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Abstract
In the construction industry, determining project schedules has become one of the most critical subjects among project

managers. These schedules oftentimes result in significant resource fluctuations that are costly and impractical for the

construction company. Thus, construction managers are required to adjust the resource profile through a resource leveling

process. In this paper, a novel optimization model is presented for resource leveling, called the ‘‘modified symbiotic

organisms search’’ (MSOS). MSOS is developed based on the standard symbiotic organisms search, but with an

improvement in the parasitism phase to better tackle complex optimization problems. A case study is employed to

investigate the performance of the proposed optimization model in coping with the resource leveling problem. The

experimental results show that the proposed model can find a better quality solution in comparison with existing opti-

mization models.
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Introduction

The capability of a construction company to handle

resources is essential in order to survive and thrive in

today’s market (Karaa and Nasr 1986; Wu and An 2012).

Any resource mismanagement could lead to a rise in

operational expenses as well as scheduling and financial

issues. If extra resources are needed on a construction site,

then it could delay the projected completion of the project.

When there is such a delay, the owner could sustain a

financial loss because the facility is not yet available

(Georgy 2008). Furthermore, delays also lead to disagree-

ments between parties, increases in overhead costs, loss in

reputation, and, ultimately, total project failure (Arditi and

Pattanakitchamroon 2006; Assaf and Al-Hejji 2006). This

is why implementing proper resource management in the

planning stage of the project is an important task.

Generally, construction resources comprise equipment,

materials, manpower, experience, and money. The key to a

successful project is effective management of each

resource (Georgy 2008). Nonetheless, construction sched-

ules, as the result of network scheduling methods, tend to

lead to inefficient, impractical, and expensive resource

fluctuations (El-Rayes and Jun 2009). Therefore, con-

struction managers must routinely perform some adjust-

ments to the schedule to decrease the possibility of

interrupting fluctuations during the project.

Construction companies are often bothered by these

resource fluctuations due to the associated costs of hiring
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and laying-off workers, even if it is for a short time

(Martinez and Loannou 1993). If resources are not effi-

ciently managed, they may result in the project being

incomplete on the specified deadline. Moreover, construc-

tion companies need to maintain idle resources even when

demand is low. These facts could lead to a profit loss for a

construction company.

Resource leveling is a method used to smooth resource

fluctuations during a project and one that has received

increasing attention by many researchers (Christodoulou

et al. 2009; El-Rayes and Jun 2009). The goal of resource

leveling is to reduce peak demand and fluctuations in the

resource usage pattern. The method looks to reduce vari-

ation in the resource profile by altering the non-important

activities in their respective places and, thereby, main-

taining the project’s schedule. There are several methods

available such as mathematical, heuristics, and meta-

heuristics that can solve a resource leveling problem for a

construction project.

In the beginning, resource leveling problems were

addressed with mathematical methods as they offered the

best solutions to a problem. Over time, these techniques

were no longer practical, especially for larger projects as

resource leveling became a type of combinatorial problem

as the increasing number of variables resulted in an

infeasible problem-solving method. Therefore, mathemat-

ical techniques are no longer ideal for real-life projects.

Several studies have used heuristic methods to address the

resource leveling issue (Harris 1990). Although resource

leveling heuristics are simple and can be used widely with

commercial project management software (e.g., Microsoft

project), project managers are often left unsatisfied. This is

because heuristic methods work on the premise of pre-

designated rules and their performance is dependent upon a

certain kind of problem and the implemented rules. There

is no guarantee for the best solution (Hegazy 1999).

With the limitations of both the heuristic and mathe-

matics methods, researchers have shown an increased

interest in adopting metaheuristic methods for solving

resource leveling problems (Geng et al. 2011; Leu et al.

2000; Kaveh et al. 2016). Metaheuristic algorithms,

inspired by natural phenomena, have been implemented

successfully in various construction project problems to

address optimization issues (Cheng et al. 2015; Kaveh

2017). These methods use iterative calculations to preserve

the randomly initiated population to the best solution.

