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Abstract—This paper studies the energy efficiency and sum
rate tradeoff for coordinated beamforming in multicell multiuser
multigroup multicast multiple-input single-output systems. We
first consider a conventional network energy efficiency maxi-
mization (EEmax) problem by jointly optimizing the transmit
beamformers and antennas selected to be used in transmission.
We also account for per-antenna maximum power constraints to
avoid nonlinear distortion in power amplifiers and user-specific
minimum rate constraints to guarantee certain service levels and
fairness. To be energy efficient, transmit antenna selection is em-
ployed. It eventually leads to a mixed-Boolean fractional program.
We then propose two different approaches to solve this difficult
problem. The first solution is based on a novel modeling technique
that produces a tight continuous relaxation. The second approach
is based on sparsity-inducing method, which does not require
the introduction of any Boolean variable. We also investigate the
tradeoff between the energy efficiency and sum rate by proposing
two different formulations. In the first formulation, we propose
a new metric, that is, the ratio of the sum rate and the so-called
weighted power. Specifically, this metric reduces to EEmax when
the weight is 1, and to sum rate maximization when the weight
is 0. In the other method, we treat the tradeoff problem as a
multiobjective optimization for which a scalarization approach is
adopted. Numerical results illustrate significant achievable energy
efficiency gains over the method where the antenna selection is not
employed. The effect of antenna selection on the energy efficiency
and sum rate tradeoff is also demonstrated.
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I. INTRODUCTION

ACHIEVING high energy efficiency (EE) and spectral ef-
ficiency (SE) is vital to future wireless communications

standards. SE maximization has driven cellular networks to em-
ploy aggressive frequency reuse. Essentially, different base sta-
tions (BSs) transmit data in the same frequency spectrum, re-
sulting in severe inter-user interference conditions. In this case,
multi-antenna system can exploit beamforming to control the in-
terference for efficient spectrum utilization. An efficient method
in this regard is coordinated beamforming [1], where the base
stations design the beams in a coordinated manner.

Previous studies have shown that EE and SE are conflict-
ing targets [2]–[6], if the power consumption due to additional
hardware caused by increasing the number of antennas is taken
into account [7]. More specifically, it may be energy-efficient
to transmit with a small number of antennas if the power cost
due to an active antenna is large, and, thus, the spectral effi-
ciency can be low [6]. On the other hand, the SE maximization
requires that base stations are equipped with a large number of
antennas to avail of spatial diversity. This increases the network
power consumption and starts to reduce EE when the cost due
to the power consumption increase exceeds the benefit of the
SE increase [8]. If the number of antennas is fixed and we wish
to use conventional digital beamforming, then we could not ad-
just the RF chain power consumption and the EE-SE could be
adjusted only by changing the beamformers (i.e., changing the
transmit power as a result). On the other hand, a good option
to trade-off the two design targets is to use antenna selection
techniques. Specifically, depending on the required data rates,
one could switch off some RF chains to save power. In this
regard, we could generally install a large number of antennas,
and then use a proper antenna selection scheme to control EE-
SE trade-off together with beamforming. Consequently, we can
achieve a better trade-off compared to the conventional method
because both RF chain and transmit powers can be adjusted. The
antenna selection reduces both the power consumption and the
SE, but when it is optimized for EE together with beamforming,
one achieves ideally increasing EE as a function of the number
of antennas. This idea motivates the joint optimization of both
transmit beamformers and active transmit antennas [6], [9]. In
practice, both EE and SE performance measures are important
for mobile network operators, depending on the user distribution
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and service requirements. To this end, the energy and spectral
efficiency trade-off problem has been considered in the recent
literature [2], [3].

The evolution of mobile handsets and the associated appli-
cations is creating a new type of wireless communication sce-
nario. A large part of the requested data traffic from users is
highly correlated, especially in crowded areas, e.g., in stadi-
ums. To deal with such situations, multicasting has received
special attention as a promising solution [9]–[19]. The idea is
to transmit the same information to multiple users as a single
transmission, and it has become increasingly popular in the con-
text of cache-enabled cloud radio access networks (C-RANs)
proposed for 5G systems to improve both spectral and energy
efficiency [20].

A. Related Work

Energy and spectral efficiency trade-off problems have been
studied in different works. In [2], fundamental EE-SE trade-
offs were studied for joint power and subcarrier allocation in a
single-cell single-input single-output (SISO) downlink orthog-
onal frequency-division multiple access (OFDMA) system. A
distributed antenna system (DAS) with single-antenna nodes
was considered in [3], where a weighted sum method was pro-
posed to solve the multi-criteria optimization problem. In [21],
joint beamforming and subcarrier allocation for single-cell SISO
downlink systems was studied. A weighted sum approach was
proposed to the trade-off problem in terms of resource efficiency,
which involves a normalization factor to balance the values of
EE and SE. A single-cell OFDMA system with imperfect CSI
was considered in [22]. In [23], the EE-SE trade-off was inves-
tigated in a single-cell multiple-input multiple-output (MIMO)
OFDMA system and the authors considered non-linear dirty pa-
per coding (DPC) with antenna and subcarrier selection. How-
ever, all these previous studies focus on unicasting and mostly
SISO transmission, where each user is assigned an independent
data stream. Although [23] focused on a MIMO case, the use of
DPC makes it difficult to implement in reality.

Beamforming design for multicasting has been studied for
single-cell systems for different optimization targets, e.g., trans-
mit power minimization [12], [13], [19], max-min fairness [13],
[14], [19], and sum rate maximization [15]. Joint beamform-
ing and antenna selection for transmit power minimization was
studied in [9]. Coordinated multicast beamforming for transmit
power minimization and max-min fairness has been studied in
[16]. In [18], energy-efficient joint unicasting and multicast-
ing beamforming for multi-cell multi-user MIMO systems was
considered. A method to solve the EE maximization problem
in multi-cell system with single group per cell was proposed in
[17]. However, both [17] and [18] only considered the beam-
forming problem without taking into account the fact that sig-
nificant energy savings can be achieved by switching off some
of the RF chains, i.e., antenna selection. Moreover, the works
of [17], [18] only considered the case of sum power constraints,
while the case of antenna-specific power constraints has to be
handled differently.

B. Contributions

In this paper, we study energy-efficient coordinated beam-
forming in multi-cell multigroup multi-user multicast multiple-
input single-output (MISO) systems. Each transmit antenna is
subject to an individual maximum power constraint and each

user is guaranteed with a minimum data rate. We focus on a
case where the number of antennas is relatively large, so that
there is a potential to switch off some of the transmit anten-
nas to improve the energy efficiency. In this setup, we consider
the joint optimization of beamforming and antenna selection,
where novel and clever formulations and transformations are
proposed so that widely used standard optimization techniques
can be applied to solve the problem efficiently. Specifically,
two different approaches are proposed. In the first one, we in-
troduce Boolean antenna selection variables and use a novel
extension of the perspective formulation [24], [25] to model
the per antenna power constraints. In particular, a specific pa-
rameter is introduced to control the tightness of the continuous
relaxation which is crucial to finding a high-quality feasible
solution. Since the continuous relaxation is nonconvex, we pro-
pose a successive convex approximation (SCA) based algorithm
to solve it. By novel transformations, the subproblems obtained
at each iteration of the proposed method can be approximated as
a second-order cone program (SOCP) for which modern convex
solvers are particularly efficient. The second direction is based
on a sparse beamforming approach where the idea is to directly
find sparse beamforming solutions without requiring any addi-
tional variables compared to the original beamforming design
problem without antenna selection. We propose different con-
vex and non-convex smoothing functions to approximate the
�0-‘norm’, and again employ SCA to solve the problem. The
numerical results are provided to illustrate the convergence of
the proposed algorithms for different system parameters and the
achieved energy efficiency gains using the joint beamforming
and antenna selection.

In the second part, we extend the joint design to the en-
ergy efficiency and sum rate trade-off problem. In this case, the
considered joint beamforming and antenna selection problem
is specially relevant, because such a design certainly achieves
a better trade-off curve due to extra degrees of freedom pro-
vided by the antenna selection. To formulate this multi-objective
optimization problem, we propose two different approaches.
First, we propose a new optimization metric, namely the power-
weighted energy efficiency (PWEE) maximization, which in-
volves a weighting parameter for the adjustable power consump-
tion. The benefit of this approach is that the algorithms derived
for EE maximization can be straightforwardly used to solve the
PWEE problem. The other approach is attained via scalarization
where the sum rate function is appropriately scaled to achieve
practical trade-off for the weighted sum of energy efficiency
and sum rate. Due to the more difficult structure of the objective
function, another set of approximated constraints is required
compared to the EEmax problem to solve the problem. Numer-
ical results demonstrate that both designs can exploit the trade-
off and that joint beamforming and antenna selection achieves
significantly wider trade-off curve compared to the case where
only beamforming design is exploited.

C. Organization and Notation

The rest of the paper is organized as follows. Section II
presents the system model, power consumption model and
the EE maximization problem. The proposed EE maximiz-
ing algorithms are provided in Sections III and IV, while the
trade-off problem is studied in Section V. The numerical re-
sults and conclusions are presented in Sections VI and VII,
respectively.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 18, SEPTEMBER 15, 2018

Fig. 1. A multi-cell multigroup multicasting system.

