
Univerza v Ljubljani

Fakulteta za računalnǐstvo in informatiko

Jasna Urbančič

Detekcija prevoznega sredstva z

mobilnimi senzorji

MAGISTRSKO DELO

MAGISTRSKI PROGRAM DRUGE STOPNJE

RAČUNALNIŠTVO IN INFORMATIKA

Mentor: doc. dr. Veljko Pejović

Somentor: prof. dr. Dunja Mladenić

Ljubljana, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ePrints.FRI

https://core.ac.uk/display/162020615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




University of Ljubljana

Faculty of Computer and Information Science

Jasna Urbančič

Transportation mode detection based

on mobile sensor data

MASTER’S THESIS

THE 2nd CYCLE MASTER’S STUDY PROGRAMME

COMPUTER AND INFORMATION SCIENCE

Supervisor: doc. dr. Veljko Pejović

Co-supervisor: prof. dr. Dunja Mladenić

Ljubljana, 2018





Copyright. The results of this master’s thesis are the intellectual property of the author,

the Faculty of Computer and Information Science, University of Ljubljana, and Jožef

Stefan Institute. For the publication or exploitation of the master’s thesis results, a

written consent of the author, the Faculty of Computer and Information Science, Jožef

Stefan Institute, and the supervisor is necessary.

c⃝2018 Jasna Urbančič





Acknowledgments

I would like to express my sincere gratitude to my Master’s thesis supervisor

doc. dr. Veljko Pejović and co-supervisor prof. dr. Dunja Mladenić for their

support, guidance, and patience during the process of writing this thesis. I

want to thank Luka Bradeško for giving me the opportunity to work on trans-

portation mode detection within the OPTIMUM project. I would like to thank

Matej Senožetnik, who jointly with Luka Bradeško developed the library that

was crucial to the data collection. Additionally, I would like to thank all my

colleagues from the Artificial Intelligence Laboratory (Jožef Stefan Institute)

and others, especially Sebastjan Fabijan, Zala Herga, Blaž Novak, Erik No-

vak, and Tine Šubic. I would also like to thank the members of the committee

izr. prof. dr. Zoran Bosnić, izr. prof. dr. Patricio Bulić, and doc. dr. De-

jan Lavbič for their comments, critiques, and suggestions that allowed me to

improve my work. Finally, I am grateful for all the support I received from

my family.

This work was supported by the Slovenian Research Agency under project

Integration of mobile devices into survey research in social sciences: Devel-

opment of a comprehensive methodological approach (J5-8233), and the ICT

program of the EC under project OPTIMUM (H2020-MG-636160).

Jasna Urbančič, 2018









Contents

Povzetek

Abstract

Razširjeni povzetek i

I Kratek pregled sorodnih del . . . . . . . . . . . . . . . . . . . ii

II Predlagana metoda . . . . . . . . . . . . . . . . . . . . . . . . iii

III Eksperimentalna evalvacija . . . . . . . . . . . . . . . . . . . . v

IV Sklep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction 1

2 Related work 5

3 Proposed approach 13

3.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Feature analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Evaluation 43

4.1 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . 44

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



CONTENTS

5 Conclusion 65



List of used acronmys

acronym meaning

CDR call detail records

GPS global positioning system

GSM global system for mobile (communications)

CA classification accuracy

kNN k-nearest neighbors

OSM OpenStreetMap

DHHM discrete hidden Markov model

API application program interface

SPD stay-point detection

GUI graphical user interface

RF random forest

SVM support vector machine

NN neural network

RBF radial basis function

PCA principal components analysis





Povzetek

Naslov: Detekcija prevoznega sredstva z mobilnimi senzorji

V delu obravnavamo detekcijo prevoznega sredstva z mobilnimi senzorji

in metodami strojnega učenja. Pri tem uporabljamo kratke vzorce podat-

kov iz pospeškometra, ki jih zajamemo med uporabnikovim potovanjem v

vozilu. Razločujemo med tremi prevoznimi sredstvi — avtom, avtobusom

in vlakom. Vzorce predobdelamo tako, da iz pospeškov izločimo gravitacij-

sko komponento. Iz vzorcev izločimo statistične in frekvenčne značilke ter

značilke vrhov. S statistično analizo značilk dobimo vpogled v podatke. Do-

datno analiziramo značilke preko različnih množic značilk, ki jih uporabljamo

za klasifikacijo. Kot klasifikatorje uporabljamo naključne gozdove, metodo

podpornih vektorjev in nevronske mreže. Z uporabo nevronskih mrež smo

pravilno razpoznali 65% avtomobilov, 63% avtobusov in 18% vlakov.

Ključne besede

strojno učenje, mobilno zaznavanje, podatkovno rudarjenje, razpoznava vzor-

cev, inteligentni transportni sistemi





Abstract

Title: Transportation mode detection based on mobile sensor data

This thesis addresses transportation mode detection based primarily on

mobile phone data using machine learning methods. Our approach uses short

samples of accelerometer readings taken while traveling in a vehicle to dis-

tinguish between three modalities — car, bus, and train. We use gravity

estimation to pre-process the samples. We extract features from statistical,

frequency-based, and peak-based domain. With statistical analysis of the

features we gain an introspective into the data. To additionally analyze the

features we construct several feature sets for classification. As a classifier we

use random forest, support vector machine, and neural network. Our ap-

proach correctly classifies 65% cars, 63% buses, and 18% trains using neural

network.

Keywords

machine learning, mobile sensing, data mining, pattern recognition, intelli-

gent transportation systems





Razširjeni povzetek

Dandanes ima velik del svetovnega prebivalstva pametni telefon z mnogo apli-

kacijami. Nekatere izmed njih spremljajo kontekst oziroma okolje, v katerem

se uporabnik nahaja, z množico senzorjev, vgrajenih v telefon. Beleženje in

analizo informacij o okolici lahko uporabimo kot podporni sistem pri nadzo-

rovanih spremembah vedenja, na primer pri odvajanju od kajenja, ali za za-

znavo sprememb v obnašanju, ki lahko nakazujejo težave v duševnem zdravju,

na primer depresijo.

Podobno lahko aplikacije z zaznavanjem okolice uporabniku predlagajo

uporabo bolj trajnostnih prevoznih sredstev, za kar pa potrebujemo učinkovite

in zanesljive algoritme za detekcijo prevoznega sredstva. Večina sodobnih

mobilnih telefonov je opremljena s pospeškometrom, giroskopom, magneto-

metrom in GPS. Z vgrajenimi sistemi lahko razločujemo med mirovanjem,

hojo, tekom, kolesarjenjem in vožnjo v vozilu, ne pa med različnimi tipi vo-

zil, na primer avtom, avtobusom in vlakom. Razlikovanje med tipi vozil je

ključno za raziskave mobilnosti, usmerjevalne aplikacije v mestnem okolju in

ko želimo uporabnike preusmeriti k trajnostni mobilnosti.

Naš cilj je razviti metodo za zaznavanje prevoznega sredstva na podlagi

podatkov iz senzorjev v mobilnem telefonu, ki v skoraj realnem času razlikuje

med vožnjo v avtomobilu, avtobusu in vlaku, je energijsko učinkovita, ne

zahteva uporabe prenosa podatkov in je računsko nezahtevna. Raziskovalna

vprašanja vključujejo predobdelavo signalov, luščenje in izbiro značilk, izbiro

evalvacijskega scenarija in evalvacijskih metrik, ter izbiro klasifikatorja.

Prvi prispevek našega dela je pristop k zajemanju senzorskih podatkov.

i



ii

Pri tem si pomagamo z vgrajenimi sistemi in signal zajamemo le, če operacij-

ski sistem zazna vožnjo v vozilu. Poleg tega zajamemo kratek, pet sekundni

vzorec, da varčujemo z baterijo in količino podatkov, ki se prenaša med telefo-

nom in strežnikom. Drugi prispevek so uporabljene značilke, saj je bila taka

kombinacija značilk do sedaj redko uporabljena. Poleg tega smo dodatno

analizirali značilke, da lahko ocenimo doprinos posamezne skupine značilk

oziroma signala k rezultatu klasifikacije. Zadnji prispevek je jasno definiran

evalvacijski scenarij s tremi strogo ločenimi množicami — učno, validacijsko

in testno.

I Kratek pregled sorodnih del

Čeprav so se prvi poskusi zaznave aktivnosti začeli še pred razvojem pame-

tnih telefonov, se je področje zares razcvetelo z razvojem mobilnih telefonov

z vgrajenimi senzorji [1]. Za zaznavo prevoznega sredstva lahko uporabimo

triangulacijo signala GSM ali lokalne brezžične signale, a so te metode precej

nezanesljive v primerjavi z GPS in pospeškometrom [2]. V zadnjem času je

največ poudarka na metodah, ki temeljijo na sledeh GPS in/ali podatkih iz

pospeškometra.

V splošnem metode za detekcijo prevoznega sredstva sledijo poteku dela,

ki je prikazan na Sliki 2.1. Podatke zberemo s pomočjo vgrajenih senzor-

jev. Oznake za nadzorovano učenje najpogosteje zberemo skupaj s podatki.

Običajno zbiranju podatkov sledi predobdelava. V predobdelavi signale fil-

triramo, da izločimo šum in očitne napake v podatkih. Iz predobdelanih po-

datkov nato izločimo značilke za klasifikacijo. Najpogosteje značilke določi

raziskovalec.

Pospeškometer meri pospešek v treh smereh, relativno glede na orienta-

cijo naprave, zato uporaba telefona med vožnjo vpliva na meritve. Nekateri

raziskovalci testnim uporabnikom dajo navodila, naj med meritvami ne upo-

rabljajo telefona. V izogib omejitvam lahko uporabimo filtriranje in oceno

gravitacije v predobdelavi [3].



iii

Značilke izhajajo iz petih skupin — statistične, časovne, frekvenčne, zna-

čilke vrhov in segmentne [3]. Statistične, časovne in frekvenčne značilke so

običajno izračunane iz nekaj sekundnih oken signalov in so zasnovane tako,

da zaznajo visokofrekvenčno gibanje uporabnika, motorja in kontakt med

kolesi in tlemi [3]. Segmentne značilke so izračunane iz celotnega segmenta

vožnje [3], značilke vrhov pa so izračunane glede na lastnosti vrhov, ki se

pojavijo v signalu, in naj bi zaznale nizkofrekvenčno gibanje, kot je na primer

pospeševanje ali zaviranje. [3].

Najpogosteje uporabljene metode strojnega učenja za zaznavo prevoznega

sredstva s podatki iz pospeškometra so odločitvena drevesa, metoda podpor-

nih vektorjev in naključni gozdovi [2, 4], zadnje čase pa so priljubljene tudi

nevronske mreže. Pogosto ti klasifikatorji nastopajo v ansamblih [5].

II Predlagana metoda

Za zbiranje podatkov uporabljamo mobilno knjižnico NextPin [6], ki jo je

razvil Laboratorij za umetno inteligenco na Institutu Jožef Stefan. Knjižnica

je vključena v dve brezplačni mobilni aplikaciji. Prva je OPTIMUM Intelli-

gent Mobility, ki jo je razvil konzorcij projekta Optimum [7], in je v osnovi

aplikacija za načrtovanje multimodalnih poti v treh evropskih mestih — na

Dunaju, v Birminghamu in v Ljubljani. V obdobju pilotnega testiranja v

maju in juniju 2018 je aplikacijo dnevno uporabljalo približno 120 uporab-

nikov, ki so bili za sodelovanje v testiranju nagrajeni. Druga aplikacija je

Mobility patterns, ki so jo tako kot knjižnico NextPin razvili na Institutu

Jožef Stefan. Aplikacija služi kot dnevnik premikov in detektira mobilnostne

vzorce uporabnikov. Ima približno 10 rednih uporabnikov, večino predsta-

vljajo člani laboratorija.

Knjižnica NextPin uporablja pasivno zbiranje podatkov, kar pomeni, da

ne zahteva uporabnikove komunikacije z aplikacijo za zajemanje podatkov.

Za razliko od klasičnega pasivnega pristopa, ki podatke zajema ves čas ne

glede na to, ali se uporabnik premika ali ne, v našem primeru knjižnica vsakih



iv

30 sekund pridobi uporabnikovo GPS lokacijo in informacije o aktivnosti. Če

sistemski modul za razpoznavanje aktivnosti zazna vožnjo v vozilu, aplikacija

zajame pet sekundni vzorec signala iz pospeškometera. Aplikacija pošlje

informacije o lokaciji in aktivnosti ter vzorec iz pospeškometra, če je le-tega

zajela, na strežnik za nadaljnjo obdelavo.

Prvi korak pri analizi signala iz pospeškometra je predobdelava. V pred-

obdelavi najprej ponovno vzorčimo signal s frekvenco 100Hz, saj podatke na

telefonih z operacijskim sistemom Android zajemamo z najvǐsjo možno fre-

kvenco. Ponovno vzorčenje nam zagotovi, da imajo vsi primeri natančno 500

točk v časovni vrsti. Amplitude ponovno vzorčenih signalov smo prikazali

na Sliki 3.3. Po vzorčenju iz signalov odstranimo konstantno komponento

pospeška, ki je posledica gravitacije. Sledimo metodi predlagani v [8]. Di-

namično komponento pospeška, ki je posledica premikanja, dobimo tako, da

od meritev na posamezni osi znotraj določenega časovnega okna odštejemo

povprečje teh meritev. S to metodo lahko poleg dinamične komponente po-

speška izračunamo tudi vertikalno in horizontalno komponento, ki ocenjujeta

pospešek v vertikalni smeri oziroma pospešek v ravnini. Predobdelane signale

smo prikazali na Sliki 3.4 in opisali v Tabeli 3.3.

Predobdelavi sledi luščenje značilk. Uporabljamo značilke iz treh skupin

— statistične, frekvenčne in značilke vrhov. Statistične značilke vključujejo

povprečje, standardni odklon, poševnost ter različne percentile. Frekvenčne

značilke temeljijo na predstavitvi signala v frekvenčnem prostoru, najpogo-

steje pa se uporablja spektralna gostota pri določeni frekvenci oziroma na

določenem frekvenčnem intervalu. Značilke vrhov vključujejo število vrhov

v signalu ter njihovo vǐsino, širino in površino, ki jo zavzemajo. Skupine

značilk s primeri le-teh so podrobno opisane v Tabeli 2.1. Značilke, ki jih

uporabljamo v našem pristopu, so navedene v Tabeli 3.4 skupaj s signali, iz

katerih jih izluščimo. Potek dela za vsako skupino značilk je orisan na Sliki

3.5.

Izluščene značilke nato analiziramo s statističnimi testi. Statistični testi

nam pomagajo razumeti povezave med različnimi značilkami in signali. S ko-



v

relacijskim testom preverimo korelacijo med značilkami znotraj iste skupine

značilk in med različnimi skupinami značilk. Opazili smo, da je poševnost

slabo korelirana z ostalimi statističnimi značilkami, prav tako so med sabo

slabo korelirane frekvenčne značilke z izjemo frekvenčnega spektra med 25Hz

in 40Hz. Statistične in frekvenčne značilke niso korelirane. Značilke vrhov

so korelirane s statističnimi značilkami, ne pa s frekvenčnimi. S pomočjo

D’Agostino-Pearsonovega testa smo izvedeli, da značilke za posamezen razred

niso normalno porazdeljene. Poleg tega se oblike porazdelitev za nekatere

značilke razlikujejo po obliki, kar predstavlja oviro pri Kruskal-Wallisovem

H-testu. Kruskal-Wallisov H-test preverja hipotezo enakosti median vzor-

cev za posamezne razrede. Mediane so se statistično pomembno razlikovale

pri povprečjih in poševnostih dinamičnega in horizontalnega pospeška vzdolž

posameznih osi.

