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Heavy quark hadronic Lagrangian for s-wave quarkonium
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We use heavy quark effective theofdQET) techniques to parametrize certain nonperturbative effects
related to quantum fluctuations that put both heavy quarks and antiquarks in quarkonium almost on shell. The
large off-shell momentum contributions are calculated using Coulomb-type states. The almost on-shell mo-
mentum contributions are evaluated using an effective “chiral” Lagrangian which incorporates the relevant
symmetries of the HQET for quarks and antiquarks. The cutoff dependence of both contributions matches
perfectly. The decay constants and the matrix elements of bilinear currents at zero recoil are calculated. Their
leading nonperturbative contributions are parametrized by a single constant and turn o(n(mﬁb‘%wan),

a, being the Bohr radius and the strong coupling constant, times the nonperturbative contribution coming
from the multipole expansiofgluon condensaje We discuss the physical applications Yo J/¢, and B,
systems.

PACS numbes): 12.39.Hg, 12.39.Pn, 13.25.Gv

[. INTRODUCTION the nonperturbative effects must be important. In that regime
the multipole expansion breaks down, but it is precisely there
The so-called heavy quark effective thedHQET) [1-5]  that HQET techniques become applicable.

has become a standard tool to study the properties of hadrons In Ref.[10] it was pointed out that when fields describing
containing a single heavy quarkee[6] for reviews. The  both heavy quarks and heavy antiquarks with the same ve-
hadron momentum is essentially the momentum of the heavipcity are included in the HQET Lagrangian, the latter has
qguark which may then be considered almost on shell. Thextra symmetries beyond the well-known flavor and spin
dynamics becomes independent of the spin and the mass e§mmetries[1,2]. In Ref. [11] the extra symmetries were
the heavy quark giving rise to the so-called Isgur-Wise symthoroughly analyzedsee[12] for related elaborations It
metries[1,2]. The relevant modes are momentum fluctua-was shown that they are spontaneously broken down to the
tions of the order of\qcp which are described by the HQET spin and flavor symmetries, even if the gluons are switched
[3-5]. One cannot actually carry out reliable perturbativesft The Goldstone modes turn out to be two particle states

calculations at that scale, but one can certainly use the IsQuiih the quantum numbers sfwave quarkonia. Translating
Wise symmetries to obtain relations between physical 0bg,ese findings into phenomenologically useful statements

serl\:/ablﬁsa taining two h K th was the original motivation of this work.
H EO{_ 'sangnts)elc'gneﬂntlggbe g S eggleq;ar r?) (')rrn;nt'g:we the The main hypothesis in what follows is that whenever we
QET i eV Ul pproximation, th&, .6 5 heavy quark field we may split it into two momentum

reason being that a system of two heavy q'uarks i_s mainl¥egimes. The momentum regime where the heavy quark is
governed by the perturbative Coulomb-type interaction. The Imost on shell, and the momentum regime where the heavy

relevant modes are momentum fluctuations of the order of . ) 2
the inverse Bohr radius, which is flavor dependent, and nofiu@rk is off shell. The main observation is that the HQET
of the order ofAqcp. Still, if one is interested in subleading should always be a good approximation for a heavy quark in
nonperturbative contributions related to the “on shellness’th® a@lmost on-shell momentum regime of QEIV,13, no
of the heavy quarks, the HQET may provide some usefulnatter whether the heavy quark is accompanied by another
information. Irrespective of the above, the HQET has already?¢avy quark in the hadron or not. What makes a hadron
been used in phenomenological approaches to two heawentaining a single heavy quark qualitatively different from a
quark system$7]. hadron containing, say, two heavy quarks are the large off-
We shall argue that new nonperturbative contributions tshell momentum effects. In the former the large off-shell
the guarkonium decay constants and to the matrix elementsomentum effects are small and can be evaluated order by
of heavy-heavy currents between quarkonia states can be derder in QCD perturbation theorjyl,5,13,14. In the latter
scribed by a suitably modified HQET. The well-known non-the large off-shell momentum effects are dominant giving
perturbative contributions arising from the multipole expan-rise to Coulomb-type bound states. However, once this is
sion[8,9] areO(AQCDan/az), a, being the Bohr radius and  taken into account there is n@ priori reason not to use
the strong coupling constant, times the contributions we findHQET in the almost on-shell momentum regime for systems
(However, the multipole expansion gives indeed the leadingvith two heavy quarks. Then the extra symmetries found in
nonperturbative corrections to the energy spectrdine key  [10,11], which naturally involve quarkonium systems, should
observation is that when the heavy quarks are almost on shdle relevant.
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Suppose we have two quarks andQ’ which are suffi- understood in a first approximation as a Coulomb-type
ciently heavy so that the formalism below can be readilybound state. In perturbation theory this is equivalent to sum-
applicable. Let us denote byg, 7o, Qg,, and Qg the ming up an infinite set of diagram$adder approximation
vectorQQ, pseudoscala@Q, vectorQQ’, and pseudoscalar whose kgrnel is the tree level one gluon exchatepe[16]

QQ’ states. Our main results follow. for a review. _ _ _

(i) The fact that the states above can be regarded as Gold- We shall assume that_ th_e domlnt_';mt short distance contri-
stone modes in the on-shell momentum redjiot] implies bution to heavy qL_Jarkoma is the existence of _Coulomb-type
that their masses do not receive any nonperturbative contrfound states. Typically we shall be interested in Green func-
bution from that momentum region. Consequently, the leadtions of the kind
ing nonperturbative correction comes from the multipole ex-

pansion[8,9]. This allows us to extractng in a model- A .
independent way fronm,, , and hence fix the parametar Gr(p1.p2): =J d¥x,d*x,e'PrXatiP2x2
relatingmg with the mass of th&@q systemg6]. _ i _
(i) The leading new nonperturbative effects in the decay X(0|T[Q?I'Q"(0)Q ' *(x1)Q%%(x2)]]0),
constantsf%, f”Q, for , andfq _, are given in terms of a ! 2
. L Q 2.1
single nonperturbative parametgy.
(iif) The leading new nonperturbative effects in the matrix
elements of bilinear heavy quark currents at zero recoil aréor the range of momentum
given in terms of the same nonperturbative paramitenn
?r?qgliur:%r:) this implies that the semileptonic decays Pi=—Mmpw—k;, Py=-—muw—k, 2.2
Yo, 19— Q% Qqr s k, andk, being small.
Since the quarks are very massive, for the range of mo-
Qg, Qo — g Mg mentum(2.2) the leading contribution t62.1) is only given

by the ordering
at zero recoil are known in terms df, , f, , fo* , and
Q" Q Q'

fQ o

?Ne organize this paper as follows. In Sec. Il we perform
some short distance calculations in the kinematical region we — b —bi ai
are interested in. In Sec. Il we summarize the main results X(0|Q*T'Q (O)T{Qall(xl)Qa:(xz)}|0>-
of Ref. [11] and match the results from Sec. Il with the
HQET. In Sec. IV we construct a hadronic effective Lagrang- 2.3
ian for on-shell modes in quarkonium. In Sec. V we calculate
the decay constant. In Sec. VI we calculate the matrix elewe insert the identity between the current and the fields and
ments of any bilinear heavy quark current between quarkoniae approximate it by the vacuum plus the Coulomb-type
states. This is relevant for the study of semileptonic decays atates(the states above threshold shall not give contribution
zero recoil. In Sec. VII we briefly discuss the possible use ofwvhen we sit in the relevant polewe treat then the fields as
our formalism forY, B, B , J/4, and 7. physics. Section being free:
VIl is devoted to the conclusions. In Appendix A we show
how to include Irh corrections in the hadronic effective La-
grangian for the on-shell modes. A few technical details are 1:|O>< 0
relegated to Appendix B.

