits the incentives for denial of service attacks. To save
storage space Ethereum allows contracts to delete them-
selves when they are no longer necessary. The community
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is incentivized to do so by refunding the costs required for
creating contracts in the beginning.

While the application scenarios of smart contracts are
manifold and are still evolving, many legal aspects are
still under investigation. Especially for financial institutions
which have a regulatory requirement to monitor account
activities for anti-money laundering (AML) purposes. One
challenge with AML is that it rarely manifests as the activity
of a ”single” person, business, account, or transaction. The
detection therefore requires behavioral pattern analysis of
transactions occurring over time and involves a set of related
real-world entities. Given the anonymity of most accounts
within the Ethereum network, the task of AML has become
particularly difficult.

Given that only the compiled code is publicly available,
it is up to the contract’s creator to publicly share their
contract so that users can use it. Some contract developers
share the source code along with a description of their
contract’s purpose so that other users can audit the contract,
and once they are satisfied with the validity of the code,
start using it. This process of verification is optional.

One of the main problems in Ethereum is the discovery
of contracts. Unless its creator invests in promoting the
contract through specialized forums or dedicated websites,
most remain anonymous and without description.

The main motivation behind this work is firstly to see if
by using only the compiled code we can discover a set of
clusters or communities within the Ethereum smart contract
ecosystem, and through automated or manual inspection
provide a label to these clusters.

One of the contributions of our work is the compilation
of a dataset using publicly available sources of verified
Ethereum contracts; this includes the contracts compiled
code, source code, and other meta data shared such as
contract name and user comments.

In addition we provide a method for automatic label-
ing of unknown contracts using only the compiled code.
This tool could be used by contract creators to monitor
similar smart contracts being deployed in the Ethereum
marketplace, and by security experts to detect potentially
malicious contracts. Automatic labeling of contracts is also
useful for building a search engine on the Ethereum market-
place. Smart contracts could be discovered automatically if a
given functionality is provided by another smart contract the
labeling could be used as a guidance for contract purpose.

The paper is structured as follows: In Section 2 we
provide an overview of publications related to our work.
A brief summary of the main clustering techniques used in
our work is given in Section 3. The methodology used in
our work, including how the dataset was built, is explained
in Section 4 and a detailed report of our experimental results
is provided in Section 5 followed by our conclusions and
future work in Section 6.

2. Related Work

In the past few years cryptocurrencies such as Bitcoin,
Peercoin, Litecoin and many others have started to be

accepted as payment methods in more and more online
services [2]. As an evolution of these cryptocurrencies, other
blockchain based currencies started to emerge allowing the
creation and deployment of smart contracts, like Ethereum
[1] and Hawk [3].

Most of the research into cryptocurrencies such as Bit-
coin and Ethereum has focused on either protocol improve-
ments or security. In [4] the authors propose an upgrade
to the Bitcoin blockchain to improve security and allow
a larger transaction throughput. This improvement called
GHOST for ”Greedy Heaviest-Observed Sub-Tree” was, in
fact, implemented in multiple cryptocurrencies developed
after Bitcoin including Ethereum [1].

The problem of malware detection is similar in some
aspects to the problem of labeling contracts. In both cases
one often has only compiled bytecode to work with. As
such methods for malware detection can be utilized for
smart contract identification. The work carried out in [5]
and [6] make use of measuring the similarity through use
of combinations of different distance measures/hashes to
accurately label files as either malware or not. Both papers
make use of the compiled files, or bytecode.

No prior work has addressed the large scale data analysis
of smart contracts. The major source of information is
currently etherscan.io , where all contracts can be
explored and simple bytecode level metrics can identify
similarities between compiled pieces of code. However, even
if largely used to get some insights into smart contracts,
the usage remains mostly driven by analyzing an individual
contract and not a large scale global analytics in the overall
contract space, which is the objective of our paper.

