
Modeling Multiple Autonomous Robot Behaviors

and Behavior Switching with a Single Reservoir

Computing Network

Eric Antonelo, Benjamin Schrauwen, Dirk Stroobandt

Department of Electronics and Information Systems

Ghent University

Ghent, Belgium

eric.antonelo@elis.ugent.be

Abstract—Reservoir Computing (RC) uses a randomly created
Recurrent Neural Network as a reservoir of rich dynamics which
projects the input to a high dimensional space. These projections
are mapped to the desired output using a linear output layer,
which is the only part being trained by standard linear regression.
In this work, RC is used for imitation learning of multiple
behaviors which are generated by different controllers using
an intelligent navigation system for mobile robots previously
published in literature. Target seeking and exploration behaviors
are conflicting behaviors which are modeled with a single RC
network. The switching between the learned behaviors is imple-
mented by an extra input which is able to change the dynamics of
the reservoir, and in this way, change the behavior of the system.
Experiments show the capabilities of Reservoir Computing for
modeling multiple behaviors and behavior switching.

Index Terms—reservoir computing, autonomous robot naviga-
tion, imitation learning, behavior switching.

I. INTRODUCTION

Autonomous mobile robots are becoming increasingly im-

portant in our society. Service robotics is the current promising

area after the industrial robotics era. In this sense, it would be

very elegant to have a technique which can teach a robot to

accomplish tasks just by imitation. In this case, the human user

could show to the robot how to accomplish tasks, for instance,

by giving examples of movements, behaviors or trajectories

to be followed. In this sense, a mobile robot should learn

and generalize what it has learned by imitation. Furthermore,

the robot needs to learn to accomplish more than one task or

generate multiple behaviors. It also must be able to switch

between them, depending on the current (possibly human)

need.

This work seeks to answer the aforementioned questions,

and investigates how a single Recurrent Neural Network

(RNN) could solve the problem. Our approach is based on

Reservoir Computing (RC) [1]. Reservoir Computing uses a

fixed (usually random) RNN that is used as a reservoir of

rich dynamics, and a linear static readout output layer (see

Fig. 1). Only the output layer is trained in a supervised way,

while the recurrent part of the network (the so called reservoir)

has fixed weights. The reservoir weights are usually scaled so

that the network’s dynamic regime is situated at the edge of

stability. Reservoir computing is a unifying term for three com-

puting techniques, namely, Echo State Networks [2], Liquid

State Machines [3], and BackPropagation DeCorrelation [4].

Theoretical analysis of reservoir computing methods [5] and a

broad range of applications [1], [6] (which sometimes even

drastically outperform the current state-of-the-art [7]) show

that RC is very powerful and overcomes many of the prob-

lems of traditional RNN training such as slow convergence,

bifurcations and high computational requirements.

Reservoir Computing has been successfully applied to a

wide range of robotic tasks. In [8], RC is used for complex

event detection and robot localization in the context of small

mobile robots with just a few noisy sensors. In that work,

two different robot models are used, including the e-puck

robot [9] with 8 infra-red sensors. In [10], RC is used in

various robotic tasks including prediction of robot coordinates,

map learning and path generation. RC has also been used

for modeling the road sign problem in [11], where a mobile

robot must remember a previously given stimulus (light sign)

in order to accomplish a delayed-response task successfully.

All these robotic tasks are performed proficiently by a RC

network. The short-term memory in the reservoir enables more

complex computation that would not be possible otherwise,

while the training algorithm simply adjusts output weights by

using linear regression methods.

In [12], a hierarchical neural network (with two RNNs

situated in different levels) learn by back-propagation through

time (BPTT) [13] to generate sequences of behavior patterns

by imitation learning of a robotic arm. Complex dynamics and

training in such RNNs hinder the modeling task as well as limit

the applicability of the proposed approaches.

The current work uses Reservoir Computing as an alterna-

tive method for modeling multiple autonomous robot behaviors

by imitation learning. The simple training of such networks

(compared to BPTT) and its short-term memory capabilities

are characteristics which greatly help this modeling task.