Gr(py,p2)= f d*x,d*x,€e/Pr1 P22 0] —max(x,x3)]

d*P,,
+n2,s f (27)%2P°

><(s,|5n= Map, ¥ |- (2.4

s,P,= mab,nz7>

Il. SHORT DISTANCE CONTRIBUTIONS IN THE
ON-SHELL MOMENTUM REGIME
The Coulomb state in the center of magsm) frame

As mentioned in the introduction, what makeé_)é) SYS-  eads

tem qualitatively different_from aQq system is the short

distance contributions. In @q system these are well under-

stood. They amount to Wilson coefficients in the currents and  |s, |5n= Map.n? )

in the operators of the HQET Lagrangian, with anomalous R
dimensions which are computable in the loop expansion of 1 mfb’z) 0 d3k
QCD. For aQQ system the short distance contributions can- = W Mab v f

not be accounted for by just anomalous dimensions in Wil- ¢ ’
son coefficients. Indeed, the anomalous dimension of a cur- _
rent containing a heavy quark field and a heavy antiquark x 2, u(p)TwP(p)al(p)bj(p2)[0), (2.5
field with the same velocity becomes imaginary and infinite b

[15]. For largemg, the two quarks in &Q system appear to

be very close. Due to asymptotic freedom the system can ba&here

ap (K
(277)3 llfab,n( ) Zpgng
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) . ko _ - . kKo we obtain
=mu +k+ — v, =my —k— —3 v,
P1= My 1100 P2=Mv 1+,0Y

A ) Gr(P1,P2) =2 #26n(0)Pap.n(0)
pd=muw’+k-v, pI=muw—k-v, "

1
Map:=Ma+ My,  Mapni=Map—Eapp, X(p*Fer)“z"lailiz my
. U‘k2+_Eab‘n+i€
Fs=iysp_,id'p_, Map
1
1+9 . X . (2.17
2_ A ([
=1 s i=—, -v=0. 2. m .
v » P 2 e-v=0 (2.6 v-k1+—b Eiaontie
Map ’

Eabn» Yapn(X), and &ab,n(ﬁ) are the energy, the coordinate . . ~ i
space wave function and the momentum space wave functioqu .the last expression we approximatedyp,n(€ -K)

n i 2
of a Coulomb-type state with principal quantum number._ Yan,n(0) {we neglectO[(n|e'-k|/ma)<}. In (2.11) there

: ot is a sum over an infinite number of poles. Each term in the
n. v is the bound state four-vector velocity,(p;) and d Coulomb bound At the had
bl(p,) are creation operators of particles and anti articlesSum corresponds fo a Goulamb-type bound state. Al the had-
p\P2) ¢ . P B partic ParticeS 4 nic level we want to describe only one of those states. This
respectively.u®(p,) andv*(p,) are spinors normalized in

h hat in the | iimit the following holds: is achieved by tuning the external momenta to sit on the
such a way that in the larga limit the following holds: relevant pole. Suppose we are interestedjtn) state. Then

we take
2 Ut (p)U(P)=p+, 2 v PV (P)=—p-.
: : k=K, 2 g ko=kp— 2 E
(2.7 1= Kp Map ab,n?> 2= Ko m, ab,nU
Choosing the momenta as (8.6) is crucial in order to take (212
into account that the c.m. of the bound state moves with &g that in the limitk’ —0 (i =1,2) we obtain
fixed velocity v with respect to the laboratory framé7]. '
Equation(2.5) has the usual relativistic normalization: Gr(py,po) = ,:/,;b +(0)¢hap n(0)
<San:mab,n5|r’Pm:mab,mJ> X(p_Tpy) O i ! !
_ 0 35(3) - - P-2P+)aga "2y ky+iev-kitie
_Zmab,nv (27m) (mab,n(v 0))6nmds -
2.9 (2.13

Notice from(2.2) and (2.12 that we must subtract from

We have to consider the following kind of matrix elements: .
g the momentum of the quarkr{,— (m,/m,,) E,p, n]v in order

(S,mab,nl7|Q§2(Xz)le(X1)|0> 'EIEJh_get an expression sunabl_e to be re_produced in the HQET.
is may be interpreted as if integrating out off-shell short-
= eiMabn? X(s m.. 7]Q% (xo— X 0P (x,—X)|0 distance degrees of freedom produces an effgctiye mass for
(S:Mabyn |Q“2( 2 )Qal( 1=X)[0) the almost on-shell modes of a heavy quark inside quarko-
_ m(%/Z) o d3k - R nium. This effective mass depends on the precise bound state
= giMap,nv-X _2 e f —— W o(K) the quark is in. We are almost on shell whenk; ,e’-k{
Map,n 271 (2) ' ~A i=1.2
QCD (i L, ) . o
. ko This restricts the validity of our approximation to the case
><exp{i k-ox°—x K+17350 17) ] Eab,n™ tap’/N*>Aqcp (uap is the reduced majsother-
wise momentum fluctuations of the order &fcp would
+ take us from one pole to another. Notice also that for arbi-
X = w X=X;— Xy, (2.9 trarily I_arge_ but f@xed,uab there is always am where this_
Map approximation fails. Therefore we shall always be dealing

o ) ~with a finite number of low-lying energy levels.
where it is essential to extract the c.m. dependence in the consider the four-point function

fields beforeusing the explicit expressiof2.5) for the cal-

culation of (2.9). As mentioned above the statssm,, ,v)  G(P1,P2,P3,P4)

have the explicit expressiof2.5 only in the c.m. frame

[16,17. Factors of the kindn,,/m,, , appearing in several ::f %%, 0%, %0 x 4ol PrXa 1P X2 iPaxa T iPaxs
expressions above have been approximated to 1 in the rest of

the paper. Finally, performing the, ,x, integral and taking bi i —ai —bi
into account that hEl 2 X<0|T{Qalll(xl)Qzlzz(XZ)QZ?(XS)QQI:(XQHO)'

(2.19

r r =-2 _ 2.1
g ( S)a2a4( S)a1a3 (p+)a2a3(p )ala4v ( Q For the momenta
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m eiéi n h Eiéi
P1= _(mb mb Eab,n>v_ki1 hy—e ", h,=h,e ™, 36
ab
a , huﬁeifiéiﬁhv, Hveﬁueifiéiﬁ. (3.7
P2=| My~ Mo, Eabin vtky,
ab
The whole set of transformatior{8.2)—(3.7) corresponds to
fa= — ( m.— M o )v—k' a U(4) symmetry for a single flavor. Fd¥,; heavy flavors
8 & m,, " s they correspond to a U(d,) group. In the latter cash,
must be considered a vector in flavor space and the param-
_ My , eters of the transformation8.2—(3.7) as Hermitian matri-
Pa= ( Mo~ g 20 vtk 219 ces in that space. _ N
When the gluons are switched off it is easy to prove that
(ki —0,i=1,...,4. Working in the same way we obtain  the U(4N,;) symmetry breaks down spontaneously to

G(plap2!p31p4)
=(2m)*8Y(—ky+ky—ks+ky)

X 2 (M)ag(T)aa
2Ne 1 —iyep ielp_ Mt et
~ - 1
><5ili35i2i4¢ab,n(o)lﬁab,n(o) v~ké+i€ v-ki+ie
1 + 1 2.1
v-kytie v-kjtiel (2.19

We shall see in the next section thatl3 and(2.16 can be
reproduced(with suitable changesby a HQET for quarks
and antiquarks.