The following notations are used in this paper. We denote by
|x| the cardinality of x if x is a set, and absolute value of x,
otherwise. The ith component of vector x is denoted by x[i].
Notation ||x||2 is the Euclidean norm of x, boldcase letters are
vectors, xT ,xH ,Re(x) mean transpose, Hermitian transpose,
and real part of x, respectively. For a positive integer K, K is
defined as the set {1, . . . , K}.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

A multi-cell multigroup multicasting system consisting of
B BSs is considered, as illustrated in Fig. 1. Each BS b ∈ B
equipped with Nb = |Nb |(Nb = {1, . . . , Nb}) antennas, has Gb

multicasting groups to serve, that is, each group desires to re-
ceive independent information from its serving BS. The set of
groups served by BS b is denoted by Gb ⊂ G, where G is the set
of all groups in the network. The total number of single-antenna
users in the network is denoted by K = |K|(K = {1, . . . , K}),
while the user set belonging to group g is denoted by Kg ⊂ K.
The serving BS of user group g is denoted as bg . The sets of users
belonging to different groups are disjoint, i.e., Ki ∩ Kj = ∅,
∀i, j ∈ G, i �= j. In other words, each user is assumed to belong
to one group only. Each group is further served by one BS only.
User k in group g receives the signal

yk =

desired signal
︷ ︸︸ ︷

hH
bg ,kFbg

wg sg +

inter-group interference from the same cell
︷ ︸︸ ︷

∑

i∈Gb \{g}
hH

bg ,kFbg
wisi

+
∑

j∈B\{bg }

∑

u∈Gj

hH
j,kFbu

wusu

︸ ︷︷ ︸

inter-group interference from the other cells

+ nk (1)

where hb,k ∈ CNb ×1 is the channel vector from BS b to user
k, wg ∈ CNb ×1 is the transmit beamforming vector of group
g, sg ∈ C is the corresponding independent normalized data
symbol, nk ∼ CN (0, σ2) is the complex white Gaussian noise
sample with zero mean and variance σ2 ,1 and Fbu

∈ RNb ×Nb is
the antenna selection matrix involving the ith unit vector at the
ith column if the ith antenna is selected and otherwise a zero
vector. The channel vectors are assumed to be perfectly known
at the transmitters, while the receivers are assumed to have
perfect effective channel information to decode the data. The
multigroup interference is treated as Gaussian noise, yielding

1The noise variance is assumed to be same for all the users without loss of
generality.

the SINR of user k as

Γ̂k (w) =
|hH

bg ,kFbg
wg |2

N0 +
∑

u∈G\{g} |hH
bu ,kFbu

wu |2 (2)

where N0 is the total noise power over the transmission band-
width W , and w � {wg}g∈G . As a result, the data rate towards
user k is given as

Rk (w) � W log(1 + Γ̂k (w)).2 (3)

B. Power Consumption Model

In this paper the total power consumption is modeled as [8]

P̂tot =
1
η

∑

g∈G
||Fbg

wg ||22

+ PRF

∑

b∈B

∑

i∈Nb

Fb [i, i] + BPsta + |K|PUE

(4)

where the first term is the PAs’ power consumption to get the
desired output powers assuming PA efficiency η ∈ [0, 1]. The
second term is the power consumption of the RF chains, i.e., an
amount of PRF is consumed if the ith antenna of BS b is selected
and there is no power consumption otherwise. Psta is the static
power spent by cooling systems, power supplies, etc, and PUE
is the power consumption of each user terminal. For the ease of
notation, we denote P0 � BPsta + |K|PUE.

C. Energy Efficiency Maximization

The appearance of the antenna selection matrices Fbg
in (2)

and (4) make it challenging to proceed further, mostly due to the
multiplication Fbg

wg in both equations. Thus, to find a more
tractable formulation, we first remove Fbg

from the expressions
and rewrite (2) and (4), as

Γk (w) =
|hH

bg ,kwg |2
N0 +

∑

u∈G\{g} |hH
bu ,kwu |2 (5)

Ptot =
1
η

∑

g∈G
||wg ||22 +PRF

∑

b∈B

∑

i∈Nb

ab,i +BPsta + |K|PUE,

(6)

where ab,i ∈ {0, 1} is the binary antenna selection variable
for the ith transmit antenna of BS b, i.e., ab,i = 1, if the
ith antenna is selected, and ab,i = 0 otherwise. In the an-
tenna selection, we need to ensure that all beamforming co-
efficients associated with antenna i of BS b should be simulta-
neously set to zero to switch off the antenna. This connection
of the antenna selection variables to the beamforming coeffi-
cients is achieved via the constraint ||ŵb,i ||22 ≤ ab,iPmax, where
ŵb,i � [wGb (1) [i],wGb (2) [i], . . . ,wGb (Gb ) [i]]T is an expression
including the beamforming coefficients related to antenna i of
BS b. That is, if we set ab,i = 0, then ||ŵb,i ||22 = 0, meaning that
in the SINR expression (5), wg [i] = 0,∀g ∈ Gb . On the other
hand, if ab,i = 1, then this antenna is restricted to have at most
the maximum transmit power Pmax.

In a multicasting system, the information has to be decod-
able by all users in a group, which means that the rate for

2Since the transmission bandwidth is fixed throughout the paper, it is dis-
carded in the mathematical derivations for notational simplicity.
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user group g is defined as a minimum of the user rates across
the whole group. Thus, we can write the achievable sum rate
expression as R(w) �

∑

g∈G mink∈Kg
log(1 + Γk (w)). Under

these notations, the network EE maximization problem can be
written as

max
w ,a

R(w)
g(w,a) + P0

(7a)

s.t. ||ŵb,i ||22 ≤ ab,iPmax,∀b ∈ B, i ∈ Nb (7b)

min
k∈Kg

log(1 + Γk (w)) ≥ max
k∈Kg

R̄k ,∀g ∈ G, (7c)

ab,i ∈ {0, 1},∀b ∈ B, i ∈ Nb (7d)

where g(w,a) �
∑

g∈G
1
η ||wg ||22 + PRF

∑

b∈B
∑

i∈Nb
ab,i is a

function denoting the adjustable power consumption, R̄k is the
minimum rate requirement for user k, and a � {ab,i}b∈B,i∈Nb

.
Note that for the physical layer multicasting the rate of a certain
group is defined by the worst case user. Thus, constraint (7c) is
to guarantee that the achieved multicasting rate is larger than the
largest QoS requirement in the group, because all the require-
ments have to be satisfied. The above problem is a non-convex
mixed-Boolean fractional program which is hard to tackle as
such. One of the main challenges is that the problem is non-
convex even when the Boolean variables are relaxed to be con-
tinuous. More specifically, in that case, (7c) and the numerator
of the objective function are non-convex.

III. MIXED-BOOLEAN PROGRAMMING BASED METHOD

A. Equivalent Transformation

Here we aim at developing a continuous relaxation based
algorithm which yields close to a Boolean solution. To this
end, a tight continuous relaxation plays an important role. As
a first step towards a more efficient reformulation of (7), we
equivalently replace the maximum power constraints in (7b)
with the following two constraints

||ŵb,i ||22 ≤ aχ
b,ivb,i , ∀b ∈ B, i ∈ Nb (8a)

vb,i ≤ Pmax,∀b ∈ B, i ∈ Nb . (8b)

where the variable vb,i can be viewed as a soft output power level
of antenna i of BS b (i.e., the optimized power when the Boolean
variables ab,i are relaxed to continuous), and we have introduced
the exponent χ ≥ 1 in (8a) for the sake of a tighter continuous
relaxation presented in details shortly. The equivalence between
(7b) and (8) is guaranteed as ab,i is Boolean, i.e., aχ

b,i = ab,i for
any χ > 0. Thus, we desire to solve the following equivalent
transformation of (7)

max
w ,a

R(w)
g(v,a) + P0

(9a)

s.t. (7c), (7d), (8a), (8b) (9b)

where v � {vb,i}b∈B,i∈Nb
and g(v,a) �

∑

b∈B
∑

i∈Nb

1
η vb,i +

PRF
∑

b∈B
∑

i∈Nb
ab,i . We remark that it is natural to write

g(v,a) =
∑

b∈B
∑

i∈Nb

1
η vb,iab,i + PRF

∑

b∈B
∑

i∈Nb
ab,i . To

achieve a more tractable formulation, we define g(v,a) as done
in (9), i.e., ab,i is excluded from the first term. However, (7) and
(9) are still equivalent in the sense that they achieve the same op-
timal solutions, which can be proved as follows. Firstly we note

that ab,i is binary in both problems. Secondly, (8a) has to be sat-
isfied with equality at the optimality. Otherwise we can strictly
decrease vb,i without violating (8a) but then achieve a larger
objective value for (9). Now it is clear that if ab,i = 0, then both
vb,i = 0 and ||ŵb,i ||22 = 0. Also if ab,i = 1, then vb,i = ||ŵb,i ||22
as ab,i = aχ

b,i = 1.
The motivation for introducing the exponent χ ≥ 1 in (8a)

is explained as follows. First, we note that when χ = 1, (8a) is
called the perspective formulation [24], [25], and both (8a) and
(8b) are convex. Thus, the perspective formulation is routinely
used to find optimal solutions for mixed-Boolean programs with
convex continuous relaxations e.g. in [26]. However, this is not
case for the continuous relaxation of the considered problem
in (7) due to (7c) and the numerator of the objective function.
As later on we adopt the SCA to find a suboptimal solution to
the continuous relaxation, a tight continuous relaxation of (7)
is critically important as it increases the chance of obtaining a
high-quality solution for the original mixed-Boolean fractional
program. Although this cannot be analytically proved, it is in-
tuitively explained as follows. The role of exponent χ ≥ 1 in
(8a) is to act as a penalty parameter which penalizes the values
of ab,i so that they are encouraged towards a Boolean solution
when considering the continuous relaxation. More explicitly,
the larger χ, the tighter is the continuous relaxation. Mathemat-
ically, we have the following.

Lemma 1: Let EEbool, EEcont,χ=m , and EEcont,orig refer to the
optimal objective of the Boolean formulation (7), continuous
relaxation of (9) with χ = m, and continuous relaxation of (7).
Then the following inequality holds

EEbool

(iii)
≤ EEcont,χ = m

(ii)
≤ EEcont,χ = 1

(i)
≤ EEcont,orig (10)

Proof: See Appendix A. �
The above lemma states that the optimal objective of the

proposed continuous relaxation becomes closer to that of the
original mixed-Boolean program as χ increases. Thus, it is rea-
sonable to expect that solving the continuous relaxation with
a proper choice of χ and rounding the obtained solution may
provide a good solution for the original problem. This is numer-
ically verified in Section VI.