Although metaheuristic algorithms, such as genetic algo-

rithm (GA) (Goldberg 1989), particle swarm optimization

(PSO) (Kennedy and Eberhart 1995), and differential

evolution (DE) (Storn and Price 1997), play an integral part

in the optimization field, they still have their drawbacks.

For instance, the biggest challenges for metaheuristic

algorithms is the poor exploitation and premature

convergence to deal with intricate optimization issues

(Geng et al. 2011). Some researchers have boosted the

performance of algorithms by using a hybrid approach

(Cheng, et al. 2016b; Cheng and Prayogo 2017; Kaveh and

Nasrollahi 2013; Kaveh and Ilchi Ghazaan 2018; Prayogo

et al. 2018).

Symbiotic organisms search (SOS), which is a popula-

tion-based searching algorithm, has garnered interest over

the past few years across the science and engineering fields

(Cheng and Prayogo 2014). SOS is deemed both efficient

and effective for continuous global optimization, using

three symbiosis-inspired operators to ensure the population

had the best global solution. SOS has been used success-

fully many times over, surpassing other algorithms (Tran

et al. 2016; Cheng et al. 2014; Prayogo et al. 2017). This

paper presents a new modification of the standard SOS to

achieve an acceptable solution to the resource leveling

problems in construction projects, the so-called ‘‘modified

symbiotic organisms search’’ (MSOS). In MSOS, a new

and effective parasitism mechanism is employed to gen-

erate a better searching ability by integrating the neigh-

borhood search mechanism to the previous parasitism

formula. For validating the performance of MSOS, an

actual case study of a construction resource leveling

problem is adopted.

The rest of the article is organized as follows: ‘‘Litera-

ture review’’ reviews literature related to the establishment

of the new optimization model; in ‘‘Proposed modified

symbiotic organisms search (MSOS) algorithm’’ and

‘‘Practical implementation of MSOS for resource level-

ing’’, the overall scenario of the newly proposed opti-

mization model is presented in detail; ‘‘Experimental

results’’ demonstrates a numerical experiment and results

comparison for the proposed model; finally, ‘‘Conclusions’’

presents the conclusions and a discussion.

Literature review

Formulation of objective function for resource
leveling problem

The objective behind finding a solution to the resource

leveling problem was to decrease the demand in peak

resources and the daily consumption of that resource within

the project timeframe and with the assertion that there was

an unlimited amount of resources available. This study

considers resource leveling as an optimization problem.

Here, the following objective function is minimized as

follows (Hegazy 1999):
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f ¼
XT

i¼1

ðyi � yuÞ2; ð1Þ

where T is the project duration, yi represents the resource

requirements of all activities carried out at time unit i, and

yu is a uniform resource level provided by:

yu ¼
PT

i¼1 yi

T
: ð2Þ

Son and Skibniewski (1999) further proposed a new

formulation of the objective function as follows:

f ¼
XT

i¼1

y2i � 2yu
XT

i¼1

yi þ y2u; ð3Þ

where yu and
PT

i¼1 yi are constant because the rates of

resource and activity duration for each activity are fixed.

Accordingly, the following equation expresses the objec-

tive function:

f ¼
XT

i¼1

y2i : ð4Þ

Generally, as shown in Fig. 1 and drawing upon relevant

literature (Hegazy 1999), Eq. (4) equals the minimum

moment of the resource histogram around the time axis.

Additionally, it is necessary to modify the objective func-

tion of the resource leveling problem as the optimization

process can produce different scheduling solutions. Fur-

thermore, the objective function values might be identical

but the resource fluctuations might differ. Therefore, it is

needed to take into consideration the deviations between

the peak of resource demand and resource consumption in

consecutive time periods (Easa 1989) to determine the

most optimal resource profile. This research will later

introduce a modified objective function for the resource

leveling optimization model.