Ill. HQET FOR QUARKS AND ANTIQUARKS

U(2N5) ®U(2N;¢) (seg[11]). The following currents corre-
spond to the broken generators

j2 :=h% ysp.h® and j2%:=h%¢p.h°, (3.9

a,b,c,...=1,... Ny; are flavor indices. They transform
according to two four-dimensional irreducible representa-
tions of U(2N, ;) ®U(2Ny,¢). In what follows we are going to
assume that the situation above is not modified when soft
gluons are switched on. The currefi8s8) have the quantum
numbers of pseudoscalar and vector quarkonium respec-
tively. The heavy quark and antiquark fields interact with soft
gluons according to the Lagrangid8.1). For soft gluons,
perturbation theory cannot be reliably applied. However, one
can use effective Lagrangian techniques, which fully exploit
the symmetries above, to parametrize the nonperturbative
contributions in this region. This shall be done in Sec. IV.
For further purposes let us carry out some leading order

The Lagrangian of the HQET for quarks and antiquarksperturbative calculations. Consider first

moving at the same velocity, (v,v*=1) readg4]
L,=ih,év,D*h,=ihv-Dh/ —ih,v-Dh,;, (3.1

where hy=h'+h_ and h,=(1%=#)/2h,. h} contains

annihilation operators of quarks with small momentum about
andh, contains creation operators of antiquarks again
D , is the covariant de-

mo ,
with small momentum aboutw , .
rivative containing the gluon field.

o

GFF,(k):J d*xe 40| T{h2 ThP*(0)hP*T"h2~(x)}|0)

P
=~iNe gz tr(p+I"p-I")

v-k+ie’ (3.9

The quark and antiquark sector @& 1) are independently Where x is an ultraviolet symmetric cutoff in three-
invariant under the well-known spin and flavour symmetrymMmomentum(see[11] for more details Consider also

[1,2,4
h e-Sh® andh®—hie &S, (3.2

whereS;" =i k[ &), &J(1=¥)/2, withe{', j=1,2,3 being an
orthonormal set of space-like vectors orthogonad to and

h—e'’sh> andh’—h’e 1= (3.3

€'. and 6. are arbitrary real numbers corresponding to the

parameters of the transformations.

The Lagrangiari3.1) is also invariant under the following

set of transformations:
i h _.h a
h,—e'?¢h,, h,—h,e'7"s

(3.9

h,—e”%¢h,, h,—h,e’s’,

(3.9

. ’ . !
Grropr(Ky kb)) = f d*x,d*x elkrxaikoxe

X (0| T[h2"T"h2* (x1)h>* T'hS* (0)

X hS*T"h27(x,)]/0)
~N ”‘—3tr( I"p,Tp.T")
[ 6772 p* p+ p+

« 1 1
v-kitiev-ky+ie

(3.10

The flavor indices &,b,c) are not summed up unless other-
wise indicated. Color indices are not explicitly displayed in
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the color singlet currents. Otherwise they will be denoted by L ik
i1,in,...=1,... N, with N, being the number of colors. Gr(k ,k2)=fd4xld Xpe FrLTR

We shall drop the subscript from h, and change the super- — b iy sy

script * into subscripts in the following. X(OHCrhTh(O)h'7, (x)h™% (x2)}0)

The strong cutoff dependence &.9—(3.10 is puzzling. (3.10)
We shall see later on that it cancels against suitable short '
distance contributions. with Cy being a Wilson coefficient,

As claimed before, it is easy to see tHatl3 is repro- _ Tk
duced by the following HQET Green function at the tree Cr=¥apn(0)¥a0n(0). (312
level: Analogously,(2.16) is reproduced in the HQET By

G(k/ ,ké ,ké 'ké/l):J’ d4X1d4X2d4X3d4X4e_ikixl+ikéx2_ikéx3+ik;¥x4
bi ai i i

X < 0‘ T[ h_';l(xl)h+'22(x2)h+'33(x3)h_'24(x4)

; 4 1 ok y ha YA hbr ha
Xi | d*y| — 55 Yabn(0)¥abn(0) | 20 WA (y)iv - a(h°Tsh*(y)) 1|0 ). (3.13
C n
|
IV. EFFECTIVE HADRONIC LAGRANGIAN We build up the following object

FOR THE ON-SHELL CONTRIBUTIONS
OF s-WAVE QUARKONIA

i i i T4 it
We have seen that for the on-shell kinematical regime H=iysp_H—igip_H'+iysp,. H +iip, H',

certain correlators can be reproduced in the HQET. We shall

see in Secs. V and VI that the contributions from this region —

to the decay constants and matrix elements reduce to the H:=yHTy =H, (4.2

evaluation of heavy quark-antiquark currents in the HQET. ) ) ab "

For the range of momentum we are interested in these GreeMhere we use matrix notation fdd®> and H*”. H trans-

functions cannot reliably be evaluated in perturbation theoryforms under the unbroken subgroup as

We shall use in this section effective Lagrangian techniques,

very similar to those used in chiral perturbation theory, to 1

parametrize the nonperturbative contribution. H—hHh"%  heU(2Nh) @ U(2Npy). 4.3
There are well-known rulegl8] (see alsd19]) to con-

struct phenomenological Lagrangians for Goldstone boson

associated to the symmetry breaking of a gr@down to a

subgroupH for relativistic theories. These rules need two

slig_ht modificatio.ns to become gp_plipable to our case. Ho . H
(i)The HQET is formally relativistic only after assigning g(#)e"=:e" h(H,6),

transformation properties to the fixed velocity. We must

take into account that the velocity* as well as thee'ﬂ can

also be used to build up relativistic invariant terms. 10ne may be tempted to includ8.13 as a perturbation in the
(i) The HQET is not only globally U(M,¢) invariant, but  HQET Lagrangian. This is not quite correct. The Green function

e assign nonlinear transformations under the full group
(4N}¢) in the standard manné¢i8]:

locally U(4Ny;) gauge invariant under transformations et I it
which only depend on the components=x*e/,. We shall G(kiyké,kénki):fd4X1d4X2d4X3d4X497' ratipeigaria
also require the phenomenological Lagrangian to be local b . _ i
gauge invariant under the corresponding transformations. ><(0|T{h,'zl(Xl)hiiz(xz)hfis(xs)hJ24(X4)}|0>

With the above modificationéi) and (ii) we shall apply  gives a nonzero contribution in the HQET which does not corre-
the rules [18] to the caseG=U(4Nys), H=U(2Np;)  spond to(2.149—(2.16. It is (3.13 which gives the leading contri-
®U(2Nyy). Let us first associate with the currefi®s8) fields  bution to(2.14) in the HQET and hence the last term(B113 must
in the phenomenological Lagrangian which have the sameot be included in the Lagrangian. This means that unlike in the
transformation properties undet: case of heavy-light systems, the short distance effects here cannot

Hab _>ﬁai 75p+hb, Habi_>ﬁaiéip+hb, always be a_ccounted for by only mc_)difications of the currents and
the Lagrangian, as we may have naively expected. We have to con-
L. - * _ tent ourselves by identifying for a given Green function, the Green
HP® hPiysp_h3 HP® — —hPigip_h® (4.1) function in the HQET that gives the same result.
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geU(4Nps), heU(2Np) ® U(2Npy), TH(AA)=—4tr(v-dH - aH+v-dH v gH) +- - .
4.1
e e U(4N,1)/U(2N; 1) ® U(2Nyy), (4.4) , (410
Terms containing' derivatives start appearing at sixth order.
whereH' is the transformed field. Then Notice that there is no vertex involving an odd number of
oo b i fields. This holds at any order in derivatives and it is a con-
e'—e" =ge"h "=he"qg, (4.5  sequence of the separate conservation of the number of

heavy quarks and antiquarks.