In previous work [14], an intelligent navigation system for

mobile robots [15] is identified by a RC network (learning by

examples). After training, the RC network is able to imitate the

original controller with an increase in stability, by reproducing

Draft version of paper to appear in the Proceedings of the IEEE SMC 2008 SMC 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/162021766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

obstacle avoidance and target seeking behaviors. However,

it is not modeled to simultaneously learn different teacher

controllers generating conflicting behaviors (as we will study in

this work). These teacher robot controllers will be constructed

using different versions of an intelligent navigation system for

mobile robots [15]. Each teacher controller provides exam-

ples of navigation strategies which will be used for training

a single RC network. The first teacher controller performs

exploration of the environment ignoring the existent targets

whereas the second teacher controller seeks and captures

targets in the environment, avoiding collision with obstacles.

These two behaviors are conflicting behaviors, generated by

distinct teacher controllers, which will be learned by a single

RC network. The resulting RC-based robot controller will be

able to navigate in the environment and accomplish tasks

according to the currently selected behavior. The conflicting

behaviors are represented in a distributed way in the network.

Furthermore, the behavior switching is simply modeled as an

extra input to the network, which tells what behavior should

be selected.

This paper will show that Reservoir Computing is a promis-

ing technique in robotics, that can be readily applied to

multiple behavior modeling and presents a reliable and easy

way of switching between learned behaviors.

II. RESERVOIR COMPUTING

The RC network model used in this work follows the Echo

State Network (ESN) approach [2]. An ESN is composed of

a discrete hyperbolic-tangent RNN (i.e., the reservoir) and a

linear readout output layer which maps the reservoir states to

the desired output (Fig. 1). The general state update equation

for the nodes in the reservoir and the readout output equation

are as follows:

x(t + 1) = f (Wr

r
x(t) + Wr

i
u(t) + Wr

o
y(t) + Wr

b
) (1)

y(t + 1) = Wo

r
x(t + 1) + Wo

i
u(t) + Wo

o
y(t) + Wo

b
(2)

where: u(t) denotes the input at time t; x(t) represents the
reservoir state; y(t) is the output; and f() = tanh() is the
hyperbolic tangent activation function (most common type of

activation function used for ESNs). The weight matrices W

represent the connections between the nodes of the network

(where r, i, o, b denotes reservoir, input, output, and bias,

respectively). All weight matrices to the reservoir (denoted as

Wr

·
) are initialized randomly (represented by solid arrows in

Fig. 1), while all connections to the output (denoted as Wo

·
)

are trained (represented by dashed arrows in Fig. 1). The initial

state is set to x(0) = 0.

However, we do not use the output feedback to the reservoir

because the problems in this work do not require a very long-

term memory:

x(t + 1) = f(Wr

r
x(t) + Wr

i
u(t) + Wr

b
). (3)

The output calculation gets simpler because we do not use the

direct connections from input to output neither the connections

from output to output:

y(t + 1) = Wo

r
x(t + 1) + Wo

b
. (4)

Fig. 1. Reservoir Computing network. The reservoir is a dynamical system
of recurrent nodes. Solid lines represent connections which are fixed. Dashed
lines are the connections which can be trained.

Each element of the connection matrixWr

r
is drawn from a

normal distribution with mean 0 and variance 1. The randomly

created Wr

r
matrix is rescaled such that the system is stable

and the reservoir has the echo state property (i.e., it has a

fading memory [5]). This can be accomplished by rescaling the

matrix so that the spectral radius |λmax| (the largest absolute
eigenvalue) of the linearized system is smaller than one [5].

Standard settings of |λmax| lie in a range between 0.7 and 0.98
[16]. In this work we scale all reservoirs (Wr

r
) to a spectral

radius of |λmax| = 0.9 which is an arbitrarily chosen value
(the optimization of the spectral radius for each experiment

was not necessary because the changes in performance were

not very significant).

An ESN without output feedback is inherently stable due

to the echo state property [5]. However, with nonzero output

feedback, stability can not be always guaranteed. A formal

analysis of the stability of the ESN in this case is challenging.

