
DEMO: An Effective Android Code Coverage Tool
Aleksandr Pilgun

SnT, University of Luxembourg
aleksandr.pilgun@uni.lu

Olga Gadyatskaya
SnT, University of Luxembourg

olga.gadyatskaya@uni.lu

Stanislav Dashevskyi
SnT, University of Luxembourg
stanislav.dashevskyi@uni.lu

Yury Zhauniarovich
Qatar Computing Research Institute,

HBKU
yzhauniarovich@hbku.edu.qa

Artsiom Kushniarou
SnT, University of Luxembourg
artsiom.kushniarou@uni.lu

ABSTRACT
The deluge of Android apps from third-party developers calls for
sophisticated security testing and analysis techniques to inspect
suspicious apps without accessing their source code. Code coverage
is an important metric used in these techniques to evaluate their
effectiveness, and even as a fitness function to help achieving better
results in evolutionary and fuzzy approaches. Yet, so far there are
no reliable tools for measuring fine-grained bytecode coverage of
Android apps. In this work we present ACVTool that instruments
Android apps and measures the smali code coverage at the level
of classes, methods, and instructions.
Tool repository: https://github.com/pilgun/acvtool
ACM Reference Format:
Aleksandr Pilgun, Olga Gadyatskaya, Stanislav Dashevskyi, Yury Zhau-
niarovich, and Artsiom Kushniarou. 2018. DEMO: An Effective Android
Code Coverage Tool. In 2018 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’18), October 15–19, 2018, Toronto, ON, Canada.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3243734.3278484

1 INTRODUCTION
Android is the dominant mobile platform today, with millions of
devices running it and millions of third-party applications (apps for
short) available for its users. Unfortunately, this huge ecosystem
suffers from proliferation of malicious [14] and buggy [10, 11] apps.
Not surprisingly, techniques for automatic detection of malicious
and faulty Android apps are in high demand.

One of the critical aspects in Android app analysis and testing
is that apps are submitted to markets, including the main market
Google Play, being already compiled and packaged. Their source
code is not available for inspection neither to security researchers,
nor to Google. Thus, automated analysis and testing tools need to
operate in the black-box manner, without any knowledge of the
expected behaviors of apps and with no access to their source code.

In this work, we specifically focus on measuring code cover-
age of Android apps. This metric is an integral part of software
development and quality assurance activities for all programming
languages and software ecosystems, and it has become a critical

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5693-0/18/10.
https://doi.org/10.1145/3243734.3278484

metric for Android application analysis. Fellow researchers and
practitioners evaluate the effectiveness of tools for automated test-
ing and security analysis using code coverage (e.g., [3–5, 8, 10, 16]).

However, obtaining this metric is not a trivial task. Without
the source code, code coverage is usually measured by instrument-
ing the bytecode, and this process is not straightforward for An-
droid [8].

Related Work. Today, several tools for measuring code coverage
over the bytecode of Android apps already exist, but they all have
limitations. One of these limitations is the coarse granularity of
the metric. For example, ELLA [6] and InsDal [9] measure code
coverage only at at the method level.

Another limitation of the existing tools is low instrumentation
success rate. For example, the tool by Huang et al. [8] measures
code coverage achieved by popular dynamic analysis tools at the
class, method, basic block and line granularities. However, the
authors reported that they have been able to successfully instru-
ment only 36% of apps to measure code coverage. Another tool for
black-box code coverage measurement is BBoxTester [17] that has
achieved the successful app instrumentation rate of 65%. It reports
coverage at the class, method and basic block granularities.

Furthermore, the existing tools suffer from limited empirical
evaluation, with a typical evaluation dataset of less than 100 apps.
Often, research papers do not even mention the percentage of failed
instrumentation attempts.

Remarkably, in the absence of a reliable fine-grained code cov-
erage measurement tool, some frameworks integrate their own
libraries that perform this task, e.g. [2, 10, 13]. However, as code
coverage measurement is not the core contribution of these works,
the authors have provided no information regarding their instru-
mentation success rates and performance.