For convenience we normalize the effective Lagrangian as
vel=e "My, (4.6) £2
i ZH Tr(#V) =i tr(ITTy - AT +1T' - aTT ) + -+ |

whereg=y°g"»°. The following property holds:

which implies that

S:=ey=yge 2", =1, eMy—getyg L. I L

4.7 H=—, H'=f—. (4.12
H

Because of the local gauge symmetry we can only buil

2 . . . _
the following connection and covariant tensor: de is a dimension-3 parameter of the order/Gjcp.

The effective Lagrangian built above makes sense by it-

1 self as a toy model. If we ignore the matching with high
Vi=3 (e "y.ge+etv-e™M), energies we can withdraw some consequences out of the
lowest order Lagrangian. These and then Xorrections to
VohVh i+ho-dh~t  $V=V4, this toy model are worked out in Appendix B.

Let us next discuss how to represent quark currents in the

1 effective Lagrangian. Consider
A== (e Hy.gef—ev.ge ™), A—hAL? b o
2 jaP=haTh. (4.13

bA=—A¥, v-9S=e"Aey. (4.8 Let us introduce a source?” for each of these currents and

. - , ; ~ write all possible currents up in the Lagrangian
Notice that any derivative with respect & =e),x* act- P P grang

ing on functions ofx' which are not scalars will not be co- L =ihdv,D*h+hdah,
variant under the local transformations. ’ a
The u(4N;;) algebra and the HQET Lagrangian are in-
variant under the discrete symmetry a:= ; a%bél“. (4.19
e——€,, v,—-v,, (4.9

e L is now locally invariant under U(My,;) if we assign toa

which is reminiscent of charge conjugation. They are alsghe transformation property
invariant under the S@) transformationse), —Rje!), and, L 4
of course, under Lorentz transformations if we assign a—gag "+gilv-dg - (4.19

v,—A,v,, e —A, e Al these symmetries should also . . L
“ weoov oK LY y At the hadronic level we may also require local gauge invari-

be implemented in the effective Lagrangian. ; . L : )
We can start at this point the construction of the effective?c€ UPON the mtrodupthn a. Th|_s IS ea5|ly_ach|eved by
hangingy -d into v - 9—ia in the definition ofV in (4.8). We

Lagrangian, order by order in derivatives, using the object§

defined above. At first order it turns out that there is noobtain
invariant term. Still, there is a term which is invariant up to £2
a total derivative. It reads L=—i ZH [Tr(4V)—i Tr(aS)]. (4.16

Tr($V)=—4tr(H - aH+H v gH) +--- | o
Then we may identify
Tr(@V)—Tr(¢V)+Tr(dhv-oh~1). (4.10 2
harhb H ab,2H

Tr means trace over flavor and Dirac indices whereas tr h*I'h"— = 2= Tr(I'Te™), (4.17
means trace over flavor indices only. We keep tr for trace
over Dirac indices only. It is not difficult to prove that whereT?® is the zero matrix in flavor space except 1 in
Tr(shv-9h 1) is indeed a total derivative. This is analogousrow a, column b. It is interesting to observe that the
to the case of the Heisenberg ferromagnet where the leading}(4N,,;) symmetry is so large that any bilinear current of the
order term in the effective Lagrangian for the Goldstonekind (4.13 can be written in terms of a generator of the
mode is also invariant up to a total derivatif20]. Then at  U(4N;;) symmetry. This is the actual reason why the iden-
leading order the long-distance properties of heavy quarkatification (4.17) does not involve any extra unknown param-
nia are governed by a single constant. At next-to-leadingeter. It is analogous to the case of the vector and axial-vector
order we have the term currents in the chiral Lagrangid21].
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Let us next calculate for further convenience the correla®® and(3.10 in the hadronic effective Lagrangian. F&.9)

we have
2

f
- ZH Tr(p_T'p. T2Pe?H(®)

GFF,(k):J d4xe-‘k'X<o|T{Hirh3(0)H&r'h‘i(x)}|o>=f d4xe‘”"x<OT|

i

‘ §2 f2
zj d4xe—|k~x<0T( | - ZHTr[p_Fp+Tab2H(O)]) { - ZH Tr[p+F/p_Tba2H(X)]} ) 0>

2

f
x| — ZH Tr(p, T’ p_TP3e2HM)

f2
. 'H
=—i 5 t(p,I"p-T)

For (3.10 we have

(4.18

v-k+ie’
Grr,rn(ki,ké)=f d*x, d4x e X~ k22 0| T{h® T"h® (x;)h° T'he (0)hS T h? (x,)}|0)
. _ f2 §2
= f d4xld4xzelk1x1|k2x2< O‘T[ [ _ ZH Tr(p_ranrTabeZH(xl))H _ ZH Tr(p+rp+Tbce2H(O))}

X

f2
- ZH Tr(p+F’pTcae2H<X2>)H 0>
o f2 f2
= f d4x1d4x2e'klxl'kzx2< O‘TH - ZH Tr[pF”p+Tab2H(xl)]) ( - ZH Tr[p+Fp+Tb°2H2(0)]>

X

f2
- Tr[p+F’pT°aZH(x2)]”0>

_fE't F/I 1_‘ 1—‘/ 1 1
= v T e ST e

- (4.19

Notice at this point that we may obtafB.9) and(3.10 from  where Q3I'QP),, and Q3*I'QP),x means that both heavy
(4.18 and (4.19 by taking f 3/2—N_.u%/67%. Hencef % at  quark fields in the current have momenta almost on shell and
the hadronic level plays the role of the cut-gffat quark off shell, respectively. Our goal is to obtain a representation
level. Observe also that the dependence orltheatrices in  in_terms of the HQET of any Green function containing an
(4.18 and(4.19 is explicit. All decay constants and matrix (Q*I'QP),,. In order to enforce “on shellness” it is conve-
elements of bilinear currents are given in terms of the onlynient to make the substitution

nonperturbative parametéy, . This is a direct consequence

of the U(4N;) symmetry being spontaneously broken down

to U(ZNhf)®U(2Nhf)

f d*x[ QT Q3(x)]ore' P
V. EXAMPLE: THE DECAY CONSTANT, fy

A. Separating and evalqathg off-shell _)J' d4xlézi1(xl)eiplxl
and on-shell contributions 1

Consider the current—current correlator 4o i . —
X | d%Q020%)€P22T) 4y, 81y, (5.3

Gr(p):= | d*x€P(0ITIQT Q(0)QTT Q" (0)}]0).

