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We use heavy quark effective theory~HQET! techniques to parametrize certain nonperturbative effects
related to quantum fluctuations that put both heavy quarks and antiquarks in quarkonium almost on shell. Th
large off-shell momentum contributions are calculated using Coulomb-type states. The almost on-shell mo
mentum contributions are evaluated using an effective ‘‘chiral’’ Lagrangian which incorporates the relevant
symmetries of the HQET for quarks and antiquarks. The cutoff dependence of both contributions matche
perfectly. The decay constants and the matrix elements of bilinear currents at zero recoil are calculated. The
leading nonperturbative contributions are parametrized by a single constant and turn out to beO~a2/LQCDan!,
an being the Bohr radius anda the strong coupling constant, times the nonperturbative contribution coming
from the multipole expansion~gluon condensate!. We discuss the physical applications toY, J/c, andBc

systems.

PACS number~s!: 12.39.Hg, 12.39.Pn, 13.25.Gv
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I. INTRODUCTION

The so-called heavy quark effective theory~HQET! @1–5#
has become a standard tool to study the properties of had
containing a single heavy quark~see@6# for reviews!. The
hadron momentum is essentially the momentum of the he
quark which may then be considered almost on shell. T
dynamics becomes independent of the spin and the mas
the heavy quark giving rise to the so-called Isgur-Wise sy
metries @1,2#. The relevant modes are momentum fluctu
tions of the order ofLQCD which are described by the HQET
@3–5#. One cannot actually carry out reliable perturbati
calculations at that scale, but one can certainly use the Is
Wise symmetries to obtain relations between physical
servables.

For hadrons containing two heavy quarks or more
HQET is not believed to be a suitable approximation, t
reason being that a system of two heavy quarks is ma
governed by the perturbative Coulomb-type interaction. T
relevant modes are momentum fluctuations of the orde
the inverse Bohr radius, which is flavor dependent, and
of the order ofLQCD. Still, if one is interested in subleadin
nonperturbative contributions related to the ‘‘on shellnes
of the heavy quarks, the HQET may provide some use
information. Irrespective of the above, the HQET has alrea
been used in phenomenological approaches to two he
quark systems@7#.

We shall argue that new nonperturbative contributions
the quarkonium decay constants and to the matrix elem
of heavy-heavy currents between quarkonia states can be
scribed by a suitably modified HQET. The well-known no
perturbative contributions arising from the multipole expa
sion @8,9# areO~LQCDan/a

2!, an being the Bohr radius anda
the strong coupling constant, times the contributions we fi
~However, the multipole expansion gives indeed the lead
nonperturbative corrections to the energy spectrum.! The key
observation is that when the heavy quarks are almost on s
53-2821/96/53~7!/3983~15!/$10.00
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the nonperturbative effects must be important. In that regi
the multipole expansion breaks down, but it is precisely th
that HQET techniques become applicable.

In Ref. @10# it was pointed out that when fields describin
both heavy quarks and heavy antiquarks with the same
locity are included in the HQET Lagrangian, the latter h
extra symmetries beyond the well-known flavor and sp
symmetries@1,2#. In Ref. @11# the extra symmetries were
thoroughly analyzed~see @12# for related elaborations!. It
was shown that they are spontaneously broken down to
spin and flavor symmetries, even if the gluons are switch
off. The Goldstone modes turn out to be two particle sta
with the quantum numbers ofs-wave quarkonia. Translating
these findings into phenomenologically useful stateme
was the original motivation of this work.

The main hypothesis in what follows is that whenever w
have a heavy quark field we may split it into two momentu
regimes. The momentum regime where the heavy quar
almost on shell, and the momentum regime where the he
quark is off shell. The main observation is that the HQE
should always be a good approximation for a heavy quark
the almost on-shell momentum regime of QCD@10,12#, no
matter whether the heavy quark is accompanied by ano
heavy quark in the hadron or not. What makes a had
containing a single heavy quark qualitatively different from
hadron containing, say, two heavy quarks are the large
shell momentum effects. In the former the large off-sh
momentum effects are small and can be evaluated orde
order in QCD perturbation theory@1,5,13,14#. In the latter
the large off-shell momentum effects are dominant givi
rise to Coulomb-type bound states. However, once this
taken into account there is noa priori reason not to use
HQET in the almost on-shell momentum regime for syste
with two heavy quarks. Then the extra symmetries found
@10,11#, which naturally involve quarkonium systems, shou
be relevant.
3983 © 1996 The American Physical Society
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Suppose we have two quarksQ andQ8 which are suffi-
ciently heavy so that the formalism below can be read
applicable. Let us denote bycQ , hQ , QQ8

* , andQQ8 the
vectorQ̄Q, pseudoscalarQ̄Q, vectorQ̄Q8, and pseudoscalar
Q̄Q8 states. Our main results follow.

~i! The fact that the states above can be regarded as G
stone modes in the on-shell momentum region@11# implies
that their masses do not receive any nonperturbative con
bution from that momentum region. Consequently, the lea
ing nonperturbative correction comes from the multipole e
pansion @8,9#. This allows us to extractmQ in a model-
independent way frommcQ

, and hence fix the parameterL̄

relatingmQ with the mass of theQ̄q systems@6#.
~ii ! The leading new nonperturbative effects in the dec

constantsf cQ
, f hQ

, f Q
Q8
* , and f QQ8

are given in terms of a

single nonperturbative parameterf H .
~iii ! The leading new nonperturbative effects in the matr

elements of bilinear heavy quark currents at zero recoil a
given in terms of the same nonperturbative parameterf H . In
particular, this implies that the semileptonic decay
(mQ.mQ8)

cQ ,hQ→QQ8
* ,QQ8 ,

QQ8
* ,QQ8→cQ8 ,hQ8

at zero recoil are known in terms off cQ
, f hQ

, f Q
Q8
* , and

f QQ8
.

We organize this paper as follows. In Sec. II we perfor
some short distance calculations in the kinematical region
are interested in. In Sec. III we summarize the main resu
of Ref. @11# and match the results from Sec. II with the
HQET. In Sec. IV we construct a hadronic effective Lagran
ian for on-shell modes in quarkonium. In Sec. V we calcula
the decay constant. In Sec. VI we calculate the matrix e
ments of any bilinear heavy quark current between quarko
states. This is relevant for the study of semileptonic decays
zero recoil. In Sec. VII we briefly discuss the possible use
our formalism forY, Bc , Bc* , J/c, andhc physics. Section
VIII is devoted to the conclusions. In Appendix A we show
how to include 1/m corrections in the hadronic effective La
grangian for the on-shell modes. A few technical details a
relegated to Appendix B.

II. SHORT DISTANCE CONTRIBUTIONS IN THE
ON-SHELL MOMENTUM REGIME

As mentioned in the introduction, what makes aQ̄Q sys-
tem qualitatively different from aQ̄q system is the short
distance contributions. In aQ̄q system these are well under
stood. They amount to Wilson coefficients in the currents a
in the operators of the HQET Lagrangian, with anomalo
dimensions which are computable in the loop expansion
QCD. For aQ̄Q system the short distance contributions ca
not be accounted for by just anomalous dimensions in W
son coefficients. Indeed, the anomalous dimension of a c
rent containing a heavy quark field and a heavy antiqua
field with the same velocity becomes imaginary and infini
@15#. For largemQ , the two quarks in aQ̄Q system appear to
be very close. Due to asymptotic freedom the system can
ily
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understood in a first approximation as a Coulomb-ty
bound state. In perturbation theory this is equivalent to su
ming up an infinite set of diagrams~ladder approximation!
whose kernel is the tree level one gluon exchange~see@16#
for a review!.

We shall assume that the dominant short distance con
bution to heavy quarkonia is the existence of Coulomb-ty
bound states. Typically we shall be interested in Green fu
tions of the kind

GG~p1 ,p2!:5E d4x1d
4x2e

ip1x11 ip2x2

3^0uT@Q̄aGQb~0!Q̄a1

bi1~x1!Qa2

ai2~x2!#u0&,

~2.1!

for the range of momentum

p152mbv2k1 , p252mav2k2 , ~2.2!

k1 andk2 being small.
Since the quarks are very massive, for the range of m

mentum~2.2! the leading contribution to~2.1! is only given
by the ordering

GG~p1 ,p2!5E d4x1d
4x2e

ip1x11 ip2x2u@2max~x1
0,x2

0!#

3^0uQ̄aGQb~0!T$Q̄a1

bi1~x1!Qa2

ai2~x2!%u0&.

