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Povzetek

Naslov: Konsistentna postavitev oznak znotraj razstavljenega diagrama 3D

modelov

Vizualna predstavitev informacij s pomočjo oznak znotraj slik nam je

vsem že poznana. Redko kdo se pa zaveda, da samodejna postavitev oznak

v 2D ali 3D prostoru spada med NP-polne in NP-težke probleme. Naj-

sodobneǰsi in vodilni med algoritmi ježevo označevanje (hedgehog labeling)

že ustvari neverjetne in časovno konsistentne postavitve oznak znotraj inte-

raktivnih aplikacij v realnem času. Vendar tako kakor večina algoritmov za

postavitev oznak v 3D prostoru predpostavlja statične in ne-spreminjajoče se

objekte. Zato uspeh algoritmov močno pade kadar jih združimo s tehnikami

predstavitve 3D modelov, ki modelom dodajo gibanje ali pa modele spre-

menijo tekom časa. Predstavnik obeh problematičnih tipov so razstavljeni

diagrami 3D modelov, kjer predstavljamo strukturo modela s simulacijo ek-

splozije posameznih delov.

Za konsistentno postavitev oznak znotraj razstavljenega diagrama pre-

dlagamo razširitev ježevega označevanja s pomočjo gručenja ≫eksplodira-

nih≪ delov in njihovih oznak v razrede. Razredno ježevo označevanje (cluste-

red hedgehog labeling) uporabi informacije o poteku premikov za razdelitev

3D prostora v podprostore dodeljene posameznim razredom oznak. Vsak

izmed razredov izvaja lastno ježevo označevanje zgolj na oznakah znotraj

razreda. Evalvacija predlagane metode je bila izvedena na njeni Textplo-

sion implementaciji v obliki eksperimentov ocenitve uporabnǐske izkušnje s

pomočjo sledenja vida prostovoljcev, kjer smo uspešno zaznali izbolǰsavo v



izkušnji v primerjavi z osnovnim algoritmom. Zaradi potrebe po testnih 3D

modelih v eksperimentu smo tudi ustvarili zbirko 3D modelov, ki jo namera-

vamo deliti s skupnostjo z namenom postavitve osnove za do zdaj manjkajoče

standardizacije testiranja postavitev 3D oznak.

Ključne besede

informacijski vmesniki, predstavitev, 3D postavitev oznake, berljivost oznak,

razporeditev vizualizacije, eksplozijski diagram, grafični uporabnǐski vmesnik,

interaktivni uporabnǐski vmesnik, gručenje, odprto-kodne knjǐznice 3D mode-

lov, evalvacija uporabnǐske izkušnje, evalvacija s sledenjem očem



Abstract

Title: Coherent Label Placement for 3D Exploded View

The use of labels in images represents the basics of visual object presen-

tations that we are all familiar with. However, few know that automatic

label placement in 2D or 3D space belongs to the set of NP-complete and

NP-hard problems. While state-of-the-art algorithms such as hedgehog la-

beling already produce incredible coherent results in real-time interactive

applications, they were only designed for static and non-deformable objects.

Therefore, their performance decreases when combined with the dynamic and

model-deforming the 3D model presentation techniques such as exploded di-

agrams a.k.a. exploded views, which present the structure of 3D model by

”exploding” their parts.

We propose an extension of hedgehog labeling to work with exploded

views by introducing clustering of model exploded parts and their labels.

Clustered hedgehog labeling uses the explosion information to separate 3D

space into sections belonging to individual label clusters, each running hedge-

hog labeling instances solely on the cluster members. The evaluation of the

proposed solution and its Textplosion implementation was done by running

a usability study enhanced with eye-tracking on a group of volunteers, where

improvement of the original algorithm was detected. The need for 3D test

models for experimentation resulted in the creation of a 3D Labeling dataset

to be shared with the community in an attempt to fill the void of a missing

standardized dataset for 3D labeling algorithms.
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Razširjeni povzetek

≫Slika je vredna tisoč besed≪, vendar kako nekdo združi te ”besede”oziroma

podatke v informacijo se razlikuje med ljudmi. Kadar želimo s pomočjo slik,

fotografij, posnetkov ali aplikacije sporočiti drugi osebi neko informacijo, mo-

ramo biti pazljivi kako jo predstavimo. Med osnove vizualne predstavitve

informacij spadajo tudi oznake znotraj slik. Čeprav se zdi postavitev oznak

znotraj slik trivialen problem, se izkaže, da gre v resnici zaNP-polni inNP-

težki problem, ki z razširitvijo v 3D prostor doda k težavnosti še šest pro-

stostnih stopenj [1, 2, 3]. Zato moramo v 3D prostoru prenehati razmǐsljati

o oznakah kot zaporedjih črk dodanih na vrh projekcijske ravnine, temveč

moramo o njih razmǐsljati kot 3D objektih v prostoru, zasidranih na objekte,

ki jih opisujejo. Za sidranje oznak moramo določiti sidro, ki je opazovalcu

vidna točka na objektu, ki ga oznaka želi opisati. Sidro nam predstavlja

začetek vodilne črte, ki jo potegnemo do sredǐsča oznake in s tem vodimo

pogled opazovalca.

Medtem ko sidranje oznak omogoči njihovo postavitev v 3D prostoru,

samo sidranje ne reši problema samodejne postavitve oznak, saj moramo

najprej določiti meritev uspešnosti posamezne postavitve oznak. Götzel-

mann, Hartmann, in Strothotte [4] opredelijo tri glavne kriterije za meritev

uspešnosti z izrazi berljivost, jasnost oziroma nedvoumnost in konsiten-

tnost med slikami, kjer pri vsakemu kriteriju opǐsejo kopico dobrih praks.

Njihove ugotovitve in dobre prakse Schmalstieg ter Hollerer [3] poenosta-

vita v šest jasnih in jedrnatih ciljev za postavitev posamezne oznake v 3D

prostoru, katere smo uporabili tekom magistrskega dela kot vodilo pri po-

i
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stavtivi teorije, implementaciji rešitve in njuni evalvaciji. Šest ciljev, katerim

smo sledili, smo prevedli sledeče:

Postavi oznako blizu objekta

Zmanǰsaj količino kognitivne dejavnosti možganov za povezovanje oznake

in z njo povezanega objekta.

Oznake se naj ne prekrivajo

Prekrivanje oznak zmanǰsa berljivost oznak.

Zunanje oznake se ne postavi pred objekte

Oznake ločimo na zunanje in notranje oznake. Notranje so vselej posta-

vljene pred objektom in izgledajo kot nalepljene na objekt, medtem ko

so zunanje oznake vselej izven obrisa objekta in tako ne skrijejo infor-

macij, prisotnih na objektu. Zaradi želje po ohranitvi vseh informacij

znotraj 3D modelov je pozornost tega magistrskega dela usmerjena na

zunanje oznake.

Vodilna črta naj bo najkraǰsa možna

Zmanǰsaj moteči element vodil. Naj obogatijo pogled, ne osiromašijo!

Sekanje vodilnih črt je nezaželeno

Sekanje vodilnih črt medseboj ali z oznakami zmoti pozornost.

Časovna konsistentnost naj bo prisotna

Postavitev oznake se ne sme spremeniti nenadno med slikami. Veliki

skoki oznak ustvarijo zmedo namesto jasnosti.

Pri predstavitvi 3D modelov znotraj interaktivne aplikacije je uporaba

oznak zgolj začetek opisovanja zgradbe modela, saj zgolj opisujejo trenutno

stanje. Poleg opisov trenutno vidnih delov modela glede na njegovo trenu-

tno pozicijo in rotacijo bi si znotraj interaktivne aplikacije želeli še pridobiti

informacije o morebitnih trenutno nevidnih delih modela, skritih v notranjo-

sti. Elementi skriti znotraj modela so še posebej značilni za CAD modele, ki
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opisujejo natančne zgradbe predmetov za potrebe kot so proizvodnja. Infor-

mativni in intuitivni pristop predstavitve za dani problem so razstavljeni

diagrami 3D modelov, ki razstavijo model skozi simulacijo eksplozije.

Samostojna postavitev oznak znotraj avtomatsko razstavljenih diagra-

mov poljubnih 3D modelov v okviru interaktivne aplikacije, ki se izvaja v

realnem času, je cilj in doprinos tega magistrskega dela. Naslednji doprinos

je bila nadgradnja najsodobneǰsega in vodilnega med algoritmi za postavitev

oznak, ježevo označevanje (hedgehog labeling), za bolǰse delovanje zno-

traj razstavljenih diagramov poljubnih 3D modelov. Za potrebe evalvacije

nadgradnje v primerjavi z obstoječim algoritmom smo razvili eksperiment

ocenitve uporabnǐske izkušnje s pomočjo sledenja vida, kar je novost znotraj

področja postavitev 3D oznak. Tekom raziskovanja in vse do pisanja tega

dela nismo odkrili nobene standardizirane zbirke za preizkušanje algoritmov

za postavitev 3D oznak, zato smo sestavili lastno zbirko 3D modelov, obo-

gatenih z besedili oznak in meta-podatki, potrebnimi za pravilno izvedbo

njihovega razstavljenega diagrama. Zbirko nameravamo deliti s skupnostjo

z nameni zapolnitve vrzeli primerjanja algoritmov, kar prav tako predstavlja

doprinos tega dela.

I Pregled sorodnih del

Razstavljeni diagrami 3D modelov so pravzaprav računalnǐska izvedba risar-

skega pristopa za opis zgradbe narisanih objektov z začetki v renesansi [5].

Kljub dolgi zgodovini koncepta in njegovi uporabni vrednosti pa ima avto-

matizacija procesa začetke šele v letu 2003, ko so predstavili prvi generator

navodil za sestavo razstavljenih objektov [6]. Med nedavnimi doprinosi glede

pohitritve avtomatizacije procesa se najde tudi delo izpod rok Kerbla, Kalko-

fena, Steinbergera in Schmalstiega iz Tehnǐske univerze v Gradcu (TUG) [7],

kjer najdemo tudi razne tehnike predstavitve in možnosti uporab razstavlje-

nih diagramov.

Na področju postavitve oznak za 3D aplikacije so največji korak v zadnjih



iv

letih naredili Tatzgern, Kalkofen, Grasset in Schmalstieg [8], ki so z razvojem

ježevega označevanja prešli iz koncepta postavitve oznak na projekcijsko

ravnino na koncept 3D oznak znotraj prostora. Kot osnovni gradnik za po-

stavitev oznak so vzeli takrat 10 let star koncept plavajočih oznak (floating

labels), ki je bil prispevek Hartmanna, Alija in Strothotta [9]. Hartmanna

et al. so na področje vpeljali polja sil za določanje optimalne pozicije kot

sistem vzmeti. J. B. Madsen, Tatzqern, C. B. Madsen, Schmalstieg in Kal-

kofen [10] so izvedli raziskavo časovne konsistentnosti in potrdila primernost

predstavitve oznak z objekti znotraj 3D prostora.

Glede evalvacije algoritmov postavitve 3D oznak ni bilo narejenih veliko

raziskav. Večina evalvacij je sledila splošnemu vzorcu za raziskovanje upo-

rabnǐske izkušnje znotraj aplikacij za obogateno resničnostjo[11, 10], kjer s

pomočjo vprašalnikov zbirajo zgolj subjektivne in empirične meritve poleg

zajema potrebnega časa za zaključek naloge. Kot redka izjema sta Azuma in

Furmanski [12], ki sta poleg meritev časa preučila še dodatni, vendar omejeni,

nabor meritev o dogodkih na oznakah. Prav tako ne obstaja standardizirana

zbirka za testiranje kot pri algoritmih za postavitve oznak na 2D kartograf-

ske zemljevide, kjer poznajo celo več standardiziranih zbirk [2]. Raziskave

o postavitvi oznak znotraj zemljevidov so tudi prehitele naše področje pri

uporabi sledenja oči znotraj evalvacij [13, 14].

Sledenje očem znotraj evalvacij rešitev je zaradi vse lažje dostopnosti ko-

mercialnih očesnih sledilcev rastoči se trend na področju računalnǐsko ustvar-

jenih podob (CGI ) [15]. V 140 letih zgodovine je sledenje očem določilo

fiksacijo, sakade, trajanje fiksacij kakor tudi dogodki dogodke na očesu,

npr. spreminjanje velikosti zenice ali mežik, kot osnovo za evalvacijske me-

trike [16, 17, 18, 19, 20]. Poleg numerične primerjave metrik lahko do ugo-

tovitev o obnašanju uporabnika prispemo tudi prek vizualne analitike, kjer

opazujemo razlike med grafi kot so toplotne slike (heatmaps) in poti iskanja

(scanpath) [15].
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II Predlagana metoda

Razredno ježevo označevanje (clustered hedgehog labeling) je bilo predla-

gano kot nadgradnja, ki obdrži jedrne elemente in zgolj enkapsulira obstoječe

ježevo označevanje [8]. Ježevo označevanje projicira oznake na ravnino oznak,

ki je vzporedna projekcijski ravnini in postavljena v 3D prostoru. Glede

na projekcijo modela in oznak znotraj ravnine oznak izračuna polja sil za

določitev najbolǰse postavitve posamezne oznake prioritetno v bližnji okolici

trenutne lokacije, dokler se ne krši šest ciljev postavitve oznak, drugače pa na

ravni celotne ravnine. Po postavitvi oznake se postavitev ohrani do določenih

dogodkov kot npr. rotacija modela. Med zamrznjenimi stanji računanja se

lahko določeni dogodki kot zakritje oznake s strani modela rešujejo s po-

dalǰsanjem vodilne črte kar tudi premakne oznako na preprost in nemoteč

način.

Težave z razstavljenimi diagrami nastanejo zaradi hitrih sprememb v to-

pologiji modela, kar močno spremeni polje sil med izračuni kakor tudi omeji

preostali nezaseden prostor, kar hitreje privede do kršitev šestih citljev po-

stavtive znotraj bližnje okolice oznake. Posledično se z napredkom eksplozij

vedno več izračunov vrši z globalnimi iskanji, kar privede do skakajočega

obnašanja oznak. Skakanja sicer ne moremo povsem odstraniti zaradi na-

rave razstavljenih diagramov, lahko pa izbolǰsamo stabilnost postavitev vseh

oznak. Stabilnost postavitev smo določili kot empirično mero glede na veli-

kosti skokov oznak med izračuni. Stabilne postavitve so tiste, kjer se skoki

oznak zgodijo v bližnji okolici pozicije preǰsnjega izračuna oziroma so skoki

majhni in tako gladki, da ne zmotijo pozornosti opazovalca. Nestabilne po-

stavitve pa imajo ogromne skoke na nivoju celotne ravnine oziroma povzročijo

s skokom preusmeritev pozornosti opazovalca, npr. zrcaljenje pozicije prek

modela.

Razredno ježevo označevanje poskuša rešiti problem s prilagoditvijo, da

imamo namesto začetnega modela ob vsaki eksploziji več manǰsih modelov v

različnih odsekih prostora. Z gručenjem parov oznak in enotami začetnega

modela glede na podane informacije o poteku eksplozije razdelimo problem
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na več manǰsih. Nastali razredi oznak imajo dodeljen lastni podprostor z

lastno ravnino oznak. Vsak izmed razredov izvaja lastno ježevo označevanje

zgolj na oznakah znotraj razreda in tako ne vpliva neposredno na preostale

oznake. Ker so razredi določeni z gručenjem po metrikah, povezanimi z

eksplozijami delov, so si deli znotraj razredov razmeroma blizu po postavitvi

in obnašanju, kar pomeni manj kršitev načel postavitve oznak, ki sprožijo

skakajoče obnašanje. Prav tako omejitev ježevega označevanja na razred

oznak omogoči ob kršitvi načel popravilo zgolj problematičnih razredov oznak

namesto vseh oznak.

III Implementacija Textplosiona

Ker smo prejeli posredni dostop do sistema za pripravo razstavljenih dia-

gramov 3D modelov predstavljenega s starni Kerbl et al. [7], smo ga upora-

bili kot naš zaledni sistem za pripravo modelov in tako povsem preusmerili

pozornost na postavitev oznak ter na interakcijo z razstavljenimi diagrami

znotraj implementacije interaktivnega uporabnǐskega vmesnika za predsta-

vitev zgradbe 3D modelov. Vmesnik smo zaradi združitve znak in eksplozij

razstavljenih diagramov poimenovali Textplosion. Textplosion smo zgradili

znotraj popularnega in široko razširjenega razvojnega okolja za igre, Unity,

kot aplikacijo, ki za vhod sprejme meta-datoteke, proizvedene s strani za-

lednega sistema in prek njih pravilno naloži priložene razstavljene 3D mo-

dele ter jih opremi z oznakami bodisi glede na imena OBJ datotek bodisi z

branjem dodatne meta-datoteke s podatki oznak. Za potrebe neodvisnosti

od zalednega sistema in njihovega, prek OpenInvertor proizvedenega, zapisa

meta-datotek smo razvili lastni JSON zapis meta-datotek eksplozij in oznak,

ki ga Textplosion zna tudi prevesti in shraniti kot zaledni zapis meta-datotek.

Sledeč predlaganim interakcijam za razstavljene diagrame 3D modelov s

strani Li-ja, Agrawala-ja, Curlessa in Salesina [21], smo razvili tri skupine

eksplozijskih interakcij ali na kratko eksplozij. Prva skupina vsebuje ani-

macije eksplozije vseh delov v pozitivni in negativni časovni osi, kjer se
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posamezni del ustavi, ko prispemo v začetno lego. Naslednja skupina eksplo-

zij so neposredna manipulacija, kjer s potegi ali pritiski mǐske sprožimo

eksplozijo posameznega dela modela. Zadnja vrsta eksplozij se imenuje li-

stanje (riffling), ker sledijo konceptu listanja skozi knjigo, kjer opazovano

stran izpostavimo, preostale strani pa odmaknemo za lažjo pozornost na iz-

brani strani. Podobno tudi v interakciji rahlo eksplodiramo izbrani del v

fokus, medtem ko vse morebitne ovire na njegovi poti eksplodiramo mnogo

bolj, da pridobimo prazni prostor okoli izbranega dela. Čeprav smo se ome-

jili na tri skupine eksplozij, smo omogočili mnogo več interakcij s pomočjo

možnosti združevanja treh osnovnih eksplozij, saj se učinki enostavno kopičijo

na skladu.

Izračuni polja sil in iskanja v njih so bili implementirani za grafični pro-

cesor prek računskih senčilnikov (compute shader), ki jim dostavimo barvno

kodiran zajem trenutnega pogleda v aplikaciji. Barvno kodiranje je bilo upo-

rabljeno za razločevanje pripadnosti pikslov posameznim delom modela in se

izvede samodejno ob zagonu, kjer glede na število delov modela enakomerno

razdelimo HSV barvni model do več kot 7.000 možnih barv, ki so razločljive

v številčnem zapisu, kakor tudi na oko za število delov v rangu stotic. Prek

razdalj med piksli in uporabnǐsko določenih konstant se izračunajo polja sil,

ki jih med iskanjem s konvolucijo v dimenzijah oznake spremenimo v polja

vsot vseh sil pikslov, ki bi jih oznaka prekrila. Iskanje optimalne pozicije

se izvede z vzporednim redukcijskim algoritmom iskanja ekstremov, ki ga z

določitvijo velikosti okolice lahko enostavno ločimo na lokalno in globalno is-

kanje. Ker polje vsot predstavlja pravzaprav razmazano obliko polja sil, smo

uspeli pospešiti izračune z uporabo tekstur nižjih resolucij. Za pravilno delo-

vanje algoritma smo ugotovili, da so dovolj že resolucije okoli dimenzije 100

pikslov. S stalǐsča procesiranja na grafičnem procesorju, glede na vzporedno

količino izračunov, se časovno porabi enako kot pri dimenzijah velikosti 128,

zato smo se odločili uporabljati 128 x 128 pikslov velike teksture kot tudi

podatkovna polja za vrednosti sil.

Z vključitvijo zamrzovanja izračunov smo pa prǐsli tudi do bolǰse časovne
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konsistentnosti in hitreǰsega procesiranja pogledov z enako količino oznak.

Za pogoje odmrznitve izračunov smo določili:

1. začetno ali uporabnǐsko sproženo postavljanje oznak,

2. spremembo kota kamere prek postavljene meje,

3. spremembo zooma prek postavljene meje,

4. prenehanje proženja vseh eksplozijskih interakcij.

Pri izboru načina gručenja oznak v razrede smo imeli širok nabor algo-

ritmov za gručenje, vendar smo se zaradi še neraziskanega področja metrik

gručenja, glede na razstavljene diagrame 3D modelov, odločili za uporabo

metode k-voditeljev, ki se je po petih desetletjih močno uveljavila kot stan-

dardni algoritem za gručenje . Glede izbora metrik gručenja smo pa preiz-

kusili veliko idej s poskusi na različnih modelih in določili sledeče štiri kot

potencialne dobre kandidate:

Pri izboru grupiranja oznak v razrede smo imeli širok nabor algoritmov za

grupiranje, vendar smo se zaradi še neraziskanega področja metrik grupira-

nja glede na razstavljene diagrame 3D modelov odločili za uporabo K-means

algoritma, ki se je po petih desetletjih močno uveljavil kot standardni algori-

tem za grupiranje. Glede izbora metrik grupiranja smo pa preizkusili mnogo

idej s poskusi na različnih modelih in določili sledeče štiri kot potencialne

dobre kandidate:

Smer predstavlja normaliziran vektor eksplozijske smeri, kar postavi v sku-

pni razred dele modela, ki se gibljejo v podobnih smereh.

Lokacija je trenutna lokacija dela modela, ki razdeli 3D prostor glede na

bližino delov.

Sprememba opisuje razliko med začetno in trenutno lokacijo dela, kar sporoča

napredek eksplozije. Napredek je pomemben, ker želimo združiti v sku-

pnem razredu dele, ki se premikajo kot skupina v podobni smeri.
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Razdalje do točke pozornosti so razdalje po komponentah med lokacijo

dela in točkami v 3D prostoru, kamor je vselej usmerjena kamera. Ro-

tacija in premikanje objekta v Textplosionu se namreč izvajata prek vr-

tenja kamere, postavljene na sferi okoli točke pozornosti, ki je določena

kot dejansko sredǐsče celotnega modela v začetnem stanju. Razdalje do

točke pozornosti so alternativni pristop k opazovanju napredka eksplo-

zije, ki vključuje relativno pozicijo v 3D prostoru in tako težje dodeli

skupni razred sosednjima deloma, ki se premikata v nasprotnih smereh.

IV Evalvacija

Za potrebe evalvacije smo izdelali lastno zbirko testnih 3D modelov, ker stan-

dardizirana zbirka ni obstajala. Iz odprto-kodnih knjižnic 3D modelov smo

zbrali, upoštevajoč njihovo licenco, 15 modelov z različnih področij, ki smo

jih lastno ročno razdelili na komponente in jim določili oznake. Izmed zbranih

je zaledni sistem uspel desetim določiti razstavljeni diagrama. Poleg mode-

lov smo potrebovali tudi primerjalne algoritme, ki smo jih ustvarili z izklo-

pom posameznih komponent Textplosiona in tako prispeli do implementacij

ježevega označevanja in plavajočih oznak. S pomočjo zbirke in nabora algo-

ritmov smo lahko samostojno izvedli začetno evalvacijo z empirično primer-

javo vizualnih rezultatov postavitev, kjer smo zgradili primerjalne matrike

ob bok postavljenih zajetih slik implementacije. Na sliki 1 imamo prikazano

primerjalno matriko, ki iz zajetih slik enega izmed 3D modelov iz zbirke pri-

kazuje izbolǰsave naše rešitve v primerjavi z algoritmoma plavajočih oznak

in ježevega označevanja.

Primerjalno matriko smo zgradili z vidika statičnih slik zajetih iz treh

zaporednih stanj. Stanja smo določili tako, da prikazujejo tri osnovna stanja

pomembna z vidika ocenjevanja postavitev oznak v razstavljenih diagramih.

