
Visual Emulation for Ethereum’s Virtual Machine

Robert Norvill
Sedan Group, SnT

University of Luxembourg
29 Av. John F. Kennedy

L-1855 Luxembourg
robert.norvill at uni.lu

Beltran Borja Fiz Pontiveros
Sedan Group, SnT

University of Luxembourg
29 Av. John F. Kennedy

L-1855 Luxembourg
beltran.fiz at uni.lu

Radu State
Sedan Group, SnT

University of Luxembourg
29 Av. John F. Kennedy

L-1855 Luxembourg
radu.state at uni.lu

Andrea Cullen
Engineering and Informatics

University of Bradford
Richmond Rd

Bradford, BD7 1DP, UK
a.j.cullen at bradford.ac.uk

Abstract—In this work we present E-EVM, a tool that emulates
and visualises the execution of smart contracts on the Ethereum
Virtual Machine.

By working with the readily available bytecode of smart
contracts we are able to display the program’s control flow graph,
opcodes and stack for each step of contract execution.

This tool is designed to aid the user’s understanding of the
Etheruem Virtual Machine as well as aid the analysis of any given
smart contract. As such, it functions as both an analysis and a
learning tool. It allows the user to view the code in each block
of a smart contract and follow possible control flow branches. It
is able to detect loops and suggest optimisation candidates. It is
possible to step through a contract one opcode at a time.

E-EVM achieved an average of 85.6% code coverage when
tested.

Index Terms—Ethereum, Smart Contracts, Visualisation, Byte-
code

I. INTRODUCTION

Ethereum [1] is one of the world’s most popular cryptocur-
rency systems. It is set apart by its heavy integration and usage
of smart contracts. Smart contracts are programs that are stored
on the blockchain and run when a user sends a transaction
to them. They benefit from the immutability and consensus
assurances provided by blockchain. Ethereum smart contracts
are most commonly complied from source code, the compiled
bytecode is executed by the Ethereum Virtual Machine (EVM).

Ethereum has been subject to a number of high profile
attacks and incidents that exploited flaws in smart contracts
like the DOA hack [2] and the Parity wallets frozen accounts
problem [3], together having cost hundreds of millions of
dollars. These attacks were caused by errors made by the de-
velopers who wrote the contracts. This highlights the need for
developers and users to have tools with which to analyse the
code and behaviour of contracts in order to avoid potentially
dangerous bugs before putting their money into them.

Focusing on bytecode is of particular value. Only bytecode
is stored on the blockchain and availability of source code is
entirely at the discretion of the developer. Some third party
tools, like etherscan.io [4], offer verification services
for contracts. However, this service relies on the developer
uploading their source code to the site, as well as trust in the
third party site. In the vast majority of cases only the bytecode
is available to the user. At the time of writing Etherscan lists

> 999999 contract accounts and only 10280 verified contract
accounts. E-EVM allows for insight into what a compiled
contract does by following all possible execution paths.

Ethereum smart contracts can be compiled from several
languages. While Solidity has come to be something of a
standard, the Serpent [5] and Viper [6] projects are maintained
and have their own unique purposes. Focusing on bytecode
allows us to be language-agnostic.

A. Ethereum Virtual Machine
The EVM is responsible for the execution of smart con-

tracts. It is a simple stack machine that reads bytecode com-
piled from a higher level language. The stack has a maximum
depth of 1024 and is held in memory. Ethereum’s bytecode is
Turing complete by design.

A compiled smart contract consists of a sequence of opcodes
and data, which form the instructions for the EVM and the
static data values to be used during execution. The EVM reads
bytecode by incrementing a program counter, all Ethereum’s
opcodes are 1 byte long.

Certain opcodes, including the PUSH, JUMP and JUMPI
instructions, require that the pointer is incremented by more
than 1 and have certain constraints. The jump instructions must
land on an instance of the JUMPDEST opcode. Landing on
any other opcode is considered to be an exception and causes
execution of the contract to fail.

In this paper we present E-EVM, a prototype tool capable of
operating on Ethereum bytecode that emulates the operations
of the EVM on smart contract bytecode and visualises the
control flow between blocks of code within a contract as
a directed graph. The user can step through and see what
values are on the stack during execution and which opcodes
are responsible for stack manipulation. Two versions of E-
EVM are provided, one focusing on suggesting optimisation
candidates and the other on handling operations.