~2.3!

We insert the identity between the current and the fields a
we approximate it by the vacuum plus the Coulomb-ty
states~the states above threshold shall not give contributi
when we sit in the relevant pole!. We treat then the fields as
being free:

1.u0&K 0U1(
n,s

E d3PW n

~2p!32Pn
0 Us,PW n5mab,nvW L

3^s,PW n5mab,nvW u. ~2.4!

The Coulomb state in the center of mass~c.m.! frame
reads

us,PW n5mab,nvW &

5
1

ANc

mab
~3/2!

mab,n
v0E d3kW

~2p!3
c̃ab,n~kW !

1

A2p102p20

3(
a,b

ūa~p1!Gsv
b~p2!aa

†~p1!bb
†~p2!u0&, ~2.5!

where
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pW 15mavW 1kW1
kW•vW

11v0
vW , pW 25mbvW 2kW2

kW•vW

11v0
vW ,

p1
05mav

01kW•vW , p2
05mbv

02kW•vW ,

mab :5ma1mb , mab,n :5mab2Eab,n ,

Gs5 ig5p2 ,ie” i p2 ,

v251, p6 :5
16v”
2

, ei•v50. ~2.6!

Eab,n , cab,n(xW ), andc̃ab,n(kW ) are the energy, the coordinate
space wave function and the momentum space wave func
of a Coulomb-type state with principal quantum numb
n. v is the bound state four-vector velocity.aa

†(p1) and
bb
†(p2) are creation operators of particles and antiparticle
respectively.ua(p1) and v

b(p2) are spinors normalized in
such a way that in the largem limit the following holds:

(
a

ua~p1!ū
a~p1!5p1 , (

a
va~p1!v̄

a~p1!52p2 .

~2.7!

Choosing the momenta as in~2.6! is crucial in order to take
into account that the c.m. of the bound state moves with
fixed velocity v with respect to the laboratory frame@17#.
Equation~2.5! has the usual relativistic normalization:

^s,PW n5mab,nvW ur ,PW m5mab,mvW &

52mab,nv
0~2p!3d~3!

„mab,n~vW 2vW !…dnmd rs .

~2.8!

We have to consider the following kind of matrix elements

^s,mab,nvW uQa2
a ~x2!Q̄a1

b ~x1!u0&

5eimab,nv•X^s,mab,nvW uQa2
a ~x22X!Q̄a1

b ~x12X!u0&

5eimab,nv•X
mab

~3/2!

mab,n
~ Ḡs!a2a1E d3kW

~2p!3
c̃ab,n* ~kW !

3expH i Fk•vWx02xW S kW1
kW•vW

11v0
vW D G J ,

X5
max11mbx2

mab
, x5x12x2 , ~2.9!

where it is essential to extract the c.m. dependence in
fields beforeusing the explicit expression~2.5! for the cal-
culation of ~2.9!. As mentioned above the statesus,mab,nvW &
have the explicit expression~2.5! only in the c.m. frame
@16,17#. Factors of the kindmab/mab,n appearing in several
expressions above have been approximated to 1 in the res
the paper. Finally, performing thex1 ,x2 integral and taking
into account that

(
s

~Gs!a2a4
~ Ḡs!a1a3

522~p1!a2a3
~p2!a1a4

, ~2.10!
tion
er

s,

a

:

the

t of

we obtain

GG~p1 ,p2!5(
n

c̃ab,n* ~0!cab,n~0!

3~p2Gp1!a2a1
d i1i2

1

v•k21
ma

mab
Eab,n1 i e

3
1

v•k11
mb

mab
Eab,n1 i e

. ~2.11!

In the last expression we approximatedc̃ab,n(e
i
•k)

.c̃ab,n(0) $we neglectO[(nuei•ku/ma)2] %. In ~2.11! there
is a sum over an infinite number of poles. Each term in the
sum corresponds to a Coulomb-type bound state. At the had
ronic level we want to describe only one of those states. Thi
is achieved by tuning the external momenta to sit on the
relevant pole. Suppose we are interested incQ(n) state. Then
we take

k15k182
mb

mab
Eab,nv, k25k282

ma

mab
Eab,nv,

~2.12!

so that in the limitki8→0 ~i51,2! we obtain

GG~p1 ,p2!5c̃ab,n* ~0!cab,n~0!

3~p2Gp1!a2a1
d i1i2

1

v•k281 i e

1

v•k181 i e
.

~2.13!

Notice from ~2.2! and ~2.12! that we must subtract from
the momentum of the quark [ma2(ma/mab)Eab,n]v in order
to get an expression suitable to be reproduced in the HQET
This may be interpreted as if integrating out off-shell short-
distance degrees of freedom produces an effective mass f
the almost on-shell modes of a heavy quark inside quarko
nium. This effective mass depends on the precise bound sta
the quark is in. We are almost on shell whenv•ki8 ,e

j
•ki8

;LQCD ( i51,2).
This restricts the validity of our approximation to the case

Eab,n;maba
2/n2@LQCD ~mab is the reduced mass!, other-

wise momentum fluctuations of the order ofLQCD would
take us from one pole to another. Notice also that for arbi
trarily large but fixedmab there is always ann where this
approximation fails. Therefore we shall always be dealing
with a finite number of low-lying energy levels.

Consider the four-point function

G~p1 ,p2 ,p3 ,p4!

:5E d4x1d
4x2d

4x3d
4x4e

ip1x11 ip2x21 ip3x31 ip4x4

3^0uT$Qa1

bi1~x1!Qa2

ai2~x2!Q̄a3

ai3~x3!Q̄a4

bi4~x4!%u0&.

~2.14!

For the momenta
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p152Smb2
mb

mab
Eab,nD v2k18 ,

p25Sma2
ma

mab
Eab,nD v1k28 ,

p352Sma2
ma

mab
Eab,nD v2k38 ,

p45Smb2
mb

mab
Eab,nD v1k48 ~2.15!

~ki8→0, i51, . . . ,4!. Working in the same way we obtain

G~p1 ,p2 ,p3 ,p4!

5~2p!4d~4!~2k181k282k381k48!

3
i

2Nc
(

Gn5 ig5p2 ,ie” i p2

~Gn!a2a4
~ Ḡn!a1a3

3d i1i3d i2i4c̃ab,n* ~0!c̃ab,n~0!
1

v•k381 i e

1

v•k181 i e

3S 1

v•k281 i e
1

1

v•k481 i e D . ~2.16!

We shall see in the next section that~2.13! and~2.16! can be
reproduced~with suitable changes! by a HQET for quarks
and antiquarks.

III. HQET FOR QUARKS AND ANTIQUARKS

The Lagrangian of the HQET for quarks and antiquar
moving at the same velocityvm (vmv

m51) reads@4#

Lv5 i h̄vv” vmD
mhv5 i h̄v

1v•Dhv
12 i h̄v

2v•Dhv
2 , ~3.1!

where hv5h v
11h v

2 and h v
65(16v” )/2hv . h v

1 contains
annihilation operators of quarks with small momentum abo
mvm andh v

2 contains creation operators of antiquarks aga
with small momentum aboutmvm . Dm is the covariant de-
rivative containing the gluon field.

The quark and antiquark sector of~3.1! are independently
invariant under the well-known spin and flavour symmet
@1,2,4#

hv
6→ei e6

i Si
6

hv
6 and h̄v

6→h̄v
6e2 i e6

i Si
6

, ~3.2!

whereSi
65 i e i jk [e” j ,e” k](16v” )/2, with e j

m, j51,2,3 being an
orthonormal set of space-like vectors orthogonal tovm , and

hv
6→eiu6hv

6 and h̄v
6→h̄v

6e2 iu6. ~3.3!

e 6
i and u6 are arbitrary real numbers corresponding to t
parameters of the transformations.

The Lagrangian~3.1! is also invariant under the following
set of transformations:

hv→eig5ehv , h̄v→h̄ve
ig5e, ~3.4!

hv→eg5v” ehv , h̄v→h̄ve
g5v” e, ~3.5!
ks

ut
in

ry

he

hv→ee i e” ihv , h̄v→h̄ve
e i e” i, ~3.6!

hv→ei e
i e” iv”hv , h̄v→h̄ve

i e i e” iv” . ~3.7!

