
X Congresso Brasileiro de Inteliĝencia Computacional (CBIC’2011), 8 a 11 de Novembro de 2011,Fortaleza, Ceaŕa

c© Sociedade Brasileira de Inteliĝencia Computacional (SBIC)

LEARNING NAVIGATION ATTRACTORS FOR MOBILE ROBOTS WITH
REINFORCEMENT LEARNING AND RESERVOIR COMPUTING

Eric Aislan Antonelo
ELIS Department - Ghent University

eric.antonelo@elis.ugent.be

Stefan Depeweg
Institute of Cognitive Science - University of Osnabrueck

stdepewe@uni-osnabrueck.de

Benjamin Schrauwen
ELIS Department - Ghent University

benjamin.schrauwen@elis.ugent.be

Abstract – .
Autonomous robot navigation in partially observable environments is a complex task because the state of the environment can not
be completely determined only by the current sensory readings of a robot. This work uses the recently introduced paradigm for
training recurrent neural networks (RNNs), called reservoir computing (RC), to model multiple navigation attractorsin partially
observable environments. In RC, the RNN with randomly generated fixed weights, called reservoir, projects the input into a
high-dimensional dynamic space. Only the readout output layer is trained using standard linear regression techniques, and in
this work, is used to approximate the state-action value function. By using a policy iteration framework, where an alternating
sequence of policy improvement (samples generation from environment interaction) and policy evaluation (network training)
steps are performed, the system is able to shape navigation attractors so that, after convergence, the robot follows thecorrect
trajectory towards the goal. The experiments are accomplished using an e-puck robot extended with 8 distance sensors ina
rectangular environment with an obstacle between the robotand the target region. The task is to reach the goal through the
correct side of the environment, which is indicated by a temporary stimulus previously observed at the beginning of the episode.
We show that the reservoir-based system (with short-term memory) can model these navigation attractors, whereas a feedforward
network without memory fails to do so.
Keywords – reservoir computing, reinforcement learning, robot navigation .

1. INTRODUCTION

Mobile robot navigation systems have been modeled under several different types of techniques. The traditional robotics
approach is based on probabilistic methods for robot localization, which seeks to solve the Simultaneous LocalizationAnd
Mapping (SLAM) problem [1]. Environment constraints, sensor uncertainty and odometry have to be explicitly modeled inthese
systems. On the other hand, navigation systems modeled withcomputational intelligence techniques, such as neural networks
and evolutionary systems, offer an alternative to modelingunknown environments without the need to know a priori information
of the task or environment and can inherently deal with noisyenvironments [2,3].

In particular, navigation tasks frequently need to be solved under the assumption that the state of the environment is par-
tially observable, where the robot does not know the complete state of the environment just by reading its current sensors, such
as its position in the environment. This is usually referredin the literature as a partially observable Markov decisionprocess
(POMDPs). Thus, the navigation system requires additionalsources of information for building the complete state of the en-
vironment, such as using wheel encoders to estimate the traveled distance and the current robot position. Instead of explicitly
modeling odometry, the works in [4, 5] show that a recurrent neural network (RNN) can detect the location of the robot in a
supervised or unsupervised way by using an emerging computing paradigm called Reservoir Computing (RC) [6].

In Reservoir Computing, a parameterized dynamical system is used to project the input signal into a high-dimensional non-
linear state-space. This dynamical system should possess afading memory and it is most commonly implemented as a randomly
generated sigmoidal RNN with fixed weights, commonly known as Echo State Networks [7]. Other forms of reservoir computing
include: photonic reservoir computing [8], reservoir computing with cellular neural/nonlinear networks [9] and liquid state
machine for spiking neural networks [10]. The advantage in RC is that only the readout output layer is trained, usually by
employing standard linear regression methods, whereas therecurrent reservoir weights are left fixed. The advantages of RNN
training with RC over traditional methods such as Backpropagation-Through-Time are: training is fast and convergenceto the
global optimum is guaranteed.