Nevertheless, stabilizing solutions include the use of regular-

ization techniques such as the addition of state noise during

training [16].

Next, consider the following notation: ni is the number of

inputs; nr is the number of neurons in the reservoir; no is the

number of outputs.

The imitation learning process uses training data from two

teacher controllers. Consider that the data (robot sensors and

actuators) obtained from both controllers are concatenated into

a single dataset and that the total number of time samples is ns.

Training is performed using linear regression (least squares)

on reservoir states. For this, the reservoir is driven by an

input sequence u(1), . . . ,u(ns) (robot sensors) which yields a
sequence of states x(1), . . . ,x(ns) using (3). In this process,
state noise can be added to (3) for regularization purposes,

although the current task does not need it because the sensors

and actuators from the teacher robot controllers are already

noisy. The generated states are collected row-wise into a matrix

M of size ns × (nr + 1) where the last column of M is

composed of 1’s (representing the bias). The desired teacher

outputs (robot actuators) are collected row-wise into a matrix

Ŷ. Then, the readout output’s matrix Wo

rb
(i.e., the column-

wise concatenation of Wo

r
and Wo

b
) of size (nr + 1) × no is

SMC 2008

Fig. 2. Robot model from SINAR simulator.

created by solving (in the mean square sense):

MWo

rb
= Ŷ (5)

Wo

rb
= (M⊤M)−1M⊤Ŷ (6)

Note that the other matrices (Wr

r
,Wr

i
,Wr

b
) are not trained

at all. The last two matrices (connections from input/bias to

reservoir) are configured in Section IV. The learning of the

RC network is a fast process without local minima. Once

trained, the resulting RC-based system can be used for real-

time operation on moderate hardware since the computations

are very fast (only matrix multiplications of small matrices).

The Normalized Mean Square Error (NMSE) is used as a

performance measure in this work and is defined as:

NMSE =
〈(yd − y)2〉

σ2
yd

(7)

where the numerator is the mean square error of the output y

and the denominator is the variance of desired output yd.

III. ROBOT MODEL

We use a robot model that is part of the 2D SINAR

simulator [15] in the following experiments. Its simulation

environment generates the data necessary for training the RC

networks. The environment of the robot is composed of several

objects, each one of a particular color. Obstacles (repulsive

objects) have the blue color whereas targets (attractive ob-

jects) have the yellow color. The robot model is shown in

Fig. 2. The robot interacts with the environment by distance

and color sensors; and by one actuator which controls the

movement direction (turning). Seventeen (17) sensor positions

are distributed uniformly over the front of the robot (from

-90◦ to +90◦). Each position holds two virtual sensors (for

distance and color perception) [15]. The distance sensors are

limited in range (i.e., they saturate for distances greater than

300 distance units (d.u.)) and are noisy (they exhibit Gaussian

noise on their readings, generated from N(0, 0.01)). A value
of 0 means near some object and a value of 1 means far or

nothing detected. At each iteration the robot is able to execute

a direction adjustment to the left or to the right in the range

[0, 15] degrees and the speed is constant (0.28 distance units

(d.u.)/s) (summary in Table I).

The SINAR model (based on [15]) is an intelligent naviga-

tion system composed of hierarchical neural networks which

learn by classical reinforcement learning algorithms. The sys-

tem learns to seek targets and avoid obstacles as the robot

interacts with the environment (by colliding against obstacles

and by capturing targets in the environment). It also learns

to distinguish targets and obstacles (which present distinct

colors) by associating their respective colors to attraction

or repulsion behaviors (see [15], [17]). From now on, the

controllers obtained from this model will be called INASY

(Intelligent autonomous NAvigation SYstem).

The INASY controllers will provide examples of navigation

trajectories to a RC-based robot controller which will be called

RECNA (REservoir Computing NAvigation system) from now

on. The samples collected from INASY controllers (distance

and color sensors, and actuators) are used to train the RECNA

controller in a Matlab environment using the RCT Toolbox1

[1]. The experimental setup is given in the following section.

