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Abstract— Autonomous navigation in unknown environments
populated by humans and other robots is one of the main
challenges when working with mobile robots. In this paper,
we present a new approach to dynamic collision avoidance for
multi-rotor unmanned aerial vehicles (UAVs). A new nonlinear
model predictive control (NMPC) approach is proposed to
safely navigate in a workspace populated by static and/or
moving obstacles. The uniqueness of our approach lies in
its ability to anticipate the dynamics of multiple obstacles,
avoiding them in real-time. Exploiting active set algorithms,
only the obstacles that affect to the UAV during the prediction
horizon are considered at each sample time. We also improve
the fluency of avoidance maneuvers by reformulating the
obstacles as orientable ellipsoids, being less prone to local
minima and allowing the definition of a preferred avoidance
direction. Finally, we present two real-time implementations
based on simulation. The former demonstrates that our
approach outperforms its analog static formulation in terms of
safety and efficiency. The latter shows its capability to avoid
multiple dynamic obstacles.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), commonly known as
drones, are now populating natural and industrial environ-
ments due to their multiple applications such as package
delivery, traffic-surveillance or search-and-rescue operations
[1]. These applications often demand the use of mobile
robots in presence of humans and other robots, making
autonomous navigation one of the most active topics in
robotics research [2]. This problem is usually addressed by
a hierarchical combination of planning and control but, the
lack of proper coordination between these agents, often leads
to inefficient or dangerous situations [3]. In this paper, we use
nonlinear model predictive control (MPC) to integrate motion
planning and control in scenarios with multiple dynamic
obstacles as shown in Fig. 1.

Most prior work on moving obstacles are based on the
concept of velocity obstacles (VOs) [4] to compute the set
of velocities of the robot that will cause a collision. This
technique has been used and enhanced by many authors,
taking into account nonlinear dynamics [5], uncertainty [6],
reciprocal behavior [7] or its use for computing control
objectives in convex optimization [8].

Unlike these methods, nonlinear model predictive control
(NMPC) is able to natively consider non-convex constraints
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UAV crossing the street avoiding multiple dy-

Fig. 1:
namic obstacles. See video in https://rebrand.ly/
castillo2018mpc

such as obstacles to generate feasible trajectories, being
safer and less prone to local minima than other hierarchical
approaches [3]. Even though NMPC is known to be compu-
tationally expensive, recent advances on non-linear solvers
[9], [10] has triggered its use in fast real-time applications
such as collision avoidance for small UAVs.

Although great effort has been done in this area, dealing
with multiple three-dimensional obstacles remains difficult.
Recent work using NMPC often simplifies this problem by
considering only the closest obstacle [11] or reducing the
obstacles as bi-dimensional static [12], [13] or dynamic [14]
constraints.

To provide safe navigation in cluttered dynamic scenarios
we exploit active set algorithms to consider only the con-
straints that affect to our problem at each sample time. In
this paper, we extend our previous work [15] by including the
dynamics of ellipsoidal obstacles without additional cost. We
use parametrized soft constraints to specify the sensitiveness
of the avoidance maneuvers with the guarantee of finding a
locally-optimal solution even in highly constrained scenarios
as shown in Fig. 1. Successful experiments in real-time
validates our approach in scenarios with multiple dynamic
obstacles, outperforming its analog formulation in terms of
safety and efficiency.
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This paper is organized as follows: In section II we
develop the model for a multi-rotor UAV, including the
experimental identification of a real platform. Section III
formulates the NMPC control policy regarding trajectory
tracking an collision avoidance. Finally, we validate our
approach in two realistic scenarios in section IV, drawing
the conclusions in section V.

II. UAV MODEL

A multi-rotor UAV is usually modeled using the Newton-
Euler equations of a rigid body to stabilize and control the
platform [16]. However, the typical configuration of an UAV
includes an autopilot that controls its stability while follow-
ing velocity commands given by an external pilot (automated
or human). The control input u = [u, uy u, uy]? is divided
in forward, sidewards, upward, and heading velocity refer-
ences. This commands are specified in a pitch/roll invariant
body frame named as the hovering frame H (see Fig. 2).
The world frame W, is defined as a standard North-East-Up
fixed reference frame.