Metaheuristic applications on resource leveling
problem

When it comes to construction management, the problems

with resource scheduling are looked at intensely because of

their importance. Resource leveling, within resource

scheduling, is one of the biggest problems because it is so

complex (Hegazy 1999). Mathematical models have been

used to try solving the problems (Easa 1989) but are unable

to address complex, large-scale problems that people

encounter in real life. Heuristic rules were later applied to

address the convoluted nature of resource levels (Martinez

and Loannou 1993). However, it appeared that this method

only worked to solve certain problems. Heuristic rules do

not always guarantee a solution, which is a real problem for

some practitioners. Therefore, these facts motivate

researchers to find other modern techniques, e.g.,
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metaheuristic algorithms, to search for solutions to partic-

ular problems (Geng et al. 2011; Leu et al. 2000).

Many studies have been proposed in the past decades to

investigate the performance of metaheuristic optimization

algorithms in solving different resource leveling problems

in construction projects. In an early attempt, Hegazy (1999)

proposed a GA to solve a resource leveling model based on

minimum moment of resource histogram. Son and Skib-

niewski (1999) developed a simulated annealing (SA)

hybrid model for finding the best solution of the given

resource leveling problems. To minimize the total of

absolute deviations between each and average resource

usage, Leu et al. (2000) employed a GA and further

introduces a prototype of decision support system for

resource leveling in addition to the optimization model.

Khanzadi et al. (2016) applied newly developed algo-

rithms—colliding bodies optimization (CBO) and charged

system search (CSS)—for both simultaneously solving the

resource allocation and resource leveling problems.

Recently, Cheng et al. (2016a) applied a promising sym-

biotic organisms search (SOS) algorithm to solve multiple-

resources leveling problems in multiple construction pro-

jects. Although several metaheuristic algorithms have been

successfully applied in solving past resource leveling

problems to some degree, there is still a need for

improvement in terms of the quality and efficiency of the

solution, particularly as the problem becomes more

complex.

Symbiotic organisms search (SOS) algorithm

SOS is a population-based metaheuristic algorithm pro-

posed by Cheng and Prayogo (Cheng and Prayogo 2014)

and designed for continuous optimization. In the SOS

algorithm, the three phases (inspired by symbiotic inter-

actions) are performed to lead a population (ecosystem) of

candidate solutions (organisms) toward the global optima

region in the search space. Mutualism, commensalism, and

parasitism are the three symbiotic interactions that SOS

uses to modify the candidate solutions. It is expected that

the simulation of symbiotic interactions through successive

generations improves the fitness value of the organism.

Each phase consists of two operators, called the ‘‘in-

teraction operator’’ and ‘‘selection operator’’. Basically, the

interaction operator in each phase is based on the linear

combination of two or more different solution/organism

vectors. The interaction operator plays a key role for

updating the solutions. Meanwhile, the selection operator is

employed as a mechanism to preserve the best possible

solutions to the next generation. Each phase yields one or

more ‘‘offspring’’ vectors that compete with the ‘‘parent’’

vector in the selection process. SOS employs greedy

selection, which considers better fitness value as the single

criterion in the selection process. Thus, if the offspring

vector can yield a lower objective function value than its

parent, then the offspring vector supersedes the parent

vector (see Fig. 2).

The formulas for mutualism, commensalism, and para-

sitism phases are explained below:

Mutualism phase

• Interaction operator:

xinew ¼ xi þ rand(0; 1Þ
� xbest �

xi þ xii

2

� �
� ð1þ roundðrand(0; 1ÞÞ

h i

ð5Þ

xiinew ¼ xii þ rand(0; 1Þ
� xbest �

xi þ xii

2

� �
� ð1þ round(rand(0; 1ÞÞ

h i
:

ð6Þ

• Selection operator:

xi ¼
xi f ðxiÞ� f ðxi newÞ
xi new otherwise

�
ð7Þ

xii ¼
xii f ðxiiÞ� f ðxii newÞ
xii new otherwise

�
; ð8Þ

where xi is the i-th organism vector of the ecosystem, xii
is the ii-th organism vector of the ecosystem where

ii = i, xbest represents the best organism in the current

generation, xi new and xii new represent candidate solu-

tions for xi and xii after their interaction, respectively,

f(xi) is the fitness value of xi, f(xii) is the fitness value of

xii, f(xi new) is the fitness value of xi new, and f(xii new) is

the fitness value of xii new.