B. Proposed Method to Solve (9)

We propose an algorithm which aims to find a good solution to
(7) (or, equivalently (9)). The algorithm consists of two phases:
1) solving continuous relaxation of (9) and 2) recovering the
Boolean solution from the continuous relaxation.

1) Solving Continuous Relaxation of (9): The problem of
interest can be written as

max
w ,v ,a

∑

g∈G mink∈Kg
log(1 + Γk (w))

g(v,a) + P0
(11a)

s.t. min
k∈Kg

log(1 + Γk (w)) ≥ max
k∈Kg

R̄k ,∀g ∈ G, (11b)

0 ≤ ab,i ≤ 1,∀b ∈ B, i ∈ Nb (11c)

(8a), (8b) (11d)

Then, we replace mink∈Kg
log(1 + Γk (w)) with a new variable

rg = mink∈Kg
log(1 + Γk (w)) and rewrite the above problem
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equivalently as

max
w ,v ,a,r

∑

g∈G rg

g(v,a) + P0
(12a)

s.t. rg = min
k∈Kg

log(1 + Γk (w)),∀g ∈ G, (12b)

rg ≥ max
k∈Kg

R̄k ,∀g ∈ G, (12c)

(8a), (8b), (11c) (12d)

where r � {rg}g∈G . In the above, (12b) can be further re-
placed by the inequality rg ≤ mink∈Kg

log(1 + Γk (w)), which
is then equivalent to rg ≤ log(1 + Γk (w)),∀k ∈ Kg . To ad-
dress the nonconvex rate function, we introduce new variables
γ � {γk}k∈K to represent the SINR of each user k [27], and
write (12) equivalently as

max
w ,γ,v ,a,r

∑

g∈G rg

g(v,a) + P0
(13a)

s.t. γk ≤
|hH

bg ,kwg |2
N0 +

∑

u∈G\{g} |hH
bu ,kwu |2 ,∀k ∈ K (13b)

rg ≤ log(1 + γk ),∀g ∈ G, k ∈ Kg (13c)

(11c), (12c), (8a), (8b) (13d)
Lemma 2: Problems (11) and (13) are equivalent at the op-

timality.
Proof: See Appendix B. �
By looking at the formulation (13), it is discovered that the

objective function is a concave-convex fractional function and
the main challenge in solving (13) is in the constraints (13b) and
(8a). To handle these, we use the same idea as that in [6], [27],
[28] to replace (13b) equivalently as

γk ≤
|hH

bg ,kwg |2
βk

,∀k ∈ K (14a)

βk ≥ N0 +
∑

u∈G\{g}
|hH

bu ,kwu |2 ,∀k ∈ K (14b)

where β � {βk}k∈K are new variables representing the total
interference-plus-noise of user k. Now (14b) is readily a con-
vex constraint, while (14a) involves a convex function at both
sides. Specifically, the left and right sides of (14a) are linear
and quadratic-over-linear functions, respectively. To formulate
(8a) in a more tractable manner, we first write the following
equivalent form

||ŵb,i ||22
vb,i

≤ aχ
b,i , ∀b ∈ B, i ∈ Nb . (15)

In (15), the left side is a convex quadratic-over-linear function,
and the right side is also convex [29]. At this point, we can
equivalently write (13) as

max
w ,γ,v ,a,β,r

∑

g∈G rg

g(v,a) + P0
(16a)

s.t.
||ŵb,i ||22

vb,i
≤ aχ

b,i , ∀b ∈ B, i ∈ Nb (16b)

γk ≤
|hH

bg ,kwg |2
βk

,∀k ∈ K (16c)

0 ≤ ab,i ≤ 1,∀b ∈ B, i ∈ Nb (16d)

(8b), (12c), (13c), (14b). (16e)

Now we can see that in (16), all the other constraints are convex
except (16b), and (16c), which can be expressed as a difference
of convex functions. We propose to use successive convex ap-
proximation to approximate (16) as a convex problem in each
iteration. Specifically, at some iteration n of the SCA, the non-
convex parts of (16c) and (16b) are approximated by convex
ones at some operating point with the aid of the first-order Tay-
lor approximations. To deal with the right side of (16c), we can
write its linear first-order Taylor lower bound approximation at
point (w(n)

g , β
(n)
k ) as

|hH
bg ,kwg |2/βk ≥ 2Re((w(n)

g )H hbg ,khH
bg ,kwg )/β

(n)
k

−(|hH
bg ,kw

(n)
g |/β

(n)
k )2βk � Ψ(n)

k (wg , βk ). (17)

For (16b), we can write the linear lower bound approximation
of the right side at point a

(n)
b,i as

aχ
b,i ≥ (1 − χ)(a(n)

b,i )χ + χ(a(n)
b,i )

(χ−1)
ab,i � Υ(n)

b,i (ab,i).
(18)

With the approximations (17) and (18) we can write the concave-
convex fractional problem at iteration n + 1 of the SCA as

max
w ,γ,v ,a,β,r

∑

g∈G rg

g(v,a) + P0
(19a)

s.t.
||ŵb,i ||22

vb,i
≤ Υ(n)

b,i (ab,i),∀b ∈ B, i ∈ Nb (19b)

γk ≤ Ψ(n)
k (wg , βk ),∀k ∈ K (19c)

0 ≤ ab,i ≤ 1,∀b ∈ B, i ∈ Nb (19d)

(8b), (12c),(14b), (13c). (19e)

Note that although the objective of (19) is a linear-fractional
function, (19) is not classified as a linear-fractional program
as its convex constraints are not linear. We also note that (19)
is not convex but its optimal solution can be found efficiently.
This problem is further discussed in the following paragraph. In
the proposed algorithm, the successive convex approximation
[30] framework is used, where the concave-convex fractional
problem (19) is solved at iteration n + 1. After solving the
problem at iteration n + 1, the optimal solutions w∗

g , β
∗
k , a∗

b,i

are then used to update Ψ(n+1)
k (wg , βk ) and Υ(n+1)

b,i (ab,i) for
the next iteration. The monotonic convergence of the objective
function (19a) is not difficult to see, and a detailed convergence
analysis for the problem with similar structure can be found, e.g.,
in [28, Appendix A]. To be self-contained, a convergence proof
of the proposed iterative algorithm is provided in Appendix C.

We now present efficient ways to solve (19). As mentioned
above, (19) is a concave-convex fractional program for which
two common methods can be used to find an optimal solution:
the Dinkelbach’s method or the Charnes-Cooper transformation
[31]. We simply adopt the latter which transforms (19) into the
following equivalent convex form:

max
φ>0,w̄ ,γ̄,v̄ ,ā,β̄,r̄

∑

g∈G
r̄g (20a)
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s.t.
∑

b∈B

∑

i∈Nb

(

1
η
v̄b,i + PRFāb,i

)

+ φP0 ≤ 1 (20b)

|| ¯̂wb,i ||22
v̄b,i

≤ φΥ(n)
b,i

(

āb,i

φ

)

,∀b ∈ B, i ∈ Nb (20c)

v̄b,i ≤ φPmax,∀b ∈ B, i ∈ Nb (20d)

0 ≤ āb,i ≤ φ,∀b ∈ B, i ∈ Nb (20e)

γ̄k ≤ φΨ(n)
k

(

w̄g

φ
,
β̄k

φ

)

,∀k ∈ K (20f)

r̄g ≥ φmax
k∈Kg

(R̄k ),∀g ∈ G (20g)

φβ̄k ≥ φ2N0 +
∑

u∈G\{g}
|hH

bu ,k w̄u |2 ,∀k ∈ K (20h)

r̄g ≤ φ log
(

1 +
γ̄k

φ

)

,∀g ∈ G, k ∈ Kg . (20i)

From the solution of (20), the optimal solution for the
original fractional program (19) can be extracted as w∗

g =
w̄∗

g /φ∗, β∗
k = β̄∗

k/φ∗, γ∗
k = γ̄∗

k/φ∗, a∗
b,i = ā∗

b,i/φ∗, v∗
b,i = v̄∗

b,i/φ∗,
r∗g = r̄∗g /φ∗, where w̄∗

g , φ
∗, β̄∗

k , γ̄∗
k , ā∗

b,i , v̄
∗
b,i , r̄

∗
g are the optimal

variables of (20). The variable φ represents the inverse of the
total power consumption in the problem.

Remark 1: If at least one of the rate targets R̄k in some user
group of BS b is non-zero, we can further reduce the feasible set
of (20) by adding the constraints

∑

i∈Nb

āb,i ≥ φXb,∀b ∈ B (21)

where Xb is the number of groups served by BS b which have
at least one user having non-zero rate target. This can be done
because it is known that at least Xb antennas have to be active
to be able to transmit Xb independent data streams.

2) Recovering the Boolean Solution From Continuous Re-
laxation: Generally, solving the continuous relaxation usually
results in a solution where many of the antenna selection vari-
ables are non-Boolean. However, due to the new formulation
in (16b), many of the continuous antenna selection variables
converge either close to zero (i.e., ab,i < ε), or close to 1 (i.e.,
ab,i > 1 − ε), where ε is a small threshold. Accordingly, those
small ab,i’s can be directly set to 0 and ab,i’s close to 1 can
be set to 1. Thus, we propose to switch off all the antennas
for which ab,i < ε. After performing the antenna selection, the
algorithm needs to be run again with the selected antenna set
to find the beamformers with lower dimensions. The proposed
joint beamforming and antenna selection method is summarized
in Algorithm 1.

C. Efficient Implementations of Algorithm 1

1) Simplified Algorithm: It is worth observing that the beam-
formers produced by the relaxed problem are always feasible
for the original problem. This means that it is possible to use
the antenna set and the beamformers obtained from the relaxed
problem for transmission. Thus, we propose a simpler version
of the algorithm, where step 7 is completely ignored. In this
case, the choice of χ becomes more important and with larger
χ, the simple algorithm yields closer to the original algorithm,
i.e., the achieved solution approaches a Boolean one. In the nu-

Algorithm 1: Proposed Joint Beamforming and Antenna
Selection Design.
Initialization: Set n = 0, and generate feasible initial points

(w(n) ,β(n) ,a(n)).
Phase 1:

1: repeat
2: Solve (20) with (w(n) ,β(n) ,a(n)) and denote

optimal values as (w̄∗, β̄∗
, ā∗).