Začnemo z naložitvijo 3D modela v želeni legi pogleda, kar tudi sproži posta-

vitev oznak v začetno stanje matrike primerjave. Naslednjo stanje se pridobi

z eksplozijsko animacijo, ki razstavi model in postavi posamezne dele tekom
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Slika 1: Matrika primerjave postavitev oznak glede na algoritem in inte-

rakcijo za primer 3D modela helikopterja, ki je del zbrane zbirke pod ime-

nom chopper. Stolpci matrike predstavljajo rezultate posameznega algo-

ritma v podanem vrstnem redu od leve proti desni: plavajoče oznake, ježevo

označevanje in razredno ježevo označevanje. V vrsticah imamo tri zapore-

dna stanja znotraj istega poteka posameznega algoritma od zgoraj navzdol:

začetna naložitev 3D modela in postavitev oznak, vmesno stanje po izvedbi

eksplozijske animacije in končno stanje po spremembi lege pogleda. Oznake

znotraj prikaza so: 1. axel x10 black, 2. axel x12 black, 3. axle link, 4.

axle peg 2x grey, 5. block 10x1 technic red, 6. engine black, 7. exhaust

gray, 8. propeller black, 9. seat blue, 10. tail fin red, 11. tyre small black,

12. upiece 4x2 red in 13. wheel small grey. Metoda k-voditeljev je znotraj

naše rešitvi v danem stanju eksplozije, določila sledeče tri razrede oznak: (8,

10, 11), (1, 4, 9, 13) in (2, 3, 5, 6, 7, 12).
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celotnega zaslona, čemur se morajo oznake prilagoditi. Doseženo postavitev

imenujemo enostavno po-eksplozijsko stanje. V tem stanju preverimo, koliko

oznak je s prostim očesom videti, da so ostale znotraj bližnje okolice začetnega

stanja in njihovo število uporabimo kot empirično mero eksplozijske robu-

stnosti. Končno stanje v stolpcu matrike predstavlja postavitev po premiku

pogleda iz eksplozijskega stanja z namenom opazovanja spreminjanja posta-

vitev oznak znotraj razstavljenega diagram. V končnem stanju določimo

empirično mero prilagodljivosti algoritma, ki opisuje obnašanje postavitve

oznak znotraj zasičenega prostora z deli razstavljenega diagrama. Za njeno

ovrednotenje določimo pojem prostorsko razmerje oznak, ki z vidika opazo-

valca opisuje relativno postavitev oznake glede na njen opisani del z bese-

dami kot spredaj, zadaj, itd. Prilagodljivost algoritma enostavno določimo

kot število oznak, ki po prehodu iz po-eksplozijskega stanja v končno stanje

ohranijo opis svojega prostorskega razmerja z opisanim delom.

Na primeru slike 1 lahko tako opazimo, da imajo plavajoče oznake tri

eksplozijsko robustne oznake (8, 10, 13), ježevo označevanje je po eksplo-

ziji ohranilo zgolj eno oznako v njeni bližnji okolici (13) in razredno ježevo

označevanje je uspelo ohraniti šest oznak v njihovi bližnji okolici (2, 3, 4,

5, 6, 9). Tako iz vidika danega primera naš predlagani algoritem že pokaže

napredek v časovni konsistentnosti tekom razstavljanja oziroma eksplozije

modela. Povrhu prilagodljivost devetih oznak (1, 3, 4, 5, 6, 9, 10, 11, 13) v

primerjavi z eno oznako plavajočih oznak (10) in šestimi oznakami (1, 2, 8,

10, 12, 13) pri ježevem označevanju doda še več podpore za oceno o bolǰsih

rezultatih naše rešitve znotraj razstavljenega diagrama za konkretni model.

V prid oceni tudi govorijo zgrajeni razredi, od katerih vsebuje razred (1, 4,

9, 13) zgolj oznake z ohranjenimi prostorskimi razmerji, kar nakazuje, da je

gručenje uspešno ustvarilo razred oznak bolj prilagojen razmeram v danem

razstavljenem diagramu. Podobne ugotovitve smo prejeli z opazovanjem pre-

ostalih modelov zbirke. Nakazano je bilo, da naša rešitev mnogo bolj uspešno

ohrani konsistentnosti postavitve oznak med deformiranje modela z eksplozi-

jami delov kot primerjalni algoritmi, medtem ko se konsistentnost oznak zno-
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traj premikanja v že razstavljenem diagramu izbolǰsa le pri kompleksneǰsih

3D modelih z veliko deli.

Čeprav so slike zgovorne, niso močan dokaz o izbolǰsavi, saj so uporabljene

mere povsem empirične in subjektivne ocene. Zato smo dejansko evalvacijo

izvedli s pomočjo eksperimenta na skupini prostovoljcev. Za eksperiment

smo zmanǰsali našo zbirko na izbor petih med seboj različnih modelov zaradi

časovne omejitve eksperimentov. Prav tako nismo uporabili uradnih imen

algoritmov tekom eksperimenta, temveč smo jim glede na vrstni red dodeli

črke A, B in C z namenom preprečitve imen vplivanja na rezultate med nalo-

gami in eksperimenti. Za preprečitev učinka učenja med algoritmi smo naloge

oblikovali po principu latinskega kvadrata. Prav tako smo morali določiti na-

bor metrik gručenja, uporabljenih znotraj razrednega ježevega označevanja,

kar smo določili najprej z lastnim testiranjem in logičnim premislekom do

nastanka treh potencialnih podmnožic, ki smo jih uporabili v pilotnih testih

s tremi razrednimi ježevimi označevanji. S pomočjo rezultatov pilotnih eks-

perimentov in logičnim sklepanjem smo na koncu izločili iz polnega nabora

metrik razdalje do točke pozornosti.

Sam eksperiment je bil zgrajen iz dveh opazovalnih in ene interaktivne na-

loge. Pri opazovalnih nalogah smo s programom simulirali konstantne vnose

uporabnǐskih interakcij in je udeleženec moral le slediti oznakam z očesi,

oprema za sledenje očesom Tobii Pro Eye-tracker 4C pa je zabeležila nje-

gove poglede kakor tudi spremembe zenic in podatke iz Texplosiona, kar smo

dosegli s popravki v Tobii Pro SDK Unity objektih. Znotraj interaktivnih

nalog je udeleženec prejel nadzor nad Texplosionom in je moral v najkraǰsem

času končati raziskovalno nalogo brez pravilnih in nepravilnih odgovorov, saj

je bil poudarek na uporabnosti implementacije. Poleg zapisa časa in poda-

nih odgovorov smo tudi tukaj sledili očesom. Poleg sledenja očesom smo pa

zbirali tudi subjektivne meritve prek standardiziranih vprašalnikov SEQ in

NASA TLX, kakor tudi znotraj lastnega dodatnega vprašalnika o izkušnji

s Texplosionom in subjektivnih rangih algoritmov v posamezni nalogi ter s

končnim odprtim intervjujem.

https://tobiigaming.com/product/tobii-eye-tracker-4c/
http://developer.tobiipro.com/
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Eksperiment smo izvedli na populaciji 28 prostovoljcev izven matične

fakultete in na starostnem razponu od 15 do 60 let. Sodelovalo je 15 pred-

stavnikov moškega in 13 predstavnic ženskega spola. Iz zbranih subjektivnih

in objektivnih podatkov smo statistično testirali hipotezo, da naš predlagani

algoritem proizvede enakovredne, če ne bolǰse rezultate pri konstantni ome-

jitvi statistične stopnje značilnosti α = 0.05. Standardizirani vprašalniki so

prinesli normalne porazdelitve in smo tam tako izvedli v parih t teste in wil-

coxonove teste. Pri 35 raziskovanih objektivnih metrikah pa so bili večinoma

vzorci v drugačnih porazdelitvah, zaradi česar smo tam uporabili nepara-

metrični Kruskal-Wallis H-test za analizo variance. Preučiti smo morali 35

metrik, poznanih za sledenje z vidom, ker smo imeli opravka z dinamičnimi

vizualnimi dražljaji, medtem ko ima veliko od standardnih metrik v sebi

močno statično komponento, kar se močno pozna pri vizualni analitiki.

Po pregledu tako subjektivnih kot objektivnih rezultatov smo ugotovili,

da razredno ježevo označevanje močno prekaša plavajoče vejice v vseh na-

logah. V primerjavi z navadnim ježevim označevanjem pa prikaže podobne

rezultate za 3D modele z majhnim številom komponent, medtem ko pokaže

bolǰse rezultate v kompleksneǰsih modelih z velikim številom komponent. Iz

subjektivnih rezultatov tako standardnih vprašalnikov kot tudi rezultatov

Slika 2: Subjektivni vtisi udeležencev eksperimenta razbrani iz rezultatov

dodatnega vprašalnika. Levi graf prikazuje porazdelitev udeležencev, glede

na nalogi, ki sta jim predstavljala najlažji in najtežji izziv. Desni graf poda

število dodeljenih najvǐsjih rangov posameznemu algoritmu glede na nalogo.
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dodatnih vprašalnikov, katerih del je viden v sliki 2, smo ugotovili, da je

učinek očiten rahlo že na subjektivnem oziroma podzavestnem nivoju za na-

logo, kjer smo opazovali sledenja oznaki v primerjavi s plavajočimi oznakami,

medtem ko pri nalogi o razliki intuitivnosti postavitev oznak med algoritmi

nismo zaznali nobene statistično podkrepljene razlike, zaznane s podzave-

stjo med vsemi tremi algoritmi. Smo pa na tem mestu zaznali statistično

pomembno odstopanje v nekaterih metrikah zgrajenih na podatkih zajetih

pri sledenju očem. Meritve so nakazale kraǰse čase iskanja oznak pri kom-

pleksneǰsih modelih in podobne čase pri preprosteǰsih modelih v primerjavi

z ježevim označevanjem. To nakazuje na večjo intuitivnost postavitev naše

rešitve znotraj razstavljenih diagramov. Prav tako smo z manǰsimi povprečji

razdalj med točko pogleda in pozicijo opazovane oznake znotraj naloge slede-

nja, nakazali manǰso količino skokov oznak znotraj eksplozijskega diagrama.

Slika 3: Primer toplotne slike za model očesa pri nalogi raziskovanja, kjer

je udeleženec moral poiskati oznako z dano iskano besedo in opisati sosede

od dela, ki ga je iskana oznaka opisovala. Znotraj toplotne slike imamo

kot ozadje eno izmed zajetih slik sistema, ki prikazuje pogosto lego pogleda

udeležencev in tako njim vidnega model z zeleno žarečo iskano oznako. Za

bolj jasen pogled na dinamiko oznake, smo zrisali premikanja iskane oznake z

oranžnimi okvirji in križci njeno sidro. Toplotna slika uporablja nabor barv

od modre do rdeče za prikaz naraščanja fiksacij na posameznih delih slike,

kjer področja brez fiksacije pusti v barvi ozadja. Na primeru vidimo področje

raziskovanja zgoščeno na delih modela in oznakah v bližini iskane oznake.
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S pomočjo vizualne analize zajetih objektivnih podatkov v obliki toplo-

tnih slik, kot primer v sliki 3, smo tudi dokazali, da je naša implementa-

cija primerna rešitev za raziskavo strukture kompleksnih 3D modelov, saj

udeleženci z očmi ne tavajo po zaslonu, temveč koncentrirano ǐsčejo v ožji

bližini rešitev. Žal pa se je izkazalo, da smo pozabili na uporabniku prijazen

nabor tipk, kar je postala ena izmed redkih kritik sistema znotraj intervjuja.

S pomočjo objektivnih metrik smo z naknadno raziskavo to tudi dokazali kot

dejstvo in ne samo mnenje dela udeležencev. Posledično je razumljivo, da se

je za najzahtevneǰso nalogo izbralo ravno nalogo raziskovanja kakor je raz-

vidno iz slike 2, kar je v zvočnih posnetkih eksperimenta pogosto spremljaj

komentar o preveliki količini informacij v kratkem času, kamor spada tudi

ne-intuitivni nabor tipk.

Glede težavnosti samega eksperimenta so subjektivni rezultati standar-

dnih vprašalnikov pokazali povprečno težavnost, medtem ko so udeleženci

komentirali eksperiment kot zabaven, zanimiv in hitro minljiv, čeprav je po-

tekal v povprečju 60 min, od česar je bilo le 15–20 minut eksperimenta treba

držati pozornost in opazovati dogajanje v Textplosionu, kar je še skladno z

dobro prakso uporabnǐskih eksperimentov.

V Sklep

Magistrsko delo predlaga razredno ježevo označevanje kot učinkovit pristop

za konsistentno postavitev oznak v kompleksnih razstavljenih 3D modelih,

kar smo podprli tudi s statističnimi rezultati eksperimentov primerjave upo-

rabnǐske izkušnje, pridobljenimi z našim algoritmom in preteklimi algoritmi

za postavitev 3D oznak.

Implementacija algoritma v aplikacijo Textplosion je ustvarila inovativen

in v realnem času delujoči sistem za interaktivno in intuitivno predstavitev

zgradbe kompleksnih 3D modelov, kot še ni bil viden v komercialnih apli-

kacijah v taki stopnji samodejne izdelave. Pomen sistema postane jasen, ko

vidimo, da je v CAD industriji velika izdelava kompleksnih CAD modelov, ki
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jih ustvarjalci pogosto predstavljajo svojim strankam na preprost in intuiti-

ven način. Glede stopnje samodejne izdelave lahko rečemo, da je le omejena z

izborom oznak in s pripravo 3D modelov v razstavljene diagrame, kar v veliki

meri reši uporaba zalednega sistema. Omejitev glede interakcij tudi ni veliko,

saj kopičenje eksplozijskih interakcij omogoči mnogo različnih rezultatov, kar

je celo presenetilo udeležence eksperimenta, ki so dejali, da je bilo premalo

časa za preizkus vseh možnosti, ki so jim bile ponujene v interaktivni nalogi.

Podobno je bilo izraženo, da je eksperiment kljub povprečni zahtevnosti in

precej dolgem trajanju minil prehitro, da so bile naloge zanimive in zabavne

v tolikšni meri, da so udeleženci izgubili občutek za čas.

S pomočjo interaktivne naloge smo prek komentarjev in iz meritev slede-

nja očesom ugotovili potrebo po preureditvi sheme interakcij in njim poveza-

nimi tipkami ter gibi, kliki mǐsk. Prav tako smo tekom analize eksperimenta

ugotovili tudi druge težave, ki lahko nastopijo pri sledenju očem znotraj ovre-

dnotenja interaktivnih aplikacij, katerih pred samo izvedbo eksperimenta še

nismo zaznali v literaturi, nekaterih tudi ne ob zaključku pisanja tega dela.

V zaključku dela, kjer si težave podrobneje ogledamo, tudi predstavimo po-

tencialne rešitve za prihodnje eksperimente.

Dodatno vrednost magistrske naloge najdemo tudi v izdelani zbirki 3D

modelov z metapodatki oznak in razstavljenih diagramov, kar lahko postane

osnova za zapolnitev vrzeli v preizkušanju algoritmov za postavitev 3D oznak.

Hkrati pa smo tudi postavili osnove za nadaljnja dela glede priprave in analize

algoritmov za postavitev 3D oznak s pomočjo sledenja vida.



Chapter 1

Introduction

A picture may be worth a thousand words, however, how one selects and

combines the information present in the picture differs between people. Prior

knowledge, past experiences, personality traits and other differences make

each person interpret an image in a unique way, which may be quite different

from the message we intended to give when presenting the picture. The

dilemma can be avoided by presenting the image with some guidance. How

close we are to the desired interpretation across a variety of people depends

on the quality of the presentation guidance.

The basics of visual object presentations are images with labels, where

strings of text are simply placed on top of or next to an image. While po-

sitioning a small amount of labels in a 2D image can be an intuitive task,

it is not the same with large amounts of labels. This is still a widely stud-

ied problem, with most research done on cartographic map labeling. Both

static and dynamic label placements on 2D maps with overlap avoidance

are classified in literature as NP-complete and NP-hard problems. To

prove NP-completeness, we can translate the objective into a variant of the

NP-complete subset sum problem called general max total problem.

Among all possible screen positions, we are searching for the subset of posi-

tions to be used for all labels that maximize a defined energy function. On

the other hand, NP-hardness can be proved by reducing the NP-complete

1
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maximum independent set of rectangles problem, where we use labels

with unit weights instead of triangles inside sets. The reduction results in

a W[1]-hard problem [1, 2]. Since we have yet to tackle movement from

2D to 3D space, but we have already arrived at NP-completeness and

NP-hardness, we can say in general that:

Theorem 1.1 Label placement is an NP-complete and NP-hard prob-

lem.

In 3D space we do not work with 2D positions, but with poses holding

6 degrees of freedom. Just placing labels in a readable and intuitive way

becomes a hurdle, see more details in chapter 2, not to mention that we

desire user interactions such as object manipulation or simple observations

from arbitrary poses to cause no or at least minimum distractions and mis-

information. Labels are more than just strings of text placed on the screen

of the projected 3D space. Labels should be seen as text objects anchored to

their referred object. Anchoring brings forth the definition of anchor points

and anchor lines a.k.a. leader lines. An anchor point is a point of the object,

be it at the center of the object or a visible point close to the center, from

which a leader line extends to the center of the actual label object. Anchor

lines can simply be conceptual, but since they provide good guidance, they

are usually rendered as actual lines. A visual dissection of 3D label com-

ponents can be observed together with an alternative approach proposed by

Tatzgern, Kalkofen, Grasset and Schmalstieg [8] in Figure 1.1.

Götzelmann, Hartmann, and Strothotte [4] divide labels into internal and

external labels. The internal ones are placed directly over the object as a

sticker, which by Schmalstieg and Hollerer’s [3] definition corresponds to the

label being inside the object’s silhouette projected on the view. Any label

outside the object’s silhouette is contrary an external label. This thesis fo-

cuses on external labels, since they do not occlude object parts and so only

provide information without any information loss. Götzelmann et al. [4] de-

fine three criteria that labeling algorithms for internal and external labels
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Figure 1.1: An alternative 3D label component setting proposed by

Tatzgern et al. [8], where leader lines are used as poles for hanging their

label or annotation object as a flag instead of pointing towards its center.

Image was taken and modified from their hedgehog paper.

have to fulofill, while also nothing that the criteria can conflict each other.

They define the first criteria as readability, where label position and font

are judged. For external labels we should avoid overlaps between themselves,

leader lines and the annotated object, while also avoiding leader line cross-

ings. The second criteria of unambiguity considers the difficulty of the

observer connecting labels and their referred objects together. Therefore ex-

ternal labels should be placed as close as possible to the referred object as well

reduce the number of curves on the leader lines. Another important cause of

ambiguity are anchor points clustered close together, which should be pre-

vented. The final criteria of frame-coherency was introduced to reduce

any layout flickering observed by the observer. Schmalstieg and Hollerer [3]

take their criteria with examples of good practices for external labels and

redefine them as six placement objectives:

Place label close to object

Minimize the brain work of connecting the label and its referred object.

Labels should not overlap

Label overlaps cause readability problems.
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External labels not placed over objects

External labels are defined to be outside all object silhouettes.

Leader line length should be minimal

Minimize the amount of distraction caused by the guiding elements.

Leader line crossings are undesirable

Crossings between leader lines and other leader lines or labels cause

distraction.

Temporal coherence maintained

Label position should not abruptly change between frames. Big label

jumps cause confusion instead of guidance.

We use these six objectives inside the thesis as a guideline for readability

and solution building as well as during the evaluation stage. Furthermore, if

the six objectives are translated into mathematical constraints, we create a

constraint optimization problem, which is NP-hard by its nature. This way

we once again prove Theorem 1.1.

For a 3D application focusing on presenting 3D models, we do not only

desire guidance with additional information, which are labels in our case.

An important factor is also to include simple and intuitive human-computer

interaction (HCI). HCI in 3D space is still a focus point of research in vir-

tual and augmented reality (VR/AR) graphical user interfaces (GUI). In

industries such as design, it also needs to include an option that presents

a whole and clear overview of progress and mistakes without breaking the

design work-flow, whether in video game design or in computer-aided design

(CAD).

An informative way of presenting the structure of 3D objects is by dis-

assembling them into so called explosion views or explosion diagrams, where

disassembled parts move away from each other as in an explosion. Their

behavior is presented in Figure 1.2, where we present an exploded view gen-

erated by the system Kerbl, Kalkofen, Steinberger and Schmalstieg [7] pro-

posed. While such diagrams can already be automatically generated and be
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used in interactive GUIs, accompanying them with additional information

in labels was an unresolved problem until now. The problem with previous

label placement solutions is that they only take static objects into consid-

eration, and therefore do not take the 3D model deformation into account,

which happens due to the dynamic nature of parts inside exploded views.

Figure 1.2: Kerbl et al. [7] designeg a system for disassembling CAD models

into explode models based on their geometry. The images retrieved from the

paper show an exploded view created from a plane motor CAD model by

using their system. Selecting a part of the model to be moved causes all of

the parts blocking its way to give space and produces the exploded view.

The goal of the thesis is to produce a solution for annotated 3D exploded

views by extending previous works with clustering exploding parts into clus-

ters. Each cluster runs its own instance of the algorithm to prevent subspace

problems effecting the label layout of the whole model, which happens with

currently used algorithms. With the right selection of clustering metrics we

can cluster together exploded parts that behave in a similar fashion and are

close to each other in space, which together reduces the chances of breaching

the six objectives and therefore, increases the temporal coherence due to less

global recalculations inside a cluster.

The proposed solution was implemented as a simple, interactive, intu-

itive and informative GUI for 3D explosion diagrams. Inside it we also used
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proposed solutions from other works to enhance the user experience. We in-

cluded well proven exploded view interactions [21] so that they can be stacked

on each other to produce a limitless amount of exploded view variations for

the same model and its set explosion directions. By using colors and their

alpha channel as indicators of states we succeeded including more informa-

tion into the scene without causing more distraction as proposed from GPS

navigation enhancement studies [22]. While for reduction of ambiguity, we

reintroduced the anchor point selection method of using 2D thinning algo-

rithms proposed by older works [9], but later forgotten due to the transition

of label placement algorithms form 2D to 3D space.

We evaluated our solution with a user-based usability study enhanced

with eye-tracking. Its main contribution to the subjective empirical results

of the usability study is the collection of objective numerical data of eye

movement behavior, which can to a limited degree describe the brain’s in-

ner visual processing. However, visual stimuli with high enough sophistica-

tion can hinder assessment of complex interactions and knowledge discovery.

Therefore, eye-tracking results should be taken with a degree of caution and

some understanding of the differences between our and other eye-tracking

studies [15, 16]. Inside our usability study, we compared the results of our

solution with results of previous algorithms on actual CAD models provided

by the open source community. By creating a test bed of 3D models, we also

provided a dataset to be shared for future scientific work on the topic of 3D

labeling, since none existed yet during our research.



Chapter 2

Related Work

Explosion diagrams have been used by illustrators as an informative way of

presenting the structure of 3D objects since the Renaissance [5]. However,

the automation of the process for 3D models started only after Agrawala et

al. published their Step-By-Step Assembly Instructions [6]. Prior systems

required a high amount of user input, including movement directions for

each part that needed to be disassembled. Agrawala et al. had already

prepared a system that generated assembly instructions that define the order

and direction for parts while keeping blocking constraints in check. This was

then used by Li, Agrawala, Curless and Salesin [21] to define explosion graphs

to create an interactive automated explosion system. By using an existing

part hierarchy or by removing the unblocked parts one by one, they generate

explosion graphs that show the relative blocking relations between parts.

This enabled a more interactive system for cases such as only exploding the

parts that block the selected part from exposing itself.