E-EVM uses visualisation of a contract’s low level be-
haviour to allow the user to gain a deeper understanding of
how a given compiled contract operates. E-EVM can be used
to aid code analysis and optimisation as well as to understand
the operation of the EVM and any given smart contract.

II. RELATED WORK

Ethereum’s online IDE, Remix [7] has added a debugger
to its interface; it appears this tool is intended to allow the978-1-5386-3416-/18/$31.00 c© 2018 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/162021679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

user to step through the execution of a given contract. At the
time of writing the debugger is in the alpha stage and we have
been unable to view it working correctly. We cannot, therefore,
comment on its performance or features.

The solgraph project [8] claims to be able to produce
Control Flow Graphs for Ethereum smart contract bytecode.

E-EVM’s ability to suggest candidates for constant synthesis
was inspired by the Souper super optimiser [9] which can
detect this optimisation for other forms of bytecode. It is the
authors’ intention that our tool can be used to better understand
how optimisation might be applied to smart contracts.

In [10] a symbolic execution tool is presented which is ca-
pable of using formal methods to detect bugs in the Ethereum
smart contracts. The interest in the tool suggests a strong need
for tools capable of smart contract analysis.

Chen et al. present a tool for finding patterns which identify
candidates for optimisation to reduce the monetary cost of
smart contract execution [11]. This is another effort to analyse
smart contracts, this time in terms of cost rather than security.

In our previous work we made heavy use of contract
bytecode in order to ascertain contract purpose [12].

III. HIGH LEVEL OVERVIEW OF E-EVM

This project is split into two main parts; the emulation
engine which forms the back-end, and the JavaScript interface
which forms the front-end. The engine is written in Python 3
and emulates code execution in the EVM. We provide two
version of the E-EVM engine.

The first is called Sym, it does not carry out any mathemati-
cal or logical operations of opcodes. Instead it pushes symbolic
variables as the results of operations. A symbolic variable is
taken to be one of an unknown value. When encountered
by JUMPI as the jump condition it is taken to resolve to
both true and false, both execution paths are followed. Sym’s
only real values come from PUSH operations. It is able to
suggest candidates for constant synthesis within a block: An
optimisation whereby an operation that always returns the
same value can be replaced with a constant of that value.

The second is called Concrete, it carries out basic arithmetic
operations and pushes the results to the stack. This can only
be done if both inputs are concrete values, otherwise it pushes
a symbolic variable to the stack. Concrete is able to provide
a more accurate representation of contract execution as more
of its stack values can be real.

The output from the E-EVM’s back-end is a list of the
opcodes that make up the contract passed to it, a list of stack
states pertaining to each opcode, the code block that each
opcode is in, the call history and the CFG generated from
the emulated execution of the contract. There is a separation
between front and back-end, with the front-end only having
to deal with static, pre-generated information. Our front-end
dashboard is written in JavaScript and presented in a HTML
page. It takes the data outputted by the engine and represents
it for the user to step through.

This design allows for different front-ends to be used to
represent the data without having to alter the operation of the

back-end. As this project is open source [13] any interested
reader can process the results of E-EVM’s emulation in a
custom visualisation.

To the best of our knowledge there does not currently exist
a tool for Ethereum that provides the ability to step through
execution paths by nodes in a CFG or by opcode as well as
view the state of the stack and opcode responsible for each
stack operation in turn.

IV. E-EVM OPERATIONAL BEHAVIOUR

A. Mapping Jump Destinations & blocks

Once bytecode has been obtained and formatted a
first pass over the contract is carried out by the
resolve_jump_dests function, it is called by the
sym_ex function which is responsible for the bulk of em-
ulation related operations.

Ethereum’s PUSH instructions are numbered from 1 to 32.
This number indicates the number of bytes that the EVM
should take as the value to be added to the stack. The program
counter (PC) needs to move over the bytes that are to be taken
as a value and pushed to the stack, therefore: PC’=PC+1+n
for PUSHn where n is the integer appended to the PUSH
operation in range: [1;32].

The resolve_jump_dests function records the code
block that each opcode in the contract code is in. We define
a block as starting from a JUMPDEST and continuing until a
second one is encountered. As an Ethereum smart contract can
only jump to an instance of JUMPDEST, this opcode logically
defines blocks with distinct function between which control is
passed. The blocks are used to model control flow with each
block represented as a node in the graph. Jump/i instructions
and jump destinations generate directed edges between the
nodes.