The whole set of transformations~3.2!–~3.7! corresponds to
a U~4! symmetry for a single flavor. ForNhf heavy flavors
they correspond to a U(4Nhf) group. In the latter casehv
must be considered a vector in flavor space and the param-
eters of the transformations~3.2!–~3.7! as Hermitian matri-
ces in that space.

When the gluons are switched off it is easy to prove that
the U(4Nhf) symmetry breaks down spontaneously to
U(2Nhf)^U(2Nhf) ~see@11#!. The following currents corre-
spond to the broken generators

j 56
ab :5h̄v

aig5p6hv
b and j 56

abi :5h̄v
aie” i p6hv

b , ~3.8!

a,b,c, . . .51, . . . ,Nhf are flavor indices. They transform
according to two four-dimensional irreducible representa-
tions of U(2Nhf)^U(2Nhf). In what follows we are going to
assume that the situation above is not modified when soft
gluons are switched on. The currents~3.8! have the quantum
numbers of pseudoscalar and vector quarkonium respec-
tively. The heavy quark and antiquark fields interact with soft
gluons according to the Lagrangian~3.1!. For soft gluons,
perturbation theory cannot be reliably applied. However, one
can use effective Lagrangian techniques, which fully exploit
the symmetries above, to parametrize the nonperturbative
contributions in this region. This shall be done in Sec. IV.

For further purposes let us carry out some leading order
perturbative calculations. Consider first

GGG8~k!5E d4xe2 ikx^0uT$h̄v
a2Ghv

b1~0!h̄v
b1G8hv

a2~x!%u0&

52 iNc

m3

6p2 tr~p1G8p2G!
1

v•k1 i e
, ~3.9!

where m is an ultraviolet symmetric cutoff in three-
momentum~see@11# for more details!. Consider also

GGG8G9~k18 ,k28!5E d4x1d
4x2e

ik18x12 ik28x2

3^0uT@ h̄v
a2G9hv

b1~x1!h̄v
b1Ghv

c1~0!

3h̄v
c1G8hv

a2~x2!#u0&

5Nc

m3

6p2 tr~p2G9p1Gp1G8!

3
1

v•k181 i e

1

v•k281 i e
. ~3.10!

The flavor indices (a,b,c) are not summed up unless other-
wise indicated. Color indices are not explicitly displayed in
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the color singlet currents. Otherwise they will be denoted b
i 1 ,i 2 , . . .51, . . . ,Nc , with Nc being the number of colors.
We shall drop the subscriptv from hv and change the super-
script6 into subscripts in the following.

The strong cutoff dependence of~3.9!–~3.10! is puzzling.
We shall see later on that it cancels against suitable sh
distance contributions.

As claimed before, it is easy to see that~2.13! is repro-
duced by the following HQET Green function at the tre
level:
y

rt

GG~k18 ,k28!5Ed4x1d4x2e2ik18x12ik28x2

3^0uT$CGh̄
aGhb~0!h̄1a1

bi1 ~x1!h2a2

ai2 ~x2!%u0&

~3.11!

with CG being a Wilson coefficient,

CG5c̃ab,n* ~0!cab,n~0!. ~3.12!

Analogously,~2.16! is reproduced in the HQET by1
G~k18 ,k28 ,k38 ,k48!5E d4x1d
4x2d

4x3d
4x4e

2 ik18x11 ik28x22 ik38x31 ik48x4

3K 0UTH h2a1

bi1 ~x1!h1a2

ai2 ~x2!h̄1a3

ai3 ~x3!h̄2a4

bi4 ~x4!

3 i E d4yS 2
1

2Nc
c̃ab,n* ~0!c̃ab,n~0! D(

Gn

h̄aGnh
b~y!iv•]„h̄bḠnh

a~y!…J U0L . ~3.13!
t

-

IV. EFFECTIVE HADRONIC LAGRANGIAN
FOR THE ON-SHELL CONTRIBUTIONS

OF s-WAVE QUARKONIA

We have seen that for the on-shell kinematical regim
certain correlators can be reproduced in the HQET. We sh
see in Secs. V and VI that the contributions from this regio
to the decay constants and matrix elements reduce to
evaluation of heavy quark-antiquark currents in the HQE
For the range of momentum we are interested in these Gr
functions cannot reliably be evaluated in perturbation theo
We shall use in this section effective Lagrangian techniqu
very similar to those used in chiral perturbation theory,
parametrize the nonperturbative contribution.

There are well-known rules@18# ~see also@19#! to con-
struct phenomenological Lagrangians for Goldstone boso
associated to the symmetry breaking of a groupG down to a
subgroupH for relativistic theories. These rules need tw
slight modifications to become applicable to our case.

~i!The HQET is formally relativistic only after assigning
transformation properties to the fixed velocityvm. We must
take into account that the velocityvm as well as theem

i can
also be used to build up relativistic invariant terms.

~ii ! The HQET is not only globally U(4Nhf) invariant, but
locally U(4Nhf) gauge invariant under transformation
which only depend on the componentsxi :5xmem

i . We shall
also require the phenomenological Lagrangian to be lo
gauge invariant under the corresponding transformations.

With the above modifications~i! and ~ii ! we shall apply
the rules @18# to the caseG5U(4Nhf), H5U(2Nhf)
^U(2Nhf). Let us first associate with the currents~3.8! fields
in the phenomenological Lagrangian which have the sa
transformation properties underH:

Hab→h̄aig5p1h
b, Habi→h̄aie”ip1h

b,

Hba*→h̄big5p2h
a, Hbai*→2h̄bie” i p2h

a. ~4.1!
e
all
n
the
T.
een
ry.
es,
to

ns

o

s

cal

me

We build up the following object

H5 ig5p2H2 ie” i p2H
i1 ig5p1H

†1 ie” i p1H
i†,

H̄:5g0H†g05H, ~4.2!

where we use matrix notation forHab andHabi. H trans-
forms under the unbroken subgroup as

H→hHh21, hPU~2Nhf! ^U~2Nhf!. ~4.3!

We assign nonlinear transformations under the full group
U(4Nhf) in the standard manner@18#:

g~u!eH5:eH8h~H,u!,

1One may be tempted to include~3.13! as a perturbation in the
HQET Lagrangian. This is not quite correct. The Green function

G~k18,k28,k38,k48!5Ed4x1d4x2d4x3d4x4e2ik18x11ik28x22ik38x31ik48x4

3^0uT$h2a1

bi1 ~x1!h1a2

ai2 ~x2!h̄1a3

ai3 ~x3!h̄2a4

bi4 ~x4!%u0&

gives a nonzero contribution in the HQET which does not corre-
spond to~2.14!–~2.16!. It is ~3.13! which gives the leading contri-
bution to~2.14! in the HQET and hence the last term in~3.13! must
not be included in the Lagrangian. This means that unlike in the
case of heavy-light systems, the short distance effects here canno
always be accounted for by only modifications of the currents and
the Lagrangian, as we may have naively expected. We have to con
tent ourselves by identifying for a given Green function, the Green
function in the HQET that gives the same result.
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gPU~4Nhf!, hPU~2Nhf! ^U~2Nhf!,

eHPU~4Nhf!/U~2Nhf! ^U~2Nhf!, ~4.4!

whereH8 is the transformed field. Then

eH→eH85geHh215heHḡ, ~4.5!

whereḡ5g0g†g0. The following property holds:

v”eH5e2Hv” , ~4.6!

which implies that

S:5e2Hv”5v”e22H, S251, e2Hv”→ge2Hv”g21.
~4.7!

Because of the local gauge symmetry we can only bu
the following connection and covariant tensor:

V:5
1

2
~e2Hv•]eH1eHv•e2H!,

V→hVh211hv•]h21, v”V5Vv” ,

A:5
1

2
~e2Hv•]eH2eHv•]e2H!, A→hAh21,

v”A52Av” , v•]S5eHAeHv” . ~4.8!

Notice that any derivative with respect toxi :5em
i xm act-

ing on functions ofxi which are not scalars will not be co
variant under the local transformations.

