
University of Ljubljana

Faculty of Computer and Information Science

Matej Šnuderl

Rate limiting in API management

BACHELOR THESIS

UNIVERSITY STUDY PROGRAMME

FIRST CYCLE

COMPUTER AND INFORMATION SCIENCE

Mentor: doc. dr. Dejan Lavbič

Ljubljana, 2018

Univerza v Ljubljani

Fakulteta za računalnǐstvo in informatiko

Matej Šnuderl

Omejevanje dostopa pri obvladovanju

API-jev

DIPLOMSKO DELO

UNIVERZITETNI ŠTUDIJSKI PROGRAM

PRVE STOPNJE

RAČUNALNIŠTVO IN INFORMATIKA

Mentor: doc. dr. Dejan Lavbič

Ljubljana, 2018

Copyright. Rezultati diplomske naloge so intelektualna lastnina avtorja in

Fakultete za računalnǐstvo in informatiko Univerze v Ljubljani. Za objavo in

korǐsčenje rezultatov diplomske naloge je potrebno pisno privoljenje avtorja,

Fakultete za računalnǐstvo in informatiko ter mentorja.

Besedilo je oblikovano z urejevalnikom besedil LATEX.

Thesis subject:

With the increasing employment of microservices in software development

process much of the burden for performance assurance has moved to the web

API providers. A simple approach to online API access throttling involves

the access for unregistered and registered users. If we want to further restrict

access at the level of various metrics (e.g. number of requests in a given time

unit etc.) it is necessary to introduce a middleware layer that implements the

aforementioned functionality. The thesis should highlight the scope of the

Web API throttling in terms of algorithms and integrated solutions. Finally

the critical evaluation should be performed on a real case study.

Tematika naloge:

Z vedno večjim vključevanjem mikrostoritev v proces razvoj programske

opreme se je velik del bremena pri zagotavljanju zmogljivosti premaknil

na stran ponudnikov spletnih storitev. Enostaven pristop pri omejevanju

dostopa do spletnih storitev vključuje dostop neregistriranih in registriranih

uporabnikov. Če želimo dostop dodatno omejevati na ravni različnih metrik

(npr. število dostopov v časovni enoti ipd.) je potrebno vpeljati vmesni

sloj, ki implementira omenjeno funkcionalnost. V okviru diplomskega dela

razǐsčite področje omejevanja dostopa do spletnih virov, z vidika algoritmov

in celostnih rešitev, ter na realnem primeru kritično ovrednotite izbrano im-

plementacijo.

Za izdelavo diplomske naloge se zahvaljujem mentorju doc. dr. Dejanu

Lavbiču za pomoč in vodenje pri izdelavi. Prav tako se zahvaljujem svoji

družini za podporo v času študija.

Contents

Abstract

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis goals . 3

1.3 Related work . 4

1.3.1 Middlewares . 4

1.3.2 API Gateways . 4

1.4 Thesis overview . 6

2 Traditional approach 9

3 Proposed approach 13

3.1 Extended bans . 13

3.2 Additional storage roundtrip 14

4 Rate Limiting algorithms 17

4.1 Overview . 17

4.2 Token bucket algorithm . 18

4.2.1 Memory footprint . 19

4.2.2 Accuracy/atomicity . 20

4.2.3 Consistent distribution of traffic 21

4.2.4 Example implementation 21

4.2.5 Practical considerations 22

4.3 Fixed window algorithm . 22

4.3.1 Memory footprint . 22

4.3.2 Accuracy / Atomicity 23

4.3.3 Consistent distribution of traffic 23

4.3.4 Example implementation 24

4.3.5 Practical considerations 25

4.4 Sliding window log algorithm 26

4.4.1 Memory footprint . 26

4.4.2 Accuracy / atomicity 26

4.4.3 Consistent distribution of traffic 26

4.4.4 Practical considerations 27

4.4.5 Example implementation 27

4.5 Sliding window counters algorithm 27

4.5.1 Memory footprint . 28

4.5.2 Accuracy / atomicity 29

4.5.3 Consistent distribution of traffic 29

4.5.4 Practical considerations 29

4.6 Comparison . 29

5 Storage 33

5.1 SQL vs NoSQL . 34

5.2 Distributed vs centralised . 35

5.3 Do we really need persistence? 35

5.4 Practical considerations . 36

6 API management 37

6.1 API monetisation . 37

6.1.1 Rate limiting algorithm 38

6.2 Refill policies . 39

6.3 Consumer feedback . 40

6.4 Request statistics . 41

7 Evaluation results 45

7.1 Setup . 46

7.2 Response times . 49

7.3 Infrastructure . 51

7.4 API Monetisaion . 52

8 Conclusion 53

Literatura 56

List of used abbreviations

Abbreviaton English Slovensko

API Application Programming In-

terface

aplikacijski programski vmes-

nik

DoS Denial of Service Napad za zarnitev storitve

HTTP Hypertext transfer protocol Protokol za transport splet-

nega besedila

OSI Open Systems Interconnection

model

ISO/OSI referenčni model

OS Operating system Operacijski sistem

RFC Request for Comments Zahtevek po komentarjih

POST Request method supported by

HTTP

Tip spletnega zahtevka

O(n) Big O notation Notacija veliki O

ttl Time to live Čas obstoja

MB Megabyte Megabajt

req Request Zahtevek

XML Extensible Markup Language Razširljiv sistem za urejevanje

tekstovnih datotek

FAQ Frequently asked questions Pogosto postavljena vprašanja

SWOT Strengths, Weaknesses, Op-

portunities and Threats

Prednosti, Slabosti,

Priložnosti in Grožnje

DBMS Database management system Sistem za upravljanje po-

datkov

JSON JavaScript Object Notation JavaScript notacija objektov

AWS Amazon Web Services Amazonove spletne storitve

Abstract

Title: Rate limiting in API management

Author: Matej Šnuderl

With ever growing usage of World Wide Web, number of requests to web

APIs is increasing rapidly. DoS attacks and service abuses are becoming

easier to execute, and more common every day. Quality of service is becom-

ing more important as competition is rising. To build robust and reliable

services, software engineers have to take this into account when designing

web APIs, to deliver end users with a pleasant and reliable experience. In

this thesis we delve into rate limiting in web API management to deal with

those problems on scale. We propose an approach to rate limiting when

request weighting is key, and cannot be estimated/calculated upfront. We

show how integration of such approach into a real working system can help

in achieving high stability and performance improvements, while unlocking

some advanced API monetisation opportunities.

Keywords: Rate Limiting, API management, scalable web services.

Povzetek

Naslov: Omejevanje dostopa pri obvladovanju API-jev

Avtor: Matej Šnuderl

Strma rast uporabe svetovnega spleta je silovito povečala število spletnih

zahtevkov, ki jih morajo procesirati zaledni sistemi. Napadi za zavrnitev

storitev in zlorabe le-teh so vse bolj pogosti in enostavni za izvedbo. Kvaliteta

in zanesljivost sistemov sta ključnega pomena za ohranjanje konkurenčnosti.

Naloga razvijalcev programske opreme je, da z upoštevanjem teh zahtev

načrtujejo robustne sisteme, ki bodo uporabnikom omogočili prijetno in zane-

sljivo uporabnǐsko izkušnjo. V tej diplomski nalogi razǐsčemo pristop omeje-

vanja dostopa pri obvladovanju API-jev za reševanje omenjenih problemov.

Predlagamo pristop pri katerem je obteževanje spletnih zahtevkov ključnega

pomena in ne more biti ocenjeno/izračunano pred procesiranjem zahtevka.

Pokažemo kako lahko integracija takšnega pristopa v delujoč sistem občutno

izbolǰsa stabilnost in učinkovitost storitev ter odpre možnosti za nove načine

trženja API-jev.

Ključne besede: Omejevanje dostopa, obvladovanje APIjev, skalabilni sple-

tni sistemi.

Dalǰsi povzetek

Spletni API-ji postajajo ključen del velike večine spletnih storitev. Vse

več sistemov se sooča s problemi skalabilnosti in zanesljivosti. Omejevanje

dostopa pri obvladovanju API-jev je učinkovit pristop za soočanje s takšnimi

problemi. Uporablja se za nadzor prometa v in izven sistemov. Namen tega

pristopa je zmanǰsevanje nekontroliranih izbruhov spletnih zahtevkov v sis-

temu, izbolǰsanje zanesljivosti in stabilnosti sistema ter zmanǰsanje povprečnih

odzivnih časov sistema. To dosežemo s pošiljanjem prometa skozi filter/al-

goritem, npr. Token Bucket filter [1]. Integracija omenjenega pristopa v dis-

tribuirane sisteme predstavlja težak tehnični problem [2, 3, 4]. Kljub temu

je ideja omejevanja dostopa zelo abstraktna in izvedljiva na večih nivojih,

npr. na (4.) omrežni plasti skozi omrežni krmilnik, na (5.) aplikacijski plasti

ISO/OSI referenčnega modela ali v OS jedru kot del nadzornika v virtualnem

okolju [1].