3: Update w(n+1) = w̄∗/φ,β(n+1) = β̄
∗
/φ,a(n+1)

= ā∗/φ and Υ(n+1)
b,i (ab,i),Ψ

(n+1)
k (wg , βk ).

4: n := n + 1.
5: until convergence

Output: a∗
b,i =

ā∗
b , i

φ∗ ,∀b ∈ B, i ∈ Nb

Phase 2:
6: Set ab,i = 0, for all b, i for which a∗

b,i < ε.
7: Run steps 1 – 5 again with fixed a to find beamformers

with reduced dimensions.
Output: w∗

g = w̄ ∗
g

φ∗ ,∀g ∈ G

merical results, it is illustrated that the beamformers returned
by the relaxed problem already yields a good energy efficiency
with the good choice of χ. This method is called ‘Algorithm 1
‘simple’’ in the numerical results. In Appendix D, we show how
this method reduces the worst-case computational complexity.

2) SOCP Approximation: Note that the proposed method re-
quires solving a generic non-linear convex program (20) in each
iteration. It is difficult to solve it efficiently, because it involves
the exponential cone. In Appendix D, we show a slightly modi-
fied algorithm where the problem at each iteration is an SOCP.
This greatly reduces the complexity, since it enables the use
of state-of-the-art SOCP solvers such as MOSEK, ECOS, or
GUROBI. In the numerical results, we will compare the conver-
gence speed of the solution.

D. Initial Points

Due to the rate constraints, the challenge is to find feasible ini-
tial points to run the algorithm presented in the previous section.
Note that applying direct convex optimization to find feasible
points is not straightforward. One option would be to generate
random beamformers until the maximum power constraint and
the minimum rate constraints are satisfied. However, this can be
very inefficient especially when the rate requirements are high.
Another option could be to solve multicell multigroup multicast
power minimization problem with minimum SINR constraints
(as, e.g. in [19]), which could be equivalently transferred to rate
constraint. However, to apply convex optimization in this case,
we still need to use semidefinite relaxation, which cannot gener-
ally guarantee rank-1 solutions for this problem. Thus, one needs
to use Gaussian randomization technique to find feasible rank-1
beamformers. To this end, we provide herein an initialization
method which works effectively for the considered problem.

The initial a(0) can be set to all-ones. To find feasible
w(0) ,β(0) , the first observation is that a feasible point of (19)
is also feasible to (20). That is, we can focus on (19) for sim-
plicity to find a feasible initial point. Another observation is that
a feasible point for the energy efficiency maximization is also
feasible for the sum rate maximization and vice versa. Thus, we
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can focus on the sum rate maximization problem to simplify
the initialization. Let us first initialize any w(0) ,β(0) and then
consider the following problem

max
w ,γ,β,q,r,p,μ

∑

g∈G
rg − λ

(

∑

k∈K
(q1,k + q2,k )

+
∑

g∈G
μg +

∑

b∈B

∑

i∈Nb

pb,i

)

(22a)

s.t. ||ŵb,i ||22 − Pmax ≤ pb,i , ∀b ∈ B, i ∈ Nb (22b)

γk − Ψ(0)
k (wg , βk ) ≤ q1,k ,∀k ∈ K (22c)

max
k∈Kg

(R̄k ) − rg ≤ μg ,∀g ∈ G (22d)

rg ≤ log(1 + γk ),∀g ∈ G, k ∈ Kg (22e)

N0 +
∑

u∈G\{g}
|hH

bu ,kwu |2 − βk ≤ q2,k ,∀k ∈ K

(22f)

q1,k ≥ 0, q2,k ≥ 0,∀k ∈ K (22g)

pb,i ≥ 0,∀b ∈ B, i ∈ Nb (22h)

μg ≥ 0,∀g ∈ G, (22i)

where λ is a positive penalty parameter and q �
{q1,k , q2,k}k∈K,p � {pb,i}b∈B,i∈Nb

,μ � {μg}g∈G are new
slack variables. The above problem is iteratively solved by
updating Ψ(0)

k (wg , βk ) after each iteration, until q = 0,p =
0,μ = 0. The feasible point is found very efficiently because
the penalty terms are encouraged to zero due to the penalty
function in the objective [32].

Algorithm 1 is devised based on the combination of contin-
uous relaxation and SCA, which are both suboptimal methods.
Thus its performance in comparison with the optimal one is of a
great concern. However we remark that analytical investigation
of the obtained suboptimal solution to the considered mixed
Boolean nonconvex program is challenging, at least given the
nonconvexity of the continuous relaxation. Our rationale is that
a tight continuous relaxation coupled with the efficacy of the
SCA in dealing with nonconvex programs will offer a good per-
formance. To evaluate the performance of Algorithm 1 we use
numerical experiments which will be presented in Section VI.

IV. SPARSITY-BASED APPROACH

Here we propose an alternative formulation based on directly
finding a sparse solution for the beamforming vectors, which
does not require the introduction of any Boolean variables.
Another efficient widely used technique in the mixed-Boolean
programming framework is based on sparsity [33]. Recall
that ŵb,i contains all the coefficients which are related to
antenna i of BS b. To switch off this antenna, all the elements
of ŵb,i should be zero simultaneously. On the other hand,
we want to optimize the number of antennas for a given
optimization target. Let us collect all the beamformers in a ma-
trix W � [ŵ1,1 , . . . , ŵ1,N1 , ŵ2,1 , . . . , ŵ2,N2 , . . . , ŵB,NB

] ∈
C

max
b

(|Gb |)×
∑

b ∈B Nb
. To switch off an antenna, we should set

a corresponding column of W to zero. In other words, to
optimize the number of active antennas, we should optimize

the number of non-zero columns in W. To this end, we need
a group-sparsity technique which promotes the sparsity of
the columns of W, but not the rows. Let us define Ŵ �
[||ŵ1,1 ||2 , ||ŵ1,2 ||2 , . . . , ||ŵ1,N1 ||2 , ||ŵ2,1 ||2 , . . . , ||ŵ2,N2 ||2 ,
. . . , ||ŵB,NB

||2 ]T . That is, we have calculated the �2-norm of
each column to equally weight each row in ŵb,i , and avoid
row-sparsity. At this point, we note that optimizing the number
of non-zero elements in Ŵ can be mathematically expressed as
||Ŵ||0 . As a result, the energy-efficient joint beamforming and
antenna selection problem (7) can be equivalently formulated
as

max
w

R(w)
∑

g∈G
1
η ||wg ||22 + PRF||Ŵ||0 + P0

(23a)

s.t. ||ŵb,i ||22 ≤ Pmax,∀b ∈ B, i ∈ Nb , (7c) (23b)

Since ||Ŵ||0 is a discrete function and cannot be optimized
as such, some continuous relaxation is required to find a good
approximation. Thus, we are interested in solving

max
w

R(w)
∑

g∈G
1
η ||wg ||22 + (PRF + ρ)fi(w) + P0

(24a)

s.t. (23b) (24b)

where fi(w) is some approximation (smoothing function) of
||Ŵ||0 and ρ ≥ 0 is an adjustable penalty parameter to control
sparsity of Ŵ. Note that the proposed approach promotes
sparsity using the penalty term for the power consumption in the
denominator of (24a), and not for the whole objective function.
Next we propose different relaxations fi(w) to approximate
||Ŵ||0 , a convex one which still maintains the convexity of
the denominator in (24a), and then two different non-convex
smoothing functions requiring additional approximation but
yielding better performance.

A. Convex Relaxation of ||Ŵ||0
The closest convex approximation of ||Ŵ||0 is ||Ŵ||1 . How-

ever, as such, each element of Ŵ can be larger than 1, especially
when the power constraint Pmax is large. By looking at the
denominator of (24a), we recall that each element of Ŵ should
indicate whether the corresponding antenna is switched on or
off. Thus, let us write the normalized form of Ŵ as Ŵnorm �
[ ||ŵ1 , 1 ||2√

Pmax
,

||ŵ1 , 2 ||2√
Pmax

, . . . ,
||ŵ1 , N 1 ||2√

Pmax
,

||ŵ2 , 1 ||2√
Pmax

, . . . ,
||ŵ2 , N 2 ||2√

Pmax
, . . . ,

||ŵB , N B
||2√

Pmax
]T . Now the normalization guarantees that each

element of Ŵnorm is in the range of [0, 1] regardless of the
transmit power. Then, ||Ŵ||0 is approximated as

f1(w) � ||Ŵnorm||1 =

∑

b ∈B Nb
∑

j=1

[Ŵnorm]j , (25)

where [ ]j denotes the jth element of the argument. In fact,
this approach is a slightly modified version of the well-known
�1/�2-regularization method in [33], because now the objective
function is not penalized as such, but the approximation function
is used in the denominator. Also, it makes sure that each element
of Ŵnorm is in the interval [0, 1] to approximate the power
consumption of the RF chains as accurately as possible. In this
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case, we want to solve

max
w

R(w)
∑

g∈G
1
η ||wg ||22 + (PRF + ρ)||Ŵnorm||1 + P0

(26a)

s.t. (23b). (26b)

Due to the convexity of the denominator in (26a), the above
problem can be solved by following the same transformations
as the ones used to arrive at (20), resulting in

max
φ,w̄ ,γ̄,β̄,r̄

∑

g∈G
r̄g (27a)

s.t.
∑

g∈G

1
η

||w̄g ||22
φ

+ (PRF + ρ)|| ¯̂Wnorm||1 + φP0 ≤ 1

(27b)

|| ¯̂wb,i ||22
φ

≤ φPmax,∀b ∈ B, i ∈ Nb (27c)

(20f)–(20i) (27d)

which is solved iteratively until convergence. After this, the
antennas for which ||ŵb,i ||2/

√
Pmax < ε, where ε is a small

threshold are set to zero and the algorithm is rerun for the
chosen antenna sets.