The u(4Nhf) algebra and the HQET Lagrangian are in
variant under the discrete symmetry

em
i →2em

i , vm→2vm , ~4.9!

which is reminiscent of charge conjugation. They are a
invariant under the SO~3! transformationsem

i →R j
i em

j and,
of course, under Lorentz transformations if we assi
vm→Lm

nvn , em
i →Lm

nen
i . All these symmetries should als

be implemented in the effective Lagrangian.
We can start at this point the construction of the effecti

Lagrangian, order by order in derivatives, using the obje
defined above. At first order it turns out that there is
invariant term. Still, there is a term which is invariant up
a total derivative. It reads

Tr~v”V!.24 tr~H†v•]H1Hi†v•]Hi !1••• ,

Tr~v”V!→Tr~v”V!1Tr~v”hv•]h21!. ~4.10!

Tr means trace over flavor and Dirac indices whereas
means trace over flavor indices only. We keep tr for tra
over Dirac indices only. It is not difficult to prove tha
Tr(v”hv•]h21) is indeed a total derivative. This is analogou
to the case of the Heisenberg ferromagnet where the lead
order term in the effective Lagrangian for the Goldsto
mode is also invariant up to a total derivative@20#. Then at
leading order the long-distance properties of heavy quar
nia are governed by a single constant. At next-to-lead
order we have the term
ild

-

so

n

e
ts
o
o

tr
ce

s
ing-
e

o-
ng

Tr~AA!.24 tr~v•]H†v•]H1v•]Hi†v•]Hi !1••• .
~4.11!

Terms containingxi derivatives start appearing at sixth order.
Notice that there is no vertex involving an odd number of
fields. This holds at any order in derivatives and it is a con
sequence of the separate conservation of the number
heavy quarks and antiquarks.

For convenience we normalize the effective Lagrangian a

2 i
f H
2

4
Tr~v”V!5 i tr~P†v•]P1P i†v•]P i !1••• ,

H5
P

f H
, Hi5

P i

f H
. ~4.12!

f H
2 is a dimension-3 parameter of the order ofLQCD

3 .
The effective Lagrangian built above makes sense by it

self as a toy model. If we ignore the matching with high
energies we can withdraw some consequences out of th
lowest order Lagrangian. These and the 1/m corrections to
this toy model are worked out in Appendix B.

Let us next discuss how to represent quark currents in th
effective Lagrangian. Consider

j G
ab5h̄aGhb. ~4.13!

Let us introduce a sourcea G
ab for each of these currents and

write all possible currents up in the Lagrangian

Lv5 i h̄v” vmD
mh1h̄v”ah,

a:5(
G

aG
abv”G. ~4.14!

L is now locally invariant under U(4Nhf) if we assign toa
the transformation property

a→gag211giv•]g21. ~4.15!

At the hadronic level we may also require local gauge invari
ance upon the introduction ofa. This is easily achieved by
changingv•] into v•]2 ia in the definition ofV in ~4.8!. We
obtain

L52 i
f H
2

4
@Tr~v”V!2 i Tr~aS!#. ~4.16!

Then we may identify

h̄aGhb→2
f H
2

4
Tr~GTabe2H!, ~4.17!

whereTab is the zero matrix in flavor space except for a 1 in
row a, column b. It is interesting to observe that the
U(4Nhf) symmetry is so large that any bilinear current of the
kind ~4.13! can be written in terms of a generator of the
U(4Nhf) symmetry. This is the actual reason why the iden-
tification ~4.17! does not involve any extra unknown param-
eter. It is analogous to the case of the vector and axial-vecto
currents in the chiral Lagrangian@21#.
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Let us next calculate for further convenience the correlators~3.9! and~3.10! in the hadronic effective Lagrangian. For~3.9!
we have

GGG8~k!5E d4xe2 ik•x^0uT$h̄2
a Gh1

b ~0!h̄1
b G8h2

a ~x!%u0&5E d4xe2 ik•xK 0UTH F2
f H
2

4
Tr~p2Gp1T

abe2H~0!!G
3F2

f H
2

4
Tr~p1G8p2T

bae2H~x!!G J U0L
.E d4xe2 ik•xK 0UTS H 2

f H
2

4
Tr@p2Gp1T

ab2H~0!#J H 2
f H
2

4
Tr@p1G8p2T

ba2H~x!#J DU0L
52 i

f H
2

2
tr~p1G8p2G!

1

v•k1 i e
. ~4.18!

For ~3.10! we have

GGG8G9~k18 ,k28!5E d4x1d
4x2e

ik18x12 ik28x2^0uT$h̄2
a G9h1

b ~x1!h̄1
b Gh1

c ~0!h̄1
c G8h2

a ~x2!%u0&

5E d4x1d
4x2e

ik18x12 ik28x2K 0UTH F2
f H
2

4
Tr~p2G9p1T

abe2H~x1!!GF2
f H
2

4
Tr~p1Gp1T

bce2H~0!!G
3F2

f H
2

4
Tr~p1G8p2T

cae2H~x2!!G J U0L
.E d4x1d

4x2e
ik18x12 ik28x2K 0UTF S 2

f H
2

4
Tr@p2G9p1T

ab2H~x1!# D S 2
f H
2

4
Tr@p1Gp1T

bc2H2~0!# D
3S 2

f H
2

4
Tr@p1G8p2T

ca2H~x2!# D GU0L
5
f H
2

2
tr~p2G9p2Gp1G8!

1

v•k181 i e

1

v•k281 i e
. ~4.19!
Notice at this point that we may obtain~3.9! and~3.10! from
~4.18! and ~4.19! by taking f H

2 /2→Ncm
3/6p2. Hencef H

2 at
the hadronic level plays the role of the cut-offm at quark
level. Observe also that the dependence on theG matrices in
~4.18! and ~4.19! is explicit. All decay constants and matrix
elements of bilinear currents are given in terms of the on
nonperturbative parameterf H . This is a direct consequence
of the U(4Nhf) symmetry being spontaneously broken dow
to U(2Nhf)^U(2Nhf).

V. EXAMPLE: THE DECAY CONSTANT, fY

A. Separating and evaluating off-shell
and on-shell contributions

Consider the current–current correlator

GG~p!:5E d4xeipx^0uT$Q̄aGQb~0!Q̄bḠQa~x!%u0&.

p52mab,nv2k, k→0. ~5.1!

We separate

Q̄aGQb5~QaGQb!on1~Q̄aGQb!off , ~5.2!
ly

n

where (Q̄aGQb)on and (Q̄aGQb)off means that both heavy
quark fields in the current have momenta almost on shell and
off shell, respectively. Our goal is to obtain a representation
in terms of the HQET of any Green function containing an
(Q̄aGQb)on. In order to enforce ‘‘on shellness’’ it is conve-
nient to make the substitution

E d4x@Q̄bḠQa~x!#one
ipx

→E d4x1Q̄a1

bi1~x1!e
ip1x1

3E d4x2Qa2

ai2~x2!e
ip2x2~ Ḡ!a1a2

d i1i2, ~5.3!

p152Sma2
ma

mab
Eab,nD v2k18 , ~5.4!

p252Smb2
mb

mab
Eab,nD v2k28 ,
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k5k181k28 ,

k18 ,k28→0

and see whether the new Green function admits a repre
tation in terms of the HQET. This is nothing but the calc
lations carried out above. Then we undo~5.3! by putting the
fields depending onx1 andx2 in the HQET at the same poin
x. We have@from ~2.1!, ~2.13!, and~3.11!#
sen-
u-

t

E d4xeipx^0uT$@Q̄aGQb~0!#off@Q̄
bḠQa~x!#on%u0&

5E d4xe2 ikx^0uT@CGh̄2
a Gh1

b ~0!h̄1
b Ḡh2

a ~x!#u0&.

~5.5!

Analogously, using~2.14!, ~2.16!, and~3.13! we have
E d4x eipx^0uT$@Q̄aGQb~0!#on@Q̄
bḠQa~x!#on%u0&

5E d4xe2 ikxK 0UTH h̄2
a Gh1

b ~0!h̄1
b Ḡh2

a ~x!i E d4yS 2
1

2Nc
c̃ab,n* ~0!c̃ab,n~0!D

3 (
Gn5 ig5p2 ,ie” i p2

h̄bGnh
a~y!iv•]@ h̄aḠnh

b~y!#J U0L . ~5.6!
The contribution involving only off shell quarks has the f
miliar form

E d4xeipx^0uT$@Q̄aGQb~0!#off@Q̄
bḠQa~x!#off%u0&

52 iNctr~Gp1Ḡp2!ucab,n~0!u2
1

v•k1 i e
. ~5.7!