IV. MODELING MULTIPLE BEHAVIORS

In [14], an intelligent navigation system for mobile robots

(the INASY) is identified by a RC network (learning by

examples). The resulting RC-based controller generalizes for

different environments, being able to navigate efficiently in all

of them (avoiding obstacles and capturing targets).

The current work investigates how a single reservoir can

learn multiple and conflicting robot behaviors simultaneously.

Furthermore, we also need to have an efficient switching mech-

anism between the learned behaviors. In this section, we will

train a RC network to reproduce the following robot behaviors:

Environment Exploration (EE) and Target Seeking (TS). The

EE behavior makes the robot explore the environment but

ignoring the targets, while the TS behavior makes the robot

seek and capture targets in the environment.

The environments used for the experiments are shown in

Fig. 3. The first environment is composed of a (blue) corridor

with two (yellow) targets (the targets are striped in the figure

for clarification). During simulation, the robot keeps navigating

through the corridor and, if desired (i.e., for the TS behavior),

captures the targets (that are sequentially put back in the same

locations).

The EE and TS behaviors are generated by distinct INASY

controllers because they are conflicting behaviors. As the EE

behavior ignores the targets in the environment, the respective

INASY controller (that generates EE behavior) learned to

avoid blue objects as well as yellow objects (Fig. 4(a)). On

the other hand, the INASY controller that generates the TS

behavior learned to avoid blue objects as well as to seek yellow

objects as usual (Fig. 4(b)). See Table II for a summary. So,

1This is an open-source Matlab toolbox for Reservoir Computing which is
freely available at http://www.elis.ugent.be/rct

TABLE I
ROBOT MODEL

No. Dist. Sensors 17
No. Color Sensors 17
Range of Dist. Sens. 300 d.u.
Noise on sensors N(0,0.01)
Speed 0.28 d.u./timestep

SMC 2008

(a) E1

(b) E2

Fig. 3. Environments used for the experiments in this work. Initially, both
targets are visible. After the robot captures one target, the other target is put
back to its original location, making at least one target always visible. (a)
Small environment with two targets and one robot. (b) Big environment with
two targets and a robot.

200 250 300 350 400

100

150

200

X (d.u.)

Y
 (

d
.u

.)

(a) EE

200 250 300 350 400

100

150

200

X (d.u.)

Y
 (

d
.u

.)

(b) TS

Fig. 4. Example of navigation trajectories of INASY controllers in environ-
ment E1. (a) EE exploratory behavior. (b) TS target seeking behavior.

there are two teacher INASY controllers used for generating

training data and one RECNA controller which will learn the

conflicting navigation strategies from these INASY controllers.

In the following, we recorded the sensory and actuator

samples of INASY controllers in two stages. In the first stage,

the controller with EE behavior steers the robot in environment

E1 (Fig. 3), exploring the environment and ignoring targets

(as they were obstacles). All sensory inputs and actuators

are recorded. In the second stage, the controller with TS

behavior steers the robot in the same environment E1, but now

generating a different trajectory towards the targets. Each stage

lasted 22.500 timesteps, summing up 45.000 timesteps in total.

After getting the data which represent both behaviors indi-

vidually, we will train a single RC network to reproduce these

two behaviors. The RC-based navigation system (RECNA)

TABLE II
TYPE OF BEHAVIORS

Behavior Type Avoids

EE Exploratory Obstacles/Targets
TS Target Seeking Obstacles

EE TS EE TS

0 0.5 1 1.5 2

x 10
4

100

200

300

400

Timestep

P
o

s
it
io

n

(a)

200 250 300 350 400

100

150

200

X (d.u.)

Y
 (

d
.u

.)