— ma !
p:_mab,nv_k, k—0. (5.2 pl__(ma_ Map, Eab,n)v_kl! (5.4
We separate
( ™ g ) K
_ _ =—|m.— —K,,
QTQ=(QT Qo+ (QTQ)ey, (52 P2 Mo g, —obn)V T2
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k=ki+kj,

b f d*x&P(0| T{L QT Q°(0) 1o Q°TQ*(X) Jort |0)

ki ,k;—0
_ | q4ya-ik RaThP (M hD Th

and see whether the new Green function admits a represen- _J d*xe™"XO[T[Crh I (03 ThZ (x)][0).
tation in terms of the HQET. This is nothing but the calcu- 5
lations carried out above. Then we un@o3) by putting the 59
fields depending or,; andx, in the HQET at the same point
x. We have[from (2.1), (2.13, and(3.11)] Analogously, using2.14), (2.16), and(3.13 we have

f dx €P(0|T{IQ T Q(0)]od Q°TQA(X) o} 0)

= f d“xe“‘x< 0

— S — 1 - ~
T| e hE (0) R THE (0 | d“y( T «/f;b,n(owab,n(m)

x> h°T ha(y)iv - g h3T,hP(y) ]! (0. (5.6
To=iysp_ ,ié'p_
|
The contribution involving only off shell quarks has the fa- ) , 1 -
miliar form |f¢Q(n)| :4mab,n[ N¢| ab,n(0)[*+ > [ Wabn(0) ¥ap n(0)
~ - + ¥ip0(0) Yapn(0) 12,
J d*xe(0| T{[ QT Q"(0) J o[ Q°I'Q3(X) 1o} O) It |
. l/’Q(n)
ool = T (5.9

= —iNtr(Cp,T'p_)|thapn(0)|? (5.7 Notice that the nonperturbative correction we find to the de-
cay constant isD(A%CDagb,n) and hence presumably more
important than the correction arising from the multipole ex-
s pansion which isO((Aqcp@ap,n) “1a%) [8,9] [we count the

gluon condensate @(Agcp)].

v-ktie

The expressiong5.5 and (5.6) correspond to correction
O(Acpa 3b.n) @ndO(Acpa 3h,n) respectively to the leading
result (5.7); agp,~n/(au,p) is the Bohr radius. Since we .
are only interested in the leading nonperturbative corrections B. Cutoff independence

we shall neglect5.6) in the following. Let us only remark Let us next discuss the important issue of the cutoff inde-
that the hadronization of the four-quark operato5r6) in-  pendence. Even though we have not written it down explic-
troduces new parameters. This is because it is not a generaigy, the introduction of a cutoff to separate almost on-shell
of the U(4Np,s) symmetry as the currents of the kitdl17)  momenta from off-shell momenta is necessary. Of course,
are. the final results must not depend on the particular value of
The right-hand side of5.5) can be hadronized and calcu- the cutoff. At the short-distance end of the calculation, the
lated using the effective Lagrangian discussed in Sec. IVeutoff must exclude momenta which are almost on shell.
From (4.18 we obtain This is easily achieved by cutting off small momenta from
the wave function

) _ _ 3
f d*x€PX(0| T{[QT Q°(0) Tofl QT Q(X)on}|0) Yrap n(0) = J (—g;/jabnﬁ ﬁg;babnuz)

=Yifn(0), (5.10

—ij _ .
= = t(p-TP-T) i (0) Yy n(O) 1 — o

(5.8  Whereu is a symmetric IR cutoff in three-momentum. The
wave functions in(5.9) must be understood as the cutoff
wave functiong5.10. On the HQET side the cutoff must be

Notice that the result is spin independent and the flavor dedltraviolet. It has already been displayed in the leading-order
pendence resides only in the wave function, which is knownperturbative calculation at quark level in Sec. Ill. In particu-
We finally obtain lar, from (3.9) we obtain
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C. Physical state normalization

f d*xeP(0IT{IQT Q(0)Jorl QTQ(X)Tort0) There is still a subtle point which makes E&.9) with

i 3 1 the replacemen(.14) not quite correct. It has to do with the
__ ™ normalization of physical states. It will be clear later[see
2 Nutp-Tp.D) wab‘n(o)lpab’n(o)(ﬁ_z) v-k+ie'  Eq.(6.14 below] that the states we obtain by this procedure
(5.12) do not have the standard relativistic normalization that they
are supposed to. When we evaluate the Green fun¢idn
This strong cutoff dependence, however, is totally com-we insert resolutions of the identity which are approximated
pensated by5.10. Indeed, once5.10 is used we have by Coulomb-type states. This is all right. However, the low
momentum tale of these states is cut off and substituted by a

d . w 0)2=— ? ® (0 quantity evaluated using the effective hadronic theory. After
du [bn(O)"= = 572 [ann(m) 2n(0) doing so there is no guarantee that the resolution of the iden-
.- tity we introduced is still properly normalized. This can be
+ Y (0) hapn( )] fixed up by changing
2 33
Mo~ d°P
== m ['p;b,n(o)lﬂab,n(o) ; f m |n><n|

+ Yn(0) Pabn(0) + O((4@ap) )], Jee
_—n (w)

d [~* o M3 H; f (277)32Pg|n><n| Nn(leH)! (513

d., ‘//ab,n(o)wall;,n(o)<_2”

dp 6 where|n)(n|¥ symbolizes the cutoff Coulomb states whose

- w? ) low energy tale is evaluated in the hadronic effective theory.
= ¥abn(0) ¥apn(0) 5 [1+0(4aapn) )], We present a heuristic calculation Nf,(u,f).
We start from the Coulomb-type bound sta®&5) and
.. ud separate high and low relative momentum according to
o wgfé?nw)wab,n(m(—z” - ] - ]
du G |FniPn:mab,nv>:|Fn’Pn:mab,nv>k>M
2 >
~ — ~\k
= P2o(0) Fasn(0) 5 1+ O((11abn) 2], I Po=Map o). (518
(5.12 The high momentum part of the physical state can be well

approximated by the Coulomb-type contribution so we may

Notice that the way in which the cutoff dependence canléave it as it stands. However, the low momentum part re-
cels is remarkable. The strong cutoff dependencésafl)  Ceives nonperturbative corrections, which we evaluate using
was first found in[11]. It was not clear at all which short- the effective hadronic Lagrangian. .
distance contribution it should cancel against Equatioh0) We proceed as follows. Sin@g,, ,u<1, we can approxi-
gives the solution to that puzzle. It is apparent fréh®) and ~ Mate the low momentum region by
(5.1) thatf, in the hadronic theory plays the role of the UV

i L T, Pr=Mgp o0 )<<~
cutoff in the HQET at quark level. Froiis.12) it is clear that n:tn ab,n
the cutoff x must be much smaller than the inverse Bohr 0 t} (0) M2 ken oK
radius. Therefore our formalism becomes exact in the fol- v ab.n ab f —
lowing situation: VN¢ V2m,v%2mu® Map,n (2m)

Ma:My>1/aapn> 1> Ageo> k', X3, G(po)T 0P (pa)al(pyB}(p)|0).
Maba’z( 1/aab,n) S Y

Tk (513 (5.17)

Observe now that5.17) is nothing but the integral of a local
Furthermore, we have to assume thatan be taken large HQET current:

enough so that we may enter the asymptotic freedom regime
from the HQET side. Otherwise the matching we have car- T P =m ) 5>k<#
ried out at tree level would not make much sense. neenorabn

From the discussion above it should also be clear that 0 . R mg/bz .
(5.9 can be written in a cutoff independent way at 2\/—— Yap,n(0) o J’d3xe"kxhaFnhb(x)|0>,
O((uawp2°) by just replacing Ne ab,n
5.1
2Ty et 5.1 o
HTH- TR 320 (519 \wherek—0 and only low momenta are allowed.