S pomočjo tega znanja smo definirali nekaj množic značilk, ki smo jih

nato uporabili pri klasifikaciji primerov z naključnimi gozdovi, metodo pod-

pornih vektorjev in nevronskimi mrežami. Množice smo oblikovali tako, da

bi nam omogočile dodaten vpogled v doprinos posamezne skupine značilk

oziroma signala k rezultatu klasifikacije. Množice, ki smo jih definirali, so

predstavljene v Tabeli 3.7.

III Eksperimentalna evalvacija

Za evalvacijo predlagane metode smo množico podatkov razdelili na tri pod-

množice: učno, testno in validacijsko, glede na čas zajema vzorca. S tem

smo se izognili metodološko vprašljivi uporabi vzorcev, ki so bili posneti na

istem potovanju, v različnih podmnožicah. Porazdelitev razredov v posame-

znih množicah je prikazana na Sliki 4.1. Evalvacijski scenarij je prikazan na

Sliki 4.2. Model najprej naučimo na učni množici in evalviramo na valida-

cijski množici. Postopek ponovimo z različnimi modelskimi parametri, da

najdemo optimalno kombinacijo parametrov. Nato združimo učno in valida-

cijsko množico ter na njej naučimo model z optimalnimi parametri. Model



vi

evalviramo na testni množici.

V fazi evalvacije za vsako prevozno sredstvo preštejemo število pravilno

pozitivnih, pravilno negativnih, napačno pozitivnih in napačno negativnih

primerov. Te vrednosti uporabimo za izračun mer učinkovitosti. Upora-

bljamo klasifikacijsko točnost, natančnost, priklic in mero F1. Klasifikacijsko

točnost izračunamo za celotno množico, ostale mere pa za vsak razred pose-

bej. Ocene združimo v eno vrednost s pomočjo makro povprečenja. Odločili

smo se, da bo naša glavna mera F1 mera, saj želimo zmanǰsati število lažno

pozitivnih in lažno negativnih primerov za vsak razred.

Najprej smo množico podatkov razvrstili s pomočjo trivialnih klasifika-

torjev — večinskega in naključnega klasifikatorja. Rezultati so prikazani v

Tabeli 4.2, z obema smo dosegli mero F1 0.30. Za naključni klasifikator smo

matriko zamenjav prikazali v Tabeli 4.3.

Prvi netrivialni klasifikator, ki smo ga preizkusili, je naključni gozd. Iz-

brali smo ga, ker dobro deluje na nelinearnih vzorcih v podatkih. Sprva smo

naključne gozdove učili na vnaprej definiranih množicah iz Tabele 3.7. Re-

zultati so zbrani v Tabeli 4.4. Najbolǰso vrednost mere F1, ki znaša 0.42,

smo dosegli z množico značilk, ki vsebuje statistične značilke horizontalnega

pospeška. Opazili smo, da bolǰse rezultate dosežemo z množicami, ki ne

vsebujejo značilk vrhov.

Da bi izbolǰsali klasifikacijo, smo podatke transformirali z razčlembo načelnih

sestavin (PCA). Prve tri načelne sestavine v vseh množicah značilk pojasnijo

več kot 80% variance v podatkih, zato smo se odločili za transformacijo v

tridimenzionalni prostor. Z uporabo PCA smo dosegli izbolǰsanje mere F1

za vsaj 0.05 pri večini vnaprej definiranih množic značilk. Tako kot prej

smo najbolǰso vrednost mere F1, 0.47, dosegli z množico značilk, ki vsebuje

statistične značilke horizontalnega pospeška.

Dodatno smo implementirali izbiro značilk z naključnim gozdom. V pr-

vem eksperimentu smo začeli s celotno množico izluščenih značilk, nato pa

smo postopoma izločali značilke, pri katerih smo dosegli bolǰso F1 mero, če

smo jih izpustili iz množice značilk, uporabljene za klasifikacijo. V drugem



vii

eksperimentu smo začeli z množicami značilk moči 1, nato pa smo v množice

postopoma dodajali značilke, ki so pripomogle k izbolǰsanju mere F1. Mera

F1 v odvisnosti od števila značilk pri takšni izbiri je prikazana na Sliki 4.3.

Z dodajanjem značilk smo dosegli mero F1 0.48, z odvzemanjem pa 0.49.

Nadaljevali smo z metodo podpornih vektorjev. Tako kot pri naključnih

gozdovih smo tudi tokrat z vnaprej definiranimi množicami značilk najbolǰso

vrednost mere F1, 0.41, dosegli z množico značilk, ki vsebuje statistične

značilke horizontalnega pospeška. Enako vrednost smo dosegli pri uporabi

še dveh množic značilk, vsi rezultati pa so navedeni v Tabeli 4.10. Opazili

smo, da metoda podpornih vektorjev v primerjavi z naključnih gozdom več

avtobusov razvrsti pravilno, a je manj zanesljiva pri razvrščanju avtomobilov.

Tudi tokrat smo podatke transformirali s PCA, kjer smo opazili podobno

izbolǰsanje kot pri naključnih gozdovih. Rezultati so prikazani v Tabeli 4.12.

Poskusili smo še z binarno klasifikacijo, s katero so pravilno razpoznali

55% avtov, 42% avtobusov in 13% vlakov ob uporabi strategije eden proti

ostalim. To je slabše kot v večini eksperimentov z večrazredno klasifikacijo.

Opazili smo, da je horizontalen pospešek bolj uporaben pri zaznavi vožnje v

avtu in avtobusu, dinamičen pa pri zaznavi vlaka. Iz teh rezultatov sklepamo,

da uporaba metode podpornih vektorjev ni optimalna za ta problem.

Nazadnje smo testirali še klasifikacijo z nevronskimi mrežami, pri čemer

smo se omejili na mreže z največ tremi plastmi. V povprečju smo dosegli

vǐsje vrednosti F1 mere kot pri naključnih gozdovih in metodi podpornih

vektorjev. Najbolǰse rezultate smo dosegli z uporabo značilk dinamičnega

pospeška, kar je ravno nasprotno kot pri naključnih gozdovih in metodi pod-

pornih vektorjev. Rezultate smo predstavili v Tabeli 4.15. Matrika zamenjav

v Tabeli 4.16 razkriva, da smo z uporabo nevronskih mrež pravilno klasifi-

cirali večino primerov dveh prevoznih sredstev. Pravilno smo označili 65%

avtov, 63% avtobusov in 18% vlakov, kar je bolje kot v preǰsnjih poskusih.

Opazili smo, da v tem primeru priklic doseže najvǐsjo vrednost do sedaj, kar

pod vprašanje postavlja našo izbiro glavne metrike.



viii

IV Sklep

V delu smo pokazali, da je mogoče zaznati prevozno sredstvo na podlagi

vzorcev, zajetih s senzorjev mobilnega telefona, čeprav je dobre rezultate

težko doseči. Naši rezultati so bistveno slabši, kot rezultati o katerih poročajo

sorodna dela. Razloge za slabše rezultate ǐsčemo v uporabi kraǰsih vzorcev

signalov, saj v večini sorodnih del uporabljajo dalǰse vzorce. Zaradi uporabe

kratkih vzorcev lahko zgrešimo pomembne elemente vožnje, kot na primer

ustavljanje pri rdeči luči ali na avtobusni postaji, ter zavijanje v ozko ulico.

Poleg tega uporabnikov nismo omejevali pri položaju naprave med vožnjo

ali uporabi naprave. Pospešek je zaradi uporabe telefona ponavadi tri- do

petkrat močneǰsi kot pospešek zaradi gibanja vozila [9]. Kratkih gest odstra-

nitev gravitacije ne more izničiti, zato se nam zdi uporaba dalǰsih vzorcev

smiselna. Poleg tega raziskava v smeri optimalne frekvence vzorčenja še ni

bila narejena, zato v prihodnje predlagamo eksperimentiranje s frekvenco

vzorčenja v fazi predobdelave. Možna je tudi vključitev dodatnih senzorjev,

na primer giroskopa in magnetometra. Večina aplikacij za detekcijo prevo-

znega sredstva že tako ali tako uporablja GPS, zato bi kot značilko lahko

uporabili tudi hitrost, ki jo sistem izračuna na podlagi lokacije.

Opazili smo, da klasifikatorji, ki so v osnovi zasnovani za večrazredno

klasifikacijo, v našem primeru vračajo napovedi, ki dosežejo vǐsje vrednosti

mer uspešnosti. Metoda podpornih vektorjev večrazredno klasifikacijo iz-

vede s pomočjo več binarnih klasifikatorjev, ki uporabljajo strategijo eden

proti vsem. V naslednjih delih nas zanima uporaba globokega učenja, ki

v določeni meri lahko nadomesti luščenje značilk. Trenutno je oblikovanje

značilk prepuščeno raziskovalcem, kar pa pomeni, da značilke pogosto niso

optimalne. Poleg tega smo se mi pri nevronskih mrežah omejili na tri pla-

sti, kar pomeni, da je ogromen prostor konfiguracij nevronskih mrež ostal

nepreiskan.



Chapter 1

Introduction

Nowadays, smart phones are daily companions of a large fraction of people

[10]. Modern applications connect billions of people via social media, en-

able secure online banking, some applications are even aware of their users’

context [10]. Context in this regard is any information that can be used to

characterize the situation of an entity – a smart phone user [11]. Context

logging and analyzing applications can be used as a personal coach, giving

prompts to help a person change her behaviors [12]. A few possible examples

of that include reminding a person to talk more or less in company meet-

ings, encouraging them to quit smoking [12] or detecting changes in behavior,

which can indicate a mental disorder, such as depression, or an early stage

of neurological disorder, for example Alzheimer’s or Parkinson’s disease [12].

In another scenario, context-aware applications are used to suggest using

environmentally more sustainable forms of transportation [7, 13]. Identifying

meaningful relationships between people, events, and their environment in

group data can help policymakers make better decisions [12] regarding tran-

sit network, such as identify or build better bike-commuting paths [12] or

improve the public transportation network.

To be able to automatically detect the context for advanced traffic and

physical activity monitoring applications efficient and reliable activity de-

tection algorithms are necessary. In the recent years we have witnessed a

1



2 CHAPTER 1. INTRODUCTION

drastic increase in sensing and computational resources that are built in mo-

bile phones. Most modern cell phones are equipped with sensors containing

triaxial accelerometer, magnetometer, gyroscope, and a GPS. Smart phone

operating system APIs offer activity detection modules that can distinguish

between different human activities, for example: being still, walking, run-

ning, cycling or driving in a vehicle [14, 15]. However, APIs cannot distin-

guish between driving in different kind of vehicles, for example driving a car

or traveling by bus or by train. Recognizing different kind of transportation,

also known as transportation mode detection, is crucial for mobility stud-

ies, for routing purposes in urban areas where public transportation is often

available, to push users towards more environmentally sustainable forms of

transportation [7], or to inspire them to exercise more.

This thesis will address transportation mode detection based primarily on

mobile phone data using machine learning methods. Our goal is to develop

an efficient approach to transportation mode detection that:

1. focuses on near real-time classification of motorized transportation modes

— travelling by car, bus, and train;

2. preserves battery life and does not require usage of mobile data;

3. is computationally inexpensive.

Additionally, we aim to evaluate proposed approach on real world data col-

lected by Optimum project [7]. Open research questions include signal pre-

processing, feature extraction and selection, choice of evaluation scenario and

evaluation metrics, and selection of appropriate classifier. Expected contri-

butions are:

1. our unique approach to data collection,

2. the features that we use and comprehensive analysis of their contribu-

tion to classification outcome, and

3. our clear and strict evaluation scenario.



3

The first contribution of this thesis is our approach to data collection.

Although we did not develop the NextPin [6] library we used to collect the

data, we were heavily involved in the design of the data collection pipeline

that is used in the library. To collect sensor samples we use passive logging

approach. Passive logging assumes there is no user’s effort involved in data

collection, however as we are using supervised learning methods, user’s effort

is required to annotate the samples. We rely on activity recognition APIs

to know when the user is traveling in a vehicle, which makes our approach

to data acquisition for travel mode detection unique. This, combined with

the use of short samples of accelerometer and magnetometer measurements,

reduces consumption of power and mobile data. We use sensor samples

obtained in pilot testing for a multi-modal routing mobile application. The

difference between our study and related work is that our test users are not

in any way instructed on the desired position of their mobile phone, or told

to not interact with their device during the trips.

The second novelty in our approach are the features we use. Not only we

use features from three domains — statistical, frequency-based, and peak-

based — which was rarely done previously, some of these features were pre-

dominantly used on longer accelerometer samples. Additionally, we offer an

in-depth analysis of the extracted features. We also analyze the their influ-

ence on the classification performance. We do that using several different

feature sets. We define feature sets using the results of the feature analysis

in combination with features used in similar work.

Finally, we clearly define and state our evaluation scenario. We use three

strongly separated sets to evaluate our approach to avoid the contamination

of the test set. As a performance measure we use F1 score, which is not as

common, though it is very appropriate for this domain.

This thesis has the following structure: Section 2 is an overview of the

existing related works. In Section 3 we describe our approach to data ac-

quisition and feature extraction in detail, and offer a brief analysis of the

extracted features. Section 4 focuses on evaluation of the proposed approach.



4 CHAPTER 1. INTRODUCTION

We discuss the results and draw conclusions in Section 5.



Chapter 2

Related work

Ever since smart phones appeared and gained widespread adoption there

have been many research efforts for their use in activity recognition and

transportation mode detection. While the first attempts to recognize user

activity were initiated before smart phones, the real effort in that direction

begun with the development of mobile phones having built-in sensors [1],

including GPS and accelerometer sensors. There are still some studies that

use custom loggers to collect the data [2, 16] or use dedicated devices as well

as smart phones [9]. Although GSM triangulation and local area wireless

technology (Wi-Fi) can be employed for the purpose of transportation mode

detection, their accuracy is relatively low compared to GPS [2], so state of

the art research is focused on transportation mode detection based on GPS

traces and/or accelerometer data.

Since smart phone sensors were originally developed for human-computer

interaction purposes, using them to infer the mode of transport is challeng-

ing. For example, accelerometer measures acceleration in a limited range

with a limited precision. It turns out that the range and precision are device-

dependent and may differ significantly between different phones. Addition-

ally, there are no restrictions on phone placement, users may even play a game

that requires tilting and turning the phone while traveling as a passenger in

a car, on a bus, or on a train. Acceleration caused by the user’s movement

5



6 CHAPTER 2. RELATED WORK

data

acquisition

pre-

processing

feature

extraction

model

training

and

validation

evaluation

Figure 2.1: General work-flow schema used for transportation mode detec-

tion.

is usually three to five times stronger than that of a vehicle [9], which makes

the problem of transportation mode inference especially difficult.

Most often the set of possible outcomes of classification includes up to six

modalities, where usually up to two of them are non-motorized, for example

still, walk or bike [2, 4, 16, 17, 18, 3]. Common motorized modalities consid-

ered are car, bus and train [2, 5, 4, 17, 19, 9], however vehicles like subway

[5, 20, 3, 19], tram [5, 3], scooter or motocycle [5, 9], light rail [9] and high

speed rail [19] appear as well.

In general, approaches follow work flow pictured in Figure 2.1. We briefly

addressed means of data acquisition in the first paragraph of Chapter 2.

Data is collected by sampling built-in sensors. Labels for supervised training

are often collected together with the data. Normally data acquisition is

followed by a preprocessing step. Pre-processing includes filtering out the

noise. In this case inaccurate readings in the data originate from the sensors

themselves, environmental factors such as clouds, the gravitational force,

metallic objects or are caused by user’s movement and interaction with the

device. Mistakes when labeling also occur. Depending on the sensor used

and the source of the noise different approach to filtering is applied to the

data. Pre-processed data is used for feature extraction. Most common are

hand-crafted features. Feature vectors and labels are further used to train

the models and evaluate the approach.