The expressions~5.5! and ~5.6! correspond to corrections
O~LQCD

3 a ab,n
3 ! andO~LQCD

6 a ab,n
6 ! respectively to the leading

result ~5.7!; aab,n;n/(amab) is the Bohr radius. Since we
are only interested in the leading nonperturbative correcti
we shall neglect~5.6! in the following. Let us only remark
that the hadronization of the four-quark operator in~5.6! in-
troduces new parameters. This is because it is not a gene
of the U(4Nhf) symmetry as the currents of the kind~4.17!
are.

The right-hand side of~5.5! can be hadronized and calcu
lated using the effective Lagrangian discussed in Sec.
From ~4.18! we obtain

E d4xeipx^0uT$@Q̄aGQb~0!#off@Q̄
bḠQa~x!#on%u0&

5
2 i

2
tr~p2Gp1Ḡ!c̃ab,n* ~0!cab,n~0! f H

2 1

v•k1 i e
.

~5.8!

Notice that the result is spin independent and the flavor
pendence resides only in the wave function, which is know
We finally obtain
a-

ons

rator

-
IV.

de-
n.

u f cQ~n!u254mab,nHNcucab,n~0!u21
1

2
@c̃ab,n* ~0!cab,n~0!

1cab,n* ~0!c̃ab,n~0! f H
2 ,

u f hQ~n!u5
u f cQ~n!u

mab,n
. ~5.9!

Notice that the nonperturbative correction we find to the de-
cay constant isO~LQCD

3 a ab,n
3 ! and hence presumably more

important than the correction arising from the multipole ex-
pansion which isO„~LQCDaab,n!

4/a2
… @8,9# @we count the

gluon condensate asO~LQCD
4 !#.

B. Cutoff independence

Let us next discuss the important issue of the cutoff inde-
pendence. Even though we have not written it down explic-
itly, the introduction of a cutoff to separate almost on-shell
momenta from off-shell momenta is necessary. Of course,
the final results must not depend on the particular value of
the cutoff. At the short-distance end of the calculation, the
cutoff must exclude momenta which are almost on shell.
This is easily achieved by cutting off small momenta from
the wave function

cab,n~0!5E d3kW

~2p!3
c̃ab,n~kW !→E

m

d3kW

~2p!3
c̃ab,n~kW !

5:cab,n
~m! ~0!, ~5.10!

wherem is a symmetric IR cutoff in three-momentum. The
wave functions in~5.9! must be understood as the cutoff
wave functions~5.10!. On the HQET side the cutoff must be
ultraviolet. It has already been displayed in the leading-order
perturbative calculation at quark level in Sec. III. In particu-
lar, from ~3.9! we obtain
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E d4xeipx^0uT$@Q̄aGQb~0!#off@Q̄
bḠQa~x!#on%u0&

5
2 i

2
N tr~p2Gp1Ḡ!c̃ab,n* ~0!cab,n~0!S m3

6p2D 1

v•k1 i e
.

~5.11!

This strong cutoff dependence, however, is totally co
pensated by~5.10!. Indeed, once~5.10! is used we have

d

dm
ucab,n

~m! ~0!u252
m2

2p2 @c̃ab,n* ~m!cab,n
~m! ~0!

1cab,n
~m!* ~0!c̃ab,n~m!#

52
m2

2p2 @c̃ab,n* ~0!cab,n~0!

1cab,n* ~0!c̃ab,n~0!1O„~maab,n!
2
…#,

d

dm F c̃ab,n* ~0!cab,n
~m! ~0!S m3

6p2D G
5c̃ab,n* ~0!cab,n~0!

m2

2p2 @11O„~maab,n!
2
…#,

d

dm Fcab,n
~m!* ~0!c̃ab,n~0!S m3

6p2D G
5cab,n* ~0!c̃ab,n~0!

m2

2p2@11O„~maab,n!
2
…#.

~5.12!

Notice that the way in which the cutoff dependence ca
cels is remarkable. The strong cutoff dependence of~5.11!
was first found in@11#. It was not clear at all which short-
distance contribution it should cancel against Equation~5.10!
gives the solution to that puzzle. It is apparent from~5.8! and
~5.11! that f H in the hadronic theory plays the role of the U
cutoff in the HQET at quark level. From~5.12! it is clear that
the cutoff m must be much smaller than the inverse Bo
radius. Therefore our formalism becomes exact in the f
lowing situation:

ma ,mb@1/aab,n@m@LQCD@k8,

maba
2~1/aab,n!

n2
@k8. ~5.13!

Furthermore, we have to assume thatm can be taken large
enough so that we may enter the asymptotic freedom reg
from the HQET side. Otherwise the matching we have c
ried out at tree level would not make much sense.

From the discussion above it should also be clear t
~5.9! can be written in a cutoff independent way a
O„~maab,n!

3
… by just replacing

f H
2→ f̄ H

2 :5 f H
2 2

Ncm
3

3p2 , ~5.14!

where f̄ H
2 need not be positive.
-

n-

r
l-

me
r-

at
t

C. Physical state normalization

There is still a subtle point which makes Eq.~5.9! with
the replacement~5.14! not quite correct. It has to do with the
normalization of physical states. It will be clear later on@see
Eq. ~6.14! below# that the states we obtain by this procedure
do not have the standard relativistic normalization that the
are supposed to. When we evaluate the Green function~5.1!
we insert resolutions of the identity which are approximated
by Coulomb-type states. This is all right. However, the low
momentum tale of these states is cut off and substituted by
quantity evaluated using the effective hadronic theory. Afte
doing so there is no guarantee that the resolution of the iden
tity we introduced is still properly normalized. This can be
fixed up by changing

(
n
E d3PW n

~2p!32Pn
0 un&^nu

→(
n
E d3PW n

~2p!32Pn
0un&^nu~m!Nn~m, f H!, ~5.15!

whereun&^nu~m! symbolizes the cutoff Coulomb states whose
low energy tale is evaluated in the hadronic effective theory
We present a heuristic calculation ofNn(m, f H).

We start from the Coulomb-type bound state~2.5! and
separate high and low relative momentum according to

uGn ,PW n5mab,nvW &5uGn ,PW n5mab,nvW &k.m

1uGn ,PW n5mab,nvW &k,m. ~5.16!

The high momentum part of the physical state can be we
approximated by the Coulomb-type contribution so we may
leave it as it stands. However, the low momentum part re
ceives nonperturbative corrections, which we evaluate usin
the effective hadronic Lagrangian.

We proceed as follows. Sinceaab,nm!1, we can approxi-
mate the low momentum region by

uGn ,PW n5mab,nvW &k,m

.
v0

ANc

c̃ab,n~0W !

A2mav
02mbv

0

mab
3/2

mab,n
Ek,m d3kW

~2p!3

3(
a,b

ūa~p1!Gnv
b~p2!aa

†~p1!bb
†~p2!u0&.

~5.17!

Observe now that~5.17! is nothing but the integral of a local
HQET current:

uGn ,PW n5mab,nvW &k,m

.
v0

ANc

c̃ab,n~0W !
mab
3/2

mab,n
E d3xWe2 ikxh̄aGnh

b~x!u0&,

~5.18!

wherek→0 and only low momenta are allowed.
At this point, we can hadronize the current@see~4.17!#

and calculate the low momentum contribution toNn(m, f H):
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k,m^Gn ,PW n5mab,nvW uGn ,PW n85mab,nvW 8&k,m

52mab,nv
0~2p!3d~3!

„mab,n~vW 2vW 8!…

3
f H
2

2Nc
uc̃ab,n~0W !u2. ~5.19!

Then, putting together high and low momentum contribu
tions, we have

^Gn ,PW n5mab,nvW uGn ,PW n85mab,nvW 8&

52mab,nv
0~2p!3d~3!

„mab,n~vW 2vW 8!…

3F E
k.m

d3kW

~2p!3
uc̃ab,n~kW !u21

f H
2

2Nc
uc̃ab,n~0W !u2G

52mab,nv
0~2p!3d~3!