Reinforcement Learning (RL) rules are based on a reward signal r[t], which represents the outcome (i.e., success or failure)
of a learning trial. In immediate reinforcement learning, the reward signal is given at every timestep and is usually computed as

1

X Congresso Brasileiro de Inteliĝencia Computacional (CBIC’2011), 8 a 11 de Novembro de 2011,Fortaleza, Ceaŕa

c© Sociedade Brasileira de Inteliĝencia Computacional (SBIC)

thedistance to the goal. On the other hand, for RL methods with delayed reward signals the outcome is given only at the end of a
trial. Whereas in the former case hints are given in every moment, the latter case defines a very less informative reward function
which can delay the learning process, although it is more biologically plausible. RL algorithms such asQ-learning[?] learns an
action value functionQ(s, a) which indicates the utility of an actiona in a states. It tries to maximize the mean expected future
reward by using avalue iteration updaterule. Whereas these rules are applied in an online fashion, in fitted Q iteration [14] the
Q(s, a) is learned in batch mode with supervised learning techniques such as linear regression and artificial neural networks.

RC-based systems are usually trained in a supervised way. Some works in the literature use RC in a Reinforcement Learning
(RL) framework to model partially observable environments[11,12]. In [12], an ESN with multiple outputs in the readoutlayer,
each one corresponding to the value of a discrete action, aretrained online via a SARSA update [13] rule, whereas in [11],an
ESN with one output representing the value function for a state-action input pair is trained in an iterative batch-mode way. Both
works consider partially observable environments, but while [12] applies to discrete-world tasks, [11] consider morecomplex
control tasks such as the acrobot swing-up task [13].

Function approximators are typically used to model the state-action value function in complex problems where the statespace
is continuous, and in most cases aǫ-greedy policy on the value function is used for selecting the optimal action, whereǫ defines
the probability of selecting random actions for exploration of the state space. In particular, sample-based methods like fittedQ

iteration [14] and least-squares policy iteration [15] areefficient batch-mode training methods for modeling the state-action value
function using function approximators. They collect samples as tuples(st, at, rt, st+1), wherest is the state at timet; andst+1

is the next state after executing actionat on statest and receiving the rewardrt, by interacting directly to the environment using
either totally random actions or aǫ-greedy policy. The dataset composed of samples are iteratively used for batch training.

This work uses a similar approach as [11]. In that work, an ESNis used to model non-Markovian environments in control
tasks such as the mountain car problem and the acrobot swing-up task. It uses a dynamical system, the reservoir, to convert
a non-Markovian state to a approximate Markovian state representation embedded in the high-dimensional state-space of the
reservoir. Specifically, the current work uses an ESN to model partially observable environments in robot navigation problems.
The experiments are performed using an e-puck robot with 8 distance sensors in a rectangular environment with an obstacle
between the robot and the target region. The task of the robotis to reach the goal through the correct side of the environment.
A temporary stimulus at the beginning of the episode indicates which side of the environment the robot should use. So, to
successfully perform the task, the navigation system must have some sort of short-term memory.

In the proposed setup, the ESN is iteratively trained in batch mode to approximate the state-action value function givenas
input 8 distance sensors, the action and an additional inputwhich simulates the temporary stimulus. Experimental results show
that after an initial exploration period and a sequence of policy improvements steps, the robot is able to navigate to thegoal
circumventing the obstacle through the correct side (determined by the initial stimulus) in a quasi-optimal trajectory. We also
show that the fading memory of the reservoir is essential to model these context-dependent navigation attractors.

This work is organized as follows. In Section 2, an overview on iterative value approximation is presented as well as the
used reservoir computing architecture. Next, Section 3 introduce the experiments accomplished as well as the corresponding
environments, settings, and associated results. The last section presents conclusions and future work.

2. METHODS

2.1 ITERATIVE POLICY LEARNING ON PARTIALLY OBSERVABLE ENVI RONMENTS

In fitted Q iteration [16], samples in form of tuples(st, at, rt, st+1), t = 1, ..., I are generated from interaction with the
environment and collected in a training dataset. Training the system is done offline using the collected samples under a supervised
learning framework: usually, a regression algorithm is used to learn the state-action value function, by defining the input and the
desired output as follows:

u(t) = (st, at), (1)

ŷ(t) = rt + γ max
a

Q̂N−1(st+1, a) (2)

where: st, at andrt are the state, action and reward at timet, respectively;N is the iteration of the training process; andγ

is the discount factor. Using the dataset of input-output pairs (u(t), ŷ(t)), the functionQ̂N (s, a) is induced with a regression
algorithm.

