
Osiris: Hunting for Integer Bugs in Ethereum Smart Contracts
Christof Ferreira Torres

SnT, University of Luxembourg
Luxembourg, Luxembourg
christof.torres@uni.lu

Julian Schütte
Fraunhofer AISEC
Garching, Germany

julian.schuette@aisec.fraunhofer.de

Radu State
SnT, University of Luxembourg
Luxembourg, Luxembourg

radu.state@uni.lu

ABSTRACT

The capability of executing so-called smart contracts in a decen-
tralised manner is one of the compelling features of modern block-
chains. Smart contracts are fully fledged programs which cannot be
changed once deployed to the blockchain. They typically implement
the business logic of distributed apps and carry billions of dollars
worth of coins. In that respect, it is imperative that smart contracts
are correct and have no vulnerabilities or bugs. However, research
has identified different classes of vulnerabilities in smart contracts,
some of which led to prominent multi-million dollar fraud cases.
In this paper we focus on vulnerabilities related to integer bugs,
a class of bugs that is particularly difficult to avoid due to some
characteristics of the Ethereum Virtual Machine and the Solidity
programming language.

In this paper we introduce Osiris – a framework that combines
symbolic execution and taint analysis, in order to accurately find
integer bugs in Ethereum smart contracts. Osiris detects a greater
range of bugs than existing tools, while providing a better speci-
ficity of its detection. We have evaluated its performance on a
large experimental dataset containing more than 1.2 million smart
contracts. We found that 42,108 contracts contain integer bugs. Be-
sides being able to identify several vulnerabilities that have been
reported in the past few months, we were also able to identify a yet
unknown critical vulnerability in a couple of smart contracts that
are currently deployed on the Ethereum blockchain.

CCS CONCEPTS

• Security and privacy → Domain-specific security and pri-

vacy architectures; Software security engineering; Logic and veri-
fication;

KEYWORDS

Ethereum, smart contracts, integer bugs, taint analysis, symbolic
execution.
ACM Reference Format:

Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunt-
ing for Integer Bugs in Ethereum Smart Contracts. In 2018 Annual Com-
puter Security Applications Conference (ACSAC ’18), December 3–7, 2018, San
Juan, PR, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3274694.3274737

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274737

1 INTRODUCTION

Since the release of Satoshi Nakamoto’s Bitcoin in 2009, a diverse
range of blockchain implementations has emerged. All of these
blockchain-based technologies pursue a common goal, namely de-
centralising the control of a particular asset. They achieve this
by substituting trusted central entities with a large network of
untrusted entities who strive to reach consensus on a correct his-
tory of transactions. Trust is obtained via the assumption that the
majority of these nodes act faithfully and respect the blockchain
protocol, in order to secure the operation of the blockchain as a
whole. Bitcoin’s asset is its cryptocurrency, and the trusted cen-
tralised entities it attempts to replace, are traditional banks. Modern
blockchains such as Ethereum go a step further. The latter aims
to decentralise the computer as a whole through the Ethereum
Virtual Machine (EVM) [38]. The EVM empowers the distributed
execution of programs, in the form of so-called smart contracts, de-
ployed on the Ethereum network. The EVM is a purely stack-based
virtual machine that supports an instruction set of 134 opcodes
in order to be able to execute Turing-complete programs. Smart
contract functions are invoked via transactions. Each operation on
the EVM costs a certain amount of gas. When the total amount
of gas assigned to a transaction is exceeded, program execution is
terminated and its effects are rolled back. As the gas price is coupled
to ether, developers are motivated to write efficient programs to
keep transaction costs low and to avoid infinite loops on the EVM.

Developers usually write smart contract code in a high-level
language which compiles into EVM bytecode. Although various
experimental version of high-level languages exist, at the time of
this writing, Solidity [32] is the most prevalent language for de-
veloping smart contracts. At a first glance, the C/JavaScript-like
syntax of Solidity looks familiar to developers with experience in
JavaScript or C, and encourages rapid development of smart con-
tracts. However, the way how smart contracts are executed, as well
as their security properties, are fundamentally different from tradi-
tional programs and may lead to unexpected behaviour at runtime.
In combination with a lack of strict static validation and limited
support of development tools, developers are encouraged to tweak
their smart contract code until it “just works”. While this might be
a feasible approach for prototyping, it likely results in fatal errors
when smart contracts are deployed as real-world decentralised ap-
plications (DApps), on the public Ethereum blockchain. In contrast
to traditional programs, once smart contracts have been committed
to the blockchain, they cannot be updated anymore. Transactions
that were never intended by the developer are irreversible.

With the DAO hack in June 2016 [31], it became obvious what
consequences emerge when subtle programming mistakes, in non-
updatable smart contracts, hit high-volume DApps. An attacker
managed to drain $60 million worth of ether (Ethereum cryptocur-
rency) from the DAO, exploiting a “re-entrancy” bug in conjunction

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/162021653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3274694.3274737
https://doi.org/10.1145/3274694.3274737

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA C. Ferreira Torres et al.

with a “call to the unknown” bug, both contained in the smart con-
tract. Interestingly, Atzei et al. reviewed the DAO hack one year
later and realised that the attack could have been exploited more
efficiently, using only two calls to the fallback function. The at-
tack makes use of the previous reported vulnerabilities and a new
unreported vulnerability: an integer underflow in the withdraw
function at line 10 (see Listing 9 in Appendix B). The attack works as
follows: the attacker first deploys Mallory2, then invokes attack
to donate 1 wei (10−18 ether) to herself and subsequently withdraws
it (see Listing 10 in Appendix B). The function withdraw checks
whether the user has enough credit and if so transfers the ether
to Mallory2. As in the original attack, call invokes Mallory2’s
fallback, which in turn calls back withdraw, which is interrupted
before updating the credit: hence, the check at line 8 succeeding
again. Consequently, the DAO sends 1 wei to Mallory2 for the
second time and invokes her fallback again. However this time the
fallback does nothing and the nested calls begin to close. The effect
is that Mallory2’s credit is updated twice: the first time to zero
and the second time to 2256 − 1 wei, because of the underflow. To
finalise the attack, the attacker simply invokes getJackpot, which
transfers all the ether from the DAO to Mallory2. The DAO hack
did not remain the only attack on the Ethereum blockchain. Since
then, a number of other attacks have followed, such as the Parity
multi-signature wallet attack, which allowed attackers to steal more
than $150 million dollars worth of ether [28]. Moreover, recently,
a variety of attacks on Ethereum tokens have been reported, each
exploiting an integer overflow [17].

In response to these attacks, academia proposed numerous differ-
ent solutions to check smart contracts for vulnerabilities, prior to
deploying them on the blockchain. These mainly include attempts
on formal verification [1, 2, 12, 15, 16, 30] and symbolic execu-
tion [18, 20, 23, 25, 26, 33]. While symbolic execution has shown to
be a promising approach to identify vulnerabilities in EVM byte-
code, so far, only few vulnerability classes have been covered by
existing tools. Especially the way how Solidity and the EVM handle
integer types may lead to unexpected border cases, introducing
potential vulnerabilities in smart contracts.

In this paper, we investigate the prevalence of integer bugs in
smart contracts. We introduce Osiris, a symbolic-execution tool for
detecting various types of integer bugs in Ethereum smart contracts.
We use Osiris to find vulnerabilities in smart contracts deployed
to the current Ethereum blockchain. Furthermore, we investigate
whether this type of vulnerability is already actively exploited, and
point out improvements to the EVM and the Solidity compiler as a
safeguard against these types of bugs. In summary, with this paper
we contribute in the following aspects:

• We present Osiris, a symbolic execution tool which auto-
matically detects integer bugs in EVM bytecode. The tool
currently covers three different types of integer bugs: arith-
metic bugs, truncation bugs and signedness bugs.

• We runOsiris on all smart contracts that have been deployed
on Ethereum until January 2018, and find that 42,108 of them
suffer from at least on these three bugs.

• We compare Osiris to Zeus [18]. Osiris detects more vul-
nerabilities, with more confidence, as the false positives rate
is considerably lower with our tool.

• We analyse 495 Ethereum tokens and discovered vulner-
abilities in a couple of them, unknown to the best of our
knowledge.

• We propose modifications to the EVM and Solidity compiler,
to safeguard against integer bugs.

The remainder of this paper is organised as follows. In the next
section, we provide the necessary background knowledge to under-
stand Ethereum smart contracts, and how to detect integer bugs
contained in these contracts. Section 3 presents our methodology,
and provides an overview on the techniques we used as well as the
challenges we had to address. Section 4 presents our toolOsiris and
describes its implementation details. Section 5 presents the results
of our experiments. In Section 6 we provide a discussion on how to
make the Ethereum blockchain safer by suggesting improvements
to the Solidity compiler and the EVM. Section 7 summarises previ-
ous related work. Finally, in Section 8 we offer our conclusions and
future work.