„mab,n~vW 2vW 8!…

3F11
f̄ H
2

2Nc
uc̃ab,n~0W !u2G , ~5.20!

where f̄ H
2 is defined in~5.14!. Notice that the result is cutoff

independent.
Finally, the normalization factor reads

Nn~m, f H!5
1

11
f̃ H
2

2Nc

uc̃ab,n~0W !u2
. ~5.21!

Nn(m, f H) can also be obtained from requiring that

K Gn ,PW n5mab,nvWU E d3xWQ̄bg0Qb~xW !UGn ,PW n85mab,nvW 8L
52mab,nv

0~2p!3d~3!
„mab,n~vW 2vW 8!… ~5.22!

as we shall see later on. Once we have taken into account
correct normalization,~5.9! reads

u f cQ~n!u254mab,nFNcucab,n~0!u21
1

2
@c̃ab,n* ~0!cab,n~0!

1cab,n* ~0!c̃ab,n~0!# f̄ H
2

2ucab,n~0!u2uc̃ab,n~0!u2
f̄ H
2

2 G . ~5.23!

We shall relegate to Sec. VII the discussion on the app
cability of the limit ~5.13! and formula~5.23! to physical
situations.

VI. MATRIX ELEMENTS AT ZERO RECOIL

We are interested in Green functions of the kind

GGG8G9~p1 ,p2!

5E d4x1d
4x2e

ip1x11 ip2x2^0uT$Q̄aG9Qb~x1!

3Q̄bGQc~0!Q̄cG8Qa~x2!%u0&. ~6.1!
-

the

li-

For the momentum range

p15mab,nv1k18 , p252mac,mv2k28 ,

k18 ,k28→0. ~6.2!

We separate each current in almost on-shell momenta a
off-shell momenta according to~5.2!. The leading contribu-
tion is given by the term

GGG8G9~p1 ,p2!

5E d4x1d
4x2e

ip1x11 ip2x2^0uT$@Q̄aG9Qb~x1!#off

3@Q̄bGQc~0!#off@Q̄
cG8Qa~x2!#off%u0&

5Nctr~p2G9p1Gp1G8!cac,m* ~0!cab,n~0!

3E d3kW

~2p!3
c̃ab,n* ~kW !c̃ac,m~kW !

1

v•k181 i e

1

v•k281 i e

~6.3!

and the next-to-leading contribution by the term

GGG8G9
on

~p1 ,p2!5GGG8G9
on,1

~p1 ,p2!1GGG8G9
on,2

~p1 ,p2!

1GGG8G9
on,3

~p1 ,p2!, ~6.4!

GGG8G9
on,1

~p1 ,p2!

5E d4x1d
4x2e

ip1x11 ip2x2^0uT$@Q̄aG9Qb~x1!#on

3@Q̄bGQc~0!#off@Q̄
cG8Qa~x2!#off%u0&, ~6.5!

GGG8G9
on,2

~p1 ,p2!

5E d4x1d
4x2e

ip1x11 ip2x2^0uT$@Q̄aG9Qb~x1!#off

3@Q̄bGQc~0!#on@Q̄
cG8Qa~x2!#off%u0&, ~6.6!

GGG8G9
on,3

~p1 ,p2!

5E d4x1d
4x2e

ip1x11 ip2x2^0uT$@Q̄aG9Qb~x1!#off

3@Q̄bGQc~0!#off@Q̄
cG8Qa~x2!#on%u0&. ~6.7!

The calculation of~6.5! and ~6.7! is analogous to the ones
carried out in Sec. II. We obtain

GGG8G9
on,1

~p1 ,p2!

5E d4x1d
4x2e

ik18x12 ik28x2iC1^0uT$h̄2
a G9h1

b ~x1!

3h̄1
b Gp1G8h2

a ~0!%u0&E d4q
eiqx2

v•q1 i e
, ~6.8!

C15cac,m* ~0!c̃ab,n~0!E d3kW

~2p!3
c̃ab,n* ~kW !c̃ac,m~kW !,
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GGG8G9
on,3

~p1 ,p2!

5E d4x1d
4x2e

ik18x12 ik28x2iC3K 0UTH h̄2
a G9p1Gh1

c ~0!

3h̄1
c G8h2

a ~x2!U0E d4q
e2 iqx1

v•q1 i e
, ~6.9!

C35c̃ac,m* ~0!cab,n~0!E d3kW

~2p!3
c̃ab,n* ~kW !cac,m~kW !.

Notice that~6.5! and~6.7! cannot be written in terms of loca
Green functions in the HQET. One propagator must be k
explicit.

The calculation of~6.6! is more subtle. We describe it in
some detail in the Appendix B. We obtain

GGG8G9
on,2

~p1 ,p2!

5E d4x1d
4x2e

ik18x12 ik28x2C2^0uT$h̄2
a G9h1

b ~x1!h̄1
b G

3h1
c ~0!h̄1

c G8h2
a ~x2!%u0&,

C25cac,m* ~0!cab,n~0!c̃ac,m* ~0!c̃ab,n~0!. ~6.10!

This term is the only one in~6.4! which remains in the ma-
trix elements@see~6.14! below#.

We calculate~6.8!–~6.10! using the hadronic effective La-
grangian@see formulas~4.18! and ~4.19!#. We obtain

GGG8G9
on,1

~p1 ,p2!5C1

f H
2

2
tr~p2G9p1Gp1G8!

1

v•k181 i e

3
1

v.k281 i e
, ~6.11!

GGG8G9
on,2

~p1 ,p2!5C2

f H
2

2
tr~p2G9p1Gp1G8!

3
1

v•k181 i e

1

v•k281 i e
, ~6.12!

GG8G9
on,3

~p1 ,p2!5C3

f H
2

2
tr~p2G9p1Gp1G8!

3
1

v•k181 i e

1

v•k281 i e
. ~6.13!

The matrix element at zero recoil then reads

^Gn ,PW n5mab,nvW uQ̄bGQc~0!uGm ,PW m5mac,nvW &

52Amab,nmac,m tr~GWnGGm!

3S E d3kW

~2p!3
c̃ab,n* ~kW !c̃ac,m~kW !

1
f H
2

2Nc
c̃ac,m~0!c̃ab,n* ~0! D , ~6.14!
l
ept

Gn5 ig5p2 , ie” i p for the pseudoscalar and vector partic
respectively. The integral in~6.14! must be understood with
an infrared cutoffm. From ~6.14! it is apparent that our
physical states are not properly normalized. Indeed, forb5c
and G5g0 one should obtain~5.22! but one does not. The
reason for this has been discussed at the end of Sec. V.
solution consists of introducing the normalization fact
Nn(m, f H) defined in~5.21!. The properly normalized resul
reads

^Gn ,PW n5mab,nvW uQ̄bGQc~0!uGm ,PW m5mac,mvW &

52Amab,nmac,m tr~ ḠnGGm!

3F E d3kW

~2p!3
c̃ab,n* ~kW !c̃ac,m~kW !

3S 12
f̄ H
2

4Nc
uc̃ab,n~0!u22

f̄ H
2

4Nc
uc̃ac,m~0!u2D

1
f̄ H
2

2Nc
c̃ac,m~0!c̃ab,n* ~0!G . ~6.15!

Notice that the nonperturbative correction depends o
on a single parameterf̄ H

2 which may be extracted from the
decay constants calculated in Sec. V. This is a nontriv
prediction which turns out to be a direct consequence of
U(4Nhf) symmetry being spontaneously broken down
U(2Nhf)^U(2Nhf).

VII. APPLICATIONS

If the charm and bottom mass were large enough
could apply the results above to the physics ofY, hb , Bc ,
Bc* , J/c, andhc . ~The top is believed to be too heavy t
form hadronic bound states and will be ignored.! We analyze
in this section whether this is so or not. In the systems wh
the formalism actually applies, we are mainly interested
estimating the importance of the new nonperturbative con
bution rather than in obtaining accurate results. The latte
a much harder task which is definitely beyond the scope
the present work.