In this work, we use an Echo State Network (ESN) [7] to model the critic, that is, theQ-value [13] function, in non-Markovian
environments. Given a partially observable state vectors̃ and an actiona as input, we want to approximate the expected future
sum of rewards, theQ-value for the pair(̃s, a), using an ESN as approximation method. The randomly generated reservoir in the
ESN can convert non-Markovian state-spaces into Markovianstate-spaces due to its characteristic fading memory of previous
inputs. It is similar to fittedQ iteration [14,16] and least squares policy iteration [15] in that it is based on batch offline training
and approximates the value function in an iterative way.

In [11], the ESN is used in reinforcement learning control tasks such as the mountain car problem and the more complex
acrobot swing-up task. The input to the ESN is a vectoru(t) composed of a partially observable states̃, such as the position of
the car or the joint angles of the acrobot (so, excluding the velocity component), and an actiona, and the only output is trained
to approximate the state-action value function.

2

X Congresso Brasileiro de Inteliĝencia Computacional (CBIC’2011), 8 a 11 de Novembro de 2011,Fortaleza, Ceaŕa

c© Sociedade Brasileira de Inteliĝencia Computacional (SBIC)

Policy improvement =
ESN exploitation +
exploration

Policy evaluation =
ESN training

trained architecture

samples
(st,at,rt)~

start with randomly
generated reservoir

epsilon-greedy policy;
epsilon schedule

Figure 1: Approximate Policy Iteration: Policy improvement + Policy evaluation. The iterative policy learning consists of: gen-
eration of samples by interacting with the environment using aǫ-greedy policy and the trained architecture (policy improvement);
and of training the architecture (in this case, the ESN) to approximate the state-action value function with a regression algorithm
using the dataset generated during policy improvement.s̃ is a partially observable state, characterizing a non-Markovian task
which should be handled by the ESN architecture.

As we can approximatêQ(s̃, a), the desired output̂y, by a sum of future rewards over a finite time horizonh [11], equations
(1) and (2) can be rewritten, in the case of a non-Markovian environment:

u(t) = (s̃t, at), (3)

ŷ(t) ≈ rt + γrt+1 + γ2rt+2 + · · · + γhrt+h (4)

The training is accomplished in an iterative way and consists of a sequence of policy improvement and policy evaluation
steps (see Fig. 1). During policy improvement, new samples(st, at, rt), t = 1, ..., I are generated using aǫ-greedy policy and
the trained architecture.I is the number of samples generated during one iteration of the policy improvement stage, which is set
to I = 1000; During policy evaluation, the training input-output pairs (u(t), ŷ(t)), t = 1, ..., E are generated using (3) and (4),
respectively, and the ESN is trained on a subset of the dataset generated through interaction with the environment. Thissubset
corresponds to a sliding window of samples of sizeE, such that only the most recentE = 40.000 samples are used for training.
The ESN model and its training method, linear regression, are explained in the following section. During the iterative policy
learning process, theǫ-greedy policy follows a learning schedule where the exploration is intense at the beginning of the process
and monotonically decreases towards the end of the experiment. This is accomplished by varyingǫ according to a predefined
schedule [11] (given in Section 3.2).

2.2 RESERVOIR COMPUTING

An ESN is composed of a discrete hyperbolic-tangent RNN (i.e., the reservoir) and a linear readout output layer which maps
the reservoir states to the desired output (Fig. 2). In this work, we use leaky integrator nodes [17] in the reservoir, whose state
update equation is given by:

x(t + 1) = (1 − α)x(t) + αf(Wres
resx(t) + W

res
inpu(t) + W

res
bias). (5)

where: u(t) = [̃s, a] denotes the input at timet, a concatenation of a non-Markovian observations̃ and an actiona; x(t)
represents the reservoir state;α is the leak rate [17, 18]; andf() = tanh() is the hyperbolic tangent activation function (most
common type of activation function used for ESNs). The equation for the readout outputy(t), which models the state-action
value function in this work, is as follows:

y(t + 1) = W
out
res x(t + 1) + W

out
bias. (6)