Delovanje pristopa omejevanja dostopa

V sistemu z integriranim omejevanjem dostopa je vsakemu uporabniku storitev

dodeljeno pravilo, ki določa hitrost in količino zahtevkov, ki jih sistem to-

lerira. Lastnik sistema se zavezuje, da bo zahtevke procesiral v razumljivem

času, dokler se uporabnik drži teh pravil in njihovih omejitev. Če uporabnik

prekorači število zahtevkov v določenem časovnem intervalu, so njegovi za-

htevki blokirani s HTTP 429 (Preveč zahtevkov) odgovorom. Za povečanje

števila in količine števila spletnih zahtevkov, je v večini primerov potrebna

nadgradnja računa/naročnine. To lahko zelo pozitivno vpliva na tok prihod-

kov v podjetju.

Pristopi k omejevanju dostopa

Tradicionalen pristop k omejevanju dostopa predvideva, da je zahtevnost /

teža spletnega zahtevka lahko določljiva/izračunana vnaprej. V teh primerih

lahko omejevanje v celoti opravimo že pred procesiranjem zahtevka. Določanje

teže spletnega zahtevka pa je lahko v nekaterih primerih zelo zahtevno in

znatno vpliva na latenco ter hitrost odgovorov sistema. To je še posebej

problematično v sistemih, ki procesirajo poljubne uporabnǐske skripte (pro-

gramsko kodo). Določanje cene takšnih zahtevkov je zelo zahtevno, kot je

zelo težko določiti tudi ali se bo procesiranje takšnih zahtevkov sploh kdaj

zaključilo [5]. V poglavju 3 opǐsemo alternativni pristop, ki rešuje omen-

jen problem in je bil v našem okolju (opisanem v poglavju 7.1) ključen za

pravilno delovanje omejevanja zahtevkov.

Algoritmi za omejevanje dostopa

Izbira algoritma za omejevanje dostopa je lahko odločilnega pomena pri ome-

jevanju dostopa. Ideja omejevanja dostopa je zelo preprosta. Enostavna im-

plementacija bi hranila le števec in ga povečala ob vsakem spletnem zahtevku

uporabnika. Števec bi enostavno resetirala ob koncu vsakega intervala (vsako

sekundo/uro/dan). To deluje, vendar ima pomankljivosti ki jih podrobneje

predstavimo v odstavku 4.3. V tem poglavju predstavimo tudi najsodobneǰse

algoritme za omejevanje dostopa:

1. Token Bucket algoritem

2. Fixed Window algoritem

3. Sliding Window algoritem

Hramba podatkov

Tip podatkovne baze za hrambo podatkov o omejevanju močno vpliva na per-

formanco omejevanja dostopa. V primeru omejevanja dostopa se soočamo s

problemom zelo pogostega branja in pisanja v podatkovno bazo. Ker želimo

to opraviti čim hitreje, moramo te podatke hraniti na pravilen način. Za

ta namen se v večini primerov uporabljajo NoSQL podatkovne baze ključ-

vrednost, ki so nastale na podlagi zahtev po visokih učinkovitostih in skala-

bilnosti v okolju, kakršno je svetovni splet [6].

Zaključek

Omejevanje dostopa do API-jev lahko zelo pozitivno vpliva na stabilnost

in zanesljivost spletnih storitev. V našem primeru (opisanem v odstavku

7.1) smo opazili preceǰsno zmanǰsanje količine izbruhov v spletnem prometu.

Prav tako smo prepričili vse možnosti za zlorabo storitev in potencilanih

napadov za zavrnitev naših storitev (DoS). Takšne sumljive izbruhe lahko

sedaj kontroliramo, kar je znatno znižalo potrebe po infrastrukturi in stoške

povezane z njo. S pristopom omenjenim v poglavju 3, smo lahko spletne

zahtevke natančno utežili, ne da bi povečali povprečni odzivni čas sistema.

V nekateih primerih smo opazili zmanǰsanje povprečnega časa za odgovor

do 20%. Implementacija omejevanja dostopa nam je omogočila tudi ustrezno

trženje API-ja in močno dvignila število plačljivih uporabnikov naših storitev.

Chapter 1

Introduction

Web APIs are becoming essential part of vast majority of web services. Daily,

more and more web APIs are facing scalability and reliability problems. Rate

limiting is an important approach to web API management and is used to

control amount of traffic from and into the system. Its main objective is to

reduce burstiness, improve system’s fairness, reliability, and stability while

reducing average response times and latency. This is usually achieved by

passing traffic through some filter/algorithm e.g. Token Bucket filter [1]. In-

tegration of such mechanism into distributed environments presents a chal-

lenging technical problem [2, 3, 4].

Idea of rate limiting is very abstract and can be applied on various levels,

e.g. on network (4th) layer via network interface controller, on application

(5th) layer of the OSI reference model [7] or in OS Kernel, as part of the

hypervisor in a virtualised environment [1]. While all levels share similar

concepts, algorithms and abstractions, focus of this thesis will be on applica-

tion/software layer. Software rate limiters are more flexible (i.e., can boot up

at any server), scalable (i.e., multiple instances can be created for different

tenants), and have more functionalities (e.g., hierarchical rate limiting) [8].

Any outage of web APIs might result into degraded user experience and dis-

satisfied customers. Rate limiting comes as one of the measures web API

designers should take into account when designing reliable and robust web

1

2 Matej Šnuderl

Figure 1.1: Request are grouped into 1 minute time windows (sampling peri-

ods). User requests in time window 1:02 reached the agreed upon rate limit

so all further requests were blocked.

applications. Moreover, it can facilitate options for advanced API monetisa-

tion as a business model which can significantly impact revenues.

Inside of a system with web API management and integrated rate limiting

each API consumer is granted a policy that states at what rate requests can

be issued. As long as the consumer conforms to the agreed upon policy,

the carrier promises to deliver responses in timely fashion. If the number

of requests that consumer makes in given time interval exceeds the limits,

requests will be blocked with a HTTP 429 (Too Many Requests - defined in

RFC 6585 [9]) response. Concept can be seen on Figure 1.1. To obtain larger

limits, some kind of account/subscription upgrade is usually required.

1.1 Motivation

Main motivation for this thesis is my interest in scalable and robust web

services. Moreover, Sinergise (company where I am employed) required a

highly customisable and flexible rate limiting implementation that could han-

dle millions of resource expensive requests per day. This is required due to

Diplomska naloga 3

the nature and details of our web API - typical web request is treated a bit

differently in our context. What does a request mean for us is described in

our FAQ [10]. New approach introduced in chapter 3 was required in our

case. Moreover, we wanted to utilise information from our rate limiter for

load balancing. Benefits of doing this are described in section 6.4. Last but

not least, our pricing policy has been per request basis for a long time, but

we haven’t actually had a system in place for that. Constant service abuses

and exploits were a result of that.

There is also a deficiency of literature about software rate limiting as it has

become a trending research problem just recently. More and more companies

are facing scalability problems in their cloud based web applications and are

looking for ways to monetise their APIs. Those problems can be vastly

removed with integration of rate limiting. This thesis should serve as a

reference when considering rate limiting and its implementation. I believe

topics covered and improvements proposed will be beneficial as they area a

result from an integration into an existing web API serving millions of users

and tackling petabytes of data.

1.2 Thesis goals

Main goal of this thesis is to integrate rate limiting into an existing cloud

based system serving millions of requests per day to improve its scalability,

robustness and facilitate options for API monetisation. We want to achieve

this without users noticing any degradation or downtime. To achieve this,

detailed and careful analysis of the field is required. Another goal is to

perform a detailed comparison between current ”state of the art” algorithms

for rate limiting and propose a few changes and improvements. Last but not

least, we want to present our approach and results of our integration and its

positive impacts on our system’s working.

4 Matej Šnuderl

1.3 Related work

In this section we briefly present related work to rate limiting in web API

management. Existing solutions are implemented either as a middleware, or

as an API Gateway.

1.3.1 Middlewares

There are existing open-source rate limiting implementations in shape of

middlewares for languages like Go [11] or Node.js (Javascript runtime) [12].

There is no notable differences amongst those except the implementation se-

lection which is restricted to programming language of the service they are

being injected into. Every request arriving into the system, goes through the

applied middleware (see figure 1.2) before usual request processing occurs.

Because they work on service level, using in memory storage, state cannot

be shared across different nodes in your cluster out of the box. Moreover,

no additional tooling for API management is provided like in the case of

API Gateways. Middleware can be precisely customised, but a lot of imple-

mentation details and deep understanding of rate limiting is still needed to

integrate such middleware into a system.

1.3.2 API Gateways

Full-fledged solutions are usually implemented as API Gateways (seen on

figure 1.3) that are positioned in front of your services and can be hosted

in cloud or on premise. API Gateways can work completely separately from

your system. Every request goes through them before reaching the system.

Functionalities like caching, rate limiting, authentication and more are usu-

ally provided out of the box or as plugins. Amongst others, some big players

in this field are Kong [13], Wso2 [14], Zuul [15], Nginx API Gateway [16], API

Umbrella [17], and Tyk [18]. Those are industry tested and come with all

the tooling to efficiently manage your web APIs. As existing solutions using

this approach work on bigger scale, they are less flexible and customisable.

Diplomska naloga 5

Figure 1.2: Service middleware architecture.

Customisation is usually done through configuration files and/or provided

API endpoints.