(b)

Fig. 5. Results for environment E1. (a) The coordinates of the robot are
shown for 20.000 timesteps during the testing. The solid and dashed lines
are the x and y coordinates, respectively. Vertical gray lines represent the
moments of behavior switching. (b) The corresponding trajectory of the robot
in the Cartesian map. The solid black (gray) line represents the timesteps in
which the selected behavior is the EE (TS) behavior.

learns by imitating INASY controllers [14]. However, the

RECNA system will have to learn two distinct controllers (or

behaviors) in one shot, and it should be able to switch between

behaviors. In order to do that, an extra input is added to the

RECNA controller, representing the behavior to be selected.

If this extra input is zero (one), then the EE (TS) behavior is

selected.

In the following, the parameter configuration for the RC

network (of the RECNA controller) is presented. The inputs

to the network are 17 distance sensors, 17 color sensors, plus 1

input for behavior selection (total of 35 inputs). The reservoir

size is 600 neurons. The readout layer has 1 output unit which

corresponds to the turning (direction adjustment) robot actuator

(the robot has constant velocity). The connection matrix from

input/bias to the reservoir (Wr

i
,Wr

b
) is initialized to -0.2, 0.2

and 0 with probabilities 0.1, 0.1 and 0.8, respectively. This

parameter setting for weight matrices is not critical for the

experiments.

After setting up the RC network, it was trained with the

data of 45.000 timesteps (as mentioned before), of which half

of the observations considered an extra input of 0 for EE

behavior, and the other half considered an extra input of 1

for TS behavior. The training was done offline and in one shot

using (6). After learning, the RECNA controller was evaluated

in two environments. The results for environment E1 are shown

in Fig. 5. The run takes 20.000 timesteps. At each 5.000

timesteps, the behavior is switched from EE to TS or vice-

versa. Note that every switching implies a waiting time of 15

SMC 2008

EE TS EE TS

0.5 1 1.5 2

x 10
4

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Timestep

R
e
s
e
rv

o
ir
 s

ta
te

s

Fig. 6. Reservoir states for the RECNA controller in environment E1. The plot
shows six randomly chosen states from the reservoir. Vertical lines represent
the moments in which the behavior switches.

timesteps in which the robot stays still so that a short reservoir

transient takes place. After this switching interval, the reservoir

is ready to drive the robot according to the selected behavior.

Fig. 5(a) shows the coordinates of the robot during the run

(vertical lines represent the moment of switching the behavior).

As we can note, the behaviors are very well defined in their

respective time interval. The trajectory of the robot changes as

soon as the switching occurs and a target is localized. Fig. 5(b)

shows the corresponding robot trajectory for the considered

robot run. The black (gray) trajectory corresponds to the time

interval in which the EE (TS) behavior was selected.

The reservoir works like a rich temporal kernel which

projects the input to a high dimensional dynamic space. Fig.

6 shows six randomly selected states from the reservoir when

the RECNA controller was driving the robot in environment

E1. It is possible to observe that the dynamics of the reservoir

changes at each moment of behavior switching (given by the

vertical lines in the figure). By only changing a input from 0

to 1 or vice-versa, we were able to change the dynamics of

the reservoir, and consequently the behavior of the robot.

Table III shows the results for different number of neurons

(nr) in the reservoir. Each line in the table presents the mean

values of the: training error (NMSE, as defined in (7)), training

time, number of target captures and number of collisions, for

5 robot runs each of 20.000 timesteps. Each robot run is ac-

complished with a different stochastically generated reservoir.

The training time includes the time to generate the matrix

M and to calculate (6) (using an Intel Core2 Duo processor-

based system). During a robot run, there are 3 switching

moments like in Fig. 5. The last column of the table presents

the percentage of successful runs (out of 5 for each line).

We can observe that as the reservoir have more neurons, the

performance of the resulting RECNA controller increases (i.e.,

by decreasing the number of collisions), although the training

time also increases. For reservoirs containing more than 400

neurons, we always get a stable RC-based controller which can

perform the selected task (EE or TS) reliably. Although smaller

reservoirs are not always stable for this task, it is possible

to search for the best generated reservoir and use it on the

navigation task.