2 BACKGROUND

2.1 The Ethereum Virtual Machine

Smart contracts are executed by miners using the Ethereum Virtual
Machine (EVM). The EVM is a stack-based, register-less virtual
machine running EVM bytecode represented by an instruction set
of 134 8-bit opcodes, at the time of writing. The effect of executing a
smart contract is a manipulation of the overall world state σ , which
is a structure holding the account state of all 160-bit account ad-
dresses. An account state is comprised of the number of transactions
sent from the account address, its balance in Wei, the Merkle trie
hash of the account’s storage and a hash of the account’s bytecode
(if the account is a smart contract).

2.1.1 Bytecode Execution. Although the instruction set allows
Turing-complete programs, the number of instructions executed in
a smart contract is limited so that EVM is typically referred to as a
”quasi-Turing” complete language. The purpose of this limitation
is to ensure termination of every smart contract at some point,
as otherwise miners would be stuck in endless loops and verifica-
tion of the blockchain would become impossible. The limitation of
instructions is achieved by the concept of gas, which introduces
costs for the execution of every single instruction. When issuing a
transaction (i.e. calling a smart contract, for example), the sender
has to specify gas limit and gas price. The gas limit is given in
units of gas and must be large enough to cover the amount of
gas consumed by the instructions of the called contract (plus an
overhead for input data), otherwise execution will terminate abnor-
mally with an OutOfGasException and its effects will be reverted.
During execution of a contract, the EVM holds a machine state
µ = (д,pc,m, i, s) where д is gas available, pc is program counter,m
is memory contents, i is active number of words in memory (count-
ing from position 0) and s is the content of the stack. In contrast
to traditional programs, the effect of a smart contract execution
can only be a manipulation of the blockchain’s world state, but
cannot depend on any input or output external to the blockchain.
This way, determinism of execution is guaranteed, in contrast to
other (permissioned) blockchains like Hyperledger Fabric where

Osiris: Hunting for Integer Bugs in Ethereum Smart Contracts ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Out-of-bound behaviour

Integer operation In-bounds requirement EVM [38] Solidity [32]

x +s y,x −s y,x ×s y x∞ op y∞ ∈ [−2n−1, 2n−1 − 1] modulo 2256 modulo 2n

x +u y,x −u y,x ×u y x∞ op y∞ ∈ [0, 2n − 1] modulo 2256 modulo 2n

x /s y y , 0 ∧ (x , −2n−1 ∨ y , −1) 0 if y = 0 0∗ / INVALID† if y = 0
−2255 if x = −2255 ∧ y = −1 −2n−1 if x = −2n−1 ∧ y = −1

x /u y y , 0 0 0∗ / INVALID†

x mods/u y y , 0 0 0∗ / INVALID†

∗ Solidity version < 0.4.0; † Solidity version ≥ 0.4.0

Table 1: Behaviour of integer operations in EVM and Solidity. Both x and y are n-bit integers, where x∞, x∞ denote their∞-bit

mathematical integers.

non-determinism is possible and may prevent the system from
reaching consensus.

2.1.2 Memory model. EVM uses a memory model that is specific
to the execution of smart contracts on a blockchain and differs
from the traditional von Neumann architecture, which may cause
confusion for novice developers. Instead of organising code, heap
and stack in one large general-purpose memory, EVM features four
different types of memory, whereas each has different properties
and usage costs in terms of gas. EVM bytecode is stored by trans-
actions and cannot be changed after it has been committed to the
blockchain. Instructions operate on a stack of 256-bit big-endian
words. The stack is private to a single contract (but not to methods
within the contract) and is almost free to use in terms of gas. The
size of the stack is limited to 1024 items. In addition to the stack,
smart contracts can store variables in a memory. The memory is a
random-access array of 256-bit words that is accessible only by the
currently executed smart contract. Memory is always initialised
with zeros and thus isolated from previous executions. Besides stack
and memory, EVM features a storage. While stack and memory are
volatile and only hold values during execution of a contract, storage
is persistent and part of the world state. It is organised as a Patricia
Merkle trie holding sets of persistent key/value pairs of all accounts.
Storage is isolated from the other smart contracts and is the only
way for a smart contract to save values across executions.

2.2 The Solidity Programming Language

Solidity is currently the most prominent programming language
for developing smart contracts in Ethereum. Its syntax resembles a
mixture of C and JavaScript, but it comes with a variety of unique
concepts that are specific to smart contract development and might
be unfamiliar for new developers, such as visibility modifiers1 or
the function-wide scoping of variables. In the context of this pa-
per, the integer type handling of Solidity is most relevant. Solidity
suggests to be a statically typed language, i.e. the compiler expects
type information for each variable to be made explicit. Integers can
be signed and unsigned, and of lengths between 8 and 256 bits in
8-bit steps denoted as uint8 or int128, for instance. This resembles
integer types in C and may lead novice developers to assume that a
uint8 will occupy 8 bits in memory, while an int128 occupies 128

1external, public, internal, private

bits. However, this assumption is false. Any integer type will be rep-
resented in the EVM by 256 bit big endian using two’s-complement.
That is, the integer type system of Solidity is not entirely consistent
with that of EVM, which can lead to programming errors, as we
show in our work. Explicit conversion between primitive types
is possible, but the effects are not well documented (in fact, the
documentation2 reads: Note that this may give you some unexpected
behaviour so be sure to test to ensure that the result is what you want).
For example, explicitly casting a signed negative integer into an
unsigned one will not result in the absolute value, but rather simply
leave its bit-level representation intact.

2.3 Integer Bugs in Ethereum Smart Contracts

There are a multitude of different scenarios of integer operations
that may result in bugs in Ethereum smart contracts [14]. We de-
scribe three main classes of integer bugs that may allow a malicious
user to steal ether or modify the execution path of a smart contract:
1) arithmetic bugs, 2) truncation bugs and 3) signedness bugs. All
three classes of bugs occur due to the mismatch between machine
arithmetic and arithmetic over unbounded integers.

Arithmetic Bugs. We consider bugs such as integer overflows
and underflows, but also bugs due to division by zero ormodulo zero,
as arithmetic bugs. Integer overflows (or underflows) occur when
an arithmetic expression results in a value that is larger (or smaller)
than it can be represented by the resulting type. The usual behaviour
in such a case is to silently “wrap around”, e.g. for a 32-bit type,
reduce the value modulo 232. In C/C++ the out-of-bounds behaviour
of integer operations is mostly undefined, whereas in Ethereum all
behaviour is well-defined. Table 1 summarises the different out-of-
bound behaviours enforced by the EVM and by Solidity. There are
two noteworthy observations. Firstly, even though all arithmetic
operations performed by the EVM are modulo 2256, in Listing 1
the result of a + b will silently wrap around if the value is larger
than 232 − 1. This behaviour is enforced by Solidity, not by the
EVM. Secondly, division (or modulo) by zero results in 0. In other
programming languages this would result in an exception. However,
in the EVM and Solidity versions prior to 0.4.0 this results in 0. Since
most developers would expect an exception, starting from version

2http://Solidity.readthedocs.io/en/develop/types.html#
conversions-between-elementary-types

http://Solidity.readthedocs.io/en/develop/types.html#conversions-between-elementary-types
http://Solidity.readthedocs.io/en/develop/types.html#conversions-between-elementary-types

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA C. Ferreira Torres et al.

0.4.0 the Solidity compiler injects an invalid operation to throw an
assert-style exception, causing the EVM to revert all changes.

1 function add(uint32 a, uint32 b) public returns(uint) {

2 return a + b;

3 }

Listing 1: An example of an overflow bug.

Truncation Bugs. Converting a value of one integral type to
a narrower integral type which has a shorter range of values may
introduce so-called truncation bugs. Truncation bugs became infa-
mous due to a 64-bit integer value that was converted into a 16-bit
integer, which ultimately led to the explosion of an Ariane 5 rocket
in 1996. While truncation bugs in smart contracts will (hopefully)
not lead to explosions, they may lead nevertheless to a loss of pre-
cision, which ultimately may affect the loss of ether. For instance,
consider the default function in Listing 2. The function converts
and stores the received amount of ether to an unsigned integer of
32 bits. msg.value is of type uint, which is equivalent to the type
uint256, thus it can hold integer values ranging from 0 to 2256 − 1.
If a caller transfers an amount larger than 232 − 1, this value will
be truncated and his balance will be lower than the amount that he
effectively transmitted.

1 mapping(address => uint32) balance;
2
3 function () public payable {

4 balance[msg.sender] = uint32(msg.value);
5 }

Listing 2: An example of a truncation bug.

Signedness Bugs. Lastly, converting a signed integer type to an
unsigned type of the same width (or vice versa) may introduce so-
called signedness bugs. This conversionmay change a negative value
to a large positive value (or vice versa). For example, consider the
withdrawOnce function in Listing 3. This function allows a caller to
withdraw only once a maximum amount of 1 ether from the smart
contract’s current balance. However, if the parameter amount is
a negative value, it will pass the bounds check, be converted to a
large unsigned integer and finally be passed as parameter to the
transfer function. As a result, the transfer function will transfer
an amount larger than 1 ether to the caller.