Let us first focus on bottom. The fact that the almo
on-shell momentum excitations in heavy quarkonium a
Goldstone modes@11# implies that theY and hb spectrum
does not receive additional nonperturbative contributio
We may then extract the bottom mass from theY mass by
means of the formulas given in@8,9#, which take into ac-
count the leading order in the multipole expansion. Since
have established a link between quarkonium and the HQ
we can next usemb to extractL̄, the non perturbative pa-
rameter relating the mass of theB meson tomb . Moreover,
taking into account thatL̄ is flavor independent, we may
next extract the charm massmc . We summarize the results in
Table I.

In Table I the values we obtain formb are about 3% lower
than those obtained in QCD sum rules@22# but compatible
with a recent QCD-based evaluation@23# and with the lattice
calculation@24#. The values we obtain forL̄ are a bit lower
but otherwise compatible with those extracted from QC
sum rules@6#. Our values formc are again about 6% lower
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than the typical values in QCD sum rules@22#. We should
emphasize that our numbers in Table I are model indep
dent.

We can next extract the nonperturbative parameterf̄ H
2

from fY ~this is done in Table II!. We use

fY52A3mYcbb,0~0!F11
c̃bb,0~0! f̄ H

2

6cbb,0~0!
2

uc̃bb,0~0!u2 f̄ H
2

12

2
8a~mb!

3p
18.77mb

2^B2&S abb,02 D 6, ~7.1!

where the one-loop QCD corrections and the leading corr
tion from the multipole expansion2 @9# are taken into ac-
count.

The numbers in Table II are very sensitive to the scale
whicha is taken. Notice that we choosea5a~1/abb,0! in the
Bohr radius and binding energy buta5a(mb) in the one-
loop perturbative correction included in~7.1!. From Table II
we see that for the actual values ofmb andLQCD5100. 150
MeV the on-shell contribution (f̄ H) does not dominate over
the condensate but it is certainly sizeable. ForLQCD5200
MeV all corrections are about the same order and for a
value ofm the ‘‘on-shell’’ contribution dominates over the
condensate.

Observe that the conditions~5.13!, in particular
a bb,0

21 @m@LQCD, may be considered as reasonably well fu
filled if we take the cutoffm;700 MeV ~see Table III be-
low!.

Let us next turn our attention to charm. The charm mas
known not to be heavy enough for the multipole expansi
to work @8#. This means that the nonperturbative contributi
overwhelms the perturbative one. Therefore any approxim
tion whose leading order is a perturbative contribution, li
our approach, will not be able to say much about charm
nium. In particular, for the on-shell contributions the diffi
culty lies on the second-to-last condition in~5.13! being ful-
filled. There is little room to accommodate the cutoffm
between the inverse Bohr radius andLQCD, as should be
clear from Table III. We refrain from giving any numbers fo
charmonium.

2We use the formula given in Ref.@9# which differs from the ones
in Ref. @8#.

TABLE I. We useLQCD as an input and take the one-loop run
ning coupling constanta at the scale of the inverse Bohr radius, i.e
a5a~1/abb,0!. For the gluon condensate we take the fixed val
^B2&5~585 MeV!4. The error inmb has been taken from estimation
of the hyperfine splittingsO~a2!, which are also the main source o
error in L̄. For mc the error comes both fromL̄ and the 1/mc

corrections. The last column gives our model-independent deter
nation ofmBc

.

LQCD ~MeV! mb ~MeV! L ~MeV! mc ~MeV! mBc
~MeV!

200 4877635 436635 1539670 62126110
150 4843635 470635 1505670 62426110
100 4802635 511635 1464670 63126110
en-
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Unfortunately, the situation is not much better for theBc ,
which has received considerable attention lately@25–27#.
Nonetheless, once we havef̄ H

2 , we shall give some numbers
in this case in Table IV.

From Table IV we see that forLQCD5100, 150 MeV the
contribution of the condensate is too large for the approach
to be reliable. ForLQCD5200 MeV we are at the boundary
of its validity since the on-shell correction is large. We may
thus give a rough estimate forf Bc only for LQCD;200 MeV,
which turns out to be compatible with the estimate obtained
by QCD sum rules@26#, but about 30% lower than potential
model estimates@27#.

From Table V it follows that the new nonperturbative con-
tribution is not very important in the matrix elements be-
tweenY-Bc states.

The decay constants and matrix elements above receiv
contributions from corrections of several types:~i! QCD
perturbative corrections to the Coulomb potential
O„a~1/an)…. These have been evaluated at one loop level in
@28# ~see also@23#!; ~ii ! relativistic corrections to the Cou-
lomb potentialO„a~1/an)… ~see also@28,23#!; ~iii ! QCD per-
turbative corrections to the Green functionsO„a~m!…. These
corrections have been taken into account in~7.1!. They cor-
respond to the only QCD corrections in heavy-light systems.
In our case they are important for the calculation of matrix
elements at nonzero recoil.~iv! Nonperturbative corrections
arising from the multipole expansion in the off-shell momen-
tum regionO„LQCD

4 a n
4/a2(1/an)… @8,9#. These corrections

have also been taken into account in~7.1!. ~v!Finite mass
correctionsO~LQCD

2 /m! in the hadronic HQET Lagrangian.

VIII. CONCLUSIONS

We have demonstrated that, contrary to the common be
lief, HQET techniques are also useful for the study of sys-
tems composed of two heavy quarks. In particular, we have

-
.,
ue
s
f

mi-

TABLE II. We display the relative weight, with its sign, of the
one-loop@a(mb)#, the condensate~^B2&! and the ‘‘on-shell’’ (f H)
contribution with respect to the Coulomb-type contribution~nor-
malized to 1!. The last columns display the massmcr from which
the ‘‘on-shell’’ contribution dominates over the condensate and the
value of (f H

2 )1/3.

LQCD
~MeV! a(mb) ^B2& f̄ H

mcr
~GeV!

( f̄ H
2 )1/3

~MeV!

200 20.19 0.10 20.11 - 260
150 20.17 0.19 20.08 90 210
100 20.15 0.41 20.12 160 210

TABLE III. We give the c̄c,b̄c,b̄b inverse Bohr radius as a
function ofLQCD.

LQCD ~MeV! 1/acc,0 ~MeV! 1/abc,0 ~MeV! 1/abb,0 ~MeV!

200 630 790 1240
150 540 700 1120
100 450 590 980
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identified new nonperturbative contributions to the dec
constants and to certain matrix elements which are descri
by a hadronic Lagrangian based on the HQET. All these n
contributions are parametrized at leading order by a sin
constantf H . This is nontrivial and can be traced back to th
fact that a U(4Nhf) symmetry is spontaneously broken dow
to U(2Nhf)^U(2Nhf).

It is remarkable that strong cutoff dependencies comi
from a totally different origin match perfectly. Indeed, at th
off-shell end the cutoff arises from an integral over a Co
lomb type wave function, whereas at the on-shell end
arises from a Feynman integral.

We should also stress that we have been able to put in
same context~i.e., the HQET! both heavy-heavy and heavy
light systems. This allows for a model independent determ
nation of heavy quark masses from quarkonium, which m
then be used to extract the parameterL̄ relating the mass of
the heavy-light systems to the mass of the heavy quark.

As far as practical applications are concerned, our form
ism is suitable for the ground state of theY andhb family.
Unfortunately the charm mass is too small for the formalis
to become applicable in general toJ/C andBc systems. Nev-
ertheless one may stretch it in some cases to obtain inform
tion on the mass and decay constant of the latter.

Let us finally mention that the hadronic HQET Lagrang
ian can easily incorporate heavy-light mesons. The form
ism can then be extended to the calculation of matrix e
ments between quarkonium and heavy-light systems. T
leading nonperturbative contributions to those are also giv
by f H and another nonperturbative parameter which is r
lated to heavy-light decay constants. Nonrecoil contributio
can also be evaluated within the formalism.

Note added in proof.We have presented a techniqu
which allows one to disentangle the on-shell contributio
from the rest and match them to the HQET. The matchi
has been carried out at the tree level. We have already sho
in @29# that the matching also goes through at the one lo
level. Nevertheless, a word of caution is needed. It would
desirable to have a more direct and systematic derivation
these results from QCD. Progress in this direction is bei
made@30#.

TABLE IV. We display the analogy to Table II forBc . We have
also given our predictions forf Bc in the last column.

LQCD ~MeV! a~2mbc! ^B2& f̄ H f Bc ~MeV!