Recent work on quadrotor modeling describe it as a
differentially flat system [16], meaning that its full state can
be represented by a combination of its flat outputs and their
derivatives. In this work we choose the cartesian coordinates
of the center of mass r = [z y z] and the yaw angle 1) to
build the reduced state vector:

x=[zvy 21 v, vy v, vy]" (1)

being v. = [v; v, v,] the UAV linear velocity in the
hovering frame and the heading angular velocity vy,. Then,
we propose a nonlinear model x = f(x,u) defined by the
set of equations:

& = vzcos(1) — vysin(y) (2a)
U = vgsin(y) + vycos(v) (2b)
Z=0, (2¢)
=y (2d)
U; = (—v; + kjwy) /7, 1€ {x,y, 2,9} (2e)

where (2e) models the velocity response of the UAV as a
first order model of gain k; and constant time 7;.

In this work, we use a motion capture system' to perform a
precise model identification of a DJI-M100? quadrotor (see
Fig. 2). The model parameters are obtained by a classical
step response tangent method [15] defined by:

v;(00) 3

ky = 43(>0) T = 5@63 — t2g) 3)

where tg3 and tog are the times, from the start of the step,
when the velocity reaches the 63% and the 28% of its final
value respectively. The resulting parameters are shown in
Table I.

This lightweight formulation allow us to solve the UAV
dynamics faster without the knowledge of its physical design,

Optitrack Motion Capture System: http://optitrack.com/
2DJI Matrice 100: https://www.dji.com/matricel00
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Fig. 2: Hovering frame of the DJI-M100 platform.

TABLE I: First order model parameters of the DJI-M100

| ki 7i ()
T 1.0000 0.8355
Y 1.0000 0.7701
z 1.0000 0.5013
¥ | 7/180 05142

being applicable on any multi-rotor platform. Besides, plac-
ing the controller outside the inner control loop relaxes its
real-time requirements, allowing us to increase the prediction
horizon of the MPC approach to target high-level control
policies.

III. CONTROLLER DESIGN

Model predictive control obtains the control input of the
system by solving an Optimal Control Problem (OCP) each
sample time. That involves minimizing a given cost function
over a defined prediction horizon subjected to states and
input constraints. In this work, the OCP is designed to
minimize the effort required for an UAV to track a desired
state or trajectory while avoiding dynamic obstacles.

A. Trajectory tracking

Trajectory tracking is formulated as the cost term J*
defined in (4). The difference between the predicted state
x; and its reference x; at each step ¢ is penalized over the
prediction horizon N as follows:

N-1
1 " *
T =3 D Ik = xi 1B + Ixn = xylI5 )
i=0

where P and () are weighting matrices of each quadratic
penalty. For stability and energy efficiency, an analog cost
J¢ is defined for the control inputs as:

1 N-1
Je=5 > il )
=0

B. Obstacle avoidance

The use of three-dimensional constraints to model obsta-
cles in a 3D environment is often a good practice. However,
the use of hard constraints to guarantee the generation of safe
trajectories leads to non-feasible problems and unpredictable
results, making its viable use only with few obstacles [11].


http://optitrack.com/
https://www.dji.com/matrice100

In this work, we propose to use parametrized soft constraints
to model each ellipsoidal obstacles as follows:

fz(ri,rf) + 055f >1 (6)

where sf is an extra control input, known as slack variable,

that relaxes the constraint with sensitivity ¢ to guarantee
feasible solutions in tight situations. The ellipsoidal term
€2(r;,r?) is based on the distance function:

Erird) = /(i — 29)TQi(r; —19) )

where r{ is the center position of the ellipsoid in world frame
at time step ¢. (Q; is the metric induced by the ellipsoid
dimensions M = diag(r;?,r, % r;?) rotated by ©Ry to
the world frame as:

