X Congresso Brasileiro de Inteliggncia Computacional (CBIC'2011), 8 a 11 de Novembro de 201Eprtaleza, Ceaa
© Sociedade Brasileira de Intelig@ncia Computacional (SBIC)

LEARNING NAVIGATION ATTRACTORS FOR MOBILE ROBOTS WITH
REINFORCEMENT LEARNING AND RESERVOIR COMPUTING

Eric Aislan Antonelo
ELIS Department - Ghent University
eric.antonelo@elis.ugent.be

Stefan Depeweg
Institute of Cognitive Science - University of Osnabrueck
stdepewe@uni-osnabrueck.de

Benjamin Schrauwen
ELIS Department - Ghent University
benjamin.schrauwen@elis.ugent.be

Abstract —.

Autonomous robot navigation in partially observable eominents is a complex task because the state of the enviracarenot

be completely determined only by the current sensory regddf a robot. This work uses the recently introduced paraday
training recurrent neural networks (RNNs), called resemomputing (RC), to model multiple navigation attractorpartially
observable environments. In RC, the RNN with randomly geteet fixed weights, called reservoir, projects the inpui gt
high-dimensional dynamic space. Only the readout outputrlas trained using standard linear regression technjcaresin
this work, is used to approximate the state-action valuetfan. By using a policy iteration framework, where an aitging
sequence of policy improvement (samples generation frorir@mment interaction) and policy evaluation (networkiniag)
steps are performed, the system is able to shape navigdtiantars so that, after convergence, the robot followscitreect
trajectory towards the goal. The experiments are accohmalisising an e-puck robot extended with 8 distance sensas in
rectangular environment with an obstacle between the rabdtthe target region. The task is to reach the goal through th
correct side of the environment, which is indicated by a terapy stimulus previously observed at the beginning of fhisaae.
We show that the reservoir-based system (with short-termang) can model these navigation attractors, whereas &dfieeard
network without memory fails to do so.

Keywords — reservoir computing, reinforcement learning, obot navigation.

1. INTRODUCTION

Mobile robot navigation systems have been modeled underaledifferent types of techniques. The traditional rob®ti
approach is based on probabilistic methods for robot Ipatitin, which seeks to solve the Simultaneous Localizatind
Mapping (SLAM) problem [1]. Environment constraints, sengncertainty and odometry have to be explicitly modeleithese
systems. On the other hand, navigation systems modeleccwsitiputational intelligence techniques, such as neuratorks
and evolutionary systems, offer an alternative to modalimgnown environments without the need to know a priori infation
of the task or environment and can inherently deal with nersyironments [2, 3].

In particular, navigation tasks frequently need to be sblwader the assumption that the state of the environmentris pa
tially observable, where the robot does not know the core@tgte of the environment just by reading its current sensoich
as its position in the environment. This is usually referirethe literature as a partially observable Markov decigioocess
(POMDPs). Thus, the navigation system requires additienatces of information for building the complete state @ &ém-
vironment, such as using wheel encoders to estimate theléxhdistance and the current robot position. Instead oGty
modeling odometry, the works in [4, 5] show that a recurresural network (RNN) can detect the location of the robot in a
supervised or unsupervised way by using an emerging comgppéradigm called Reservoir Computing (RC) [6].

In Reservoir Computing, a parameterized dynamical syssemséd to project the input signal into a high-dimensionalno
linear state-space. This dynamical system should possadisg memory and it is most commonly implemented as a ramglom
generated sigmoidal RNN with fixed weights, commonly knowiaho State Networks [7]. Other forms of reservoir commutin
include: photonic reservoir computing [8], reservoir cartipg with cellular neural/nonlinear networks [9] and lidistate
machine for spiking neural networks [10]. The advantage @GiRthat only the readout output layer is trained, usually by
employing standard linear regression methods, whereaztuerent reservoir weights are left fixed. The advantag&NiN
training with RC over traditional methods such as Backpgapian-Through-Time are: training is fast and convergendbe
global optimum is guaranteed.