Machine learning methods that are most commonly used in accelerometer

based modality detection include support vector machines, decision trees and

random forests, however näıve Bayes, Bayesian networks and neural networks



7

have been used as well [2, 4]. Often these classifiers are used in an ensemble

[5]. The majority of algorithms additionally use Adaptive Boosting or Hidden

Markov Model to improve the performance of the methods mentioned above

[5, 3, 2, 1]. Features used for machine learning can be divided into five groups:

Statistical, Time, Frequency, Peak and Segment [3], however in most cases

statistical features and features based in frequency are used [1, 2, 5]. In the

last years, deep learning has also been used [21, 22].

Studies that only use GPS traces often combine that data with avail-

able GIS sources, for example OpenStreetMap (OSM) database [4, 17], or

with real-time public transport locations, when such information is publicly

available [4]. In these cases classification features usually include average

bus closeness, average rail closeness, etc. [4], or are based on the distances

to various infrastructural objects such as railway, motorway, bus and train

stations [17]. These approaches can achieve classification accuracy over 90%

[4, 17], however the main drawback for their use is the limited scalability.

Since features for classification in this case include distances between user

and real-time bus locations, rail line trajectories, and bus stops, doing linear

comparison with all these locations is time consuming [4]. Stenneth et al.

[4] report that for the Chicago, Illinois area linear comparison took over two

minutes, while they were only able to reduce the feature creation time to ten

seconds with zip-code based indexing and pruning using reverse geocoding

to precompute zip-codes of bus stops, bus routes, and train routes [4]. That

also suggests that these approaches are not appropriate for real-time appli-

cations, where information of travel mode is expected to be ready for use in

less than a second.

Additionally, there have been studies that use GPS trajectories to ex-

tract speed and acceleration based features [16, 18]. Such features include

heading change rate, stop rate and velocity change rate [16]. Frequency com-

ponents of speed and acceleration can also be computed using fast Fourier

transformation [18]. Since GPS signal might not be available all the time

these approaches often use filtering and re-sampling to ensure the quality of



8 CHAPTER 2. RELATED WORK

the data [18]. These approaches report recall score of 0.76 [16] and F1 score

around 0.88 [18], which suggests that using features based on frequency spec-

trum increases performance of the system.

The performance of transportation mode detection systems depends on

the effectiveness of handcrafted features designed by the researchers, re-

searcher’s experience in the field affects the results [23]. Thus, there have

been approaches that use deep learning methods, such as autoencoder or con-

volutional neural network, to learn the features used for classification [23].

Using a combination of handcrafted and deep features for classification with

deep neural network resulted in 74.1% classification accuracy [23]. Although

the results seem worse than when GPS traces are combined with GIS data,

studies used different measurements for evaluation and sometimes do not

report on the class representation of the data.

Approaches that rely solely on GPS trajectories require GPS signal of

high quality, but the GPS receivers of smart phones are generally severely

shielded during daily activities [5]. This occurs during underground travel,

inside stations, or even when users are not sufficiently close to a window when

travelling in a vehicle [3]. In all of these cases the result is loss of positioning

information. There have been successful attempts to combine GPS data

with accelerometer measurements to deal with unreliable GPS signal [5].

Additionally to accelerometer data, the proposed use of Kalman filter to

smooth out the trajectory of movement results in precision and recall of 0.76

when classifying with an ensemble, followed by a discrete hidden Markov

model [5].

Another known issue when using GPS signals from mobile devices is the

high power consumption [3], which is especially displeasing in case of longer

commutes. Both of these issues suggest that accelerometer sensor data is

more appropriate for activity detection, thus accelerometer-only approaches

are common [3].

As accelerometer measures acceleration in three directions, orientation of

the device and its usage during travel affect the data. Thus, some researchers



9

Origin Destination
Path, trip

Segment

order of magnitude: minutes

Frame, window

order of magnitude: seconds

Figure 2.2: The difference in time scale between paths or trips, segments,

and time frames or windows.

instruct users to keep the devices in the same position throughout the trip so

that acceleration in different directions can be judged of easily [2]. However,

this is not feasible when transportation mode detection is used as a part of

routing application, since the users are expected to interact with their phones

during the trip. To tackle this problem, filtering and gravity estimation

methods are often employed [3] in the preprocessing step.

Accelerometer measurements can be recorded throughout the whole path

or trip, on shorter segments, or even on a level of time frames and win-

dows. Sometimes the recordings are split into shorter parts during the pre-

processing. The difference in time scale between paths, segments, and frames

is shown in Figure 2.2. Depending on the length of the trip and data acqui-

sition strategy, segments might sometimes cover the length of the trip.

Features can be divided into five domains based on how they are computed

[3]. These domains are statistical, time-based, frequency-based (spectral),

peak-based and segment-based and are described in Table 2.1. Statistical,

time-based, and spectral attributes are computed on a level of a time frame

that usually covers a few seconds, whereas peak-based features are calculated

from peaks in acceleration or deceleration. On the other hand, segment-based

features are computed on the recordings of the whole trip, which means that

they cover much larger scale [3]. Statistical, time-based, and spectral features

are able to capture the characteristics of high-frequency motion caused by



10 CHAPTER 2. RELATED WORK

Domain Description

Statistical These features include mean, standard deviation, vari-

ance, median, minimum, maximum, range, interquartile

range, skewness, kurtosis, root mean square.

Time Time-based features include integral and double integral

of signal over time, which corresponds to speed gained

and distance traveled during that recording. Other ex-

amples of time-based features are for example auto-

correlation, zero crossings and mean crossings rate.

Frequency Frequency-based features include spectral energy, spec-

tral entropy, spectrum peak position, wavelet entropy

and wavelet coefficients. These can be computed on

whole spectrum or only on specific parts, for example

spectral energy below 50Hz. Spectrum is usually com-

puted using fast Fourier transform, whereas wavelet is

a result of the Wavelet transformation [24]. Entropy

measures are based on the information entropy of the

spectrum or wavelet [24].

Peak Peak-based features use horizontal acceleration projec-

tion to characterize acceleration and deceleration peri-

ods. These features include volume, intensity, length,

skewness and kurtosis.

Segment Segment-based features include peak frequency, station-

ary duration, variance of peak features, and stationary

frequency. The latter two are similar to velocity change

rate and stopping rate used by [16]. Segment-based fea-

tures are computed on a larger scale than statistical,

time-based or frequency-based features.

Table 2.1: Feature domains and their descriptions adopted from [3].



11

user’s physical movement, vehicle’s engine and contact between wheels and

surface [3]. Peak-based features capture movement with lower frequencies,

such as acceleration and breaking periods, which are essential for distinguish-

ing different motorized modalities [3]. Additionally, segment-based features

describe patterns of such acceleration and deceleration periods [3].

Accelerometer-only approach where only statistical features have been

used reported 99.8% classification accuracy, however users were instructed

to keep devices in fixed position during a trip [2]. Furthermore, only 0.7%

of data was labeled as train [2]. State of the art approach to accelerometer-

only transportation mode detection relies on long accelerometer samples [3].

It uses features from all five domains for classification with AdaBoost using

decision trees as a weak classifier and achieves 80.1% precision and 82.1%

recall [3].

There have also been attempts of leveraging other smart phone sensors,

for example magnetometer [9], gyroscope[19] and microphone [20] in combi-

nation with accelerometer data to detect the mode of transportation. The

main concern when using microphone readings is privacy of users, therefore

very short samples, ranging from 0.1s to 1s, are collected to ensure that no

word is understood [20]. Sound and magnetometer recordings have differ-

ent fingerprints in frequency space [9, 20], when driving in different types of

vehicles, which indicates that they carry information about the modality of

transport. In case of magnetometer the change in magnetic field is due to

rotation of metal parts of engine, transmission system and wheels [9]. Domi-

nant frequency correlates with the speed of a vehicle and decreases when the

size of wheels increases [9]. Similar holds for microphone recordings, however

as the system was only tested on buses with compressed natural gas engines

and cars with liquefied natural gas engines [20]. Approach aided by micro-

phone readings yielded classification accuracy of 98.2% with SVM classifier

[20], whereas approach with magnetic field measurements achieved F1 score

of 94.5% when using random forest and neural network [9]. Additionally, gy-

roscope was also used in combination with accelerometer and magnetometer



12 CHAPTER 2. RELATED WORK

[19]. Although only 14 features have been used in kNN approach, it resulted

in 98.2% classification accuracy [19].

In the recent years, the problem of transportation mode detection is ex-

periencing a transition from GPS-based approaches using special devices to

sensor-based approaches, that rely on smart phones. This can be observed

through the lack of relevant data sets for sensor-based classification and basi-

cally non-existence of mobile application that recognize user’s transportation

mode. To our knowledge there does not exist a mobile application or a service

that recognizes motorized modalities at such granular scale.

This thesis is most similar to our previous work presented in [25] and [13],

whereas we have presented a part of this thesis in [26]. The main difference

between the thesis and our previous work is in the evaluation scenario as this

time we opted for much stricter schema. Additionally, in this work we use the

data collected since the prototype of our previous work has been deployed.



Chapter 3

Proposed approach

Our proposed approach closely follows general work flow diagram for trans-

portation mode detection shown in Figure 2.1. General tasks in transporta-

tion mode detection include data acquisition, data preprocessing, feature ex-

traction, model training and validation, and evaluation, however this chapter

does not cover model training and validation, and evaluation, as we will dis-

cuss those in the next chapter. We modified the general approach to include

feature analysis.

We pictured the proposed approach in Figure 3.1, where we stacked high

level task mostly taken from Figure 2.1 vertically, and specific subtasks hor-

izontally. In this chapter we first discuss data acquisition through mobile

applications. This covers methodology used to collect the data, incentives

given to the participants, and the amount of data we have acquired. Next we

address preprocessing of the data, including resampling, filtering, and gravity

estimation. The third step is feature extraction with an explanation of the

features we use and technical details of the extraction process, followed by

feature analysis. In this step, we use correlation analysis and statistical tools

to inspect the extracted features. Finally, we use the knowledge about the

features to predefine different feature sets and choose appropriate machine

learning methods for classification.

13



14 CHAPTER 3. PROPOSED APPROACH

data acquisition

pre-processing

feature extraction

feature analysis

classification

mobile

applications

resampling filtering
gravity

estimation

correlation

analysis

statistical

analysis

defining

feature sets

choosing

classifiers

Figure 3.1: Detailed work flow diagram of the proposed approach. We

stacked general, high-level tasks from Figure 2.1 vertically, whereas subtasks

specific to our approach are pictured horizontally.



3.1. DATA ACQUISITION 15

3.1 Data acquisition

An important source of much needed data about traffic and commutes in a

community are studies and surveys on transportation and/or mobility. Travel

surveys enable transportation researchers, engineers, and governors to study

human behavior, as well as plan, design, and manage the transportation sys-

tem [27]. There are two main categories of travel study methods. In the first

one, respondents are asked to provide details of their trips based on memory.

This also includes traditional pen and paper travel journals. Studies have

shown that start and end times of the trips are usually approximate. Fur-

thermore, people’s perceptions of in-vehicle time vary according to different

modes of travel — travel time in car is typically underestimated, whereas

travel time in public transport is overestimated. The second category in-

cludes methods where data is recorded automatically by devices placed at

fixed locations or carried by respondents themselves [2].

Methods of automatic data collection can be further divided into two

classes — passive logging and active logging. Passive logging does not require

any effort from the user, however since it is monitoring the sensors and

collecting the data all the time whether the user is moving or not, it is known

to drain the battery fast. On the contrary, active logging is collecting the

data when user signals the data collection application to record the sensor

data. Thus, active logging is more battery-friendly as the data collection is

controlled by the user. The main drawback of active logging is that it requires

user’s involvement, which some might find burdensome. Active logging can

be used as ground truth for development of supervised machine learning

methods [17], whereas passive logging is more convenient when observing

the transitions between different activities.

Devices used for automatic collection of the data can be smart phones

or specially designed small, possibly wearable, devices with multiple sensors.

Use of dedicated devices was common prior to the wide adoption of smart

phones. Increased sensing capabilities of smart phones combined with their

market penetration, easy programmability, and effective distribution chan-



16 CHAPTER 3. PROPOSED APPROACH

nels for third party apps, have contributed to smart phones maturing into an

effective tool for unobtrusive monitoring of travel behavior [27]. Addition-

ally, carrying a smart phone has become a habit and is therefore less of a

burden. Thus, the risk of non-reported trips is reduced compared to special

devices [17].

3.1.1 NextPin

Since the subject of this thesis is transportation mode detection based on mo-

bile sensor data we use smart phone applications to acquire data. The Artifi-

cial Intelligence Laboratory at the Jožef Stefan Institute developed NextPin

[28, 6] software in form of a mobile OS programing library for Android and

iOS to collect geospatial and sensor data from mobile phone. The behav-

ior of the library when built in the mobile application and its connection to

analytics platform on the server are shown in Figure 3.2.

NextPin obtains a user’s GPS location and activity every 30 seconds. To

determine user’s activity the library uses OS’s native activity recognition

modules, Google’s ActivityRecognition API [14] for Android and Apple’s

CMMotionActivity API [15] for iOS, which can detect walking, running, cy-

cling, staying still and driving in a vehicle. Every time the phone’s activity

recognition system detects that the user is traveling in a vehicle, we collect

a five second sample of accelerometer signal for fine-grained classification of

motorized means of transportation. We use short samples in order to reduce

the computation time and have faster response time for real-time classifica-

tion. This also preserves battery life, saves space and reduces the usage of

mobile data [3]. Mobile application gathers GPS location, user’s activity, and

accelerometer sample when taken into a JSON record and sends it to a server

at the Jožef Stefan Institute for processing and analysis. That means that

every time a record is sent from a phone it includes GPS coordinates and ac-

tivity information from activity recognition modules, however accelerometer

sample is only present when there is a non-zero probability of user traveling

in a vehicle according to the native activity recognition API. At this point



3.1. DATA ACQUISITION 17

GPS

Activity recog-

nition API

Accelerometer

Probability of vehicle > 0

NextPin

mobile

library
Every 30 seconds

Gather the data (GPS, AR

API, accelerometer)

Record of

sensor data

NextPin

server

Send the record

to the server

SPD TMD

GPS data

Accelerometer

sample if present

Determine

prevailing

activity on path

Combine the results

of SPD and TMD

PostgreSQL

Save the re-

sults and ac-

celerometer

samples

Figure 3.2: Work flow diagram for NextPin library and server analytics.



18 CHAPTER 3. PROPOSED APPROACH

we would like to emphasize that although the library also collects GPS lo-

cations, our approach relies exclusively on low-cost and privacy-respectful

sensor data.

The main part of server-side processing and analysis is stay-point de-

tection (SPD). SPD performs spatio-temporal clustering on incoming GPS

coordinates [29]. If a user spends more than five minutes within 120 meter

radius, SPD algorithm detects a cluster and labels it as a stay-point. Coor-

dinates that cannot be clustered connect two stay-points and are labeled as

paths or trips. If sensor sample is present in a record, we send the sample to

transportation mode detection (TMD) module. In TMD module accelerom-

eter sample is preprocessed according to our preprocessing strategy, we then

extract features and feed them to a pretrained classifier for classification into

three motorized modalities — car, bus, and train. We replace the general ve-

hicle modality in activity information with the output of classification. As a

post-processing part of SPD we compute the prevailing activity on the paths

as every GPS coordinate is sent together with activity information and in

some cases sensor samples.