B. Non-Convex Relaxation of ||Ŵ||0
Although being simple and widely used, a convex �1-norm

relaxation may not yield the best solution, and its efficiency
to provide a sparse enough solution is highly dependent on
the penalty parameter. Bearing this in mind, here we propose
another relaxation based on a non-convex smoothing function.
Let us define a convex function ϕb,i(ŵb,i) � ||ŵ b , i ||2√

Pmax
. Then, we

propose the following two alternative functions to approximate
||Ŵ||0

f2(w) =
∑

b∈B

∑

i∈Nb

ϕb,i(ŵb,i)
1
ς (28a)

f3(w) =
∑

b∈B

∑

i∈Nb

log2(1 + ϕb,i(ŵb,i)
1
ς ) (28b)

where ς ≥ 1 is a parameter controlling the steepness of the
curve of the smoothing function. That is, larger ς means steeper
curve. We have that ϕb,i(ŵb,i)

1
ς → 0 when ||ŵ b , i ||2√

Pmax
→ 0 and

ϕb,i(ŵb,i)
1
ς → 1 when ||ŵ b , i ||2√

Pmax
→ 1, for every ς ≥ 1. Now,

f2(w) and f3(w) are both concave for every ϕb,i ≥ 0, ς ≥ 1.
Problem (23) is now approximated as

max
w

R(w)
∑

g∈G
1
η ||wg ||22 + PRFfi(w) + ρfi(w) + P0

(29a)

s.t. (23b) (29b)

Compared to previous formulation, the concavity of fi(w)
makes the denominator nonconvex. Thus, we introduce an affine
function f̂

(n)
i (w) as the first-order Taylor approximation of

fi(w) at point w(n) . Following again the same idea as in (27),

Algorithm 2: Proposed Sparsity-Based Joint Beamforming
and Antenna Selection Design.
Initialization: Set n = 0, and generate feasible initial points

(w(n) ,β(n)).
Phase 1:

1: repeat
2: Solve (27) (or (30)) for f1(w) (or f2(w), f3(w))

with (w(n) ,β(n)) and denote optimal values as
(w̄∗, β̄∗).

3: Update w(n+1) = w̄∗/φ,β(n+1) = β̄
∗
/φ and

Ψ(n+1)
k (wg , βk ) for f1(w) (and f̂

(n+1)
i (w) for

f2(w), f3(w)).
4: n := n + 1.
5: until convergence

Output: w∗
g = w̄ ∗

g

φ∗ ,∀g ∈ G
Phase 2:

6: Set ŵb,i = 0, for all b, i for which ||ŵ∗
b,i ||2/

√
Pmax < ε.

7: Run steps 1–5 again with the chosen antenna set to find
beamformers with reduced dimensions.

Output: w∗
g = w̄ ∗

g

φ∗ ,∀g ∈ G

we iteratively solve

max
φ,w̄ ,γ̄,β̄,r̄

∑

g∈G
r̄g (30a)

s.t.
∑

g∈G

1
η

||w̄g ||22
φ

+ (PRF + ρ)f̂ (n)
i

(

w̄
φ

)

+ φP0 ≤ 1

(30b)

|| ¯̂wb,i ||22
φ

≤ φPmax,∀b ∈ B, i ∈ Nb (30c)

(20f)–(20i). (30d)

For the sake of completeness, we summarize the sparsity-based
methods in Algorithm 2. The same SOCP approximations pre-
sented in Appendix D similarly apply to Algorithm 2.

V. ENERGY EFFICIENCY AND SUM RATE TRADE-OFFS

Here we consider the trade-off between the energy efficiency
and sum rate maximization. First, we propose a new optimiza-
tion metric to which all the optimization algorithms developed
in the previous section are applicable as such. Secondly, an
alternative formulation based on a scalarization approach of the
multi-objective optimization problem is proposed.

A. Power-Weighted Energy Efficiency Maximization

The power-weighted EE maximization problem is stated as

max
w ,a

R(w)
κg(w,a) + P0

(31a)

s.t. ||ŵb,i ||22 ≤ ab,iPmax,∀b ∈ B, i ∈ Nb , (7c) (31b)

ab,i ∈ {0, 1},∀b ∈ B, i ∈ Nb (31c)

where g(w,a) �
∑

g∈G
1
η ||wg ||22 + PRF

∑

b∈B
∑

i∈Nb
ab,i is a

function denoting the adjustable power consumption. In the
proposed metric, κ ∈ [0, 1] is a fixed parameter to control
the weighting between the energy efficiency and the sum rate
maximization.
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The intuition behind the proposed metric is that EE can be
adjusted by changing the power which then affects the achiev-
able sum rate eventually. More explicitly, when the weighting
factor for the power consumption is decreased, the power con-
sumption becomes less significant and thus the PWEE metric
aims to increase the rate. In the considered problem formula-
tion, the power can be adjusted both in terms of transmit power
and RF chain power. When κ = 0, the denominator becomes a
fixed value P0 and the problem is equivalent to maximizing the
sum rate. Similarly, when κ is increased, it means that there is
a penalty for increasing the transmit power, which results in a
decrease in the sum rate. In particular, when κ = 1, the problem
is equivalent to energy efficiency maximization. In summary, by
varying κ from 0 to 1, we can study the trade-off between EE
and SR.

It is worth mentioning that if antenna selection is not consid-
ered, the weighting is set to transmit power only, because then
the RF chain power is not adjusted. Due to the fact that κ is fixed,
the problem can be solved using exactly the same algorithms as
developed in the previous section, by just adding the weight in
front of the function g(·). In the numerical results, we use this
approach together with the continuous relaxation approach, i.e.,
it is named as Algorithm 1, PWEE.

Remark 2: Conventionally, the trade-off problem has been
treated by calculating the weighted sum of EE and SE [3], [22],
[23]. The key difference in the proposed formulation is that the
weighting is only for adjustable power, which means that exactly
the same derived algorithm for energy efficiency maximization
can also solve the trade-off problem.

B. Scalarization Approach

Here we show an alternative formulation for the EE-SR trade-
off problem. We present the algorithm framework for the mixed-
Boolean programming based formulation, but the method can
be applied to the sparsity-based formulations as well. We focus
on the EE and the sum rate trade-off problem

max
w ,a

[

R(w)
g(w,a) + P0

, R(w)
]

(32a)

s.t. (31b), (31c). (32b)

The above problem is a multi-objective optimization problem
with two conflicting objectives. A common method to solve this
type of problem is the use a scalarization approach [34]. Therein,
the problem is transformed to a single-objective optimization
problem

max
w ,a

�
R(w)

g(w,a) + P0
+ (1 − �)R(w) (33a)

s.t. (32b) (33b)

where � ∈ [0, 1] is a fixed parameter to control the weighting
between energy efficiency and sum rate. However, the problem
in this specific formulation is that the units of the two objectives
are inconsistent and the numerical values are not comparable.
To make the problem tractable, we use similar approach as that
in [23] to formulate the problem as

max
w ,a

R(w)
g(w,a) + P0

+ �
R(w)
Pmin

(34a)

s.t. (32b) (34b)

where Pmin is the minimum power which is known to be con-
sumed for transmission and � ≥ 0 is the weighting parameter.
The difference of the above formulation to [23] is that here we
use Pmin instead of maximum possible power consumption Ptot
to scale the data rate in the objective. The reason for this is that
the EE is defined both in terms of transmit power and RF chain
power, which means that if Ptot is used, the value of �R(w )

P tot

would be clearly smaller than R(w )
g (w ,a)+P0

even with quite large a
value of �. Thus, the objective would focus on EE and the range
of � would be difficult to define to reasonably exploit the trade-
off. Note that Pmin can be defined depending on the number of
user groups, i.e., we can set Pmin = P0 + PRF

∑

b∈B Xb accord-
ing to Remark 1. In the numerical results, we will show that the
above formulation achieves a nice trade-off curve mostly in the
range of � ∈ [0, 1].

Because all the other constraints remain the same, they can be
handled as shown previously. However, the objective function
(34a) is not a conventional fractional function anymore. Thus,
we equivalently reformulate it as

max
w ,γ,v ,a,r,x

x + �

∑

g∈G rg

Pmin
(35a)

s.t. g(v,a) + P0 ≤
∑

g∈G rg

x
(35b)

(8a), (8b), (13b), (12c), (13c) (35c)

where x is a new variable denoting the total energy efficiency. To
tractably reformulate non-convex constraint (35b), we replace
it with the following two constraints

g(v,a) + P0 ≤ r2

x
(36a)

∑

g∈G
rg ≥ r2 (36b)

where r is a new variable representing the square root of the
total sum rate. As a result, we can express (34) as

max
w ,γ,v ,a,β,r,x,r

x + �

∑

g∈G rg

Pmin
(37a)

s.t. g(v,a) + P0 ≤ r2

x
(37b)

r2 ≤
∑

g∈G
rg (37c)

||ŵb,i ||22
vb,i

≤ aχ
b,i , ∀b ∈ B, i ∈ Nb (37d)

γk ≤
|hH

bg ,kwg |2
βk

,∀k ∈ K (37e)

0 ≤ ab,i ≤ 1,∀b ∈ B, i ∈ Nb (37f)

(8a), (8b), (12c), (13c), (14b). (37g)

Now we can see that the objective function is affine and all
the other constraints except (37d), (37e) and newly introduced
constraint (37b) are convex. Using again the idea of SCA, (37e)
and (37d) can be approximated as in (17) and (18), respectively.
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Algorithm 3: Proposed Joint Beamforming and Antenna
Selection Design for Energy Efficiency and Sum Rate
Trade-off.
Initialization: Set n = 0, and generate feasible initial points

(w(n) ,β(n) ,a(n) , r(n) , x(n)).
1: repeat
2: Solve (39) with (w(n) ,β(n) ,a(n) , r(n) , x(n)) and

denote optimal values as (w∗,β∗,a∗, r∗, x∗).
3: Update w(n+1) = w∗,β(n+1) = β∗,a(n+1) = a∗,

r(n+1) = r∗, x(n+1) = x∗ and Υ(n+1)
b,i (ab,i),

Ψ(n+1)
k (wg , βk ),Δ(n+1)(r, x).