_ At this point, we can hadronize the currdisee(4.17)]
wheref 2 need not be positive. and calculate the low momentum contributionNg(u,fy):
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k<K, Pn=Map 0| T, Ph=Myp a0 YK=H For the momentum range
:2mab,nvo(zw)sﬁ(s)(mab,n(lj_J,)) plzmab,nv+k:ll1 pzz_mac,mv_ké'
f2 . k! k,—0. 6.2
X_|’pab,n(0)|2- (5.19 1:12 (6.2
2N,

We separate each current in almost on-shell momenta and
Then, putting together high and low momentum contribu-off-shell momenta according t®%.2). The leading contribu-

tions, we have tion is given by the term
(Fn,Isnzmab’nﬂFn,I5,2=mab,nl7’) Grr/r»(P1,P2)
_ 0 3 «(3) > i X _
_Zmab,nv (2m) st (mab,n(U v')) :f d4xld4X2e'91X1+'P2X2<0|T{[QarﬁQb(Xl)]oﬁ
k- ) [2 flz_‘ y )2 ~bTAC ACT /2
| o @ | ap,n(K)| TN |$/ap,n(0)] X[QPTQ4(0) To[ QT Q3(X) Jofit| 0)
— n ! *
:zmab,nvo(zW)sé(s)(mabm(l;_J,)) _thr(p—r p-%—l_‘p+F )'r//ac,m(o)l/’ab,n(o)
2 Xf d*k -, o5 L 1
X| 1+ 5 [Fann(O)F2|. (5.20 (@m? VabaKMaen() e g e

— (6.3
wheref 2 is defined in(5.14). Notice that the result is cutoff _ o
independent. and the next-to-leading contribution by the term

Finally, the normalization factor reads
Gt (P1,P2) = Grr(P1,P2) + Gy Pa.P2)

1 3
N ) = —— . (5.21) +GrEp(P1,P2), (6.4)

H .~
1+ — 0)|?
+2N |¢ab,n( )|

C

G?nr'/lru( P1,P2)

N,(u«,fy) can also be obtained from requiring that :f d4xld4xzeiplx1+ip2x2<0|T{[éarqu(Xl)]on
<rn Pn=Map a0 f d*)QP°Q0(X)| T, ,ﬁrq=mab,n5'> X[QPTQ%(0) ol Q°T ' Q*(x2) Lo} 0), 6.5
= 2May 00238 (M n(6-0")) (522 Gprp(P1,p2)

as we shall see later on. Once we have taken into account the J 4y 44y AiD1Xq+ipoX ~aT b
e = | d*x,d*x,e'P*1TP2X2( 0| T{[ Q3T X
correct normalization(5.9) reads =72 (OTHIQT"Q7(X1) Jor

X [QT'Q%(0) 1ol QT Q%(X2) It} O, (6.6)

1 -
|f¢Q(n)|2=4mab,n Nl ‘/’ab,n(o)|2+ 2 [‘r//;b,n(o)dfab,n(o) Gons ( )
B rrr7(P1:P2
+ 500 (0) Pap n(0) 17 o _

f_2 — f d4X1d4X2€‘|p1X1+|p2X2<0|T{[Qar”Qb(Xl)]oﬁ
~|$a0n(0) % apn(0)2 =+ |- (5.23 _ _
° ° 2 X[QPT'Q%(0) 1ol QT Q%(X2) Jort|0). 6.7

We shall relegate to Sec. VIl the discussion on the appliThe calculation of(6.5) and (6.7) is analogous to the ones
situations.

1
G?nr,r,,(pl,pz)
VI. MATRIX ELEMENTS AT ZERO RECOIL

_ ik X1 — KXo N nmb
We are interested in Green functions of the kind —f d*x,d*x e = %22 C (0| T{h* TN (x,)

Grrir(P1,P2) g2

xﬁ‘il"pﬂ"’hi(O)HO)j d*q (6.9

- v-qtie '
:f d4xld4X2eiplx1+ip2x2<0|T{Qar//Qb(Xl)

.- Kk -,
XébFQC(O)écI‘,Qa(XZ)H(»- (61) Clzlﬁac,m(o)wab,n(o)f (ZT)S l/lab,n(k) lﬁac’m(k),
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G§?,3F"(pl,p2) I',=iysp_, ié'p for the pseudoscalar and vector particle
respectively. The integral i(6.14 must be understood with

— . an infrared cutoffu. From (6.14) it is apparent that our
TihZlMp,T'h%(0) physical states are not properly normalized. Indeedbfec
. andI'=9° one should obtair{5.22 but one does not. The
e ' reason for this has been discussed at the end of Sec. V. The
v-qtie’ (6.9 solution consists of introducing the normalization factor
N,(u,fy) defined in(5.21). The properly normalized result
reads

— f d4xld4X2eik1x17ik2x2i C3< 0

xﬁir'ha(xz)of d“q

. Bk o~ - N
Cs= ‘//;c,m(o) wab,n(o)J W ’p;b,n(k) ‘pac,m(k)- . _ .
<FnaPn:mab,n5|QbFQc(O)|FmaPm:mac,m5>

Notice that(6.5) and(6.7) cannot be written in terms of local = — M M t(T.IT
Green functions in the HQET. One propagator must be kept MapnMacm (Ll L)
explicit. d3k - o~ -

The calculation of6.6) is more subtle. We describe it in f 2n)? Pab.n(K) Pacm(K)
some detail in the Appendix B. We obtain _

2 . 2 .

Gon’!2 n 1 X 1_ AN 0 2_ AN O 2

INNAN (pl pz) 4NC |‘r/fab,n( )| 4Nc |¢’ac,m( )|

= | d*,d*x,e’* X1~ k2X2C (0| T{h2 I"h (x,)hE T - -~
J e A0TSR Gan * o, Yaem(0)¥2nn(0)] (6.19

Xh%.(0)hST"h2 (x,)}/0),
Notice that the nonperturbative correction depends only
Co=aem(0) hapn(0) 3 (0) hapn(0).  (6.10 on a single parametdr? which may be extracted from the
decay constants calculated in Sec. V. This is a nontrivial
This term is the only one i(6.4) which remains in the ma- prediction which turns out to be a direct consequence of the
trix elementg see(6.14) below]. U(4Ny;) symmetry being spontaneously broken down to
We calculatg6.8)—(6.10 using the hadronic effective La- U(2Np;) @ U(2N;).
grangian[see formulag4.18 and(4.19]. We obtain

2 1 VII. APPLICATIONS

H
G?’}',lr,,(pl,pz)=clEtr(p_F”p+Fp+I”) DK tie If the charm and bottom mass were large enough we
! could apply the results above to the physicsYofz,, B,
1 BY, J/y, and 7. (The top is believed to be too heavy to
Xv.k£+ e’ (6.1 form hadronic bound states and will be ignopétVe analyze

in this section whether this is so or not. In the systems where

2 the formalism actually applies, we are mainly interested in
GY7(P1.P2)=Cp - tr(p-I"p, Tp,T'") estimating the importance of the new nonperturbative contri-
2 bution rather than in obtaining accurate results. The latter is
1 1 a much harder task which is definitely beyond the scope of

(6.12 the present work.

