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Abstract— In this paper, we propose a system for abnormal mo-
tion detection using 3D skeleton information, where the abnormal
motion is not known a priori. To that end, we present a curve-based
representation of a sequence, based on few joints of a 3D skeleton,
and a deformation-based distance function. We further introduce
a time-variation model that is specifically designed for assessing
the quality of a motion; we refer to a distance function that is
based on such a model as motion quality distance. The overall
advantages of the proposed approach are 1) lower dimensional yet
representative sequence representation and 2) a distance function
that emphasizes time variation, the motion quality distance, which
is a particularly important property for quality assessment. We
validate our approach using a publicly available dataset, SPHERE-
StairCase2014 dataset. Qualitative and quantitative results show
promising performance.

Keywords— 3D Skeleton, Temporal Analysis, Abnormal Detec-
tion, Deformation.

I. INTRODUCTION

Human motion analysis received a considerable attention
from the computer vision community over the last few years.
This is mainly due to a wide-range of applications that relies
on effective motion analysis, e.g., surveillance and human-
computer interaction [1], [2]. In most applications, the main
effort is on action representation [1], [3] and action recog-
nition [4]–[6]. Consequently, the research is focused on the
modelling and representation of an action sequence properties
that are invariant to temporal and geometric variation. On the
contrary, in applications like abnormality detection [2], the
main focus is on analyzing the quality of the motion, given a
predefined action. Hence, a motion quality assessment research
emphasizes modeling temporal and geometric variations; such
systems have several important real-world applications, e.g., in
sports [7], and in healthcare [8].

In this work, we are interested in a motion quality assessment
for healthcare related applications, e.g., home-based rehabilita-
tion for stroke patients [9]. In the case of stroke survivors, a
regularly monitored exercise is particularly important to recover
some autonomy in their daily life activities [10]. Post-stroke
patients are initially subjected to physical therapy sessions
under the supervision of a healthcare professional, who usually
suggests activities for a home-based rehabilitation [11]. In
such scenarios, having an automated tool that assesses the
quality of the patient’s exercise could be of great importance.
This would facilitate the monitoring of the patients’ progress
by the physiotherapist, enabling an intervention in case of
continuously less satisfactory reports.

In general, the quality of a given motion is estimated by
measuring the deviation from what is normal. Such approaches
may fall into the topic of abnormal motion detection. Abnor-
malities are usually detected by comparing a given motion with
respect to a model of a normal motion [12]–[14]. In order

Fig. 1: Illustration of the proposed representation: The figure
shows the proposed curve-based sequence representation de-
rived from the knee joints only.

to detect abnormalities, two main approaches exist: 1) where
the abnormalities are known a priori; and 2) where there is
no information of what an abnormality is. In [15], a binary
classifier is trained to classify an observation into either normal
or abnormal. In contrast, works such as [13], [14], [16], [17]
presented methods where the model of a normal motion is
learned and the abnormalities are classified as deviations, given
some threshold, from the model.

In this work, similar to [13], [14], [16], [17], we build a
model from a set of normal motions and detect abnormalities
based on a predefined threshold. We begin by representing a
skeleton sequence as a curve by tracking few selected joints of
the skeletons throughout the sequence. Contrary to [13], [14],
we do not apply a manifold-based dimensionality reduction
method. Instead, similar to [8], we select few joints using
problem-specific knowledge to build a 2-dimensional represen-
tation from a 3×N -dimensional data, for N skeleton joints, see
Fig. 1. With this curve representation, a distance function on
curves could then be used to measure the dissimilarity between
two sequences. We propose to adapt the deformation-based
distance function, introduced in [18], for this purpose. Sub-
sequently, we model normal motion sequences by computing
the average of their representation.

We note that the speed, or latency variation in between se-
quences, contributes significantly to a distance function–mainly
due to mismatching frames. Hence, the representativeness of a
model depends highly on how time-variation is addressed. We
thus introduce the concept of a motion-quality distance which is
based on detecting matching frames (key-frames), then dividing
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the observed sequences into matching sub-sequences. The latter
are then used to compute a series of sub-distances. This
approach is different from a simple linearization as proposed
in [19]. We define the motion-quality distance such that the
variation in time is emphasized, while the optimal alignment
proposed in [19] emphasizes invariance to variation in time.