1 function withdrawOnce(int amount) public {

2 if (amount > 1 ether || transferred[msg.sender]) {

3 revert ();
4 }

5 msg.sender.transfer(uint(amount));
6 transferred[msg.sender] = true;
7 }

Listing 3: An example of a signedness bug.

3 METHODOLOGY

As we aim to detect integer bugs at the bytecode level, there are
a number of challenges to overcome. In this section, we describe
our approach towards inferring integer types, detecting integer
bugs, applying taint analysis to reduce false positives and other
challenges such as identifying intended checks for integer bugs.

3.1 Type Inference

Type information about integers such as size (e.g. 32 bits for uint32)
and signedness (e.g. signed for int) are essential in order to check
whether the result of an integer operation is in-bound or out-of-
bound. However, type information is usually only available at the
source code level and not at the bytecode level. That being said, due
to certain code optimisations introduced by the Solidity compiler
during compile time, it is actually possible to infer the size and
the sign of integers at the bytecode level. For unsigned integers,
the compiler introduces an AND bitmask in order to “mask off” bits
that are not in-bounds with the integer’s size. A zero masks the
bit, whereas a one leaves the bit as it is. For instance, a uint32 will
result in an AND using 0xffffffff as its bitmask. Thus, from the
AND we infer that it is an unsigned integer and from the bitmask
we infer that its size is 32 bits. For signed integers, the compiler
introduces a sign extension via the SIGNEXTEND opcode. A sign
extension is the operation of increasing the number of bits of a
binary number while preserving the number’s sign and value. In
two’s complement, this is achieved by appending ones to the most
significant side of the number. The number of ones is computed
using 256−8(x+1), where x is the first value passed to SIGNEXTEND.
For instance, an int32 will result in a SIGNEXTEND using the value
3 as its first parameter. Thus, from the SIGNEXTEND we infer that it
is a signed integer and from the value 3 we infer that its size is 32
bits, by solving the following equation: 8(3 + 1).

3.2 Finding Integer Bugs

We now describe the techniques we use for finding the three types
of integer bugs described in Section 2.3.

Arithmetic Bugs. For each arithmetic instruction that could
potentially overflow (i.e. ADD and MUL) or underflow (i.e. SUB), we
emit a constraint that is only satisfied if the in-bounds requirements
are not fulfilled (see Table 1). As an example, if we have an addition
of two unsigned integers a and b, we emit a constraint to the solver
that checks if a + b > 2n − 1, where n denotes the largest size of
the two values, e.g. in case a is a uint32 and b is a uint64, n will
be 64. Similarly, for signed/unsigned division (i.e. SDIV and DIV)
and signed/unsigned modulo (i.e. SMOD, MOD, ADDMOD and MULMOD),
we check whether the in-bounds requirements are not fulfilled as
defined in Table 1. As an example, for signed division we emit a
constraint that checks whether the divisor can be zero. If the solver
can satisfy any of the emitted constraints under the current path
conditions, we know that an arithmetic bug such as an overflow or
a division by zero is possible.

Truncation Bugs. Solidity truncates signed and unsigned in-
tegers using AND and SIGNEXTEND instructions, respectively. For
each instruction, we check whether it is possible for the input to be
outside the range of the output. We do this by adding a constraint
to the solver that is satisfied when the input value is larger than the
output value. Moreover, we check the truncator value against two
patterns, in order to detect and ignore truncations that have been
intentionally introduced by Solidity. First, we check whether the bi-
nary representation of the truncator is equivalent to 160 ones. This
represents a conversion to the type address. The second pattern

Osiris: Hunting for Integer Bugs in Ethereum Smart Contracts ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Figure 1: An integer bug is reported as valid iff it originates

from a source and flows to a sink.

consists in checking whether the binary representation of the trun-
cator contains any zeros (ignoring leading zeros). This pattern aims
at filtering out truncations that have been introduced by Solidity
in order to squeeze multiple variables in one data storage slot.

Signedness Bugs. We reuse the approach by Molnar et al. [21],
and adapt it to detect signedness bugs in Ethereum smart contracts.
The idea is to reconstruct signed/unsigned type information on all
integral values, from the executed EVM instructions. This infor-
mation is present in the source code but not in the bytecode. The
algorithm to infer this information automatically works as follows:
consider four different types for integer values: “Top”, “Signed”,
“Unsigned”, “Bottom”. “Top” means the value has not been observed
in the context of a signed or unsigned integer; “Signed” means that
the value has been used as a signed integer; “Unsigned” means the
value has been used as an unsigned integer; and “Bottom” means
that the value has been used inconsistently as both, a signed and
unsigned integer. These types form a lattice of four points. Our goal
is to find symbolic variables that have type “Bottom”. Every variable
starts with the type “Top”. During execution we modify the type
of a variable, based on the type constraints of certain instructions.
For example, a signed comparison (e.g. SLT, SGT, etc.) between two
variables causes both variables to receive the type "Signed", whereas
an unsigned comparison (e.g. LT, GT, etc.) between two variables
causes both variables to receive the type "Unsigned". Any variable
that received both a signed and unsigned type, receives the type
“Bottom”.

3.3 Taint Analysis

Taint analysis is a technique that consists in tracking the propaga-
tion of data across the control flow of a program. Taint analysis is
extensively being used by numerous integer error detection tools
in order to reduce the number of false positives [3, 29, 36, 37]. It
is certainly possible to detect integer bugs without taint analysis.
However, there are cases where integer bugs might be benign. For
example, the Solidity compiler injects during compilation time in-
teger overflows at certain locations in the bytecode in order to
optimise it for later execution. These overflows are intentional and
should not be flagged as malicious. Taint analysis can help to dis-
tinguish between benign overflows introduced by the developer
or compiler, and malicious overflows that are exploitable by an
attacker. In taint analysis we have the notion of so-called sources
and sinks, with the idea that data originates from a source and even-
tually flows into a sink. Taint is introduced by sources, which is
subsequently propagated across the state of a program. In the case

of the EVM, the program state consists of the stack, memory and
storage. We follow a very precise approach on how taint should be
propagated across stack, memory and storage, by taking the exact
semantics of every EVM instruction into account (see Section 4.2).
Sources are locations in a program, where data is originating from
an untrusted input that might be controllable by an attacker, for
example, environmental information or function parameters. Sinks
represent locations, where data is used in a sensitive context, for
example, security checks or access to storage. Thus, the attack sur-
face of a smart contract is defined by the EVM instructions that
are exposed to an attacker. In other words, an attacker is limited to
certain sources in order to trigger bugs that are used in sensitive
sinks. Therefore, by deliberately ignoring integer bugs that do not
originate from a source and do not flow into a sink, we can focus
exclusively on actual exploitable integer bugs and gracefully reduce
the number of false positives, Figure 1 illustrates this process. We
only check for integer bugs where the input data to the integer
operation is tainted. Finally, we only validate an integer bug if it
flows into a sink.

Sources. There are a number of EVM instructions, which an
attacker could potentially use in order to introduce data that might
lead to the exploitation of integer bugs. These instructions can be
divided in: 1) block information, such as GASLIMIT or TIMESTAMP),
2) environmental information, such as CALLER or CALLDATALOAD
and 3) stack, memory, storage and flow operations, such as SLOAD
or MLOAD. However, many of these instructions have certain re-
quirements and limitations which makes them almost impossible
to be used by attackers in practice. For example, block information
such as the TIMESTAMP can only be introduced by a miner and the
proposed value may only have a divergence of 15 seconds from
the timestamp of the other miners. Another example of a limited
instruction, is environmental information, such as the CALLER. An
attacker can generate as many accounts as he wants, but he can
not predict the value of the account address. Thus generating a de-
sired address is essentially the same as brute-forcing. Therefore, we
selected CALLDATALOAD and CALLDATACOPY as sources for our taint
analysis. The reasons are twofold, first, an attacker can pick any
arbitrary value (he is solely limited by the data type chosen by the
developer) and second, the values are introduced at the transaction
level and are therefore not only limited to miners.

Sinks. Whether or not an integer bug is harmful depends on
where and how the smart contract uses the affected integer value.
Such sensitive locations may originate from 1) stack, memory, stor-
age and flow operations such as SSTORE or JUMPI and 2) system
operations such as CREATE or CALL. We selected SSTORE, JUMPI,
CALL and RETURN as sinks for our taint analysis, as these opcodes
have an impact on path execution, storage and the sending of ether.

3.4 Identifying Benign Integer Bugs

Although, taint analysis already reduces significantly the number of
false positives, there are still some cases where an integer bug might
originate from an untrusted source and flow into a sensitive sink,
while being a benign integer bug. In order to cope with such cases,
we came up with some heuristic rules that allow us to detect specific
cases of benign integer bugs. For example, Instead of immediately

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA C. Ferreira Torres et al.