Intuitively, we want the prevailing activity to be the modality used to

travel the most in that path. There are at least two possibilities of calculating

this. The first one is average, which in our case means calculating the activity

that was used most of the time as we collect the measurements every 30

seconds. However, the distance traveled in 30 seconds differs a lot depending

on the modality and speed. For example, a user has to walk for five minutes

to the nearest bus station, then rides a bus for seven minutes, and then walks

another five minutes to the final destination. Averaging finds walking as the

prevailing activity, although out of five kilometers of the path the user walked

less than one kilometer. Therefore, we opted for the second option, which

is weighted average. To determine the prevailing activity we construct an

ordered vector of activity probabilities p and calculate a weighted average p

of probabilities as

p =


i∈path dipi
i∈path di

(3.1)



3.1. DATA ACQUISITION 19

We use distances di between two sequential GPS coordinates as weights.

To detect the change of activity we also store a moving weighted average

of the last three records as p3. When cosine similarity of the weighted average

for the whole path and the moving average for the last three activities falls

below a threshold (set at 0.8) we split the path in two parts. We continue

splitting the path until we have seen all records. For each part of the path, the

prevailing activity is the one with the largest average probability in activity

vector p. A simplified example of path splitting algorithm is shown in Table

3.1.

We save the results to PostgreSQL database. For each path we save

the detected activity and all sensor samples that were sent with the GPS

locations on this path, among other information. If the detected activity is

incorrect, users have an option to edit it in mobile application or via web

GUI. By editing trip information we obtain labels for supervised learning

and evaluation of transportation mode detection based on sensor samples. It

should be noted that usually multiple sensor samples are associated with a

trip.

3.1.2 Data collection

NextPin library is integrated in two free mobile applications. OPTIMUM

Intelligent Mobility [30] Android application is developed in scope of Opti-

mum Project [7]. The main functionality is a proactive multimodal route

planner for three European cities (Birmingham, Ljubljana and Vienna), that

were chosen as sites for pilot testing. During six-weeks period of pilot testing

in May and June 2018, approximately 120 users were asked to use the appli-

cation daily. Test users were awarded points that corresponded to minutes

they have spent walking, cycling or using the public transport, as one of the

goals of the project was to promote environmentally sustainable means of

transportation. In case of Birmingham and Vienna, the awarded points were

then converted into monetary compensation as an incentive, whereas test

users in Ljubljana were provided with free bus passes for the duration of the



20 CHAPTER 3. PROPOSED APPROACH

i pi di p p3 Sim.

0 [100, 0, 0, 0] 100 [100, 0, 0, 0] [100, 0, 0, 0] 1.00

1 [75, 15, 0, 10] 100 [88, 7, 0, 5] [88, 7, 0, 5] 1.00

2 [90, 5, 0, 5] 100 [88, 7, 0, 5] [88, 7, 0, 5] 1.00

3 [50, 10, 5, 35] 100 [79, 7, 1, 13] [72, 10, 2, 16] 0.99

4 [20, 5, 0, 75] 100 [67, 7, 1, 25] [53, 7, 2, 38] 0.96

5 [10, 0, 5, 85] 100 [57, 6, 2, 35] [27, 5, 3, 65] 0.80

6 [5, 0, 75, 20] 100 [50, 5, 12, 33] [12, 2, 26, 60] 0.71

7 [5, 5, 85, 5] 100 [10, 3, 41, 46] [7, 2, 55, 36] 0.97

8 [30, 0, 70, 0] 100 [14, 2, 47, 37] [13, 2, 77, 8] 0.85

9 [100, 0, 0, 0] 100 [28, 2, 39, 31] [45, 2, 51, 2] 0.85

10 [100, 0, 0, 0] 100 [39, 1, 33, 27] [77, 0, 23, 0] 0.81

11 [100, 0, 0, 0] 100 [46, 1, 30, 23] [100, 0, 0, 0] 0.78

Table 3.1: An illustrative example of path splitting. Due to readability we

are using activity vectors of length 4 and only show integers. Threshold for

splitting is set to 0.8. Cosine similarity (last column) of averages of vectors

0 to 6 and 4 to 6 is below the threshold so that means that activities 4 to

6 belong to a different path than activities 0 to 3. Activities 0 to 3 form a

new, finished path with prevailing activity 1. For activity 7 the average is

calculated from activity 4 on. Cosine similarity of averages of activity vectors

4 to 11 and 9 to 11 is also bellow threshold of 0.8 so that path is also split

into two – the first one consisting of activities 4 to 8 and the second one of

9 to 11. As there are no more activities left the procedure is finished.



3.1. DATA ACQUISITION 21

Car Bus Train

Trip count 272 99 98

Sample count 2864 840 516

Table 3.2: Counts of trips and samples between 1 February 2018 and 15

June 2018.

testing period.

Mobility Patterns [31, 32] application for Android and iOS is developed by

the Artificial Intelligence Laboratory at the Jožef Stefan Institute to collect

movement of its users and detect underlying mobility patterns. Similarly

to OPTIMUM Intelligent Mobility application, it uses NextPin library to

monitor the sensors and send the data to the same server. The application

serves as a travel journal, though it also predicts the next location. Mobility

Patterns application has up to ten regular users, the vast majority of them are

members of our laboratory. None of the Mobility Patterns users were given

any incentive or compensation for their cooperation in application testing

and data collection.

During the testing period between 1 February 2018 and 15 June 2018

we have collected 469 labeled trips with 4220 sensor samples from Mobility

Patterns and OPTIMUM Intelligent Mobility users. Counts of trips and

samples for each mode are listed in Table 3.2. These samples form a pilot

testing dataset.

The numbers of collected trips and samples, 469 and 4220, respectively,

suggest that recorded trips are short. Since we monitor GPS and activity

recognition modules every 30 seconds, approximately 9 samples per trip im-

plies that trips lasted around 5 minutes on average. However, since we only

take accelerometer samples when the activity recognition system detects that

the user is traveling in a vehicle, stopping at the traffic lights, bus stops, and

train stations affects the number of collected samples per trip.

Since the number of samples is rather small for a machine learning project,

we extended that dataset with the data we used in our previous work [25].



22 CHAPTER 3. PROPOSED APPROACH

To collect that data a few members of the Artificial Intelligence Laboratory

at the Jožef Stefan Institute used a modified Mobility patterns mobile ap-

plication. Again, no incentives were given to the users. The main difference

in these data sets is the methodology of collecting the data. The modified

application used active logging approach to continuously record the accel-

eration, whereas in the regular Mobility Patterns application uses passive

logging. The majority of the data was collected in August 2016 in Ljubl-

jana and surrounding area. This data includes additional 16824 five second

accelerometer samples. Out of these 16824 samples, 8529 are examples of

driving in a car, 5438 were collected while traveling by bus, and 2857 were

taken during a train ride. These samples form Mobility Patterns dataset.

3.2 Preprocessing

The first step in preprocessing is resampling. We collect five second samples

of sensor data and resample them to sampling frequency 100 Hz. Android

phones collect the sensor data with the highest frequency available for a

specific phone. Since Android phones differ a lot in hardware they have

installed, using the highest available sampling frequency contributes to the

quality of the data when dealing with an older or cheaper model of the phone.

Phones running iOS record the data with a sampling frequency of 100 Hz.

We found that hardware in iOS phones differs less. Resampling ensures

us that our samples all contain 500 measurements. Amplitudes of resampled

accelerometer data for each mode are pictured in Figure 3.3. Samples used to

produce Figure 3.3 were taken from different users and recorded in different

phone orientations. Graphs show that acceleration patterns are different

for each mode, thus suggesting that accelerometer data is appropriate for

transportation mode classification.

When sampling the sensors we inevitably capture some noise along with

the signal. In case of transportation, noise comes from sensors themselves,

accelerometer is affected by gravity and user’s movement and interaction



3.2. PREPROCESSING 23

Figure 3.3: Amplitudes of resampled accelerometer data for each mode.

Samples were taken from different users and recorded in different phone ori-

entation.



24 CHAPTER 3. PROPOSED APPROACH

with the device, whereas metallic objects and electromagnetic fields influence

magnetometer. To reduce the effects of noise, filtering is often applied. Low-

pass filter removes high frequency noise that usually originates in sensor,

while high-pass removes low frequency noise that is caused by user. However,

it is used more on magnetometer readings than accelerometer data.

There are some strong arguments against the use of filters on accelerom-

eter signal. Firstly, we can learn something about user’s travel mode based

on user’s interaction with the phone. If a person is using the phone they are

more likely to travel by bus or by train rather than driving a car. Secondly,

car engines operate between 2500 rpm and 3000 rpm at cruising speed, which

is 40 - 50 Hz in terms of frequency. As we are sampling the sensors with 100

Hz, this range is right at the top of our spectrum, that is defined by the

Nyquist sampling theorem. Therefore, filtering with low-pass filter is not

justified because it can remove the signal of the movement, often vibration,

of the engine. Thirdly, as the car is traveling at around 50 km/h, the wheels

are turning with frequency around 7 Hz. This means that high-pass filters

are inappropriate for the problem at hand as they filter out low frequency

movement, caused by the turning wheels. All these suggest that filtering

might not be justified as we might filter out vibrations that are specific to a

certain mode.

A more prominent problem we face concerns the correlation of acceler-

ation measurements with the orientation of the phone in the three dimen-

sional space. In practice this means that gravity is measured together with

the dynamic acceleration caused by phone movements. Thus, several wear-

able computing or ubiquitous computing research projects have detected and

distinguished user motion activities by attaching accelerometers in known po-

sitions and orientations on the user’s body [2, 8]. To bypass that limitation

we perform gravity estimation on raw accelerometer signal. We follow an

approach proposed by Mizell [8]. Gravity estimation splits the acceleration

into static and dynamic components. Static component represents the con-

stant acceleration, caused by the natural force of gravity, whereas dynamic



3.2. PREPROCESSING 25

component is a result of user’s motion. Furthermore, using this approach we

are able to calculate vertical and horizontal components of acceleration.

3.2.1 Gravity estimation

Acceleration measurements taken at a given point in the interval form accel-

eration vector a = (ax, ay, az). The algorithm works as follows: we obtain

the estimation of gravity g = (gx, gy, gz) by averaging all accelerometer mea-

surements on those respective axes for the time interval [8]. As we collect

five second samples of accelerometer readings, we opted for one second time

interval. Although this means that we might recognize some of the acceler-

ation as gravity, for example a train might accelerate over a period of ten

seconds or even more, we are more interested in low-amplitude acceleration

caused by the vibrations of the engine, the contact between the wheels and

the ground, and road infrastructure. We chose one second time interval to

attempt to eliminate the effects of user’s actions. By calculating average for

each second we remove acceleration caused by flipping the phone around or

taking it out of the bag. Vector g also corresponds to vertical axis. We

calculate the dynamic component of acceleration at a given point in time as

d = (dx, dy, dz) = (ax − gx, ay − gy, az − gz).

In addition to gravity-free acceleration in direction of x, y, and z, we

can also use vertical and horizontal components of acceleration. Vertical

acceleration describes the movement in up and down direction. It changes

significantly with user’s gestures, for example picking up the phone, or when

the vehicle is driving over a speed bump or a hole in the road. Horizontal

acceleration represents the movement in the plane parallel to the ground.

To obtain vertical component of acceleration v, we compute the projection

of the dynamic acceleration vector d upon vertical axis g as [8]

v =


d · g
g · g


g. (3.2)

Horizontal component of the dynamic acceleration h is computed as vector

subtraction h = d− v [8].



26 CHAPTER 3. PROPOSED APPROACH

Figure 3.4: The difference between raw signal, signal with eliminated grav-

ity, and horizontal component of the dynamic acceleration on each axis.

The difference between raw signal, signal with eliminated gravity, and

horizontal component of dynamic acceleration is pictured in Figure 3.4. We

noticed that there were no major differences in acceleration patterns in raw

signal and signal with eliminated gravity, whereas patterns in the horizontal

component differ from the original signal. This is most notable on z-axis.

Gravity estimation on acceleration signals x, y, and z results in dynamic

acceleration signals dx, dy, dz, and amplitude of the dynamic acceleration

vector d. We additionally split the acceleration on the amplitude of the

vertical acceleration v and amplitude of the horizontal acceleration h with

acceleration signals hx, hy, and hz. We also calculate amplitude of raw ac-

celeration a. We noticed that we can divide these signals into two categories

— amplitudes and directional signals. Directional signals measure accelera-



3.3. FEATURE EXTRACTION 27

Category Signal Description

Directional

signals

dx x-axis of dynamic acceleration vector d.

dy y-axis of dynamic acceleration vector d.

dz z-axis of dynamic acceleration vector d.

hx x-axis of horizontal acceleration vector h.

hy y-axis of horizontal acceleration vector h.

hz z-axis of horizontal acceleration vector h.

Amplitudes

v Amplitude of vertical acceleration vector v.

h Amplitude of horizontal acceleration vector h.

a Amplitude of raw acceleration vector a.

d Amplitude of dynamic acceleration vector d.

Table 3.3: Signals with their descriptions and categories.

tion along one of the three axes and cover the whole range of real numbers,

whereas amplitudes are greater or equal to zero. This categorization will be

useful in feature extraction. Signals with descriptions and their categories

are listed in Table 3.3.

3.3 Feature extraction

We use preprocessed signal to extract features for classification. Features

are divided into five domains, based on their meaning and method of com-

putation. The domains are listed in Table 2.1 and described in Chapter

2. We extract features from three domains — statistical, frequency, and

peak. Work flow for feature extraction is visualized in Figure 3.5. We opted

against the use of segment features as we use only five second samples, which

are conceptually closer to frames rather than segments of movement as in

[3]. Time-based features are often integrals of signal over time. In discrete

settings, like in our case, integrals are very similar to sums and averages,

therefore we use statistical features, which cover a larger variety of features.

Features are listed in Table 3.4.



28 CHAPTER 3. PROPOSED APPROACH

Domain Feature Computed on

Statistical

Mean Amplitudes and directional

signals. Directional signals

are also split into

acceleration and

deceleration moments.

Standard deviation

5th percentile

95th percentile

Skewness

Absolute maximal value Amplitudes and directional

signals.

Frequency

Spectral power [0.2, 5) Hz

Amplitudes and directional

signals.

Spectral power [5, 10) Hz

Spectral power [10, 15) Hz

Spectral power [15, 20) Hz

Spectral power [20, 25) Hz

Spectral power [25, 30) Hz

Spectral power [30, 35) Hz

Spectral power [35, 40) Hz

Spectral power [40, 45) Hz

Spectral power [45, 50) Hz

Peak

Number of peaks

Moments of acceleration

and deceleration of

directional signals.

Peak height (mean)

Peak height (st. dev.)

Peak height (skewness)

Peak width (mean)

Peak width (st. dev.)

Peak width (skewness)

Peak width height (mean)

Peak width height (st. dev.)

Peak width height (skewness)

Peak area (mean)

Peak area (st. dev.)

Peak area (skewness)

Table 3.4: Overview of extracted features by domain. Data that is used to

compute the features is also included.



3.3. FEATURE EXTRACTION 29

Statistical features

Signal

Split the signal

on acceleration

and deceleration

If signal is

directional

Abs. max. value

Mean

Standard deviation

5th percentile

95th percentile

Skewness

Statistical

features

Frequency-based features

Signal FFT

Aggregate frequency

spectrum into

bins of size 5Hz

Frequency-

based

features

Peak-based features

Signal
Convolute with

a box window

Split the signal

on acceleration

and deceleration

Find peaks

Number of peaks

Peak height

Peak width

Peak width height

Peak area

Count or

compute

Mean

Standard deviation

Skewness

Peak-

based

features

Figure 3.5: Work flows for feature extraction from preprocessed signals. At

the top is work flow for extraction of statistical features, in the middle we

visualized how we extract frequency-based features, while at the bottom we

show diagram picturing extraction of peak-based features.