When the JUMPDEST instruction is encountered E-EVM
checks if the previous opcode was a jump instruction and if
not it adds an edge between the block containing i (itself),
and the previous block containing the opcode i-1. Every
encounter with the JUMPDEST instruction is a passing of
control considered to be a transition in control.

B. Emulated Execution

Once jump destinations and blocks have been mapped the
program calls the function sym_ex, which uses a list to
represent the stack. When the Sym version encounters an
opcode that returns a variable a symbolic variable with the
format %vart where t is a value incremented by 1 for each
symbolic variable created, is added to the stack.

Upon encountering a jump instruction E-EVM checks that
the destination is valid and adds an edge to the CFG from the
node representing the previous block to the node representing
the block containing the jump destination. In the case of an
invalid destination the JUMP instruction halts execution and
JUMPI does not follow the one of its two paths which points to
the jump destination. No edges are added for jump instructions
that end a path. Invalid jump destinations include symbolic
variables, which cannot be resolved. Execution halts upon

encountering any of the opcodes that would cause contract
execution to halt in the EVM. Fig. 1 shows the result of
encountering a JUMPI instruction in bytecode. It is possible
that i+1 results in landing in some block other than: x if i+1
is a JUMPDEST as seen in fig. 2.

Fig. 1: Execution of JUMPI

Both versions of E-EVM detect re-entry into a block, this
stops E-EVM getting stuck in an infinite loop when executing
both branches of a conditional jump. It aids code analysis and
user insight into the operations of Ethereum smart contracts.
Re-entry is defined as arriving at the same block from the
same previous destination more than once.

Fig. 2: Greeter contract: lines 24-27

PUSH2 0x66
JUMPI
JUMPDEST
PUSH1 0x0

C. Call History Tracking

As the program tracks the state of the stack for each opcode
in a contract it is also necessary to track the call history
for each opcode. The call history is defined as the previous
blocks through which control has been passed before reaching
the current opcode. A block can be encountered more than
once, when control has passed through different blocks before
arrived back at a given block it is possible that the contents of
the stack might be different. This can be seen in the example
in fig. 3 where the rounded boxes represent code blocks and
the straight boxes represent stack states. The block starting
at the jump destination located at 0x23 in the bytecode can
receive two different stacks depending on which block passes
control to it. In our example the difference in stack affects the
outcome of the less than check.

Fig. 3: Call History Example

As our aim is to visualise an accurate emulation of the
EVM, the stack state displayed to the user is dependent on
the history of calls made before entering the current block.

D. Visualisation

Once the graph has been built during symbolic execution it
is given as output for use by our front-end, which is used to
generate the view seen by the user. The contract’s CFG as well
each opcode and its corresponding stack state are displayed
using JavaScript in a HTML page. The user can then step
backwards and forwards through the program’s execution as
they wish. When a JUMPI is reached in the visualisation the
user can choose which branch they wish to follow. An example
can be seen in fig. 4, the blue nodes indicate the blocks visited
prior to the current block.

E. Testing

We tested our program by running it on various contracts
and measuring the code coverage we achieved. Code coverage
was measured as a percentage for each contract by calculating:

nodes / b l o c k s ∗ 100

Where nodes is the number of nodes in the CFG blocks is the
total number of blocks the contract has.

V. RESULTS

Various metrics for each contract used for testing can be
seen in table I. The results pairs are given in the format (Sym/-
Concrete) for the two versions E-EVM, constant synthesis only
applies to Sym.

TABLE I: Metrics for tested contracts in the format (Sym/-
Concrete)

Greeter Wallet Token Golem Raiden
Coverage% 100/100 68.6/68.6 78.8/78.8 90.8/90.8 89.6/89.6
Unkwn ops 0/0 0/0 15/15 0/0 0/0
Dyn. jmps. 0/0 0/0 5/5 0/0 0/0
Bad jmps. 0/0 15/15 0/0 0/0 62/62
Loops 8/8 78/78 19/19 89/89 82/82
Re-entries 4/4 31/31 8/8 37/37 44/44
Cnst. synth. 3 51 40 112 93

Fig. 4: Emulator GUI

The first contract we tested our program with was the greeter
contract provided as an example by Ethereum, it can be found
at [14].