Symbolic
Analysis

Taint Analysis

Integer Error
Detection

Z3 Bit-Vector Solver

Bytecode/Solidity

Report

Figure 2: Architecture overview of Osiris. The shaded boxes

represent its main components.

reporting an integer overflow or underflow as valid when we find
it to be part of a branch condition, we check whether the predicate
is designed to actually catch the bug. We note that common checks
make use of the erroneous result to catch integer overflows and
underflows, for example if ((x + 1) < x) or if (x != (x * y) /
y). We observe that these checks often use the same variable, on the
right-hand side as well as on the left-hand side of the predicate. We
also observe that if a predicate catches an integer bug, it is inclined
to return soon or jump to a uniform error handling function. Hence,
we report an integer bug as invalid, if we find the predicate to use
the same variable, on the right-hand side as well as on the left-hand
side, and one successor block of the branch condition in the control
flow graph ends in a JUMPI, REVERT or ASSERTFAIL.

4 OSIRIS

In this section, we provide an overview on the overall design and
implementation details of Osiris3.

4.1 Design Overview

Figure 2 depicts the architecture overview of Osiris. Osiris can
take as input the bytecode or Solidity source code of a smart con-
tract. The latter gets internally compiled to EVM bytecode. Osiris
outputs whether a contract contains any integer bug (e.g. overflow,
underflow, truncation, etc.). Osiris consists of three main compo-
nents: symbolic analysis, taint analysis and integer error detection.
The symbolic analysis component constructs a Control Flow Graph
(CFG) and symbolically executes the different paths of the contract.
The symbolic analysis component passes the result of every exe-
cuted instruction to the taint analysis component as well as to the
integer error detection component. The taint analysis component
introduces, propagates and checks for taint across stack, memory
and storage. The integer error detection component checks whether
an integer bug is possible within the executed instruction.

4.2 Implementation

We implementedOsiris on top of Oyente’s [20] symbolic execution
engine. Oyente faithfully simulates 124 out of the 134 EVM byte-
code instructions. The non-faithfully simulated instructions consist
of logging operations (i.e. LOG0, LOG1, LOG2, LOG3 and LOG4), oper-
ations regarding the output data from a previous contract call (i.e.
3Osiris is available at https://github.com/christoftorres/Osiris

RETURNDATASIZE and RETURNDATACOPY), the operation to create a
new contract (i.e. CREATE) and operations to call other contracts (i.e.
DELEGATECALL and STATICCALL). Non-faithfully simulated means
that the engine faithfully simulates the stack, but does not im-
plement the complete logic of the operation as described in [38].
However, since all of these operations (except the logging opera-
tions) are related to contract calls and detecting integer bugs across
contract calls is out of-scope for this paper, we can safely ignore the
non-faithfully simulated instructions by Oyente. Osiris is written
in Python with roughly 1,200 lines of code (not counting Oyente’s
symbolic execution engine). In the following, we briefly describe
the implementation of each main component.

Symbolic Analysis. The symbolic analysis component starts by
constructing a CFG from the bytecode, where nodes in the graph
represent so-called basic blocks and edges represent jumps between
individual basic blocks. A basic block is a sequence of instructions
with no jumps going in or out of the middle of the block. Osiris can
output a visual representation of the CFG depicting the individual
path conditions and highlighting the basic blocks that include inte-
ger bugs (see Figure 6 in Appendix A). After constructing the CFG,
the symbolic execution engine starts by executing the entry node of
the CFG. The engine consists of an interpreter loop that gets a basic
block as input and symbolically executes every single instruction
within that basic block. The loop continues until all the basic blocks
of the CFG have been executed or a timeout is reached. In the case
of a branch, the symbolic execution engine queries Z3 [4] in order
to determine which path is feasible. If both paths are feasible, then
the symbolic execution engine explores both paths in a Depth First
Search (DFS) manner. Loops are terminated once they exceed a
globally defined loop limit.

Taint Analysis. The taint analysis component is responsible
for introducing, propagating and checking of taint. The symbolic exe-
cution engine forwards every executed instruction to the taint anal-
ysis component. Afterwards, the taint analysis component checks
wether the executed instruction is part of the list of defined sources.
If that is the case, the taint analysis component introduces taint
by tagging the affected stack, memory or storage location. We
faithfully introduce and propagate taint across stack, memory and
storage. We implemented the stack using an array structure fol-
lowing LIFO logic. To represent memory and storage, we simply
used a Python dictionary that maps memory and storage addresses
to values. Since the EVM is a stack-based and register-less virtual
machine, the operands of an instruction are always passed via the
stack. Our taint propagation method identifies the operands of
each EVM bytecode instruction and propagates the taint according
to the semantics of each instruction as defined in [38]. The taint
propagation logic tags according to the following principle: if an
instruction uses a tainted value to derive another value, then the
derived value becomes tainted as well. By following this principle,
we achieve a more precise taint propagation than, for instance,
Mythril [23].Mythril propagates taint across the stack, but for
certain instructions it does not propagate taint across memory or
storage. For example, the instruction SHA3 computes the Keccak-
256 hash over a memory region that is determined by two operands
that are pushed onto the stack: offset and size. Mythril simply
checks if at least one of the two operands is tainted. If so, it taints

https://github.com/christoftorres/Osiris

Osiris: Hunting for Integer Bugs in Ethereum Smart Contracts ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

the result that is pushed onto the stack. Osiris on the other hand,
does not check the operands, but the memory region. Osiris only
taints the result, if at least one of the values, that is stored in the
given memory region, is tainted. As a final step, the taint analysis
component verifies if a taint flow occurred, by checking whether
the executed instruction is part of the list of defined sinks and if
any of the values it used has been tainted by an integer bug.

Integer Error Detection. In contrast to the taint analysis com-
ponent, the integer error detection component is not called upon
every executed instruction. The integer error detection component
is only called at instructions that may result in integer bugs, such
as arithmetic instructions. For example, integer overflow checks
are only performed if the symbolic analysis component executes an
ADD or a MUL instruction, whereas width conversion checks are only
performed if the symbolic analysis component executes an AND or a
SIGNEXTEND instruction. Moreover, calls to the integer error detec-
tion component are only performed if at least one of the operands
of the executed instruction is tainted. Iff these criteria are met, then
the symbolic execution engine eventually forwards the executed
instruction along with the current path conditions to the integer
error detection component. Afterwards, the component follows the
different techniques as described in Section 3.2 in order to detect the
specific integer bugs. For example, in the case of an AND instruction
with tainted operands, the symbolic analysis component will call
the integer overflow detection method of the integer error detection
component. The integer overflow detection method first tries to in-
fer the sign and the width of the two integer operands as described
in Section 3.1 and then creates a formula with a constraint that is
only feasible if an integer overflow is possible under the current
path conditions. This formula is afterwards passed on to the Z3
solver, which checks for its feasibility. If the solver finds a solution
to the formula, then the integer error detection component knows
that an integer overflow is possible and returns an error back to
the symbolic analysis component. After that, the symbolic analysis
component calls the taint analysis component, which then taints
the result of the AND instruction where its source represents the
discovered integer bug.

5 EVALUATION

In this section we assess the correctness and effectiveness of Osiris
via an empirical analysis and demonstrate its usefulness in detect-
ing real-world vulnerabilities in Ethereum smart contracts. The
empirical analysis is separated in a qualitative and a quantitative
analysis. Via the qualitative analysis we aim to determine the re-
liability of our tool by comparing our results with Zeus [18]. Via
the quantitative analysis we intend to demonstrate the scalability
of Osiris and to measure the overall prevalence of integer bugs
contained in smart contracts that are currently deployed on the
Ethereum blockchain.

Experimental Setup. All experiments were conducted on our
high-performance computing cluster using 10 nodes with 960 GB
of memory. Every node has 2 Intel Xeon L5640 CPUs with 12 cores
each and clocked at 2,26 GHz, running a 64-bit Debian GNU/Linux
8.10 (jessie) with kernel version 3.16.0-4. We used version 4.6.0 of
Z3, as our constraint solver for the symbolic execution engine as

Tool Safe Unsafe No Result Timeouts

Osiris 711 172 0 35
Zeus [18] 233 628 22 14

Table 2: Number of integer overflows and underflows de-

tected by Zeus and Osiris.

well as for our integer error detection module. For the symbolic
execution engine we set a timeout of 100 ms per Z3 request. The
global timeout for the symbolic execution was set to 30 minutes per
contract. For our integer error detection module we set a timeout
of 15 seconds per Z3 request. The loop limit, depth limit (for DFS)
and gas limit for the symbolic execution engine was set to 10, 50
and 4 million, respectively.