Kerbl et al. [7] have explored effective disassembly algorithms for complex

CAD models. They focused on minimizing the number of checks needed for

interblocking parts that we wish to be disassembled in order to speed up the

process significantly. They also incorporated interactive user selection of part

grouping and even enabled search queries for similar groups to select all the

parts of the same type that are found in the model. It was presented with

7
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Figure 2.1: From left to right we see a time line of contributions that

brought exploded views to its current state. Ferguson [5] found their first

usage in Renaissance drawings of the great men of that period, including

Leonardo Da Vinci’s multiple works such as the presented exploded view of

a weight-driven ratchet device. After centuries of drawing exploded views by

hand Aragawala et al. [6] proposed the assembly instruction generator. Li et

al. [21] followed with research into interactivity, while Kerbl et al. [7] went

for disassembly optimization as well interactivity during disassembly. The

images were taken from the corresponding papers [6, 21, 7], while Da Vinci’s

drawing is a color version of the one in the book found on Wikipedia [5, 23].

multiple visualization techniques, including disassembly explosion diagrams,

simple object assembly animation and action diagrams.

A simple recent approach to the labeling of 3D objects can be observed

in the proposed 3D content Web GUI from Jankowski and Decker [24]. They

propose a billboard label placed on top of the rendered view of the world

as shown in Figure 2.2. This provides a clear view of the label, but at the

same time it occludes the object. Apart from 3D user interactions such as

navigation and wayfinding, it shows worse results than a text document with

images for other studied user experiences. For better results a label has to

have a stricter definition than a string of text on top of the rendered view,

as we have already defined in chapter 1.

Regarding the actual 3D annotation rendering research, most was done

for static objects. Hartmann, Ali and Strothotte [9] started the current trend

of generating potential fields a.k.a. force fields with their paper on floating

labels. By calculating force fields based on view projections of each 3D
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Figure 2.2: Jankowski and Decker use billboarding on top of the view

plane as shown in left image as a way to present 2D labels accompanying 3D

models. While comparing text files with rendered images of the 3D models

with their billboard conversion as in middle image shows improvement in the

experience, however for complex situations as the VR application presented

in the right image results were worse for most metrics dueto the problem of

occlusions. All images were taken from their paper [24].

model part, they determined good initial label positions. While their solu-

tion from 2004 was too slow for a real-time interactive application, it already

showed promise for interactivity. The following year, Ali, Hartmann and

Strothotte [25] proposed several real-time interactive placement algorithms,

which were of simple design and worked with a preset of layouts, while also

solving the leader line crossing problem. Some of their requirements al-

ready tackled most of six label placement objectives [3], seen in Chapter 1.

Tatzgern, Kalkofen and Schmalstieg [26] reintroduced floating labels in 2013

when they proposed using label clustering and independently laying out the

cluster representatives in the view plane to minimize the amount of labels

to present. The initial layout was done by minimizing the energy function

comprised of the distance between label and object, object size and object

visibility. The objects were in fact semi-static compact explosion diagrams

from previous works. The initial layout is checked for overlapping and cor-

rected. Additionally, they added the distance between labels to the energy

function for similar distances between labels. The clustered labels can all be

rendered under the same label, or can simply be represented by the rendered
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cluster representative.

A year later, Tatzgern et al. [8] proposed the current state-of-the-art

leading solution, hedgehog labeling. It solves problems with positioning and

overlapping of labels using a novel idea. Contrary to previous techniques, it

places the labels in 3D space from the start instead of placing them into the

scene after the projection to the 2D view plane is done. To achieve consistent

results without producing overlapping of labels or disproportional labels,

it uses 3D geometric constraints. The constraints define a 3D leader line

anchored in the object’s center, which extends towards the center of the label.

Temporal coherence strategies for hedgehog labeling were researched later by

J. B. Madsen, Tatzqern, C. B. Madsen, Schmalstieg and Kalkofen [10], who

noted that the initial layout should be kept as long as possible for better user

experience. They also proved the assumption that 3D space labels give better

results than 2D view labels. Their results can be observed in Figure 2.3,

where images taken from a real-time mobile AR application show sequential

changes in the mobile phone’s pose and the response of hedgehog labeling to

the pose changes.

Figure 2.3: Tatzgern et al. [8] produced the state-of-the-art hedgehog la-

beling by positioning the label placement into 3 space onto poles extended as

hedgehog’s spikes. The images were retrived from the latter paper on time

coherence by Madsen et al. [10], who also proved again the contribution of

3D labels in comparison to their 2D alternatives.
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Figure 2.4: Vaaraniemi et al. [22] were observing various visual ways to

improve GPS based car navigation. The most promising approaches were

transparent buildings for presenting hidden streets as seen in middle image.

The information gain is apparent just by comparing it with the initial state

of the map presented in left image. In the right image is the second found

solution, namely glowing roads. For glowing roads they also added trans-

parency besides the glowing effect but the glow was the important factor.

All images originate from their paper.

Hallqvist [27] researched the movement of labels for command terminals

such as those found at airports. Therefore, he limited himself only to labels

without objects in the world. Each label represents a moving point in the

world and is positioned dynamically by predicting collisions with other labels.

Some research regarding label visual components that improve overall

readability of the presented view was done for 2D map applications. One

of the latest being the 2013 GPS navigation study by Vaaraniemi, Freidank

and Westermann [22]. It showed that glowing and transparent elements can

improve the user experience, which can be observed in Figure 2.4, where

both are presented in comparison to a traditional GPS navigation setting.

Another source for label readability research is AR, where labels are often

used for providing information. Leykin and Tuceryan [28] have showed that,

in regards of readability of labels, a strong enough contrast is needed between

the label and background. They also produced an evaluation and correction

system for automatic adjustment of label to background contrast based on

their study results.

The evaluation of 2D or 3D label placement onto virtual 3D models or

during AR enhancement with labeling is presented only in the minority of
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its literature, while the majority just provides result examples through im-

ages or videos. Among the minority of articles evaluating their methods,

most use the subjective empirical data gathered from usability studies on

their case limited selection of models or AR enhancement targets [10, 12]

similar to other AR studies as presented in the 2008 overview of experiments

by Dünser, Grasset and Billinghurst [11], where objective numerical data is

usually limited to only consist of task completion time (TCT). Azuma and

Furmanski [12] went further than that and also included performed numerical

measurements outside the usability study. They observed the computation

time and cost, the number of produced label overlaps, the number of moved

labels and the number of moved non-overlapping labels. In other computer

science areas, we usually observe the objective numerical evaluations based on

standardized benchmark dataset, however there are no such datasets shared

among the researchers for 3D labeling, while cartographic 2D label placement

problems actually have multiple in existence [2]. In cartographic research,

they even reached out to eye-tracking for measuring the map reading perfor-

mance [29] or the usability of produced dynamic 2D or 3D maps [13, 14].

Kurzhals, Burch, Pfeiffer and Weiskopf [15] found in recent years a grow-

ing trend for the use of eye-tracking in visualization and CGI research. The

grow in trend was accredited to commercial eye-trackers reducing the re-

quired cost and work as well as to the fact that eye-tracking complements

traditional assessments. While eye-tracking is a rising trend in recent years,

it is far from a new concept and actually has a deeper history than one would

imagine, going all back to 1878 with mechanical test devices [16, 17, 18]. In

its 140 years three attributes of eye movement behavior were determined as

those of greater importance. The first one is the gaze location or fixation,

which is the most basic unit of visual attention and has a variety of met-

rics built upon it. The fixations are defined as aggregations of gaze points

over a small pixel area during a time range between 100 and 600 ms [16],

while more recent research overviews of the state-of-the-art eye-tracking by

both Blascheck et al. [19] and Sharafi, Shaffer, Sharif, and Guéhéneuc [20]
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suggest more exact numbers by defining the area to be limited between 20

and 50 pixels and in a time range between 200 and 300 ms. The fixation

duration is the second important attribute of eye movement behavior, but it

is not limited to only observing fixation times in general. Sharafi et al. [20]

defined an area of glance (AOG), which can either involve the whole stimuli,

in other words, the whole screen, or just a selection of the areas of interest

(AOI). AOIs are defined as stimuli regions on which we wish to focus our

analysis according to Blascheck et al. [19], but their size and positioning is

arbitrary per study case. Djamasbi [30] divides AOIs into specific and broad

types. Specific AOIs are of arbitrary size and position, and they are usually

designed to fit an observed element, while broad AOIs split up the whole

stimuli following a certain layout and forming a grid. Such specific AOI or

grid divisions increase the possible metrics such as the translation matrix

behavior or the fixation visitation count. The final attribute for eye-tracking

is the movement, which is described with saccades from one fixation to an-

other. Saccades have a rapid nature with time ranges between 40 and 50

ms associated to them. By combining the saccades and the fixations in or-

der, we can form and observe the path of eye movement called the scanpath,

which is another basis for producing metrics[20]. Sharifi et al. [20] group a

variety of metrics into metric groups based on fixations, saccades, scanpaths

and eye information. Examples of eye measurements are the pupil dilation

and the blink rate, where the first metric indicates changes in the mood

or attitude, while the latter with lower value describes the high amount of

workload and fatigue for higher values [19, 20]. On the other hand, Fu, Noy

and Storey [31] group the metrics based on their effect: measures of search,

information processing, cognitive workload and speed.

Kurzhals et al. [15] mention visual analytics as an informative alternative

approach to processing the eye-tracking results. However, they also warn

us of a gap between the static and the dynamic stimuli in regards to the

eye-tracking metrics since some have a more static nature, which can effect

the visualization as well as the metric quality. They continue that studies
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using eye-tracking become even harder to process if the stimuli is in a form of

an interactive application. Kurzhals and Weiskopf [32] presented a possible

solution for observing results on dynamic stimuli, where an innovative but

complex visual analytics method in form of space-time cube visualization

is designed to target dynamic stimuli as shown in Figure 2.5. In regards of

done user based studies with dynamic stimuli research, Ho, Yeh, Lai, Lin and

Cherng [33] evaluated human perception of the dynamic 2D flow. Herman,

Popelka and Hejlova [14] also researched some dynamic stimuli during their

evaluation of a dynamic 3D geovisualization. While Moacdieh, Prinet and

Sarter [34] researched the use of an interactive flight simulator with eye-

tracking.

Figure 2.5: Kurzhals and Weiskopf [32] developed a space-time cube ap-

proach for visually analyzing eye tracking results for observing dynamic stim-

uli such a video recording. The image taken from their paper shows an ex-

ample of examining results on a video stimuli with multiple AOIs, which

are presented as snake like 3D lines with thickness relative to the fixation

amount. By projecting the lines onto the cube’s sides an attempt to simplify

the comparison is made.
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Method

Based on previous work, see Chapter 2, generating interactive explosion dia-

grams with auto-positioned labels seems a trivial problem. However, previous

solutions have assumptions not compatible with exploded views and need ad-

justments. The main problem is the assumption of static and non-deformable

objects. In most CGI, AR or VR applications with previous label placement

solutions, the only change was in the camera pose. Changing only the camera

pose but not the 3D model itself points to quite stable label layouts. The

wording ”stable layouts” is used due to the nature of the problem, where the

label can not move in its previous direction or even inside its local area during

a label update because of complex 3D model topology hiding its next step or

causing an overlap. The stability is only an empirical measurement of how

huge the jump between the previous and the new label position is if it is still

near the previous area. In cases where label updates include position changes

so small and smooth that they do not distract the observer, such generated

layouts are regarded as stable. Unstable layouts, on the other hand, are those

that most updates force to huge jumps, e.g. mirroring the label over the 3D

model, which causes distraction during label position transitioning.

Exploded views change the 3D model topology, which in turn changes

optimal label positions and local area properties, e.g. the amount of 3D model

parts in the area. Depending on the explosion direction, its magnitude and

15
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blockers on the way, the optimal position or local area of a label can change

drastically. Drastic changes naturally result in a lot of big label jumps. To

prevent this from happening, existing algorithms must be adjusted to gather

information about the deformations and motions that need to be added into

consideration during label positioning. In case of exploded views, enough

information is already provided by explosion directions and blockers in their

way. While moving labels and their referred exploded part as a group can

already improve the result, it does not solve the problem of deformation.

Our proposed solution of clustered hedgehog labeling is quite a straight-

forward extension of the state of the art hedgehog labeling [8]. Hedgehog

labeling projects labels onto a label plane that is parallel to our view plane.

The plane and labels on it are used inside the floating label algorithm, which

generates a force field of attraction and repulsion forces. During updates,

it tries to update label positions using extremes in the force field. First, it

searches the local area, and in case of initialization or other triggers, e.g.

leader line crossings, it switches to global force field search. Further informa-

tion about the process will be discussed in Section 3.2. The deformations and

motions during explosion simulations in an exploded view cause the topol-

ogy to spread more across the screen than in the initial state. The change

in topology results in quicker changes of the force fields, which again causes

the reinitialization triggers to be triggered more often. The final end result

equates to an unstable label layout. While we could try to create new force

fields based on the deformation and motion information, we found a much

simpler solution that simply encapsulates the hedgehog algorithm instead of

changing its core too much. The proposed clustered hedgehog labeling does

a clustering of labels based on movement and deformation information after

any explosion simulation, while using a single cluster when in initial state.

The generated clusters each have their own label plane and can be under-

stood as multiple hedgehog labeling algorithms running at the same time,

which for the case of one cluster results in traditional hedgehog labeling.

Since the clustered elements in a cluster are close by proximity and explode
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in a similar fashion, they trigger less reinitialization events. Furthermore, a

triggered reinitialization can even reinitialize the elements in only one cluster

instead of all clusters. Less triggers and locally limited reinitialization should

improve the global stability of the label layout.

3.1 Floating Labels

Hedgehog labeling [8] uses the concept of potential fieldsor, as we call them,

force fields. Before extending the state-of-the-art algorithm, we need to un-

derstand its core component first.

Hartmann et al. [9] introduced force fields into the field of label placement

with their floating labels algorithm. They defined a potential field that uses

label and model contour repulsion forces paired with attraction forces towards

the center of a model part to push and pull individual labels in a spring-like

system, which can be observed in Figure 3.1. While the paper defined five

forces that are combined into a single potential force field for label placement,

we added an additional force for penalizing label positions overlapping with

leader lines:

A Attractive forces between model part and label centers,

B Repulsive forces at model boundary / contour / silhouette,

C Repulsive forces between the label and its non-referred model parts,

D Repulsive forces between label and view border,

E Repulsive forces between label and other labels,

F Repulsive forces around other label leader lines.

During a label position update run, the force fields formed with forces

A-D remain constant regardless of label positions and therefore form the so

called static force field. After adding forces E and F to the static force field,

we arrive at a dynamic force field. In floating labels, they first positioned
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Figure 3.1: A diagram representing the individual floating label forces. We

retrieved it from the work of Hartmann et al. [9] and modified it to include

our leader line repulsion forces. Note that an anchor point may not be in the

center of the silhouette.

the labels according to the extrema in the static force field. Based on the

given initial positions, they calculated the dynamic force fields for each label

and repositioned them to their final positions.

Since they defined floating labels as 2D label placement for static images,

or in case of interactive applications as post processing the rendered image,

we are required to know to which object inside the image each pixel belongs

to. The term object is too abstract for 3D labeling on exploded views, so

we rather use the terms model parts or meshes, where we mean the disas-

sembled meshes. Hartmann and his colleagues proposed color coded images,

where predefined or detected image sections are colored in unique colors to

present individual objects to the domain experts for them to pair annota-
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tions with individual colors. Such a principle can be easily translated to 3D

labeling, where individual meshes only need to be colored uniquely, while

label information just needs to be linked to the meshes.

Another crucial piece of information needed for force calculation is the

interia, which is the 2D equivalent of an anchor point. It can be described

as the visible pixel closest to the object center. It is important since we wish

for leader lines to always point only towards their referred object’s pixels and

towards any other pixels. Hartmann’s group proposes the use of a thinning

algorithm to thin out the object pixels until they all disappear, and then use

the last present pixel as the interia.

3.1.1 Force definitions

Following the force definitions from the paper by Hartmann et al. [9], we

can express forces Fx, where x corresponds to the force letter seen on the

list and in Figure 3.1, as equations of cX weighted distances in regards to

pixel p, label L, leader line LINE, object O and image I. The attraction force

or FA(p) is defined for pixels not color coded in the observed object’s color

as a weighted ratio of the distance between pixel p in interia pixel and the

distance between interia pixel and the farthest pixel from interia, while we

use zero for the pixels with their color corresponding to the color code of the

observed object :

FA(p) =

⎧⎪⎨⎪⎩
cA

distance(interia,p)
max

pmax∈I
(distance(interia,pmax))

, p /∈ O

0 , p ∈ O

(3.1)

The contour repulsion forces FB(p) are defined to be equal to the weight

for pixels close enough to the silhouette of the whole object and zero other-

wise:

FB(p) =

⎧⎨⎩cB , distance(p, psilhouette ≤ infsilhouette

0 , otherwise
(3.2)
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In regards of repulsion forces from objects different from the observed

object FC(p) we use the given weight for pixels with code corresponding to a

color code not belonging to the observed object, while the pixels with colors

to color codes of either the background or the observed object we use zero:

FC(p) =

⎧⎨⎩cC , p ∈ Oi ∧Oi ̸= O

0 , otherwise
(3.3)

Repulsion from the view border FD(p) is defined for pixels at a distance

less or equal to the provided view border influence infborder as a weighted

ratio of the shortest distance between view borders and pixel and infborder

and zero otherwise:

FD(p) =

⎧⎨⎩cD(1−
distance(pborder,p)

infborder
, distance(pborder, p) ≤ infborder

0 , otherwise
(3.4)

The static force field is simply defined as a sum of attraction forces and

the maximum between FB(p), FC(p), FD(p) forces per pixel:

FSTATIC(p) = FA(p) + max(FB(p), FC(p), FD(p)) (3.5)

Label repulsion forces FE(p) use just their prepared weight for pixels

inside of the label area and zero otherwise:

FE(p) =

⎧⎨⎩cE , p ∈ Li ∧ Li ̸= L

0 , otherwise
(3.6)

The final separate repulsion forces of leader lines FF (p) were defined as an

extension from our side to reduce the amount of labels overlapping with leader

lines. We defined it using the provided weight for pixels, whose distance to

any leader line not belonging to the observed object is less or equal to the

provided leader line influence infline, and as zero for other cases:

FF (p) =

⎧⎨⎩cF , distance(LINEi, p) ≤ infline ∧ LINEi ̸= LINE

0 , otherwise
(3.7)



3.2. HEDGEHOG LABELING 21

While the the static force field uses only the maximum between repulsion

forces inside a pixel, we defined the dynamic force field to penalize pixels with

repulsion forces of both labels and leader lines by subtracting both from the

static force field:

FDYNAMIC(p) = FSTATIC(p)− FE(p)− FF (p) (3.8)

3.2 Hedgehog Labeling

Hedgehog labeling’s biggest contribution in comparison to previous work was

the transition from 2D label placement in the post-rendering phase to 3D

label object positioning before the rendering phase [8]. To achieve it using

the 2D based floating labels algorithm [9], Tatzgern et al. introduced label

planes [8]. They also introduced label freezing and redefined the separation of

the label position initialization and the update, all while preparing a solution

for leader line crossings and overlaps based on other previous work [8, 10].

3.2.1 Label Plane

While using the 2D floating labels algorithm in 3D space is easily achieved by

projecting the current view to a texture, it was proven that the 3D orientation

of leader lines, on which hedgehog extends the labels, cannot be arbitrary for

prevention of leader line crossings, label overlaps and similar issues. Their

proposed solution was to group labels onto planes instead of using the whole

3D space as shown in Figure 3.2. Good results were achieved by defining

a plane parallel to the view plane and which intersects with the mesh and

potentially its center. Since the planes were defined to be used as billboards

for placing labels, we call them label planes [8].

Mathematical planes had many geometrical definitions proposed, among

which we chose to use the description that uses a single point on the desired

plane and its normal vector. Since the label plane was defined to be parallel

to the view plane, we used the view vector, which is the vector pointing
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Figure 3.2: The label plane concept that enables us to place all of the

labels at same distance from us for better readability. Note also the difference

between a model part visible and invisible to the observer and their chosen

anchor point. In case of invisible parts, we just use their mesh center until

they become visible.

from the camera to the camera’s focus point, as the base for the normal,

since it is by definition perpendicular to the view plane and therefore also

perpendicular to the parallel label plane. By using the view origin and the

intersection of the view vector and a plane, we can define the view vector as

a difference of vectors:

V iewvector = Planeposition − V ieworigin (3.9)

While projecting the labels on the defined plane will move all labels into

our view, it has not yet prevented any occlusions or overlaps at this point of
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definition. Therefore, we defined an occlusion mask, which is a projection of

the current view onto the label plane, to mark potential occluded-label areas

of the plane. While movement of the labels based on the free areas inside the

plane was possible, we instead used the projection mask as the input image

for the floating point algorithm.

3.2.2 Label Freezing

Temporal coherence research [10] shows that users perform tasks better with

labels that are placed statically and do not update constantly, therefore we

had to avoid too frequent label repositioning since we want to enhance tem-

poral coherence and user experience for 3D model presenting. We started

by defining calculation frozen and unfrozen states to freeze the labels

in place until one of the threshold conditions for unfreezing are met. The

frozen state was designed to be the default state and is always used after a

label update finishes, resulting in no update in the poses of neither the label

plane or the labels until a condition is met. With this, we redefined hedgehog

labeling into five steps:

1. Produce mesh model, labels and label plane for label cluster,

2. Project view into a color coded texture,

3. Force field calculations,

4. Find new position for each label based on dynamic force field,

5. Freeze plane,

6. Leader line extension check,

7. If unfreeze condition met, align plane to view plane jump to step 2,

otherwise jump to step 6.

While the frozen state was created to disable label placement with force

field calculations, it was never meant to allow issues such as labels being
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hidden and positioned behind or in front of the model silhouette due to the

change in view not yet hitting the thresholds inside the unfreeze conditions.

For handling such situations, we defined a repeated check that would trigger

leader line extension in case of an issue occurring. Leader line extension was

already proposed together with 3D labels by Tatzgern et al. [8].

3.2.3 Leader Lines Crossing Prevention

Another change done inside of hedgehog labeling in comparison with floating

labels was in regards of how to handle the prevention of leader lines from

crossing each other. In the case of floating labels [9], it was solved by adding

additional constraints to label positioning, as seen in Figure 3.3. While such

a solution may prevent certain problems, it also limits the possible label

layouts. Tatzgern et al. [8] rather left it to the force fields to decide the layout

without additional constraints, and then checked for leader line crossings and

reordered labels producing a crossing to resolve it. The idea was borrowed

from an earlier paper by Ali et al. [25]. Following their footsteps, we defined

the leader line crossing check as a double loop over label pairs, where we

Figure 3.3: The presented floating labels followed the illustrator guidelines

for defining label positioning constraints. One of such constraints was the

user preferred axis as seen in the left image. While it produces cleaner results,

as seen in the right image, it has a limit to the possible layouts it can produce.

The images are taken from the paper written by Hartmann et al. [9].
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checked for leader line crossings with an analytical method based vectros,

which is described in Algorithm 1.