These solutions try to implement everything out of the box which works

great in majority of cases but comes at its own expenses. We found existing

solutions too heavyweight with lack of lack of detail to the thing we cared

about - performant rate limiting. They may introduce increased latencies

that are not acceptable in environments with tight time constraints. More-

over, more precise, advanced - on domain level configuration is sometimes

required which cannot be expressed through configuration files or would re-

quire a lot of effort and/or code modifications. Such attempts usually result

into creating your own fork of the open-source implementation which later

proves to be a nightmare to maintain. API Gateways mentioned also follows

the traditional approach explained in chapter 2. As such, they are not suit-

6 Matej Šnuderl

Figure 1.3: API Gateway architecture.

able for some systems and custom domain driven implementation is required.

1.4 Thesis overview

In chapter 2 we explain key problems of traditional approach to rate limiting

and its limitations in certain situations.

Chapter 3 proposes an alternative approach to rate limiting with focus

on environments in which request weight cannot be estimated/calculated up-

front.

In chapter 4 we look through current state of the art algorithms for rate

limiting. We analyse their benefits, drawbacks and complexities they bring

with the implementation. In section 4.5 we propose a few improvements over

algorithms traditionally used.

Chapter 5 describes different approaches for database storage of rate lim-

iting data. In particular, we discuss centralised and distributed database

Diplomska naloga 7

approach and advanteges of NoSQL over SQL databases in context of rate

limiting.

Chapter 6 discusses role, importance and approaches to efficient API

management and tooling around it when integrating rate limiting.

Chapter 7 presents the results and describes what integration of rate lim-

iting provided us with and how that affected our system.

8 Matej Šnuderl

Chapter 2

Traditional approach

Traditional rate limiting implementations assume that weight of request is

known/can be estimated upfront. In such cases rate limiting is done prior

to the request being processed as seen on figure 2.1. This is not always the

case or can introduce increased latency and significant overhead to response

times.

Problem

Imagine we had a web API resource endpoint that executed custom code -

user script sent through a POST request. Code could be arbitrary and look

something like:

1 var x = 1;

Listing 2.1: Simple custom script.

or

1 function fibonacci(num) {
2 if (num <= 1) return 1;

3 return fibonacci(num − 1) + fibonacci(num − 2);

4 }
5

6 fibonacci(10000);

Listing 2.2: Expensive custom script.

9

10 Matej Šnuderl

Figure 2.1: Traditional approach to rate limiting - request weight is known

upfront, prior to the request processing.

While first script has time complexity of O(1), second has a time com-

plexity of O(2n). There is a significant difference in the compute power we

require in order to execute those scripts. It would be unfair to treat both

requests with same weight in the context of rate limiting. A few of expensive

user scripts could do more harm than a million of simple ones. It is impossible

to calculate/estimate weight of such request upfront. Due to undecidability

of the halting problem we cannot even tell if the user’s script will ever finish,

let alone estimate its running time [5].

Similarly, request weight estimation can be very expensive (include com-

plex computations) and introduce large overheads with increased response

times. Problem is best seen on line 2 of the following listing.

1 def expensive request(request):

2 weight = calculateRequestWeight(request) # This can be very expensive to calculate − user

has to wait for response!

3 if rate limiter.conformsRateLimits(weight):

4 return process request(request)

5 else:

6 return TOO MANY REQUESTS

Listing 2.3: Estimating request weight before request processing may be very

expensive, hence increasing response times.

Integration of traditional approach may have more drawbacks than ben-

efits in such scenarios. Users that rely on quick response times will have

Diplomska naloga 11

to wait longer for responses. We cannot afford that, as one of the goals of

rate limiting is to reduce average response times and latency. We propose an

alternative approach that takes such cases into consideration in the following

chapter.

12 Matej Šnuderl

Chapter 3

Proposed approach

To reduce response time overhead and latency introduced by request weight

estimation, we propose an approach with post request weight correction.

This approach extends the traditional one and corrects the request weight

after request have been processed. At that point, user has already received

his response and we have all the information about the request (its duration,

calculations performed, etc.) to accurately weight it without introducing

response time overhead. This is illustrated on figure 3.1. We still have to do

traditional pre-processing rate limiting to avoid dangerous windows. Were

we not doing that, user could do infinite number of requests in those windows

until some response corrections took place. Post request weight correction

solves problems outlined in chapter 2 but at a cost of a few regressions. In

following sections we use token count as number of requests user can issue

before hitting the limits. Request weight indicates how many tokens should

he consumed.

3.1 Extended bans

Doing post request weight correction may lead to extended bans for API

users. This happens when a user does a request that is weighted more than

his current token count. Token count might become negative thus extending

13

14 Matej Šnuderl

user’s ban. Until positive token count is accumulated, no further request can

be done. If this is not an issue, this can actually be extremely valuable as it

prevents several kind of service abuses.

3.2 Additional storage roundtrip

To correctly update weight after request took place we need to do an addi-

tional roundtrip to our storage to fetch the updated token count. Imagine

user with 5 tokens left issuing a request to web API. We would consume 1

token before the request and consume others with the actual request weight

afterwards. Assuming request is worth 3 tokens, we have to consume 2 more

tokens (we did consume 1 initially). Normally, we would expect token count

after the request to be 2. However, token count state in our storage might

change during the lifespan of this request. Other requests might took place

and consume the tokens. Similarly, new token distribution could occur and

update token count. Have we not taken these cases into account, we would

override those events and introduce huge flaw into our rate limiting imple-

mentation. Additional storage roundtrip can be avoided with databases that

supports atomic decrement operations or multi operation transactions. In

those cases, storage implementation takes care of decrementing the value

currently stored or is able to perform multiple operations in an atomic fash-

ion to avoid race conditions.

Diplomska naloga 15

Figure 3.1: Rate limiting with post request weight correction.

16 Matej Šnuderl

Chapter 4

Rate Limiting algorithms

4.1 Overview

Idea of rate limiting is very abstract and simple. It can be implemented in

numerous ways which led to evolution of a few ”state-of-the-art” algorithms.

They are all trying to achieve the same goal, each with its own drawbacks.

Properties that are common to all:

1. Sampling period

2. Some kind of a counter to keep track of the request count

We will use requests instead of bytes/packets (mostly used in literature

[19, 20, 21]) as a unit of measurement over next sections. Same reasoning

applies to both if we use request weighting (some requests may be more ex-

pensive than others). Algorithms will be compared without the notion of

queues. Queues are needed in network rate limiters as they have to pro-

cess all of the incoming traffic. This significantly complicates rate limiting

implementations and may increase latencies through queue congestions. In-

teresting approach with queue jumping was recently introduced that attains

near-ideal performance [22]. Queues are not required in software rate lim-

iters as we can simply discard violating web requests (block with a HTTP

17

18 Matej Šnuderl

429 response). This also removes additional layer of complexity of the fol-

lowing algorithms. What we call sampling period in coming parts is a unit of

measurement for our counting rules, e.g. second in 10 req/sec, hour in 1000

req/hour,...

Most naive implementation of rate limiting would be to simply increment a

counter with every request and reset it with a start of a new sampling period.

This works but has some disadvantages as discussed in section 4.3. We will

use the following metrics to assess algorithms in the following sections:

1. Memory footprint

2. Accuracy / atomicity (ability to update the state with single operation

during which no other operation might modify the state)

3. Consistent distribution of traffic

It is important to consider all of those when choosing the appropriate

algorithm. Differences might look small but add up quickly in web systems

with high traffic volumes.

4.2 Token bucket algorithm

Token bucket algorithm is very simple and flexible. It is heavily used in

telecommunications networks [3] but can also be used for purposes like schedul-

ing. It is based on an analogy of a fixed capacity bucket into which tokens

are added at a fixed rate. The algorithm is liked for its simplicity which is

nicely illustrated on figure 4.1.

Bucket has a defined maximum capacity/depth of size n and a defined

rate r at which tokens are being added. Bucket might overflow due to its fixed

capacity. This is good for API provider as it prevents tokens to accumulate

when consumption is idle. Token accumulation could lead to spikes and

bursts in consumption which we would like to avoid.

Diplomska naloga 19

Figure 4.1: Visual presentation of the token bucket algorithm. Tokens are

being added into a bucket at fixed rate. Each packet/request going through

network consumes a token. If no token is available, request is denied.

For every user request, algorithm checks for number of tokens currently

in the bucket. If there are less tokens in the bucket than request weights,

rate limit has been exceeded resulting in a denied request. If the request

conforms to all of the policies it is passed through to the requested resource.

Token bucket algorithm is very flexible and never loses/overflows any of the

data [21].

4.2.1 Memory footprint

For each user we have to store timestamp of the last token distribution and

current token count in the bucket. We can store timestamp in a 4-byte

20 Matej Šnuderl

Figure 4.2: Token bucket algorithm provides consistent token distribution

without spikes. Figure displays token distribution for a refill policy of 1

request per 100 milliseconds.

integer and token count into 2-byte short (should suffice for most of the use

cases) resulting in a tiny memory footprint of a total 6 bytes per user. With

1 million active users this would sum into 6MB of space in total.