5.1 Empirical Analysis

5.1.1 Qualitative Analysis.

Dataset. Kalra et al. [18] present a tool called Zeus, which is
capable of detecting integer overflows and underflows. The au-
thors evaluate their tool using a dataset of 1,524 contracts that
they obtained by periodically scraping explorers such as Etherscan,
Etherchain and EtherCamp over a period of three months [19] on
the main and test network. We decided to reuse this dataset in
order to compare our results with Zeus and to evaluate bugs that
Zeus does not detect such as division by zero or truncation bugs.
However, the published dataset does not contain any bytecode or
source code. Eventually, we were able to download the bytecode
and source code for 961 contracts, where 883 are unique.

Results. We run Osiris on the 883 contracts and summarise our
results for each of the three types of bugs below.

Arithmetic Bugs. We compare Osiris’s capability of detecting
integer overflows and underflows with Zeus. Table 2 shows that
Osiris reports most contracts to be safe whereas Zeus reports most
contracts to be unsafe. “Safe” means that no overflow or underflow
has been detected, whereas “unsafe” means that either an overflow
or an underflow has been detected. The reason for discrepancy
between Zeus and Osiris, is that Osiris aims at detecting solely
overflows and underflows that are exploitable by an attacker in
practice, thus limiting the number of reported bugs, while Zeus
aims to be complete. Zeus reports no result for 22 contracts, where
no result means either an error occurred or a timeout. Zeus en-
countered less timeouts than Osiris, with 14 compared to 35. On
the other hand, Osiris managed to always faithfully return a result.

Table 3 depicts the confusion matrix of the evaluation between
Osiris and Zeus. Osiris reports 5 contracts to be unsafe, whereas
Zeus reports them to be safe. We manually verified these 5 con-
tracts and indeed found them to potentially produce integer over-
flows. Listing 4 provides an example of a vulnerable function con-
tained in one of the 5 contracts. The multiplication in the function
convertToWei may overflow if amount is large enough. This ques-
tions Zeus claim to be sound in terms of achieving zero false nega-
tives. In 471 cases, Zeus reports a contract to be unsafe whileOsiris
reports it to be safe. We manually analysed these cases and found
that in some cases overflows were benign. These benign overflows

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA C. Ferreira Torres et al.

Osiris

Safe Unsafe No Result

Z
e
u
s
[
1
8
]

Safe 228 5 0
Unsafe 471 157 0

No Result 12 10 0
Table 3: Comparison between Zeus and Osiris.

were induced by the developer or by the Solidity compiler as part
of handling data structures of dynamic size such as arrays, strings
or bytes. The remaining overflows were indeed possible overflows,
that were not caught by Osiris. Osiris could not catch them be-
cause they do not originate from the sources that we defined. So
technically Osiris could detect them by adding more sources, such
as loading from storage (i.e. SLOAD). Apart from that, the authors of
Zeus state in their paper that for several cases their tool reported
unsafe, although the contract was safe. We encountered 32 of these
cases. Osiris reports 28 of these cases to be safe, thus about 88%
less than Zeus. Unfortunately, Zeus does not check for division by
zero or modulo zero bugs, thus we cannot compare Osiris to Zeus
in this regard. Osiris did not find any modulo bugs. However, it did
find 26 contracts vulnerable to division by zero bugs. We confirm
the results via manual analysis of the source code and verifying
that the bytecode was compiled using a compiler version lower
than 0.4.0.

1 convertToWei(uint amount , string unit) external
constant returns (uint) {

2 return amount * etherUnits[unit];

3 }

Listing 4: Overflow in EtherUnitConverter’s convertToWei
function, not detected by Zeus.

Truncation Bugs. Osiris reports 39 contracts carrying truncation
bugs. We manually verified the findings and confirm the 39 bugs to
be true positives. To confirm the findings, we checked the source
code for type castings where integers are converted to smaller
ranges.

Signedness Bugs. Signedness bugs seem to be less common.Osiris
only reports 6 contracts to be vulnerable. Also here, we manually
verified the findings and confirm the 6 bugs to be true positives. In
order to confirm, we looked for conversions between signed and
unsigned integers in the source code.

5.1.2 Quantitative Analysis.

Dataset. We collected the bytecode of 1,207,335 smart contracts,
by downloading the first 5,000,000 blocks from the public Ethereum
blockchain. The timestamps of the collected smart contracts range
from August 7, 2015 04:42:15 AM to January 30, 2018 1:41:33 PM.
Figure 3 depicts the number of smart contracts in our dataset with
respect to the month of their deployment on the blockchain. We
state a sudden increase of smart contracts, starting from April
2017. Ethereum does not store the source code of smart contracts.
To obtain the source code of a smart contract, users often refer
to services such as Etherscan. However, at the time of writing,
Etherscan solely lists the source code of 29,486 smart contracts [6].

0

200000

400000

600000

800000

1000000

1200000

1400000

Augu
st 2

015

Octo
be

r 2
015

Dece
mber 2

015

Fe
bru

ary
20

16

April
201

6

June
 20

16

Augu
st 2

016

Octo
be

r 2
016

Dece
mber 2

016

Fe
bru

ary
20

17

April
201

7

June
 20

17

Augu
st 2

017

Octo
be

r 2
017

Dece
mber 2

017

N
um

be
r o

f s
m

ar
t c

on
tr

ac
ts

Date

Figure 3: Number of smart contracts in Ethereum has in-

creased abruptly.

Hence, only around 2% of the smart contracts on the Ethereum
blockchain have their source code publicly available. Again, this
emphasises the need for tools such as Osiris, that are capable of
analysing smart contracts directly at the bytecode level. Out of
these 1,207,335 contracts, only 50,535 are unique in terms of their
bytecode. In other words, 96% of the smart contract on the Ethereum
blockchain are just copies.

Performance. On average, Osiris takes 75 seconds to analyse a
contract, with a median of 13 seconds and a mode of 1 second. 524
contracts require more than 30 minutes to analyse. The number of
paths explored by Osiris ranges from 1 to 1394 with an average
of 71 per contract and a median of 51. Similar to [20], we observe
that the running time depends almost linearly on the number of
explored paths. Finally, during our experiments, Osiris achieved a
code coverage of about 88% on average.

Results. Figure 4 and Figure 5 report our results. Osris detects
42,108 contracts which contain at least one of the integer bugs
discussed in Section 2.3. Out of these, 14,697 are distinct (by direct
comparison of their bytecode). Figure 4 shows that most reported
bugs are arithmetic (e.g. overflows, underflows, etc.) with 41,379
contracts as compared to 2,738 and 405 contracts for truncation and
signedness, respectively. Out of these 41,379 contracts, 14,107 are
found to be distinct, which account for roughly 28% of the 50,535
distinct contracts in our dataset. Figure 5 depicts the distribution
between reported arithmetic bugs. We note that overflows are the
most common type of bugs with 23,473 vulnerable contracts, where
10,520 are distinct which account for about 21% of the distinct con-
tracts in our dataset. Immediately after that, follow underflows
with 11,479 vulnerable contracts, where 6,103 are distinct which
account for about 12% of the distinct contracts in our dataset. It
is interesting to note that even though we only detect 29 distinct
contracts vulnerable to modulo zero, the number of overall vul-
nerable contracts is 10,335. This implies that certain contracts are
copied excessively and that one bug in such a contract, can have a
huge impact on the security of thousands of other contracts on the
blockchain.

Osiris: Hunting for Integer Bugs in Ethereum Smart Contracts ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

41379

2738
405

14107

1401 235

A RI T H M E T I C T RUNCA T I ON S I G NE D NE S S

All contracts Unique contracts

Figure 4: Number of vulnerable contracts reported byOsiris

per integer bug.

23473

11479
10335

1292

10520

6103

29 350

OV E RF LOW UND E RF LOW M OD ULO D I V I S I ON

All contracts Unique contracts

Figure 5: Number of vulnerable contracts per arithmetic er-

ror type.

5.2 Detection of Real-World Vulnerabilities

In this section, we examine the effectiveness and usefulness of
Osiris in detecting and reporting real-world vulnerabilities. For
this purpose, we run Osiris on five divulged vulnerabilities and
analyse 495 top Ethereum token smart contracts.

5.2.1 Detecting Known Vulnerabilities.

Recently, a security company called Peckshield4 disclosed five
different vulnerabilities targeted at ERC-20 token smart contracts,
each exploiting an integer overflow (see Table 4).Osiris successfully
detects all the vulnerabilities listed in Table 4. From this small-scale

4https://peckshield.com/

Token Bug Name CVE Number Disclosed

BEC [5] batchOverflow CVE-2018-10299 22 April 2018
SMT [9] proxyOverflow CVE-2018-10376 25 April 2018
UET [11] transferFlaw CVE-2018-10468 28 April 2018
SCA [10] multiOverflow CVE-2018-10706 10 May 2018
HXG [8] burnOverflow CVE-2018-11239 18 May 2018

Table 4: CVEs examined by Osiris.

experiment, we gain confidence thatOsiris is suitable as a detection
tool for vulnerabilities in real-world smart contracts.