3. Background

In this section we provide a quick overview of the
different clustering techniques used in our work and why
they were selected. We had to leverage existing techniques,
which do not assume prior knowledge of the number of
clusters, or techniques which can efficiently deal with large
number of data items in the presence of noise. This is due
to the lack of any ground truth, as our work is exploratory
and there are no current methods for automated analysis of
contract purpose.

3.1. Clustering: Affinity Propagation

Affinity Propagation [7] is a clustering algorithm that
identifies the most representative items within the data
known as the exemplars by using a message passing al-
gorithm to identify the fitness of a data point to represent
its neighbors.

This method was selected because, unlike most cluster-
ing methods, it selects the number of clusters itself based
on the data provided. A useful feature when dealing with
a situation in which no ground truth is available. As with
K-medoids, affinity propagation takes the most central data
point in the cluster as the exemplar of that cluster.



3.2. Clustering: K-medoids

The second approach used was K-medoids. It is a par-
titioning based clustering algorithm which behaves in a
similar manner to K-means clustering algorithm [8], with
the difference that it takes most central data point as a
medoid/exemplar rather than the mean of distances in the
cluster. Using this point, the partitioning operates by min-
imizing the sum of differences between each of the data
points and the reference point.

While affinity propagation does not require the number
of clusters to be picked, K-medoids does. Cluster diameter
was used to pick the appropriate value of k as discussed in
section 4.1, as a result seven clusters were used.

4. Methodology

In this section we provide a summary of the method-
ology used in our work, starting with how our dataset
was built, followed by the labeling of our contracts, then
the hashing and distance measurements used. Lastly, some
observations about the frequency distribution of name words
in the dataset.

4.1. Dataset

The dataset used was created by taking all verified
Ethereum contracts at the time of experimentation from
etherscan.io. These contracts were selected because of
the guaranteed availability of source code to aid in manual
analysis, and the assumption that creators who have taken
the time to upload the source code and verify their contracts
online have a high likelihood of naming their contracts
properly. That is to say, with a name which correspond to
their function. This is important for this work as contract
names form a part of our attempt to label clusters.

The dataset’s size is slightly smaller than the origi-
nal list of verified contracts. This is due to the use of
etherchain.org’s API to acquire the bytecode for each
contract. 62 out of 998 contracts had no bytecode returned
by the API and were removed from the dataset as a result.
At the time of writing the API is still in beta, we presume
some flaw in it is responsible for lack of bytecode for certain
contracts.

Our first step was creating clusters using the mean of
three distance measurements to ascertain the similarity of
ssdeep hashes of each contract’s bytecode. The same mea-
surements were used for both clustering method. K-medoids
required the additional step of measuring the maximum
diameter of all clusters for each value of k. From doing
so we ascertained through inspection that k = 7 provided
a good balance between number of clusters and a lowered
maximum diameter.

Secondly, a group of name words was generated for each
cluster, this process is explained in more detail below. The
name words were then used to help identify the purpose of
the contracts in a cluster.

4.2. Labeling

The labeling words were acquired by an automated
process of taking contract names from the source code
section of the page (it was discovered the ’Contract Name’
tag above is sometimes left blank) for each contract on
etherscan.io.

The names were then tokenized, which included ac-
counting for various naming conventions such as Camel-
Case and snake case. The resulting name words for each
cluster were recorded. The four most frequent words for
each cluster were used as label words to describe it. Four
words were chosen in order to provide a good description
of a cluster’s purpose whilst reducing undesirable naming
overlap between clusters.

A frequency distribution score was given to each cluster.
The score was calculated as:

f(α, β) = 1− α

β

Where α is the total number of unique name words and β
is total number of name words. This gives a score between 0
and 1 where closer to 1 is indicative of a more homogeneous
cluster.

4.3. Hashing Step & Distance Measurement

Contracts were represented by taking a hash of their
bytecode using the non-cryptographic ssdeep hash, also
known as context triggered piecewise hash (CTPH) [9].
This hashing function produces hashes that are uniform but,
unlike cryptographic hashes, not random. This enables us
to compare the similarity of the hashes to ascertain the
similarity of the bytecode for contracts.