4.2.2 Accuracy/atomicity

Token bucket algorithm lacks atomicity due to its ”read-and-then-write” na-

ture. For each request we have to first read the record to distribute new

tokens. This can lead to race conditions in distributed environments result-

ing in some unconformant requests passing through the rate limiter. Imagine

there was only one token left in the bucket. If user issued multiple requests

and requests were served by multiple processes that would read the token

count simultaneously before either of them updating it, each process would

Diplomska naloga 21

think user still has a token left and thus not hitting the limits. This could be

solved with locks/transactions/entry processors, but that has to be handled

by the storage.

4.2.3 Consistent distribution of traffic

Token bucket algorithm has consistent token distribution as seen on figure

4.2. It prevents any kind of sudden bursts or spikes in traffic. However,

tokens in bucket may accumulate which can lead to double the amount of

expected requests done in one sampling period. For example, user with rate

limit policy of 10reqs/s might have accumulated full bucket (as a result of

not doing any requests in the previous sampling period). As soon as he starts

issuing the requests, he will consume tokens. Simultaneously, new tokens will

be added to the bucket. Those are added consistently, so the issue is not as

problematic as with the fixed window algorithm, but should be taken into

account.

4.2.4 Example implementation

1 import time

2 from django.http import HttpResponse

3

4 def distribute new tokens(current timestamp, last distribution ts):

5 time elapsed = current timestamp − last distribution ts

6 num new tokens = int(time elapsed / ADD RATE)

7 return num new tokens

8

9 def token bucket view handler(request):

10 current timestamp = time.time()

11 user rate limits = database handler.get(user identifier)

12 last distribution ts = user rate limits.get(”last distribution ts”, current timestamp)

13

14 num new tokens = distribute new tokens(current timestamp, last distribution ts)

15 n tokens = user rate limits.get(”tokens”, BUCKET CAPACITY) + num new tokens

16 n tokens = min(n tokens, BUCKET CAPACITY)

17

18 if n tokens == 0:

19 return HttpResponse(”Too many requests”, status=429)

20 else:

22 Matej Šnuderl

21 database handler[user identifier] = {”tokens”: n tokens − 1, ”last distribution ts”:

current timestamp}
22 return HttpResponse(f”Num requests left: {n tokens − 1}”)

Listing 4.1: Example token bucket algorithm implementation in Python.

4.2.5 Practical considerations

It comes as no surprise that token bucket algorithm is so widely used. Tiny

memory footprint, simplicity and consistent traffic distribution makes it a

perfect candidate for most of the use cases. While implementation is very

simple, token distribution calculations might be problematic for extremely

short distribution intervals (sub milliseconds). This is due to the clock syn-

chronisation/accuracy problems that are very common in distributed systems

[23]. It turns out that such accuracy is rarely needed so this can be ignored

most of the times.

4.3 Fixed window algorithm

Concept of fixed windows can be used for many purposes including rate

limiting. To work, counter for user’s requests in a current rate limit’s window

of length t has to be kept. Initial counter starts at 0. If user exceeds number

of requests stated by the policy in a current window, access is denied. Imagine

we have a sampling period of 1 day. All requests sent throughout the day

would fall into the same window. Start of a new day would mean a fresh

start with all counters being reset to 0. This is nicely illustrated on figure

4.3.

4.3.1 Memory footprint

Memory footprint for fixed window algorithm depends on the implementa-

tion. We need to store at least one 2-byte short for current window’s request

count per user. In this case, window bounds (start and end) have to be kept

by supervisor system and reused by all of the policies. For more flexible

Diplomska naloga 23

Figure 4.3: Visual presentation of fixed window algorithm.

version of the algorithm, window bounds should be kept by each policy. As a

matter of fact we only have to store one window bound, as other can always

be calculated from the window length. This increases memory footprint per

user from 2 bytes to 6 bytes but increases flexibility and accuracy of the

algorithm.

4.3.2 Accuracy / Atomicity

With fixed window algorithm we can achieve atomicity when doing rate limit-

ing. Because of ”write-and-then-read” nature we can assure correct operation

of the system even in distributed environments.

4.3.3 Consistent distribution of traffic

Major drawback of fixed window approach is its inconsistent distribution of

traffic. It can sometimes let through twice the number of allowed requests.

This is more problematic than with token bucket algorithms as this might

happen instantaneously. Tricky part are window boundaries of time intervals

as seen on figure 4.4. User could consume all of his request moments before

window ends and do it again as the new window starts. This can be solved

24 Matej Šnuderl

Figure 4.4: Fixed window token distribution with refill policy of 10 request

per 500 milliseconds. User issued 10 requests at 0.4s into the window’s length.

New window starts at 0.5s and resets the counter to 0. User can issue 10

more request at 0.5s into the window and thus issue 20 requests in just 100

milliseconds. This is more than the rate limit policy states and can lead to

unforeseen problems.

with smaller rate limits in between but this would enforce too severe rate

limits on users and their requests. Moreover, it would additionally complicate

the rate limiter implementation.

4.3.4 Example implementation

1 import time

2 from collections import defaultdict

3 from django.http import HttpResponse

4

5 class FixedWindowManager(object):

6 def init (self, window length=WINDOW LENGTH):

Diplomska naloga 25

7 self.window length = window length

8 self.window start = int(time.time())

9 self.window end = self.window start + self.window length

10

11 def move window(self, database handler):

12 self.reset bucket states(database handler)

13 self.window start = self.window end

14 self.window end = self.window start + self.window length

15

16 def get user bucket key(self, user identifier):

17 return f”{user identifier} {self.window start}”
18

19 def is out of window(self, request ts):

20 return request ts >= self.window end

21

22 def reset bucket states(self, database handler):

23 database handler = defaultdict(int)

24

25 def fixed window view handler(request):

26 current timestamp = int(time.time())

27

28 if fixed window manager.is out of window(current timestamp):

29 fixed window manager.move window(database handler)

30

31 user bucket key = fixed window manager.get user bucket key(user identifier)

32 database handler[user bucket key] += 1

33

34 if database handler[user bucket key] > NUM REQUESTS PER WINDOW:

35 return HttpResponse(f”Too many requests. New requests in {fixed window manager.

window end − current timestamp} seconds.”, status=429)

36 else:

37 return HttpResponse(f”Num requests left: {NUM REQUESTS PER WINDOW −
database handler[user bucket key]}”)

Listing 4.2: Example fixed window algorithm implementation in Python.

4.3.5 Practical considerations

Fixed window approach to rate limiting has a major drawback from its in-

consistent distribution of traffic. Even though we can easily perform atomic

updates in distributed environments, letting through twice as much of the

requests than we would like is unacceptable in many applications. Moreover,

fixed window approach is not consumer friendly after tokens have been con-

sumed. To issue new requests, consumers have to wait until end of the entire

window, which may be very long.

26 Matej Šnuderl

4.4 Sliding window log algorithm

Sliding window log algorithm extends fixed window algorithm with the notion

of a moving window. Naive implementation optimizes for accuracy - it stores

a timestamp for each user’s request in a single sorted data structure like map

or set [24]. This allows for an efficient removal of all outdated entries. To

get numbers of requests in past hour, we have to sum all of the entries in

our data structure. Algorithm optimises for accuracy, but suffer from large

memory footprint and speed overhead.

4.4.1 Memory footprint

Sliding window log algorithm leaves a large memory footprint which might be

problematic in some environments. It stores an entry for each request which

in practice could mean things could get out of control rapidly. An average

amount of 1.000 user request per day with 20.000 active users would result

into 20.000.000 storage entries. With each stored timestamp value being 4

byte integer this would accumulate into a total of 20.000.000 * 4 bytes =

80MB.

4.4.2 Accuracy / atomicity

Algorithm implementations can achieve high accuracy and atomicity due

to algorithm’s ”write-and-then-read” nature. This is achieved by inserting

current timestamp into our data structure before reading its state. Atomic

insertion is supported by most of the key-value databases.

4.4.3 Consistent distribution of traffic

In contrast to fixed window algorithm, sliding window log assure consistent

and stable distribution of traffic. Requests are removed from the sorted set

on the fly as they fall out of the window. Token distribution is therefore

proportional to the distribution of requests issued.

Diplomska naloga 27

4.4.4 Practical considerations

While the accuracy and simplicity of sliding window algorithm might be

useful in many applications, it leaves a huge memory footprint which can

lead to problems in memory limited environments. Moreover, sliding win-

dow algorithm produces one more noteworthy side effect. Namely, algorithm

continues to store request entries even after user exceeds the rate limit. This

may be advantageous in some situations as it extends the ban on potential

abuses of API. On the other hand, it can lead to problems in case of DoS

attacks. Storing entry for every incoming request can quickly lead to out of

memory errors. Some kind of defensive mechanism needs to be introduced

to avoid such failures.

4.4.5 Example implementation

1 import time

2 from django.http import HttpResponse

3

4 def sliding window view handler(request):

5 curent timestamp = time.time()

6 window start = curent timestamp − WINDOW LENGTH

7

8 user rate limits = database handler.get(user identifier)

9 user rate limits[curent timestamp] = curent timestamp

10

11 requests inside sliding window = {ts: ts for ts in user rate limits.keys() if ts >=

window start}
12

13 if len(requests inside sliding window) >= BUCKET CAPACITY:

14 return HttpResponse(f”Too many requests”, status=429)

15

16 database handler[user identifier] = requests inside sliding window

17 return HttpResponse(f”Num requests left {BUCKET CAPACITY − len(

requests inside sliding window)}”)

Listing 4.3: Example sliding window algorithm implementation in Python.