Commensalism phase

• Interaction operator:

xinew ¼ xi þ rand(� 1; 1Þ � ðxbest � xiiÞ ð9Þ

• Selection operator:

xi ¼
xi f ðxiÞ� f ðxi newÞ
xi new otherwise

�
; ð10Þ

where xi is the i-th organism vector of the ecosystem, xii
is the ii-th organism vector of the ecosystem where

ii = i, xbest represents the best organism in the current

generation, xi new represents candidate solutions for xi
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after the interaction, f(xi) is the fitness value of xi, and

f(xi new) is the fitness value of xi new.

Parasitism phase

– Interaction operator:

xparasite;j ¼
xi;j if rand (0; 1Þ� rand (0; 1Þ
LBþ rand(0; 1Þ � ðUB� LBÞ otherwise

�
:

ð11Þ

– Selection operator:

xii ¼
xii f ðxiiÞ� f ðxparasiteÞ
xparasite otherwise

�
; ð12Þ

where xi is the i-th organism vector of the ecosystem, xii
is the ii-th organism vector of the ecosystem where

ii = i, xparasite is the artificial parasite organism created

to compete with the host organism xii, xi new represents

candidate solutions for xi after the interaction, f(xii) is

the fitness value of xii, f(xparasite) is the fitness value of

xparasite, and UB and LB are the upper and lower bounds

of the problem, respectively.

When the stopping criteria have been met, the opti-

mization process is complete. The user can dictate what

this stopping criterion is, which is usually noted as the

maximum number of iterations (maxIter). When complete,

the user will see the best possible solution to the problem.

Proposed modified symbiotic organisms
search (MSOS) algorithm

In this section, the proposed MSOS algorithm is described

in detail. It is noticed that our algorithm is developed based

on standard SOS (Cheng and Prayogo 2014) with a mod-

ified formulation of the parasitism phase. The local search

has proven successful in improving the results of meta-

heuristic algorithms (Yu et al. 2017). In those studies, the

local search improvement phase used several neighborhood

operators to enhance the solution’s quality to yield a better

objective function value.

Modifications on parasitism phase

In this phase, xparasite are created from xi. In this situation,

xsi will be chosen between xi and xii. In this new parasitism

phase, Eq. (14) was proposed to enhance the local search

ability. The selection operator is now updated according to

the proposed adaptive crowding concept.

• Interaction operator:

If rand ð0; 1Þ\ rand ð0; 1Þ

xparasite;j ¼
xi;j ifrand (0; 1Þ� rand (0; 1Þ
LBþ rand (0; 1Þ � ðUB� LBÞ otherwise

�
;

ð13Þ

else

xparasite;j¼
xi;j if rand (0;1Þ�rand (0;1Þ
xi;jþðF�ðrandnð0;1Þ�ðUB�LBÞþLBÞ otherwise

;

�

ð14Þ

end

• Selection operator:

xsi ¼
xsi f ðxsi Þ� f ðxparasiteÞ
xparasite otherwise

�
; ð15Þ

where xi is the i-th organism vector of the ecosystem, xii
is the ii-th organism vector of the ecosystem where

ii = i, xparasite is the artificial parasite organism created

to compete with the host organism xsi , x
s
i represents the

most similar parent to xparasite, f(x
s
i ) is the fitness value

of xsi , f(xparasite) is the fitness value of xparasite, UB and

LB, respectively, are the upper and lower bounds of the

problem, and F is a scaling factor to determine the

perturbation size with an initial value of 10-5.