Algorithm 1 Line Intersection Check

Require: Vector3 LabelCenter1, AnchorPoint1, LabelCenter2, AnchorPoint2;

1: Vector3 anchorLine1 = LabelCenter1−AnchorPoint1;

2: Vector3 anchorLine2 = LabelCenter2−AnchorPoint2;

3: Vector3 anchorPointDifference = AnchorPoint2−AnchorPoint1;

4: // cross products are zero when same or reverse direction of line

5: // as an exception they are 1 if direction equals 0

6: Vector3 directionCross = AnchorPoint2×AnchorPoint1;

7: if ∥directionCross∥2 > 0 then

8: // line directions are not parallel - find point of intersection

9: multiplier = (anchorPointDifference×anchorLine2)·directionCross
∥directionCross∥2 ;

10: Vector3 intersection1 = AnchorPoint1 +multiplier ∗ anchorLine1;
11: Vector3 intersection2 = intersection1−AnchorPoint2;

12: // intersection is valid only if it is between the anchor point and label center

13: // if intersection is valid we have a leader line crossing - returns TRUE

14: return multiplier > 0 && multiplier < 1

&& intersection2
∥intersection2∥ · anchorLine2

∥anchorLine2∥ > 0

&& ∥intersection2∥ ≤ ∥anchorLine2∥;
15: end if

16: // lines directions are parallel - do a check if lines collinear

17: // true if anchor points not the same, however lie on same line

18: return ∥anchorPointDifference∥2 > 0

&& ∥anchorLine1× anchorPointDifference∥2 == 0

&& anchorPointDifference
∥anchorPointDifference∥ · anchorLine1

∥anchorLine1∥ > 0

&& ∥anchorPointDifference∥ ≤ ∥anchorLine1∥;

3.2.4 Local Extrema Search

Until now, we had always calculated new label positions from scratch based

on global texture search. This was but a waste of effort from previous cal-

culation since there should not be much change in label position between

calculations. Therefore, we divided the calculation part into an update and

a re-initialization run. The update run was corrected to use the previous
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label layout in order to calculate the maximum in the area around the pre-

vious label position. On the other hand, the re-initialization run remained

the same as the old update running a global search.

The goal of introducing local extrema was to mostly have update runs and

to only use initialization during the first run and during leader line crossings.

Textplosion was thus redesigned to match the following step order:

1. The unfreeze condition for calculation start was met.

2. Generate all static force fields for current camera pose and jump to

step 10 if it is an initialization run.

3. Try the previous label layout to produce dynamic force fields for local

extrema search.

4. Define search bounds based on label position, dimensions and user pro-

vided padding.

5. Clear force sum array to prevent old data leaks.

6. Generate a new force sum field and do a local extrema search inside

search bounds.

7. Use the found extrema position as new label position.

8. Do leader line cross check on new label positions.

9. If any leader line crossing occurred, stop the check and skip to step 10,

otherwise skip to step 13.

10. Ignore the previous layout and do a global force sum and global extrema

search.

11. Do a leader line cross check on new label positions from global calcu-

lations.

12. If a leader line crossing appeared, switch label positions.

13. Change to frozen calculation state.
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3.3 Clustering

While Section 3.2 described hedgehog labeling introducing label planes as in

plural, we only mentioned the inner workings with the assumption of a single

plane to simplify the theory. In the paper they also described a situation

with multiple label planes positioned at equal distance between each other

according to the view vector and limited with the model’s bounding box

dimensions. Such a setting would allow a quick implementation and some

improvement in results for static models, however it would not work well

with exploded views, since the equal distribution of the model’s bounding

box would only take into account the global information of all positioned

parts and disregard any local relationships as well not know anything about

the explosions.

Therefore, clustered hedgehog labeling introduces multiple label planes

with a twist. Instead of first dividing the space and later project the labels

onto the created planes by closeness, we instead propose to first cluster all

the labels based on their referred parts and explosions and afterwards divide

the space according to the label clusters by using each cluster’s average of

mesh centers to position the planes into space as seen in Figure 3.4. Since

we decided on using mesh center averages as the points defining the planes

together with the view vector, we needed to slightly adjust the original plane

definition, since an arbitrary average will rarely fall onto the view vector.

Correctly positioned planes allow us to use the force field calculations as

defined in Section 3.1 and also produce as a side benefit a depth effect on

labels due to their closeness in space to the their referred meshes. We regard

it as a benefit, since the observer can easier connect elements at similar

depths than depths far apart.

Using mesh averages directly would have resulted in the label planes

disaligned with the model where the average of mesh centers is positioned

relatively far from the view vector. From the same figure we could also see

that both the plane position and the cluster center are part of the same

plane, which means that we can find the actual plane position by finding the
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Figure 3.4: The left image shows meshes being clustered into four clusters

based on their current position, movement and distance from the focus point.

The right image shows how multiple label planes are positioned over cluster

centers.

intersection of the view vector and the plane positioned in the cluster center,

and simply translate that same plane into the intersection.

While we tested different clustering approaches, the one that showed the

most promise and flexibility was the standard k-means clustering. The rea-

son for focusing on k-means despite it being over five decades old and there

being many alternative good algorithms was the yet uncharted area of clus-

tering the exploded elements of exploded views in 3D space. No clustering

algorithm has yet shown dominance over other algorithms across applica-

tion domains, and most clustering algorithms, including k-means, are valid

in most cases [35]. Having no knowledge of which data could be used as

good clustering metrics as well as to which application area we should relate

the most, we decided on the simple but valid k-means, which could take a

vector of arbitrary length of metrics as input to cluster on. Therefore, we

could focus more on the metrics research. The k-means algorithm steps we

used were the standard ones with the addition of cluster centers besides its

centroids:

1. Generate random cluster centroid values for all K clusters, where K
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was provided by the user,

2. Place labels into cluster with the closest value based on squared eu-

clidean distance to cluster centroids,

3. Average label values inside cluster to determine new centroids,

4. Check for labels switching clusters. If any switch happened, jump to

step 2,

5. Use the average of model part positions as cluster centers.

Regarding good data to be used as clustering metrics, we found the fol-

lowing ones interesting after trial and error:

Direction The normalized explosion direction was chosen since same direc-

tion elements will be closer on the long run.

Position We added the mesh center to find observable groups in 3D space.

Changes The difference between the initial state model part’s mesh center

and the current position tells us the progress of an explosion. The ex-

plosion progress is important for single part explosions since the bigger

the difference in progress is, the more apart the model part will most

likely be in an exploded view.

Focus distances The differences between the individual coordinates of the

view’s focus point and mesh center is another way of determining the

explosion progress, and it should be better for cases of mirrored direc-

tions. It tries to define the progress by predicting that closeness to the

focus point means low progress.
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Chapter 4

Implementing Textplosion

While clustered hedgehog labeling is a simple and straightforward con-

cept, its implementation was a long and hard path. To differentiate it from

the concept and the implementation, since there were implementation lim-

itations and workarounds, we call the implementation Textplosion, which

describes the unification of labels and exploded views. Textplosion imple-

ments the proposed algorithm as an Unity3D application. It becomes our

front-end application that takes 3D model information from multiple OBJ

and MTL files, and combines it with the exploded view and label meta-data

files. Developed as an interactive real-time GUI, it allows the user to interact

with annotated 3D model explosion diagrams.

Regarding the models and their meta-data, we took a helping hand pro-

vided by Graz University of Technology’s Institute of Computer Graphics

and Vision. We used the output files provided by the exploded view gener-

ator, which was implemented by Kerbl et al.[7]. Since we only provide 3D

models to it and retrieve the produced exploded view meta-data files, we

think of the system as our black box back-end system, of which we know the

general inner workings but not the details, as explained in Section 4.2.

During development, we needed a way to test our solution, however no

standardized 3D label placement dataset existed at the start of our develop-

ment. Therefore, we created our own dataset for testing during development

31
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and for use in the user study evaluation. Since modeling 3D models requires

a lot of time and artistic talent, we did not create our own models, but

borrowed existing ones. Naturally, copyrights also come into play with 3D

models, and they can be as equally or even more expensive than the ac-

tual computer software, depending on the quality. Therefore, we found our

dataset models inside open-source 3D model libraries, such as GrabCAD and

Blenderswap. See more details regarding the dataset in Section 5.1.

4.1 Development in Unity

Unity is a popular and wide-spread game development platform, which also

offers a limited but free version for personal development. While it is primar-

ily a platform for developing games, it is not limited to that. Development

of other CGI applications can also be simplified by using its rich and well

documented library of built-in functions and profilers, as well as its good

support community and lots of open-source resources. Another advantage

is the simplicity of application building for different kinds of builds, which

works in favor of the future plan of deploying the application as a web appli-

cation and potentially a mobile one. Using it as our development platform

simplified the overall development since we could skip basic phases, such as

coding the rendering of 3D CAD models or the base of an interactive GUI.

The development environment may have simplified our starting steps, but

it also limited some of our options. Such a case was GPU based computation,

which was needed for us to speed up the performance speed of Textplosion.

While Unity has support for GPU computation, it is limited to compute

shaders. While approaches like CUDA programming could boost up our per-

formance, it would at the same time limit us to NVIDIA based GPUs. Dur-

ing development, our guideline was a standalone application with minimum

cross-platform limitations and minimizing cross-language calls. Therefore, as

our main language we only needed to use C sharp with DirectCompute for

GPU computing besides the CG and HLSL shaders.
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4.1.1 3rd Party Unity Assets

Unity uses a concept of assets to define the set of scripts, models or other

components that are available to the project, which are also compiled during

a build. With its large community and the rich asset store, one can quickly

find open-source or free-to-use licensed assets, which speeds up development.

Some of these were also used during our development:

Runtime OBJ Importer , provided by AARO4130 at https://assetstore.

unity.com/packages/tools/modeling/runtime-obj-importer-49547,

solved our problem of loading OBJ files at runtime with file paths to

the script.

SimpleJSON.cs , provided by Bunny83 at http://wiki.unity3d.com/

index.php/SimpleJSON, is a simple JSON parser for our self-defined

JSON meta-data files. This 3rd party asset is needed due to the built-in

JSONUtility component not covering arbitrary JSON files.

TobiiPro SDK is the free SDK provided for programing TobiiPro code for

eye-tracking experiments. We used it during user experience tests for

storing eye data and other generated experiment data.

4.1.2 Unity’s Cross-platform Notes

Unity was primarily developed for Windows and later on also became avail-

able for Mac OS and Linux, but for Linux it is still in experimental beta

stage and not an official release. Our main development OS was Linux, while

the experiment environment was Windows. While it was decided to go in

this direction for faster development and due to cross-platform limitations,

it also had to remove any cross-platform issues. One of the issues were

computer graphics APIs, where Windows uses DirectX11/12 and Linux uses

OpenGL. While mappings of functions from one API to the other are done,

there naturally remain some shortcomings, for example the way it handles

out-of-bounds exceptions or undefined variables on a compute shader.

https://assetstore.unity.com/packages/tools/modeling/runtime-obj-importer-49547
https://assetstore.unity.com/packages/tools/modeling/runtime-obj-importer-49547
http://wiki.unity3d.com/index.php/SimpleJSON
http://wiki.unity3d.com/index.php/SimpleJSON
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4.1.3 Differences Between Coordinate Systems

When defining 3D coordinate systems in mathematics, the issue of the ori-

entation of axis Z arises. It is basically a choice between a left-handed and

a right-handed coordinate system. While in simple calculations this only in-

volves a correction of equations, in CGI code it easily becomes a headache if

we do not keep in mind which was chosen and why. The chosen system does

not only define the direction of axis Z but also the direction of the positive

and negative rotations. Naturally, both are correct, but none is the best

choice between the two, since each has it own perks per problem [36].

While both DirectX and OpenGL allow use of either system, each gives

priority to a different one. This can be observed in the documentations,

which are used for tutorials and other teaching material. In the end, each

set of documentation becomes the de facto rule for its API. This escalates

further with programs built on top of them that directly imply which coor-

dinate system should be used. If we look at the process of switching between

coordinate systems, we can also observe how tricky the APIs themselves

make it for the programs built on top of them. DirectX offers separated

function calls between the coordinate systems while OpenGL allows loading

of transformation matrices.

Inside Textplosion we deal with both types of coordinate systems since

the back-end system works with OpenInvetor 3D development framework.

This framework uses OpengGL and therefore outputs right-handed matrices

and vectors inside the meta-data files. Unity is left-handed due to its base

being built on DirectX.

4.2 Exploded View Base System

The main goal of the thesis was to produce an interactive GUI for presenting

annotated 3D model exploded views. Because of this, we started by building

a basic system for the loading and processing of meta-data and 3D geom-

etry as well as handling user camera and explosion simulation interactions.
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Explosion simulations or explosions, when talking in Textplosion context,

are dynamic movement animations that move the model part and its cor-

responding label in the direction provided by the meta-data files and user

input.

Since we were provided with a back-end system for generating explosion

views, we started building the system under the assumption that in the

future the back-end and front-end will be combined or at least connected via

a web API. Based on this assumption, we decided to build a hierarchy of

structs that corresponds to main file types of the back-end meta-data files

and the references inside them that already implied some level of hierarchy.

Since the thesis proposal was to add labels on top of the existing back-end,

naturally there could be no label information generated without our input.

Therefore, we extended the back-end outputs with a new label format meta-

data file, which simply uses the existing ids to link to the desired strings

of text. In order to simplify the generation of label files, we also added an

option that generates a new file based on the parsed structure, where we

use the model source filename as the annotation for each part. Details on

the data hierarchy parsed from given input meta-data files are explained in

Subsection 4.2.1, while the back-end files and their contents are described in

Appendix A.

At the time of writing this thesis, the back-end system was still far from

server deployment with an API for sending arbitrary 3D model formats. For

the back-end to process an arbitrary 3D model, one had to manually cut up

the desired 3D model and store the parts in a single OpenInvetor .IV format

file. This file had to be clean of cut-up artifacts such as non-manifoldness

due to edges or faces not closing up the model. Due to security concerns,

one needed to forward the OpenInventor cut-up model to a middleman, who

manually started the processing and after some time returned the generated

meta-data files as well as the separated OpenInventor and OBJ files. Due to

the low flexibility of the system, we created an alternative way of using it so

that the back-end system access is not needed. We decided to create simple



36 CHAPTER 4. IMPLEMENTING TEXTPLOSION

JSON formated meta-data files, which can be observed in Appendix A. Since

the inner data hierarchy is the same regardless of input type, we also added

an option to store it in numerical back-end format.

The system was designed to parse the meta-data files provided by the

run parameters. This causes Textplosion to generate an inner meta-data

hierarchy and from there to import the actual model OBJ files. At runtime,

the loading of OBJ models was achieved with the help of Runtime OBJ

Importer, which loads all of the model parts after parsing is done. Since not

all model parts are unique, we sped up the process of loading by creating

prefab copies from the loaded unique model parts, and just changed TRS

values according to the settings in the data hierarchy. On the other hand,

label generation was achieved with a label prefab consisting of a TextMesh, a

background Quad and leader line LineRenderer. We attached a script to the

label prefab. When started, it corrects the label dimensions according to the

length of the string set for the annotation. It also stores information such

as anchor point reference, which enables leader line drawing during updates.

Inside the label script, we also included many other helpful functions. One

of them is the option to auto-rotate the label towards the camera by aligning

its front axis to the vector that extends between the camera and the label or

the leader line crossing checks. The checks project the anchor lines onto the

view plane and compare them with other leader lines or the edges of a label

background edge following algorithm 1.

4.2.1 Parsed Data Structure Hierarchy

For easier and more effective work with the meta-data files, we have con-

structed a hierarchy of structs. We started with the root struct Assembly,

which represents the data from the assembly file header and its pointers to

other meta-data files:

3D model format determines if the model can be read by the system.

Unique count tells the amount of unique model parts.
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Unique groups is a list of the next level AssmlyGroup struct, which con-

tains part model and its copy data.

Label information is a list of the next level MetaLabel struct, which con-

tains all label information.

The next level of hierarchy added was AssemblyGroup, which stores indi-

vidual assembly file references to geometry and copy specification files. Inside

specification files, we retrieve the information needed for the explosions di-

rections, blockers and TRS transformations. AssemblyGroups contains:

Part name is the back-end provided part name.

Geometry path gives the location of the corresponding OBJ file.

Specification count stores the amount of different specification files that

form movement groups, where copies move in the same direction.

Specification list is a list of the next level MetaLabel struct, which con-

tains all specification file information.

While AssemblyGroup was defined to hold information about unique

parts to load, the Specification struct was designed to represent the movement

groups of its copies. The elements of the movement group were named copies

for simplicity. Movement groups have two possible directions of movement:

singular and cascading. The singular directions are just 3D vectors, while

the cascading ones are a set of 3D vectors that are used one after another

until collision. The back-end system does not tell which movement groups

have the least collisions with the current movement group, it only provides

the set amount in the back-end system of optimal directions. Therefore, we

added to Textplosion a keyboard and mouse interaction that provides infor-

mation of the set direction by an arrow as shown in Figure 4.1. As a pair

we also added an interaction to shift to next direction in the list to create

a simple way of switching between specified directions during a Textplosion

run. Including the directions a Specification contains:
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Figure 4.1: Examples of switching kiosco model’s support part directions

during run with direction arrow interaction.

Copy count provides the amount of prefab instantiation needed for the

current movement group of geometry referenced by the parent

AssemblyGroup.

Copies list is a list of the next level SpecPropagation struct, which contains

all copy specific information.

Singular direction count provides the amount of singular directions.

Singular direction list is a list of all possible 3D singular directions.

Cascading direction count provides the amount of cascading directions.

Cascading direction list is a list of sets of three 3D directional vectors

that follow in order of position.

The last exploded view related struct in hierarchy, SpecPropagation, was

created to contain each copy’s details. While parsing the id and matrix of

each copy, it also recalculates the translation, rotation and scale from the

TRS matrix provided in back-end source files. This was needed since Unity

works with vectors instead of matrices in its inner representation. We also

prepared a boolean parameter in its constructor to determine if the input

source is stored in the right-handed system, which triggers correction to the
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left-handed system of the values in the matrix as well as in individual vectors.

SpecPropagation contains:

Copy id is the integer id provided by the back-end system that corresponds

to the index in the blocker string inside direction specification files.

Transformation stores the TRS matrix provided and possibly corrected to

the left-handed system if set so.

Translation gets extracted from the last column of the TRS matrix.

Rotation stores the quaternion extracted from the TRS matrix.

Scale gets extracted from the diagonal of the TRS matrix

Singular blocker list is a list of copy ids that potentially collide with this

copy. The index in the list corresponds to the index in the Singular

direction list from the Specification struct.

Cascading blocker list is the cascading direction version of the singular

blocker list.

The root struct Assembly was designed to hold another struct besides

the exploded view information, namely the label information. It is a simple

struct called Metalabel and contains:

Copy id corresponds to the copy id inside the SpecPropagation struct. It

tells us to which part of the model the label is connected.

Initial offset is used on the initial load before the positioning algorithm

is run and simply adds the offset to the mesh center position of the

corresponding model part.

Annotation contains the text annotated to the part.
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4.2.2 Exploded View Interactions

The HCI inside Textplosion were designed to provide user control over the

camera and the model part explosions via mouse and keyboard. The cam-

era control interactions were limited to zooming and rotation on a sphere

defined by a set focus point as shown in Figure 4.2. While other camera

control interactions such as direct camera placement would be possible, we

limited ourselves to those we deemed simple to use and essential for pre-

senting exploded 3D models to avoid overwhelming the user with too many

options.

Figure 4.2: Texplosion builds camera related interactions on a model-

centric concept to prevent the object going out of view except in case of

extreme explosion interactions.

We set Textplosion to determine the camera focus point after loading the

whole mesh with all prefab copies by selecting the center point of the bound-

ing box encasing the whole mesh. We aimed to ensure that the whole mesh in

its initial state is visible to the user at any moment. In order to achieve this,

we limited the camera pose interaction to spherical rotation around the focus

point with the view vector always orientated towards the focus point. While

the topology changes due to explosions taken into account by the zooming

interactions changing the radius of the camera’s sphere of movement, the

initial radius was set to be calculated with simple trigonometry using the

mesh’s bounding box measurements and some padding. Both camera con-
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trols were implemented in single script TexplosionSetup.cs, which also hosts

other core system code, making it the core script besides the load scripts.

Explosion interactions, on the other hand, are a result of multiple dif-

ferent scripts. During model load, these scripts are appended to individual

mesh or label objects for each part of the cut up exploded model. The HCI

essential script MouseEvents.cs was constructed to enable mouse interactions

of hovering, clicking and dragging. At the same time, the script became a

trigger for information events as well as a delivery system of user orders such

as part explosions for other scripts. The information events include the di-

rection indicator explained in Subsection 4.2.1 and glowing events. Previous

studies [22] showed user experience improvements by adding glow to impor-

tant elements in GPS navigation applications, therefore we also used it as

an indicator of information in Textplosion. We decided that the main Tex-

plosion use of glowing elements was the indication of the selected element,

since it was our most basic and informative idea. The model part selection

in Textplosion is set to trigger when the mouse hovers over a model part

or label, which triggers both the model part as well as its paired label to

glow. An alternative incorporated useful glow effect was the indication of

potential blockers in the set direction of the currently selected model part of

an exploded view.

Another HCI important script loaded to all model parts on load is the

abstract ExplosionBase.cs script, which handles the logic for model part ex-

plosions based on the provided meta-data files. Since we wish for the labels

to follow their referred exploded model parts, we store the loaded meshes

and labels in a hierarchy of containers as shown in Figure 4.3 and move the

containers of the mesh and label pairs during explosions.

While the back-end system provided meta-data files give information on

potential blockers, the system does not provide the location or timing since

this would change depending on the user interaction. We started solving the

problem with basic Unity provided collision detection, however this brought

problems of its own. Due to the explosive nature of the models, the model
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Generated − Data − Group1 − Copy1 − model − Mesh1

| | | ! l a b e l − Text1

| | | ! Background

| | |
| | ! Copy2 − model − Mesh1

| | ! l a b e l − Text2

| | ! Background

| |
| ! Group2 − Copy3 − model − Mesh2

| ! l a b e l − Text3

| ! Background

! Helpers − Planes − Plane0

| ! Plane1

|
! D i r ec t ionArrowInd icator

. . .

Figure 4.3: Unity container hierarchy branches out per movement group

to contain all copies of same mesh defined by the movement group. When

exploding parts it is the copy level that is moved and therefore both mesh

and label children move at the same time.

parts consist of mostly concave meshes, which Unity does not support since

after its removal from the core PhysX library as a speed up. While convex

collision detectors such as a bounding box or others could be added, they

showed low performance because the parts that were initially close to each

other kept colliding with the bounding boxes as seen in Figure 4.4.

We did not wish to use commercial Unity assets inside Textplosion or lose

too much time developing efficient and fast collision detections for concave

meshes. Because of this, we decided to use the back-end information as a

trusted source, which provides us with accurate direction information that

prevents the parts from phasing through each other. We rebuilt the explosion

functions in order to cause them to propagate explosions towards blockers,
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Figure 4.4: Collision detection with Unity’s in-built box or convex mesh

collision detectors was not possible due to the mostly concave nature of parts

inside exploded views. By comparing states before and after in the images

one can quickly observe the amount of concave mesh parts being high in the

relatively small prezz model by just seeing how many parts needed to pass

the bounding boxes for collision detections marked in green to arrive at their

end position even though there was nothing in their path to block them.

which recursively propagate it further to their own blockers. By recursively

propagating explosions, we created a system that is a workaround to colli-

sion detection, but when accurate meta-data is provided, it performs as if

collision detection was added. For potential changes to collision detectors

in the future, we defined the main explosion script as an abstract class, and

extended it into the collision detection supported by SimulateExplosion.cs

and the meta-data propagated PropagateExplosion.cs.

We defined that clustered hedgehog labeling triggers clustering after the

explosion finishes, therefore we implemented Textplosion to have an indicator

of explosion states for all model parts. We set it to store an initial state

indicator as well as an animation-in-progress indicator, which are set during

event notification calls inside the core script. Since both clustered and normal

hedgehog labeling have triggers that force updates of label positions, we also

needed to prevent distraction due to instantaneous jumps on updates. We

handled it by transitioning the label position change over multiple frames.
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This resulted in a label transition that is controlled by a user given duration

input instead of a jumping behavior due to instantaneous updates of label

positions. Due to smaller or larger changes of multiple label positions, this

resulted in short term label overlaps with labels, leader lines and the model

mesh. However, since it is a better solution than the alternative settings, it

became a fault by design due to its merits.