4.5 Sliding window counters algorithm

Being tempted by the high accuracy, consistent distribution of traffic and

atomicity of sliding window log algorithm, we looked for an implementation

28 Matej Šnuderl

Figure 4.5: Sliding window counters algorithm. It groups requests into

smaller time slices reducing its memory footprint.

that could reduce memory footprint without significant tradeoffs. We knew

we had to store timestamps for sliding window approach, but we required

amount of those to be constant in regards to number of requests. To achieve

this we propose splitting sliding window into k intervals each of size 1/k of

the original window. With sampling period of 1 hour and k=60 we get 60

time slices (buckets) of 1 minute. As requests are coming in, we round their

timestamp to the start of the closest bucket. For example, user request at

13:44:58 would fall into 44th bucket - incrementing its token count. Concept

is visualised on figure 4.5. Using this approach, we can control algorithm’s

memory footprint and consistent distribution of traffic. With k set to 1 we

would get a fixed window algorithm implementation.

4.5.1 Memory footprint

Memory footprint can be controlled as needed with regulating the parameter

k. With k=1 algorithm has to store one timestamp and a token count. This

Diplomska naloga 29

accumulates to (6-8) bytes per user depending on data types used. As more

accuracy is needed, footprint increases proportionally to k. Memory footprint

equals k * (6-8) bytes. What makes this algorithm work is it constant memory

footprint regarding to k. This mitigates issues of sliding window log algorithm

during sudden traffic spikes or DoS attacks.

4.5.2 Accuracy / atomicity

As with sliding window log algorithm, bucket updates can be done with

atomic operations.

4.5.3 Consistent distribution of traffic

Consistent distribution of traffic is controlled through parameter k. With

k=1 we face same issues than in fixed window algorithm. As the k increases,

distribution of traffic becomes consistent.

4.5.4 Practical considerations

Using sliding window counters algorithm we were able to find a middle ground

between memory footprint and accuracy that we required. While map data

structure is required with request weighting, it can be implemented using a

set when all request are weighted equally. Either way, data structure should

be consistently sorted to allow for quick removals. Picking appropriate pa-

rameter k depends on your needs and your sampling period. As the sampling

period increases, so should the k (to avoid too long time buckets).

4.6 Comparison

There are a few rate limiting algorithms out there that should be considered

when integrating rate limiting into your system. Suitability of them depends

on one’s use case and environment in which they are deployed. In mem-

ory limited environments algorithm’s footprint is of a huge importance while

30 Matej Šnuderl

some applications require 100% accurate rate limiter. Memory footprint com-

parison for example load of 500req/day and 100req/day is roughly estimated

in table 4.1. It is clear that sliding window log algorithm has incompara-

bly larger memory footprint than others. Furthermore, it is important to

note that sliding window log memory footprint increases proportional to the

number of requests, while other implementations stay constant.

While memory footprint might be of a big importance in many environ-

ments, some APIs favours accuracy and atomicity which is crucial to their

existence. Achieving perfect accuracy and atomicity in distributed environ-

ments is very tough problem to solve without large tradeoffs in performance.

Consistency is another important part of the rate limiting system that should

be taken into consideration. Specific properties of algorithms are summarised

in table 4.2.

Properties

Algorithm Atomicity Memory footprint Traffic consistency

Token bucket No Low Medium

Fixed window Yes Low Low

Sliding window log Yes High High

Sliding window counters Yes Customisable Customisable

Table 4.2: Overview of key properties in discussed rate limiting algorithms

Diplomska naloga 31

R
at

e
li
m

it
in

g
al

go
ri

th
m

[5
00

re
q
/d

ay
]

T
ok

en
b
u
ck

et
F

ix
ed

w
in

d
ow

S
li
d
in

g
w

in
d
ow

lo
g

S
li
d
in

g
w

in
d
ow

co
u
n
te

rs

1.
00

0
u
se

rs
0.

00
6M

B
0.

00
2M

B
-

0.
00

6M
B

2M
B

C
u
st

om
is

ab
le

10
.0

00
u
se

rs
0.

06
M

B
0.

02
M

B
-

0.
06

M
B

20
M

B
C

u
st

om
is

ab
le

10
0.

00
0

u
se

rs
0.

6M
B

0.
2M

B
-

0.
6M

B
20

0M
B

C
u
st

om
is

ab
le

1.
00

0.
00

0
u
se

rs
6M

B
2M

B
-

6M
B

2G
B

C
u
st

om
is

ab
le

[1
.0

00
re

q
/d

ay
]

—
—

—
—

1.
00

0.
00

0
u
se

rs
6M

B
2M

B
-

6M
B

4G
B

C
u
st

om
is

ab
le

T
ab

le
4.

1:
M

em
or

y
fo

ot
p
ri

n
t

su
m

m
ar

is
ed

fo
r

ra
te

li
m

it
in

g
al

go
ri

th
m

s

32 Matej Šnuderl

Chapter 5

Storage

Storage plays a key part in any rate limiting implementation. Records have

to be stored and retrievable at any point. As they have to be read for every

request entering the system, database has to be able to handle huge amount

of concurrent reads and writes. Number of requests hitting the database

backing rate limiter may go through the roof during DoS attacks or service

abuses. To handle such loads, DBMS were designed for datasets that are

accessed (often simultaneously) by many users, for both reading and writing

[25]. DBMS should be able to handle such spikes reliably without failures

and without significant latency penalties. In fact, it should just slow down

the queries of the user violating the rate limit policies. While in memory

storage is a viable option for some applications, it doesn’t work in distributed

environments and can’t recover after system failures. Restoring rate limiting

state under system failures is crucial in environments with refill policies of

long sampling periods. Some kind of persistent storage is needed in such

cases but that comes with its costs, e.g. snapshotting and increased latency.

Key properties for a rate limiting database:

1. Data partitioning / sharding: ability to shard users by their unique

identifiers to improve performance

2. Multi operation transactions: ability to combine multiple opera-

33

34 Matej Šnuderl

tions into a transaction to avoid race conditions

3. Low latency

5.1 SQL vs NoSQL

NoSQL databases evolved from requirements for high performance and scala-

bility in an environment such as the World Wide Web [6]. As performance is

essential to more and more applications, tech leaders like Facebook and Ama-

zon developed their our NoSQL databases like Cassandra and DynamoDB

[26]. For purposes of rate limiting, key-value NoSQL databases are usually

used. They benefit from even higher performance as performing a lock, join

or union can be avoided when querying the data. There are many open-source

key-value databases that are appropriate for the purposes of rate limiting.

They come with multiple programming language support, are industry tested

and employ key properties required for rate limiting listed in previous section.

To name a few top contenders:

1. Redis [27, 26]

2. Hazelcast [28, 29]

3. Aerospike [30, 31]

Your team’s experience with those technologies should motivate decision

on suitable key-value database. Deciding on ”hottest” technology and fol-

lowing the ”hype driven develpment trend” is foolish and should be avoided.

From benchmarks we did, data serialization technique contributed most (more

than a key-value database technology) to performance and latency of rate

limiting. Data serialization influence amount of data that has to be trans-

ferred through network. Network data transfer should be as tiny as possible

since it is usually a bottleneck in distributed systems. Moreover, serializa-

tion technique also lead to reduced memory footprint and smaller state of

the database.

Diplomska naloga 35

5.2 Distributed vs centralised

There are some clear advantages using distributed database e.g. improved

reliability, higher performance and scalability. However, using a distributed

database introduces complexity, difficulties maintaining data integrity and

eventual consistency problems [32]. As reliability and performance are key

to rate limiting, we found distributed storage approach work significantly

better. In centralised database, data is managed by a single DBMS on a

single node. In case of a failure any data access and consequently rate limiting

is impossible.

Data integrity and eventual consistency problems of decentralised data-

bases can be solved with appropriate data partitioning. With data partition-

ing based on user’s unique identifier, same node will always handle requests

from the same user. With this approach, we have a centralised approach to

user’s data integrity and consistency while preserving distributed database

advantages.

5.3 Do we really need persistence?

Ability to restore rate limiting database state after system failures feels very

tempting. However, in large systems with numerous users database per-

sistence can quickly become very expensive. As this is tightly related to

algorithm’s memory footprint, it varies significantly between implementa-

tions. Frequent snapshotting of rate limiting database is required to actually

benefit from database backups. We believe this approach does not scale well

and should be avoided.

It turns out that most of the rate limiting policies, those that are not

business related, have sampling periods below 1 minute or even below 1

second. Persisting those don’t seem very reasonable as they do not contain

any business value. Losing 1 second of rate limiting data that serves just

as a service protection layer seemed impractical. It is a tradeoff for huge

storage saving one should be willing to take. On the other hand, we found

36 Matej Šnuderl

huge value in persistence of our business related policies. In our case, those

could have sampling periods to up to 31 days. Losing 31 days worth of

information about user’s API access might be problematic. We did our API

monetisation based on that data so their integrity and persistence was crucial

to our monetisation model. Moreover, persisting business policies was not

expensive as their percentage was and should stay relatively small.