Similarity has been measured using the mean of three
well known distance measures, levenshtein, jaccard and
sorenson. The mean was taken in order to mitigate a po-
tential inaccuracy in a measure by it being balanced out by
the others, a method used effectively in [5] and [6].

4.4. Dataset Frequency Distribution

The frequency distribution of name words for the whole
dataset shows some interesting trends in terms of contract
purpose overall. Our methods produced a total of 1803 name
words after formatting and tokenization was completed. The
10 most frequently used words are shown in the table 1.

TABLE 1: Frequency Distribution of the 10 most common
Name Words

Word Freq
token 102
dao 69
withdraw 56
dice 46
presale 34
factory 31
ether 25
ponzi 23
eth 21
asset 17



The words ’dao’ and ’withdraw’ pertain to DAO or
the breach thereof, showing that a large proportion of
etherscan.io verified contracts are still dominated by
DAO related contracts. For the unaware reader, The Dao [10]
was a decentralized organization and an implementation
of an investor-directed venture capital fund. Because of a
vulnerability exploited in 2016, attackers were able to steal
one third of its funds which lead to a hard fork in the
Ethereum blockchain. Even though the fork allowed for the
recovery of funds, it is questionable to what extent this is
not undermining the original purpose of having a blockchain
for managing the trust.

The present of ’dice’ and ’ponzi’ suggests that there are a
lot of verified gambling contracts active on the blockchain.
The ’presale’ word is fairly self-explanatory and shows a
lot of the verified contracts have been or are being used for
presales, what these contracts are presales for is beyond the
scope of this paper to identify. Finally, the most used word,
’token’, is ambiguous to some extent. Currency in Ethereum
is often referred to as tokens, however because Ethereum
allows for, and encourages, the use of custom tokens [11]
it is not clear what the word token pertains to.

The high frequency of an amibguous word such as ’to-
ken’ highlights that it may not always be possible to extract a
semantic from name words and, therefore, contract purpose.
This problem is compounded by the lack of ground truth
from which to attribute purpose to clusters and contracts.
Some potential improvements are discussed in section 6.

Figure 2: Frequency of 50 most common words

Fig 2 shows that distribution frequency is dominated by
the first four words, with ’token’ having a frequency double
that of some of the closest words to it. It may be the case
that the high presence of ’token’ is obscuring the purpose
of contracts as it shines no light on what a contract might
be used for. Conversely, the words following ’token’: ’dao’
and ’withdraw’ are also very common and are useful for
identifying a contract’s purpose.

It is interesting to note that the graph shows how the
identification of gambling contracts is spread across a num-
ber of words, most prominently ’dice’, ’ponzi’ and ’lottery’
with more words that can be associated with gambling
appearing further down in the top 50.

Figure 3: Word Cloud for all name words in dataset

5. Experimental Results

The analysis of results below involves identifying the
purpose of a cluster through the use of its associated name
words and the presence of a high transaction (TX) volume
contract where transaction volume is taken to be internal
transactions + external transactions. We take from the
dataset the five contracts with the highest TX volume for
the analysis. If a high TX volume contract is present in a
cluster we look to see if the cluster labels can account for
it. All of the top five high TX volume contracts are related
to the DAO attack, summer 2016 [11].

For K-medoids the medoids (also called exemplars or
centoids) for each cluster are looked at in terms of their
function and discussed in comparison to the name words
for the cluster and any high TX contracts that are present.

5.1. Affinity Propogation

The highest TX volume contract is found in a cluster
with the name words ’split’, ’safe’, ’replay’ and ’username’.
With the exception of ’username’, which only appears once
in all 16 name words, it is apparent that this cluster contains
’ReplaySafeSplit’ contracts, giving it a clear purpose. The
’ReplaySafeSplit’ contracts exist to attempt to mitigate a
type of replay attack.