Reinforcement Learning (RL) rules are based on a rewardkigt}, which represents the outcome (i.e., success or failure)
of a learning trial. In immediate reinforcement learnirtg teward signal is given at every timestep and is usuallypeded as

1

X Congresso Brasileiro de Inteliggncia Computacional (CBIC'2011), 8 a 11 de Novembro de 201Eprtaleza, Ceaa
© Sociedade Brasileira de Intelig@ncia Computacional (SBIC)

thedistance to the goalOn the other hand, for RL methods with delayed reward sgtel outcome is given only at the end of a
trial. Whereas in the former case hints are given in every ertdnthe latter case defines a very less informative rewarctifon
which can delay the learning process, although it is morbically plausible. RL algorithms such &slearning[?] learns an
action value functio(s, a) which indicates the utility of an actiomin a states. It tries to maximize the mean expected future
reward by using &alue iteration updateule. Whereas these rules are applied in an online fasmditted Q iteration [14] the
Q(s,a) is learned in batch mode with supervised learning techisigueh as linear regression and artificial neural networks.

RC-based systems are usually trained in a supervised waye $orks in the literature use RC in a Reinforcement Learning
(RL) framework to model partially observable environmdffs 12]. In [12], an ESN with multiple outputs in the readtayter,
each one corresponding to the value of a discrete actiortrained online via a SARSA update [13] rule, whereas in [&f],
ESN with one output representing the value function for gess&tion input pair is trained in an iterative batch-modsgwBoth
works consider partially observable environments, butievHi2] applies to discrete-world tasks, [11] consider mooenplex
control tasks such as the acrobot swing-up task [13].

Function approximators are typically used to model theessation value function in complex problems where the Sptee
is continuous, and in most cases-greedy policy on the value function is used for selectirggdptimal action, where defines
the probability of selecting random actions for explorataf the state space. In particular, sample-based methazfitied
iteration [14] and least-squares policy iteration [15] effecient batch-mode training methods for modeling theestadtion value
function using function approximators. They collect sa@sms tupless;, a;, 7, si+1), wheres; is the state at time ands;1
is the next state after executing actignon states; and receiving the rewand, by interacting directly to the environment using
either totally random actions oreagreedy policy. The dataset composed of samples are itekatised for batch training.

This work uses a similar approach as [11]. In that work, an ESihsed to model non-Markovian environments in control
tasks such as the mountain car problem and the acrobot swpirigsk. It uses a dynamical system, the reservoir, to conver
a non-Markovian state to a approximate Markovian stateesgptation embedded in the high-dimensional state-sfate o
reservoir. Specifically, the current work uses an ESN to rhpadsially observable environments in robot navigatioatgems.
The experiments are performed using an e-puck robot wittstaice sensors in a rectangular environment with an obstacl
between the robot and the target region. The task of the fisliotreach the goal through the correct side of the envirenime
A temporary stimulus at the beginning of the episode indigathich side of the environment the robot should use. So, to
successfully perform the task, the navigation system maxgt Bome sort of short-term memory.

In the proposed setup, the ESN is iteratively trained inlbatode to approximate the state-action value function gasen
input 8 distance sensors, the action and an additional impith simulates the temporary stimulus. Experimentalltesihow
that after an initial exploration period and a sequence ditpamprovements steps, the robot is able to navigate togibed
circumventing the obstacle through the correct side (d@texd by the initial stimulus) in a quasi-optimal trajegtokVe also
show that the fading memory of the reservoir is essentialddehthese context-dependent navigation attractors.

This work is organized as follows. In Section 2, an overviewiterative value approximation is presented as well as the
used reservoir computing architecture. Next, Section ®dhice the experiments accomplished as well as the comdamp
environments, settings, and associated results. Thedetsbs presents conclusions and future work.

2. METHODS
2.1 ITERATIVE POLICY LEARNING ON PARTIALLY OBSERVABLE ENVI RONMENTS

In fitted @ iteration [16], samples in form of tuplgs:, at, 7+, s¢+1),t = 1,...,I are generated from interaction with the
environmentand collected in a training dataset. Traintiegstystem is done offline using the collected samples undgrexased
learning framework: usually, a regression algorithm isdusdearn the state-action value function, by defining thritrand the
desired output as follows:

u(t) = (st ar), (1)
§(t) = re + ymax Qn—1(se41, a))

where: s;, a; andr; are the state, action and reward at timeespectively;N is the iteration of the training process; and
is the discount factor. Using the dataset of input-outpirspa(t), (¢)), the functionQ (s, a) is induced with a regression
algorithm.