5.2.2 Detecting Unknown Vulnerabilities.

In the previous experiment we analysed Osiris’s capability of
effectively detecting known CVEs. In this experiment, we want
to check whether Osiris is capable of detecting yet undiscovered
vulnerabilities in Ethereum token smart contracts.

Dataset. Etherscan provides a list of top tokens ranked by their
market capitalisation [7]. As of June 2018, the list holds a total of 509
different tokens. Out of these, 495 have their source code publicly
available. We downloaded the bytecode as well as the source code
for these 495 smart contracts and analysed them using Osiris.

Results. Osiris reported 164 contracts to be vulnerable, where
126 contracts were reported to contain overflows and 54 to contain
underflows. We verified the findings via manual inspection of the
source code. We found two overflows to be false positives and the
rest of the findings to be indeed true positives. However, although all
of the reported overflows/underflows being semantically possible,
yet most of them are unlikely to be exploited in practice. The reason
is twofold: 1) a large number of overflows and underflows may only
be triggered by the owner of the smart contract and 2) a large
number of overflows and underflows are due to implementations
either not checking whether the balance of a receiver may overflow
after a transfer (see Listing 5), or whether the value of the total
supply may underflow before subtracting the amount of tokens to
be burned.

1 function transfer(address _to , uint256 _value) returns
(bool success) {

2 if (balances[msg.sender] >= _value && _value > 0) {

3 balances[msg.sender] -= _value;

4 balances[_to] += _value;

5 Transfer(msg.sender , _to , _value);

6 return true;
7 } else { return false; }

8 }

Listing 5: Overflow at Line 4 in StandardToken’s transfer
function.

1 function burn(uint256 _value) returns (bool success) {

2 if (balances[msg.sender] < _value) return false;
3 balances[msg.sender] -= _value;

4 _totalSupply -= _value;

5 Burn(msg.sender , _value);

6 return true;
7 }

Listing 6: Underflow at Line 4 in function burn.

Nevertheless, two integer underflows reported by Osiris, have
proven to be of particular interest. Let us consider the code snippet
in Listing 7. The code originates from a token called RemiCoin5.
Osiris reports that an integer underflow is possible at Line 11. The
issue arises at the check at Line 7 (ironically commented as checking
for allowance). The condition is not checking whether the amount
is higher than the allowance, but whether the allowance is higher
or equal to the amount. This is probably due to a simple copy-paste
5https://etherscan.io/token/0x7dc4f41294697a7903c4027f6ac528c5d14cd7eb

https://peckshield.com/

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA C. Ferreira Torres et al.

mistake, as some contracts have the exact same condition but return
if the condition is false rather than when its true. Nevertheless, this
subtle mistake has two tremendous consequences: 1) an attacker
can transfer all the tokens from any address to another address
of her own and 2) the attacker can provoke an underflow, hereby
setting her allowance to any amount she desires. The same bug is
also present in the UET token [11].

1 function transferFrom(address from , address to, uint
value) returns (bool success) {

2 // checking account is freeze or not

3 if(frozenAccount[msg.sender]) return false;
4 // checking the from should have enough coins

5 if(balances[from] < value) return false;
6 // checking for allowance

7 if(allowed[from][msg.sender] >= value) return false;
8 // checking for overflows

9 if(balances[to] + value < balances[to]) return false;
10 balances[from] -= value;
11 allowed[from][msg.sender] -= value;
12 balances[to] += value;
13 // Notify anyone listening that this transfer took

place

14 Transfer(from , to, value);
15 return true;
16 }

Listing 7: RemiCoin’s transferFrom function allows an

arbitrary user to steal tokens from another user.

RemiCoin (RMC) was released in 2017 and has a market capital
of $27,520. Its founder/CEO is unknown. At its peak in October
2017, RemiCoin was traded for $1.82, whereas now its value has
dropped to $0.0147. At the time of writing, 348 addresses hold Remi-
Coins and a total of 11,497 transfers have been made so far. We
checked whether this bug has been exploited in the wild. We found
multiple transactions resulting in integer underflows6. However,
we miss evidence of these being targeted attacks as the victims
are still left with a rather high amount of tokens. Since the bug
results in transactions with a legitimate allowance being refused,
we find it quite surprising that this bug has not been noticed so far.
Demonstrating the above attack on the public blockchain is feasible.
However, for ethical reasons we were reluctant to do so. Therefore,
we demonstrate the attack on a copy of the smart contract that we
deployed on the Ropsten test network7 and created two test ac-
counts: 1) 0xe9131d546bba6e233b0a19e504179dc61365a77f and
2) 0x7e2a886f1ba5942cc7a3a53fc6fae94868e318a0. We deploy-
ed the contract via the first account, hence making this account
the holder of the total supply of tokens. Afterwards, we performed
our attack by calling the transferFrom function and passing as
arguments the address of the first account, the address of the sec-
ond account and finally the total supply of tokens8. As a result, the
second account now owns all of the tokens and its allowance was
set from zero to a substantial amount.

6 DISCUSSION

In this section, we summarise weaknesses in the Ethereum ecosys-
tem that lead to smart contracts that are prone to integer bugs.
6https://bit.ly/2LHeNf6
7https://bit.ly/2HIKbrx
8https://bit.ly/2l7ITNy

Further, we discuss possible remedies to prevent integer bugs from
happening in smart contracts.

6.1 Causes for Integer Bugs

Weaknesses of Solidity and EVM. Solidity is a language that has
been designed to lower the bar for developers entering the smart
contract ecosystem. In that respect, its syntax resembles JavaScript,
suggesting a dynamically typed scripting language, which in fact,
it is not. Then again, during compilation from Solidity to EVM, the
compiler warns about some type casts which gives the developer
the impression of a strictly static type validation – which again is
not true. In fact, Solidity compiles into statically EVM bytecode, but
the type system of Solidity does not strictly map into that of EVM.
For example, although integers with less than 256 do not exist
in EVM, Solidity attempts to give the developer the impression
of different integer types by providing respective type identifiers
and generating wrap-around behaviour during compilation. This
is a weakness because first, it suggests that developers could save
memory by using shorter integer types and second, it makes the
unexpected (integers wrapping around) the rule.

As a second weakness we consider the overflow handling of
EVM itself. Unlike in low-level programming, deliberate integer
overflows is a rarely used feature in application development and
we have not come across a single smart contract that uses integer
overflow in a deliberate way. Nevertheless, neither the Solidity
compiler nor EVM treat integer overflows as an exception but
rather treat them as a real CPU would do – with some unexpected
deviations such as feasibility of division by zero. Given the fact
that aborting a smart contract will result in a safe rollback of the
transaction, treating overflows as an exception and panicking seems
to be the safer alternative than silent wrapping.

Unsafe Implementations of Standards. The ERC-20 [35] token
standard provides a standardised Application Programming Inter-
face (API) for tokens within Ethereum smart contracts. The API
provides basic functionality in order to transfer tokens, as well as to
allow tokens to be approved such that they may be spent by another
on-chain third-party. The standard describes an interface consisting
of a number of functions and events, which a smart contract must
implement in order to be compliant. Themain issue with the current
standard, is that it solely provides an interface. Its implementation
is left to the developer of the token. As a consequence, many dif-
ferent implementations exist. Some implementations might have
bugs and might be copied by other developers, with the bugs left
unnoticed, hereby spreading the bugs across multiple contracts. In
addition, some tokens introduce new functionality that is not part
of the standard and hereby potentially introduce new bugs.

Negligible and Incorrect Use of Safe Libraries. In Section 5.2.2 we
analysed the safety of 495 token smart contracts. Token contracts
perform a number of arithmetic operations such as subtracting
from balances and adding to balances. However, these operations
may produce integer bugs such as overflows and underflows. There-
fore, it is recommended to perform such operations using a safe
arithmetic library such as SafeMath [27]. SafeMath provides safe
arithmetic operations for multiplication, division, addition and sub-
traction. We found that 337 out of the 495 contracts include the

Osiris: Hunting for Integer Bugs in Ethereum Smart Contracts ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

SafeMath library in their source code. Thus roughly 32% of the to-
kens do not make use of a SafeMath library and are therefore highly
susceptible to overflows and underflows. Moreover, Osiris found
53 out of the 337 contracts to include bugs related to overflows and
underflows. After manual inspection, we found that even though
developers make use of the SafeMath library, this does not neces-
sarily mean that they use it for every single arithmetic operation
performed by their smart contract.

6.2 Ways Towards Safe Integer Handling

There are various ways to reduce the likelihood of potentially cata-
strophic integer bugs in Ethereum smart contracts. We discuss two
different ways in the following:

1)Handle integer bugs at the application layer.This is the approach
taken by libraries such as SafeMath. This is already a best practice
and the only way to avoid overflows without modifying the Solidity
compiler or EVM. However, it comes at the price of additional EVM
instructions which increases gas costs. Obviously not all developers
see the benefit of using additional libraries for solving apparently
simple arithmetic tasks.