Contribution. In this paper we present our ACVTool that mea-
sures code coverage of Android apps without relying upon their
source code. ACVTool produces detailed coverage reports that are
convenient for either visual inspections, or automatic processing.
Our tool also collects crash reports that facilitate the analysis of
faults within apps. We have empirically validated ACVTool against
a large dataset of third-party apps. ACVTool has successfully instru-
mented 96.9% of apps in our experiments. Average time required
to instrument an app with ACVTool is 36 seconds, i.e., it is negli-
gible for the standard testing and analysis purposes. ACVTool is
self-contained and transparent to the testing environment, and can
be integrated with any testing or analysis tool. We have released
ACVTool as an open source project to support the Android research
community.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/162021622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/pilgun/acvtool
https://doi.org/10.1145/3243734.3278484
https://doi.org/10.1145/3243734.3278484


Decompile

Android Manifest

Smali Code

Instrumented

Android Manifest
Instrumented

Smali Code
Instrument Build&Sign

Install Test

Instrumentation

Report

Runtime

Report

Collect

Apktool ACVTool

ACVTool

Apktool

apksigner

adb

manual

automatic adb Crash

Data

Offline
Online

Generate

Figure 1: The ACVTool workflow

2 ACVTOOL ARCHITECTURE
ACVTool allows to measure and analyze the degree to which the
code of a closed-source Android app is executed during testing,
and to collect crash reports occurred during this process. The tool
instruments an app and measures code coverage at instruction,
method and class granularities. We designed ACVTool to be self-
contained in order to make its integration with various testing
solutions as easy as possible. In addition, the tool is helpful in
manual analysis for investigating which code parts of a third-party
application have been executed.

Figure 1 shows the main phases of ACVTool workflow: offline,
online, and report generation phases, as indicated in upper, lower
and right-most parts of the scheme, correspondingly. The offline
phase handles the preprocessing of an app prior to its installation
and instruments it. During the online phase, ACVTool installs the
instrumented app and enables the data collection during testing.
Later, in the report generation phase, ACVTool produces the infor-
mation about code coverage. Below we describe the workflow of
ACVTool in more details.

2.1 Offline phase
Instrumentation of a third-party app is not a trivial task due to
the absence of the source code. This task requires to inject specific
instrumentation bytecode instructions (probes) into the original
bytecode. We based our tool on Apktool [15] that utilizes the backs-
mali disassembler [12] under the hood. We use this tool to disas-
semble an app into smali code – a human-readable representation
of Android bytecode. Then we insert probes that log the execution
of the original smali instructions. Afterwards, ACVTool builds a
new version of the app and signs it with apksigner. Thus, ACVTool
can instrument almost all applications that Apktool can repack-
age. Moreover, we do not worry about new versions of DEX files
that might introduce new types of bytecode instructions: updating
ACVTool to handle these new instructions will require little effort.

Smali codemodification. Due to the stack-based Android architec-
ture, modifying the smali code is not straightforward. We use the
direct instrumentation approach previously introduced by Huang et
al. [8] and Liu et al. [9], in conjunction with a register management
technique. However, our approach is more efficient.

In our solution, we have optimized the mechanism of registering
the execution of probes by maintaining a binary array. A probe
writes a value into the corresponding cell of the binary array when
executed. Writing binary values into specific array cells is a very

fast operation in comparison to manipulating string identifiers as
in previous solutions [8, 9]. Moreover, this basic operation is much
faster than creating new class objects or calling the Android API. In
the end, the relatively large amount of the added probe code does
not lead to any visible degradation of the application.

In its core, ACVTool puts a tracking probe right after each origi-
nal instruction and label, excluding some corner cases. For instance,
due to Dalvik-related limitations, the probes could not be inserted
in-between some instruction pairs [7], such as the invoke-* or
filled-new-array instructions followed by move-result*, and
the catch label followed by the move-exception instruction. More-
over, the Android Runtime has the VerifyChecker component,
which ensures that the exception-free part of the Java synchronized
implementation (usually generated by the Android compiler) can-
not raise an exception. The verifier scans the corresponding parts
of the bytecode for unsafe instructions. To avoid failings at run-
time, we wrap our tracking code by a goto/32 call and return the
execution flow straight back after the probe was registered.

Along with the instrumented apk file, the offline phase produces
an instrumentation report, which matches the cells of the binary
array onto smali code. It is a serialized code representation saved
into a binary file with the pickle extension. This report will be
applied in the report generation phase.