In this work, we use an Echo State Network (ESN) [7] to modedtitic, that is, th&)-value [13] function, in non-Markovian
environments. Given a partially observable state vextmd an actiom as input, we want to approximate the expected future
sum of rewards, th&-value for the paifs, a), using an ESN as approximation method. The randomly gegtéraservoir in the
ESN can convert non-Markovian state-spaces into Markosfate-spaces due to its characteristic fading memory eique
inputs. It is similar to fitted? iteration [14, 16] and least squares policy iteration [1bfliat it is based on batch offline training
and approximates the value function in an iterative way.

In [11], the ESN is used in reinforcement learning contrgktasuch as the mountain car problem and the more complex
acrobot swing-up task. The input to the ESN is a veat@) composed of a partially observable statsuch as the position of
the car or the joint angles of the acrobot (so, excluding #lecity component), and an actianand the only output is trained
to approximate the state-action value function.

X Congresso Brasileiro de Inteliggncia Computacional (CBIC'2011), 8 a 11 de Novembro de 201Eprtaleza, Ceaa
© Sociedade Brasileira de Intelig@ncia Computacional (SBIC)

start with randomly
generated reservoir

v samples
Policy improvement = (},7 a,77-,) Policy evaluation =
ESN exploitation + > ESNl‘tréxining
exploration

A

epsilon-greedy policy;
epsilon schedule

trained architecture

Figure 1: Approximate Policy Iteration: Policy improvenienPolicy evaluation. The iterative policy learning cotsisf: gen-
eration of samples by interacting with the environmentgsia-greedy policy and the trained architecture (policy imgnment);
and of training the architecture (in this case, the ESN) fraximate the state-action value function with a regrasaigorithm
using the dataset generated during policy improvemgiig. a partially observable state, characterizing a non-khdgn task
which should be handled by the ESN architecture.

As we can approximat@(é, a), the desired outpu}, by a sum of future rewards over a finite time horiZofi1], equations
(1) and (2) can be rewritten, in the case of a non-Markoviatirenment:

u(t) = (3¢, at), (3)
Gt ~ e+ + Ve + o+ e (4)

The training is accomplished in an iterative way and coag$ta sequence of policy improvement and policy evaluation
steps (see Fig. 1). During policy improvement, new samflgsi;, r),¢t = 1, ..., I are generated usingeagreedy policy and
the trained architecturd.is the number of samples generated during one iteratioregbalicy improvement stage, which is set
to I = 1000; During policy evaluation, the training input-output m(u(t), §(¢)),t = 1, ..., E are generated using (3) and (4),
respectively, and the ESN is trained on a subset of the dajaserated through interaction with the environment. Fhisset
corresponds to a sliding window of samples of sizesuch that only the most recet= 40.000 samples are used for training.
The ESN model and its training method, linear regressiaom eaplained in the following section. During the iterativaipy
learning process, thegreedy policy follows a learning schedule where the exgilon is intense at the beginning of the process
and monotonically decreases towards the end of the expetinidis is accomplished by varyingaccording to a predefined
schedule [11] (given in Section 3.2).

2.2 RESERVOIR COMPUTING

An ESN is composed of a discrete hyperbolic-tangent RNN ¢he reservoir) and a linear readout output layer whichsnap
the reservoir states to the desired output (Fig. 2). In tlugkywe use leaky integrator nodes [17] in the reservoir, sehstate
update equation is given by:

x(t+1) = (1 — a)x(t) + af (Wigx(t) + Witu(t) + Wig,). (5)
where: u(t) = [§, a] denotes the input at timg a concatenation of a non-Markovian observatioand an action:; x(t)
represents the reservoir statejs the leak rate [17, 18]; anfl() = tanh() is the hyperbolic tangent activation function (most
common type of activation function used for ESNs). The eigndor the readout outpuj(t), which models the state-action
value function in this work, is as follows:

y(t+1) = Wigx(t + 1) + Wi (6)

The weight matricesW' represent the connections between the nodes of the netwdréré rcs, inp, out, bias denote
reservoir, input, output andbias, respectively). All weight matrices to the reservoir (dextbasW*e*) are initialized ran-
domly (represented by solid arrows in Fig. 2), while all ceations to the output (denoted ¥°1t) are trained (represented by
dashed arrows in Fig. 2). The initial state is sex{0) = 0.