30 CHAPTER 3. PROPOSED APPROACH

Statistical features we extract include mean, standard deviation, 5th per-

centile, 95th percentile, skewness, and absolute maximal value. Work flow for

extraction of statistical features is pictured at the top of Figure 3.5. We use

numpy’s functions mean, std, and percentile to compute mean, standard

deviation, and 5th and 95th percentile, respectively. To compute skewness

we use function skew from scipy.stats, whereas we use a combination of

python’s native abs and max functions to get absolute maximal value. We

further split the signal into moments of acceleration and moments of de-

celeration along each axis. This means that we take measurements greater

than zero, compute the features and repeat the procedure for measurements

smaller than zero. Although the directions of the axes are defined by the

coordinate system relative to the phone and thus depend on the phone’s

orientation, this gives us an idea about how strong the acceleration and de-

celeration along each axis are in that sample. If the phone is turned as the

samples are taken, acceleration and deceleration might get flipped, however

as the amplitudes remain roughly the same we do not bother with that.

For example, we expect that when traveling by train acceleration and de-

celeration along each axis are much smaller than when driving in a car or a

bus since trains usually do not perform sharp turns. If the sample includes

only acceleration or only deceleration moments we use default values for the

non-existing data. Default values are zero for mean, fifth percentile, 95th

percentile, and skewness, and negative one for standard deviation.

Work flow for extraction of frequency-based features in the middle of Fig-

ure 3.5 shows that to calculate frequency based features, we first use the fast

Fourier transform to compute one-sided power spectrum density of the signal.

We use the implementation of Fast Fourier transform from numpy.fft library.

As we are using sampling frequency of 100 Hz we are left with frequencies

below 50 Hz. We normalize the power spectrum so that power densities of

frequencies greater than zero sum up to one. Frequency features we compute

are cumulative power spectrum densities in the following frequency intervals

(measured in terms of Hz): [0.2, 5), [5, 10), [10, 15), [15, 20), [20, 25), [25, 30),



3.4. FEATURE ANALYSIS 31

[30, 35), [35, 40), [40, 45), and [45, 50).

As shown in work flow for extracting peak-based features at the bottom of

Figure 3.5, we first convolute the signal with a rectangular window to smooth

out the signal. To do that we use function convolute from scipy.signal.

We define a peak as a local extrema of width of at least 0.1 second (equiv-

alent to 10 measurements). Peak-based features are computed for both ac-

celeration and deceleration. Features include number of peaks, and statistics

(mean, standard deviation, and skewness) computed on peak heights, widths,

width heights, and peak areas. To find peaks we use function find peaks

from scipy.signal, which returns all desired peak properties except for peak

areas, which we compute on our own. Instead of computing an integral over

time to get the area of a peak, we use sum as a simplification. As there is

usually more than one peak per signal, we aggregate the properties of peaks

for each signal by calculating mean, standard variation, and skewness. We

use peak-based features to characterize acceleration and deceleration peri-

ods. Amplitude is in a way invariant to acceleration and deceleration, as it

measures how strong the total (axis independent) acceleration is. Therefore,

we only compute peak-based features from directional signals.

3.4 Feature analysis

After feature extraction we focused on feature analysis. As the total number

of features we have extracted is very large, reducing number of features used

for classification might improve the performance of the classifier. Addition-

ally, as we use signals derived from other signals we are interested in how

this affects the features. Such derived signals include amplitudes d and h,

which are computed as d = d2x + d2y + d2z and h = h2
x + h2

y + h2
z, respectively.

For feature analysis we used joint train and validation sets.

First we explored the correlation between different features. Understand-

ing the correlations between different features, feature domains, and signals,

from which the features were extracted, is beneficial when constructing fea-



32 CHAPTER 3. PROPOSED APPROACH

Figure 3.6: Correlation between features obtained from the amplitude of the

dynamic acceleration vector d. Correlation coefficients for other accelerome-

ter signals very much resemble those obtained from d.



3.4. FEATURE ANALYSIS 33

Category Signal
Feature domain

Sum
Stat. Freq. Peak

Directional

signals

dx 16 10 26 52

dy 16 10 26 52

dz 16 10 26 52

hx 16 10 26 52

hy 16 10 26 52

hz 16 10 26 52

Amplitudes

v 6 10 0 16

h 6 10 0 16

a 6 10 0 16

d 6 10 0 16

Sum 120 100 156 376

Table 3.5: Number of features extracted from each signal separated by

feature domain.

ture sets for classification. We expect that including less correlated features

in a feature set will result in better classification performance. Initially, we

were interested in how correlated are features computed from the same sig-

nal. Therefore, Figure 3.6 shows correlation coefficients between features

obtained from the amplitude of dynamic acceleration. As observed in Figure

3.6 there is an apparent strong correlation between statistical features, how-

ever spectral features of amplitudes of accelerometer signals are uncorrelated.

It is interesting that skewness is not correlated with any other feature.

Figure 3.7 shows correlation coefficients between features obtained from

directional signals, namely dynamic acceleration along the x-axis. Similarly

as in Figure 3.6 there is no strong correlation between statistical and spectral

features, and statistical features are correlated with each other. Surprising

exceptions are skewness and mean, which are not correlated with any other

features. However, peak-based features are correlated with statistical fea-

tures, which we found as unexpected. The only exception are peak width



34 CHAPTER 3. PROPOSED APPROACH

Figure 3.7: Correlation between features obtained from dx. Correlation

coefficients are similar for other non-amplitude signals. Three distinguishable

sub-matrices of strong correlation on diagonal represent correlations between

statistical features, peak-based features, and spectral features, respectively.



3.4. FEATURE ANALYSIS 35

features, which are correlated with each other, but not with other peak-based

or any other features. Another interesting observation is that peak-based

features involving skewness are on the contrary not correlated with either

statistical or peak-based features.

As some of the amplitude signals are non-linear combinations of non-

amplitude signals, we tested the correlation between two such signals, namely

d and dx. Results of the test are pictured in Figure 3.8. There is a signif-

icant correlation between statistical and peak-based features, however we

expected that since we observed it in Figure 3.7. There is also observable

correlation between spectral features, which is the strongest for frequencies

between 30 and 45 Hz. This is also expected, however we expected a stronger

correlation. It is interesting how mean and skewness of directional signal are

uncorrelated with any feature of an amplitude. Although we initially used

Pearson’s correlation coefficient to compute the correlations, which measures

linear dependence between the samples, we also computed Kendall’s rank

correlation coefficients to measure general dependence. The results are very

similar to those shown in Figure 3.8.

Furthermore, we tested whether the values of extracted features are dis-

tributed according to normal distribution. We performed D’Agostino and

Pearson’s test using scipy.stats.normaltest function on each feature. We

set the significance threshold for p-value to 0.05. For most features, p-value

is much smaller than the preset threshold, thus features do not follow normal

distribution.

Next, we were interested if features with different values of statistical

features for different labels exist and which features meet that criteria. To

discover the most informative features and construct useful feature sets to

train machine learning models on, we used Kruskal-Wallis H-test for inde-

pendent samples. The null hypothesis of that test is that the medians of

given samples are equal. Our goal was to see if the medians of features are

different for cars, buses, and trains. We opted for Kruskal-Wallis H-test be-

cause it does not assume the samples are distributed according to normal



36 CHAPTER 3. PROPOSED APPROACH

Figure 3.8: Correlation between features obtained from d and dx.



3.4. FEATURE ANALYSIS 37

Figure 3.9: Shapes of distributions of mean acceleration for different modal-

ities.

distribution. In order to perform this test we first divide the data in three

homogeneous sets based on their labels. That means that first set contains

all data points labeled as cars, the second contains all bus examples, and the

third all instances labeled as trains. These three sets are our independent

samples for the Kruskal-Wallis H-test. The main drawback when using this

test is that it operates under the assumption that all tested distributions

have the same shape. In our case, that does not hold for amplitudes, which

is shown in Figure 3.9. Tested samples of features from amplitude signals

have differently shaped distributions for each modality. We did not notice

such issue for features from directional signal.

We applied scipy.stats.kruskal function to each feature extracted

from directional signal to obtain the p-value. Figure 3.10 contains results



38 CHAPTER 3. PROPOSED APPROACH

Figure 3.10: p-values of Kruskal-Wallis H-test for non-amplitude features.



3.5. CLASSIFICATION 39

Signal Feature p-value

hy Mean 0.65

hz Skewness 0.65

dx Mean 0.55

hy Skewness 0.45

dy Mean 0.30

hx Mean 0.28

hz Mean 0.09

dz Mean 0.03

hx Skewness 0.03

dz Peak width height (A) skewness 0.01

Table 3.6: Ten features with the highest p-value.

of the Kruskal-Wallis H-test for features from directional signals. Overall,

only 8 features have p-value higher than 0.05. We listed top ten features

according to p-value in Table 3.6. From the Table 3.6 we can notice that

features the highest scores were also the least correlated in correlation tests.

It is interesting and surprising that top nine features are statistical features,

mean and skewness. Skewness in general is very poorly correlated with other

features. A possible explanation is that means are representatives of a group

of statistical features, so having one of those features increases the informa-

tiveness of the feature set, whereas having many of them just increases the

complexity.

3.5 Classification

Using information gained in Chapter 3 Section 3.4, we constructed several

feature sets in order to observe how adding a feature domain affects the

classification performance. Therefore we added features gradually to be able

to judge the influence of a feature group. Most feature sets are named so

that the first part of the name reflect the signal used to extract the features,



40 CHAPTER 3. PROPOSED APPROACH

whereas the second part names the feature domains included in that set.

Feature sets are summarized in Table 3.7.

Statistical features are commonly used in related work, hence our first

feature set D-S only contains statistical features on dynamic acceleration

amplitude d and vector components dx, dy, and dz. We expect this feature

set to produce good results as features have high p-values in Kruskal-Wallis

H-test. We used a very similar feature set previously in [25], however the

methodology used for evaluation is different this time. Previously, we have

used cross-validation on samples for evaluation, however we have found that

approach to be methodologically questionable as we used samples from the

same trip in train and test sets.

Next, we extended the D-S feature set with frequency-based features. We

named that set D-SF. Similarly, we extended D-SF with peak-based features,

to obtain a new feature set, D-SFP. Both D-SF and D-SFP only contain

features extracted from the dynamic acceleration signals. Both of these sets

have greater variety of features, however they are also much larger. We

expect these sets to perform comparably to D-S. The reasoning for this is

that although the variety of features increases, greater number of features

can mean more noise in the data. Therefore, we do not expect either drastic

improvement or significant decrease in classification performance.

In the same way as feature sets D-S, D-SF, and D-SFP, we define fea-

ture sets H-S, H-SF, and H-SFP to contain statistical and frequency-based,

and statistical, frequency-based, and peak-based features, respectively. The

crucial difference between these sets is that features in sets H-S, H-SF, and

H-SFP are extracted from the horizontal acceleration signals h, hx, hy, and

hz. We are interested in comparison of dynamic acceleration and horizon-

tal acceleration feature sets, since we can implicitly observe the influence of

vertical acceleration on classification.

Feature set DIR-SPF includes all features from directional signals dx, dy,

dz, hx, hy, and hz. Features extracted from these signals scored very high p-

values in statistical domain. Additionally, we were interested in a feature set



3.5. CLASSIFICATION 41

Set Signals Features Size

D-S d, dx, dy, dz Statistical 54

D-SF d, dx, dy, dz Statistical, Frequency 94

D-SFP d, dx, dy, dz Statistical, Frequency, Peak 172

H-S h, hx, hy, hz Statistical 54

H-SF h, hx, hy, hz Statistical, Frequency 94

H-SFP h, hx, hy, hz Statistical, Frequency, Peak 172

DIR-SFP dx, dy, dz, hx. hy, hz Statistical, Frequency, Peak 312

ALL 376

TOP 7

Table 3.7: Predefined feature sets used for classification. We constructed

these feature sets based on the information gained by feature analysis.

without amplitude signal to see what the contribution of amplitudes might

be. Feature set DIR-P contains only peak-based features.

Finally, feature set ALL includes all 376 extracted features, whereas fea-

ture set TOP contains 7 features with p-values larger than 0.05 in Kruskal-

Wallis H-test.

We use feature sets listed in Table 3.7 to build classification models. We

apply three machine learning methods to train the model. Machine learn-

ing algorithms that we use are random forest (RF), support vector machine

(SVM) with radial basis function kernel, and multilayer perceptron as neural

network (NN). These methods are often used in related work. In addition to

exploring the feature space with the predefined feature sets from Table 3.7

we will also perform feature selection with random forest classifier.



42 CHAPTER 3. PROPOSED APPROACH



Chapter 4

Evaluation

4.1 Performance metrics

For each mode, we count the number of true positives (TP ), true negatives

(TN), false positives (FP ), and false negatives (FN). For one mode, true

positives are samples that belong to that mode and are classified as belonging

to that mode by classifier. Similarly, true negatives are cases that do not

belong to that mode and are classified as not belonging to that mode. False

positives are samples that are not labeled as that mode, however the classifier

recognizes them as if they were. On the contrary false negatives are labeled

as belonging to that mode, but are not classified as such.

These counts are further used to calculate performance measures. As

performance measures we are using F1 score, although we also report on

precision, recall, and classification accuracy. Precision measures the ratio

between true positives and all samples that were classified as positive for

each class,

precision =
TP

TP + FP
. (4.1)

Recall estimates how many samples labeled as positive are actually recog-

nized as positive in classification,

recall =
TP

TP + FN
. (4.2)

43



44 CHAPTER 4. EVALUATION

Values for precision and recall range from 0 to 1, where 0 means that no

examples are true positives. When precision reaches 1, only true positives

are classified as positive, whereas recall reaches 1 when no positive sample is

classified as negative.

F1 score is defined as geometric ratio of precision and recall, and is cal-

culated as

F1 = 2
precision · recall
precision + recall

. (4.3)

F1 score takes values between 0 and 1. F1 score is equal to 0 when precision

or recall is 0, and is equal to 1 when precision and recall are both 1.

We calculate F1 score, precision, and recall for each class separately,

whereas classification accuracy is calculated for whole set. To combine the

scores of all classes in one number we are using macro average, since we are

aiming for a classifier that reliably recognizes each mode. We opted for F1

score as the main measure of performance because we want to reduce the

number of false positives and false negatives for each class. As our data set

is imbalanced, using classification accuracy as a main measure could result

in poor recognition of minority modes, whereas classification accuracy would

indicate that classification is working well.

4.2 Evaluation methodology

For evaluation it is common use separate testing sets that contain approxi-

mately 30% of all their data [2, 17]. Sometimes the data is randomly split into

train and test sets [2]. However, cross-validation is also used [5, 3, 9, 23].

Leave-one-user-out [3], leave-one-placement-out [3], and leave-one-trip-out

[5] are popular choices for cross-validation. Evaluation methodology is also

sometimes unknown or unclear [2, 1, 19].

Performance is usually measured with classification accuracy [2, 4, 17,

20, 19], but as the data sets normally report some imbalance between classes

precision [5, 3], recall [5, 16, 3] and F1 scores [18, 9] are often more appro-

priate.



4.2. EVALUATION METHODOLOGY 45

Set Dates Trips Samples

Train Aug 2016 — 31 Jan 2018 * 16824

Validation 1 Feb 2018 — 14 May 2018 285 2489

Test 15 May 2018 — 15 June 2018 184 1731

Table 4.1: Basic characteristics of train, validation, and test set. Training

set was collected using different methodology, therefore information about

the number of trips is not available.

To evaluate the capabilities and performance of the proposed approach,

we divide our dataset in 3 subsets — train, validation, and test set — based

on the date the samples were recorded on. By doing so, we avoided using

in this domain methodologically questionable random assignment of samples

collected during the same trip to different subsets. The reason why we did not

apply cross-validation is similar. Using samples from the same trip in train

and test set would result in significantly higher evaluation scores. Details

about train, validation and test sets are listed in Table 4.1. We described

the process of data acquisition in Chapter 3. For our train set we used

the Mobility Patterns dataset from our previous work [25] as there was not

enough samples from the pilot study. For validation and test sets we use

pilot testing dataset. As we used different approach to collect the data,

information about the trip count is not available in Table 4.1.