To test the generalization capabilities of the RECNA con-

TABLE III
RESULTS FOR DIFFERENT SIZE OF RESERVOIRS - ENVIRONMENT E1

No. Neurons Training Training No. Target No. Correct
(nr) NMSE Time (s) Captures Collisions behavior

100 0.88 5 12 20.6 40 %
200 0.85 9 12.2 11 80 %
400 0.82 25 11.8 0.8 100 %
600 0.80 60 12.6 0.6 100 %

EE TS EE TS

0 0.5 1 1.5 2

x 10
4

100

200

300

400

500

600

Timestep

P
o
s
it
io

n

(a)

200 250 300 350 400 450 500 550 600

100

150

200

X (d.u.)

Y
 (

d
.u

.)

(b)

Fig. 7. Results for generalization capabilities in environment E2. (a) The
coordinates of the robot are shown for 20.000 timesteps during the testing.
The solid and dashed lines are the x and y coordinates, respectively. Vertical
gray lines represent the moment of behavior switching. (b) The corresponding
trajectory of the robot in the Cartesian map. The solid black (gray) line
represents the timesteps in which the selected behavior is the EE (TS) behavior.

troller, we consider a new environment (E2), different from the

training environment (E1). Environment E2 (Fig. 3) is bigger

than E1, and has two targets, one located in the lower-left of the

environment and another in the upper-right of the environment.

The results are shown in Fig. 7. We can note that the RECNA

controller generalizes very well, by exploring the environment

when EE behavior is turned on and capturing targets when the

behavior switches to TS.

In this work, we have shown that we can easily imitate be-

haviors with RC networks. We record examples of navigation

trajectories with the robot sensors and actuators, and train a

Reservoir Computing network on this dataset in a supervised

way. After this, the RC network performs very similarly to the

original controller in the same environment and also in new

environments. Fig. 8 shows the output of the original controller

and of the RC-based controller. We can observe that the output

of the RC network is much less noisy than the output of the

teacher (INASY) controller [14].

Feedforward networks like the Multi-Layer Perceptron

(MLP) are not well suited for this task of modeling multiple

SMC 2008

0 500 1000 1500 2000 2500 3000
−0.1

−0.05

0

0.05

0.1

Timestep

T
u
rn

in
g
 (

ra
d
)

(a) INASY

0 500 1000 1500 2000 2500 3000
−0.1

−0.05

0

0.05

0.1

Timestep

T
u
rn

in
g
 (

ra
d
)

(b) RECNA (RC-based)

Fig. 8. Outputs (turning actuators) of controllers for EE behavior during
3.000 timesteps. (a) Output from INASY controller. (b) Output from RECNA
(the RC-based) controller.

behaviors with behavior switching mechanisms. We have tried

to use a MLP and backpropagation learning algorithm to

reproduce the same behaviors (EE and TS) as we did with the

RC network (also trying different number of hidden layers),

but the MLP failed to drive the robot stably and safely (it made

the robot bump to the walls repeatedly).

V. CONCLUSION

This work employs Reservoir Computing (RC) as an alter-

native method for modeling multiple (conflicting) behaviors

for mobile robots. The method corresponds to a black-box

machine which learns by examples given by an intelligent

navigation system in the literature [15], characterizing an

imitation learning process.

In reservoir computing, the network architecture is com-

posed of a fixed recurrent neural network (the reservoir) and a

trainable readout output layer. The learning is implemented by

a linear regression algorithm which guarantees convergence of

the training process in a short time period and without local

minima. We use a single RC network for modeling conflicting

robot behaviors and we implement behavior switching by just

stimulating the reservoir with an extra input which indicates

which behavior should be selected. The switching mechanism

is efficient, stable and robust, and works by changing the

dynamics of the reservoir with the extra input.

This work shows just a sketch of what is possible with

reservoir computing. Future work includes the study of how

many behaviors can be implemented with a single reservoir.

Online and autonomous learning of new behaviors by a RC

network would be very desirable in the perspective of au-

tonomous systems. In this way, reinforcement learning and

reservoir computing may interplay for achieving a new and

powerful class of learning systems.