Let us first focus on bottom. The fact that the almost

on-shell momentum excitations in heavy quarkonium are

X - —,
v-kitiev-kytie

2

on3 H . , Goldstone mode§l11] implies that theY and 7, spectrum
GF,F,,(pl,p2)=C3?tr(p_F p+T'p.I7) does not receive additional nonperturbative contributions.
We may then extract the bottom mass from Yienass by
« 1 1 (6.3 Mmeans of the formulas given if8,9], which take into ac-
v-kit+iev-ky+ie’ ' count the leading order in the multipole expansion. Since we
have established a link between quarkonium and the HQET
The matrix element at zero recoil then reads we can next usen, to extractA, the non perturbative pa-
R _ R rameter relating the mass of tBemeson tom,. Moreover,
(T, Pr=mgp 10| Q°T'QY(0)|T 1y, Py=Mgc n0) taking into account that\ is flavor independent, we may
. next extract the charm mass.. We summarize the results in
= = VMap nMacm tr(C T y) Table I.
e In Table | the values we obtain fon, are about 3% lower
EIANY % than those obtained in QCD sum rulg2] but compatible
X f (2m)° Vann(K) Yacm(k) with a recent QCD-based evaluatif28] and with the lattice
£2 calculation[24]. The values we obtain fok are a bit lower
_H I but otherwise compatible with those extracted from QCD
i 2N, Vacm(0)¥an(0) ] (619 sum rules[6]. Our values fom, are again about 6% lower
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TABLE I. We useAqcp as an input and take the one-loop run-  TABLE Il. We display the relative weight, with its sign, of the
ning coupling constant at the scale of the inverse Bohr radius, i.e., one-loop[a(m)], the condensat&B?)) and the “on-shell” (f,,)
a=a(l/a,y ). For the gluon condensate we take the fixed valuecontribution with respect to the Coulomb-type contributi@ror-
(B%=(585 MeV)*. The error inm,, has been taken from estimations malized to 1. The last columns display the mass, from which
of the hyperfine splitting®(o?), which are also the main source of the “on-shell” contribution dominates over the condensate and the
error in A. For m, the error comes both fromk and the I,  value of (f3)*°.
corrections. The last column gives our model-independent determi=

nation ofmg_. Agcp _ Mg (f2)1R
(MeV) omy) (B fiy GeV)  (MeV)

A MeV my, (MeV) A (MeV) m. (MeV) mg (MeV

qco (MeV)  m, (MeV) A (MeV) me (MeV) ms, (MeV) =) 019 010 -0.11 . 260

200 487735 436:35 153%-70 6212110 150 ~0.17 019 -0.08 90 210

150 484335 470835 1505-70 6242:110 100 015 041 -012 160 210

100 480235 51135 146470 6312:110

Unfortunately, the situation is not much better for Be,

than the typical values in QCD sum rulgg2]. We should \pich has received considerable attention lati2§—27.

emphasize that our numbers in Table | are model indepe'Nonetheless, once we ha¥@, we shall give some numbers

dent. . — in this case in Table IV.
We can next extract the nonperturbative paraméigr From Table IV we see that fokocp=100, 150 MeV the

from fy (this is done in Table )| We use contribution of the condensate is too large for the approach
to be reliable. For\ocp=200 MeV we are at the boundary

2 3my O O of its validity since the on-shell correction is large. We may
fy=2y3my iy o(0)| 1+ 6p,0(0) 12 thus give a rough estimate ftbgC only for Agcp~200 MeV,
8a(m,) 6 which turns out to be compatible with the estimate obtained
_oalmy, 2,524 | Qbb,0 by QCD sum rule$26], but about 30% lower than potential
37 +8.7Mm;,(B >( 2 | (7. model estimatef27].

From Table V it follows that the new nonperturbative con-

where the one-loop QCD corrections and the leading correcdtibution is not very important in the matrix elements be-
tion from the multipole expansidn9] are taken into ac- tweenY-B. states.
count. The decay constants and matrix elements above receive
The numbers in Table Il are very sensitive to the scale afontributions from corrections of several typds: QCD
which « is taken. Notice that we choose=a(1/a,,, ) in the ~ Perturbative corrections to the Coulomb  potential
Bohr radius and binding energy but=a(m,) in the one- O(a(1/a,)). These have been evaluated at one loop level in
loop perturbative correction included {@.1). From Table Il [28] (see alsd23]); (ii) relativistic corrections to the Cou-
we see that for the actual valuesrof, and Agcp=100. 150  lomb potentialo(«(1/a,)) (see alsg28,23); (iii) QCD per-
MeV the on-shell contributionf(;) does not dominate over turbative corrections to the Green functid@ga(m)). These
the condensate but it is certainly sizeable. Rgjcp=200  Corrections have been taken into accountdri). They cor-
MeV all corrections are about the same order and for anyespond to the only QCD corrections in heavy-light systems.
value of m the “on-shell” contribution dominates over the In our case they are important for the calculation of matrix
condensate. elements at nonzero recoilv) Nonperturbative corrections

Observe that the conditions5.13, in particular ~arising from theznultigolg expansion in the off-shell momen-
apio>u>Aocp, may be considered as reasonably well ful-tum region O(Agepan/@(1/a,)) [8,9). These corrections
filled if we take the cutoffu~700 MeV (see Table Ill be- have also been taken into account(ihl). (v)Finite mass
low). correctionsO(AéCD/m) in the hadronic HQET Lagrangian.

Let us next turn our attention to charm. The charm mass is
known not to be heavy enough for the multipole expansion
to work[8]. This means that the nonperturbative contribution VIIl. CONCLUSIONS
overwhelms the perturbative one. Therefore any approxima-
tion whose leading order is a perturbative contribution, like
our approach, will not be able to say much about charmo
nium. In particular, for the on-shell contributions the diffi-
culty lies on the second-to-last condition(# 13 being ful- o
filed. There is little room to accommodate the cuteif TABLE Ill. We give the cc,bc,bb inverse Bohr radius as a
between the inverse Bohr radius angyp, as should be function of Aqcp.
clear from Table Ill. We refrain from giving any numbers for

We have demonstrated that, contrary to the common be-
lief, HQET techniques are also useful for the study of sys-
tems composed of two heavy quarks. In particular, we have

charmonium. Agcp (MeV)  llagcg (MeV)  lapco (MeV)  lagpg (MeV)
200 630 790 1240
150 540 700 1120
2We use the formula given in RdP] which differs from the ones 100 450 590 980

in Ref.[8].
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identified new nonperturbative contributions to the decay APPENDIX A: A TOY MODEL
constants and to certain matrix elements which are described o . . i
by a hadronic Lagrangian based on the HQET. All these new Because of the similarity, both in physics and techniques,

contributions are parametrized at leading order by a singlé0 the chiral p_erturbatiqn theory it is interesting to consider a
constantf,, . This is nontrivial and can be traced back to the (Y model which contains the on-shell contributions only. At

. quark level the model is described by the HQET with quarks
Igcbt(f;aNt a);(g\(lgflzl s;)/mmetry is spontaneously broken down and antiquarks with the same velocity as in Sec. Ill. At had-
hf ht)-

. . . ic level it i i the effective h ic L -
It is remarkable that strong cutoff dependencies comlnqrgrr]"gfesv:c II\I/S described by the effective hadronic Lagrang

from a totally different origin match perf_ectly. Indeed, at the Within this model, the interactions betweemd(, 7o),
off-shell end the cutoff_ arises from an integral over a Cou_-( Moo, and (q.o), when the two particles move
lomb type wave function, whereas at the on-shell end itq ghly at the same velocity, are described by a single un-
arises from a Feynman integral. ~known constant. This is analogous to the fact that at lowest

We should also stress that we have been able to put in therder in 3-flavor chiral perturbation theory the elastic scat-
same contexti.e., the HQET both heavy-heavy and heavy- tering of (m,m), (K,K), and (m,K) is also described by a
light systems. This allows for a model independent determisingle constant. When heavy-light mesons are included in
nation of heavy quark masses from quarkonium, which mayhe effective Lagrangian the same constant describes the
then be used to extract the parameterelating the mass of elastic scattering of heavy-light mesons with guarkonium.
the heavy-light systems to the mass of the heavy quark. This is also analogous to the fact that the local vertexr—

As far as practical applications are concerned, our formalN—N at leading order in the chiral Lagrangian is described
ism is suitable for the ground state of theand 7, family. by the same constant as the,7) elastic scattering. Let us
Unfortunately the charm mass is too small for the formalismmention at this point that when one actually calculates the
to become applicable in generalit¥ andB, systems. Nev- scattering amplitudes, one obtains zero. This has to do with
ertheless one may stretch it in some cases to obtain informabe universality of the leading-order effective Lagrangians
tion on the mass and decay constant of the latter. for Goldstone mode$18-20. Any theory undergoing a