Figure 4.1 shows the distribution of modes in all 3 sets. Train and valida-

tion set have very similar distributions, which is desired, whereas car samples

are overrepresented in the test set. Although the distributions between train

and validation sets, and test set vary, we decided against using over- or un-

dersampling techniques to balance the sets. Our reason to do so is that it is

not guaranteed that distribution of modes is the same throughout the year,

since weather conditions usually affect the choice of transportation mode.

The scenario for evaluation is shown in Figure 4.2. We first train a model

on train set and evaluate the model using validation set. We repeat the

process on several sets of parameters. For final training, we select the set of



46 CHAPTER 4. EVALUATION

Figure 4.1: Distribution of modes in train, validation, and test set. We also

added joint train and validation set, which we use to train the final model.

model parameters that performed the best on validation set and train the

model on the joint train and validation set. We evaluate the performance of

that model on test set.

4.3 Results

In this section we present the results and briefly discuss the findings. We

first test two trivial classifiers and then move on to non-trivial classifiers —

random forest, support vector machine, and neural network. As the machine

learning methods we use rely on some level of randomness, we run each

experiment 100 times to get statistically reliable results. Since we use an

implementation of SVM based on LIBSVM [33], which is deterministic, we

run all those experiments only once. We report on four performance metrics

— classification accuracy, recall, precision, and F1 score — which we specified

in previous sections. Additionally, we report on standard deviation (σ) for

each of there values. For the most interesting feature sets, we also provide



4.3. RESULTS 47

TrainValidate

Train +

Validate

Test and

evaluate

Evaluate

Use best parameters

Change model parameters

Join datasets

Join datasets

Figure 4.2: Schema of evaluation scenario.

confusion matrices.

4.3.1 Trivial classifiers

To set the lowest bar our approach must reach in terms of performance, we

classified the test set using two trivial classifiers — majority classifier and

random classifier. In our case, majority classifier classifies all samples as cars,

whereas random classifier draws labels from the distribution of labels in com-

bined train and validation set (shown in Figure 4.1). Results for both trivial

classifiers are listed in Table 4.2. We will further use Table 4.2 when compar-

ing and assessing performance of non-trivial classifiers. Table 4.2 shows that

classifying all samples as a majority class results in F1 score of 0.30, precision

and recall reach 0.26 and 0.33, respectively, whereas classification accuracy is

0.79. Using random classifier we achieve F1 score of 0.31 with precision and

recall scores at 0.33 and 0.34, respectively. Classification accuracy in that

case is 0.47. Confusion matrix for random classification in Table 4.3 shows

that the distributions of predicted labels are the same for all labels.



48 CHAPTER 4. EVALUATION

Classifier CA(σ) Recall(σ) Precision(σ) F1(σ)

Majority 0.79 0.26 0.33 0.30

Random 0.47 (.006) 0.33 (.002) 0.34 (.001) 0.31 (.001)

Table 4.2: Classification metrics for classification with trivial classifiers.

For random classifier, we report on the standard deviation σ after 100 runs

in brackets.

T \P Car Bus Train

Car 0.53 (.008) 0.29 (.009) 0.18 (.001)

Bus 0.51 (.004) 0.31 (.004) 0.18 (.001)

Train 0.46 (.035) 0.38 (.054) 0.16 (.020)

Table 4.3: Confusion matrix for random classifier. In brackets is the stan-

dard deviation σ after 100 runs.

4.3.2 Random forest

The first non-trivial classification algorithm that we used is random forest.

We chose random forest because it works very well in non-linear cases, it is

easy to tune its parameters to avoid over fitting, and is fairly fast to train.

These things suggest that the use of random forest to explore the data is

appropriate.

Initially, we trained random forest classifier on the predefined feature sets

from Table 3.7. We did not use any scaling or normalization of the features,

or transformation of the feature space, whereas later we experimented with

these options. Results are listed in Table 4.4.

Table 4.4 shows that we achieved the highest F1 score of 0.42 using H-S

feature set. This feature set consists of statistical features calculated on the

horizontal acceleration vector. Classification accuracy in that case is also

high, compared to other feature sets. The highest classification accuracy is

the result of classification with the TOP feature set. However, the perfor-

mance of the TOP feature set is closer to a majority classifier according to



4.3. RESULTS 49

other metrics.

From Table 4.4 we can observe that feature sets ALL and DIR-SFP act

more as random classifiers than anything else. Although their precision scores

are significantly higher than those of a random classifier from Table 4.2, all

other metrics are very close to those of a random classifier. Similar also

holds for H-SFP and D-SFP. These observations lead us to believe that by

using more features we are introducing noise and thus randomness into the

classification procedure. Additionally, since D-S, D-SF, and H-S perform

better than other classifiers, peak features seem to be the source of that

noise.

Another comparison we can make is regarding the use of dynamic ac-

celeration or horizontal acceleration. Table 4.4 shows that feature set H-S

outperforms other feature sets, including its dynamic acceleration equiva-

lent D-S. It is interesting to observe that F1 score and classification accu-

racy improve when we add frequency-based features to dynamic acceleration,

whereas these two measures decrease in case of similar action for horizontal

acceleration. This offers two possible interpretations. One is that frequency-

based features of dynamic acceleration carry more information compared to

frequency-based features of horizontal acceleration. The second one is that

statistical features of horizontal acceleration are much better than statisti-

cal features from dynamic acceleration. That means that by introducing

new features to H-S we are introducing noise, whereas in case of D-S we are

introducing new informative features.

Since H-S has been the most successful so far in classifying transportation

modes, we are showing a confusion matrix for classification with features from

H-S in Table 4.5. For bus mode, this non-trivial classifier acts as a mixture

of majority and random classifiers as it classifies the majority of bus samples

as cars. For trains, the prevailing predicted mode is still car, however the

majority of samples is classified as either a train or a bus. Compared to

random classifier there is slightly more train samples classified as trains, but

overall the classification of train mode seems random.



50 CHAPTER 4. EVALUATION

Feature set CA(σ) Recall(σ) Precision(σ) F1(σ)

D-S 0.49 (.005) 0.41 (.003) 0.39 (.002) 0.37 (.003)

D-SF 0.57 (.017) 0.40 (.013) 0.42 (.013) 0.39 (.013)

D-SFP 0.46 (.002) 0.38 (.007) 0.39 (.005) 0.35 (.006)

H-S 0.65 (.015) 0.41 (.018) 0.44 (.010) 0.42 (.019)

H-SF 0.48 (.013) 0.37 (.015) 0.41 (.016) 0.34 (.013)

H-SFP 0.49 (.014) 0.37 (.015) 0.40 (.012) 0.34 (.012)

DIR-SFP 0.48 (.012) 0.36 (.014) 0.40 (.014) 0.33 (.011)

ALL 0.47 (.006) 0.35 (.007) 0.40 (.010) 0.33 (.008)

TOP 0.65 (.007) 0.35 (.005) 0.34 (.007) 0.34 (.006)

Table 4.4: Classification metrics for classification with random forest on

predefined feature sets. In brackets is the standard deviation σ after 100

runs.

T \P Car Bus Train

Car 0.76 (.015) 0.22 (.022) 0.02 (.005)

Bus 0.70 (.013) 0.23 (.021) 0.07 (.005)

Train 0.41 (.011) 0.36 (.067) 0.24 (.067)

Table 4.5: Confusion matrix for random forest classifier on feature set H-S.

In brackets is the standard deviation σ after 100 runs.



4.3. RESULTS 51

To improve classification results we first tried normalization. Normaliza-

tion is used to center the data near 0 with variance 1. In our case, normaliza-

tion did not improve classification, furthermore in some cases it even reduced

the classification scores.

The next thing we tried is principal components analysis (PCA). For all

feature sets defined in Table 3.7, three principal components explain at least

80% of variance in dataset. Therefore, we used PCA to transform our high-

dimensional feature spaces defined with feature sets in Table 3.7 into three

dimensional space. We trained and evaluated the random forest classifier

with these low dimensional features. Results are listed in Table 4.6.

Table 4.6 shows that for most feature sets reducing the dimensionality of

feature space positively affects classification scores. Feature sets D-S, D-SF,

H-S, H-SFP, and TOP have less than 0.05 increase in F1 score, whereas other

feature sets achieve at least 0.05 higher F1 score using PCA than without

transformation (Table 4.4). Again, H-S scores the highest F1 score and TOP

the lowest, joint with H-SFP.

We notice that F1 score decreases significantly when adding peak-based

features in case of horizontal acceleration. This is aligned with our find-

ings in classification without PCA transformation. On the contrary, the

score increases when adding peak-based features for dynamic acceleration.

This suggest that there are latent features composed of statistical, frequency-

based, and peak-based features from dynamic acceleration, which positively

contribute to classification performance. It is interesting that there is no

improvement when we add frequency-based features for dynamic as well as

horizontal acceleration.

Similarly as in case without PCA, we are also interested in confusion

matrix of the best performing feature set. We show the confusion matrix

for H-S feature set in Table 4.7. Compared to Table 4.5, this time even

more cars are correctly classified and less buses are classified as cars. We can

notice that compared to 23% buses classified as buses in Table 4.5 there are

37% buses correctly classified in Table 4.7. However, the majority of trains



52 CHAPTER 4. EVALUATION

Feature set CA(σ) Recall(σ) Precision(σ) F1(σ)

D-S 0.60 (.014) 0.40 (.005) 0.39 (.004) 0.39 (.005)

D-SF 0.60 (.001) 0.40 (.005) 0.40 (.004) 0.39 (.004)

D-SFP 0.65 (.045) 0.42 (.014) 0.42 (.012) 0.41(.015)

H-S 0.71 (.030) 0.46 (.014) 0.47 (.016) 0.46 (.015)

H-SF 0.70 (.029) 0.46 (.138) 0.46 (.014) 0.46 (.014)

H-SFP 0.53 (.041) 0.36 (.010) 0.37 (.008) 0.34 (.013)

DIR-SFP 0.52 (.004) 0.41 (.004) 0.42 (.004) 0.39 (.004)

ALL 0.54 (.007) 0.40 (.006) 0.40 (.005) 0.38 (.005)

TOP 0.68 (.006) 0.35 (.005) 0.34 (.017) 0.34 (.006)

Table 4.6: Classification metrics for classification with random forest on

predefined feature sets transformed into three dimensional space using PCA.

In brackets is the standard deviation σ after 100 runs.

are classified as cars. The amount of correctly classified trains decreased

only slightly, whereas the amount of trains misclassified as cars increased

significantly, from 41% to 59%, which means that trains are even more often

mistaken for cars.

As we have seen that reducing the dimensionality of feature space works,

the next thing we focused on is feature selection. Instead of recursive feature

elimination, we implemented greedy feature elimination — backward feature

selection. We opted for this local optimization method as the complete search

T \P Car Bus Train

Car 0.81 (.045) 0.16 (.045) 0.03 (.006)

Bus 0.59 (.057) 0.37 (.059) 0.04 (.006)

Train 0.59 (.040) 0.22 (.050) 0.20 (.028)

Table 4.7: Confusion matrix for random forest classifier on feature set H-S

with PCA transformation into three dimensional space. In brackets is the

standard deviation σ after 100 runs.



4.3. RESULTS 53

of feature space is computationally not feasible in our case.

With greedy approach to backward feature selection we initially train the

model with all features and evaluate it on validation set. Then we remove

each feature one by one, train the model, evaluate it on the validation set and

compare all F1 scores. The feature we eliminate is selected from all features

that when included in the model that model performed worse. We eliminate

the feature, whose absence results in the highest F1 score. We repeat this

procedure until there is no features to eliminate - feature set consists of one

feature.

We can describe feature elimination as a top-down approach — we start

with a large feature set and then reduce it to an appropriate size. We also

tried bottom-up approach to feature selection — forward feature selection.

We started with 376 feature sets of size one and greedily added one feature

at a time until all features were included in the feature set. We called that

procedure feature addition.

In both feature elimination and feature addition we should see a peak or

an elbow cure when we plot F1 score depending on the number of features.

That peak or elbow represents the optimal number of features, whereas we

can read the optimal combination of features from the order of elimination

or addition.

We used feature elimination and feature addition to select the best feature

subset for classification. We show F1 score depending on the number of

features in Figure 4.3. We can observe that there are large fluctuations

in F1 score. There is a large drop in F1 score at around 150 features for

feature addition and a smaller one at approximately 50 features. In case

of elimination, drops are not as significant, however there is a near-linear

decrease in F1 score after 150 features. The best F1 score we achieve on

validation set is a bit over 0.50, which is better than anything so far.

Using feature elimination and addition, we selected two feature sets that

performed the best — in case of addition the best feature set has 10 fea-

tures, whereas feature set produced with feature elimination has 28 features.



54 CHAPTER 4. EVALUATION

Figure 4.3: F1 score depending on number of features used in the model in

feature selection.

While comparing the two sets, we noticed that the smaller set obtained by

addition is a subset the feature set constructed with elimination. In fact the

features from addition feature set appeared in places 2 to 11 in the reversed

order of the elimination, which means that they were among the last elimi-

nated. Feature set obtained by forward selection mostly contains statistical

features, followed by peak-based. Only one frequency-based features appears

in that set. Additionally, the vast majority of features are extracted from

dynamic acceleration. On the other hand, feature set obtained by backward

elimination contains more peak-based features than statistical, again only

one frequency-based feature appears. Dynamic acceleration and horizontal

acceleration appear in similar proportions.

We evaluated the models trained with the feature sets generated by fea-



4.3. RESULTS 55

Feature set CA Recall Precision F1

Addition (10) 0.69 (.010) 0.50 (.004) 0.47 (.005) 0.48 (.005)

Elimination (28) 0.74 (.007) 0.50 (.005) 0.48 (.006) 0.49 (.005)

Table 4.8: Classification metrics for classification with the selected features

in feature selection. In brackets is the standard deviation σ after 100 runs.

ture selection against the test set. Results are listed in Table 4.8. Both

feature sets achieve better F1 scores than any previous feature sets, however

the improvement is very slight compared to feature set H-S with applied

PCA. Feature set obtained by elimination performs with higher classification

accuracy and F1 score than feature set obtained by addition.

Confusion matrix in Table 4.9 reveals the differences between these two

feature sets. We can see that in case of eliminating features, there are fewer

cars misclassified as buses and more buses misclassified as cars. Classification

of trains is consistent. For buses and trains, the largest part of samples is

still misclassified as cars.

From that we can learn that 18 features that differentiate feature set

obtained by feature elimination and feature set obtained by addition, con-

tribute to the increase in classification accuracy by correctly classifying more

car samples. However, as more buses are classified as cars, the increase in F1

score and other selected metrics is not significant. This happens because we

calculate classification accuracy for the whole data set — meaning that we

count all examples that are classified correctly and divide that count by the

number of all samples. As the data set is a bit imbalanced and there is more

cars than buses and trains combined, a slight improvement in car classifica-

tion can mean a large change in classification accuracy. We compute all other

metrics on a class level, and aggregate them using macro average. The com-

position of the feature sets in question implies that peak-based features and

features from horizontal acceleration, which have stronger representations in

the elimination feature set, are not particularly useful when distinguishing

between cars and buses.



56 CHAPTER 4. EVALUATION

Addition

T \P Car Bus Train

Car 0.77 (.014) 0.18 (.014) 0.05 (.001)

Bus 0.50 (.014) 0.41 (.014) 0.09 (.002)

Train 0.48 (.013) 0.20 (.014) 0.32 (.002)

Elimination

T \P Car Bus Train

Car 0.84 (.010) 0.11 (.010) 0.05 (.002)

Bus 0.57 (.014) 0.34 (.015) 0.09 (.002)

Train 0.48 (.014) 0.20 (.015) 0.32 (.007)

Table 4.9: Confusion matrix for classification with the selected features in

feature selection. In brackets is the standard deviation σ after 100 runs.