Orchestration. ACVTool injects a Reporter class and a special
Instrumentation class in an apk. The first allocates memory to
log probe execution and also enables pulling of code coverage
information from memory into the external memory of the de-
vice. The second class provides the capability to monitor and save
application-level crashes. The Instrumentation class also con-
tains a broadcast receiver. Through this receiver ACVTool can
trigger the Instrumentation class to initiate saving the code cov-
erage information. To enable this functionality, ACVTool adds
the WRITE_EXTERNAL_STORAGE permission and an instrument tag
pointing to the Instrumentation class into the app manifest file.

2.2 Online phase
During this phase, we install the instrumented app on a device or
emulator. We first activate the broadcast receiver implemented in
the Instrumentation class. Thenwe can exercise the appmanually
or automatically, while logging the code coverage data.

After the testing is over, ACVTool generates another specific
broadcast to consolidate the runtime information into a runtime
report stored within the external storage of the device.

2.3 Report Generation phase
During this phase, ACVTool pulls the runtime report from the device
and applies the instrumentation report generated during the offline
phase. ACVTool generates code coverage report in the html and xml
formats. The html report demonstrates the smali representation of
the app code with appropriate coverage information in an easy to
navigate browser view. Figure 2 shows an example of an html report,
where individual smali code files available with the executed code
are highlighted. The report gives the following information by
columns: name of a smali file or a package, visualized numbers
of missed vs. covered instructions, the code coverage value. The
last six columns indicate the amount of the code that was not



Figure 2: The ACVTool code coverage report

Table 1: ACVTool performance evaluation

Parameter F-Droid Google Play Totalbenchmark benchmark
Total # selected apps 448 398 846
Average apk size 3.1MB 11.1MB 6.8MB
Instrumented apps 444 (99.1%) 382 (95.9%) 97.6%

Healthy instrumented apps 440 (98.2%) 380 (95.4%) 96.9%
Avg. instrumentation time 24.7 sec 49.6 sec 36.2 sec

(total per app)

executed during testing and the information about total amount
of lines, methods and classes correspondingly. We generate also
an xml version of the report containing the same code coverage
information suitable for integrating in automated testing tools.

3 EVALUATION
We have extensively tested ACVTool on real-life third party appli-
cations. For the lack of space, we only report very basic evaluation
statistics, summarized in Table 1.

Instrumentation success rate. For evaluation we have collected
all application projects from the popular open-source F-Droid mar-
ket, which is frequently used in evaluation of automated testing
tools (e.g., in [10]). Among all projects on F-Droid, we were able to
successfully build and launch on a device 448 apps. We have also
randomly selected 500 apps from the AndroZoo [1] snapshot of the
Google Play market, targeting apps released after the Android API
22. This sample is therefore representative of real-life third-party
apps that may use anti-debugging techniques. Among the 500 se-
lected apps, only 398 were launch-able on a device (the rest crashed
immediately or gave installation errors). Thus, in total we tested
ACVTool on 846 apps, with an average apk size of 6.8MB.

As shown in Table 1, ACVTool successfully instrumented 97.6%
of these apps. Among the failures, 13 apps could not be repackaged
by the Apktool, and the others have produced some exceptions
during the instrumentation process. We then installed and launched
all successfully instrumented apps, and found that 6 apps crashed
immediately due to various errors. We thus can evaluate the total
instrumentation success rate of ACVTool to be 96.9% on our dataset.

Overhead. As reported in Table 1, ACVTool introduces relatively
small instrumentation-time overhead (36.2 seconds per app, on av-
erage) that is acceptable in the offline part of testing and analysis.
We have also estimated the potential run-time overhead introduced
by the added instrumentation code by running the original and
repackaged app versions with the same Monkey scripts and com-
paring the execution timings. For 50 apps randomly selected from
our dataset we have not found any significant difference in the
execution time (median time difference less than 0.08 sec, mean
difference less than 0.12 sec, standard deviation 0.84 sec), and we
have not seen any unexpected crashes. This experiment suggests

that there is no drastic run-time overhead introduced by our in-
strumentation. We now work on an experiment to evaluate the
run-time overhead precisely.