The second contract we tested is a
wallet contract found at the address
0xf1ce0A98eFbFA3f8EbEC2399847b7D88294A634e. We ran
the contract creation code available from Etherscan.

The third contract is the token example found at [15]. We
used the contract creation code available from Remix.

The fourth contract we tested against was the
Golem MultiSig Wallet, found at the address
0x7da82C7AB4771ff031b66538D2fB9b0B047f6CF9. We
used the contract creation code available from Etherscan.

The fifth and final contract is
the Raiden MultiSig wallet found at
0x00C7122633A4EF0BC72f7D02456EE2B11E97561e.
Interestingly, it has a similar functionality to the Golem
wallet but the bad jump figures are very different.

The two versions are identical across the board, as such
it is apparent that none of the contracts we use rely on the
results of operations where the data comes exclusively from
PUSH instructions. The results from Concrete would begin to
diverge if historical data was used, as it would be able to
resolve more variables to real (as oppose to symbolic) values.

Contracts sometimes contain unreachable code. For example
the last 13 opcodes of the runtime code in the greeter example
contract as compiled can be seen in 5. As there is no
JUMPDEST after the STOP these opcode cannot be reached.

Fig. 5: Greeter contract: lines 342..354

342 STOP
343 LOG1
. .
354 PUSH22 0 x1A992D002900000000000000 . . .

VI. CONCLUSIONS

In this paper we present a tool capable of accurately
emulating Ethereum Smart contracts with an average of 88.2%
code coverage in our testing contracts. Our tool is capable of
generating a visualisation to show contract behaviour as well
as some of the inner workings of the EVM; stack, opcodes
and PC.

Our program is capable of generating its visualisation for
arbitrary contracts including popular and lengthy MultiSig
contracts.

VII. FUTURE WORK

Future work includes improving Concrete to handle more
operations with a view to aiding detection of dead code, and
modelling Ethereum’s storage to further increase the number
of real values in use. Adding further information to the front-
end visualisation would allow for the tool to be used more
readily for debugging purposes. The addition of user-defined
inputs which would allow for the emulated execution of
historical contracts.

REFERENCES

[1] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[2] D. Siegel. (2016) Understanding the dao hack. [Online]. Available:
https://www.coindesk.com/understanding-dao-hack-journalists/

[3] R. R. O’Leary. (2017) Ico funds among millions frozen in
parity wallets. [Online]. Available: https://www.coindesk.com/ico-
funds-among-millions-frozen-parity-wallets/

[4] Etherscan. (2018) Ethereum blockchain explorer and search. [Online].
Available: https://etherscan.io/

[5] Ethereum-Wiki. (2017) Serpent.ethereum/wiki wiki. [Online]. Available:
https://github.com/ethereum/wiki/wiki/Serpent

[6] ethereum. (2018) ethereum/vyper: New experimental programming
language. [Online]. Available: https://github.com/ethereum/vyper

[7] Ethereum. (2017). [Online]. Available: https://remix.ethereum.org
[8] R. Revere. (2016) solgraph. [Online]. Available:

https://github.com/raineorshine/solgraph
[9] R. Sasnauskas, Y. Chen, P. Collingbourne, J. Ketema, J. Taneja, and

J. Regehr, “Souper: A synthesizing superoptimizer,” arXiv preprint
arXiv:1711.04422, 2017.

[10] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254–269.

[11] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts
devour your money,” in Software Analysis, Evolution and Reengineering
(SANER), 2017 IEEE 24th International Conference on. IEEE, 2017,
pp. 442–446.

[12] R. Norvill, B. B. F. Pontiveros, R. State, I. Awan, and A. Cullen,
“Automated labeling of unknown contracts in ethereum,” in Computer
Communication and Networks (ICCCN), 2017 26th International Con-
ference on. IEEE, 2017, pp. 1–6.

[13] pisocrob. (2018) E-evm. [Online]. Available:
https://github.com/pisocrob/E-EVM

[14] Ethereum. (2017) Create a hello world contract in ethereum. [Online].
Available: https://ethereum.org/greeter

[15] ——. (2017) Create a cryptocurrency contract in ethereum. [Online].
Available: https://www.ethereum.org/token