4: n := n + 1.
5: until convergence

Output: a∗
b,i ,∀b ∈ B, i ∈ Nb

6: Set ab,i = 0, for all b, i for which a∗
b,i < ε.

7: Run steps 1–5 again with fixed a to find beamformers
with reduced dimensions.

Output: w∗
g ,∀g ∈ G

To approximate the right side of (37b), we can write

r2

x
≥ 2r(n)

x(n) r −
(

r(n)

x(n)

)2

x � Δ(n)(r, x). (38)

With the approximations (17), (18), and (38), we solve the fol-
lowing convex problem at iteration n of the SCA method

max
w ,γ,v ,a,β,r,r,x

x + �

∑

g∈G rg

Pmin
(39a)

s.t. g(v,a) + P0 ≤ Δ(n)(r, x) (39b)

||ŵb,i ||22
vb,i

≤ Υ(n)
b,i (ab,i), ∀b ∈ B, i ∈ Nb

(39c)

γk ≤ Ψ(n)
k (wg , βk ),∀k ∈ K (39d)

r2 ≤
∑

g∈G
rg (39e)

0 ≤ ab,i ≤ 1,∀b ∈ B, i ∈ Nb (39f)

(8a), (8b), (12c), (13c), (14b). (39g)

The proposed algorithm is summarized in Algorithm 3 for the
sake of completeness. We can apply the same method to the
sparsity-based formulation as well.

Remark 3: When � = 0 (i.e., the problem reduces to the
energy efficiency maximization problem), the method derived
above is an alternative solution for Algorithm 1.

We have introduced two different formulations to investigate
the EE-SR trade-off problem. They come from two different
views. The scalarization method is more explicit as it weights
the two metrics directly, while the PWEE is more implicit by
weighting the power consumption to adjust the trade-off. How-
ever we remark that both formulations offer the same perfor-
mance as demonstrated in the next section.

VI. NUMERICAL RESULTS

The performances of the developed algorithms are evaluated
in a quasistatic frequency flat Rayleigh fading channel model.

Fig. 2. Simulation model.

TABLE I
SIMULATION PARAMETERS

We model a scenario with B = 2 adjacent cells, where all the
users are between the two BSs to account for the most severe
inter-cell interference situation, as illustrated in Fig. 2. In all
the other figures except 10 and 11, we set the distance from the
BSs to all the users to d = 250 meters (d is the cell radius),
and randomly assign them to multicasting groups of equal size.
This models a scenario where the groups are very close to each
other and all of the users have strong average interference. In
Fig. 10 and 11, where the methods are compared with existing
schemes, we consider more typical scenarios where the users
are randomly dropped between the cells so that the interference
profiles between the users are different. The path loss is calcu-
lated as 30 log10(db,k ) + 35 dB, where db,k is the distance from
BS b to user k. Each of the BSs serves equal number of Gb = U
randomly assigned user groups with |Kg | = L users per group,
i.e., the total number of users in the network is K = BUL. We
assume a bandwidth of 20 MHz and noise power is set to N0 =
−125 dBW. The antenna specific maximum power constraints
are assumed to be equal for all the antennas over the whole
bandwidth. The fixed simulation parameters are summarized in
Table I while the other parameters are given in the figures.

A. Algorithm Performance

Fig. 3 illustrates the average convergence of the relaxed prob-
lem (i.e., phase 1) and the achieved EE (after phase 2) for
Algorithm 1 and Algorithm 2. First in Fig. 3(a), we have run
Algorithm 1 with χ = 1 and χ = 2. The same initial points have
been used for both values of χ. We can see that the convergence
speed in phase 1 is fast in the considered setting for both cases.
However, we observe that they converge to different solutions.
Specifically, the objective value of the relaxed problem (phase
1) after convergence is higher for χ = 1, but the achieved EE
(after phase 2) is worse than with χ = 2. This is because with
χ = 1, more antenna selection variables are non-Boolean after
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Fig. 3. Average convergence of the relaxed problem (phase 1) and achieved
energy efficiency (after phase 2) of Algorithm 1 and Algorithm 2 N = 16,
L = 2, U = 2, R̄ = 46.4 Mbits/s. The flat lines denote the achieved energy
efficiencies after phase 2.

convergence, which results in a worse antenna selection result.
Another observation is that with χ = 2 (which achieves better
energy efficiency), the objective value returned by the relaxed
problem and the achieved EE are very close to each other. This
means that the solution of the relaxed problem is already very
close to Boolean. The better solution is achieved with only
slightly decreased convergence speed of the relaxed problem.
The examples demonstrate the effectiveness of the proposed
formulation. The impact of χ on the average EE is studied in
the next experiment. Fig. 3(b) then illustrates the convergence
of Algorithm 2 for different relaxations. We can observe that
both smoothing functions provide fast convergence. Note that
the methods converge to different objective values, because the
curves show the convergence of phase 1. It is observed that
compared to Algorithm 1, the relaxation is very loose, but it still
results in the same average EE after phase 2.

Fig. 4 illustrates the effect of χ on the average energy effi-
ciency with different simulation parameters. We also illustrate
the performance of the simplified algorithm (Algorithm 1 ’sim-
ple’), where the beamformers achieved from the relaxed prob-
lem (i.e., step 7 is ignored in Algorithm 1) are used for trans-
mission. We can see that the choice of χ affects the achieved
energy efficiency, and the choice of the best χ depends on the
system parameters. In these cases, χ = 2.2 − 2.4 gives the best
performance. More importantly, the choice of χ significantly
affects the performance of the simple method, implying that it
is enough to use the beamformers and antennas based on the
relaxed problem for transmission. This reduces the computa-
tional load because step 7 can be ignored. The fact that the
performance of the simple method is very close to the original

Fig. 4. Average energy efficiency versus χ with R̄ = 46.4 Mbits/s.

Fig. 5. The effect of ρ on the average energy efficiency of sparsity-based
methods with L = 2, U = 2, R̄ = 20 Mbits/s. In solid lines, N = 30 and
N = 16 for dashed lines.

method means that the solution of the relaxed method is very
close to Boolean with the correct choice of χ. We also observe
a saturation effect for χ implying that there exists a trade-off
between the tightness of the continuous relaxation and the loss
of optimality with the proposed algorithm.

Fig. 5 demonstrates the effect of penalty parameter ρ on the
average energy efficiency of Algorithm 2 when using different
smoothing functions to approximate ||Ŵ||0 . First, we observe
that the convex relaxation (25) is not efficient in promoting spar-
sity because very high penalty parameter is required to yield the
best energy efficiency. The performance is also highly depen-
dent on the choice of ρ, making it difficult to estimate good ρ.
Moreover, the achieved performance is still inferior to the other
schemes, motivating the use of non-convex relaxations. We can
see that all the non-convex relaxations result in approximately
the same performance with the correct choice of ρ. Also, a good
performance is achieved even for ρ = 0, implying that the meth-
ods are efficient in promoting sparsity. It is observed that the
relaxation (28b) is the best option in promoting sparsity with
very small values of ρ.

Fig. 6 shows the average EE versus the number of antennas
per BS. First, we see that EE starts to decrease without antenna
selection when N > 12. On the other hand, significant gains
are achieved with the proposed algorithms and the gains nat-
urally increase with the number of antennas. We can see that
the simplified version of Algorithm 1 is very close to the orig-
inal method even when the number of antennas is large, which
again motivates the effectiveness of the proposed formulation.
On the other hand, as already observed in Fig. 6, Algorithm 2
with (25) gives clearly worse performance than the other JBAS



TERVO et al.: ENERGY-EFFICIENT MULTICELL MULTIGROUP MULTICASTING WITH JOINT BEAMFORMING AND ANTENNA SELECTION

Fig. 6. Average energy efficiency versus N with L = 2, U = 2, R̄ =
20 Mbits/s.

Fig. 7. Total transmit power and per-antenna power versus N with U = 3,
L = 2, R̄ = 20 Mbits/s.

schemes do. However, Algorithm 2 with (28a) and (28b) give
the performance very close to Algorithm 1, although slightly
worse when the number of antennas is small. The reason for
this is the fixed penalty parameter, which is now optimized for
the larger number of antennas, resulting in too sparse a solution
with smaller numbers of antennas. This is further investigated
in Fig. 8. The reason why (25) is clearly worse is that it ap-
proximates ||Ŵ||0 by a pretty flat function, which is not very
close to ||Ŵ||0 . As it is generally known, the convex approx-
imations (like the �1-norm approximation) are easier to solve,
but not efficient in promoting sparsity. The non-convex ones are
far better in this regard, since they approximate ||Ŵ||0 by a
tighter function which has a shape closer to ||Ŵ||0 . Thus, the
nonconvex approximation is simply a better approximation of
||Ŵ||0 , resulting in an improved performance.

Fig. 7 illustrates the transmit powers versus N with Algo-
rithm 1 and a method without antenna selection, with the same
simulation parameters as those in Fig. 6. We can see that without
antenna selection, it is energy-efficient to increase total transmit
power when the number of antennas increases. This is achieved
by decreasing the average transmit power per antenna. However,
with JBAS, both the total transmit power and transmit power per
antenna decrease when N increases in the considered setting,
until it starts to saturate. The reason is that when the number of
antennas grows large enough, increasing the number of antennas
for a fixed number of users does not provide additional SE gain,
i.e., we end up with choosing the same number of antennas on
average. This saturation of the number of the active antennas
can be observed in Fig. 8. Increasing the number of antennas
enables reducing the per-antenna power, meaning that the power
amplifiers for each antenna can be cheaper. It can be concluded

Fig. 8. The average number of active antennas to maximize the energy effi-
ciency versus N with U = 3, L = 2, R̄ = 20 Mbits/s.