4 DEMO DETAILS
We plan an interactive demonstration of the whole coverage mea-
surement cycle on real applications. In the demo, we will walk the
audience through the ACVTool design. We will also show how the
smali code looks like before and after injecting the probes.

5 CONCLUSION
We reported on a novel tool for black-box code coverage measure-
ment of Android applications. We have significantly improved the
smali instrumentation technique and consequently our instrumen-
tation success rate is 96.9%, compared with 36% in Huang et al. [8]
and 65% in Zhauniarovich et al. [17]. Furthermore, our implemen-
tation is open-source and available for the community.

Acknowledgements
This research was partially supported by Luxembourg National
Research Fund through grants AFR-PhD-11289380-DroidMod and
C15/IS/10404933/COMMA.

REFERENCES
[1] K. Allix, T. Bissyandé, J. Klein, and Y. Le Traon. 2016. AndroZoo: Collecting

Millions of Android Apps for the Research Community. In Proc. of MSR. ACM,
468–471.

[2] H. Cai and B. Ryder. 2017. DroidFax: A toolkit for systematic characterization of
Android applications. In Proc. of ICSME. IEEE, 643–647.

[3] P. Carter, C. Mulliner, M. Lindorfer, W. Robertson, and E. Kirda. 2016. Curious-
Droid: Automated user interface interaction for Android application analysis
sandboxes. In Proc. of FC. Springer, 231–249.

[4] S. R. Choudhary, A. Gorla, and A. Orso. 2015. Automated test input generation
for Android: Are we there yet?. In Proc. of ASE. IEEE/ACM, 429–440.

[5] S. Dashevskyi, O. Gadyatskaya, , A. Pilgun, and Y Zhauniarovich. 2018. POSTER:
The Influence of Code Coverage Metrics on Automated Testing Efficiency in
Android. In Proc. of CCS.

[6] ELLA. 2016. A Tool for Binary Instrumentation of Android Apps, https://github.
com/saswatanand/ella.

[7] Google. 2018. https://source.android.com/devices/tech/dalvik/dalvik-bytecode.
[8] C. Huang, C. Chiu, C. Lin, and H. Tzeng. 2015. Code Coverage Measurement for

Android Dynamic Analysis Tools. In Proc. of Mobile Services (MS). IEEE, 209–216.
[9] J. Liu, T. Wu, X. Deng, J. Yan, and J. Zhang. 2017. InsDal: A safe and extensible

instrumentation tool on Dalvik byte-code for Android applications. In Proc. of
SANER. IEEE, 502–506.

[10] K. Mao, M. Harman, and Y. Jia. 2016. Sapienz: Multi-objective automated testing
for Android applications. In Proc. of ISSTA. ACM, 94–105.

[11] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and D. Poshy-
vanyk. 2016. Automatically discovering, reporting and reproducing Android
application crashes. In Proc. of ICST.

[12] smali/backsmali. 2018. https://github.com/JesusFreke/smali.
[13] W. Song, X. Qian, and J. Huang. 2017. EHBDroid: Beyond GUI testing for Android

applications. In Proc. of ASE. IEEE/ACM, 27–37.
[14] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou. 2017. Deep ground truth analysis of

current Android malware. In Proc. of DIMVA.
[15] R. Wiśniewski and C. Tumbleson. 2017. Apktool - A tool for reverse engineering

3rd party, closed, binary Android apps. https://ibotpeaches.github.io/Apktool/
[16] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X S. Wang. 2013. Appintent:

Analyzing sensitive data transmission in Android for privacy leakage detection.
In Proc. of CCS.

[17] Y. Zhauniarovich, A. Philippov, O. Gadyatskaya, B. Crispo, and F. Massacci. 2015.
Towards black box testing of Android apps. In Proc. of SAW at ARES. IEEE, 501–
510.

https://github.com/saswatanand/ella
https://github.com/saswatanand/ella
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://github.com/JesusFreke/smali
https://ibotpeaches.github.io/Apktool/

	Abstract
	1 Introduction
	2 ACVTool Architecture
	2.1 Offline phase
	2.2 Online phase
	2.3 Report Generation phase

	3 Evaluation
	4 Demo Details
	5 Conclusion
	References