Parent vector

Offspring vector

Generation i Generation i+1

Fig. 2 Greedy criterion-based

selection
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Crowding-based selection operator

As shown before in Eq. (15), this research proposes to

replace the original selection operator in the SOS with the

crowding-based selection operator (Jong 1975; Mahfoud

1995). The new selection process is proposed to decelerate

convergence and to preserve population diversity. Its effi-

cacy in dealing with multimodal optimization problems

aimed at locating multiple globally optimal or suboptimal

solutions simultaneously has been demonstrated (Das et al.

2011). Generally, considering the replacement policy in

crowding, a candidate solution (offspring vector) and the

most similar parent compete for a place in the population

(Mahfoud 1995). The similarity is measured using Eucli-

dean distance.

If an offspring vector is better than the most similar

parent, which is not necessarily the direct parent vector,

then the parent is replaced; otherwise, the candidate solu-

tion is discarded (see Fig. 3). Hence, besides fitness value,

the crowding-based selection operator considers the simi-

larity of individuals as quantified by distances among them.

The algorithm basically prefers competition among similar

individuals and maintains the diversity of the population.

This selection process facilitates the algorithm to explore

the search space thoroughly. On the other hand, it is ben-

eficial to keep the traditional greedy selection operator on

the previous mutualism and commensalism phases to

exploit the currently found solutions.

Practical implementation of MSOS
for resource leveling

This section describes the proposed optimization model in

solving the resource leveling problem shown in Fig. 4. The

objective of this optimization model was to minimize daily

fluctuations in resource utilization without altering the total

project duration. The resource leveling problem for con-

struction projects is proved to be complex because the

objective function landscape may harbor many suboptimal

solutions (Cheng et al. 2017; Geng et al. 2011).

Furthermore, there can be several scheduling solutions that

feature the same resource profiles (Christodoulou et al.

2009). Hence, the resource leveling problem is shown to be

both complicated and multimodal. Consequently, the pro-

posed MSOS can provide a potential alternative to deal

with the problem at hand.

Resource leveling is accomplished by reducing fluctu-

ations between a desirable uniform resource level and

resource requirements. It is important that the activity

relationship, resource demand, and activity duration are

encompassed by the model. The users must also specify the

parameter setting of the search engine such as population

size (NP) and maximum number of iterations (maxIter).

The inputs allow the scheduling component to perform

calculations that attain the critical path method (CPM)

based schedule, and early and late starts of each activity.

When all the information has been provided, the model can

operate efficiently without the need for human intervention.

A type of possible solution created by a uniform random

generator is required for the search process to begin. A

vector with D elements represents a solution to the resource

leveling problem:

X ¼ ½Xi;1;Xi;2; . . .;Xi;D�; ð16Þ

where D represents the amount of decision variables rela-

ted to the problem. It also denotes the amount of activity

within the project network. The index i refers to the i-th

individual in the population. X represents the start time of

D activities. SOS operates in real-value variables in order

to change the start times to integer values for the feasible

domain.

Xi;j ¼ Round LBðjÞ þ rand(0; 1Þ � ðUBðjÞ � LBðjÞÞð Þ;
ð17Þ

where Xi;j denotes the start time of activity j at the i-th

individual. rand (0,1) is a uniformly distributed random

number between 0 and 1. LB (j) and UB (j) provide the

early start and late start of the activity j. To find the most

optimal project schedule, SOS considers the outcome from

the scheduling component and the shifts in non-critical

activities within their float times to find the best possible

Parent vector

Offspring vector

Generation i Generation i+1

The most similar 
parent

Fig. 3 Crowding-based

selection
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project schedule. In this study, the constraints and objective

function are adopted from Cheng et al. (2017) as follows:

f ¼ a
1

2

XT

k¼1

ðykÞ2 þ b
XT�1

k¼1

ðykþ1 � ykÞ þ c� ymax: ð18Þ

Subject to

STi � ESi �TFi; STi � 0; i ¼ 1; 2; . . .;D;

where T represents the project duration, yk denotes all

resource requirements of activities performed at time unit

k, and yu represents a uniform resource level. a, b, and c are
weighting coefficients and are set as 1, 1, and 10, respec-

tively, as suggested by Cheng et al. (2017). (yk?1 - yk)

determines varying resource usages between two succes-

sive time periods. ymax denotes the peak of resource

demand during the entire project. STi is the start time of

activity i. Both ESi and TFi denote early start and total float

of activity i, respectively. D is the number of activities in

the network.