We show that in assessing the quality of motion, our approach
leads to high performance in comparison to optimal alignment,
hence the name motion-quality distance. The following list
summarizes our main contributions:

1) We propose to represent a 3D skeleton sequence as a
curve, reducing the dimensionality of the data significantly.
Subsequently, we show that the curve-based representation
has a comparable performance to a related motion quality
assessment approach [13], [14].

2) We propose to detect key-frames using the curve-based
representation in order to quantify variation in time. How-
ever, we emphasize time-variation as opposed to emphasiz-
ing invariance. We show that emphasizing time-variation,
in motion quality assessment, leads to high performance.

The rest of the paper is organized as follows: in Section II a
brief review of related works is presented. Section III describes
the problem formulation of an abnormal motion detection
system followed by the proposed approach in Section IV.
Experimental results are presented in Section V, and finally,
Section VI concludes the paper.

II. RELATED WORK

The interest in the area of assessment of the quality of human
actions has been increasing very rapidly over the last years. In
this section, we briefly review vision-based methods to assess
the quality of an action and methods related to the abnormality
detection in human motion analysis.

Assessment of the quality of actions: Assessing the quality
of an action can be thought as a problem of measuring how
close an action is from a reference action. In other words, giving
a score measured by the matching between an action and a
pre-trained model [13], [14]. Pirsiavash et al. [7] proposed a
framework for learning how to assess the quality of actions
from RGB videos. In their work, a regression model is trained
from spatio-temporal pose features such that it predicts scores
of actions. Training a regression model requires a large number
of annotated data. Using a different type of input data, Wang et
al. [8] presented a method to address the problem of automated
quantitative evaluation of muskulo-skeletal disorders of patients
who suffer from Parkinson’s disease using a 3D sensor. They
selected a reference motion by choosing one cycle of the
motion and performing temporal alignment with the remaining
motion cycles. The feature selection is movement dependent
(step size, stepping time and the swing level of the hands),
which makes it undesirable to be generalized to other motions.
The authors of [14] proposed a framework to assess the quality
of actions, where they evaluate the deviation of an observation
from a learned model of normal human motion. They used
Hidden Markov Models (HMM) to model the dynamics of
the human motion from skeleton-based samples of healthy
individuals. This can be seen as an abnormal motion detection
system, where the deviation from a model of normal motion is
estimated.

Abnormality Detection: Abnormality detection refers
mainly to the problem of finding patterns in data that do
not conform to expected behavior [12]. There are two main

approaches for abnormality detection: 1) the abnormality is
known as prior knowledge, and 2) the abnormality is not
known beforehand. In the first approach, the work of Parra-
Dominguez et al. [15] presented a supervised learning method
to learn the abnormalities during stair descent (fall detection).
A binary classifier is then trained on annotated data in order to
decide whether the motion is normal or abnormal, while in the
second approach there is no knowledge of what an abnormality
is. Nater et al. [16] proposed to learn a model of normal
human behavior in an unsupervised way. The model uses a
hierarchical representation of appearance and action level of
normal movements to detect abnormalities (fall detection) from
silhouettes. Snoek et al. [17] trained an HMM using sequences
of normal staircase motion to detect abnormal motion during
stair descent from RGB data. The closest work that is most
related to ours is [13]; there, the authors presented an approach
that detects abnormal events and provides an assessment of the
quality of the motion on a frame-by-frame basis. The work is
based on a continuous statistical model that is built from a set
of normal human motion using 3D human skeleton data. A
non-linear manifold technique was used in order to reduce the
dimensionality of the skeleton information.

III. PROBLEM FORMULATION

In this section, we briefly describe the problem formulation
of an abnormal motion detection system.