The randomly create®Vcs matrix is rescaled such that the system is stable and the/odiskas the echo state property (i.e.,
it has a fading memory [19]). This can be accomplished byalesg the matrix so that the spectral radjus,...| (the largest
absolute eigenvalue) of the linearized system is smalter tme [19]. Standard settings|af,,....| lie in a range betweet7 and
0.98 [20]. In this work, the reservoir weight3¥Ls%) are rescaled such that its spectral radius|&sg,..| = 0.9, which sets the
dynamic regime of the reservoir to the edge of stability idevrto achieve rich reservoir dynamics.

Next, consider the following notatiom; is the number of inputsy,. is the number of neurons in the reservoi, is the
number of outputs (in this worky, = 1); and the number of training samplesris. The output weightaV°ut are trained in
batch mode using standard linear regression techniquésardervoir states. The procedure is as follows. Firstebervoir is

3

X Congresso Brasileiro de Inteliggncia Computacional (CBIC'2011), 8 a 11 de Novembro de 201Eprtaleza, Ceaa
© Sociedade Brasileira de Intelig@ncia Computacional (SBIC)

™ ,ﬁ \\\\
8 > oy
g 3
e -2 @ Q(a)
—7 o
O \ ‘<
|
input reservoir output

u(t)=[s(t) a(t)] x(t) y(t)

Figure 2: Reservoir Computing network as a function appnator for reinforcement learning tasks with partially alvedle
environments. The reservoir is a dynamical system of rectimodes. Solid lines represent connections which are.fxashed
lines are the connections to be trained.

_56 L
_57 L
€
E _cal
= -58
_59 L
435 44 445
@) X (cm) (b)

Figure 3: (a) Robot model used in the experiments: e-pudnebed with longer-range distance sensors. (b) Motor priestor
basic behaviors: left, forward and right.

driven by an input sequenag1), . .., u(ns) which yields a sequence of stated), . . ., x(ns) using (5). In this process, state
noise can be added to (5) for regularization purposes, latiigmot used in this work because the environment is alraatby
due to wheel slippage and noisy sensors. The generatesl atateollected row-wise into a matiM of sizen, x (n, +1) where
the last column oM is composed of 1's (representing the bias). The desiredézamitput, the total future expected return, is
collected row-wise into a matri¥. Then, the readout output's matfi¥t (i.e., the column-wise concatenation ¥t and
Weut) of size(n,- + 1) x n, is created by solving (in the mean square sense):

bias
MWt =Y 7
Wot = (M'M)"TMTY (8)

Note that the other matriceS\(22, Wies "Wi<®) are not trained at all. Their initialization is presentadiection 3.2.

res? inp> bias

2.3 ROBOT MODEL

We use the e-puck robot from the Webots simulation envirarif#d] for the experiments in this work. Webots provides a
physics model of the e-puck robot (the simulator detectsstmhs and simulates physical properties of objects, ssdie mass,
the velocity, the inertia, the friction, the spring and damgpconstants, etc.). The model is shown in Fig. 3(a). It h@scan
diameter. The e-puck is equipped with 8 infra-red sensoistwineasure ambient light and proximity of obstacles in &eaof
4 cm originally. However, the extended e-puck model usedi;mwork has longer-range sensors capable of measurirandist
in the interval (0, 30] cm. The noise on sensors is drawn fromermal distributionN (0, 3)cm. In real-world experiments,
these longer-range sensors could be implemented by adui®gensive infra-red range sensors to the real e-puck xd@ain
extension module.