The weight matricesW·

·
represent the connections between the nodes of the network (whereres, inp, out, bias denote

reservoir, input, output andbias, respectively). All weight matrices to the reservoir (denoted asWres
·

) are initialized ran-
domly (represented by solid arrows in Fig. 2), while all connections to the output (denoted asW

out
·) are trained (represented by

dashed arrows in Fig. 2). The initial state is set tox(0) = 0.
The randomly createdWres

res matrix is rescaled such that the system is stable and the reservoir has the echo state property (i.e.,
it has a fading memory [19]). This can be accomplished by rescaling the matrix so that the spectral radius|λmax| (the largest
absolute eigenvalue) of the linearized system is smaller than one [19]. Standard settings of|λmax| lie in a range between0.7 and
0.98 [20]. In this work, the reservoir weights (W

res
res) are rescaled such that its spectral radius are|λmax| = 0.9, which sets the

dynamic regime of the reservoir to the edge of stability in order to achieve rich reservoir dynamics.
Next, consider the following notation:ni is the number of inputs;nr is the number of neurons in the reservoir;no is the

number of outputs (in this work,no = 1); and the number of training samples isns. The output weightsWout
· are trained in

batch mode using standard linear regression techniques on the reservoir states. The procedure is as follows. First, thereservoir is

3

X Congresso Brasileiro de Inteliĝencia Computacional (CBIC’2011), 8 a 11 de Novembro de 2011,Fortaleza, Ceaŕa

c© Sociedade Brasileira de Inteliĝencia Computacional (SBIC)

input

u(t)=[s(t) a(t)]

reservoir

x(t)

output

y(t)~

^ ~Q(s,a)

Figure 2: Reservoir Computing network as a function approximator for reinforcement learning tasks with partially observable
environments. The reservoir is a dynamical system of recurrent nodes. Solid lines represent connections which are fixed. Dashed
lines are the connections to be trained.

(a)
43.5 44 44.5

−59

−58

−57

−56

X (cm)

Y
 (

cm
)

(b)

Figure 3: (a) Robot model used in the experiments: e-puck extended with longer-range distance sensors. (b) Motor primitives or
basic behaviors: left, forward and right.

driven by an input sequenceu(1), . . . ,u(ns) which yields a sequence of statesx(1), . . . ,x(ns) using (5). In this process, state
noise can be added to (5) for regularization purposes, but that is not used in this work because the environment is alreadynoisy
due to wheel slippage and noisy sensors. The generated states are collected row-wise into a matrixM of sizens×(nr +1) where
the last column ofM is composed of 1’s (representing the bias). The desired teacher output, the total future expected return, is
collected row-wise into a matrix̂Y. Then, the readout output’s matrixWout

rb (i.e., the column-wise concatenation ofW
out
out and

W
out
bias) of size(nr + 1) × no is created by solving (in the mean square sense):

MW
out
rb = Ŷ (7)

W
out
rb = (M⊤

M)−1
M

⊤
Ŷ (8)

Note that the other matrices (W
res
res,W

res
inp,W

res
bias) are not trained at all. Their initialization is presented in Section 3.2.

2.3 ROBOT MODEL

We use the e-puck robot from the Webots simulation environment [21] for the experiments in this work. Webots provides a
physics model of the e-puck robot (the simulator detects collisions and simulates physical properties of objects, suchas the mass,
the velocity, the inertia, the friction, the spring and damping constants, etc.). The model is shown in Fig. 3(a). It has a7 cm
diameter. The e-puck is equipped with 8 infra-red sensors which measure ambient light and proximity of obstacles in a range of
4 cm originally. However, the extended e-puck model used in this work has longer-range sensors capable of measuring distances
in the interval (0, 30] cm. The noise on sensors is drawn from anormal distributionN(0, 3)cm. In real-world experiments,
these longer-range sensors could be implemented by adding inexpensive infra-red range sensors to the real e-puck robotvia an
extension module.