The second ’ReplaySafeSplit’ contract appears in a clus-
ter whose three most frequent name words, in order of
frequency, are: ’safe’, ’replay’ and ’split’. Given the presence
of the high TX contract and the name words being almost
exclusively the name words for the high TX contract this
seemingly gives this cluster a clear purpose. Curiously,
however, the third highest TX contract ’TheDAO’ is also
found here. It was not expected that these contracts would
be found in the same cluster. The fourth highest TX contract
is also found in this cluster which is in line with the second
highest TX contract and the name words as it is also a
’ReplaySafeSplit’ contract.

The fifth and final highest TX contract ’ManagedAc-
count’ is found in a cluster with the labels ’dice’, ’refund’,
’ethereumlottery’ and ’account’. The frequency distribution
score for this cluster is 0.13 meaning there are almost no



repeated words, the presence of the words ’lottery’ and
’dice’ suggest that it contains gambling contracts. This goes
some way towards explaining the low score as there are
a number of disparate words that can pertain to gambling
contracts. These words are currently identified manually.
However the present of the high TX contract indicates that
the cluster also contains contracts with a separate DAO
related purpose.

While affinity propagation has too many clusters to
manual inspect them all, it is worth noting that in Fig. 4 that
the two clusters with the greatest number of contracts also
have the highest frequency distribution score. Both of these
clusters’ name words consist almost exclusively of ’dao’
and ’withdraw’. This suggests that affinity propagation is
able to identify DAO withdrawal contracts with a high level
of accuracy. It also adds weight to the theory that affinity
propagation has a number of separate clusters with the same
purpose.

Figure 4: Cluster size x Freq. Dist. score

5.2. K-medoids

Out of the seven clusters four had an overall word
frequency distribution score of >0.4 as can be seen in Fig. 5.
We carried out manual verification on these clusters by
taking the five contracts with the highest transaction (TX)
volume and attempting to ascertain whether the clustering
method was able to label them correctly.

Figure 5: Cluster size x Freq. Dist. score

The first two highest TX contracts, both named ’Re-
playSafeSplit’, were placed in the cluster which has the

labels ’presale’, ’token’, ’dice’ and ’factory’. As such it
is not immediately obvious that the labels apply to the
’ReplaySafeSplit’ contract. We conjecture that the size of
this cluster indicates it is grouping together different kinds
of contracts.

The third contract is called TheDAO, it was placed
in the cluster with the labels ’dao’, ’withdraw’, ’token’
and ’mini’. The contract has been correctly labeled by the
cluster. It is worth noting that the label ’withdraw’ also holds
a strong likelihood of pertaining to TheDAO as well, many
’withdraw’ contracts were setup when TheDAO’s security
breach took place.

The fourth is again named ’ReplaySafeSplit’, its cluster
labels are ’dao’, ’withdraw’, ’token’ and ’mini’. While DAO
withdrawal contracts are related to the safe split contracts
in someways these name words do not obviously pertain to
the ’ReplaySafeSplit’ contract.

The fifth and final contract is named ’ManagedAccount’,
it forms part of The DAO. Its contract labels are ’token’,
’dice’, ’factory’ and ’presale’. Neither of the contract’s name
words appear in the labels the words. As can be seen
in section 4.4 ’token’ and ’factory’ are both in the top
10 common words, with ’token’ being the most common.
’factory’ most likely pertains to contracts that create other
contracts and therefore tells us something about the purpose
of clusters that have this label. On the other hand given that
’token’ refers to any currency on the blockchain, including
the native ether, it tells us very little about the purpose of
contracts in a cluster.

5.3. K-medoids Centoids

We looked at the medoid of each cluster, in an attempt
to define a purpose for contracts in the cluster as well
comparing it to the name words as a definition of cluster
purpose.

The first cluster’s medoid is a contract called ’Presale’.
This aligns well with the name words, the most common
word for this cluster is ’presale’ closely followed by ’token’,
although ’token’ is fairly ambiguous it may be the case
that there these two name words are associated as presales
often issue some kind of token. As such, it seems that the
medoid and the name words correlate to label this cluster
as ’presales’ contracts.