The robot has 2 stepper motors with maximum speed of 1008 gepsecond, which are steered by the following 3 motor
primitives or basic behaviors in the low-level control mteluforward (left wheel: 500 steps/s; right wheel: 500 stepdeft
(left wheel: 250 steps/s; right wheel: 500 steps/s), anditiiigft wheel: 500 steps/s; right wheel: 250 steps/s). €hastor
primitives are executed for a period of 11 timesteps in theugtor (/04ms). See Fig. 3(b) for a graphical representation of the
trajectories given by each of the motor primitives. It issirsting to observe that each primitive is inherently ststih once the
robot wheels can not reproduce the same trajectory due teystematic noise originated from wheel-slippage or utedties
of the floor.

The motor primitives are designed to simplify the contrskieby reducing the action space to 3 discrete actions.

4

X Congresso Brasileiro de Inteliggncia Computacional (CBIC'2011), 8 a 11 de Novembro de 201Eprtaleza, Ceaa
(© Sociedade Brasileira de Inteli@ncia Computacional (SBIC)

E
e MR e

0.4+
e

0.6f !
R

0.87 L L L L L L

1 0.8 0.6 0.4 0.2 0 -0.2
X (m)
(a) 3D environment and e-puck robot (b) Corresponding Map in 2 dimensions

Figure 4: Rectangular environment with an obstacle betwleemobot and the goal location. (a) 3D environment in Webots
with the e-puck robot in the upper part. (b) Representatiap wf the environment in two dimensions. The box with a point
inside represents the possible starting positions for dhetr(randomly chosen), while the black and gray dasheamgtts
represent the possible circumvention areas (dependemieanitial transient stimulus) which the robot has to useetach the
goal, represented by dashed box in light blue color.

3. EXPERIMENTS
3.1 INTRODUCTION

The robot task is to learn context-dependent navigatigadtirs in a partially observable environment. The envitent is
a rectangular arena with an obstacle between the robot amgbtil location, as it can be seen in Fig. 4(a). During a sitiwla
experiment, each episode starts with the robot locateceimpiper part of the room with position randomly chosen frormalk
interval defined by the solid rectangle in Fig. 4(b); theiatiorientation of the robot is South, with small uniform seiadded
in the rangd0, 1.2] degrees. The robot is controlled according tegreedy policy. The architecture is trained using the sehem
depicted in Fig. 1 and explained in Sections 2.1.

The task of the robot in this environment consists of naviggato the goal location, given by the light blue dashed box
in Fig. 4(b), through the left or right part of the environmeshown by black and gray dashed rectangles in the same figure
depending on a previously received stimulus from the ermirent. This temporary stimulus can be implemented throhgh t
presence/absence of an object in the environment, thefafffight source, or the existence/absence of a sound elodirent
experiments, this is simply implemented as an additioqalisignal to the reservoir which is 1.5 whenever the trajgdbowards
the goal should be done via the left side and -1.5 when thér#jectory should be performed via the right side. Thisastgnal
is present foR.1s in the beginning of each episode, during which the robot tsabte to go left or right but only slowly forward
(meant not to bias learning). After the initial period2t s, this extra input becomes zero.

One episode is finished whenever the robot reaches the gdalpeg the correct trajectory, hits against an obstagte,
when the the length of the episode is greater th@nimesteps. The reward is always -1, unless the robot is at the goal
location, whenr; = 0. When an episode ends, the input and desired output can beutedraccording to equations (3) and (4).

3.2 SETTINGS

This section presents the configuration parameters. Thesmopto the network are 8 frontal distance sensors, scaled to the
interval [0,1], an actiom € {—1,0, 1} and an additional input for the temporary stimulus. Themesesize is 400 neurons for
all experiments in this work. The leak rateds= 0.1. The input weight matrixW s> is initialized to -0.14, 0.14 and 0 with
probabilities 0.25, 0.25 and 0, respectively. The reseigaparsely connected: only 10% of the weight3¥iS: are non-zero,
chosen from the sdt—1, 1} with equal probability [11]. The resulting matr®W1 is rescaled such that its spectral radius is

res
[Amaz| = 0.9. The weights from matri¥V 5> are generated from a normal distributidi{0, 0.2).