The robot has 2 stepper motors with maximum speed of 1000 steps per second, which are steered by the following 3 motor
primitives or basic behaviors in the low-level control module: forward (left wheel: 500 steps/s; right wheel: 500 steps/s), left
(left wheel: 250 steps/s; right wheel: 500 steps/s), and right (left wheel: 500 steps/s; right wheel: 250 steps/s). These motor
primitives are executed for a period of 11 timesteps in the simulator (704ms). See Fig. 3(b) for a graphical representation of the
trajectories given by each of the motor primitives. It is interesting to observe that each primitive is inherently stochastic once the
robot wheels can not reproduce the same trajectory due to non-systematic noise originated from wheel-slippage or irregularities
of the floor.

The motor primitives are designed to simplify the control task, by reducing the action space to 3 discrete actions.

4

X Congresso Brasileiro de Inteliĝencia Computacional (CBIC’2011), 8 a 11 de Novembro de 2011,Fortaleza, Ceaŕa

c© Sociedade Brasileira de Inteliĝencia Computacional (SBIC)

(a) 3D environment and e-puck robot

−0.200.20.40.60.81

−0.4

−0.2

0

0.2

0.4

0.6

0.8

X (m)

Y
 (

m
)

(b) Corresponding Map in 2 dimensions

Figure 4: Rectangular environment with an obstacle betweenthe robot and the goal location. (a) 3D environment in Webots,
with the e-puck robot in the upper part. (b) Representative map of the environment in two dimensions. The box with a point
inside represents the possible starting positions for the robot (randomly chosen), while the black and gray dashed rectangles
represent the possible circumvention areas (dependent on the initial transient stimulus) which the robot has to use to reach the
goal, represented by dashed box in light blue color.

3. EXPERIMENTS

3.1 INTRODUCTION

The robot task is to learn context-dependent navigation attractors in a partially observable environment. The environment is
a rectangular arena with an obstacle between the robot and the goal location, as it can be seen in Fig. 4(a). During a simulation
experiment, each episode starts with the robot located in the upper part of the room with position randomly chosen from a small
interval defined by the solid rectangle in Fig. 4(b); the initial orientation of the robot is South, with small uniform noise added
in the range[0, 1.2] degrees. The robot is controlled according to aǫ-greedy policy. The architecture is trained using the scheme
depicted in Fig. 1 and explained in Sections 2.1.

The task of the robot in this environment consists of navigating to the goal location, given by the light blue dashed box
in Fig. 4(b), through the left or right part of the environment, shown by black and gray dashed rectangles in the same figure,
depending on a previously received stimulus from the environment. This temporary stimulus can be implemented through the
presence/absence of an object in the environment, the on/off of a light source, or the existence/absence of a sound. In the current
experiments, this is simply implemented as an additional input signal to the reservoir which is 1.5 whenever the trajectory towards
the goal should be done via the left side and -1.5 when the thistrajectory should be performed via the right side. This extra signal
is present for2.1s in the beginning of each episode, during which the robot is not able to go left or right but only slowly forward
(meant not to bias learning). After the initial period of2.1s, this extra input becomes zero.

One episode is finished whenever the robot reaches the goal performing the correct trajectory, hits against an obstacle,or
when the the length of the episode is greater than60 timesteps. The rewardrt is always -1, unless the robot is at the goal
location, whenrt = 0. When an episode ends, the input and desired output can be computed according to equations (3) and (4).

3.2 SETTINGS

This section presents the configuration parameters. The inputsu to the network are 8 frontal distance sensors, scaled to the
interval [0,1], an actiona ∈ {−1, 0, 1} and an additional input for the temporary stimulus. The reservoir size is 400 neurons for
all experiments in this work. The leak rate isα = 0.1. The input weight matrixWres

inp is initialized to -0.14, 0.14 and 0 with
probabilities 0.25, 0.25 and 0, respectively. The reservoir is sparsely connected: only 10% of the weights inW

res
res are non-zero,

chosen from the set{−1, 1} with equal probability [11]. The resulting matrixWres
res is rescaled such that its spectral radius is

|λmax| = 0.9. The weights from matrixWres
bias are generated from a normal distributionN(0, 0.2).

Theǫ parameter for the policy, which corresponds to the probability of selecting random actions at each time step, is selected
from an arbitrarily chosen vector[0.9, 0.8, 0.6, 0.5, 0.4, 0.3, 0.1, 0.01], similarly to [11]. The particular timesteps in whichǫ
changes follows a learning schedule chosen as[40, 140, 190, 220, 240, 260, 310, 330] ∗ 103 timesteps. This means, for instance,
that during the first 40.000 timesteps,ǫ = 0.9. The finite time horizon in (4) ish = 40. The discount factor isγ = 1, which
defines a shortest-path problem.