This second cluster’s medoid is called ’Contest’, the
source code indicates it is a contract designed for voting.
The most common name word for this cluster is ’contest’
which implies contracts with a similar function are to be
found within it. It is worth noting however that this contract
has a low frequency distribution score of 0.16, meaning that
the contracts in this cluster are largely named differently.

The third cluster medoid, named ’WithdrawDAO’ is very
clearly, as the name suggests, a contract for withdrawal of
funds from DAO. The name words for this cluster strongly
suggest that it contains contracts dealing with DAO with-
drawals. The top two name words are ’dao’ and ’withdraw’,
they comprise over half of all the name words for the cluster.



The fourth cluster medoid is named ’fairandeasy’ which
is a gambling contract. This can be seen in the name words
for this cluster to some extent. Although the frequency
distribution score for this cluster is only 0.17 three of the
four most common words are ’dice’, ’pyramid’ and ’simple’
which are all commonly used words for gambling contracts.

The fifth cluster’s medoid is named ’ProtectTheCastle’
and appears to be a gambling contract. One of the four most
commons name words is ’dice’ which suggests that contracts
in this cluster are also primarily gambling. However the
most common word by a large majority is ’token’ which is
not a name word that can be as clearly associated with gam-
bling due to is ambiguity. The fact that one of the top five
highest TX volume contracts, ’ManagedAccount’, is also
found in this cluster suggests that it contains contracts that
have a number of different purposes. As ’ManagedAccount’
is part of The DAO it suggests the cluster contains both
gambling contracts and contracts that deal with DAO.

The sixth cluster is something of a special case, the
medoid is called ’Eater’ and is a completely empty contract.
The cluster contains only one other contract which also has
no discernible purpose, containing only three variables and
no operations. As such, it appears this cluster catches either
empty or close to empty contracts with no purpose. No
analysis of name words is required due to the low number
of contracts.

The final cluster’s medoid is called ’Doubler’. Analysis
of the source code suggests that this is a gambling contract.
One of the four most common name words is ’dice’ which
suggests that this cluster, as well as the fourth and fifth
clusters, consists, at least in part, of gambling contracts.
Moreover, this cluster follows the pattern seen in the fifth
cluster of having ’token’ as its most common name word.
Again, the presence of ’token’ does not tell us much about
the purpose of the contracts.

6. Conclusion

From the results it can be seen that using clustering
based on bytecode hash similarity it is possible to identify
the purpose of a contract by applying labels to clusters
and by using manual analysis of name words and high
TX transactions to ascertain purpose. Although Affinity
Propagation resulted in a high number of clusters (142),
it was more accurate in grouping contracts with a similar
purpose. It produced a number of separate clusters which
had the same or similar name words and similarily high
frequency distribution scores. This indicates that various
clusters are identifying contracts with a similar purpose.
The labels for these clusters therefore also end up being
the same. In the future this could be used to help guide
supervised learning methods by grouping contracts from
similarity labeled clusters into one category. K-medoids
has clustered accurately for its exemplars but obfuscates
the purpose of high TX contracts. An interesting line for
future work would be to look at the relationship between
bytecode similarity and contracts grouped by transaction
volume between each other. We have offered an insight into

the purpose of verified contracts in the Ethereum system and
paved the way towards a GUI-driven framework for contract
labeling in the future.

In light of the high frequency of the ’token’ name word
it would help to alleviate the problem of finding semantic
meaning to selectively omit name words that are ambiguous
in terms of the contract purpose. Doing this may well enable
us to label more accurately. Fig. 2 highlights the usefulness
of grouping together words with a similar meaning (in this
case, gambling) for the purpose of being better able to
label clusters. This method could also be used to modify
the frequency distribution score. Whereby all words with
the same meaning in terms of contract purpose could be
translated to one word, ’gambling’ for example. While the
above does not remove the ground truth problem it would
help better define semantic meaning from name words. We
plan to extend our work by looking into other smart contract
platforms and validating our results for the Hyperledger
platform [12] in order to compare our approach on two
conceptually different platforms.
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