We compared feature sets obtained by feature selection to feature impor-

tance scores estimated by the random forest classifier trained with all features

100 times. Frequency-based features appear to have the highest importance

scores, which means that spectral features are more important. This, how-

ever, is contradicting feature selection, where in both experiments only one

such feature was selected. As there is a significant difference in performance

metrics between these feature sets, we believe that frequency-based features

are the least informative for this problem.

4.3.3 Support vector machine

The next non-trivial classifier we used is support vector machine classifier

with radial basis function (RBF) kernel. Compared to the random forest

classifier, SVM classifier takes longer to train and is much easier to overfit

to the training data. We used RBF kernel to cover the non-linear aspect of

the data. We set the cost for misclassification for all experiments to 1 and

tuned other parameters, such as gamma, which defines how much influence

a single training example has.



4.3. RESULTS 57

Feature set CA Recall Precision F1

D-S 0.48 0.36 0.39 0.34

D-SF 0.49 0.39 0.44 0.36

D-SFP 0.58 0.43 0.46 0.41

H-S 0.69 0.40 0.47 0.41

H-SF 0.64 0.43 0.49 0.41

H-SFP 0.75 0.35 0.34 0.34

DIR-SFP 0.53 0.39 0.41 0.36

ALL 0.53 0.39 0.41 0.36

TOP 0.72 0.36 0.34 0.35

ADDITION 0.57 0.43 0.42 0.40

ELIMINATION 0.61 0.40 0.42 0.40

Table 4.10: Classification metrics for classification with support vector

machine classifier on predefined feature sets.

Results for multiclass classification with SVM with RBF kernel are in

Table 4.10. Table 4.10 shows that F1 score for classification with SVM is

on average slightly higher than when classifying with random forest (results

in Table 4.4) for feature sets defined in Table 3.7. Three feature sets, D-

SFP, H-S, and H-SF , achieve the same highest F1 score of 0.41. However,

classification accuracy for these feature sets differs significantly. We listed

confusion matrices for the three best scoring feature sets according to F1

score in Table 4.11.

The first observation from matrices in Table 4.11 is that for all three

feature sets classification of train mode is somewhat random. Comparison

between the bottom rows of confusion matrices for D-SFP and H-S, and the

bottom row of confusion matrix for random classifier in Table 4.3 reveals

no major differences between the classifiers regarding classification of train

samples. When using H-SF feature set, the largest part of train samples is

recognized as buses. The second observation is that SVM seems to classify

buses more accurately than any previous classifier on any other feature set.



58 CHAPTER 4. EVALUATION

D-SFP

T \P Car Bus Train

Car 0.63 0.36 0.01

Bus 0.47 0.48 0.05

Train 0.45 0.36 0.19

H-S

T \P Car Bus Train

Car 0.80 0.19 0.01

Bus 0.71 0.27 0.02

Train 0.50 0.37 0.13

H-SF

T \P Car Bus Train

Car 0.71 0.28 0.01

Bus 0.50 0.47 0.03

Train 0.40 0.49 0.11

Table 4.11: Confusion matrices for classification with support vector ma-

chine on the selected predefined feature sets.

In case of D-SFP feature set the largest part of buses is classified as buses,

and in case of H-SF parts of buses classified as cars and buses are fairly

similar. SVM classifier trained with H-S act as a mixture of majority and

random classifier for bus examples. Additionally, we noticed that the use

of feature sets D-SFP and H-SF results in less reliable classification of cars

compared to random forest and other feature sets.

To improve classification scores we again tried scaling and PCA. Just as

with random forest, scaling did not improve classification scores, whereas

with PCA we observed similar improvement as previously. Results are listed

in Table 4.12. Compared to random forest the improvement was generally

less significant. We noticed the largest increase in F1 score for feature sets

H-S and H-SF, which performed the best in previous experiment as well.

Interesting is that there was no significant increase in precision and classifi-

cation accuracy, while recall gained 0.07 in case of H-S and 0.04 for H-SF.

Confusion matrices for these two feature sets are in Table 4.13.

Overall scores from Table 4.12 suggest that models trained with H-S and

H-SF are very similar, which we can also observe in confusion matrices in



4.3. RESULTS 59

Feature set CA Recall Precision F1

D-S 0.54 0.40 0.39 0.37

D-SF 0.55 0.41 0.42 0.39

D-SFP 0.53 0.35 0.37 0.35

H-S 0.69 0.47 0.49 0.46

H-SF 0.68 0.47 0.48 0.46

H-SFP 0.79 0.33 0.26 0.30

DIR-SFP 0.50 0.41 0.41 0.38

ALL 0.50 0.41 0.41 0.38

TOP 0.71 0.36 0.34 0.34

ADDITION 0.54 0.39 0.38 0.37

ELIMINATION 0.66 0.42 0.44 0.43

Table 4.12: Classification metrics for SVM classifier on predefined feature

sets with PCA transformation into three dimensional space.

H-S

T \P Car Bus Train

Car 0.77 0.21 0.02

Bus 0.51 0.46 0.03

Train 0.46 0.34 0.20

H-SF

T \P Car Bus Train

Car 0.76 0.22 0.02

Bus 0.50 0.46 0.04

Train 0.44 0.36 0.20

Table 4.13: Confusion matrices for classification with support vector ma-

chine on the selected predefined feature sets.



60 CHAPTER 4. EVALUATION

Mode Feature set CA Recall Precision F1

Car H-S 0.57 0.60 0.57 0.53

Bus H-SF 0.73 0.61 0.57 0.58

Train D-SF 0.94 0.57 0.73 0.60

Table 4.14: Classification metrics for binary classification with support

vector machine classifier.

Table 4.13. These two confusion matrices are also very similar to confusion

matrix for classification with random forest on feature set H-S with PCA

transformation into three dimensional space in Table 4.7.

In addition to running the SVM classification on the predefined feature

sets from Table 3.7 we also trained the models using feature sets produced

by feature selection procedure with random forest classifier. However, these

feature sets did not produce good results with SVM as seen in bottom two

rows of Table 4.10 and Table 4.12.

We noticed that classification for each class might work best with its own

model parameters, therefore we turned to binary classification using on versus

the rest approach. We used SVM classifier with RBF kernel to train binary

models. Results are listed in Table 4.14. We were able to recognize 55% of

cars, 42% of buses, and 13% of trains correctly with binary classification using

one versus the rest strategy. This is less than with multiclass classification in

the majority of cases. For each mode we were able to reach F1 score over 0.5,

however as we only have two classes in binary classification, even majority

classifier reaches F1 score of 0.5 on average.

We reported on the best performing feature set for each mode in column

Feature set in Table 4.14. We were most successful classifying cars and buses

using horizontal acceleration features, whereas trains were best recognizable

with dynamic acceleration features. We believe the difference stems from the

fact that trains are bound to the rails. Therefore, there is very close to zero

vertical acceleration in short time intervals. On the contrary cars and buses

usually deal with urban furniture, such as speed bumps, which affect vertical



4.3. RESULTS 61

acceleration.

We also used PCA with binary classification. Scores are very similar to

those in Table 4.14. When we used PCA we were able to correctly classify

71% of cars, 17% of buses, and 12% of train, which is overall worse than

without PCA.

These findings suggest that SVM might not be the most appropriate

classifier for this problem. We, however, acknowledge that SVM allows for

a number of parameters to be adjusted. This includes kernel, the cost for

misclassification, and the influence of a single training example. However,

our initial experimentation suggests that it is unlikely that SVM is the best

approach for the problem at hand. We were maximizing the F1 score, whereas

macro-averaged classification accuracy might work better. The choice of

optimization criteria in validation also holds for binary classification, where

we also tried to maximize F1 score, but could or even should have opted to

maximize the classification accuracy of the minority class.

4.3.4 Neural network

As neural network we used multilayer perceptron with at most three lay-

ers. Using deeper networks would result in much more complex tuning of

parameters and layer sizes, and would increase training time significantly.

We selected an approximate range of layer sizes and then explored possible

configurations using validation set to determine the best layer setting.

Results of classification with neural network are listed in Table 4.15. On

average, F1 scores for classification with neural network are higher than in

case of random forest or SVM. We achieved the highest scores using D-SF,

D-SFP, and ALL feature sets, which is slightly unusual as we previously got

the best results when using horizontal acceleration. What stands out about

these two results are the recall scores, which are as high as those achieved by

feature selection with random forest.

Confusion matrix for classification using ALL feature set is shown in

Table 4.16. It reveals that though the classification is still not good, neural



62 CHAPTER 4. EVALUATION

Feature set CA Recall Precision F1

D-S 0.51 (.074) 0.39 (.020) 0.40 (.015) 0.37 (.020)

D-SF 0.64 (.042) 0.48 (.020) 0.44 (.021) 0.44 (.023)

D-SFP 0.58 (.057) 0.49 (.014) 0.48 (.020) 0.44 (.026)

H-S 0.58 (.080) 0.43 (.031) 0.45 (.035) 0.40 (.038)

H-SF 0.59 (.039) 0.46 (.020) 0.42 (.019) 0.41 (.024)

H-SFP 0.57 (.140) 0.39 (.045) 0.41 (.085) 0.35 (.045)

DIR-SFP 0.61 (.078) 0.48 (.037) 0.48 (.054) 0.42 (.044)

ALL 0.62 (.057) 0.49 (.016) 0.49 (.018) 0.44 (.028)

TOP 0.69 (.010) 0.35 (.004) 0.34 (.026) 0.34 (.003)

ADDITION 0.63 (.068) 0.49 (.033) 0.46 (.035) 0.45 (.038)

ELIMINATION 0.60 (.094) 0.43 (.033) 0.42 (.031) 0.41 (.037)

Table 4.15: Classification metrics for classification with neural network

classifier on predefined feature sets. In brackets is the standard deviation σ

after 100 runs.

networks do a very good job in recognizing buses as the majority of bus

samples is recognized correctly. Additionally, there is significantly less trains

classified as cars than in any other scenario we have tested. Classification

of car samples is slightly worse than with some other models, however the

difference is not significant. This means that we are able to differentiate

between user traveling in a private vehicle and a user using public transport.

The fact that we are able to differentiate between traveling in cars and

using public transportation is often good enough for applications focused

on reducing individual’s carbon footprint. Additionally, such classifier is also

useful in cities, where only one form of public transport is widely available, for

example in Ljubljana. In places where different means of public transport

are available, city planners might be interested in whether a user is using

public transport, not necessarily what the transport mode is.

We again used PCA to improve classification scores, however we were not

as successful as in case of random forest and SVM. Results are gathered in



4.3. RESULTS 63

T \P Car Bus Train

Car 0.65 (.086) 0.33 (.085) 0.02 (.010)

Bus 0.33 (.083) 0.63 (.085) 0.04 (.010)

Train 0.35 (.082) 0.47 (.089) 0.18 (.047)

Table 4.16: Confusion matrix for classification with support vector machine

using ALL feature set. In brackets is the standard deviation σ after 100 runs.

Table 4.17. For many feature sets classification scores stayed the same or

even significantly decreased. Major improvement has only happened when

using H-S feature set. We achieved F1 score of 0.43, which is about the same

as with feature sets D-SF, D-SFP, and ALL without PCA. Classification

accuracy also roughly the same. In this case as 69% of cars are recognized

as cars, 50% of buses are classified as buses and about 18% of trains are

recognized as trains, which is also similar to experiments without PCA.

We did not explore transportation mode detection with neural networks

in such depth as with random forest or SVM, therefore there is still room

for further analysis. As we limited ourselves to networks with at most three

layers, increasing the depth of the network is the first idea that comes to mind.

Increasing the number of layers significantly increases the training time as

well as increases the complexity of layer configuration tuning, therefore this

makes feature exploration by experimenting with different feature sets very

time consuming.

Additionally, we used the simplest example of neural network — multi-

layer perceptron. Recently there has been a lot of progress made with differ-

ent neural units, layers, and configurations in convolutional neural networks

and recurrent neural networks. By using such neural networks we might be

able to omit hand-crafting the features.

We have tried deeper neural networks and different neural units, however

the amount of data we have poses a limitation on the number of parameters

our model can have. If the model has more parameters than we have data

points to train the model with, there is a new source of randomness we have



64 CHAPTER 4. EVALUATION

Feature set CA Recall Precision F1

D-S 0.54 (.075) 0.42 (.014) 0.41 (.011) 0.39 (.022)

D-SF 0.53 (.036) 0.42 (.008) 0.42 (.008) 0.39 (.013)

D-SFP 0.47 (.049) 0.37 (.016) 0.38 (.011) 0.34 (.023)

H-S 0.63 (.074) 0.46 (.025) 0.47 (.019) 0.43 (.030)

H-SF 0.58 (.034) 0.43 (.009) 0.47 (.017) 0.41 (.014)

H-SFP 0.64 (.169) 0.33 (.020) 0.32 (.049) 0.30 (.035)

DIR-SFP 0.47 (.146) 0.36 (.033) 0.37 (.034) 0.31 (.042)

ALL 0.42 (.084) 0.36 (.028) 0.36 (.015) 0.31 (.038)

TOP 0.69 (.011) 0.35 (.004) 0.34 (.021) 0.34 (.003)

ADDITION 0.55 (.056) 0.42 (.015) 0.40 (.015) 0.38 (.019)

ELIMINATION 0.61 (.082) 0.38 (.032) 0.39 (.037) 0.38 (.039)

Table 4.17: Classification metrics for classification with neural network

classifier on predefined feature sets with PCA transformation into three di-

mensional space. In brackets is the standard deviation σ after 100 runs.

to deal with. When we took that limitation in account we were left with wide

and shallow networks, which we have tested with multilayer perceptron, and

deeper and narrow networks that did not reach F1 score of 0.33 after weeks

of parameter tuning. Similarly as for other methods, we did 100 runs of each

experiment and noticed that the standard deviation in performance metrics

was much larger in case of deep neural networks, exceeding 0.1 for all metrics.

When inspecting the confusion matrices we observed that the network was

likely to recognize one mode (not necessarily the majority class) somewhat

well, and randomly classify other two modes, which in turn lead to poor

classification metrics.



Chapter 5

Conclusion

In this work we have presented our approach towards transportation mode

detection based on mobile sensors. The approach is unique as we used short

samples of only accelerometer signal. Additionally, we only collected ac-

celerometer samples if the phone’s native activity recognition API senses

that there is a non-zero probability of a user traveling in a vehicle. We check

the native activity recognition API every 30 seconds, which makes our ap-

proach very energy efficient and thus does not drain the battery as much.

Furthermore, the users were allowed and even encouraged to use the phone

during travel, which sets our approach apart from the related work. As we

do not rely on any location information for transportation mode detection,

the design allows the use of this approach anywhere in the world. We also

did not use any personalized models, so our approach does not suffer from

the so called cold start, when a new user joins the study. We carried our

a comprehensive and rigid evaluation on separate datasets, which showed

that although transportation mode detection using mobile phone sensors is

possible, decent classification results in classification of motorized modes are

difficult to achieve. Our most important discoveries and contributions in-

clude:

1. a comprehensive analysis of multiple machine learning approaches re-

lying on a large number of features extracted from short samples of

65



66 CHAPTER 5. CONCLUSION

accelerometer readings for transport mode detection,

2. identification of dynamic and horizontal acceleration-related features,

in particular statistical and peak-based, as the most promising features

on which future efforts in the area of transport mode inference should

focus, and

3. outline the limits of short accelerometer samples-based transport mode

detection by showing that such low-cost low-power practical solution

is a promising tool for differentiating between riding in a private or

a public vehicle, however, it fails to successfully distinguish among

different modes of public transport (e.g. bus or train).

Although we believe that comparing our results to the related work would

be unfair due to the significant differences in the approaches and evaluation

methodologies, we acknowledge that our results are poor compared to some

of the previously published work.