2) Handle integer bugs at the compiler level. Compiler-generated
overflow checks remove the burden from developers but still create
additional overhead in terms of gas costs and runtime performance.
Other languages such as Rust go a route that combines rigorous
static checking with fail-fast at development time and defensive
programming at runtime. This approach could be retrofitted to
the Solidity compiler without affecting the language or the EVM
themselves: as we have shown in this paper, static integer overflow
checking of real-world smart contracts is feasible and could be
integrated into the compiler to identify potential overflow bugs at
development time (as it is done by [24] for C code, for example).
By additional annotations such as //@allow_overflow, developers
could explicitly mark variables that should be treated in an unsafe
way to allow deliberate overflows. The drawback is obviously that
still, generated EVM contains potential unnecessary and costly
runtime checks.

7 RELATEDWORK

In the past years, several approaches have been proposed in order to
tackle the challenge of fully formalising reasoning about Ethereum
smart contracts. Numerous attempts have been made in modelling
the semantics of Ethereum smart contracts in state-of-the-art proof
assistants [1, 2, 12, 15, 16, 30]. Bhargavan et al. propose to translate
a subset of Solidity to F* for formal verification [2]. This is similar
to the approach initially followed by the Solidity compiler of trans-
lating Solidity contracts into WhyML to generate formal proofs
for the why3 framework [30]. A number of alternative translations
of EVM bytecode to manual assisted proofs have been proposed,
including proofs in Coq [16] and Isabelle/HOL [1, 15]. While these
approaches enable formal machine-assisted proofs of various safety
and security properties of smart contracts, none of them provide
means for fully automated analysis.

As a result, a large number of automated tools have been pro-
posed for ensuring correctness and safety of smart contracts [18,
20, 23, 25, 26, 33]. All of these tools are based on symbolically exe-
cuting EVM bytecode. Luu et al. were the first to present a symbolic

execution tool called Oyente [20]. The tool is capable of automati-
cally detecting vulnerability patterns such as transaction-ordering
dependence, timestamp dependence, mishandled exceptions and re-
entrancy. Nikolic et al. presentMaian [25], a tool that builds up on
Oyente and employs inter-procedural symbolic analysis as well as
concrete validation in order to find and validate vulnerabilities on
trace properties, such as greedy, prodigal, and suicidal, in Ethereum
smart contracts. Tsankov et al. present Securify [33], a tool that
first symbolically analyses a contract’s dependency graph to extract
semantic information and afterwards checks for violations of safety
patterns. To enable extensibility, the tool permits new patterns to
be specified via a designated domain-specific language. In any case,
none of the aforementioned tools currently check for integer bugs
in smart contracts.

Kalra et al. propose Zeus [18], a framework for automated verifi-
cation of smart contracts using abstract interpretation and symbolic
model checking, accepting user-provided policies. Zeus inserts
policy predicates as assert statements in the source code, then
translates everything to an intermediate LLVM representation, and
finally invokes its verifier to determine assertion violations. The
tool is capable of detecting integer overflows and underflows simi-
lar to Osiris, with the difference of Osiris working at the bytecode
level and Zeus at the source code level. However, source code is not
always available. Moreover, Zeus requires users to write policies
to assert the security of smart contracts, which is sometimes not
that trivial. Mueller et al. present Mythril [23], a security analysis
tool for Ethereum smart contracts. It uses concolic analysis, taint
analysis and control flow checking to detect a variety of security
vulnerabilities. Mythril comes very close to the approach behind
Osiris, with one of the differences being that Osiris uses a more
precise and complete taint propagation logic while allowing users
to define their own sources and sinks. Another difference is that
Mythril treats every integer as a 256-bit integer and therefore
does not detect an overflow if for example two 32-bit integers are
being added, Osiris on the other hand tries to infer the width of
every integer in order to precisely tell if an arithmetic operation
can overflow or not. Finally, at the time of writing, Mythril seems
to have issues in distinguishing between benign and malignant
overflows and underflows [22]. Osiris effectively distinguishes be-
tween benign and malignant integer bugs. Ultimately, both Zeus
andMythril, fail to check for truncation bugs and signedness bugs,
whereas Osiris does check for these two types of integer bugs.

8 CONCLUSION AND FUTUREWORK

Integer bugs are currently listed as one of the top 3 vulnerabilities
in smart contracts [13]. We present the design and implementation
of Osiris – a framework for detecting integer bugs in Ethereum
smart contracts. Osiris leverages on symbolic execution and taint
analysis. We compare Osiris with Zeus and show that Zeus is
not sound. Osiris finds 5 contracts to be unsafe whereas as Zeus
reports them to be safe. Moreover, in our evaluation Osiris reports
less false positives than Zeus. Our evaluation on over 1.2 million
Ethereum smart contracts indicates that about 4% of them might
be vulnerable to at least one of the three integer bugs presented
in this paper. Finally, using Osiris we discovered a yet unknown
vulnerability in a couple of Ethereum tokens.

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA C. Ferreira Torres et al.

In future work, we plan to extend Osiris’s taint analysis to also
track taint across multiple contracts (inter-contract analysis) and
across different method invocations (trace analysis). Moreover, we
aim to switch to concolic execution using concrete values from
the blockchain in order to validate and generate direct exploits.
This may help us make Osiris’s detection mechanism even more
precise. Finally, we want to augment our evaluation on the security
of Ethereum tokens. Etherscan lists over 90,000 ERC-20 based to-
ken smart contracts on the Ethereum blockchain. Hence, we only
scratched the tip of the iceberg, by analysing only 495 of them.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable
comments. The experiments presented in this paper were carried
out using the HPC facilities of the University of Luxembourg [34] –
see https://hpc.uni.lu.

REFERENCES

[1] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018. Towards
Verifying Ethereum Smart Contract Bytecode in Isabelle/HOL. CPP. ACM. To
appear (2018).

[2] Karthikeyan Bhargavan, Nikhil Swamy, Santiago Zanella-Béguelin, Antoine
Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi, Georges Gonthier, Nadim
Kobeissi, Natalia Kulatova, Aseem Rastogi, and Thomas Sibut-Pinote. 2016. For-
mal Verification of Smart Contracts. In Proceedings of the 2016 ACM Workshop on
Programming Languages and Analysis for Security - PLAS’16. ACM Press, New
York, New York, USA, 91–96. https://doi.org/10.1145/2993600.2993611

[3] Ping Chen, Hao Han, Yi Wang, Xiaobin Shen, Xinchun Yin, Bing Mao, and Li Xie.
2009. IntFinder: Automatically detecting integer bugs in x86 binary program. In
International Conference on Information and Communications Security. Springer,
336–345.

[4] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[5] Etherscan.io. 2018. BeautyChainToken. Retrieved June 7, 2018 from https:
//etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d#code

[6] Etherscan.io. 2018. Ethereum Contracts with Verified Source Codes. Retrieved
June 8, 2018 from https://etherscan.io/contractsVerified

[7] Etherscan.io. 2018. Etherscan Token Tracker Page. Retrieved June 5, 2018 from
https://etherscan.io/tokens

[8] Etherscan.io. 2018. HexagonToken. Retrieved June 7, 2018 from https://etherscan.
io/address/0xb5335e24d0ab29c190ab8c2b459238da1153ceba#code

[9] Etherscan.io. 2018. SmartMeshICO. Retrieved June 7, 2018 from https://etherscan.
io/address/0x55f93985431fc9304077687a35a1ba103dc1e081#code

[10] Etherscan.io. 2018. Social Chain. Retrieved June 7, 2018 from https://etherscan.
io/address/0xb75a5e36cc668bc8fe468e8f272cd4a0fd0fd773#code

[11] Etherscan.io. 2018. UselessEthereumToken. Retrieved June 7, 2018 from https:
//etherscan.io/address/0x27f706edde3ad952ef647dd67e24e38cd0803dd6#code

[12] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic
Framework for the Security Analysis of Ethereum smart contracts. In International
Conference on Principles of Security and Trust. Springer, 243–269.

[13] NCC Group. 2018. DASP - TOP 10. Retrieved June 15, 2018 from https://dasp.
co/#item-3

[14] Yoichi Hirai. 2016. Exception on overflow - Issue #796 - ethereum/solidity.
Retrieved June 10, 2018 from https://github.com/ethereum/solidity/issues/796#
issuecomment-253578925

[15] Yoichi Hirai. 2017. Defining the ethereum virtual machine for interactive theorem
provers. In International Conference on Financial Cryptography and Data Security.
Springer, 520–535.

[16] Yoichi Hirai. 2017. Ethereum Virtual Machine for Coq (v0.0.2).
Retrieved June 12, 2018 from https://medium.com/@pirapira/
ethereum-virtual-machine-for-coq-v0-0-2-d2568e068b18

[17] PeckShield Inc. 2018. PeckShield Inc. - Advisories. Retrieved June 13, 2018 from
https://peckshield.com/advisories.html

[18] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus:
Analyzing safety of smart contracts. NDSS.