5

X Congresso Brasileiro de Inteliĝencia Computacional (CBIC’2011), 8 a 11 de Novembro de 2011,Fortaleza, Ceaŕa

c© Sociedade Brasileira de Inteliĝencia Computacional (SBIC)

0 20 40 60 80 100 120 140 160 180
−5

0

5

10

15

20

25

30

35

Timesteps (x 2000)

G
oa

ls
 p

er
 2

00
0

tim
es

te
ps

(a) ESN

0 20 40 60 80 100 120 140 160 180
−5

0

5

10

15

20

25

30

35

Timesteps (x 2000)

G
oa

ls
 p

er
 2

00
0

tim
es

te
ps

(b) The same network but without recurrent connections

Figure 5: Average number of goals achieved per two thousand timesteps for 10 simulation experiments. The black lines represent
the goals achieved via theleft trajectory, while the blue lines represent the goals achieved viaright trajectory. Error bars represent
the standard deviation between runs. (a) Using the reservoir architecture presented in this chapter. (b) Using the samearchitecture,
but without internal memory by settingWres

res = 0.

The regression learning procedure for the reservoir architecture is executed every 1.500 timesteps considering the last E =
50.000 generated samples as learning window. These samples used for learning are generated from the interaction of the reservoir
with the environment, while samples resulting from random actions are not taken into account during learning.

3.3 RESULTS

In order to evaluate the proposed robot navigation task using the ESN, the mean number of goals achieved per2 × 103

timesteps consideringleft and right trajectoriesseparately is shown in Fig. 5(a). As time evolves, exploration decreases and the
number of goals achieved via left and right trajectories (represented by black and blue lines, respectively) increases, which shows
the capability of the architecture to learn short-term temporal dependencies in robot navigation tasks.

In Fig. 5(b), the mean number of achieved goals is computed using a memoryless architecture, implemented by simply setting
the reservoir weightsWr

r to zero. It is possible to observe that the system does not learn the task correctly, preferring theright
trajectory over theleft trajectory in most of the experiments because the number of goals increases for the right navigation
attractor (in blue) and decreases for the left attractor.

A single ESN can model multiple navigation attractors in a reinforcement learning task. These attractors, in the context of
reinforcement learning, are dynamic, because the agent-environment interaction changes over time. Fig. 6(a) shows how these
dynamic attractors evolves during the learning process. Inthe beginning, the two navigation attractors are not well formed, also
because exploration is very high. In that stage, the system performs several possible trajectories due to random actions. As the
simulation advances, the dynamic attractors are shaped so that the robot reaches the goal location performing a trajectory which
is dependent on the initial temporary stimulus given at the beginning of the run.

Fig. 6(c) shows the principal components resulting from applying PCA on the reservoir states for the last episodes of simula-
tion of Fig. 6(a). The principal component 3 encodes information used to follow the correct trajectory at the left or right side, thus
forming a short-term memory responsible for holding the initial temporary stimulus. Fig. 6(b) shows that, after convergence of
the learning process, the principal components form different trajectories in the state space according to the past stimulus given
at the beginning of the episode.

Without the fading memory of the reservoir, it is not possible to learn these navigation attractors correctly, because amemo-
ryless architecture does not hold the temporary stimulus for future moments.

4. CONCLUSION

This work has shown that an Echo State Network (ESN) can be used to model the state-action value function in non-markovian
navigation tasks. The training procedure is based on [11], consisting of an alternating sequence of simulation experiments for
samples generation and regression learning events, under apolicy iteration framework (policy improvement + policy evaluation)
[15]. The ESN projects a non-Markovian input into a high-dimensional non-linear state-space with temporal dynamics. This
dynamic state-space convert the non-Markovian environment into a Markovian problem, as it automatically takes the history of
the input stream into account.