Following the suggestions for exploded view interactions provided by Li et

al. [21], we implemented three groups of explosion interactions: animation,

direct manipulation and riffling. The interactions inside these groups

produce different results. The fact used in our favor is that any generated

explosion is actually a transition of model part position over rendered frames.

We used this to implement all interactions as special calls of the basic move-

ment logic run during updates. The implemented interactions therefore dif-

fered only in their trigger, the set direction multiplier and in the presence of

propagation. We called the interactions for returning the models into their

initial form reverse explosions because we designed them by using negative

multipliers to reverse explosions. These, however, had their movement lim-

ited to prevent illogical behavior for exploded views. Since we defined all

explosions and reverse explosions by using the same logic, we could create a

system, in which explosion results can be stacked on each other, resulting in

a wider variety of possible interactions by combining the basic ones.

Explosion Animation

The implemented interaction most true to the name explosion was coded to

produce an animation of exploding the whole model. During the explosion

updates, all model parts move the part container for a step, which is calcu-

lated based on time passed since the last frame update, an explosion speed

constant, the direction of the explosion and the type of explosion animation.

We designed the animation to be either forward or reverse for the duration

of a key press. Which of the two animations is triggered depends on which

key is being pressed by the user. Since all parts move at the same time in
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their set direction, we did not need to propagate the explosion order to each

blocker.

Direct Manipulation

Textplosion was designed to allow direct manipulation of individual model

parts via mouse clicks. We implemented two types of direct manipulation

interactions: drag & drop and offset jump. The drag & drop interaction

tried to simulate a 3D version of the drag & drop icon produced on OS

desktops, while offset jump was added as a simple animation of a single

model part with a predefined step size. Both interactions focus on a single

model part, which we select by hovering the corresponding children of the

container till it glows.

The drag & drop explosion was done by comparing the current mouse

position on screen with its previous position, resulting in a 2D vector of

change on the view plane. This 2D vector was extended into its 3D world

version and projected onto the normalized explosion direction to find the size

of movement in set direction from meta-data. For the explosion propagation

version only recursive calls were added to blockers.

Offset jump was implemented by using the direction vector in the meta-

data and a user provided multiplier to determine the offset size of a click.

The interaction was designed to differentiate moved and initial-state model

parts. The initial-state model parts are set to move upon each update until

they reach the offset position, and the moved model parts move in the reverse

direction until they reach their initial state. In case of propagated explosions,

we redesigned the function to differentiate behavior based on the distance

from the trigger origin. The behavior stayed the same with the addition of

the propagation call for the root part, which was clicked by the user. The

new addition was meant for non-root parts, where the offset click event is

blocked until the root element returns to its initial state and the offset is

stacked for each level of propagation.
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Riffling

The last explosion type we implemented is a special case limited to usage in

exploded views. The name riffling comes from the analogy of riffling through

the pages of a book, where we give focus to one page and the remainder is

stacked on its left or right side. In the case of 3D exploded views, it was

defined as moving the riffled model part a bit more into focus while at the

same time moving all its blockers away from the riffled model part, resulting

in an overview like dissection of the model based on the selected model part.

We implemented it with explosion propagation from the start, where the

root element and all its blockers move in the same positive direction set in

the meta-data. However, we set a much bigger explosion constant for the

blockers when compared to the root model part.

Figure 4.5: Examples of all propagated explosion interactions on legoguy

model. From left to right we have initial model state, direct manipulation,

riffling and explosion animation.

By observing Figure 4.5, we can see similarities between explosion inter-

actions due to the same core function call. However, the differences can also

be observed even in the static images of the figure. The direct manipulation

model was dragged & dropped on its left half and deformed with offset click

on the right side. Notice the difference in range due to offset click limit be-

tween the left and right side as well as the glowing left leg, which glows due to

the part still being dragged at the time of image capture. In riffled model the

glowing also indicates the riffling still being in progress and at the same time

marks the trigger of explosion propagation. While the explosion animation
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also has a lot of exploded parts similar to riffling, it has actually exploded

all parts consistently for the duration of the key press. Riffling on the other

hand exploded only the blockers of top part and propagated it towards the

next triggers in the recursion, while it left the pants and leg parts intact due

to not blocking the top. The propagation in riffling also gives on each level

of recursion an extra offset step, which creates varies sizes of explosion steps,

while explosion animation has only consistent step sizes.

4.3 Implementing Floating Labels

With the exploded view base from Section 4.2, we already created an in-

teractive system for exploded views with label positions fixed with an offset

from its referred model part mesh’s center. However, such a solution requires

manual labor for placing the labels, which we wish to be placed in optimal

position automatically. Therefore, we started implementing hedgehog label-

ing’s core [8], which is the floating labels algorithm, designed by Hartmann

et al. [9] and discussed in detail in Section 3.1.

Since the concept of six forces from Figure 3.1 is needed for force field

creation and the forces are defined by processing pixels of a rendered view,

we decided to store its information in a texture and process it on the GPU

via compute shader kernels located in ForceField.compute to speed up the

solution. Among others, our compute shader includes kernels for edge detec-

tion, static and dynamic field calculation, extreme search, force field texture

writing for result showing and so on. According to the official Direct compu-

tation shader documentation, each kernel has a limit of 1024 threads. This

means that most of the written ones have a thread group of size 32x32 to ac-

commodate the processing of a 2D texture, while reduction algorithms have

a one-dimensional thread group. Another speed up was achieved by dividing

the static force field calculation inside an update loop into part dependent

and independent calculations. The independent calculations for forces B and

D were removed from the label/part loop to be calculated only once and
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then reused in each iteration of a label loop together with the part depen-

dent forces A, C, E and F. Forces E and F were defined to only be calculated

when non-negative UV position matching the provided rendered texture di-

mensions is stored on the GPU, which happens in each label loop iteration

after finding the maximum value inside force fields. The whole process in

stages can be observed the following subsections as well as in Figure 4.9 at

the end of this section, where all produced views, textures, boolean indicators

and force fields are presented in order of creation.

4.3.1 Color Coded Texture

While rendering a scene to a texture in Unity is no problem, we had to

solve the problem of differentiating model parts from the rendered texture.

Following the idea in the original paper [9], we simply changed the default

Unity rendering to a color coded rendering, where each model part has a

unique RGBA value on a background of RGBA value 0 = (0,0,0,0). We

achieved it by replacing the standard shader with a custom shader, which

renders each fragment with the same hard-coded color determined at model

load. Results of color coded projections can be observed in Figure 4.6. To

prevent the main rendering seen by the user from flickering between shaders

we used besides the main camera an additional separate camera for rendering

the textures for force field calculations.

Figure 4.6: Examples of color-coded textures produced for the gpu and the

chopper models with color differences observable by the eye.
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While Unity uses the RGBA model in color definitions, it is not practical

for defining contrast colors for color coding. Therefore, we used the HSV

model as the entry point and transformed those to RGB. But HSV is also

not problem-free. Hue transforms in a circle, resulting in values 0 and 360

defining the same red color, while colors with low Saturation and Value are

hard to distinguish. For good results, visible to the eye for any number of

parts, it quickly became a MAXMIN optimization problem, which is known

to be NP-complete [37]. Since we only wish to mark separate parts during

force field computation, we simplified the problem to numeric RGB color

differences for our needs. Therefore, we just divided the ranges with the

part count into equal parts. To remove problematic values, we limited the

minimal step size and range for each value based on visual probing. Hue was

set on a range [5,360] with minimal step size 5, while Saturation and Value

on the other hand had the allowed range set to [0.5 1] with a minimal step

size of 0.05. We also set the algorithm to be started by locking Saturation

and Value to full capacity and just changing Hue, which results in 71 colors.

If more than 71 parts are needed, we set Saturation to be unlocked first.

When we reach the range limit with 710 colors, we unlock Value, and this

results in more than 7000 colors.

We found the color code shader, which is used during the color coded

texture generation, useful also as a material shader, when the color coding

can be distinguished by the eye. As in the example of the colorless brain

model in Figure 4.7 we can produce a nice visual separation of components

just by using the color codes during the mesh’s shading process if we simply

change the material shader with the color code shader.

4.3.2 Interia

Besides distinguishing the texture-projected parts, we also needed to provide

the GPU with the UV coordinates of each part’s interia, which is the 2D

projected anchor point location. The problem was to define what an anchor

point should be. A simple solution was to use the mesh center as an anchor
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Figure 4.7: The left image demonstrates the problems that are caused

by selecting the mesh center as an anchor point and its projection for the

interia by using the brain model as an example. The Corpus pair with

a hole in its concave mesh causes the leader line to point towards empty

space. Misinformation occurs due to the anchor points for the leader lines

of the Lesion, Pitua, Stem and Temp labels being invisible. Distinguishing

the referred one of the four labels is impossible since all leader lines seem to

point towards the yellow part. In the right image, we present our solution of

detecting the anchor points with a thinning algorithm, using transparency as

an invisibility indicator and switching the rendering order selectively based

on visibility. The images also present how color coding as a material shader

can enhance the structural information of the model.

point, however such a solution has horrible results for the not so rare concave

meshes, where the anchor point may land in a hole of the part, resulting in

the leader line pointing towards nothing. Another problem that arose was

the clarity of which part corresponds to which label because this becomes

tricky if the anchor point is not in a visible area. In such cases, the anchor

line went through other objects and most users would not know which part

it corresponds to without hovering the cursor over the label or part to find

out. All of the described ambiguities can be observed in the brain model

example in Figure 4.7.
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Remaining loyal to the original paper, we followed their idea of using thin-

ning algorithms to thin out all of the model part pixels until the last remains

as our interia. Since thinning algorithms include many conditional clauses,

and we also need the anchor point updated on the CPU for drawing the leader

lines, we decided to keep the anchor point search on the CPU. While GPU

thinning algorithms exist and are still widely researched [38, 39, 40, 41, 42],

they are quite complex and case specific. At the same time, they would re-

quire an increase of the already big amount of CPU-GPU communications,

which are a well-known bottleneck in GPU computing.

First, we simplified the approach by checking the mesh center and if its

projection or interia is visible in the color coded texture. Even if it was deter-

mined as invisible, we set it to be a fail safe in case the thinning algorithm fails

to find a better solution. From the big variety of thinning algorithms found

in literature, we chose a quite old, but at the same time well-regarded, ro-

bust and simple one called Zhang and Suen’s thinning algorithm, also known

simply as the ZS thinning algorithm [43]. The ZS thinning algorithm checks

the changes of color presence in the eight neighboring pixels. Color presence

in their case was state 1 and lack of color was called state 0. They also

numbered the pixels in a spiral way by using the current pixel as the starting

point and continuing into the right direction. Using the indexes, they defined

a transition function A(P1), which tells the count of transitions from 0 to 1

while proceeding towards the next neighbor in the order of: P2, P3, P4, P5,

P6, P7, P8, P9 and finally P2 again. See Algorithm 2 for pseudo code.

P9 P2 P3

P8 P1 P4

P7 P6 P5

Table 4.1: Table cells represent a grid of 9 neighboring pixels with the

pixel numbering used by the ZS thinning algorithm. The pixel in the center

numbered P1 represents the currently processed pixel.
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Algorithm 2 ZS thinning algorithm

1: repeat

2: for pixel in texture do

3: if pixel == 1 && has 8 neighbors && 1 <
∑9

2 Pi < 7 && A(P1) == 1

&&(P2 == 0 ∥ P4 == 0 ∥ P6 == 0)

&& (P4 == 0 ∥ P6 == 0 ∥ P8 == 0) then

4: mark pixel

5: end if

6: end for

7: set all marked pixels to 0

8: for pixel in texture do

9: if pixel == 1 && has 8 neighbors && 1 <
∑9

2 Pi < 7 && A(P1) == 1

&&(P2 == 0 ∥ P4 == 0 ∥ P8 == 0)

&& (P2 == 0 ∥ P6 == 0 ∥ P8 == 0) then

10: mark pixel

11: end if

12: end for

13: set all marked pixels to 0

14: until no pixel was set to 0 in this iteration
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Figure 4.8: Results of interpolating the world coordinates and depth can

be observed by using the interpolation shader as a material shader on actual

models, since they are already normalized and stored as colors. In the images

we present the interpolation results for the dragon and oscar model. We

can observe how the X coordinate is represented in red, Y in green and Z

in blue by the positions of the models. One can also see the dragon’s belly

being close to the origin of the coordinate system due to its black color.

Thinning algorithms will in most cases return multiple pixels still remain-

ing set to state 1, therefore we had to select the one that works best for us.

We decided to check its original 3D position, its distance from the mesh

center and the distance from the camera. To determine the 3D position of

an arbitrary pixel, we created a shader that interpolates world coordinates

from the vertex to the fragment shader. In the fragment shader, we coded

the interpolated values as colors to be stored in a texture. While Unity

does provide high precision texture formats that do not normalize values to

[0,1] ranges, their cross-platform compatibility is low and GPU dependent.

Therefore, we used the overall supported ARGB32 format with normaliza-

tion based on interpolated fragment and mesh center depth. Normalization

to [0,1] range was achieved by subtracting the minimum values of the mesh

bounding box before normalizing the values,which results in a shading as

seen in Figure 4.8:
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R = (X −Xmin)/Depthfragment (4.1)

G = (Y − Ymin)/Depthfragment (4.2)

B = (Z − Zmin)/Depthfragment (4.3)

A = Depthfragment/Depthcenter (4.4)

We set Textplosion to loop over the remaining pixels and only check those

that have their interpolated 3D position inside the mesh’s bounding box in

order to prevent artifacts from forming due to floating point precision errors.

From the valid positions available, we decided to select the one closest to the

mesh center and the camera as our anchor point and its UV position as its

interia. The precision of the stored data naturally became lower due to many

floating point operations. However, for our purposes it worked fine with rare

slight mistakes such as the leader lines extending slightly beyond the mesh,

but even in these cases it was clear to which mesh they pointed at.

Since we defined a way to check if the current anchor point is visible to the

system, we decided to use this as information that helps us to further enhance

the user experience. Besides setting the important elements to glow, the

study on GPS navigation applications [22] also showed that user experience

improves if the less important information is made transparent to show more

of the important information. We decided to use transparency on labels that

have their referred model part invisible from the current camera pose. At

the same time, we set the rendering order for the model meshes, labels and

leader lines. In case of the visible model parts, the leader lines and the labels

are rendered in order on top of the mesh rendering, while in case of the

invisible model parts, they are rendered in the same rendering phase as the

mesh. This rendering order resulted in a solution that involves less ambiguity

regarding which line points to which mesh.
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4.3.3 Edge Detection

Before processing the color coding for forces, we produced a GPU based

boolean array to indicate the edges in the texture. We used a simple discrete

Laplacien of Gaussien negative convolution kernel or LoG as our edge detec-

tor on the GPU. It takes the neighbors of the pixel, calculates its derivatives

and based on them decided the pixel’s edge status. Because the color cod-

ing was designed to use a zero vector for background color, it resulted in

a controlled environment, in which we could use the smallest and simplest

negative kernel of 3x3 size to detect the edge:⎡⎢⎢⎣
0 −1 0

−1 4 −1

0 −1 0

⎤⎥⎥⎦ (4.5)

4.3.4 Static Force Field

For force field calculations, we needed to preload a lot of information for label

position update runs. To prevent too much traffic between the CPU and the

GPU, we designed a few GPU array Labels to be pushed to GPU in a single

push while keeping rows in the memory word size. Such an example is the

ModelParts look up array, which stores each model’s cluster identifier, the

interia U and V coordinates, the largest distance between the interia and a

pixel and its color code. Similar to these eight floats, we also have other sets

of row values, which form the 32B memory word size. By limiting ourselves

to 32B per row in these arrays, we achieved faster performance due to the

GPU memory retrieving all the needed information in one read and storing

it locally. In case of ModelParts shown in Table 4.2, we also limited it to the

model parts that are referred to by a label, resulting in less memory transfers

and at the same time enabling us to use the same mapped index to indicate

corresponding row pairs in different arrays.

The static force field kernel first needed to determine if the current pixel

corresponding to the thread id is a color coded pixel of correct color code.
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Cluster U V Max Distance R G B A

Table 4.2: A row of eight float values in the ModelParts array. Each row in-

dex corresponds to the index that was mapped during the first initialization,

and points to the same pair of label and model part among such arrays.

Color checks were simply done with boolean operations. This was done

in order to determine equality to zeros inside the color vector for defining a

model indicator and then compare individual color components with the color

code in the ModelParts row to define a part indicator. Note that we only

did boolean operations without actual branching besides the beginning pixel

inside the dimension check. By generating booleans and converting them to

0/1 floats, we generate effective multipliers without slowing it down due to

branching code, which is a GPU-hostile action considering performance.

The first force mentioned in the paper was the attraction force A, which

attracts towards the interia UV coordinates provided in ModelParts. The

attraction force distribution was redefined from Equation 3.1 as the following

weighted normalized distance:

FA = ConstA × ¬PartIndicator(x, y)×
1−

√
(U − pixel.x)2) + (V − pixel.y)2))

MaxDistance
(4.6)

For force B or contour repulsion from Equation 3.2, the user needs to set

a so called contour influence integer, which was designed to tell how many

pixels into any direction we are searching for contours, which results in a

magnification of the detected edge pixels. We implemented it by simply using

a for loop, which only combines surrounding pixels’ corresponding detected

edge booleans from Edges array with OR operations. While for loops contain

branching statements, these are unrolled as repeated code instead of loops in

compiler in case the if statement uses uniforms and is deterministic enough.

In our case it was since we looped from the negative to the positive uniform

value influence on rows and columns. The resulting boolean still needed to
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be multiplied by the contour constant to enable parametrization.

FB = ConstB

y+inf∏
row=y−inf

x+inf∏
col=x−inf

Edges(row, col) (4.7)

The repulsion from other parts or from force C from Equation 3.3 was

simply implemented as a multiplication of the booleans that mark if the pixel

is inside of the model and if the pixel does not belong to the current part.

Naturally, the result is multiplied by the repulsion constant of the model.

FC = ConstC × ¬BackgroundIndicator(x, y)× PartIndicator(x, y) (4.8)

The last Equation 3.4 defined static force D as the view border repulsion.

Here we compare the view border influence to the smallest distance between

the current pixel and the border, which equals the smallest value from the

set of values: U, V, remaining distance from right border, remaining distance

from top border.

MinWallDist =Min(x, y, width− 1− x,height− 1− y) (4.9)

FD = ConstD × (MinWallDist ≤ WallInfluence)
1−MinWallDist

WallInfluence

(4.10)

The end static force field was then combined by subtracting the highest

repulsion force from the attraction force as in Equation 3.5:

StaticForce = FA −Max(FB, FC , FD) (4.11)

4.3.5 Extrema Search

The search for extrema in the force field was done on the GPU with a maxi-

mum search reduction algorithm. By using such an approach, we drastically

changed the amount of memory calls by using shared memory and three ker-

nels for better parallelism. The first kernel was prepared to produce a new

field containing the force sums inside a label sized convolution kernel. The

second kernel used shared memory to compute the local max values inside



58 CHAPTER 4. IMPLEMENTING TEXTPLOSION

multiple thread groups. And the final kernel used a single thread group to

find the global extreme from the stored local extremes of previous kernel and

stored it to the CPU retrievable buffer object because the CPU needed to

know the new label location.

While observing form of the sum field, we noticed it being a smudged

version of static force field. Since it looks like a low-quality like image,

which however penalized small too positive areas, we came to the conclusion

that there is no reason to use big textures, if we reduce their sharpness and

therefore switched to low resolution textures instead. By moving from a

1280x700 texture resolution with over 150k pixels to a 128x128 resolution

texture with a bit more than 1.6k pixels, we achieved a workload decrease of

around 90% for force field calculations, while keeping results intact. While

the efficiency increased greatly with equally good results on the extreme

search, it did reduce the effectiveness of the thinning algorithm in Subsection

4.3.2 since we used the same texture for searching the best anchor point. A

smaller texture regarding the anchor point search meant less pixel data to

thin out and less world coordinate data to interpolate for determining the

original 3D position from projection, which in turn resulted for really thin

objects or only thin visible part pixel patches to be marked as invisible.

Another reoccurring problem was the incompatibility of the force sum and

the label’s auto-rotation towards the camera, which would need to be taken

into account by predicting the label shape in any texture pixel by using the

determined deformation in the sum kernel. Since this would overcomplicate

and slow down the process while producing questionable results, we preferred

to disable the auto rotation to prevent overlaps from occurring. We provided

the user with the option of enabling it on condition that they understood

that the overlaps will increase with models in with high label amounts.

4.3.6 Dynamic Force Field

The last calculation regarding floating labels that we have missed up to

this point is the dynamic force field calculation. After the first label was
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placed, we already produced data that could be used for the next label. For

the information to be made available, we created the next eight value row

based array called Labelsas shown in Table 4.3. Labels was designed with

rows of eight integers since the data was used in regards to the UV texture

coordinates. It was set to store the label’s center, extents and the extrema

search area bounds, which was the whole texture in case of just the floating

labels algorithm.

To transform the static force field into the dynamic one, we only needed to

include label repulsion or force E from Equation 3.6 and our newly defined

Leader line repulsion or force F in Equation 3.7. Label repulsion forces

were set to be generated by checking if each pixel is inside the label provided

dimensions. Those label provided dimensions also had user provided padding

included to achieve a user desired distance between labels.

FE = ConstE × (U −Right ≤ x ≤ U +Right)× (V − Up ≤ y ≤ V + Up)

(4.12)

The new force E is similar to the contour repulsion or force B, see equation

4.7. We copied the principle of magnifying the effect of edges by an influence

factor to our drawn leader lines. Since the leader lines were not directly

provided to the GPU, we had to recalculate them on the GPU instead of

again adding load to the CPU-GPU traffic.

V = SlopeX × (U − U0) + V0 (4.13)

U = SlopeY × (V − V0) + U0 (4.14)

Similarly as in the label repulsion forces calculations, we used line equa-

U V Right Up Search U Search V Search Width Search Height

Table 4.3: A row of eight integer values in the Labels array. Each row index

corresponds to the index that was mapped during the first initialization, and

points to the same pair of a label and model part between similar arrays.
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tions on the interia and the label center to determine the line slopes. Note

that we added a small ϵ value to prevent divisions by zero.

SlopeX =
V − V0

U − U0 + ϵ
(4.15)

SlopeY =
U − U0

V − V0 + ϵ
(4.16)

With the line equations and calculated slopes, we designed the check to

inspect each pixel’s (x,y) coordinates between the anchor point and the label

center and see if its X and Y calculated from the line equation correspond

to x and y by using the given influence factor as an error threshold.

Y = SlopeX × (x− U0) + V0 (4.17)

X = SlopeY × (y − V0) + U0 (4.18)

InRangeY = Y − Influence ≤ y ≤ Y + Influence (4.19)

InRangeX = X − Influence ≤ x ≤ X + Influence (4.20)

FF = ConstF × (InRangeY ∧ InRangeY ) (4.21)

By combining everything together, we arrive at the dynamic field already

defined in Equation 3.8, which we can unpack into:

DynamicForce = FA −Max(FB, FC , FD)− FE − FF (4.22)
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Figure 4.9: From left till right top till bottom we have in order of the force

field pipeline the engine model’s central plate part’s calculation stages: the

initial view of the scene and the view’s normal projection, color coded pro-

jection, world coordinates interpolation, boolean indicator of model pixels,

boolean indicator of edge pixels, boolean indicator of part pixels, view border

forces, contour forces, attraction forces, forces from other parts, static force

field, static force sum, label forces, leader lien forces, dynamic force field,

dynamic force sum and resulting view with labels placed at the extremes.
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4.4 Implementing Hedgehog Labeling

From the beginning of Chapter 4 up to Section 3.1, we had already arrived at

an implementation of an interactive exploded view GUI that uses the floating

labels algorithm [9] for automatic placement of 3D label objects. However,

we have not yet gone into details of the label plane implementation, which is

essential for using the 2D floating labels algorithm for positioning 3D labels

in 3D space with good results. Neither have we taken a look at the freezing

life cycle or the local extrema search yet.