200 20.24 0.35 20.44 370
150 20.22 0.74 20.34 540
100 20.19 1.93 20.54 780

TABLE V. We give the relative weight, with its sign, of the
‘‘on-shell’’ contribution with respect to the Coulomb-type contribu
tion ~normalized to 1! in the matrix elements~6.15! betweenY-Bc

states.

LQCD ~MeV! 200 150 100

Bc2Y 20.10 20.08 20.14
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APPENDIX A: A TOY MODEL

Because of the similarity, both in physics and technique
to the chiral perturbation theory it is interesting to consider
toy model which contains the on-shell contributions only. A
quark level the model is described by the HQET with quark
and antiquarks with the same velocity as in Sec. III. At had
ronic level it is described by the effective hadronic Lagrang
ian of Sec. IV.

Within this model, the interactions between (hQ ,hQ8),
(hQ ,cQ8), and (cQ ,cQ8), when the two particles move
roughly at the same velocity, are described by a single u
known constant. This is analogous to the fact that at lowe
order in 3-flavor chiral perturbation theory the elastic sca
tering of ~p,p!, (K,K), and ~p,K! is also described by a
single constant. When heavy–light mesons are included
the effective Lagrangian the same constant describes
elastic scattering of heavy–light mesons with quarkonium
This is also analogous to the fact that the local vertexp–p–
N–N at leading order in the chiral Lagrangian is describe
by the same constant as the~p,p! elastic scattering. Let us
mention at this point that when one actually calculates th
scattering amplitudes, one obtains zero. This has to do w
the universality of the leading-order effective Lagrangian
for Goldstone modes@18–20#. Any theory undergoing a
U(4Nhf) spontaneous symmetry breaking down to
U(2Nhf)^U(2Nhf) has the same low energy effective La-
grangian~4.12! provided the rest of the symmetries in the
theory are also the same. It was shown in@11#, that even
when the gluons are switched off, spontaneous symme
breaking occurs in the HQET. In that case there is no inte
action in the fundamental theory and hence it is not surpri
ing that the scattering amplitudes in the effective Lagrangia
vanish. Universality implies that there will be vanishing scat
tering amplitudes when the gluons are switched on as we

Within this model one can also treat 1/m corrections in a
way similar to the one in which quarks masses are dealt wi
in chiral perturbation theory. At the quark level the leadin
1/m corrections to the HQET are given by a kinetic term

2 (
a51

Nhf 1

2ma
Dih̄

aDih
a ~A1!

and a spin-breaking term

(
a51

Nhf 1

4ma
h̄aSlGlha,

Gl52
1

2
e jklej

mek
nGmn . ~A2!

-
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The kinetic term ~A1! does not break the globa
U(2Nhf)^U(2Nhf) symmetry but it breaks its local version
In order to construct at the hadronic level terms which bre
the U(4Nhf) symmetry in the same fashion as~A1! does, we
introduce theu(4Nhf)-valued sourcesf andai transforming
as

f→gfg21,

ai→gaig
211g] ig

21. ~A3!

Then the term

2dih̄v”fdih,

dih:5~Di1ai !h, dih̄v” :5Dih̄v”2h̄v”ai ~A4!

is on one hand invariant under U(4Nhf) and on the other
reduces to~A1! upon setting

ai50, f5S 1

2ma

1

2mb

�

D v” . ~A5!

At the hadronic level, we must then construct invariant ter
linear in f, which may also containai . Up to two space
derivatives we have

tr~Sf!, ~A6!

tr~SfdiSdiS!, ~A7!

tr~Sf!tr~diSdiS!, ~A8!

diS:5] iS1aiS2Sai .

We have not written down terms which coincide or vani
upon using~A5!.

For the spin breaking term~A2! we may introduce a
u(4Nhf)-valued sourceRl transforming as

Rl→gRlg21 ~A9!

so that~A2! is substituted by

h̄v”RlGlh. ~A10!

We recover~A2! upon setting

Rl5S 1

4ma

1

4mb

�

D v”Sl . ~A11!

There are no terms at the hadronic level with the same s
metry transformation properties at lower orders in deriv
tives. The first possible term appears at third order.

Therefore the leading 1/m corrections introduce three new
parameters. Equation~A6! provides a mass termO~LQCD

2 /m!
and ~A7! and ~A8! give rise to the usual nonrelativistic ki
netic term. The procedure above can easily be extende
any finite order in 1/m.
l
.
ak

ms

sh

m-
a-

-
d to

APPENDIX B: DETAILS OF SEC. VI

We present in this appendix some technical details on th
evaluation of the off-shell short distance effects carried out in
Sec. VI.

Consider the following matrix element

^Gn ,mab,nvW uQ̄bGQc~x!uGm ,mac,nvW &. ~B1!

Since two different bound states are involved, it is not clea
a priori which c.m. dependence one should subtract befor
using ~2.5!. Nevertheless, translation invariance implies tha
the result of the calculation must satisfy

^Gn ,mab,nvW uQ̄bGQc~x1a!uGm ,mac,nvW &

5eimab,nv•a2 imac,mv•a^Gn ,mab,nvW uQ̄bGQc~x!uGm ,mac,nvW &.

~B2!

We also have

^Gn ,mab,nvW uQ̄bGQc~x!uGm ,mac,nvW &

5eimab,nv•j2 imac,mv•j

3^Gn ,mab,nvW uQ̄bGQc~x2j!uGm ,mac,nvW &. ~B3!

If we assignj→j1a under translations~B3! fulfills ~B2!. If
we also requirej to be a linear function ofx, then necessarily
j5x and the result is well defined:

^Gn ,mab,nvW uQ̄bGQc~x!uGm ,mac,nvW &

5eimab,nv•x2 imac,mv•x^Gn ,mab,nvW uQ̄bGQc~0!uGm ,mac,nvW &

5eimab,nv•x2 imac,mv•x

3S 2tr~ ḠnGGm!E d3kW

~2p!3
c̃ab,n* ~kW !c̃ac,m~kW ! D . ~B4!

Consider next

^Gn ,mab,nvW uQ̄a3

bi3~x3!Qa4

ci4~x4!uGm ,mac,nvW &. ~B5!

We are in a similar situation as above. However now trans
lation invariance does not completely fix the result. Under
the same assumptions we obtain

^Gn ,mab,nvW uQ̄a3

bi3~x3!Qa4

ci4~x4!uGm ,mac,mvW &

5ei @ax31~12a!x4#@Eac,m2Eab,n#1 imbv•x32 imcv•x4

3H 2
1

Nc
~GmḠn!a4a3

d i3i4E d3kW

~2p!3
c̃ab,n* ~kW !

3c̃ac,m~kW !expi FkW•vW ~x3
02x4

0!2~xW32xW4!

3S kW1
kW•vW

11v0
vW D G J , ~B6!

wherea is arbitrary and parametrizes the ambiguity. Usually
one never runs into calculations of the kind~B5! but rather of
matrix elements of currents as in~B1!, which are not am-
biguous. We find expressions like~B5! in our calculation
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because we insist on enforcing on shellness in certain c
rents. In our concrete case we have a current with a mom
tum insertion

Q̄bGQc~x!eip•x, p5~2mb1mc1Eab,n2Eac,m!v.
~B7!

In order to enforce on shellness we substitute it by

Q̄a3

bi3~x3!Qa4

ci4~x4!e
ip3x31 ip4x4~G!a3a4

d i3i4,

p352Smb2
mb

mab
Eab,nD v2k38 ,

p45Smc2
mc

mac
Eac,mD v1k48 , k38 ,k48→0, ~B8!

as mentioned in~5.3!. However in doing so there is a mo
mentum mismatch
ur-
en-

-

S ma

mab
Eab,n2

ma

mac
Eac,mD v

which should be fixed somehow in order to get~B7! back in
the x35x45x limit. The most general way of distributing
this momentum mismatch betweenx3 andx4 is by inserting,
in ~B8!,

expF i @bx31~12b!x4#S ma

mab
Eab,n2

ma

mac
Eac,mD v G .

~B9!

Any b is equally good since we are eventually interested in
the limit x35x45x. Notice that the ambiguity ina in ~B6! is
proportional to the ambiguity inb in ~B9!. Since we can
chooseb at will, we do it in such a way that the dependence
in botha andb cancels. This is how we are able to obtain a
representation of~6.6! in terms of the HQET~6.10!.
.
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