5.4 Practical considerations

A lot of thought should be put into deciding on suitable storage technol-

ogy, going centralised or decentralised or even thinking about rate limiting

persistence. System requirements may change and require different prop-

erties from the database. Architecture your system in a way that storage

technology can easily be replaced and switched with any implementation ef-

fortlessly. Following this practice enabled us to rapidly benchmark different

storage technologies and iterate our implementation.

Chapter 6

API management

Integration of rate limiting introduces additional layer of complexity into

a system to facilitate some powerful features. As everything should work

seamlessly in the backend, observability of the system in real time is very

important. Management/Support shouldn’t be forced to understand the un-

derlying implementation to configure user policies in real time. They should

be able to answer business related questions like why is some customer being

blocked or when will he be able to do further requests. High level abstrac-

tions and tools around rate limiting implementation are required for this to

be achieved.

6.1 API monetisation

Rate limiting unlocks powerful opportunities to monetise web APIs. More

and more companies are leaning towards this model to drive revenues. Deep

understanding of the API and its values is required to monetise it efficiently.

For monetisation to be successful, value must be obtained by all participants

in the API economy value chain seen on figure 6.1 [33]. On June 11, 2018,

Google has changed their Maps API pricing model [34]. This raised a lot

of dissatisfaction in the IT community with some customers reporting cost

increases for up to twenty times through social media. A lot of their API

37

38 Matej Šnuderl

Figure 6.1: The API economy value chain. [33]

customers became unprofitable, seeking for cheaper alternatives. Any drastic

change to the API pricing models should be backed by a thorough research.

Any change that violate successful monetisation principle may introduce de-

cline in revenues.

6.1.1 Rate limiting algorithm

Rate limiting algorithm can play a major role in API monetisation. Some

customers might have special requirements about their API consumption.

For example, they require all of the tokens available with the start of a

new sampling period for quick constumption. This is achievable by fixed

window algorithm discussed in section 4.3 and by sliding window counters

algorithm proposed in section 4.5. On the other hand, some customers might

require tokens consistently through the whole day. Locking yourself into

one implementation might drive some customers away as request patterns

enforced by the algorithm does not suit their needs. Having the flexibility to

change implementation per user basis may benefit both API providers and

API consumers.

Diplomska naloga 39

6.2 Refill policies

Refill policies abstraction should expose exactly two properties. ”How many”

in ”what time”. Everything else should be an implementation detail and

hidden from customers. We can abstract a refill policy of 20 requests per

hour in XML as:

1 <?xml version=”1.0” encoding=”UTF−8”?>

2 <RefillPolicy>

3 <Capacity>20</Capacity>

4 <SamplingPeriod>HOUR</SamplingPeriod>

5 </RefillPolicy>

Listing 6.1: Refill policy of 20 requests per hour.

Any other format, e.g. JSON can be used that that allows to combine

such policies to create a contract between API consumer and API provider.

1 <?xml version=”1.0” encoding=”UTF−8”?>

2 <Contract>

3 <Identifier>User1235</Identifier>

4

5 <RefillPolicy>

6 <Capacity>20</Capacity>

7 <SamplingPeriod>HOUR</SamplingPeriod>

8 </RefillPolicy>

9

10 <RefillPolicy>

11 <Capacity>1000</Capacity>

12 <SamplingPeriod>DAY</SamplingPeriod>

13 </RefillPolicy>

14 </Contract>

Listing 6.2: Rate limit contract for User1235.

Rate limit contract abstraction as seen on listing 6.2 is understandable to

anyone. Contract is bound to unique user and can define arbitrary number

of policies. Editing policies in XML files should be simple enough, but can

still lead to errors due to human mistakes. Any syntax error in such file could

corrupt it and break the contract or potentially whole system. It is convenient

to edit contracts through some kind of web interface like shown on figure 6.2

and let backend expose APIs to work with the underlying implementation

directly. Management/Support staff shouldn’t know details about where or

how contracts are stored.

40 Matej Šnuderl

6.3 Consumer feedback

To develop consumer friendly rate limiter, one has to think about methods to

provide users with feedback about their limits in real time. API consumers

may depend on your system and any rate limited request may result into

their system’s failure. There are two reasonable approaches that helps your

customers with conformant API consumption.

Response headers

Response headers approach is favoured as it enables consumers to perform

programmatic backoff. Giants like Twitter and Github use headers beginning

with ’X-RateLimit’ or ’x-rate-limit’ to indicate rate limit information. [35]

[36]. This is not a standard but seems to be a common practice amongst

existing software rate limiting implementations. Headers commonly seen in

responses:

1. X-RateLimit-Limit

2. X-RateLimit-Remaining

3. X-RateLimit-Reset

4. Retry-After

Interpretation of headers is algorithm specific but can be briefly sum-

marised by their respective name. API consumer can leverage those headers

and develop their system around them to avoid any potential rate limits and

conform to their policies.

Web interface

Exposing web interface similar to one seen on figure 6.2 looks nice and may

be important to some enterprise customers that are not as technical. It may

help them understand their limits in more intuitive way and make them feel

in control.

Diplomska naloga 41

6.4 Request statistics

Integration of rate limiting comes with an additional extremely useful fea-

ture out of the box - request statistics in real time. We can use this for

self-evident use cases and observability or some more advanced ones like load

balancing. Load balancing increases availability, improves performance by

increasing reliability, increases throughput, maintains, stability, optimises

resource utilisation and provides fault tolerant capability [37]. Rate limiter

holds all data needed in memory so we can efficiently query system’s load

and request statistics for a given sampling period to efficiently utilise load

balancing. This way we can avoid expensive log aggregations that may oth-

erwise be needed. This becomes even more handy in implementations with

request weighting. Log aggregation queries would have to parse each request

log for its weight to collect everything rate limiter has in memory.

Note on request statistics

It would be great to get detailed information about number of requests in a

given sampling period per user, however statistics exposed by rate limiter are

algorithm specific. Quality of exposed statistics differs and its interpretation

should be adjusted to the implementation used.

Token bucket

Token bucket algorithm records only holds their token count. By subtract-

ing token count from token capacity we can obtain number of requests issued

(used tokens) in a given sampling period. Note that this is true only if all

requests are weighted the same. Bucket is also being refilled periodically,

so retrieving actual number of requests issued in a given sampling period is

impossible. To illustrate the problem imagine a bucket with total capacity

of 10 tokens and refill policy of 10 token per minute. At some point our API

consumer issued 10 requests and used all of the tokens in the bucket. 15

seconds later he wants to know how many requests he did in last minute.

42 Matej Šnuderl

Rate limiter would answer with 8 while he actually did 10 requests in the

last minute. Difference of 2 requests is due to the bucket being refilled con-

sistently. 10 requests per minute means a new token is distributed every 6

seconds. In 15 seconds that would mean 2 new tokens in the bucket.

Fixed window

Fixed window suffers from slightly different problem. If user queries about

data inside the same sampling period he did the requests in, everything is

okay. As fast as the new sampling period start counters reset and all data

from previous sampling period is lost. Imagine an 1 hour fixed window from

11:00-12:00. User might consume all of his tokens just before the new window

start. Querying for number of requests in last hour after 12:00 would return

0 which might be confusing to the users.

Sliding window log

To obtain accurate request statistics we have to store all request timestamps.

Sliding window log takes this approach but comes with its on drawbacks

discussed in section 4.4.

Sliding window counters

Accuracy of request statistics in sliding window counters algorithm can be

controlled through its parameter. With k=100 (dividing window into 100

slices), we miss only 1/100 of the requests (requests in bucket that just fell

out of the sliding window slice) of a sampling period. Providing 99% request

statistics accuracy, sliding window counters algorithm performs very well for

load balancing purposes.

Diplomska naloga 43

Figure 6.2: Management web interface for intuitive rate limit contract ma-

nipulation in real time

44 Matej Šnuderl

Chapter 7

Evaluation results

We have been using rate limiting in production for quite some time. Over

the next few sections we present results of its integration and effects it had

on our core services (presented in the following section). Before proceed-

ing with the implementation, we asked ourselves some questions to identify

strengths, weaknesses, opportunities, and threats that rate limiting could

bring us. Those are nicely summarised in the following SWOT matrix.

strengths

1. Reduced average response

times

2. API Monetisation options, in-

creased revenues

3. Prevent service abuses

4. Decreased infrastructure re-

quirements and costs

weaknesses

1. Additional layer of complexity

in the system

2. Maintain DBMS for storing

rate limit records

45

46 Matej Šnuderl

opportunities

1. Attract more users by provid-

ing more reliable system

threats

1. Lose existing customers by en-

forcing too strict rate limits

2. Bug in rate limiting implemen-

tation may crash the request

(making service inaccessible as

every request goes through the

filter)

7.1 Setup

All of the services used for evaluation are deployed in the Amazon’s cloud.

AWS offers reliable, scalable, and inexpensive cloud computing services. To

begin, sliding window counters algorithm discussed in section 4.5 was inte-

grated into services implementing WMS standard. The WMS standard pro-

vides an interface for requesting geo-registered map images from one or more

distributed geospatial databases. A WMS request defines the geographic

layer(s) and area of interest to be processed. The response to the request is

one or more geo-registered map images (returned as JPEG, PNG, etc.) that

can be displayed in a browser application [38].