Let S = {j1, · · · , jN} be the skeleton pose of a human
subject with N joints, where each ji ∈ R3 is an estimate of
the joint positions in 3D space. Subsequently, a skeleton-based
abnormal motion detection system classifies a sequence M =
{S1, · · · ,Sk} as either normal or abnormal. In general, such a
problem is formalized as

f(M | Mt) =

{
0 , if ‖M−Mt0‖ < ‖M−Mt1‖
1 , otherwise

, (1)

where ‖·‖ denotes a distance function, and Mt denotes the set of
parameters of the abnormal and normal movement models, e.g.,
simple kernel based binary classifier [20].

In this paper, however, we aim to estimate an abnormal
motion detection system from a set of normal motion sequence
examples, without any prior knowledge of what an abnormal
motion is. As a result, instead of solving for a binary classifier
that maximizes a decision margin as given in (1), we introduce
a motion representation approach G(·) such that the distance
between two normal motions is less than a given δ under a dis-
tance function D(·, ·) of the motion representation. Hence, (1)
may be reformulated as

f(G(M) | G(Mt)) =

{
0 , if D(G(M),G(Mt)) > δ

1 , otherwise
, (2)

where G(Mt) represents the model of a normal motion.
In the following section, we describe our proposed approach
for representing a normal motion such that performance of (2)
is maximized.

IV. PROPOSED APPROACH

In this section, we describe the proposed approach for
estimating (2) and discuss data variation due to motion ve-
locity. In Section IV-A, we first detail the proposed motion
representation function G(·) and a descriptive distance func-
tion D(·, ·) followed by the description of the normal motion
model, G(Mt). Later in Section IV-B, we detail time-variation
and its correspondence with the defined distance function.



A. Motion Representation

In specific problems like abnormal motion detection, descrip-
tive movements of a motion sequence are captured by tracking
fewer joints than is needed for general problems, e.g. action
recognition [21], [22]. Hence, a given skeleton S ∈ R3N is
a high dimensional data point with redundant information. As
a result, we define a data representation approach that reduces
the dimensionality of the data by using a priori problem-specific
knowledge.

In abnormal motion detection problems, the motion that is
analyzed is conditioned on a specific and fixed action, i.e.,
every subject, in both training and testing dataset, is expected to
perform a similar action. Hence, there is no variation in action
class but in the manner that an action is performed. As a result,
we select a subset of the joints that shows the largest variation
in performing a specific action as representative joints. In this
work, we select the left and right knee joints, which we denote
by jlk and jrk, respectively, as representative joints. Thereafter,
a skeleton sequence is represented as

G(M) = {pi : ∀i∈[1,··· ,k], pi = ‖Pjlki‖2 − ‖Pjrki‖2}, (3)

where P is defined as the projection matrix on the main
direction of the motion variation. Although, the main direction
can be estimated using conventional dimensionality reduction
methods like Principal Component Analysis (PCA) [23], in this
work we select the y-z plane as the main movement direction
using a data normalization process. This ensures the joint’s main
variation to lie on y-z plane, see Subsection V-A. Hence, P is
defined as

P =

0 0 0
0 1 0
0 0 1

 . (4)

Subsequently, we use a deformation-based distance function,
as defined in [18], [19], for measuring the difference between
two given motion representations; a brief description of the
considered distance function is given below.

Distance Function: Consider a curve defined by (3) and
described by a set of q points that are sampled from k � q
set of points using ϕ defined as follows

ϕ : [0, k]→ [0, q]. (5)

We denote such a curve as ϕ ◦ G(M) = (p1, · · · , pq),
where pi ∈ R2. In [18], [19], such a curve is represented
by a set of rigid-transformation matrices as (g1, · · · , gq), so
that ϕ ◦ G(M) = (g1p1, · · · ,

∏q
i=1 gip1). Henceforth, we de-

note rigid-matrix based representation of a curve ϕ ◦ G(Ma)
as Ca,ϕ = (g1, · · · , gq).

Thereafter, following [18], [19], the distance between two
curve representations Ca,ϕ and Cb,ϕ is defined as

D(Ca,ϕ, Cb,ϕ) =

√√√√q−1∑
i=1

d(gia, g
i
b)

2, (6)

where d(·, ·) is the geodesic distance given by

d(ga, gb) =

√
‖log(RT

a ,Rb)‖2F + ‖vb − va‖2F , (7)

where T denotes the matrix transpose, ‖ · ‖F denotes the
Frobenius norm, and

gi =

(
Ri vi

0 1

)
, (8)

such that Ri and vi are rotation matrices and translation
vectors in R3, respectively. Hence, the distance between
two curves G(Ma) and G(Mb) that are represented by Ca,ϕ
and Cb,ϕ, respectively, can be computed using (6), see [18],
[19] for further details.