The non-markovian task of the robot in this work is similar tothe T-maze task [22,23] which requires a temporal association
of a past stimulus and a future delayed reponse. However, thecurrent work is more general in the sense that it requires to learn
attractors from the agent-environment interaction which are capable of controlling a mobile robot to the correct goal in a partially

6

X Congresso Brasileiro de Inteliĝencia Computacional (CBIC’2011), 8 a 11 de Novembro de 2011,Fortaleza, Ceaŕa

c© Sociedade Brasileira de Inteliĝencia Computacional (SBIC)

e=1,...,1024 e=1025,...,2048 e=2049,...,3072 e=3073,...,4096 e=4097,...,5120

e=5121,...,6144 e=6145,...,7168 e=7169,...,8192 e=8193,...,9216 e=9217,...,10240

e=10241,...,11264 e=11265,...,12288 e=12289,...,13312 e=13313,...,14336 e=14337,...,15360

(a)

−2

0

2

PC 1

−0.5

0

0.5
PC 2

−0.1

0

0.1

PC 3

Robot coordinates

Time steps
0 100 200 300 400

−0.2
0

0.2
0.4
0.6
0.8

(b)

−2
0

2
4 −0.5

0

0.5

−0.15

−0.1

−0.05

0

0.05

0.1

PC 2

PC 1

P
C

 3

(c)

Figure 6: (a) A sequence of robot trajectories as learning evolves, using the ESN. Each plot shows robot trajectories in the
environment for several episodes during the learning process. In the beginning, exploration is high and several locations are
visited by the robot. As the simulation develops, two navigation attractors are formed to the left and to the right so thatthe agent
receives maximal reward. (b) Three principal components (PC) over time after applying PCA on the reservoir states, at the end
of the simulation corresponding to last episodes in Fig. 6(a). The fourth plot shows the robot coordinatesx, y over time in the
environment. The yellow vertical lines delimit different episodes. These plots were made disregarding the initial timesteps where
the temporary stimulus is given, i.e., those initial timesteps were removed. The PC 3 encodes information used to followthe
correct trajectory (left or right), thus forming a short-term memory responsible for holding the initial stimulus. (c)3D state space
of the principal components, where gray and black representdifferent trajectories in the environment.

observable environment. Instead of waiting for a delayed response, the navigation task requires that the correct attractor is learned
and chosen given a temporary stimulus at the beginning of thesimulation.

There are several possible extensions of this work. First, experiments can be done with extended navigation tasks wherethe
robot navigates between rooms of an environment, which would allow to evaluate how the architecture scales to more complex
tasks. It would be interesting to investigate how many navigation attractors a single reservoir network can learn and how this is
related to the size of the reservoir. Finally, other techniques such as Slow Feature Analysis [24] could be investigatedin order
to know whether they can help to infer hidden features of a robot environment from the reservoir states to increase performance
and scale the experiments to bigger environments.

REFERENCES

[1] T. Bailey and H. Durrant-Whyte. “Simultaneous Localisation and Mapping (SLAM): Part II State of the Art”.Robotics
and Automation Magazine, pp. 108–117, September 2006.

[2] E. A. Antonelo, A.-J. Baerlvedt, T. Rognvaldsson and M. Figueiredo. “Modular Neural Network and Classical Reinforce-
ment Learning for Autonomous Robot Navigation: InhibitingUndesirable Behaviors”. InProceedings of the International

7

X Congresso Brasileiro de Inteliĝencia Computacional (CBIC’2011), 8 a 11 de Novembro de 2011,Fortaleza, Ceaŕa

c© Sociedade Brasileira de Inteliĝencia Computacional (SBIC)

Joint Conference on Neural Networks (IJCNN), pp. 498– 505, Vancouver, Canada, 2006.

[3] E. A. Antonelo and B. Schrauwen. “Supervised Learning ofInternal Models for Autonomous Goal-oriented Robot Navi-
gation using Reservoir Computing”. InIEEE International Conference on Robotics and Automation (ICRA), 2009. (sub-
mitted).

[4] E. A. Antonelo, B. Schrauwen and D. Stroobandt. “Event detection and localization for small mobile robots using reservoir
computing”.Neural Networks, vol. 21, pp. 862–871, 2008.

[5] E. A. Antonelo and B. Schrauwen. “Towards Autonomous Self-localization of Small Mobile Robots using Reservoir
Computing and Slow Feature Analysis”. InProceedings of the IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pp. 3818–3823, 2009.