In the perspective of service robotics, imitation learning can

be implemented using reservoir computing techniques, making

possible to teach a robot how to behave or accomplish tasks

in its environment by only showing examples to the robot

(moving its physical body in the environment and recording its

sensors and encoders). Many applications in the real-world can

easily be drawn with such an approach while a more natural

interface between humans and robots is made possible.

ACKNOWLEDGMENT

This research is partially funded by FWO Flanders project

G.0317.05. Eric A. Antonelo is sponsored by the Special

Research Fund of Universiteit Gent (BOF).

REFERENCES

[1] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt, “A
unifying comparison of reservoir computing methods,” Neural Networks,
vol. 20, pp. 391–403, 2007.

[2] H. Jaeger, “The “echo state” approach to analysing and training
recurrent neural networks,” German National Research Center for
Information Technology, Tech. Rep. GMD Report 148, 2001.

[3] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, no. 11, pp. 2531–2560,
2002.

[4] J. J. Steil, “Backpropagation-Decorrelation: Online recurrent learning
with O(N) complexity,” in Proceedings of the International Joint Con-
ference on Neural Networks (IJCNN), vol. 1, 2004, pp. 843–848.

[5] H. Jaeger, “Short term memory in echo state networks,” German
National Research Center for Information Technology, Tech. Rep. GMD
Report 152, 2001.

[6] B. Schrauwen, D. Verstraeten, and J. Van Campenhout, “An overview
of reservoir computing: theory, applications and implementations,” in
Proceedings of the European Symposium on Artifical Neural Networks

(ESANN), 2007.
[7] H. Jaeger and H. Haas, “Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless telecommunication,” Science, vol.
308, pp. 78–80, April 2 2004.

[8] E. A. Antonelo, B. Schrauwen, and D. Stroobandt, “Event detection and
localization for small mobile robots using reservoir computing,” Neural
Networks, vol. 21, pp. 862–871, 2008.

[9] e-puck, “http://www.e-puck.org/,” 2007, e-puck education robot.
[10] E. A. Antonelo, B. Schrauwen, and J. V. Campenhout, “Generative

modeling of autonomous robots and their environments using reservoir
computing,” Neural Processing Letters, vol. 26, no. 3, pp. 233–249,
2007.

[11] E. A. Antonelo, B. Schrauwen, and D. Stroobandt, “Mobile robot control
in the road sign problem using reservoir computing networks,” in IEEE
Int. Conf. on Robotics and Automation (ICRA), 2008.

[12] J. Tani, “Learning to generate articulated behavior through the bottom-
up and the top-down interaction processes,” Neural Networks, vol. 16,
pp. 11–23, January 2003.

[13] D. Rumelhart, G. Hinton, and R. Williams, Learning internal represen-
tations by error propagation. MIT Press, Cambridge, MA, 1986.

[14] E. A. Antonelo, B. Schrauwen, and D. Stroobandt, “Identification
of an intelligent navigation system for mobile robots using reservoir
computing,” in 10th Brazilian Symp. on Neural Networks (SBRN), 2008,
(in press).

[15] E. A. Antonelo, A.-J. Baerlvedt, T. Rognvaldsson, and M. Figueiredo,
“Modular neural network and classical reinforcement learning for au-
tonomous robot navigation: Inhibiting undesirable behaviors,” in Pro-
ceedings of the International Joint Conference on Neural Networks

(IJCNN), Vancouver, 2006, pp. 498– 505.
[16] H. Jaeger, “Tutorial on training recurrent neural networks, covering

BPTT, RTRL, EKF and the “echo state network” approach,” German
National Research Center for Information Technology, Tech. Rep. GMD
Report 159, 2002.

[17] E. A. Antonelo, M. Figueiredo, A.-J. Baerlvedt, and R. Calvo, “In-
telligent autonomous navigation for mobile robots: spatial concept ac-
quisition and object discrimination,” in Proceedings of the 6th IEEE
International Symposium on Computational Intelligence in Robotics and

Automation, Helsinki, 2005, pp. 553–557.

SMC 2008