Qi =R}, M; °Ry (8)

This formulation generalizes the euclidean obstacle model
present in the literature, allowing to move, orientate and
resize the obstacles along the prediction horizon at each
sample time. Thus, these parameters can be manipulated to
include the dynamics of every obstacle without the need of
additional variables and extra computation. In this work, we
propagate the position of the obstacle at constant velocity as:

r{ =1 +1_; - At 9

Soft constraints has the main drawback of increasing
the computational cost because of the slack variables. To
mitigate this effect when dealing with multiple obstacles,
we define a shared slack variable sf for all the ellipsoidal
obstacles, with the cost:

N-1

1
7= 3 S IS

i=0

(10)

Boundary obstacles, such as walls or the floor, are also
considered analogously as soft planar constraints based on
its position r{ and normal vector n; as shown in (11) and
(12).

7(r;) +07sT >0 (11)
LN
JT=3 ; s 17 (12)

where 7(r;) = n; - (r; — r?)
C. Optimal Control Problem

Integrating the previous definitions, the optimal control
problem is formulated in the set of equations (13), taking
the form of a discrete non-linear program (NLP).

min}i{r}lljize J=Jt+ T+ T4+ J" (13a)
subject to:  x¢ = Ty (13b)
xi+1 = Di(x4,15) 1=0,...,N—1 (13¢)
E(x;) + 0555 > 1 i=0,...,N—1 (13d)
7(x;) +607sT >0 i=0,....,N—1 (13e)
[ui| < Wae i=0,....,N—1 (13

In (13a) all the cost terms are merged in a single objective
function to find the best trade-off between trajectory tracking,
efficiency and collision avoidance. In (13b) the feedback
state To is set as the initial state in the prediction horizon.
The (13c¢) introduces the discretized form of the UAV model
X = f(x,u) as an equality constraint, including obstacles
and maximum control inputs in (13d)-(13e) and (13f) re-
spectively.

IV. EXPERIMENTS

The aim of our approach is to provide safe navigation
for UAVs in complex dynamic environments. To validate
it, we set a simple scenario in subsection IV-C to show
its performance compared with its analog approach, which
uses a static obstacle formulation. Then, we set a challenging
scenario in section I'V-D to analyze its capability to deal with
multiple moving obstacles.

A. Risk evaluation

In this work, the risk of collision is evaluated by the
distance to obstacle d and the inverse time to collision
(TTC~1) [17], which is defined as:

d
-1
TrC™ = p
This rate indicates the risk of collision between two agents.
Negative values correspond to a potential collision, while
positive values indicate that the agents are moving away from
each other. The safest situation is around zero, corresponding
to high distances and small relative velocity.

(14)

B. Implementation details

To implement the optimal control problem defined in (13),
ACADO Toolkit for C++ has been used to generate a fast
explicit solver for the NMPC controller. The NMPC con-
troller has been implemented in C++ programming language,
building the communications and interfaces using the ROS
Kinetic framework [18]. As a simulation environment V-REP
[19] is used to run software-in-the-loop experiments.

The implementation parameters of the MPC algorithm are
shown in Table II. A long prediction horizon is chosen to
promote a long-term optimal control policy, which is highly
sensitive to obstacles. More sensitivity is given to ellipsoidal
obstacles, which are meant to be dynamic.

TABLE II: Model Predictive Controller implementation pa-
rameters.

Prediction horizon 4s

Discretization steps 20

Integrator type Runge-Kutta 4

Maximum controls 1 m/s

Control Rate 20 Hz

Ellipsoidal obstacles sensitivity ~ 0.15

Planar constraints sensitivity 0.25

An uniform weight distribution is chosen to provide a
balanced trade-off between efficiency, safety and tracking.
As shown in Table III, orientation penalty is an exception
that has been set aggressively to compensate the low gain
given by the model.