Normal Motion Model: We model a normal motion se-
quence using the sample mean of the training dataset. Conse-
quently, we compute the sample mean of a curve representation
dataset {C1,ϕ, · · · , Cn,ϕ}, following [18], [19], as

Ct,ϕ = argmin
Ce,ϕ

1

n

n∑
i=1

D(Ce,ϕ, Ci,ϕ)2, (9)

where Ct,ϕ represents the estimated mean of the dataset
and D(·, ·) is as defined in (6). Finally, the binary decision
of classifying a motion as either normal or abnormal is made
by assuming a symmetric distribution of the training data points
and fixing a δ-radius range, as defined in (2).

B. Time-Variation in Motion Analysis

Although motion variation due to speed or latency is consid-
ered as irrelevant information for tasks like action recognition, it
is one of the distinctive characteristics studied in problems like
motion quality assessment, since the focus is on performance
variability under a predefined action. Consequently, to compare
two given sequences, time-variation needs to be taken into
account in both action recognition like problems and motion
analysis.

In action recognition, Dynamic Time Warping (DTW) [24]
is one of the widely used techniques to filter time-variation
between two given motion sequences with respect to one
another [25]. In principle, DTW selects frames from both
sequences such that a given cost function is minimized, which
usually is the L2-norm. Meanwhile, in [19] an objective func-
tion that is similar to DTW, yet flexible, is proposed and used
to align curves based on deformation cost. Nevertheless, our
goal is not to filter time-variation in motion but to use it for
motion quality analysis. Hence, in this subsection, we detail an
adaptation of the objective function introduced in [19] to define
a distance function in the context of motion analysis.

We begin by defining the deformation-based curve alignment
function introduced in [19]. Let ϕ̄ be a function that samples
uniformly spaced points as defined in (5), then a curve Ci is
aligned to a fixed curve Ct,ϕ̄ by solving for

ϕ∗ = argmin
ϕ

D(Ct,ϕ̄, Ci,ϕ), (10)

where D(·, ·) is as defined in (6).
The solution for (10), ϕ∗, returns matching points which we

will refer to as key-points. In other words, the distance between
the two curves is minimized if Ci is sampled according to ϕ∗.
Hence, the aligned curves are defined as Ct,ϕ̄ and Ci,ϕ∗ . How-
ever, we are not interested on filtering time-variation from the
motion arguments– i.e., minimizing the distance between two
curves based on the key-points ϕ∗. In fact, we aim to analyze
the time-variation in between key-points; in a sense, using the
solution ϕ∗ for the opposite effect than it was intended. Figure 2
shows an example of the distinction between the key-points and
the time-variation between key-points (magnified part in Fig. 2).

As a result, given q key-points that are identified by ϕ∗, we
summarize the motion between two sequential key-points `, j
of the curve Ci as
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Fig. 2: Deformation-based alignment between two curves. The
blue curve is described as a set of uniformly sampled points ϕ̄.
The red curve represents the original curve to be aligned. The
green line shows the linearization using the key-points ϕ∗. The
magnified part in the figure highlights the distinction between
the key-points and the time-variation between key-points.

Fj(Ci,ϕ∗
(j,`)

) =
∏̀
r=j

gr, (11)

where j < `. In contrast, the approach in [19] linearizes the
deformation between the key-points (refer to Fig. 2) while (11)
attempts to preserve the observed deformation due to time-
variation. Consequently, (6) is redefined to reflect the time-
variation between two curves as follows

D(Ct,ϕ̄, Ci,ϕ∗) =

√√√√q−1∑
j=1

d(F t
j ,F i

j)
2, (12)

where d(·, ·) is as defined in (7). Henceforth, we will refer
to (12) as motion-quality distance. For a better understanding
of the proposed approach, Fig. 3 shows an overview of the
pipeline.