4.4.1 Label Plane

The label plane was implemented in Textplosion as a pair of the mathematical

model and its to the observer visible presentation in a form of Unity’s Plane

object and PrimitiveType.Plane mesh. The mathematical model was used

for projection purposes during calculations, where we mostly used the Clos-

estPointOnPlane function to project points, whole labels and leader lines.

On the other hand, the visible representation was used for storing pose in-

formation as well as for presenting force fields or indicators as 2D textures

planted onto the plane, which was a useful tool for debugging the GPU

code. In regards of defining the view vector from Equation 3.9 needed as the

plane’s normal, we simplified it as the distance between the camera and the

previously defined focus point from Section 4.2.2, that used the combined

mesh’s bounding box center point as a point to rotate the camera around on

a sphere.

V iewvector = Planeposition − Cameraposition (4.23)

Since the complexity of the code rose with the addition of floating labels,

we separated the label placement code in a separate script called LabelOc-

clusion.cs, which run the label update loop as a coroutine. By running the

code as a coroutine, we achieved unbroken GUI interactivity as well as a

seemingly parallel-like execution since waiting times are better hidden than
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without coroutines. To prevent problems with coroutine starts and destruc-

tions, we coded Textplosion so that TextplosionSetup.cs loads, prepares and

runs LabelOcclusion.cs as part of its execution. Naturally, due to the dif-

ferent behavior inside coroutines, we needed a way to store the label plane

information that changes with any camera pose change. Since we had al-

ready prepared a visible mesh representation of the plane, we just used its

Transform object to store pose related information.

Figure 4.10: In the left image we have the usual view of Textplosion, where

the labels are already projected to the label plane after setting an arbitrary

camera pose. Since it is parallel to the view plane, unaware observers would

think it is simply placed on top of the view plane instead of inside the 3D

space. A rendering from an alternative camera, presented in the right image,

shows the actual behavior of the whole scene. A plane going through the

mesh’ center is rotated to match the main camera’s pose at any unfrozen

moment and the labels are placed on top of the plane, while the model has

not changed its initial from the moment it was loaded into the scene.

On camera pose change, there is naturally a change in the view plane

orientation and therefore there are also more changes in label plane informa-

tion, which resulted in us checking each camera update for changes in the

camera pose. With the present changes the mathematical model was set to

be redefined with new values. The pose of the mesh representation was set to

update as well. Besides updating the orientation and the static focus point
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positions, we also rescaled the mesh to store the plane dimension as a scale.

The current plane dimensions are essential for a correct conversion between

the 2D and 3D label positions, while at the same time it enables a presen-

tation of GPU produced textures directly fitting to the model dimensions as

seen in Figure 4.10. We used the distance between the plane and the camera

positions together with the camera’s provided field of view and aspect to

first calculate the height and from it the width. The retrieved dimensions

are then used to obtain the correct scaling factors from the initial plane mesh

dimensions.

Height = 2× tan(
FieldOfV iew

2
)× distance (4.24)

Width = Height× Aspect (4.25)

The transformation from the 3D world coordinates to the rendered texture

UV coordinates was defined as a switch between multiple coordinate systems.

First, we expressed the positions in the plane local positions:

V ertexplane = V ertexworld − PlanePositionworld (4.26)

Afterwards, we rotated the plane local space position to the initial po-

sition of plane visualization that we call texture space by using the inverse

rotation of the plane:

V ertextexture = Inverse(RotationPlane)× V ertexplane (4.27)

Within texture space, we were just one step away from the corresponding

[0,1] UV coordinates. The equations were extracted by observing the texture

behavior presented in Figure 4.11:

U =
1

2
− V ertextexture.X

Width
(4.28)

V =
1

2
− V ertextexture.Z

Height
(4.29)

Upixelized = Round(U ∗ ×TextureWidth) (4.30)

Vpixelized = Round(V ∗ ×TextureHeight) (4.31)
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Figure 4.11: The comparison of our label plane texture coordinate system

in orange color with Unity’s UV coordinate system in green. In regards of

the example with the gun model projection, we can observe our coordinate

system being centered in plane center, while Unity’s as many others are

centered in bottom left of the texture or plane.

orange coordinate system is the plane coordinate system in Unity’s units

starting in plane center, which was recalculated before into the Unity’s UV

coordinate system in green

4.4.2 Label Freezing

The life cycle of hedgehog labeling was designed with calculation frozen

and unfrozen states. The frozen state was set as the default state after

each label positioning calculation finished, while the switch to unfrozen state

was meant to happen after an unfreeze trigger condition was met. In the
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Textplosion we defined four kinds of unfreeze trigger conditions:

1. Initial label positioning,

2. Camera angle threshold,

3. Camera zoom threshold,

4. All explosions finished their animation.

While condition 1 was only meant to be used upon start or on user forced

reinitialization, and condition 4 was already solved by using explosion notifi-

cation events from Subsection 4.2.2, the remaining two conditions were newly

defined with the view vector from Equation 3.9. We designed the conditions

to store the last view vector that triggered an unfreeze and to compare it to

the current view vector. For the angle threshold, we simply calculated the

smallest (absolute) angle between the stored and the fresh view vectors, and

compared it to the user set threshold. Similarly, we added user input for the

zoom threshold, which takes the percentage of zoom or radius change:

Change% = Abs(1− ||V iewV ectorstored||2

||V iewV ectorfresh||2
) (4.32)

To prevent issues between frozen label calculations leader line extending

was and implementeda as a CPU check that only triggers during the frozen

state. We defined the check to loop over the label objects and to obtain their

UV positions and dimensions, which were used to read all the label hidden

screen pixels. The check also inspected if any label pixels are positioned over

non-background pixels inside the color coded texture. For labels with non-

background pixels, we extended the leader line in its set direction towards

the label center, which was proposed for the 3D label objects in the hedgehog

labeling paper [8]. We designed the leader line extension to repeat itself until

all label-covered pixels are background color and until the label is still in view,

where for the later case we go one step back after breaking the condition.

The leader line extension required us to set an extension step size, which was

derived from the size of the label’s right and up extent vectors.
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The leader line extensions and the still running explosions can also cause

overlaps with between labels or with between labels and leader lines, not to

mention leader line crossings. While we succeeded at minimizing the overlaps

between the labels to a satisfactory degree by extending the CPU frozen

check, not much could be done regarding leader line overlaps and crossings

since extending them would only increase the amount of leader line crossings,

while subtracting the leader line would quickly result in overlaps with the

model’s silhouette. The CPU frozen check was extended by adding another

label loop after the model overlap check code inside the existing label loop.

Inside the double label loop, we inspected all of the label pairs for in-

tersections between the label background bounding boxes and, in case of

an intersection due to an overlap, we extend the inner loop label’s leader

line to always move the outside label to limit individual label extensions in

size. Note that this propagated extension due to label overlap required us

to recheck all the labels inside the propagation. This could, in case of too

many labels and too little space, cause infinite loops, which we prevented by

limiting the outer label loop to iterate at most N2 times for N labels.

In the end, the leader line crossings and overlaps together with the labels

trying to cross the view border could not be solved in all cases during the

frozen state due to the issue in the design of hedgehog labeling, where we

only calculate the label positions with force fields and extend the leader lines

during frozen states. While we could have tried other approaches, which

would in turn distance ourselves from the simple concept with questionable

results, it turned out that by using smart unfreeze condition thresholds, we

can minimize the occurrences of the remaining issues or even prevent them

from happening, depending on the 3D model.

4.4.3 Leader Lines Crossing Prevention

While the frozen CPU check could not solve the leader line crossings, we suc-

ceeded in solving the crossings in the unfrozen force field calculation loop.

When all of the labels finished positioning themselves after a force field calcu-
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lation, we ran a double loop to check all of the labels for leader line crossings

with the analytical directional vectors check, found in Algorithm 1. We

changed the positions of the labels in the label list of the found crossings.

We also adjusted their 3D positions and restarted the double loop. While

we ended up with using this CPU based solution, we did try moving to the

GPU or finding an alternative GPU solution. However, in the end we failed

to make any of the proposed ideas work in real-time due to a high amount

of branching and memory reading required for solving the problem.

We also noticed that the CPU solution likewise had a potential problem

with the infinite loops of two labels interchanging, which we solved by limiting

the label switches to happen only when neither of the pointers holds the

other’s label list index.

4.4.4 Local Extrema Search

The switching of the local and global extrema searches was achieved by using

the search columns of the Labels array, which has the row defined as shown

in Table 4.3. The values were used to limit the force sum generation kernel as

well as the reduction algorithm area of the search defined in Section 4.3.5.

4.5 Implementing Clustering

By clustering labels based on the meta-data provided explosion directions and

the current exploded view state, we extended Textplosion with the concept of

clustered labels focusing only on their own cluster. This reduced the amount

of global reinitialization runs and in turn resulted in more stable label layouts

as well as slight speed ups. We also enabled switching between hedgehog

labeling whenever we returned the exploded view into its initial state and

clustered hedgehog labeling after exploding it out of its initial state.

In Textplosion we handled different types of clustering methods by ex-

tending the abstract LabelClusteringBase.cs script, which was set to handle

the plane and the clustered label list creation as well as looping over the data
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hierarchy to collect all possible data for clustering guidance. A simple and

useful extension example was the SingleCluster.cs, which places all the given

labels inside a single cluster. It was used to switch to the original hedgehog

labeling algorithm without clustering. The clustering execution was handled

by keeping track of the explosion events, where clustering was triggered after

all of the explosions had been stopped.

For K-means, we extended LabelClusteringBase.cs to another abstract

class called KmeansBase.cs, which defined three abstract functions to be im-

plemented in any K-means versions. The K-means versions were meant to be

a hard-coded selection of metric vectors that simplify the usage and testing.

The three abstract functions defined the vector length, how randomization

was handled per vector index and which of the retrieved explosion and de-

formation data to use as metrics. The randomization specification function

was added to prevent overly random starting vectors from producing single

clusters instead of the desired K amount.

In Section 3.3 we mentioned four potentially good clustering metrics:

direction, position, changes and focus distances. These metrics were

the selection that we found most logical and without obvious correlations.

The problem of correlation can be easily seen in an example of an aban-

doned metric like non-normalized direction, which correlates to the obvious

normalized direction as well as to the change metric, which would have the

directions magnitude hidden in the size of change. In case we used all four

metrics together with the abandoned one, this would result in the weight of

two metrics being unfairly amplified due to an error of the metric selection.

This would become an even greater problem due to us not knowing if those

two metrics would improve or regress the result.

While the proposed four metrics showed some promise during the trial

and error phase, we were yet unsure about which out of the fifteen possible

proper subsets of metrics produced the best results. By conducting further

trial and error experimentation on different models and Textplosion settings

combined with some logical reasoning, we determined some subsets to have
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more potential than others. Since we planned to run some user experience

tests regarding the effectiveness of the subsets, we had to limit ourselves

to a reasonable number of subsets, which we determined to be a group of

three subsets, see Subsection 5.3.1 for details on the reason for the amount.

We determined the following three subsets to be worthy of running user

experience tests on during evaluation:

Position Clustering will produce good results on label positioning when

clusters will contain elements that are close to each other like chunks

inside an actual explosion since the probability of leader lines crossing

will be lower due to elements being close together.

Exploded Position Enhancing the position with information on explosion

direction and explosion progress should prevent grouping of the ele-

ments that are close together but will in the future be far apart. Here

we predict that the clustering subset of position, direction and change

will create clusters, which will change less through time due to the ex-

plosion information being present. Fewer changes in clustering would

also mean fewer re-initializations after each re-clustering.

Combined Adding Focus distances to the Exploded Position subset adds

extra information in regards to the initial mesh center. It also poten-

tially improves the explosion progress detection regardless of incompat-

ible directions like mirrored directions. Since the extra metric forms

the initial set again, we simply call it a combined subset since all the

metrics are used.

The result of introducing clustering to Textplosion can be observed in

Figure 4.12, where we exploded the gun model through the whole scene,

which triggered K-means clustering with the Exploded Position metric set

to produce four clusters and their label planes. Since K-means requires a

input of desired maximum count of clusters, we decided to set the default

value of this user input to be four after trial & error. Since scenes with more
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than 20 labels quickly fill up the screen or require a much smaller label scale,

making them hard to read, we take is an empiric estimate that to be a vague

maximum of labels present in most cases. By assuming the division into

clusters would result in optimal division with equal label count per cluster,

we determined five labels to be an adequate label count and therefore set the

K-value to four. Naturally the optimal division is just an assumption and

rarely happens, however the selected k-means produces logical divisions of

3D space as observed in Figure 4.12.

4.5.1 Additional Extensions for Exploded Models

While the extension to clustered hedgehog labeling seemed trivial, we have

not yet discussed the exploded view specific extensions for enhancing the

experience, which we implemented to achieve better results.

Transferring Label Information Between Explosions

A starting option for the extension was that we simply start the reinitial-

ization after the explosion had finished. While this did provide us with the

correct results, it also resulted in disturbing the user focus since the topol-

ogy can change too much to keep the previous offsets in regard to the mesh

center still as global extrema. To prevent huge label jumps, we decided to

enable the transfer explosion updated positions to the GPU, and, instead of

reinitialization, started with an update run first.

Sharing Label Information Between Clusters

We decided to separate the labels into clusters to reduce the amount of

needed calculations inside each cluster. This naturally resulted in the clusters

not knowing the label information inside other clusters, which lead to label

overlaps between the clusters. The label overlaps frequency grew with the

amount of parts, labels and explosion progress because they all limited the

available free space. To prevent such overlaps from occurring, we added
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an option that allows sharing of label information between clusters. Using

this option slightly limited the contribution of our approach, but the main

contribution of clustering, that not all labels have to be reinitialized when

irregularities such as anchor line crossings occur, remained.

Negative Extrema Handling

The limited free space produced by exploded views also caused problems in

local extrema search, since it easily generated local areas with non-positive

force field sums. In implementing hedgehog labeling we rarely arrived at a

situation where we had harshly limited space that resulted in negative lo-

cal areas before a placement objective was broken, resultin in reinitialization

before negative areas appeared. Exploded views with label information trans-

fers enabled can however produce low-count clusters with bad initial label

positions that are not detected due to a low amount of labels not not causing

placement objective breachments as line crossings. Non-positive extrema of

such cases were regarded as good positions by the system. In reality, this was

not true because they produce overlaps with some model parts or even la-

bels. To prevent the issue without reinitializing the whole cluster because of

a single poorly positioned label, we added a non-positive extrema check after

positioning each label and run an additional global force sum and extrema

search on only the detected problematic label.
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Figure 4.12: Clustering in Textplosion with the default settings produces

for the given exploded view setup of the gun model shown in top left image

four label clusters and their label planes presented the top right image. The

overview of planes is a side view produced with an alternative camera to

observe how the planes were fitted to the camera field of view based on the

cluster’s center position and the view vectors plane intersection. Textplosion

offers also an option of only presenting one cluster at a time, which results in

the four images bottom images. Since not all parts have labels, which means

we do not cluster them either, we naturally never present parts without labels

in cluster only mode. The distance between label planes can be also observed

in the initial general view of the exploded model, since it causes a depth effect

on labels between clusters, making their 3D localization easier.
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Chapter 5

Evaluation

To prove that our suggested clustered hedgehog labeling improves the user

experience on exploded views of 3D models, we decided to run a study using

the implemented Textplosion system. By enabling and disabling its features,

we were able to produce the implementations of floating labels and normal

hedgehog labeling as the study’s alternative algorithms. For simplicity and

clarity of algorithm comparisons in regards to the study results we shall

introduce acronyms for the three algorithms. Floating labels is shorten to as

FL, hedgehog labeling as HL and clustered hedgehog labeling as CHL.

We gathered data from observing 3D label positioning with clustered

hedgehog labeling and the prepared alternative algorithms based on consis-

tent simulations of a user’s interactions with the system. The gathering of

unbiased comparison data was achieved by inviting a group of volunteers, to

whom the whole thesis concept was fairly new, from outside of our institu-

tions, which also created a population sample that is closer to the general

public than the experts in the field are. Furthermore, we referred to each

algorithm as a method marked with a random letter from the set {A,B,C}
to prevent the participants being influenced by the algorithm names due to

previous task experience or even the implied extension between algorithms.

By using a selection of exploded 3D model from our dataset, see Section

5.1, we divided each task into subtasks of model and method pairs to fur-

75
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ther limit the effect of models on the general results. Following Leykin and

Tuceryan’s conclusion on the need of a contrast between the label text and

the background for good readability [28], we used the most often seen color

set in literature with the labels being written in a black font on a white

background, while the skybox was changed to a gray brown color to give

contrast to the label background as well as to the annotation font for cases

of transparent labels due to anchor point invisibility.

While we could have just gathered the subjective information with topic

specific and standardized questionnaires, we decided to also gather objective

information through the use of eye-tracking hardware and software. From the

measurements gathered through eye-tracking, we constructed several stan-

dard metrics without focusing on any of them due to most standard metrics

having a static nature to them. The static metrics have a hard time contribut-

ing useful information for dynamic stimuli inside interactive applications such

as Textplosion [15]. By producing many metrics, we tried to infer their in-

formation contribution directly from the resulting measurements during the

analysis. All of the observed metrics are described in detail in Appendix E,

while only the ones with statistically significant information contribution are

discussed in this chapter.

We also used the experiment as an opportunity to gather information

on needed Textplosion improvements from interactive tasks, where partic-

ipants controlled Textplosion by themselves. The interactive tasks were a

smaller version of usual user experience tests to keep the experiment tasks

consistent in form. Compared to a typical user experience test, we had a

smaller but an eye-tracking enhanced version, which we used to determine

the difficulty of using the system as well as obtaining any other potentially

informative comments from the participants. While interactive tasks have

an even harder time producing comparable metrics, using visualization of

the eye-tracking data can produce more information when combined with

standardized questionnaires [44].
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5.1 Dataset

During our research of the related work, we were unable to find any stan-

dardized dataset for evaluating label rendering in 3D space, and even less for

rendering on exploded views. Therefore, we built our own dataset by using

the resources located in the open-source 3D model libraries BlendSwap and

GrabCAD. The mentioned open-source 3D model libraries offer a rich collec-

tion of shared 3D models from a variety of topics. While the libraries are a

rich source of 3D models that come in variety of formats ranging from CAD

and mesh models to volumetric and parametric models, while Textplosion

was built to only include load support for OBJ mesh models together with

the material stored in MTL files. Therefore, we also needed to convert them

into mesh models during their processing into exploded view models, which

was done manually due to limitations of the back-end system. Most of the

collected models were CAD models since they already contained a hierarchy

of parts that were easily extracted and stored separately with additive manu-

facturing CAD software such as Autodesk’s Netfabb. The remaining models

were either first converted into CAD model formats and processed with Net-

fabb or loaded into Blender and cut up manually. This way we collected a

variety of fifteen exploded view models, see Table 5.1. Processing them on the

back-end side resulted in ten exploded views, see Table 5.2 and Figure 5.1,

with generated directions and blockers information, while five models had

geometry issues incompatible with the back-end system even after we had

processed all 15 models according to given instructions. For all of the models

we provided label information that was formed by generating a label for each

part based on the geometry file name and later on by manually selecting a

subset of labels and correcting some of them. This procedure produced label

sets in multiple languages, due to the different origins of the models. We

decided to take it as a side benefit, since it enabled us to make a dataset

not favoring language groups. Since labels are used to convey information,

participants of experiments could have used any hidden information inside

labels to their benefit, which in turn implicates research results. The reduc-

https://www.blendswap.com/
https://grabcad.com/
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tion of automatically produced label sets into their subsets was due to the

distraction amount growing with higher label counts, which we determined

to start around the count of 20 in Section 4.5.

5.1.1 Licensing

While open-source 3D model libraries provide shared 3D models, they are

not necessarily allowed to be used in any kind of work or product. It is

important to understand the licensing to prevent future problems regarding

copyrights. Since we decided to provide our dataset as an attachment to

the master thesis to be potentially used in future work of 3rd parties, we

limited ourselves to models that gave enough freedom of use and sharing of

the models. In BlendSwap we selected models licensed under a variation of

the Creative Commons CC BY license, which allows us free use of the models

by also attributing the original authors for their creation. GrabCad, on the

other hand, rarely provides any licensing information per model, however

their agreement policy during registration states that the agreement limits

our use of the models. After getting in touch with the library administrators

in detail we were allowed to use the models, since our intended uses went in

line with the provided limitation details:

”CAD models from the GrabCAD Community free CAD Library are

generally for private use. Some examples of private use are educa-

tional self-directed learning, creating a concept design for internal

use, etc. So of course, you’re welcome to download these models

and make local changes to them, but showcasing these models pub-

licly does require some additional steps.

For non-commercial but public use, like sharing on social media, in-

cluding in a student presentation, or uploading to a free CAD library

like GrabCAD, please make sure to attribute the author and include

a link to the original model on GrabCAD.”

— Matt Firmani, administrator of GrabCAD

https://creativecommons.org/licenses/by/2.0/
https://grabcad.com/software_terms
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Code name Original name Author Source

Brain

Cavernous

Haemangioma-With

Brain & Skull in

Autocad 3D

Harvey Fonseca GrabCAD

Chopper Lego Helicopter Kenny GrabCAD

Digestive GI Tract Magnacad LLC GrabCAD

Dragon
Laser-Cut Dragon

Wooden Toy
trinityscsp GrabCAD

Drone
Surveillance

Hexacopter

Ayoola Adefemi

Olaolu
GrabCAD

Engine
Wankel Rotary

Engine

Jabir Mahmud

Siam
GrabCAD

Eye Human Eye Model Bobby Dyer GrabCAD

F1
Formula 1 Car-

assembled

DHANASEKAR

VINAYAG-

AMOORTHY

GrabCAD

Gpu
MSI GTX 1060

Armor Graphics Card
Rick Lin GrabCAD

Gun Semi-auto weapon Saffet Firat GrabCAD

Kiosko Kiosco Tupay BlendSwap

LegoGuy LEGO GUY SRBrandon BlendSwap

Oscar Oscar Award Statue androgenius23 BlendSwap

Pocketwatch
Pocketwatch (all

inside parts included)
Adrian GrabCAD

Prezz prezz Kerbl et al.[7] TUG

Tractor Tractor Ahmed Diab GrabCAD

Table 5.1: 3D models used during development and evaluation, while also

used as examples inside the thesis. All GrabCAD models are used under

an agreement presented in Subsection 5.1.1, while Kerbl et al.[7] provided

the prezz model as a learning example for the back-end system and allowed

its use for the thesis and dataset. Tupay and androgenius23 on the other

hand shared under the CC-BY license, while SRBrandon shared it under the

CC-BY-SA license. Sources also include hyperlinks to the original files.

https://grabcad.com/library/cavernous-haemangioma-with-brain-skull-in-autocad-3d-1
https://grabcad.com/library/8429-lego-helicopter-and-plane-1
https://grabcad.com/library/gi-tract-dot-ics
https://grabcad.com/library/laser-cut-dragon-wooden-toy-1
https://grabcad.com/library/surveillance-hexacopter-1
https://grabcad.com/library/wankel-rotary-engine-5
https://grabcad.com/library/human-eye-model
https://grabcad.com/library/formula-1-car-assembled-1
https://grabcad.com/library/msi-gtx-1060-armor-graphics-card-1
https://grabcad.com/library/semi-auto-weapon-1
https://www.blendswap.com/blends/view/25086
https://www.blendswap.com/blends/view/7010
https://www.blendswap.com/blends/view/89287
https://grabcad.com/library/pocketwatch-all-inside-parts-included
https://grabcad.com/library/tractor-63
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Figure 5.1: Images of the whole dataset shown in Table 5.1. From left till

right top till bottom we have the models: brain, chopper, digestive,

dragon, drone, engine, f1, gpu, gun, kiosko, legoguy, oscar,

prezz, pocketwatch and tractor.
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Model Label Count Language Part Count Polygons

Chopper 13 English 142 648,892

Digestive 6 English 6 98,658

Dragon 13 Slovene 147 82,921

Eye 10 English 10 12,330

F1 15 Polish 20 43,474

Gpu 7 English 7 36,370

Gun 14 Slovene 45 319,038

PocketWatch 17 Spanish 136 142,188

Prezz 23 English 23 19,866

Tractor 18 English 47 218,672

Table 5.2: Dataset of ten 3D models successfully processed by the back-end

system that we wish to share with the community.