TABLE III: Model Predictive Controller weighting values.

| Weights
Position 10
Orientation 5000
Linear velocities 1
Angular velocities | 1
Control inputs 10
Slack variables 10

C. Street crossing scenario

Lets consider a scenario where the goal of the UAV
is to cross a street populated by humans, which must
be avoided without flying over them. For that purpose,
we model the pedestrians as ellipsoids with radius of
(rg,7y,72) = (0.5m,0.6m, c0). This generates an elliptical
cylinder slightly slimmer in the approaching direction, which
reduces the probability of reaching a local minima and
promotes fluent maneuvers. The UAV is modeled as a sphere
with radius of 0.5m, applying a safety distance of 1m.
In this experiment, we consider three pedestrians moving
alternatively at 1 m/s perpendicular to the robot’s shortest
path as shown in Fig. 3.

To validate the approach we compare the performance of
the same controller updating the obstacles in two different
ways: statically updated at each sample time and dynamically
propagated based on the obstacle velocity. Fig. 7 shows the
trajectory generated while performing the experiment with
the static approach. Even though that the UAV manage to
avoid all obstacles, the generated maneuvers interfere with
the trajectories of pedestrians, leading to situations with
greater risk and higher deviations from the optimal path. In
contrast, our approach presents a safer control policy, finding
optimal to avoid the obstacles without crossing their future
trajectory as shown in Fig. 8.

Even though the soft constraints are designed to be vi-
olated with high sensitivity, this situation should be min-
imized. In Fig. 4 we can see that both implementations
provide a collision-free navigation. However, our approach
provides safer avoidance, reducing the soft constraint vio-
lations in time and magnitude. As shown in Fig. 5, our
approach reduces the inverse time to collision (TTC~1)
peak values and, as a result, the magnitude of the risk.
The frequency in which dangerous situations occur is shown
in Fig. 6, where the histogram of the minimum 77C~!
indicates that our approach reduces the time in which the
UAV is at risk of collision.

/ |
Fig. 3: UAV avoiding human-size dynamic obstacles. See
video in https://rebrand.ly/castillo2018mpc
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D. Multiple obstacle scenario

Lets consider a new scenario where the UAV has to
cross a street populated not only by humans, but also other
aerial robots. In this experiment, the robot is allowed to
fly over other robots, but not over pedestrians. The pedes-
trian model of the previous experiment is used, considering
other UAVs as ellipsoids with radius of (ry,r,,r;) =
(0.5m, 0.6m,0.5m) and a safety distance of 1m.

In this experiment, in addition to the pedestrians of the
previous scenario, we consider four aerial robots moving
alternatively at 1 m/s as shown in Fig. 1. Three of them
move perpendicular to the robot’s shortest path while the
fourth is moving in diagonal direction. In Fig. 11 is shown
that the UAV is able to avoid laterally the pedestrians
while avoiding three-dimensionaly the aerial robots. Fig. 9
shows that our approach manage to avoid multiple collisions,
with the increase of TTC~! magnitude and soft constraint
violations due to the complexity of the environment.
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Fig. 9: Risk variables in the multiple obstacle scenario

Fig. 8: UAV trajectory in street crossing scenario. Dynamic approach
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V. CONCLUSIONS

We presented a new model predictive control approach for
three-dimensional collision avoidance in scenarios with mul-
tiple dynamic obstacles. These obstacles were modeled as
orientable ellipsoids by using parametrized soft constraints,
which allows a flexible obstacle definition, guaranteeing
feasible solutions. With this formulation, the dynamics of
each obstacle can be introduced externally without additional
cost, suiting the needs of each application. In this paper, we
used a constant velocity model to test its collision avoidance
performance in two real-time scenarios. The first experiment
shows a considerable improvement over a static formula-
tion, being safer and more efficient. The second experiment
validates the approach for three-dimensional avoidance in a
cluttered scenario with seven moving obstacles.

In the future, we propose to consider the implementation
in a real platform, including uncertainty on the model,
perception and localization systems. We also plan to increase
the model accuracy and the prediction horizon length to
target higher-level control policies.
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