Thee parameter for the policy, which corresponds to the profigitmf selecting random actions at each time step, is salecte
from an arbitrarily chosen vectd®.9, 0.8, 0.6,0.5,0.4,0.3,0.1,0.01], similarly to [11]. The particular timesteps in whieh
changes follows a learning schedule chosefi@sl 40, 190, 220, 240, 260, 310, 330] * 10® timesteps. This means, for instance,
that during the first 40.000 timesteps= 0.9. The finite time horizon in (4) i% = 40. The discount factor is = 1, which

defines a shortest-path problem.

X Congresso Brasileiro de Inteliggncia Computacional (CBIC'2011), 8 a 11 de Novembro de 201Eprtaleza, Ceaa
© Sociedade Brasileira de Intelig@ncia Computacional (SBIC)

35 T T T T T T 35

30: JHW |
|VWMMM un

N
o
N
o1

N
o
T
N
o
T

[y
o
T
[
o
T

Goals per 2000 timesteps
=
[6;]

Goals per 2000 timesteps
=
[$)]

(6]
T

o

I
a1
I
Ul

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

Timesteps (x 2000) Timesteps (x 2000)
(a) ESN (b) The same network but without recurrent connections

Figure 5: Average number of goals achieved per two thousaresteps for 10 simulation experiments. The black linesasgmt
the goals achieved via theft trajectory, while the blue lines represent the goals achievedigl trajectory. Error bars represent
the standard deviation between runs. (a) Using the resemaliitecture presented in this chapter. (b) Using the sactetecture,
but without internal memory by settin/:es = 0.

res

The regression learning procedure for the reservoir achite is executed every 1.500 timesteps considering shéla-
50.000 generated samples as learning window. These samples udedrfing are generated from the interaction of the reservo
with the environment, while samples resulting from randatioas are not taken into account during learning.

3.3 RESULTS

In order to evaluate the proposed robot navigation taskgusie ESN, the mean number of goals achieved2per10?
timesteps consideringft and right trajectorieseparately is shown in Fig. 5(a). As time evolves, exploratiecreases and the
number of goals achieved via left and right trajectoriepigeented by black and blue lines, respectively) increagash shows
the capability of the architecture to learn short-term terapdependencies in robot navigation tasks.

In Fig. 5(b), the mean number of achieved goals is computed @asmemoryless architecture, implemented by simplyrsegtti
the reservoir weight®?! to zero. It is possible to observe that the system does niot tha task correctly, preferring thight
trajectory over theleft trajectoryin most of the experiments because the number of goals isesefar the right navigation
attractor (in blue) and decreases for the left attractor.

A single ESN can model multiple navigation attractors in iafacement learning task. These attractors, in the camfx
reinforcement learning, are dynamic, because the agetmsement interaction changes over time. Fig. 6(a) shows these
dynamic attractors evolves during the learning procesthdrbeginning, the two navigation attractors are not welhied, also
because exploration is very high. In that stage, the systfioqns several possible trajectories due to random atiAs the
simulation advances, the dynamic attractors are shapdthsthe robot reaches the goal location performing a trajgaethich
is dependent on the initial temporary stimulus given at thgifning of the run.

Fig. 6(c) shows the principal components resulting fromypg PCA on the reservoir states for the last episodes ofisim
tion of Fig. 6(a). The principal component 3 encodes infdiramaused to follow the correct trajectory at the left or ttighde, thus
forming a short-term memory responsible for holding th&ahtemporary stimulus. Fig. 6(b) shows that, after cogeeice of
the learning process, the principal components form diffetrajectories in the state space according to the pastists given
at the beginning of the episode.

Without the fading memory of the reservoir, it is not possitd learn these navigation attractors correctly, becanserao-
ryless architecture does not hold the temporary stimulufufore moments.

4. CONCLUSION

This work has shown that an Echo State Network (ESN) can liktaseodel the state-action value function in non-markovian
navigation tasks. The training procedure is based on [ijsisting of an alternating sequence of simulation expamisfor
samples generation and regression learning events, upadicg iteration framework (policy improvement + policyaduation)
[15]. The ESN projects a non-Markovian input into a high-dimional non-linear state-space with temporal dynamit¢ss T
dynamic state-space convert the non-Markovian envirotiméma Markovian problem, as it automatically takes thedris of
the input stream into account.