After the searching process terminates, an optimal

solution is identified. The project schedule and its corre-

sponding resource histogram are then constructed based on

the optimal activities’ start time. The user can assess the

quality of a project schedule using a set of metrics (see

Table 1).

Project Information

Scheduling module

Initial population of solutions
[X1,1, X1,2,…, X1,D ]

...
[XNP,1, XNP,2,…, XNP,D ]

Yes

iter < maxIter

Optimal Activity Start-Time
[X1, X2, …, XD]

No

Mutualism

Commensalism

Parasitism

MSOS optimization

Best Solution Updating

Local 
search

Crowding-
based 

selection

Optimal  Project Schedule

Scheduling module

Fig. 4 Flowchart of modified

symbiotic organisms search

(MSOS) for resource leveling

Table 1 Metrics for performance measurement

Performance metrics Notation Calculation

Value of overall fitness function f
f ¼ a 1

2

PT

k¼1

ðykÞ2 þ b
PT�1

k¼1

ðykþ1 � ykÞ þ c� ymax

where a, b, and c are weighting coefficients.

Moment of resource histogram Mx
Mx ¼ 1

2

PT

k¼1

ðykÞ2

Maximum resource demand RDmax RDmax ¼ ymax

Cumulative variation of resource demand between consecutive periods CRV
CRV =

PT�1

k¼1

ðykþ1 � ykÞ

Maximum variation of resource demand between two consecutive periods RVmax RVmax ¼ max½ðy2 � y1Þ; ðy3 � y2Þ; . . .; ðyT � yT�1Þ�
where T is the total project duration

Asian Journal of Civil Engineering

123



Table 2 Project information
Activity ID Duration Predecessors Daily resource demand Early start (ES) Late start (LS)

1 0 0 0 0

2 10 1 5 0 0

3 5 1 2 0 9

4 15 1 3 0 3

5 3 1 2 0 12

6 10 1 2 0 8

7 15 2 6 10 10

8 7 3 10 5 14

9 3 5 6 3 22

10 3 5 2 3 15

11 2 5 2 3 16

12 3 4, 10, 11 6 15 18

13 2 10 1 6 19

14 2 8, 12 5 18 21

15 3 12, 13 2 18 21

16 1 14 6 20 23

17 1 15 7 21 24

18 1 16 7 21 24

19 4 7, 9, 17, 18 13 25 25

20 2 15, 18 9 22 30

21 2 19 4 29 29

22 1 20 6 24 32

23 3 21 8 31 31

24 1 22 3 25 33

25 4 23, 24 8 34 34

26 2 25 7 38 38

27 25 6 10 10 18

28 3 23 6 34 52

29 3 23 2 34 40

30 3 26 9 40 40

31 3 30 10 43 52

32 3 30 3 43 46

33 2 27, 29, 30 4 43 43

34 0 32 0 46 49

35 4 33 1 45 45

36 3 34, 35 12 49 49

37 3 36 12 52 52

38 3 28, 31, 37 3 55 57

39 5 28, 31, 37 8 55 55

40 1 36 2 52 59

41 3 38, 39, 40 10 60 60

42 1 41 3 63 63

43 6 42 3 64 64

44 0 43 0 70 70
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Experimental results

Project information

In this section, a construction project adapted from Sears

et al. (2008) is used to investigate the capability of the

newly developed MSOS model. As mentioned in Table 2,

the project consists of 44 activities for 70 days. Manpower

is considered as the resource of interest in this study.

Figure 5 presents the resource profile of the project prior to

resource leveling process.