Scale

In our example, WMS services serve over 50 millions request per month

with spikes of over 1000 requests per second. Those request may be ex-

tremely CPU intensive and render satellite images as seen on figure 7.1 up

to 5000x5000 pixels at resolution of 10 meters. To handle such scale, we are

using 8-12 compute optimized m5d.large instances behind a HAProxy load

balancer.

Diplomska naloga 47

Figure 7.1: Example response to a WMS request (multiple stitched WMS

requests). Sentinel-2 Satellite data post processed with a custom fire script

to highlight burn scars inflicted by California wildfires in November, 2018

[39].

API

All requests to our WMS API have to be authenticated and pass a rate

limiting filter. Typical WMS requests as seen on figure 7.2 are very complex,

searches over petabytes of satellite data and go through multiple phases.

1. Query Configuration service - business logic (fetch user configurations,

check authentication,...)

2. Query Index service (get affected tiles by the request’s area of interest

- complex geometry intersection queries on PostgreSQL database)

3. Search AWS S3 for a JSON config with information about the affected

tiles

4. Search AWS S3 for actual map images (JP2, JPEG, PNG,...)

48 Matej Šnuderl

Figure 7.2: Lifecycle of a typical WMS request in a simplified setup arhitec-

ture hosted on Amazon’s cloud.

5. Execute user’s custom script on the images using Javascript V8 Engine

6. Render image to the user

Weight of a WMS request may vary greatly, depending on its parame-

ters (area of interest, time range, custom user script, satellite datasource,...).

Calculating weight of such request upfront is very expensive due to complex

geographic transformations, network request and database queries, thus ap-

proach proposed in chapter 3 was used. Limiting such request saved us a

vast amount of CPU usage, network requests and database queries.

Diplomska naloga 49

Storage

All rate limiting records are stored in a Hazelcast cluster. Hazelcast’s replica-

tion technique enables Hazelcast clusters to offer high throughput, but suffers

from best-effort consistency [40]. This is perfectly fine for rate limiting and

should be negligible in most use cases. From our benchmarks, Hazelcast cou-

pled with Java significantly outperformed other NoSQL key-value databases

like Redis and Aerospike. Because Hazelcast is written purely in Java, it

is able to perform significant optimisations through JVM. This heavily im-

proved performance of serialization compared to other databases. Our Hazel-

cast cluster network consists of 3 nodes deployed on m5d.2xlarge instances

providing high reliability, performance and throughput for our rate limiting

filter. Moreover, we heavily utilised Hazelcast’s Entry Processor which al-

lows for code to be executed on the Hazelcast node itself (similarly to Lua

scripting in Redis) to prevent race conditions. Before that, we used to fetch

records from Hazelcast, do update logic (distribute new tokens, consume to-

kens) and store them back. Naturally, this led to race conditions, and an

additional network request to the Hazelcast.

7.2 Response times

As rate limiting is done prior to every request being processed it is self evident

that some response latency may be introduced. In our case, we achieved

average rate limit execution times of 5.5-6ms while keeping 95th percentile

consistently around 7 ms. This means we are able to rate limit 95% of all the

requests in less than 7ms. This is a lot faster than we have expected and was

possible due to the high throughput optimisations and configuration of our

Hazelcast in-memory data grid [28]. Some outliers as seen on figure 7.3 were

anticipated, but they occur infrequently and are usually due to our storage

infrastructure cloud provider problems. We had no control over those, as

they are unavoidable in distributed cloud based environments. To avoid

significant overheads in such scenarios we have introduced a hard timeout

50 Matej Šnuderl

Figure 7.3: Rate limit execution time percentiles as seen from our monitoring

tools. 95th percentiles is usually around 7ms. Outliers are result of our

storage cloud provider infrastructure problems.

of 200ms to our rate limiting filter. If our storage cannot respond in this

time, requests are simply passed through as if there was no rate rate limiting

applied.

Prior to rate limiting integration, average response times from our core

APIs resources were around 1.5 seconds. Applying rate limiting introduced

around 0.4% overhead to our response times. We were completely okay with

that as it is not noticeable to our users. However, it turned out that our

average response times actually decreased since integration of rate limiting.

We have observed reduced response times up to 20% in some scenarios. This

usually occurred during high traffic bursts which previously overloaded our

services. Figure 7.4 displays how such high traffic burst looks in action. It

turned out rate limiting helped us reduce average response times, by reducing

number of outliers, by around 8% to ∼1.4s.

Diplomska naloga 51

Figure 7.4: As rate limiting kicks in, average response times starts to stabilise

as number of requests passed through the filter decreases.

7.3 Infrastructure

We always had a few extra backup instances running just in case of a big

traffic spike. Only this way we were able to handle big traffic spikes and all

of the requests normally. Rate limiting enabled us to get rid of those un-

necessary servers. We are also heavily relying on serverless architecture and

AWS Lambdas [41]. Rate limiting significantly reduced number of Lambda

invocations and helped us reduce infrastructure requirements and billing by

around 10%. We are now able to handle more (conformant) requests with less

infrastructure. Moreover, utilising quick lookups to system’s load from our

rate limiting storage we were able to do load balancing much more accurately.

This way we achieved much better usage of our infrastructure and instance

provisioning which further improved our service stability and reliability.

52 Matej Šnuderl

Figure 7.5: Number of users upgrading to paid subscription plans for higher

rate limits. Y axis represents number of users, while X axis represents time

- weekly data points.

7.4 API Monetisaion

Rate limiting enabled us to implement proper API monetisation. Enforcing

rate limits increased our conversion rates of our paid accounts/subscriptions

to obtain higher rate limit quotas. As a consequence, this nicely bumped

our revenues from web APIs. We are now finally able to properly limit our

”trial” users which are able to use our services free of charge for 1 month. As

anyone could create a trial account, we observed some severe service abuses.

To avoid such abuses, we enforced much stricter rate limits for our trial users.

This prevented them from abusing trial accounts indefinitely and encourage

them to upgrade and pay the subscription for higher request quotas. Spike

in our paid subscription plans can be seen on figure 7.5.

Chapter 8

Conclusion

Rate limiting comes as one of the measures software engineers should inte-

grate when facing scalability and reliability problems in web APIs. Moreover,

it unlocks compelling opportunities to monetise web APIs. Integrating rate

limiting into our system, we have significantly reduced number and magni-

tude of request spikes in our system. Suspicious increases in traffic are now

under control, reducing our infrastructure requirements and costs to handle

such traffic. Using approach proposed in chapter 3 we were able to accu-

rately determine request weights without introducing additional overheads

to response times. We have observed reduced average response times to up

to 20% in some scenarios. Amount of errors and crashes was significantly

reduced, as majority of those were occurring during request spikes we could

not handle. Additionally, rate limiting storage was utilised for lookups about

systems’s load to perform load balancing. We were able to do that all of that

without large memory footprint by implementing modified rate limiting al-

gorithm proposed in section 4.5. Lastly, proper API monetisation and usage

abuse prevention of our API was finally implemented. For future work, we

would like to make rate limiting smarter by detecting abuses of individual

licenses. This could further increase our revenues as we would force such

users to upgrade to Enterprise plans for their teams. Such detection could

be done by observing request IP access patterns, however it should be done

53

54 Matej Šnuderl

very efficiently and in real time which poses a tough technical challenge.

Diplomska naloga 55

56 Matej Šnuderl

Bibliography

[1] Mohammad Noormohammadpour and Cauligi S. Raghavendra. Data-

center traffic control: Understanding techniques and trade-offs. CoRR,

abs/1712.03530, 2017.

[2] Barath Raghavan, Kashi Vishwanath, Sriram Ramabhadran, Kenneth

Yocum, and Alex C. Snoeren. Cloud control with distributed rate limit-

ing. SIGCOMM Comput. Commun. Rev., 37(4):337–348, August 2007.

[3] N.U. Ahmed, Qun Wang, and Luis Orozco-Barbosa. Systems approach

to modeling the token bucket algorithm in computer networks. Mathe-

matical Problems in Engineering, 8, 06 2002.

[4] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji

Prabhakar, and Changhoon Kim. Eyeq: Practical network performance

isolation for the multi-tenant cloud. In Proceedings of the 4th USENIX

Conference on Hot Topics in Cloud Ccomputing, HotCloud’12, pages

8–8, Berkeley, CA, USA, 2012. USENIX Association.

[5] Michael Sipser. Introduction to the Theory of Computation. Course

Technology, second edition, 2006.

[6] Slavko Žitnik Aleš Kumer Marko Bajec Aljaž Zrnec, Lovro Šubelj. Po-

datkovne baze nosql. Uporabna informatika, 20(3):164–172, 2012.

[7] O. Bonaventure. Computer Networking: Principles, Protocols, and

Practice. The Saylor Foundation, 2011.

57

58 Matej Šnuderl

[8] Keqiang He, Weite Qin, Qiwei Zhang, Wenfei Wu, Junjie Yang, Tian

Pan, Chengchen Hu, Jiao Zhang, Brent Stephens, Aditya Akella, and

Ying Zhang. Low latency software rate limiters for cloud networks.

In Proceedings of the First Asia-Pacific Workshop on Networking, AP-

Net’17, pages 78–84, New York, NY, USA, 2017. ACM.

[9] RFC6585 - Additional http status codes. https://tools.ietf.org/

html/rfc6585. Accessed: 2018-09-18.