Fig. 9. Convergence illustration of the SOCP approximation algorithm with
L = 2, U = 2, N = 12, R̄ = 20 Mbits/s.

that the EE gains of the JBAS compared to the method without
antenna selection are achieved by switching off some of the
antennas but using larger per-antenna transmit power.

Fig. 8 displays the average number of active antennas to
maximize the energy efficiency versus N with the same simu-
lation parameters as those in Fig. 6. It is observed that the more
antennas available, the more active antennas are chosen for
energy-efficient transmission. This makes sense, because when
there are more antennas, there is more spatial diversity. Thus,
sum rate gains due to better beamforming overwhelm the in-
creased power consumption of activating some antennas. Also,
the optimal number of antennas saturates to a certain value when
N grows large, because when the number of antennas is large
enough, increasing the number of antennas for a fixed number
of users provides little SE gain. As can be seen, Algorithm 2
with (25) switches off too many antennas when the number of
available antennas is small, and, on the other hand, not enough
when N is large. This also explains the performance gap in
Fig. 6. In this case, ρ has been chosen to give the best result
for N = 30, which is clearly too large, when N is smaller. Al-
though being a simple method, the optimal penalty parameter
has to be carefully chosen. By looking at the performance of
the other schemes, we can see that the average number of active
antennas for the best energy efficiency saturates to 17–18 in the
considered setting. It can be concluded that when the number
of users is fixed, it is energy-efficient to use a relatively small
number of active antennas if the number of available antennas
is much larger than the number of users in the system.

Fig. 9 illustrates the convergence of the SOCP approximation
algorithm presented in Appendix D. The examples are for two
different channel realizations and the same initial beamformers
have been used for both algorithms. We can see that there is
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Fig. 10. EE comparison to existing schemes L = 2, U = 2, R̄ = 20 Mbits/s,
d = 250 m with different number of antennas.

no significant difference in the convergence speed between the
methods.

B. Comparison to Other Schemes

Here the proposed method is compared with some existing
methods in the literature. Now the users are assumed to have
random locations between the two BSs, and the results are av-
eraged over user locations and channel realizations. One bench-
mark method is the multiuser MISO JBAS scheme in [35], where
the SCA with semidefinite programming formulation and the
�1/�∞ norm is used to solve the JBAS problem. This method
can be straightforwardly extended to the multi-cell multiuser
scenario. Basically this means that compared to our multigroup
multicast transmission, each user is served by different stream,
i.e., it uses resources L times more inefficiently, but can use
better user-specific beamformers. Similarly we also extend the
method in [35] to multi-cell multigroup multicasting scheme,
i.e., to solve exactly the same problem. The second method in
comparison is the multi-cell single-group multicasting scheme
in [17], where the user groups inside the same cell are served
by the orthogonal resources, but the neighboring cells reuse the
same resources similarly. We also use the multi-cell single-group
multicasting scheme using our proposed JBAS method.

In Fig. 10, the EE is plotted for different numbers of antennas.
First, it is observed that the proposed methods are significantly
superior to all the other schemes. As expected, the extension
of JBAS method in [35] provides the closest performance to
the proposed schemes. However, its inferiority to Algorithm 1
is in line with the results observed from Fig. 6 already, where
Algorithm 2 with convex approximation provides significantly
worse performance than the other schemes. Note that the method
in [35] uses convex �1/�∞-norm, and uses semidefinite relax-
ation to approximate the EE problem, and then use SCA for fur-
ther approximation. Thus, its complexity is higher [36], because
the semidefinite relaxation dramatically increases the problem
size, and the approximation is not so accurate because rank-1
solutions cannot be guaranteed [19].

In Fig. 11, we then investigate the effect of imperfect CSI on
the average performance of the methods. The imperfect CSI is
modeled so that the BSs have knowledge of the noisy channel
ĥ = h + h̃, where h is the perfect channel and h̃ is zero-mean
complex Gaussian noise with variance σ2

e per element. It is
observed that the performance degrades when the accuracy of
the channel decreases, as expected. However, Algorithm 1 still
achieves clearly the best performance, and JBAS is still very
useful for EE improvements. It is also interesting to note that

Fig. 11. The effect of imperfect CSI on the EE performance with L = 2,
U = 2, R̄ = 20 Mbits/s.

Fig. 12. Average EE-SE trade-off curve L = 2, U = 2, N = 24, χ = 2, R̄ =
20 Mbits/s.

Fig. 13. The average number of active antennas to achieve a certain average
energy efficiency with L = 2, U = 2, χ = 2, R̄ = 20 Mbits/s.

the performance of single-group transmission mode becomes
closer to multigroup mode when the accuracy decreases. The
reason for this is that there is less interference due to orthogonal
transmission inside the cell, which makes the interference due
to imperfect channel less significant.

C. EE-SR Tradeoff

Fig. 12 plots the average EE-SR trade-off curve. The trade-off
curve has been simulated by sweeping the parameter κ from 0
to 1 in ‘Algorithm 1, PWEE’ and � from 0 to 5 in Algorithm 3.
It is observed that a lot wider trade-off region is achieved with
joint beamforming and antenna selection. It is also observed
that both of the proposed algorithms give the same average
performance.

Fig. 13 shows the average number of active antennas in the
trade-off curve. More specifically, we can see the number of
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active antennas which gives certain energy efficiency. In the
considered setting, activating all the antennas gives the worst
energy efficiency (this is the point where the sum rate is max-
imized). On the other hand, the energy efficiency maximizing
number of active antennas is approximately 18, which yields the
minimum sum rate. From Figs. 12 and 13, we can find the fol-
lowing observation. Looking at the EE-maximizing point of the
method without AS, the JBAS scheme can maintain the same
average sum rate as the scheme without AS, with more than
25% increase in the EE. This gain is achieved by switching off
approximately half of the RF chains.

VII. CONCLUSIONS

This paper has studied energy-efficient multi-cell multigroup
coordinated joint beamforming and antenna selection with
antenna-specific maximum power constraints and user-specific
QoS constraints. Two different approaches based on mixed-
Boolean programming and sparsity were proposed to solve this
challenging problem. The resulting mixed-Boolean nonconvex
optimization problem was tackled by a continuous relaxation
and the successive convex approximation, where the antennas
for which continuous antenna selection variables converge to
zero are switched off. Different convex and non-convex approx-
imations were proposed to solve the problem with sparsity-based
formulation. We have also considered the trade-off between en-
ergy efficiency and sum rate by proposing two approaches to
solve the problem. The numerical results have illustrated that
both the continuous relaxation of mixed-Boolean program and
the sparsity-based approaches provide very good performance
for the considered problems. Moreover, the proposed methods
can significantly improve energy efficiency over the method
without antenna selection by switching off a portion of the an-
tennas but using larger per-antenna transmit power. It is also
observed that joint beamforming and antenna selection can be
used to achieve wider energy efficiency and sum rate trade-off
curve. It was also observed that when the number of users is
fixed, it is energy-efficient to use a relatively small number of
active antennas if the number of available antennas is signifi-
cantly larger than the number of users in the system. Moreover,
increasing the number of antennas significantly for a fixed num-
ber of users is not beneficial, because the energy-efficient num-
ber of active antennas starts to saturate. The EE-SR trade-off re-
sults also showed that the JBAS scheme can maintain the same
average rate as the beamforming only method with more than
25% increase in the energy efficiency. This gain was achieved by
switching off approximately half of the antennas. As a general
conclusion, the energy-efficient beamforming strategy is not to
use very low per-antenna power, but rather switch off many an-
tennas and design energy-efficient beamformers for these and
increase the per-antenna power.

APPENDIX A
PROOF OF LEMMA 1

Let use first prove inequality (i). Assume a∗
b,i , ŵ

∗
b,i is

an optimal solution (for some (b, i)) of the continuous re-
laxation of (7) (i.e., using ||ŵb,i ||22 ≤ ab,iPmax). Then, the
denominator of the objective function (9a) at the optimal
point is written as PCcont,orig = 1/η

∑

b∈B
∑

i∈Nb
||ŵ∗

b,i ||22 +
∑

b∈B
∑

i∈Nb
a∗

b,iPRF + P0 . Note that in this case the con-

straint ||ŵb,i ||22 ≤ ab,iPmax may not be tight. On the other
hand, assume that we then use ||ŵb,i ||22 ≤ ab,ivb,i , i.e., solve
continuous relaxation of (9). Then, assume that a∗

b,i , ŵ
∗
b,i (i.e.,

optimal solution of the relaxation of (7)) is its optimal solution.
The power consumption can be written as PCcont,χ=1 =
1/η

∑

b∈B
∑

i∈Nb
vb,i +

∑

b∈B
∑

i∈Nb
a∗

b,iPRF + P0 . Now,
assuming that a∗

b,i , ŵ
∗
b,i would be the optimal solution,

according to the constraint
||ŵ ∗

b , i ||22
a∗

b , i
≤ vb,i , we can always

decrease vb,i compared to the original formulation to make
the denominator smaller (unless ||ŵb,i ||22 = Pmax) such that

v∗b,i =
||ŵ ∗

b , i ||22
a∗

b , i
. This also contradicts the fact that a∗

b,i , ŵ
∗
b,i are

optimal for the continuous relaxation of (9), and implies that
the optimal objective value has to be smaller for the continuous
relaxation of (9). Thus, because a∗

b,i ≤ 1, it has to hold that

||ŵ∗
b,i ||22 ≤ v∗

b,i =
||ŵ ∗

b , i ||22
a∗

b , i
. This yields PCcont,χ=1 ≥ PCcont,orig,

which again implies that EEcont,χ=1 ≤ EEcont,orig. Similarly
the proof for (ii) follows from the fact that aχ

b,i ≤ ab,i , which

implies that
||ŵ ∗

b , i ||22
(a∗

b , i )
χ ≥ ||ŵ ∗

b , i ||22
a∗

b , i
, i.e., PCcont,χ=m ≥ PCcont,χ=1

and EEcont,χ=m ≤ EEcont,χ=1 . The inequality in (iii) is simply
because the optimal value with any continuous relaxation is
larger than that of the Boolean formulation.