[6] D. Verstraeten, B. Schrauwen, M. D’Haene and D. Stroobandt. “A Unifying Comparison of Reservoir Computing Methods”.
Neural Networks, vol. 20, pp. 391–403, 2007.

[7] H. Jaeger. “The “echo state” approach to analysing and training recurrent neural networks”. Technical Report GMD Report
148, German National Research Center for Information Technology, 2001.

[8] K. Vandoorne, W. Dierckx, B. Schrauwen, D. Verstraeten,R. Baets, P. Bienstman and J. Van Campenhout. “Toward optical
signal processing using Photonic Reservoir Computing”.Optics Express, vol. 16, no. 15, pp. 11182–11192, 8 2008.

[9] D. Verstraeten, S. Xavier-de Souza, B. Schrauwen, J. Suykens, D. Stroobandt and J. Vandewalle. “Pattern classification with
CNNs as reservoirs”. InProceedings of the International Symposium on Nonlinear Theory and its Applications (NOLTA),
9 2008.

[10] W. Maass, T. Natschläger and H. Markram. “Real-time Computing without stable states: A New Framework for Neural
Computation Based on Perturbations”.Neural Computation, vol. 14, no. 11, pp. 2531–2560, 2002.

[11] K. Bush. “An Echo State Model of non-Markovian Reinforcement Learning”. Ph.D. thesis, Colorado State University,Fort
Collins, CO, 2008.

[12] I. Szita, V. Gyenes and A. Loerincz. “Reinforcement Learning with Echo State Networks”. InArtificial Neural Networks
- ICANN 2006, edited by S. Kollias, A. Stafylopatis, W. Duch and E. Oja, volume 4131 ofLecture Notes in Computer
Science, pp. 830–839. Springer Berlin / Heidelberg, 2006.

[13] R. S. Sutton and A. G. Barto.Reinforcement Learning: An Introduction. The MIT Press, March 1998.

[14] M. Riedmiller. “Neural fitted Q iteration - first experiences with a data efficient neural reinforcement learning methods”. In
In 16th European Conference on Machine Learning, pp. 317–328. Springer, 2005.

[15] M. G. Lagoudakis and R. Parr. “Least-squares policy iteration”. J. Mach. Learn. Res., vol. 4, pp. 1107–1149, 2003.

[16] D. Ernst, P. Geurts and L. Wehenkel. “Tree-Based Batch Mode Reinforcement Learning”.J. Mach. Learn. Res., vol. 6, pp.
503–556, 2005.

[17] H. Jaeger, M. Lukosevicius and D. Popovici. “Optimization and Applications of Echo State Networks with Leaky Integrator
Neurons”.Neural Networks, vol. 20, pp. 335–352, 2007.

[18] B. Schrauwen, J. Defour, D. Verstraeten and J. Van Campenhout. “The introduction of time-scales in Reservoir Computing,
applied to isolated digits recognition”. InProceedings of the International Conference on Artificial Neural Networks
(ICANN), 2007.

[19] H. Jaeger. “Short term memory in echo state networks”. Technical Report GMD Report 152, German National Research
Center for Information Technology, 2001.

[20] H. Jaeger. “Tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and the “echo state network”
approach”. Technical Report GMD Report 159, German National Research Center for Information Technology, 2002.

[21] O. Michel. “Webots: Professional Mobile Robot Simulation”. Journal of Advanced Robotics Systems, vol. 1, no. 1, pp.
39–42, 2004.

[22] E. A. Antonelo, B. Schrauwen and D. Stroobandt. “MobileRobot Control in the Road Sign Problem using Reservoir
Computing Networks”. InIEEE Int. Conf. on Robotics and Automation (ICRA), 2008.

[23] C. Ulbricht. “Handling Time-Warped Sequences with Neural Networks”. InFrom Animals to Animats 4: Proc. Fourth Int.
Conf. on Simulation of Adaptive Behaviour, edited by e. a. Maes P., pp. 180–192. MIT Press, 1996.

[24] L. Wiskott and T. J. Sejnowski. “Slow Feature Analysis:Unsupervised Learning of Invariances”.Neural Computation, vol.
14, no. 4, pp. 715–770, 2002.

8