[19] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. Zeus
Evaluation. Retrieved June 12, 2018 from https://docs.google.com/spreadsheets/
d/12_g-pKsCtp3lUmT2AXngsqkBGSEoE6xNH51e-of_Za8/preview?usp=
embed_googleplus#gid=1568997501

[20] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security - CCS’16. ACM Press, New
York, New York, USA, 254–269. https://doi.org/10.1145/2976749.2978309

[21] DavidMolnar, Xue Cong Li, and DavidWagner. 2009. Dynamic Test Generation to
Find Integer Bugs in x86 Binary Linux Programs.. In USENIX Security Symposium,
Vol. 9. 67–82.

[22] Bernhard Mueller. 2018. Detecting Integer Overflows in Ethereum Smart Con-
tracts. Retrieved June 12, 2018 from https://bit.ly/2JIp9ea

[23] Bernhard Mueller. 2018. Smashing Ethereum Smart Contracts for Fun and Real
Profit. (2018).

[24] Paul Muntean, Jens Grosklags, and Claudia Eckert. 2018. Practical Integer Over-
flow Prevention. In IEEE TSE journal (under review) (2018). https://arxiv.org/abs/
1710.03720

[25] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.
2018. Finding the greedy, prodigal, and suicidal contracts at scale. arXiv preprint
arXiv:1802.06038 (2018).

[26] Trail of Bits. 2018. Manticore - Symbolic execution tool. Retrieved June 12, 2018
from https://github.com/trailofbits/manticore

[27] OpenZeppelin. 2018. OpenZeppelin/openzeppelin-solidity. Retrieved June 12,
2018 from https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/
contracts/math/SafeMath.sol

[28] Sergey Petrov. 2017. Another Parity Wallet hack explained.
Retrieved June 13, 2018 from https://medium.com/@Pr0Ger/
another-parity-wallet-hack-explained-847ca46a2e1c

[29] Marios Pomonis, Theofilos Petsios, Kangkook Jee, Michalis Polychronakis, and
Angelos D Keromytis. 2014. IntFlow: improving the accuracy of arithmetic error
detection using information flow tracking. In Proceedings of the 30th Annual
Computer Security Applications Conference. ACM, 416–425.

[30] Christian Reitwiessner. 2018. Formal Verification for Solidity Contracts.
Retrieved June 12, 2018 from https://forum.ethereum.org/discussion/3779/
formal-verification-for-solidity-contracts

[31] David Siegel. 2016. Understanding The DAO Attack. Retrieved June 13, 2018
from https://www.coindesk.com/understanding-dao-hack-journalists/

[32] Solidity. 2018. Solidity 0.4.24 documentation. Retrieved June 9, 2018 from
http://solidity.readthedocs.io/en/v0.4.24/

[33] Petar Tsankov, Andrei Dan, Dana Drachsler Cohen, Arthur Gervais, Florian
Buenzli, and Martin Vechev. 2018. Securify: Practical Security Analysis of Smart
Contracts. arXiv preprint arXiv:1806.01143 (2018).

[34] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. 2014. Management of an
Academic HPC Cluster: The UL Experience. In Proc. of the 2014 Intl. Conf. on High
Performance Computing & Simulation (HPCS 2014). IEEE, Bologna, Italy, 959–967.

[35] Fabian Vogelsteller and Vitalik Buterin. 2015. ERC-20 Token Standard. Retrieved
June 7, 2018 from https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

[36] Tielei Wang, Tao Wei, Zhiqiang Lin, and Wei Zou. 2009. IntScope: Automatically
Detecting Integer Overflow Vulnerability in X86 Binary Using Symbolic Execu-
tion. In Proceedings of the Network and Distributed System Security Symposium,
NDSS 2009, San Diego, California, USA, 8th February - 11th February 2009. The
Internet Society. http://www.isoc.org/isoc/conferences/ndss/09/pdf/17.pdf

[37] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M Frans Kaashoek.
2012. Improving Integer Security for Systems with KINT.. In OSDI, Vol. 12.
163–177.

[38] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper 151 (2014), 1–32.

A CONTROL FLOW GRAPH EXAMPLE

1 pragma solidity ^0.4.21;

2
3 contract Test {

4
5 function overflow(uint value) public pure returns(

uint) {

6 return value + 1;

7 }

8 }

Listing 8: An example of a smart contract possibly

producing an integer overflow at line 6.

https://hpc.uni.lu
https://doi.org/10.1145/2993600.2993611
https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d#code
https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d#code
https://etherscan.io/contractsVerified
https://etherscan.io/tokens
https://etherscan.io/address/0xb5335e24d0ab29c190ab8c2b459238da1153ceba#code
https://etherscan.io/address/0xb5335e24d0ab29c190ab8c2b459238da1153ceba#code
https://etherscan.io/address/0x55f93985431fc9304077687a35a1ba103dc1e081#code
https://etherscan.io/address/0x55f93985431fc9304077687a35a1ba103dc1e081#code
https://etherscan.io/address/0xb75a5e36cc668bc8fe468e8f272cd4a0fd0fd773#code
https://etherscan.io/address/0xb75a5e36cc668bc8fe468e8f272cd4a0fd0fd773#code
https://etherscan.io/address/0x27f706edde3ad952ef647dd67e24e38cd0803dd6#code
https://etherscan.io/address/0x27f706edde3ad952ef647dd67e24e38cd0803dd6#code
https://dasp.co/#item-3
https://dasp.co/#item-3
https://github.com/ethereum/solidity/issues/796#issuecomment-253578925
https://github.com/ethereum/solidity/issues/796#issuecomment-253578925
https://medium.com/@pirapira/ethereum-virtual-machine-for-coq-v0-0-2-d2568e068b18
https://medium.com/@pirapira/ethereum-virtual-machine-for-coq-v0-0-2-d2568e068b18
https://peckshield.com/advisories.html
https://docs.google.com/spreadsheets/d/12_g-pKsCtp3lUmT2AXngsqkBGSEoE6xNH51e-of_Za8/preview?usp=embed_googleplus#gid=1568997501
https://docs.google.com/spreadsheets/d/12_g-pKsCtp3lUmT2AXngsqkBGSEoE6xNH51e-of_Za8/preview?usp=embed_googleplus#gid=1568997501
https://docs.google.com/spreadsheets/d/12_g-pKsCtp3lUmT2AXngsqkBGSEoE6xNH51e-of_Za8/preview?usp=embed_googleplus#gid=1568997501
https://doi.org/10.1145/2976749.2978309
https://bit.ly/2JIp9ea
https://arxiv.org/abs/1710.03720
https://arxiv.org/abs/1710.03720
https://github.com/trailofbits/manticore
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-847ca46a2e1c
https://medium.com/@Pr0Ger/another-parity-wallet-hack-explained-847ca46a2e1c
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts
https://www.coindesk.com/understanding-dao-hack-journalists/
http://solidity.readthedocs.io/en/v0.4.24/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
http://www.isoc.org/isoc/conferences/ndss/09/pdf/17.pdf

Osiris: Hunting for Integer Bugs in Ethereum Smart Contracts ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Figure 6: A representation of the control flow graph that

Osiris produces for Listing 8. The basic block highlighted

in red indicates the location where an overflow may occur.

B THE DAO HACK

1 contract SimpleDAO {

2 mapping (address => uint) public credit;

3 function donate(address to){credit[to] += msg.value ;}
4 function queryCredit(address to) returns (uint){
5 return credit[to];

6 }

7 function withdraw(uint amount) {

8 if (credit[msg.sender]>= amount) {

9 msg.sender.call.value(amount)();
10 credit[msg.sender]-=amount;
11 }}}

Listing 9: A simplified version of the DAO smart contract.

1 contract Mallory2 {

2 SimpleDAO public dao = SimpleDAO (0 x818EA ...);

3 address owner; bool performAttack = true;
4 function Mallory2 (){ owner = msg.sender; }

5 function attack () {

6 dao.donate.value (1)(this);
7 dao.withdraw (1);

8 }

9 function () {

10 if (performAttack) {

11 performAttack = false;
12 dao.withdraw (1);

13 }}

14 function getJackpot (){

15 dao.withdraw(dao.balance);
16 owner.send(this.balance);
17 }}

Listing 10: A more efficient attack than the original DAO

attack.

	Abstract
	1 Introduction
	2 Background
	2.1 The Ethereum Virtual Machine
	2.2 The Solidity Programming Language
	2.3 Integer Bugs in Ethereum Smart Contracts

	3 Methodology
	3.1 Type Inference
	3.2 Finding Integer Bugs
	3.3 Taint Analysis
	3.4 Identifying Benign Integer Bugs

	4 Osiris
	4.1 Design Overview
	4.2 Implementation

	5 Evaluation
	5.1 Empirical Analysis
	5.2 Detection of Real-World Vulnerabilities

	6 Discussion
	6.1 Causes for Integer Bugs
	6.2 Ways Towards Safe Integer Handling

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Control Flow Graph Example
	B The DAO Hack