The non-markovian task of the robot in this work is similattite T-maze task [22, 23] which requires a temporal associati
of a past stimulus and a future delayed reponse. Howevecuttient work is more general in the sense that it requiresaml
attractors from the agent-environmentinteraction whighcapable of controlling a mobile robot to the correct goa partially

6

X Congresso Brasileiro de Inteliggncia Computacional (CBIC'2011), 8 a 11 de Novembro de 201Eprtaleza, Ceaa
© Sociedade Brasileira de Intelig@ncia Computacional (SBIC)

PC1

PC2
WVVVAVVVYVVYY

-0.5¢ . . L i

PC3

0.1r 1
0 W

-0.1f]

Robot coordinates

0 100 200 300 40
Time steps

O o000
NOoNB oo

(b)

Figure 6: (a) A sequence of robot trajectories as learniruves, using the ESN. Each plot shows robot trajectorieién t
environment for several episodes during the learning @®cén the beginning, exploration is high and several loceatiare
visited by the robot. As the simulation develops, two natiagaattractors are formed to the left and to the right so thatagent
receives maximal reward. (b) Three principal componen® @er time after applying PCA on the reservoir states, aetid
of the simulation corresponding to last episodes in Fig).6{&e fourth plot shows the robot coordinates, over time in the
environment. The yellow vertical lines delimit differemqgisodes. These plots were made disregarding the initigidieps where
the temporary stimulus is given, i.e., those initial tinepst were removed. The PC 3 encodes information used to fotlew
correct trajectory (left or right), thus forming a shortstememory responsible for holding the initial stimulus. 3f) state space
of the principal components, where gray and black repradiffatent trajectories in the environment.

observable environment. Instead of waiting for a delaysfdaase, the navigation task requires that the correctitris learned
and chosen given a temporary stimulus at the beginning dfithelation.

There are several possible extensions of this work. Fixgtements can be done with extended navigation tasks vthere
robot navigates between rooms of an environment, which avallbw to evaluate how the architecture scales to more cexnpl
tasks. It would be interesting to investigate how many rai attractors a single reservoir network can learn amdth@ is
related to the size of the reservoir. Finally, other techei&such as Slow Feature Analysis [24] could be investigatedder
to know whether they can help to infer hidden features of @rebvironment from the reservoir states to increase pmdace
and scale the experiments to bigger environments.

REFERENCES

[1] T. Bailey and H. Durrant-Whyte. “Simultaneous Locatisa and Mapping (SLAM): Part Il State of the Art'/Robotics
and Automation Magazin@p. 108—-117, September 2006.

[2] E. A. Antonelo, A.-J. Baerlvedt, T. Rognvaldsson and NMgyueiredo. “Modular Neural Network and Classical Reinfsrc
ment Learning for Autonomous Robot Navigation: Inhibitidgdesirable Behaviors”. IRroceedings of the International

7

X Congresso Brasileiro de Inteliggncia Computacional (CBIC'2011), 8 a 11 de Novembro de 201Eprtaleza, Ceaa
© Sociedade Brasileira de Intelig@ncia Computacional (SBIC)

Joint Conference on Neural Networks (IJCNNp. 498- 505, Vancouver, Canada, 2006.

[3] E. A. Antonelo and B. Schrauwen. “Supervised Learningndérnal Models for Autonomous Goal-oriented Robot Navi-
gation using Reservoir Computing”. IEEE International Conference on Robotics and Automatl@R@), 2009. (sub-
mitted).

[4] E. A. Antonelo, B. Schrauwen and D. Stroobandt. “Evertedgon and localization for small mobile robots using resg
computing”.Neural Networksvol. 21, pp. 862-871, 2008.

[5] E. A. Antonelo and B. Schrauwen. “Towards Autonomousf-Bmlalization of Small Mobile Robots using Reservoir
Computing and Slow Feature Analysis”. Rroceedings of the IEEE International Conference on Systévtan, and
Cybernetics (SMCpp. 3818-3823, 2009.