One contributing factor to the difficulty of the problem might be that

we use short samples of sensor data, whereas the best results in the field

used trip-long data samples to extract features from. We assume that by

using only five second samples we miss some of the significant and mode-

characteristic drive patterns. These patterns possibly include stopping at a

bus station or at traffic lights, reducing the speed before driving over a speed

bump or turning into a narrow street, and walking patterns inside a vehicle

that would suggest a user is taking a bus or a train.

For the future work we are interested to see how using longer sensor

samples influences classification. There is a trade-off between the length of

the samples and the efficiency of the approach. Longer samples consume

more battery, require more storage space and computation time. It would

be interesting to experiment with the sizes of the samples to determine the

optimal recording length. We suggest sampling at the highest frequency

possible, as there has not been a lot of research done in that direction. If

lower sampling frequencies turn out as optimal, down sampling to get the



67

best prototype is always an option, whereas up sampling does not really

make sense for this specific problem. Other sensors, such as gyroscope and

magnetometer, could also be used. As many scenarios for applications of

transportation mode detection include GPS tracking anyway, GPS speed

could be used as a feature. The main drawback of using GPS speed is

its unreliability in closed spaces and underground, which means that the

measurements may not be present when needed.

Additionally, we did not instruct the users on preferred placements of

the device during travel nor did we discourage them from using the device.

Moreover, as Optimum application is primarily a multi-modal routing appli-

cation, we expected the users will interact with the phone while they travel.

However, combining users’ interaction with the device with the use of short

samples may have also contributed to poor performance. Similar studies in-

struct their participants to keep the device in the same position during the

trip or even instruct them on what the position should be. As the acceler-

ation caused by the user’s movement is usually three to five times stronger

than that of a vehicle [9], a short gesture, such as taking a phone out of a bag,

covers a fairly significant portion of the sample. Although gravity estimation

is in place, it cannot nullify the event of such magnitude.

As an alternative to gravity estimation, we suggest exploring other motion

sensor options provided by native OS’s APIs, such as estimated gravity along

each axis. Some of these options require calibration and are thus not ideal

as they require user’s involvement to initialize the application. To tackle the

problem of phones orientation in space, approaches from gaming can also be

applied. For example, Android’s sensors are capable of extracting rotation

matrix by joining accelerometer and magnetometer readings [34]. Rotation

matrix includes rotation angles — azimuth, pitch, and roll, which define

the orientation of the phone in the space. Using this information we can

then transform the measurements from the coordinate system relative to the

phone to the coordinate system used by the application.



68 CHAPTER 5. CONCLUSION

Feature analysis revealed that our features are not normally distributed,

which is not an issue per se. However as the shapes of distributions of some

features are different for each mode, statistical testing is challenging. We

relied on statistical tests to gain introspective into features, but instead we

ended up performing feature selection with random forest to learn about

the features and the data set. When it comes to feature selection we could

argue that the simplest and the most intuitive features work the best in

this case. Adding more complicated features did not result in much wanted

performance improvement. Using feature selection and estimated feature

importance when training with random forest we learned that frequency-

based features are likely the least informative domain as only one of these

features appeared in each of the selected feature sets. We also noticed that

peak-based features and features extracted from horizontal acceleration do

not contribute much when distinguishing between cars and buses.

As we are dealing with multiclass classification we learned that using a

classifier designed and capable of handling multiple classes resulted in better

classification scores. Support vector machine uses several instances of one

versus the rest binary classifiers and then combines the results into one pre-

diction. We noticed that SVM classifier performed the poorest compared to

random forest and neural network, which are both capable of multiclass clas-

sification as is. We believe that it is unlikely that SVM is the best method

for the given problem.

Although we reached the highest F1 score using random forest, we con-

sider we achieved the best classification result with neural network as it was

able to classify the majority of two modes correctly. This calls for further

inspection of alternative evaluation criteria that would still be of practical

interest. To some extent evaluation metrics depend on the practical appli-

cation of the prototype. For instance, city planners might be interested in

whether a user is using public transport, not necessarily if the transport mode

is bus or train. The best model achieved classification accuracy of 0.62, recall

of 0.49, precision of 0.49, and F1 score of 0.44. It correctly classified 65%



69

cars, 63% buses, and 18% trains. As we limited the number of layers in our

neural network to three, there is an opportunity to improve our result by

building a deeper network. We did not explore new alternatives in form of

convolutional and recurrent neural networks, which gained the popularity in

last years. We have tried deep learning approaches, however we realized that

the number of parameters in the model quickly exceeded the number of data

points we used for training.

Another idea for the future is using deep learning to avoid feature extrac-

tion. As already mentioned in the related work, when we rely on handcrafted

features, we also rely on the experience of the researchers. Using traditional

machine learning approaches allows the researcher to understand and ex-

plain which features and patterns are important, whereas deep learning acts

as a black box. Understanding of properties and the ability to explain why

some transportation mode was detected is important as nowadays the way

we travel defines us. The choice of a transportation mode an individual uses

daily is a reflection of her habits and lifestyle choices. Socio-economic status,

attitude towards the environment, and the desire to be healthy and fit are

among common contributing factors to ones lifestyle choices. However, we

should also explore other promising methods.

In case of a community driven setting, the biggest challenge of data col-

lection is finding the right incentives for people to participate [12]. Optimum

project, which was our source of sensor data, offered free monthly passes

to test users for public transportation in Ljubljana, and awarded test users

monetary awards for using sustainable ways to commute in Vienna and Birm-

ingham [7]. However, collaborating on such projects is not always an option.

Additionally, the amount of data we collected was not adequate for all the

methods we attempted to use. Due to the nature of the mobility studies and

privacy concerns regarding the use of mobile phone sensor data for transport

mode inference, there are very few publicly available data sets. Since there

are quite a few different approaches to data collection and feature extraction,

none of them were appropriate for our work. Therefore, as one of the final



70 CHAPTER 5. CONCLUSION

challenge for the future we propose creating a benchmark data set for trans-

portation mode detection with raw sensor samples and description of data

acquisition procedure included. Having an openly accessible benchmark data

set does not only help the researchers to compare their approach to others,

but also accelerates further development of the field.



Bibliography

[1] Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen,

and Mani Srivastava. Using mobile phones to determine transportation

modes. ACM Transactions on Sensor Networks, 6(2):13, 2010.

[2] Muhammad Awais Shafique and Eiji Hato. Use of acceleration data for

transportation mode prediction. Transportation, 42(1):163–188, 2015.

[3] Samuli Hemminki, Petteri Nurmi, and Sasu Tarkoma. Accelerometer-

based transportation mode detection on smartphones. In 11th ACM

Conference on Embedded Networked Sensor Systems, Roma, Italy,

November 2013. ACM.

[4] Leon Stenneth, Ouri Wolfson, Philip S Yu, and Bo Xu. Transportation

mode detection using mobile phones and gis information. In 19th ACM

SIGSPATIAL International Conference on Advances in Geographic In-

formation Systems, Chicago, IL, USA, November 2011. ACM.

[5] Peter Widhalm, Philippe Nitsche, and Norbert Brändie. Transport mode

detection with realistic smartphone sensor data. In 21st International

Conference on Pattern Recognition, Tsukuba, Japan, November 2012.

IEEE.

[6] Luka Bradeško, Zala Herga, Matej Senožetnik, Tine Šubic, and Jasna

Urbančič. Optimum project: Geospatial data analysis for sustain-

able mobility. In 24th ACM SIGKDD International Conference on

71



72 BIBLIOGRAPHY

Knowledge Discovery & Data Mining Project Showcase Track, Lon-

don, UK, August 2018. ACM. http://www.kdd.org/kdd2018/files/

project-showcase/KDD18_paper_1797.pdf.

[7] Optimum project - European Union’s Horizon 2020 research and inno-

vation programme under grant agreement No 636160-2. http://www.

optimumproject.eu/, 2017. [Online; accessed 4-November-2017].

[8] David Mizell. Using gravity to estimate accelerometer orientation. In 7th

IEEE International Symposium on Wearable Computers, White Plains,

NY, USA, October 2003. IEEE.

[9] Ke-Yu Chen, Rahul C Shah, Jonathan Huang, and Lama Nachman.

Mago: Mode of transport inference using the hall-effect magnetic sen-

sor and accelerometer. Proceedings of the ACM on Interactive, Mobile,

Wearable and Ubiquitous Technologies, 1(2):8, 2017.

[10] Dennis Kroll and Klaus David. Measuring the capability of smartphones

for executing context algorithms. INFORMATIK 2017, 2017.

[11] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark

Smith, and Pete Steggles. Towards a better understanding of context

and context-awareness. In 1st International symposium on handheld and

ubiquitous computing, Karlsruhe, Germany, September 1999. Springer.

[12] Nathan Eagle and Kate Greene. Reality mining: Using big data to

engineer a better world. MIT Press, 2014.

[13] Evangelia Anagnostopoulou, Jasna Urbančič, Efthimios Bothos, Babis

Magoutas, Luka Bradesko, Johann Schrammel, and Gregoris Mentzas.

From mobility patterns to behavioural change: leveraging travel be-

haviour and personality profiles to nudge for sustainable transportation.

Journal of Intelligent Information Systems, Oct 2018.

http://www.kdd.org/kdd2018/files/project-showcase/KDD18_paper_1797.pdf
http://www.kdd.org/kdd2018/files/project-showcase/KDD18_paper_1797.pdf
http://www.optimumproject.eu/
http://www.optimumproject.eu/


BIBLIOGRAPHY 73

[14] ActivityRecognition. https://developers.google.com/

android/reference/com/google/android/gms/location/

ActivityRecognition, 2018. [Online; accessed 31-August-2018].

[15] CMMotionActivity. https://developer.apple.com/library/ios/

documentation/CoreMotion/Reference/CMMotionActivity_class/

index.html#//apple_ref/occ/cl/CMMotionActivity, 2018. [Online;

accessed 31-August-2018].

[16] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma.

Understanding mobility based on gps data. In 10th International Con-

ference on Ubiquitous Computing, Seoul, Korea, September 2008. ACM.

[17] Ivana Semanjski, Sidharta Gautama, Rein Ahas, and Frank Witlox.

Spatial context mining approach for transport mode recognition from

mobile sensed big data. Computers, Environment and Urban Systems,

66:38–52, 2017.

[18] Heikki Mäenpää, Andrei Lobov, and Jose L Martinez Lastra. Travel

mode estimation for multi-modal journey planner. Transportation Re-

search Part C: Emerging Technologies, 82:273–289, 2017.

[19] Shih-Hau Fang, Hao-Hsiang Liao, Yu-Xiang Fei, Kai-Hsiang Chen, Jen-

Wei Huang, Yu-Ding Lu, and Yu Tsao. Transportation modes classifi-

cation using sensors on smartphones. Sensors, 16(8):1324, 2016.

[20] Sungyong Lee, Jinsung Lee, and Kyunghan Lee. Vehiclesense: A reliable

sound-based transportation mode recognition system for smartphones.

In 18th IEEE International Symposium on A World of Wireless, Mo-

bile and Multimedia Networks (WoWMoM), Macao, China, June 2017.

IEEE.

[21] Shih-Hau Fang, Yu-Xaing Fei, Zhezhuang Xu, and Yu Tsao. Learning

transportation modes from smartphone sensors based on deep neural

network. IEEE Sensors Journal, 17(18):6111–6118, 2017.

https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognition
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognition
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognition
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionActivity_class/index.html#//apple_ref/occ/cl/CMMotionActivity
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionActivity_class/index.html#//apple_ref/occ/cl/CMMotionActivity
https://developer.apple.com/library/ios/documentation/CoreMotion/Reference/CMMotionActivity_class/index.html#//apple_ref/occ/cl/CMMotionActivity


74 BIBLIOGRAPHY

[22] Toan H Vu, Le Dung, and Jia-Ching Wang. Transportation mode detec-

tion on mobile devices using recurrent nets. In 24th ACM Multimedia

conference, Amsterdam, Netherlands, October 2016. ACM.

[23] Hao Wang, GaoJun Liu, Jianyong Duan, and Lei Zhang. Detecting

transportation modes using deep neural network. IEICE TRANSAC-

TIONS on Information and Systems, 100(5):1132–1135, 2017.

[24] Davide Figo, Pedro C Diniz, Diogo R Ferreira, and João M Cardoso. Pre-

processing techniques for context recognition from accelerometer data.

Personal and Ubiquitous Computing, 14(7):645–662, 2010.

[25] Jasna Urbančič, Luka Bradeško, and Matej Senožetnik. Near real-time

transportation mode detection based on accelerometer readings. In In-

formation Society, Data Mining and Data Warehouses SiKDD, Ljubl-

jana, Slovenia, October 2016.

[26] Jasna Urbancic, Veljko Pejovic, and Dunja Mladenic. Transportation

mode detection using random forest. In Information Society, Data Min-

ing and Data Warehouses SiKDD, Ljubljana, Slovenia, October 2018.

[27] BaoWang, Linjie Gao, and Zhicai Juan. Travel mode detection using gps

data and socioeconomic attributes based on a random forest classifier.

IEEE Transactions on Intelligent Transportation Systems, 2017.

[28] Luka Bradeško, Michael Witbrock, Janez Starc, Zala Herga, Marko Gro-

belnik, and Dunja Mladenić. Curious cat–mobile, context-aware conver-

sational crowdsourcing knowledge acquisition. ACM Transactions on

Information Systems, 35(4):33, 2017.

[29] Jong Hee Kang, William Welbourne, Benjamin Stewart, and Gaetano

Borriello. Extracting places from traces of locations. In 2nd ACM in-

ternational workshop on Wireless mobile applications and services on

WLAN hotspots, Philadelphia, Pennsylvania, USA, October 2004. ACM.



BIBLIOGRAPHY 75

[30] OPTIMUM Intelligent Mobility for Android. https://play.

google.com/store/apps/details?id=com.fluidtime.android.ec.

optimum, 2018. [Online; accessed 4-June-2018].

[31] Mobility Patterns for Android. https://play.google.com/

store/apps/details?id=net.nextpin.example.collection, 2018.

[Online; accessed 4-June-2018].

[32] Mobility Patterns for iOS. https://itunes.apple.com/us/app/

mobility-patterns/id1073388328?mt=8, 2018. [Online; accessed 4-

June-2018].

[33] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support

vector machines. ACM Transactions on Intelligent Systems and Tech-

nology, 2:27:1–27:27, 2011. Software available at http://www.csie.

ntu.edu.tw/~cjlin/libsvm.

[34] Sensors overview. https://developer.android.com/guide/topics/

sensors/sensors_overview.html, 2016. [Online; accessed 31-August-

2018].

 https://play.google.com/store/apps/details?id=com.fluidtime.android.ec.optimum
 https://play.google.com/store/apps/details?id=com.fluidtime.android.ec.optimum
 https://play.google.com/store/apps/details?id=com.fluidtime.android.ec.optimum
 https://play.google.com/store/apps/details?id=net.nextpin.example.collection
 https://play.google.com/store/apps/details?id=net.nextpin.example.collection
https://itunes.apple.com/us/app/mobility-patterns/id1073388328?mt=8
https://itunes.apple.com/us/app/mobility-patterns/id1073388328?mt=8
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://developer.android.com/guide/topics/sensors/sensors_overview.html
https://developer.android.com/guide/topics/sensors/sensors_overview.html

	Povzetek
	Abstract
	Razširjeni povzetek
	Kratek pregled sorodnih del
	Predlagana metoda
	Eksperimentalna evalvacija
	Sklep

	Introduction
	Related work
	Proposed approach
	Data acquisition
	Preprocessing
	Feature extraction
	Feature analysis
	Classification

	Evaluation
	Performance metrics
	Evaluation methodology
	Results

	Conclusion