Let us finally mention that the hadronic HQET Lagrang- Y(4Nnr) spontaneous ~symmetry breaking down to
ian can easily incorporate heavy-light mesons. The formalt(2Nn) ®U(2Ny) has the same low energy effective La-
ism can then be extended to the calculation of matrix elegrangian(4.12) provided the rest of the symmetries in the
ments between quarkonium and heavy-light systems. ThE1€Ory are aiso the same. It was shown[I1], that even
leading nonperturbative contributions to those are also giveWhen the gluons are switched off, spontaneous symmetry
by fy and another nonperturbative parameter which is rePreaking occurs in the HQET. In that case there is no inter-
lated to heavy-light decay constants. Nonrecoil contributiongiction in the fundamental theory and hence it is not surpris-
can also be evaluated within the formalism. ing that the scattering amplitudes in the effective Lagrangian

Note added in proofWe have presented a technique vanish. Uni\_/ersalityimplies that there will b_e vanishing scat-
which allows one to disentangle the on-shell contributiond®"ng amplitudes when the gluons are switched on as well.
from the rest and match them to the HQET. The matching Within this model one can also treamitorrections in a -
has been carried out at the tree level. We have already showkgy Similar to the one in which quarks masses are dealt with
in [29] that the matching also goes through at the one loog? chiral perturbation theory. At the quark level the leading
level. Nevertheless, a word of caution is needed. It would bé/m corrections to the HQET are given by a kinetic term

desirable to have a more direct and systematic derivation of N
these results from QCD. Progress in this direction is being n

made[30]. ~ 2 2m, D;h?D;h? (AL)

TABLE V. We give the relative weight, with its sign, of the and a spin-breaking term
“on-shell” contribution with respect to the Coulomb-type contribu-
tion (normalized to 1in the matrix element$6.15 betweenY-B, Np¢

1 —
states. —— h23d'G'h?,
,321 4ma
Agcp (MeV) 200 150 100
1
BC—Y —-0.10 —0.08 -0.14 GI - _ E ejklejyeEG,uV_ (AZ)
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The kinetic term (Al) does not break the global APPENDIX B: DETAILS OF SEC. VI
U(2N;) ®U(2Nys) symmetry but it breaks its local version. s : : .
In order to construct at the hadronic level terms which brealévzxjeaﬁgisgfn:r:g :)rf]fl-ssﬁglﬁ) irr:(cj)lr)t( gg gﬁégceh%z?sl 2::‘3'; %TJ tt?ne
the U(4N;,;) symmetry in the same fashion é1) does, we Sec. VI

introduce theu(4N;)-valued sourceg anda; transforming Co . .

as Consider the following matrix element

_1 <Fn imab,n5|QbFQc(X)|Fm amac,n5>- (B1)
$—9¢9
. 4 Since two different bound states are involved, it is not clear
a—9gag "+gdg " (A3) 4 priori which c.m. dependence one should subtract before
using (2.5. Nevertheless, translation invariance implies that
the result of the calculation must satisfy

(T Map 18] QT QX+ )| Ty, Mo 0 )

Then the term
—dhégdih,
dih::(Di+ai)h, diﬁﬁ::Diﬁﬁ_Héai (A4)

. . . :eimab,nv-afimac,mwa(lﬂn ,mab,nﬁlébFQc(X)Wm ymac,n5>'
is on one hand invariant under U;) and on the other

reduces tqAl) upon setting (B2)
1 We also have
Zma <Fn ’mab,nJ|QbFQC(X)|Fm amac,n5>
a;=0, o= i b. (A5) = @lMab,nv - &~ iMge mu- €
2m >l b AcC >
><<Fn :mab,nU|Q ro (X_§)|rmymac,nv>- (B3)

At the hadronic level, we must then construct invariant termsIf we assigng—¢+a under translation¢B3) fulfilis (B2). If

linear in ¢, which may also contaim;. Up to two space \g_exalzr? dr?ﬂslgstgltbiz a\;vltlar;leggil:;c&tllon af, then necessarily
derivatives we have - '

tr(Se), A6)  (T'niMapn0] QT QX)L iy, Mac i)
tr(S¢diSds), (A7) = g/Mabn® X~ Macm? X(T My 5] QPTQY(0)|T gy, My )
tr(S¢)tr(d;SdS), (A8) _ aiMabn0 - X— Mg X

diS: =&iS+ aiS_Sa .

— ek o~ .
X T | s BnnRaen(®)]. (8

We have not written down terms which coincide or vanish
upon using(A5).
For the spin breaking ternfA2) we may introduce a Consider next

U(4N;)-valued sourc®' transforming as - b i .
<Fnymab,nv|Qa33(x3)Qa:(X4)|rmymac,nv>- (B5)

R'—-gRg™* (A9)
We are in a similar situation as above. However now trans-

so that(A2) is substituted by lation invariance does not completely fix the result. Under

hsR'G'h. (A10) the same assumptions we obtain
We recover(A2) upon setting (T'y ,mab,nl7|62;3(X3)QZZ’(X4)|Fm,mac,ml7>
1 :ei[ax3+(1—a)x4][Eac,m—Eab,n]+imbv-x3—imcv-x4
4 1 — ek .
" 1 s (A1) = Ol asesdis, | oy Fioal®)
4mb
X :ﬂac,m( E)GXF]' IZ J(Xg_ X?l) - ()_()3_ )24)

There are no terms at the hadronic level with the same sym-
metry transformation properties at lower orders in deriva-
tives. The first possible term appears at third order.
Therefore the leading & corrections introduce three new
parameters. Equatio\6) provides a mass term(AéCD/m) whereq« is arbitrary and parametrizes the ambiguity. Usually
and (A7) and (A8) give rise to the usual nonrelativistic ki- one never runs into calculations of the ki(®b) but rather of
netic term. The procedure above can easily be extended toatrix elements of currents as (B1), which are not am-
any finite order in Ih. biguous. We find expressions lik@5) in our calculation

X

. ko )
k+1+—vov , (B6)



53

because we insist on enforcing on shellness in certain cur-
rents. In our concrete case we have a current with a momen-

tum insertion

QP T Q(x)e® %,

p=(—my+m.+ Eab,n_ Eac,m)v .
(B7)

In order to enforce on shellness we substitute it by

O on shelines;
QU(x5) QL4 (xa)€PFS P 5,

O L S
P3 b Map ab,n 30
v+kj,

k;,k,—0, (B8

me £
Ps=| M= ac,m
Mae

as mentioned in5.3). However in doing so there is a mo-
mentum mismatch

HEAVY QUARK HADRONIC LAGRANGIAN FOR s-WAVE QUARKONIUM
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m,

(_

Map

E Ma
ab,n™
' Mg

Eac,m) v

which should be fixed somehow in order to gB¥) back in
the x3=X,=Xx limit. The most general way of distributing
this momentum mismatch betweggandx, is by inserting,
in (B8),

(B9)

m
—= Eac,m)

m;
ex;{ [ [BX3+(1_ ﬂ)x4]<m_b Eab,n_ m

Any B is equally good since we are eventually interested in
the limit x3=x,= x. Notice that the ambiguity i in (B6) is
proportional to the ambiguity i3 in (B9). Since we can
chooseg at will, we do it in such a way that the dependence
in both & and B8 cancels. This is how we are able to obtain a
representation of6.6) in terms of the HQET6.10.
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