[10] What does a request mean? https://sentinel-hub.com/faq/what-

does-request-mean. Accessed: 2018-09-25.

[11] Rate limiting Middleware in GO. https://github.com/ulule/

limiter. Accessed: 2018-10-31.

[12] Rate limiting Middleware for Node.js. https://github.com/

jhurliman/node-rate-limiter. Accessed: 2018-10-31.

[13] Kong. https://konghq.com/kong-community-edition/. Accessed:

2018-08-01.

[14] WSO2. https://wso2.com/. Accessed: 2018-08-01.

[15] Announcing Zuul: Edge Service in the Cloud. https://medium.

com/netflix-techblog/announcing-zuul-edge-service-in-the-

cloud-ab3af5be08ee. Accessed: 2018-08-27.

[16] Nginx API Gateway. https://www.nginx.com/solutions/api-

gateway/. Accessed: 2018-08-27.

[17] API Umbrella - Open Source API Management. https://

apiumbrella.io/. Accessed: 2018-08-27.

[18] Tyk Open Source API Gateway. https://tyk.io/. Accessed: 2018-08-

27.

https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc6585
https://sentinel-hub.com/faq/what-does-request-mean
https://sentinel-hub.com/faq/what-does-request-mean
https://github.com/ulule/limiter
https://github.com/ulule/limiter
https://github.com/jhurliman/node-rate-limiter
https://github.com/jhurliman/node-rate-limiter
https://konghq.com/kong-community-edition/
https://wso2.com/
https://medium.com/netflix-techblog/announcing-zuul-edge-service-in-the-cloud-ab3af5be08ee
https://medium.com/netflix-techblog/announcing-zuul-edge-service-in-the-cloud-ab3af5be08ee
https://medium.com/netflix-techblog/announcing-zuul-edge-service-in-the-cloud-ab3af5be08ee
https://www.nginx.com/solutions/api-gateway/
https://www.nginx.com/solutions/api-gateway/
https://apiumbrella.io/
https://apiumbrella.io/
https://tyk.io/

Diplomska naloga 59

[19] J. Kidambi, D. Ghosal, and B. Mukherjee. Dynamic token bucket

(DTB): a fair bandwidth allocation algorithm for high-speed networks.

In Proceedings Eight International Conference on Computer Communi-

cations and Networks (Cat. No.99EX370), pages 24–29, 1999.

[20] Han Seok KIM, Eun-Chan PARK, and Seo Weon HEO. A Token-Bucket

Based Rate Control Algorithm with Maximum and Minimum Rate Con-

straints. IEICE Transactions on Communications, E91.B(5):1623–1626,

2008.

[21] Andrew S. Tanenbaum and David J. Wetherall. Computer Networks.

Prentice Hall Press, Upper Saddle River, NJ, USA, 4th edition, 2010.

[22] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M.

Watson, Andrew W. Moore, Steven Hand, and Jon Crowcroft. Queues

Don’T Matter when You Can JUMP Them! In Proceedings of the 12th

USENIX Conference on Networked Systems Design and Implementation,

NSDI’15, pages 1–14, Berkeley, CA, USA, 2015. USENIX Association.

[23] Hongliang Li, Xuan Feng, Song Shi, Fang Zheng, and Xianghui Xie. A

High-Accuracy Clock Synchronization Method in Distributed Real-Time

System. In Weixia Xu, Liquan Xiao, Jinwen Li, Chengyi Zhang, and

Zhenzhen Zhu, editors, Computer Engineering and Technology, pages

48–157, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[24] An alternative approach to rate limiting. https://blog.figma.com/

an-alternative-approach-to-rate-limiting-f8a06cf7c94c. Ac-

cessed: 2018-07-27.

[25] Raymond Board. Distributed Database Systems. IASSIST (Interna-

tional Association for Social Science Information Services and Technol-

ogy) Quaterly, pages 4–10, 1993.

https://blog.figma.com/an-alternative-approach-to-rate-limiting-f8a06cf7c94c
https://blog.figma.com/an-alternative-approach-to-rate-limiting-f8a06cf7c94c

60 Matej Šnuderl

[26] Matti Paksula. Persisting Objects in Redis Key-Value Database. Tech-

nical report, University of Helsinki, Department of Computer Science,

2018.

[27] Redis. https://redis.io/. Accessed: 2018-08-09.

[28] Hazelcast. https://www.aerospike.com/lp/aerospike-community-

edition/. Accessed: 2018-08-09.

[29] Ben Evans. An Architect’s View of Hazelcast. Technical report, Hazel-

cast Inc., 2015.

[30] Aerospike. https://www.aerospike.com/. Accessed: 2018-08-09.

[31] V. Srinivasan, Brian Bulkowski, Wei-Ling Chu, Sunil Sayyaparaju, An-

drew Gooding, Rajkumar Iyer, Ashish Shinde, and Thomas Lopatic.

Aerospike: Architecture of a Real-time Operational DBMS. Proc. VLDB

Endow., 9(13):1389–1400, September 2016.

[32] D.S.Hiremath and Dr.S.B.Kishor. Distributed Database Problem areas

and Approaches. IOSR Journal of Computer Engineering (IOSR-JCE),

2:15–18, 2016.

[33] L. England A. Glickenhouse. API Monetization – Understanding your

Business Model Options. https://www-01.ibm.com/common/ssi/cgi-

bin/ssialias?htmlfid=KUW12387USEN, 2016. Accessed: 2018-08-09.

[34] Google Maps API pricing changes. https://developers.google.

com/maps/billing/important-updates#billing_changes. Accessed:

2018-09-24.

[35] Rate Limiting at Github. https://developer.github.com/v3/rate_

limit/. Accessed: 2018-09-18.

[36] Rate Limiting at Twitter. https://developer.twitter.com/en/

docs/basics/rate-limiting.html. Accessed: 2018-09-18.

https://redis.io/
https://www.aerospike.com/lp/aerospike-community-edition/
https://www.aerospike.com/lp/aerospike-community-edition/
https://www.aerospike.com/
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=KUW12387USEN
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=KUW12387USEN
https://developers.google.com/maps/billing/important-updates#billing_changes
https://developers.google.com/maps/billing/important-updates#billing_changes
https://developer.github.com/v3/rate_limit/
https://developer.github.com/v3/rate_limit/
https://developer.twitter.com/en/docs/basics/rate-limiting.html
https://developer.twitter.com/en/docs/basics/rate-limiting.html

Diplomska naloga 61

[37] Zahra Mohammed Elngomi and Khalid Khanfar. A Comparative Study

of Load Balancing Algorithms: A Review Paper. International Journal

of Computer Science and Mobile Computing, 5:448–458, 06 2016.

[38] What is an Open API? https://docs.hazelcast.org/docs/latest-

development/manual/html/Consistency_and_Replication_Model.

html. Accessed: 2018-11-12.

[39] Hot spots and burn scar from #MalibuFire #WoolseyFire #HillFire

as seen by our #Sentinel2. https://twitter.com/CopernicusEU/

status/1061544764334583808. Accessed: 2018-11-13.

[40] Hazelcast Consistency and Replication Model. https:

//docs.hazelcast.org/docs/latest-development/manual/html/

Consistency_and_Replication_Model.html. Accessed: 2018-11-12.

[41] AWS Lambda. https://aws.amazon.com/lambda/. Accessed: 2018-

11-12.

https://docs.hazelcast.org/docs/latest-development/manual/html/Consistency_and_Replication_Model.html
https://docs.hazelcast.org/docs/latest-development/manual/html/Consistency_and_Replication_Model.html
https://docs.hazelcast.org/docs/latest-development/manual/html/Consistency_and_Replication_Model.html
https://twitter.com/CopernicusEU/status/1061544764334583808
https://twitter.com/CopernicusEU/status/1061544764334583808
https://docs.hazelcast.org/docs/latest-development/manual/html/Consistency_and_Replication_Model.html
https://docs.hazelcast.org/docs/latest-development/manual/html/Consistency_and_Replication_Model.html
https://docs.hazelcast.org/docs/latest-development/manual/html/Consistency_and_Replication_Model.html
https://aws.amazon.com/lambda/

	Abstract
	Introduction
	Motivation
	Thesis goals
	Related work
	Middlewares
	API Gateways

	Thesis overview

	Traditional approach
	Proposed approach
	Extended bans
	Additional storage roundtrip

	Rate Limiting algorithms
	Overview
	Token bucket algorithm
	Memory footprint
	Accuracy/atomicity
	Consistent distribution of traffic
	Example implementation
	Practical considerations

	Fixed window algorithm
	Memory footprint
	Accuracy / Atomicity
	Consistent distribution of traffic
	Example implementation
	Practical considerations

	Sliding window log algorithm
	Memory footprint
	Accuracy / atomicity
	Consistent distribution of traffic
	Practical considerations
	Example implementation

	Sliding window counters algorithm
	Memory footprint
	Accuracy / atomicity
	Consistent distribution of traffic
	Practical considerations

	Comparison

	Storage
	SQL vs NoSQL
	Distributed vs centralised
	Do we really need persistence?
	Practical considerations

	API management
	API monetisation
	Rate limiting algorithm

	Refill policies
	Consumer feedback
	Request statistics

	Evaluation results
	Setup
	Response times
	Infrastructure
	API Monetisaion

	Conclusion
	Literatura