APPENDIX B
PROOF OF LEMMA 2

For proving the lemma, we show that constraints (13b)
and (13c) are active at the optimality by contradiction. Let
w∗,γ∗,v∗,a∗, r∗ be an optimal solution of (13) with op-
timal value EE∗ and suppose that (13b) is not active at
the optimum for the worst user in some group, i.e., γ∗

k <
|hH

b g , k w ∗
g |2

N0 +
∑

u ∈G\{g } |hH
b u , k w ∗

u |2 for some k ∈ Kg . Then we can scale

down the transmit power for user group g and achieve a new
beamformer mg such that ‖mg‖2

2 = τ‖w∗
g‖2

2 < ‖w∗
g‖2

2 for τ ∈
[0, 1] while keeping the others unchanged, i.e ml = w∗

l for all

l �= g. In this way, we then achieve γ∗
j <

|hH
b , j m l |2

N0 +
∑

u ∈G\{l } |hH
b u , j mu |2

for all j ∈ K \ Kg since interference power at all the other
users has reduced. Thus, to improve the objective, we could
then increase γ∗

j for all j ∈ K \ Kg until rl = minj∈Kl
log(1 +

γj ),∀l ∈ G. In addition, we then also have ||m̂bg ,i ||22 <
aχ

bg ,ivbg ,i ,∀i ∈ Nbg
(because we have reduced the transmit

power for group g), which means that we could reduce either
abg ,i or vbg ,i to make the denominator of (13a) smaller. This
implies that we have EE(w∗) < EE(m). Consequently, this
contradicts the fact that w∗,γ∗,v∗,a∗, r∗ is the optimal solu-
tion, completing the proof.

APPENDIX C
CONVERGENCE ANALYSIS OF THE ITERATIVE

ALGORITHM FOR SOLVING (16)

Here we show that the the objective function (19a) converges
monotonically, i.e., improves at every iteration and is bounded
above. Let gn be the optimal objective obtained at iteration n
of the proposed SCA-based algorithm, i.e., gn is the optimal
objective of (19). We will show that gn+1 ≥ gn , i.e., the objec-
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tive sequence is monotonically increasing. To this end we prove
that the solution obtained at iteration n is also feasible to the
problem considered at iteration n + 1.

Let us first focus on the constraint (19b) and denote by w∗(n)
g ,

v
∗(n)
b,i , and a

∗(n)
b,i the optimal values of wg , vb,i and ab,i , respec-

tively at iteration n. It immediately holds that

||ŵ∗(n)
b,i ||22

v
∗(n)
b,i

≤ Υ(n−1)
b,i (a∗(n)

b,i ) ≤ (a∗(n)
b,i )χ (40)

where the first inequality is obvious and the second one is due
to (18). At iteration n + 1 (19b) becomes

||ŵb,i ||22
vb,i

≤ (1−χ)(a∗(n)
b,i )χ + χ(a∗(n)

b,i )
(χ−1)

ab,i , ∀b ∈ B, i ∈ Nb

(41)
Substituting w∗(n)

g , v
∗(n)
b,i , and a

∗(n)
b,i into the above inequality

results in

||ŵ∗(n)
b,i ||22

v
∗(n)
b,i

≤ (1 − χ)(a∗(n)
b,i )χ + χ(a∗(n)

b,i )
(χ−1)

a
∗(n)
b,i

= (a∗(n)
b,i )χ ,∀b ∈ B, i ∈ Nb (42)

which is true due to (40). That is, w∗(n)
g , v

∗(n)
b,i , and a

∗(n)
b,i are

feasible to (19b) at iteration n + 1. Similarly, the same result
can also proved for (19c). Consequently, we can conclude that
the solution obtained at iteration n is also feasible to the convex
program considered at iteration n + 1, and thus gn+1 ≥ gn .

The sequence gn is bounded from above due to the limited
transmit power, and thus it is convergent. It is difficult to com-
ment on the convergence of the iterates (i.e., optimization vari-
ables) generated by the algorithm as the objective in (19a) is not
strongly concave. A possible way to achieve the convergence of
the iterates is to introduce a sufficiently large proximal term in
the objective of (19a). However, this method is quite involved
and, thus, not considered in this paper.

APPENDIX D
ITERATIVE SOCP METHOD TO SOLVE (11)

The solution proposed in Section III-B1 requires solving a
generic non-linear concave-convex fractional program (19) in
each iteration. This can be equivalently transformed to a generic
non-linear convex program (20) which is still difficult to solve
efficiently due to the exponential cone in constraint (20i). Here
we aim at finding a more efficient formulation. Specifically, all
the other constraints in (19) admit the second-order cone form
except the log-term in (13c). To avoid the use of log-function,
we need to find a concave lower bound for log(1 + γk ) to fulfill
the conditions of the SCA. To this end, we use the following
lower bound approximation for the concave log-function [37]

log(1 + γk ) ≥ −νk,1

γk
+ νk,2 � Ξ(n)

k (γk ) (43)

which is tight at γk = γ
(n)
k , when the coefficients νk,1 , νk,2 are

chosen as

νk,1 =
(γ(n)

k )2

1 + γ
(n)
k

, νk,2 = log(1 + γ
(n)
k ) +

γ
(n)
k

1 + γ
(n)
k

(44)

As a result, we follow the description of Algorithm 1 but
solve the following SOCP at step 2

max
φ,w̄ ,γ̄,v̄ ,ā,β̄,r̄,ρ̄

∑

g∈G
r̄g (45a)

s.t.
∑

b∈B

∑

i∈Nb

(

1
η
v̄b,i + PRFāb,i

)

+ φP0 ≤ 1 (45b)

|| ¯̂wb,i ||22
v̄b,i

≤ φΥ(n)
b,i

(

āb,i

φ

)

,∀b ∈ B, i ∈ Nb (45c)

v̄b,i ≤ φPmax,∀b ∈ B, i ∈ Nb (45d)

0 ≤ āb,i ≤ φ,∀b ∈ B, i ∈ Nb (45e)

γ̄k ≤ φΨ(n)
k

(

w̄g

φ
,
β̄k

φ

)

,∀k ∈ K (45f)

r̄g ≥ φmax
k∈Kg

(R̄k ),∀g ∈ G (45g)

φβ̄k ≥ φ2N0 +
∑

u∈G\{g}
|hH

bu ,k w̄u |2 ,∀k ∈ K (45h)

r̄g ≤ φΞ(n)
k

(

γ̄k

φ

)

,∀g ∈ G, k ∈ Kg . (45i)

In the above problem, all the other constraints are linear except
(45c) and (45h) which can be expressed as ||y1 ||2 ≤ y2y3 , where
y1 is some vector, and y2 , y3 are scalars. These constraints are
equivalently written in the SOC form as

||yT
1 , 1/2(y2 − y3)||2 ≤ 1/2(y2 + y3). (46)

More specifically, let us first consider (45c) and denote
x

(n)
b,i � (1 − χ)(a(n)

b,i )χ , z
(n)
b,i � χ(a(n)

b,i )(χ−1) as the fixed co-

efficients in Υ(n)
b,i ( ā b , i

φ ). Then, we can write it equivalently

as || ¯̂wb,i ||22 ≤ v̄b,i(φx(n) + āb,iz
(n)). Thus, according to (46),

we can write y1 = ¯̂wb,i , y2 = vb,i , y3 = φx
(n)
b,i + āb,iz

(n)
b,i , and

substituting these to (46) is equivalent to (45c). On the
other hand, (45h) is readily in a form ||y1 ||2 ≤ y2y3 , where
||y1 ||2 = φ2N0 +

∑

u∈G\{g} |hH
bu ,k w̄u |2 , y2 = φ, y3 = β̄k . In

this case, y1 = [φ
√

N0 , I1,k , . . . , Ig−1,k , Ig+1,k , . . . , IG,k ]T ,
where Iu,k = hH

bu ,k w̄u is a scalar.

APPENDIX E
COMPLEXITY ANALYSIS

Here we provide a complexity comparison based on the worst-
case analysis presented in [36]. The worst-case complexity of
Algorithm 1 depends on the number of variables and can be
upper bounded as

Q1O
(

∑

b∈B
2NbGb + 2

∑

b∈B
Nb + 2K + G + 1

)4

(47)

+ Q2O
(

∑

b∈B
2N̄bGb + 2K + G + 1

)4

(48)

where Q1 and Q2 are the number of performed iterations in
the relaxed problem (steps 1-5) and lower-dimensional problem
for fixed antenna set (steps 6-7), respectively, N̄b is the number
of antennas selected for transmission, K is the total number of
users, and G is the total number of groups. Taking the dominant
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terms, it can be approximated as

Q1O
(

∑

b∈B
NbGb + K

)4

+ Q2O
(

∑

b∈B
N̄bGb + K

)4

(49)

where the dominant term depends on the relation between NbGb

and K. Note that Algorithm 1 ‘simple’ reduces the complex-
ity compared to Algorithm 1 so that the second term in the
above equation is ignored. The complexity reduction depends
on the number of iterations and complexity to solve the lower-
dimensional problem in steps 6–7 of Algorithm 1. We note that
the above upper bound for the complexity is quite conserva-
tive as a solution can be found much faster in reality. On the
other hand, the worst-case complexity of solving the SOCP in
Appendix D can be written as

Q

(

O
(

∑

b∈B
NbGb + K

)3

(50)

+ O
((

∑

b∈B
NbGb + K

)(

∑

b∈B
Nb + K

)))

(51)

where Q is the number of iterations. This algorithm pro-
vides a sharp complexity reduction compared to the generic
formulation.
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