V. EXPERIMENTS

In this section, we present the dataset used to evaluate the
proposed approach. Furthermore, we show how the skeleton
data is normalized to address variations due to scale and abso-
lute locations in Subsection V-A. In Subsection V-B we present
an analysis of the time-variation of the skeleton sequences, and
finally, in Subsection V-C we show quantitative results of the
abnormal motion detection system.

To evaluate the proposed approach for detecting abnormal
motion using a curve-based representation from skeleton data,
we use the publicly available dataset SPHERE-Staircase2014
introduced in [13]. This dataset includes 48 sequences per-
formed by 12 subjects while walking upstairs. The sequences
were captured using an RGB-D sensor placed at the top of
the stairs. In the dataset, the abnormal motion events were
performed by subjects under the guidance of a physiotherapist.
Such scenario is very interesting to test our approach for the
reason that we are interested in home-based rehabilitation. We
follow the same protocol as [13] and we use 17 sequences to
build a normal motion model. The rest of the sequences were
used in the testing part, where 14 sequences are considered as
normal motions and 17 contain abnormalities.

A. Data Normalization

In order to make the skeleton information invariant to abso-
lute location and scale, each skeleton S is spatially registered

without modifying the joint angles. First, the world coordi-
nate system is placed at the joint corresponding to the hip
center. Then, the skeleton is rotated such that the projection
of vector from the left hip to the right hip onto the x-y
plane is parallel to the x-axis [25]–[27]. Furthermore, each
skeleton is normalized such that the body-parts lengths match
the corresponding lengths of the reference skeleton [25]–[27].
Note that, a body-part is a rigid segment that connects at least
two human body joints. With such normalization, the main
direction of the motion variation happens to be on the y-z plane.
Consequently, the direction of the x-axis is perpendicular to the
main movement direction, which has an irrelevant impact on the
walking pattern. Figure 4 shows an example of a normalized
skeleton with the corresponding coordinate system and also the
plane concerning the main direction of the motion. Before any
other step, we apply an averaging window filter with size 11
on the joint coordinates in order to reduce the amount of noise
from the skeleton data.

B. Time Variation Analysis

Generally, when comparing two temporal sequences, tempo-
ral alignment techniques are used in order to find the points
that minimize a given cost function. With this in mind, we
performed an analysis on the detection of the key-points, which
are the points that minimize the deformation-based alignment
between two curves (refer to Fig. 2) as defined in (10). With the
purpose of analyzing the impact of the time-variation between
key-points, we selected a uniform sampling function ϕ̄ for the
model Ct,ϕ̄. Then, we tested the following scenarios for the
testing curves:

1) Uniform Sampling, US: using uniformly sampled points
to compute the distance (6);

2) Optimal Sampling, OS: using the key-points estimated
from (10) to compute the distance (6);

3) Motion-Quality distance, MQ: using the key-points es-
timated from (10) to compute the motion-quality dis-
tance (12).

In order to have a clear understanding, we applied a multi-
dimensional scaling (MDS) method to the data based on the
corresponding cost function for each scenario. This was done
to visualize the relationship between the distance functions and
the ground truth labels. Figure 5 shows the visualization of the
MDS, where Fig. 5a refers to the US scenario, Fig. 5b to the
OS scenario, and Fig. 5c to the proposed MQ scenario.

The conclusion that we obtain by looking at the Fig. 5
is that for the case of the OS scenario (see Fig. 5b), the
information about time-variation is filtered. This means that
while computing the distance between two curves that are
sampled according to the key-points, the distance will always be
the minimum possible. Consequently, the distinction between
normal and abnormal motion is not that discriminative. Fig-
ure 5b shows that it is not possible to separate the normal from
the abnormal motion for such scenario. Hence, for our purpose,
the classification using the linearization of the key-points would
not be possible at all. Such approaches could be applied to
key-pose skeleton based detection applications, e.g., for action
detection/recognition applications [28], [29]. On the contrary,
for the US scenario (refer to Fig. 5a), the information about
time-variation is lost. Meaning that the sampling is happening
independently from the model, the sampling rate is chosen a
priori. In this case and due to the small amount of variation
in the data, the classification would be considerably good. We
believe that with the increase of the variation in the data, this
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Fig. 3: Overview of the proposed approach. In the upper part, the dashed line rectangle regards the process of achieving the
normal motion model. The bottom part concerns the testing scenario, where an input 3D skeleton sequence is represented as a
curve. Then, the key-points ϕ∗ are obtained by employing a deformation-based alignment between the model and the observed
curve. Consequently, the motion-quality distance is computed in order to decide if whether normal or abnormal motion.