Optimization results and comparison

This section shows the application of the MSOS model to

minimize resource fluctuations significantly. Table 3 pre-

sents parameter settings for the MSOS model. Advanced

optimization methods—JADE (Zhang et al. 2008), SaDE

(Qin et al. 2009), RLDE (Tran and Hoang 2014), and

SOS—are used for performance comparison to validate the

performance of MSOS. The SOS algorithm used in this

study is a discrete adaptation of the original SOS algorithm

developed previously by Cheng et al. (2016a). The NP and

maxIter of each benchmark algorithm are set to be com-

parable to those of MSOS.

The optimal solutions, or optimal activities’ start times

obtained from MSOS and other benchmark algorithms, are

listed in the Table 4. The project’s resource profiles after

optimization are depicted in Fig. 6. Moreover, the opti-

mization result is given in regard to the best result found,

the worst result, the mean, and standard deviation

throughout 25 simulation iterations to evaluate the stability

and accuracy of the benchmark algorithms as shown in

Table 5. The optimal results for this case study are found

by the MSOS algorithm with the best overall fitness value

(f) of 9518.

Observing from Table 5, the performance of the pro-

posed model is very competitive in terms of stability and

accuracy. Considering the overall fitness value, only MSOS

is capable of identifying the most desirable objective value

of 9518. Results of JADE, SaDE, and SOS are slightly

inferior with f = 9520, 9520, and 9522, respectively. The

average fitness of MSOS is also significantly better than

that of other benchmark algorithms. The new optimizer

achieves the best average fitness of 9521.40. Meanwhile,

Table 3 Parameter settings of MSOS

Input parameters Notation Setting

Number of decision variables D 44

Population size NP 8 9 D

Maximum number of iterations maxIter 1000
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Fig. 5 Project resource profile

before resource leveling process
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average fitness values of JADE, SaDE, SOS, and RLDE are

9522.87, 9522.80, 9528.87, and 9534.47, respectively.

Additionally, in terms of the moment of resource his-

togram (Mx), the maximum resource demand (RDmax) and

the maximum variation of resource demand between two

consecutive periods (RVmax), and cumulative variation of

resource demand between consecutive periods (CRV), all

of the five algorithms have found the optimal values. The

best outcomes of Mx, RDmax, RVmax, and CRV are 9215,

24, 7, and 53, respectively. It is recognizable that the

average results and the standard deviations of MSOS in Mx

are slightly better than that of other optimization methods

while performing equally better in RDmax and RVmax in

comparison with other algorithms. These facts have

strongly demonstrated the stability and the accuracy of the

new established MSOS model. Furthermore, the conver-

gence curves for MSOS and other benchmark algorithms

are shown in Fig. 7. It is shown that MSOS has a better

convergence characteristic and is able to achieve the best

solution earlier in comparison with other algorithms.

The optimal start times and the results comparison

between MSOS and the commonly used project manage-

ment software Microsoft Project 2007 are shown in

Table 6. The comparison of optimized resource profiles

between MSOS and Microsoft Project 2007 are depicted in

Fig. 8. Obviously, performance of the new model is better

than that of the commercial software in which the fitness

value of the proposed model (9518) is significantly less

than those of the Microsoft Project 2007 (9715). This

means that the new model has successfully reduced the

resource fluctuation considerably.

Conclusions

This study proposes a new optimization model, namely

MSOS, to tackle the complexity of the resource leveling

problem. To preserve population diversity, MSOS replaces

the original greedy selection operator in standard SOS with

a crowding-based selection operator. The crowding tech-

nique is crucial as it facilitates the algorithm to explore the

search space thoroughly and to preserve the population

diversity. By doing so, the possibility of being trapped in a

suboptimal solution is diminished considerably. This, in

essence, allows the algorithm to adapt itself not only to

different optimization problems, but also to various stages

during the optimization process. Moreover, to enhance the

performance in neighborhood searching ability, the newly

developed parasitism mechanism enhances the searching

ability in the neighborhood of each organism.