5.2 Visual Comparison

The dataset was first used to observe the behavior of our proposed solu-

tion in comparison to floating label and hedgehog labeling algorithms. Since

Textplosion is an interactive application, naturally the best comparison can

be seen during a live presentation or through recordings, but only outside of

this thesis. An alternative way, which can also be included inside the thesis,

is a visual comparison of multiple images taken during the applications exe-

cution stages. While a lot of information about the behavior during the time

difference between images is lost, we can still notice obvious improvements.

Since we built clustered hedgehog with complex exploded views in mind, we

present the comparisons between algorithms on the two complex chopper

and dragon models, each having around 140 model parts. Naturally we also

show results for simpler models but limit it to the brain model.

To make a feasible comparison between algorithms, we defined three

stages for all of the models: initial, exploded and end stage. The initial
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stage is present to only observe the initial differences between the settings as

well as the changes that happen when the next stage arrives. From the initial

stage, we simply used the explosion animation to prepare similar exploded

views. After exploded stage was reached, we counted the amount of labels,

whose change in screen coordinates was low enough to be considered in same

place or in its near local area of the space, when observed just by human eye.

We called this empiric measurement explosion robustness, since we measured

how robust the algorithms are to explosions. Another empiric measurement

that we wished to achieve, was the algorithm’s flexibility of handling limited

free space, since the exploded views take up most of the available space. Its

retrieval was done after the end stage was reached by comparing label spatial

relationships with their referred part between the exploded and end stage.

We defined the spatial relationship of a label as its relative position seen from

the point of the referred part, where we only considered the direction with a

threshold and not the actual size of the vector. Spatial relationship was also

defined as an empiric description observable with the human eye such as in-

front, behind and other spatial descriptions. By comparing the descriptions

of spatial relationship at exploded and end stage, we arrived at the definition

of flexibility as the count of preserved spatial relationships between stages.

For comparison we prepared Figures 5.2, 5.3 and 5.4, where the individ-

ual stages are presented in rows of a grid, while the columns represent the

algorithms. Since the comparison is best executed by putting the images side

by side, we resized the images to a significant degree. For simpler compar-

ison, let us list all the present labels inside each of the used models before

observing the results and use their list numbers as indicators during result

reporting. Starting with the chopper model, we observe the following En-

glish instruction-like labels: 1. axel x10 black, 2. axel x12 black, 3. axle

link, 4. axle peg 2x grey, 5. block 10x1 technic red, 6. engine black, 7.

exhaust gray, 8. propeller black, 9. seat blue, 10. tail fin red, 11. tyre small

black, 12. upiece 4x2 red and 13. wheel small grey.

In regards to the chopper model, we observe that the floating labels
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Figure 5.2: The grid comparison of label behavior between different al-

gorithms in different stages for the chopper model as a representative of

complex models. Each column belongs to one algorithm, where from left

to right we have floating labels, hedgehog labeling and clustered hedgehog

labeling results. The rows in turn represent the model’s initial, exploded and

end stage.

approach preserved three labels (8, 10, 13) in their local area, while having a

flexibility of only preserving a single label’s spatial relationship, namely for

label 10. On the other hand, hedgehog labeling only preserved label 13 in

its local area, while preserving the spatial relationships of six labels (2, 3, 4,

5, 6, 9). Clustered hedgehog showed much better results for this model by

preserving the local areas of 6 labels (1, 2, 8, 10, 12, 13) after an explosion

as well as showing a flexibility of 9 (1, 3, 4, 5, 6, 9, 10, 11, 13) or 70% of all

labels. We can quickly check if the improvement between hedgehog labeling

and our solution is due to the introduced clustering by observing how the

labels counted by the flexibility are divided between clusters. In case of

the chopper model we received the following three clusters: (8, 10, 11), (1,

4, 9, 13) and (2, 3, 5, 6, 7, 12). Out of the three clusters the second one
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was wholly preserved its label’s spatial relationships, which can point to a

confirmation of clustering preventing sub-layout disruptions. The remaining

clusters also had some spatial relationships preserved, which indicates that

no reinitialization but only an update run of the hedgehog labeling limited

to the cluster was executed.

The dragon model was described with the following Slovene annotations:

1. Desna brada, 2. Desna čeljust, 3. Greben, 4. Jezik, 5. Kremplji, 6.

Leva brada, 7. Leva čeljust, 8. Noga, 9. Oči, 10. Rep, 11. Smrček, 12.

Šapa and 13. Vrat.

Figure 5.3: The grid comparison of label behavior between different al-

gorithms in different stages for the complex dragon model. Each column

belongs to one algorithm, where from left to right we have floating labels,

hedgehog labeling and clustered hedgehog labeling results. The rows in turn

represent the model’s initial, exploded and end stage.

Dragon as an alternative complex model with different explosion direc-

tions presented similar results. Floating labels preserved the local area of

four (2, 7, 12, 13) labels after the explosion and had a flexibility of two (2,
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3) labels. Hedgehog labeling preserved the local area of two (7, 13) labels,

while producing a flexibility of three (5, 6, 10) labels. Clustered hedgehog

had eight labels (2, 3, 5, 6, 7, 8, 10, 12) preserving their position in local

area, while producing lower results in regards to flexibility with only three

labels (1, 3, 7). The same flexibility count as with hedgehog labeling can be

accredited to unequally sized four clusters produced by our solution: (1, 2,

4, 5, 6, 7, 9, 11, 13), (3, 8), (10) and (12). It may be that the small clusters

were in bad positions for a direct transition between stages, while the big

cluster was simply too big to work well in limited space.

The final grid uses the brain model as the representative of simpler mod-

els. The labels are English medical terms: 1. Cereb, 2. Corpus, 3. Frontal,

4. Lesion, 5. Occipit, 6. Pariet, 7. Pitua, 8. Stem and 9. Temp.

Figure 5.4: The grid comparison of label behavior between different algo-

rithms in different stages for brain model, which is of relatively low complex-

ity. Each column belongs to one algorithm, where from left to right we have

floating labels, hedgehog labeling and clustered hedgehog labeling results.

The rows in turn represent the model’s initial, exploded and end stage.
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Inside the brain’s grid we observed that floating labels only preserved a

single label (7) in its local area, while five remained in their spatial relation-

ships (1, 3, 4, 6, 9). Explosion robustness again caused trouble to hedgehog

labeling, which preserved only two labels (4, 7) in their local area, while it

again succeeded in its flexibility with six labels (3, 4, 5, 6, 7, 8). Our solution

survived the explosion situations in the brain with five labels (1, 3, 4, 6, 7),

while producing same numeric results with its flexibility as hedgehog labeling

(2, 3, 4, 5, 7, 9). While the flexibility of our solution can be accredited due to

two out four cluster preserving label spatial relationships: (1, 4, 7, 8), (2, 5),

(6, 9) and (3). However due to the low amount of labels as well as low model

complexity, the performance does not differ to hedgehog labeling’s flexibility

performance.

In general, these three visual comparisons show us that our solution seems

to be solving the explosion based layout problems present in hedgehog label-

ing with a high degree of robustness, while in regards of flexibility it depends

on the model’s own complexity, on the complexity of its exploded view and

the effectiveness of clustering. Regarding the effectiveness of clustering we

mentioned in Sections 3.3 and 4.5 that the resulting metrics and their sets

were a product trial & error and some logical reasoning. Therefore, there

exists a possibility of better metrics and metric sets existing, which would

improve the clustering and with it the flexibility for both simpler models and

complex models.

While the visual comparison already gives some information on the im-

provement, we have to first take a look at the results of the user based study,

which provides more information on the differences between algorithms based

on the experience of multiple participants. By combining the results of the vi-

sual comparison, subjective feedback from questionnaires and objective mea-

surements from eye-tracking, we shall arrive at the end to a final verdict for

our solution.
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5.3 Experiment Design

We defined the experiment to involve two kinds of tasks based on the user

interaction: observer and interactive tasks. In observer tasks ABC and

Track, the test subject was only able to observe a Textplosion interaction

simulation, while in the interactive task Exploratory search the subject

interacted directly with Textplosion via keyboard and mouse controls to finish

the given task. Since the topic was new to most test subjects, we decided

to get users more familiar with the topic by starting with observation tasks

before proceeding to interactive tasks.

During task execution, we measured objective measurements such as time

duration, pupil behavior and eye movement with our eye-tracking code, while

after each task completion, we also gathered the test subject’s subjective

experience with the standard Single Ease Question (SEQ) and NASA Task

Load Index (NASA TLX) questionnaires. Due to strict standards on NASA

TLX, we decided to use its paper version to simplify the whole process, and

therefore also applied the paper version concept to the remaining prepared

questionnaires as well as other paperwork observable in appendix B.

SEQ is a standard single question used in application usability tests. It

is defined as a 7-point rating scale to assess how difficult overall the test

subjects found a task immediately after completing it. Despite its simplicity,

in previous works it performed as well as or even better than more compli-

cated measures of task-difficulty. From observing a wide range of studies it

showed that the average SEQ score is around 5,which to us denoted average

difficulty [45, 44].

While the SEQ measures difficulty on a scale from 1 to 7, NASA TLX on

the other hand consists of six divided difficulty perceptions scales that range

from 0 to 100 points. With a rich history of being used in a variety of fields

and studies for more than three decades, NASA TLX became a de facto

standard test for difficulty and usability. The original NASA TLX would

require us to weight the individual scales based on participant feedback.

Since it would add additional difficulty to our experiment, we decided to
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use a widely recognized variation of it, called RAW TLX. RAW TLX skips

the weighting of scales phase and produces a value with a normal average of

scales, which was shown to be more sensitive than the original NASA TLX

in some studies [46, 47].

Besides the data retrieved from standard questionnaires we also retrieved

some personal data from participants as well as their subjective impressions

of the algorithms with custom questionnaires and open talk interviews. Our

unstandardized questionnaire and the interview were meant for assessing the

subjective preferences that we could have failed to notice if we only conducted

standard tests. While such an addition may only produce observations in the

form of ”I do not like this” or ”this was fun”, to the developers it can indi-

cate an overlooked problem that might have occurred due to them focusing

too much on other development tasks. The difficulty of the initial experi-

ence is also regarded as important information that we gather during the

interview. Pagulayan, Steury, Fulton and Romero [48] noted that the initial

experience of applications is an important factor for motivating users to use

the application.

Due to unknowns in cluster metric sets mentioned in Section 3.3, we first

ran pilot experiments of all tasks on different clustering subsets to determine

the one used for the main experiments. The pilot experiment was conducted

on a much smaller scale on the members of the LGM laboratory, Faculty

of Computer and Information Science at University of Ljubljana, as well as

on a few early outside volunteers. While the main experiment was done

solely in Slovene, the pilot experiment was also conducted in English due

to international participants. Another difference was also the presence of

changes among the participants, since we were fine tuning and testing the

instructions as well as the task progress and code debugging. Combining

both changes in execution and a scale that is useless for statistical hypothesis

testing made the results of the pilot run not worthy of detailed discussing

in this thesis, however the ranking of clustering metric sets did help us to

decide on the metric set used during the main experiment. Naturally, the
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main experiment did not have such abnormalities and followed the same

pattern which was set at the end of the pilot experiment.

5.3.1 Task Order and Randomization

For the usability test and other kinds of psychological tests, we always need

to beware of the learning effect due to the patterns present in the experi-

ments. While total randomization inside and outside of the tasks can solve

this issue, smart randomization had to be implemented to still retrieve useful

data. Since we wished to retrieve subjective impressions about the presented

methods, we needed a way for the test subject to know which method we are

asking them about. Therefore, we did not randomize the order of everything

inside a task. To enable such subjective questions as which method approach

was better, we grouped the subtasks into method groups, where each group

consisted of randomized models and the same method. To prevent the learn-

ing effect between method groups, we also randomized the method group

order. Since we had grouped the subtasks, we also needed a smart way to

randomize the method group order. We decided to use the Latin square de-

sign [49] for method group ordering. The Latin square was also the origin

of the idea to rename the methods by using single letter names from the

set {A,B,C} by the order of the method group. Naturally, the Latin square

method order differed between the test subjects groups as well as between

the tasks in order to prevent any leaks of information from occurring between

the tasks or test subjects. In practice we simply shuffled to the next Latin

square pattern when going to the next experiment group and by shuffling to

the next Latin square pattern for the next task.

5.3.2 Experiment 3D Model Selection

From our dataset of back-end exploded 3D models, see Table 5.2, we lim-

ited ourselves to five models due to experiment time constraints. To prevent

influencing the results by randomly selecting the models during the experi-
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ment execution, we limited all experiments to a preset selection, where we

focused on extending the variety of complexity in the models, the languages

in labels as well as the areas of origin (automotive, medical, games, educa-

tion, ...). The resulting subset of models for the experiment was finalized with

digestive as the demonstration model and eye, f1, tractor, pocketwatch,

gpu as the main experiment models.

5.3.3 Labeling Algorithm Selection

The goal of the experiment was to prove that clustered hedgehog labeling

performs better than normal hedgehog labeling and floating labels. Since

Textplosion was buildtby extending the floating labels into hedgehog labeling

and that further into clustered hedgehog labeling, we just needed to set the

flags correctly to switch between the algorithms, see Table 5.3.3 in Appendix

D for details on flags. However, in Section 3.3 we noted the problem of

the unknown quality of the metrics used inside clustering. Just by limiting

ourselves to the three proposed metric subsets from Section 4.5, we already

arrived at five different possible methods to test during the experiment:

1. floating labels,

2. hedgehog labeling,

3. clustered hedgehog labeling with position metric subset,

4. clustered hedgehog labeling with exploded position metric subset,

5. clustered hedgehog labeling with combined metric subset,

Testing five conditions would have worked against us during the Latin

square randomization and result processing. For the first we would have to

build a 5x5 Latin square matrix, where rows would be the conditions and

columns individual runs or test subject groups to make the learning effect

reduced correctly. Since for a study to be considered reliable, one needs at

least from 15 till 24 participant by a rule of the thumb as seen in studies
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presented in Chapter 2, which in terms of a standard Latin square design

with size of 3x3 [49] would mean 7 participants per experiment group. Going

by that estimation of minimal participants per group, we would suddenly

need at least 35 participants to make it reliable enough. At the same time

it would have required almost twice the time to be spent on each task in

comparison to a version with the standard Latin square. And finally the

most important reason would be the short capacity of the human brain to

keep information about the impression between different method groups that

behave similarly over a longer period of time. While asking participants to

rank three algorithms may already cause hesitation on their side, requesting

to rank five of them would have resulted in unreliable results. All such

conditions would also have to be considered during the statistical processing,

while having little promise of any results.

Therefore, we limited ourselves to three methods as per standard de-

sign [49], where two spots were immediately filled the alternative algorithms,

since we wished to produce a comparison to them. To resolve the issue of

selecting an appropriate metric subset for the third condition of clustered

hedgehog labeling, we took use of a small pilot experiment we ran for finding

faults in the experiment environment as well as in the tasks beforehand. To

determine the best subset, we ran the pilot test using only clustered hedgehog

labeling methods:

A clustered hedgehog labeling with position metric subset,

B clustered hedgehog labeling with exploded position metric subset,

C clustered hedgehog labeling with combined metric subset.

From the comments, questionnaire results and further logical reasoning,

we determined method B as the best subset. While method C was also close

in subjective results, both were much better than method A. Since the pilot

experiment’s sample of experiment runs was too small for statistically mean-

ingful results, the sample and statistical tests run on it could not be used as
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concrete evidence in the thesis. Therefore, their processing was not included

in Section 5.8, even though we used the same procedures. However, using

the subjective results only as pointers to possibilities and adding participant

comments and logical reasoning to it enabled us the selection of a seemingly

safe metric subset for the main experiment. Following the result we reasoned

that the positive effect of the focus distance seemed questionable since explo-

sion directions are defined independently of the whole mesh center position.

While we reasoned that the distance from the focus point could indicate

3D space sectioning as well as indicate the progress of an explosion, we did

no research to use as actual evidence for proving or rejecting the concept.

Combining this uncertainty with little or none improvement in the subjective

measures became the tipping point for us. Therefore, we chose method B for

the main experiment and thus defined the three method groups as:

A floating labels,

B hedgehog labeling,

C clustered hedgehog labeling with exploded position metric subset.

5.3.4 User Input Simulation

Since the observation tasks focused on eye-tracking, we needed to provide a

way of simulating the user interactions that would achieve consistent results

between the task runs. We created a system that reads a predefined scenario

format file to determine the parameters of a simulation of a user using our

application, see Appendix C for scenario file format. The system was further

extended to ensure the consistency of experiment behavior during the eye-

tracking tests with randomization. The randomization of subtasks inside

the method group was achieved using Fisher-Yates shuffle [50] as seen in

Algorithm 3.
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Algorithm 3 The modified Fisher-Yates shuffle skipping demonstration model

Require: model count N and model array M

1: n = N - 1;

2: // prevent demonstration model (index 0) to be shuffled

3: while n > 0 do

4: // select random element in range is [1,n)

5: k = RandomIntFromRange(1, n);

6: // shuffle the elements

7: tmp = M[k];

8: M[k] = M[n];

9: M[k] = tmp;

10: n = n− 1:

11: end while

5.3.5 Eye-tracking

According to several pieces of literature [16, 17, 18] eye-tracking is not of

recent design. It dates back to 1878, when mechanical torture-like devices

were used to observe the eye position changes. The first practical example

of a study using cameras for eye-tracking beyond photographs goes back to

1947, where observation of film recordings was done to follow a pilot’s eye

movement during a flight. The use of computers for eye-tracking was already

producing results in the 1960s, but the actual modern concept of eye-tracking

as we use it today in UX testing was established in the late 1990s [16, 17, 18].

In recent years due to commercial eye-trackers on the market a boom in eye-

tracking happened, which can be observed also in the growing trend of its use

inside visualization and CGI research, as observed by Kurzhals et al. [15].

Using the current trend in our favor, we borrowed the eye-tracking hard-

ware Tobii Pro Eye-tracker 4C, which we attached to the bottom of the

computer screen to record gaze positions on the screen. The recording of

coordinates was achieved by using the Tobii Pro SDK asset for Unity. We

modified its prefabs for tracking screen eye location to also store the ex-

ploded view labels application coordinates, the clustering information, the

timestamps, the experiment run details and other Textplosion information

https://tobiigaming.com/product/tobii-eye-tracker-4c/
http://developer.tobiipro.com/
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besides its initial tracked eye gaze position and pupil behavior, into multi-

ple XML files. The XML files were generated for each separate subtask and

stored inside folders with task unique identifiers, which was simply produced

by concatenating the date and time values like a custom timestamp. Since

we had yet to end our eye-tracking metrics research, we simply stored any

information that seemed useful at the time. This also allowed us to later on

recalculate the values missed during storing due to coding mistakes, saving

us from losing any of the metrics from Appendix E. However, such a safety

measure in the end produced over 67 GB of XML files, which was reduced

to 1 GB during processing. The data processing was achieved using our own

python code together with the open-source projects SciPy and PyGazeAnal-

yser. The first one was used for statistical analysis, while the second one

was used for simple eye-tracking data processing in regards of determining

fixations and saccades as well as for ploting them in the form of heatmaps,

fixation plots, scanpaths and raw data plots.

5.3.6 Experiment Procedure

The general experiment procedure was defined by the following fifteen steps

that the experiment supervisor and test subject needed to follow:

1. Introduce the subject to the topic with the help of the introduction

images attached in Appendix B, and describe the general procedure of

the experiment. Also explain the questionnaires.

2. Let the test subject fill out the agreement paper for collecting data

and audio/video recordings during the experiment. Start recording the

session with the audio recording software for purposes of processing the

results.

3. We ask the test subject to fill out the questionnaire regarding basic per-

sonal information such as age, gender, experience with 3D modeling/

CAD software, see Appendix B.



5.3. EXPERIMENT DESIGN 95

4. The test subject sits down comfortably in front of the computer screen

and starts Tobii’s calibration program before running theTextplosion

experiments to setup the computer screen angle and height according

to their eye position.

5. The supervisor starts the loading of the Textploson experiment for

test subject’s experiment group. While the experiment is loading, the

the test subject needs to read instructions for the current observation

task while also receiving a vocal explanation from the supervisor. The

order of observation task is always the same: the ABC task comes first,

followed by the Track task.

6. Another calibration is run after the experiment finishes loading. This

is repeated before each method group starts. Constant calibration was

added to allow the test subject to move their head while filling out the

questionnaire.

7. After the calibration is done, a start screen appears to notify the test

subject that they can start with the experiment task. The same black

screen with instructions appears between all subtasks to allow the test

subject to relax and recheck the instructions if needed. The task begins

by the subject again pressing the on-screen noted key SPACE.

8. When the test subject finishes a randomly ordered subtask method

group, they will be notified by a gray screen that the method group

was completed and that they should fill out the SEQ and NASA TLX

questionnaires. The gray screen is a fail safe that prevents jumping to

the next method group too fast. The questionnaires can be observed in

Appendix B. Take note to write down the unique identification number

presented on the gray screen.

9. After the filling out is done, the subject proceeds by pressing space to

run the calibration again and to access the next method group. Repeat
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step 8 and 9 until the last method group is finished. The end will be

marked by another gray screen.

10. After the observation task is completed, the test subject needs to write

down the ranks of individual method groups, where they give the high-

est rank to the method group that they found the easiest of the whole

task. In the ranking questionnaire, attached in Appendix B, there is

also a section for writing down the task identification number presented

on the gray screen.

11. If the completed task was task ABC, then load the Track task experi-

ment and return to step 5. Otherwise, load the last Exploratory search

task.

12. We explain to the test subject that now they will be interacting with the

application by using the keyboard and the mouse. As well as providing

the task instructions with the interaction layout included, which can

be observed in Appendix B.

13. We give the test subject enough time to get familiar with the controls

and the task by using the demonstration model. We also explain the

transparency concept of Textplosion, while for the remaining tasks,

the test subject is limited to one minute to finish a subtask. During a

subtask, we write down the vocally given exploratory results.

14. The test subject finishes the last task by reaching to to the gray screen

since in the last task only our method is tested.

15. The test subject fills out the final SEQ and NASA TLX questionnaires

as well as our case specific questionnaire. After filling out everything,

the supervisor leads a short open talk interview based on the written

answers, and also asks for any opinions about the experiment as well

as the solution.
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5.3.7 ABC Task Scenario

In the ABC task, we tested on the intuitiveness of label placement. The

idea was to indicate three labels for to the test subject to remember in three

seconds, and to run a three second long animation of rotations, zooming

and explosions. After the animation finished and there was no change in

the Texplosion view, the test subjects needed to find the labels again during

their allocated ten seconds. When all three labels were found, the test subject

notified the system by pressing the ESC key and moving their eyes from label

to label in order to form a triangle with their gaze. The gaze triangle was

added to have a fail safe besides the ESC key. Altogether, a single subtask

amounted to 18 seconds, which in turn for 18 subtasks in the task results in

5.4 minutes of concentration time for the whole task.

5.3.8 Tracking Task Scenario

On the other hand, the tracking task ignored the behavior of the scene since

it was about focusing on a single label and following it for 14 seconds. The

label intended for following was indicated for 2 seconds in the initial state of

the exploded view, which resulted in 16 seconds per subtask, or in turn for 18

subtask resulting in another 4.8 minutes of test subject concentration time.