[6] D. Verstraeten, B. Schrauwen, M. D’'Haene and D. StrodbaA Unifying Comparison of Reservoir Computing Methods”
Neural Networksvol. 20, pp. 391-403, 2007.

[7] H. Jaeger. “The “echo state” approach to analysing aaiditrg recurrent neural networks”. Technical Report GMp&¢
148, German National Research Center for Information Teldlyy, 2001.

[8] K. Vandoorne, W. Dierckx, B. Schrauwen, D. VerstraetenBaets, P. Bienstman and J. Van Campenhout. “Toward dptica
signal processing using Photonic Reservoir Computi@ytics Expressvol. 16, no. 15, pp. 11182-11192, 8 2008.

[9] D. Verstraeten, S. Xavier-de Souza, B. Schrauwen, Jk&g; D. Stroobandtand J. Vandewalle. “Pattern classdicatith
CNNs as reservoirs”. IRroceedings of the International Symposium on Nonline@ofnand its Applications (NOLTA)
9 2008.

[10] W. Maass, T. Natschlager and H. Markram. “Real-timarpating without stable states: A New Framework for Neural
Computation Based on Perturbationsleural Computationvol. 14, no. 11, pp. 2531-2560, 2002.

[11] K. Bush. “An Echo State Model of non-Markovian Reinferaent Learning”. Ph.D. thesis, Colorado State UniverBibyt
Collins, CO, 2008.

[12] 1. Szita, V. Gyenes and A. Loerincz. “Reinforcement treag with Echo State Networks”. lArtificial Neural Networks
- ICANN 2006 edited by S. Kollias, A. Stafylopatis, W. Duch and E. OjaJuvne 4131 ofLecture Notes in Computer
Sciencepp. 830-839. Springer Berlin / Heidelberg, 2006.

[13] R. S. Sutton and A. G. Bartdreinforcement Learning: An Introductiomhe MIT Press, March 1998.

[14] M. Riedmiller. “Neural fitted Q iteration - first experniees with a data efficient neural reinforcement learningogs”. In
In 16th European Conference on Machine Learnipg. 317—328. Springer, 2005.

[15] M. G. Lagoudakis and R. Parr. “Least-squares policsatien”. J. Mach. Learn. Resvol. 4, pp. 1107-1149, 2003.

[16] D. Ernst, P. Geurts and L. Wehenkel. “Tree-Based Batdu&IReinforcement Learningd. Mach. Learn. Resvol. 6, pp.
503-556, 2005.

[17] H. Jaeger, M. Lukosevicius and D. Popovici. “Optimipatand Applications of Echo State Networks with Leaky Imeggr
Neurons”.Neural Networksvol. 20, pp. 335-352, 2007.

[18] B. Schrauwen, J. Defour, D. Verstraeten and J. Van Caimpet. “The introduction of time-scales in Reservoir Cottirpy,
applied to isolated digits recognition”. IRroceedings of the International Conference on Artificiaukal Networks
(ICANN), 2007.

[19] H. Jaeger. “Short term memory in echo state networkgchhical Report GMD Report 152, German National Research
Center for Information Technology, 2001.

[20] H. Jaeger. “Tutorial on training recurrent neural netks, covering BPTT, RTRL, EKF and the “echo state network”
approach”. Technical Report GMD Report 159, German NatiBeaearch Center for Information Technology, 2002.

[21] O. Michel. “Webots: Professional Mobile Robot Simutet”. Journal of Advanced Robotics Systewd. 1, no. 1, pp.
39-42, 2004.

[22] E. A. Antonelo, B. Schrauwen and D. Stroobandt. “MoliRebot Control in the Road Sign Problem using Reservoir
Computing Networks”. IHEEE Int. Conf. on Robotics and Automation (ICR2008.

[23] C. Ulbricht. “Handling Time-Warped Sequences with KeuNetworks”. InFrom Animals to Animats 4: Proc. Fourth Int.
Conf. on Simulation of Adaptive Behavigedited by e. a. Maes P., pp. 180-192. MIT Press, 1996.

[24] L. Wiskott and T. J. Sejnowski. “Slow Feature Analydimsupervised Learning of Invariance®leural Computatioywvol.
14, no. 4, pp. 715-770, 2002.