Experimental results and result comparisons have

demonstrated that MSOS can deliver accurate and

stable results. Additionally, the algorithm operation

Table 4 Comparison of obtained optimal start times for all activities

between MSOS and Benchmark algorithms

Activity ID Optimal start time for each activity

RLDE JADE SaDE SOS MSOS

1 0 0 0 0 0

2 0 0 0 0 0

3 0 3 3 0 0

4 0 0 0 0 0

5 0 0 0 0 0

6 0 0 0 0 0

7 10 10 10 10 10

8 8 8 8 8 8

9 5 15 15 5 15

10 3 3 3 3 3

11 3 6 6 3 6

12 15 15 15 15 15

13 15 6 6 16 6

14 20 20 20 20 20

15 18 18 18 18 18

16 22 22 22 22 22

17 24 23 23 24 24

18 23 24 24 23 23

19 25 25 25 25 25

20 29 29 29 29 29

21 29 29 29 29 29

22 31 31 31 31 31

23 31 31 31 31 31

24 32 32 32 32 32

25 34 34 34 34 34

26 38 38 38 38 38

27 18 18 18 18 18

28 43 43 43 43 43

29 37 37 37 37 37

30 40 40 40 40 40

31 46 46 46 46 46

32 43 43 43 43 43

33 43 43 43 43 43

34 48 47 47 49 49

35 45 45 45 45 45

36 49 49 49 49 49

37 52 52 52 52 52

38 57 55 55 55 55

39 55 55 55 55 55

40 56 58 58 59 58

41 60 60 60 60 60

42 63 63 63 63 63

43 64 64 64 64 64

44 70 70 70 70 70

f 9524 9520 9520 9522 9518
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successfully eliminates human intervention and the trial-

and-error process for control parameter settings. These

facts have proved that MSOS is a promising tool to assist

project managers in dealing with resource leveling prob-

lems. The time and resource information in this study is

assumed exact although, in the real world, activity time and

resources are usually uncertain. Addressing the uncertainty

aspects of activity time and resources in the resource

leveling problem can become a substantial future research

agenda.
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Fig. 6 Project resource profile after being optimized by MSOS and other benchmark algorithms

Table 5 Result comparison

between MSOS and Benchmark

algorithms

Performance metrics RLDE JADE SaDE SOS MSOS

f Best 9524 9520 9520 9522 9518

Worst 9542 9528 9534 9538 9524

Mean 9534.47 9522.87 9522.80 9528.87 9521.40

Std 5.82 2.21 2.91 6.43 1.40

Mx Best 9215 9215 9215 9215 9215

Worst 9227 9227 9227 9227 9227

Mean 9219.93 9217.40 9218.20 9217.80 9217.40

Std 5.53 4.88 5.40 5.16 4.53

RDmax Best 24 24 24 24 24

Worst 24 24 24 24 24

Mean 24 24 24 24 24

Std 0 0 0 0 0

RVmax Best 7 7 7 7 7

Worst 7 7 7 7 7

Mean 7 7 7 7 7

Std 0 0 0 0 0

CRV Best 53 53 53 53 53

Worst 69 69 69 69 69

Mean 61.87 64.40 63.67 64.13 64

Std 6.32 5.83 6.59 6.30 5.72
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MSOS and other benchmark

algorithms

Table 6 Comparison of obtained optimal start times for all activities

between MSOS and Microsoft project 2007

Activity ID Optimal start time for each activity

Microsoft project 2007 MSOS

1 0 0

2 0 0

3 3 0

4 2 0

5 5 0

6 0 0

7 10 10

8 11 8

9 8 15

10 14 3

11 9 6

12 17 15

13 18 6

14 20 20

15 20 18

16 22 22

17 24 24

18 23 23

19 25 25

20 29 29

21 29 29

22 31 31

Table 6 (continued)

Activity ID Optimal start time for each activity

Microsoft project 2007 MSOS

23 31 31

24 32 32

25 34 34

26 38 38

27 18 18

28 46 43

29 37 37

30 40 40

31 43 46

32 46 43

33 43 43

34 49 49

35 45 45

36 49 49

37 52 52

38 55 55

39 55 55

40 58 58

41 60 60

42 63 63

43 64 64

44 70 70

f 9715 9518
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