xy

Fig. 4: Skeleton normalization. The word coordinate system is
placed at the hip center. The plane colored in green represents
the y-z plane where the main direction of motion variation
is happening. The arrow shows the main direction of the
movement.

scenario would not perform such satisfactory results. Figure 5a
depicts that the normal and the abnormal motion are separable
from one another. In this work, we are interested in analyzing
the time-variation between key-points. Unlike [19], we do
not linearize the deformation between the key-points. Instead,
we preserve the observed deformation due to time-variation.
With such approach, preserving the time-variation allow us to
estimate the deviation of an observation from the model. Conse-
quently, using the motion-quality distance, that emphasizes the
time-variation between key-points, the classification of normal
or abnormal motion produces encouraging results. Figure 5c
shows that the data have similar behavior comparing to the OS
scenario, but in this case, it is possible to separate the normal
from the abnormal motion.

C. Abnormal Motion Detection

To demonstrate the performance of the proposed abnormal
motion detection system, we compare our results with the work
of [13]. In their work, they evaluate the detection per abnormal
motion, while in our case we are evaluating per sequence.
With this, we assume that a sequence containing at least one
abnormal motion is considered as an abnormal sequence. For
the classification results, we evaluated the proposed scenarios

described in the previous subsection. For the normal motion
model we used 30 as the number of uniformly sampled points.
For the classification of normal or abnormal motion detection,
we used an empirically tested threshold δ = 30.65. Table 1
shows the results for the abnormal motion detection using the
SPHERE-Staircase2014 dataset. Note that, as mentioned before,
the results are in correspondence with the previously described
scenarios (refer to Fig. 5). In the OS scenario, the system
could not identify any kind of abnormal motion, detecting only
the normal motion. Subsequently, for the other scenarios, we
achieved promising results, wherein the case that we consider
the motion-quality distance (MQ scenario), the results are better
than the US scenario.

Table 1: Results for the abnormal motion detection using the
SPHERE-Staircase2014 dataset.

Methods Accuracy (%)
Paiement et al. [13] 93
Uniform Sampling, US 91
Optimal Sampling, OS 50
Motion-Quality distance, MQ 97

VI. CONCLUSION

In this paper, we presented an approach for an abnormal
motion detection system. For that purpose, we proposed to
represent a 3D skeleton sequence as a curve to reduce its
dimensionality, yet representative. Hence, based on this curve
representation, we defined a motion-quality distance, which
emphasizes time-variation between key-points. The proposed
method showed that highlighting time-variation, we were able
to handle small variations in the data due to the nature of the
dataset (no variation in the action class, but only in the manner
that an action is performed). We also presented an analysis
on the time-variation for abnormal motion detection. This was
done to present qualitatively the performance of the motion-
quality distance, which is an important property of the quality
assessment.

As future work, we intend to explore in more detail the
properties of the deformation-based alignment in motion anal-
ysis. For that purpose, a penalty term would be added in the
minimization problem, such that it would incorporate problem-
related constraints, e.g., 3D skeleton-specific geometry or noise-
free skeleton dynamics [30]. We also intend to expand the
proposed approach to represent a skeleton sequence as a point
in the deformation space, without any prior knowledge. Such
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Fig. 5: Multidimensional scale method applied to the data on the representation space. Each point represents a curve. Figure 5a
shows the case of the US scenario, Fig. 5b for the OS and Fig. 5c using the proposed MQ scenario.

approach could be used in action detection/recognition applica-
tions. Finally, we plan to test the approach with data acquired
from real post-stroke patients.
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