During this concentration period, the subject had to find the label again if

they lost it during the simulation proceeding.

5.3.9 Exploratory Search Task Scenario

The only interactive task required the user to get familiar with the controls

in a short period of time, which sadly in turn caused quite some stress for

the test subjects during the actual experiment execution. The task by itself

was a classical usability experiment, where the test subject tried to explore

the models to finish the challenge. The challenge was for the test subject

to find the model part corresponding to a given label text. When the test

subject found the referred part, the supervisor further asked them to name
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any other part that seems to be the neighbor of the found the part. We

defined a neighbor as a part of the model that is by eye discernible to be

in contact with the previously found part or is almost touching it. Since it

was an exploratory task, there where no right or wrong answers, and the

test subject was asked to name all the parts that they were sure about being

neighbors while the experiment supervisor was tasked with writing down the

answers.

While the demonstration had unlimited time to get the test subject famil-

iar with the system, each later subtask was limited with minute designated

time slots, which could be shortened by pressing the ESC key after declaring

all neighbors to be found. With 5 minutes dedicated to the subtask and an

arbitrary time for the demonstration, which was usually less than 5 minutes,

we arrived at a time range of 5 to 10 minutes of concentration time needed

from the test subject.

5.3.10 Experiment Scenario Time Constraints

It was said to be a good practice to limit such user based experiments to 15-

20 minutes due to human task focusing limit. When asking about the clear

focus time required from the test subject for all tasks, we just barely fit in this

time range. However, the whole experiment including the task concentration,

the instruction reading, the time for filling out the questionnaire and so on

resulted in the experiment length ranging from 45 to 60 minutes per test

subject due to the

5.4 Experiment Hypothesis

The experiment was built around the null and alternative hypothesis:

H0 : CHL performs similar to alternative algorithm (5.1)

HA : CHL performance differs from alternative algorithm

(5.2)
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We wished to prove that our solution is better than previous solutions.

When means, distributions or predicted probability differs in small amount

between methods and the resulting p-value from corresponding statistical

test shows a p-value higher than the significance level of α = 0.05, we cannot

reject the H0. Not rejecting H0 goes against our desired outcome, since it

indicates that our solution produces label layouts with similar performance

inside exploded views as previous solutions. In case of the difference being

high enough to produce a p-value below the significance level of α = 0.05 and

therefore rejecting theH0, we are aligned with our wish if the difference shows

improvement, since we proved that the difference is statistically significant

enough to matter. When comparing subjective measurements retrieved from

questionnaires, namely SEQ and RAW TLX, lower values mean a better

result. Therefore, rejecting the H0 due lower mean value of RAW TLX is a

prove in improvement. In case of the objective results from eye-tracking, the

behavior differs between the 35 metrics described in Appendix E.

5.5 Experiment Environment

The experiment was performed inside the LGM laboratory during the August

general holidays, which resulted in a peaceful and well controlled environ-

ment. The stimuli presentation as well as the eye-tracking software were run

on a Windows Pro desktop machine, since the Unity Tobii SDK asset was

only available for Windows. The testing machine was an all-in-one PC with

integrated Intel(R) HD Graphics 4400 family GPU with 1 GB of memory.

The main CPU was a 64-bit 3GHz Intel i3 with 8 GB of RAM memory. The

provided display resolution was 1920x1080 on a 23 inch display with a 60Hz

frame rate. Textplosion was run in Unity Editor due to the runtime loading

limitations preventing a successful build at the time of the experiment. The

cause of the limitations was due to the development version referencing the

resources located outside of Unity project’s asset folder for practicality with
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3D model handling. Via USB we connected the eye tracking hardware Tobii

Eye Tracker 4C and attached it to the bottom of the screen. It has an op-

erating distance of about 50 to 95 centimeters with support for screen sizes

between 20 and 37 inches. It takes measurements with a 90Hz rate and with

the support of infrared illumination, where it achieves tracking of 97% of the

population.

5.6 Participants

In the main experiment we gathered 28 participants, out of which 15 were

male and 13 female. Their characteristics can be seen in detail in Figure

5.5. The age of participants range between 15 and 60 years old, while 90%

or 25 participants were in the age range between 17 and 29 years old. In

regards to their experience with 3D applications that offer HCI with a 3D

world seen via a 2D screen, only five participant or 18% had none before the

experiment, while another five participants only knew such interactions from

3D games. 3D games were counted as valid experience since we were ask-

ing about their familiarity with using a mouse and keyboard for interacting

inside a 3D coordination system. Interestingly, we succeeded in gathering

participants with a relatively high percentage of 43% having experience with

CAD programs, while with more art designated programs like Blender, Maya

or Unity only four participants had experienced them, the experience with

Unity being limited to just one.

5.7 Subjective Results

After combining all of the subjective ranking inputs from questionnaires,

we arrived at the ranking distribution for individual given ranks as seen

in Figure 5.6. Inside the distribution, we see that our clustered solution

receives the biggest amount of 1st ranks in both observation tasks. When

compared to the floating label rank, it shows the biggest perceived difference
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Figure 5.5: The 28 experiment participants’ gender ratio is almost equal

with 90% of them in the age range between 17 and 29. Regarding their expe-

rience with 3D applications, only five have none and another five are limited

to 3D games, while 12 or 43% had already experienced 3D applications for

model modifications with a high count of CAD based experiences.
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Figure 5.6: The count of subjective user ranks per method creates a dis-

tribution of the 1st, 2nd and 3rd ranked algorithms according to task and

when combined.

in performance with a lead of five in the ABC task and a lead of ten in

the Tracking task, giving a task combined rank difference of fifteen. It also

received more 1st ranks, but with a much smaller difference of three for

the ABC task and a single one for the Tracking task, generating a task

combined ranking difference of only four. We already anticipated participants

of marking hedgehog labeling and clustered hedgehog labeling closer together

than floating labels, since clustered hedgehog labeling is by design multiple

hedgehog labeling running in divisions of 3D space, while floating labels have

only the reinitialization run of our solution.

To see the statistical significance of the results, we first slightly modified

the null hypothesis 5.1 and 5.2 to better match our data as:

H0 : The probability of CHL recieving 1st rank is
1

2
(5.3)

HA : The probability of CHL recieving 1st rank is not
1

2
(5.4)

We selected a significance level of α = 0.05 and calculated the ranking

p-values with python’s statistical module SciPy’s binomial tests[49] pair-wise

with clustered hedgehog results. A pair consisted of the success count being

the count of 1st ranks for clustered hedgehog labeling and the failure count
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as the count of 1st rank for the paired algorithm. The resulting p-values of

pairing up with floating labels were 0.3592 for the ABC task and 0.0213 for

the Tracking task, which meant that we could only prove the rejection of H0

for the Tracking case. This meant that when compared to floating labels, our

solution performs better in tracking tasks already on subjective impression,

while intuitiveness of label placement does not improve but remains of similar

subjective impression. Comparing the results with normal hedgehog labeling,

on the other hand, produced p-values of 0.6636 for ABC task and 1.0000

for Tracking task. Therefore we cannot statistically prove that the slight

difference in rank counts as statistically significant.

Sample
Floating

labels

Hedgehog

labeling

Clustered

hedgehog

labeling

ABC SEQ 0.8261 0.3291 0.1805

ABC RAW TLX 0.9872 0.1168 0.6459

Tracking SEQ 0.2306 0.5555 0.3370

Tracking RAW TLX 0.2652 0.1077 0.4054

Table 5.3: Normal test p-values for the SEQ and RAW TLX samples across

the different tasks and methods.

Before determining the differences in the difficulty and workload described

by SEQ and RAWTLX values, we needed to determine the distribution inside

the samples to determine the way to examine them. By performing a normal

test [51] on all by task and method group separate samples, we tried to prove

the null hypothesis H0 for each sample being of normal distribution with a

significance level of α = 0.05. The results observable in Table 5.3 show all

p-values not rejecting the H0 and thus confirming the normal distribution.

Therefore, we could compare the means by t-test and standard deviations

with the wilcoxon test[49].

In Tables 5.4 and 5.5, we present the SEQ and RAW TLX mean values
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Figure 5.7: The participant-perceived most difficult and easiest task col-

lected during the final questionnaire fill-out.

accompanied by standard deviation. The measurements describe the impres-

sion of task difficulty and the required workload that participants subjectively

perceived after finishing the individual tasks. Both the mean values as well

as the perceived impression collected in the final questionnaire, presented in

Figure 5.7, show that the least difficult task was indeed the tracking task, as

one could expect from the task of focusing on a label. On the other hand, all

measurements point towards the Exploratory task as the most difficult one,

closely followed by the ABC task. We found out from the experiment audio

recordings that the main reason for determining the difficulty of the two was

finding all of the labels in case of the ABC task, which aligns with the main

point of the task, while in case of the Exploratory task, the biggest difficulty

was remembering and getting familiar with all the possible interactions and

controls that Textplosion allowed them to use in such a short time, which

was not main point of the task.

Regarding the differences between the method groups in observation tasks,

we noticed the differences being incredibly small. In the case of comparing

our solution with floating labels, we only see a 0.3 SEQ mean difference and

a 0.7 RAW TLX mean difference for the ABC task, while the Tracking task
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SEQ values
Floating

labels

Hedgehog

labeling

Clustered

hedgehog

labeling

ABC µ 3.5714 3.4643 3.9286

ABC σ 1.3997 1.2672 1.5336

Tracking µ 3.4643 2.9286 3.0000

Tracking σ 1.5232 1.1931 1.1339

Exploratory µ x x 4.3929

Exploratory σ x x 1.3185

Table 5.4: SEQ values per algorithm.

RAW TLX values
Floating

labels

Hedgehog

labeling

Clustered

hedgehog

labeling

ABC µ 39.3452 37.6190 40.03

ABC σ 15.2401 17.3358 18.967

Tracking µ 33.4226 24.8214 26.6250

Tracking σ 15.8542 14.0195 13.8681

Exploratory µ x x 47.1131

Exploratory σ x x 17.5530

Table 5.5: RAW TLX values per algorithm.
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had a SEQ difference of 0.5 and the highest TLX difference, which measured

a whole 7 points. Comparing our solution with hedgehog labeling produced

a SEQ difference of 0.5 and a RAW TLX difference of 2.5 for task ABC,

while the Tracking task had the smallest SEQ difference of 0.1 and a RAW

TLX difference of 2. In overview, we see that the SEQ mean difference had

a range of [0.1, 0.5], while the RAW TLX mean difference had the range

[0.7,7]. In terms of scales, we see that both the 100 point RAW TLX scale

and the 7 point SEQ scale produce the highest differences to be at 7%, which

is not high. So even though in the case of normal hedgehog and our solu-

tion we found most of the means to favor normal hedgehog, there was still a

possibility of this only being a result of the sample.

To see if there is any significance in the mean differences, we transform

the original 5.1 null and 5.2 alternative hypothesis into:

H0 : CHL′s µ equals to alternative method′s µ (5.5)

HA : CHL′s µ differs from alternative method′s µ
1

2
(5.6)

The result analysis has been carried out by using a significance level of

α = 0.05 using the wilcoxon test to determine the SEQ p-values and the

t-test for the RAW TLX p-values. All the calculated p-values when pairing

up all methods together with the previous ranking p-values can be observed

in Table 5.6. Inside the table we can observe that most SEQ and RAW TLX

values are far from α = 0.05 and that the only exception, having a p-value of

0.0063, was the result of comparing the TLX RAW mean between floating

labels and our solution for tracking task, where our solution produces on

average 7 points less of workload. Close but still not significant is the same

task’s comparison of the SEQ values, which produces a p-value of 0.0618 just

slightly above our selected α = 0.05. While the second measure is statistically

not significant enough, it still gives support to the previous observation of

our solution producing better results in tracking tasks already on subjective
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p-values
Floating

labels

Hedgehog

labeling

Ranking 1st in ABC 0.3592 0.6636

Ranking 1st in Tracking 0.0213 1.0000

Combined 1st ranking 0.0167 0.6587

SEQ ABC 0.1905 0.0739

SEQ Tracking 0.0618 0.7033

RAW TLX ABC 0.7962 0.2666

RAW TLX Tracking 0.0063 0.3382

Table 5.6: Statistical significance of the results was tested by comparing,

as defined by null hypothesis 5.1, clustered hedgehog labeling results with

results of floating labels and hedgehog labeling separately. To see, if we can

reject the null hypothesis, we selected a significance level of α = 0.05 and

calculated ranking p-values with binomial tests, SEQ p-values with wilcoxon

test and TLX p-values with t-test.

impression level, especially when accompanied with the significant RAWTLX

p-value. On the other hand, the comparison with normal hedgehog labeling

also produced an insignificant but close to significant p-value of 0.0739 for

the ABC task’s SEQ value in favor of original hedgehog labeling by 0.5 point.

While this p-value is not significant enough to denounce our solution to rise

the difficulty by 7% for tasks of finding labels after being repositioned, it

rises a doubt, which we tried to clear with our objective results.

The notion of a small difference between the algorithms is also observed

in the results regarding label stability questions presented in Figure 5.8,

where 61% of participants mark the label layout stability to be either the

same or more influenced by the model than the method. While the leading

opinion with 39% was that methods determined layout stability, it was a

win by a single vote only. Combining it with the result of questioning the

participants about the difference between the label layouts based on method
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Figure 5.8: The top image presents the results regarding the question of

observed label stability and which factor was more important. None of the

participants selected the border options of there being no label stability or

of all labels having a constantly stable layout, while most votes went for

label stability to differ between methods or for all methods and models being

stable most of the time. Not far behind is also the influence of models option.

When asking directly about the difference in the layouts between algorithms,

we observed in the bottom image that the 68% majority of participants mark

the methods to have a similar effect on the layouts.
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groups, where 68% are of opinion that the label positioning layouts behave

the same. There was a close run in opinion that there is no difference and

that a difference exists between methods was observed. All together it goes

in line with previous perceived difficulty and workload results as well as the

fact that algorithms using the same core concept.

Figure 5.9: Results on label transparency questions indicate that 19 or

68% of participants noticed the transparency, meaning the contrast was high

enough, however only 7 participants intuitively knew the meaning it repre-

sented just from observations. In the exploration task only 10 found it useful

while 18 participants decided to ignore it.

Regarding the results in Figure 5.9 about the use of transparent labels,

we found out that the majority or 68% of the test subjects did notice them

during the observation tasks, however, according to audio recordings, most

mistook them as our way of handling label overlaps during label transitions.

Only seven participants, who had some CAD experience from before, guessed

the invisibility due to similar usage in CAD programs. Even after explaining

the usefulness of it, only ten participants used it with the Exploratory search

task, while the others ignored it and none found it distracting. According to

the audio recordings, the most likely reason seems to be the thick congestion

of information presented before starting the last task. Remembering four

explosion interactions, their controls as well as the camera controls and the

task objective was simply too much for the test subjects to remember. This
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goes in line with the previous observations of the last task contending for the

most difficult task.

In general the subjective results show the three methods being at least

equally good on the level of subjective impression. On the other hand there

was not much statistical support for improvement from the normal hedgehog

labeling implementation to our end clustered hedgehog labeling implemen-

tation. Subjective results only show statistically significant improvements in

results, when concerning label jumping during Track task between floating

labels an our approach.

Since overall SEQ estimation given at experiment end resulted in a mean

value of 4.29 with 1.13 standard deviation, which is close in regards the official

SEQ average difficulty positioned around 5, see beginning of Section 5.3, we

confirmed the experiment design to be of average difficulty. With individual

task SEQ values ranging between 2.92 and 4.39 with standard deviations

from 1.13 and 1.53 confirming it again. The average difficulty can be also

observed from the audio recording, where the majority of participants found

the experiment to be fun, interesting and mostly of adequate pace. The pace

comment was surprising, since we shown the experiment lasted for an hour

for the majority of participants in Subsection 5.3.10. By pointing out the

used up time to participants we received a surprised expression, which just

confirmed their immersion into the experiment and its ability to cause the

loss of feeling for time, which goes in line with the lack of negative adjectives

appended to the experiment descriptions. The only reappearing negative

feedbacks were in regards the interaction task being too short to get a good

tryout of the system and the system layout of keyboard and mouse actions.

The action layout difficulty was also described by participants as the reason

for the high difficulty estimation of the interactive task.
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5.8 Objective Results

Since the eye-tracking resulted in over 67GB of XML data, we first decided

to extract only the relevant data into CSV form combined per user and

task for faster processing before starting the metric calculations and their

statistical significance. During processing, we had to keep the official Tobii

SDK documentation in mind. An important statement from inside was that

the coordinates of the gaze in the display position start in the top left corner

of the display while Unity’s texture coordinates start in the bottom left

corner, as seen in figure 5.10.

Figure 5.10: On the left we have an image from Tobii SDK’s official docu-

mentation presenting its active display coordinate system (ADCS) in regards

to the world and to the display area [52]. The right image is an extension of

Figure 4.11 that shows the change in ADSC in regard to our system, where

the orange coordinate system is the plane coordinate system in Unity’s units

starting in the plane center, which was recalculated before into the Unity’s

UV coordinate system in green. Additionally, we appended ADCS in blue,

and we see that only a flip of the V or Y axis is needed in order to switch

between the coordinate systems.

We adjusted the coordinate Equations 4.26 - 4.29 as:

Ugaze = Utexture =
1

2
− V ertextexture.X

Width
(5.7)

Vgaze = 1− Vtexture =
1

2
+
V ertextexture.Z

Height
(5.8)
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Since we wished to confirm the correct projections into the gaze coordi-

nate system, we had to invert the label plane rotation following the Equations

from 4.26 to 4.27 and afterwards used the new Equations 5.7 and 5.8. Accord-

ing to its official documentation, the Euler angle processing is done in Unity

by first performing the rotations around axis Z, then X and lastly around

axis Y. We defined the classical rotation matrices and combined them into a

single matrix:

Rx(ϕ) =

⎡⎢⎢⎣
1 0 0

0 cosϕ −sinϕ
0 sinϕ cosϕ

⎤⎥⎥⎦ (5.9)

Ry(θ) =

⎡⎢⎢⎣
cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

⎤⎥⎥⎦ (5.10)

Rz(ψ) =

⎡⎢⎢⎣
cosψ −sinψ 0

sinψ cosψ 0

0 0 1

⎤⎥⎥⎦ (5.11)

R(ϕ, θ, ψ) = Ry(θ)Rx(ϕ)Rz(ψ) (5.12)

R(ϕ, θ, ψ) =

⎡⎢⎢⎣
cosθcosψ + sinθsinϕsinψ −cosθsinψ + sinθsinϕcosψ sinθcosϕ

cosϕsinψ cosϕcosψ −sinϕ
−sinθcosψ + cosθsinϕsinψ sinθsinψ + cosθsinϕcosψ cosθcosϕ

⎤⎥⎥⎦
(5.13)

Since rotation matrices are orthogonal matrices, which are square matri-

ces Q defined by their property QQT = I, we can easily define the inverse

rotation matrix as:

R−1(ϕ, θ, ψ) = RT (ϕ, θ, ψ) (5.14)

R−1(ϕ, θ, ψ) =

⎡⎢⎢⎣
cosθcosψ + sinθsinϕsinψ cosϕsinψ −sinθcosψ + cosθsinϕsinψ

−cosθsinψ + sinθsinϕcosψ cosϕcosψ sinθsinψ + cosθsinϕcosψ

sinθcosϕ −sinϕ cosθcosϕ

⎤⎥⎥⎦
(5.15)
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After the data preprocessing was finished, we created CSV files separated

by participant and task with rows of 38 or 64 columns depending on the

amount of labels important for each task, which resulted in the reduction

of 67 GB of data to only 1.2 GB. In case of the ABC task we stored the

information of all three selected labels, while for the Tracking task and the

Exploratory search task we only stored the information about the label the

test subject had tracked or the label corresponding to the search term. For

details on the format of the produced CSV files, see Appendix E.

5.8.1 Statistical Metric Comparison

By using the measures mentioned in the papers of related eye-tracking work

mentioned in Chapter 2 we defined 35 metrics that are described in detail in

Appendix E, while in this section we will focus only on those of statistically

significant importance. For simplicity we shall introduce acronyms for the

three algorithms. Floating labels is replaced by the acronym FL, hedgehog

labeling by HL and clustered hedgehog labeling by CHL. We used a normal

testt[51] on individual samples of data combined with the same model and

algorithm as a starting point. All of the p-values results are observable in

Tables E.1, E.2, E.3, E.4, E.5 and E.6. While some combinations have a

p-values that do not reject the normal distribution in the null hypothesis,

the majority of values do reject it. There are even cases where the same

model confirms a normal distribution of metric values with one algorithm

while rejecting it when paired with another algorithm.

The initial idea was to use a one-sided analysis of the variance, bet-

ter known as ANOVA, to compare the metrics between algorithms, however

ANOVA requires a normal distribution across samples due to its own assump-

tions. In such cases it is advised to use non-parametric equivalents, which in

case of ANOVA is the Kruskal-Wallis H-test. Similar to ANOVA, we assume

under the null hypothesis that all gathered samples have a similar distribu-

tion and fall into the same population based on the ratio of the inner and the

between variance difference or, in this case, the H-statistic. While ANOVA
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uses the mean for calculalting the statistic, the Kruskal-Wallis H-test uses

the median [49].

Since we had a large variety of metrics across five different models, we

first conducted a Kruskal-Wallis H-test to determine if the samples can be

combined across models or algorithms without any changes being made to

the distribution. This way we had tested the dependence of the results on

the algorithm and the model. To achieve such a test, we combined all of

the data samples into a single sample set while we prepared another two

sample sets with numerical indicators of models and algorithms, as seen in

Figure 5.11. By observing the p-values in Tables E.8 and E.7 we can see

that all of the metrics are bellow the significance level of α = 0.05 regardless

if we just pair up metrics with just model indicators, algorithm indicators

or both. Such a result indicates that all metrics depend on the model and

the algorithm and therefore cannot be combined across either. In case of

the models this simply meant some extra work, while we confirmed that the

algorithms effect all of the metrics, which could indicate a difference between

algorithm performances.

To observe the differences between the algorithms, we calculated the me-

dian and the standard deviation for each metric sample across the possible

combinations of task, algorithm, model and metric, which produced results

present in Tables E.13, E.14, E.15, E.16, E.17, E.18, E.19, E.20, E.21 and

E.22. For determining the statistical significance of the observable differ-

ences between the algorithms, we did Kruskal-Wallis H-tests for each metric,

where the samples used were simply the metric’s value for the same model

but separated by algorithms. The p-values of metrics that would reject the

null hypothesis of the same population median indicate a difference among

the distributions and therefore potentially indicate a significant difference

produced by change in the algorithms on a given model. The p-values can

be observed in Tables E.9, E.10, E.11 and E.12.

The observed significantly important metric differences between the sam-

ples for each model change a lot between the models and tasks. Comparing



5.8. OBJECTIVE RESULTS 115

Figure 5.11: The concept of testing if the models and algorithms effect

distribution. The indicators for the model and the algorithm were generated

based on the metric in equal position in the selected metric set. E.g. X1

has a correspondingly positioned model 1 and algorithm 1 in other sets. We

could assume that X1 is the fixation count metric for the eye model with

floating labels. If the row samples for the model indicator, the algorithm

indicator and the observed metric belong to the same population, meaning

that their distribution should be similar enough to combine them across

different models or methods and afterwards we could conduct Kruskal-Wallis

H-test on samples combining all models instead of per model.

them all in detail would be long and time consuming. Therefore, we focus

on the metrics that show significant differences in values and with p-values

rejecting the same population hypothesis. The first such metric was the task

completion time (TCT), which was used only in the ABC tasks, since it mea-

sures the time of finding all the three labels again. It was measured from

the pressing of the ESC key and the detection of the triangle forming from

fixation behavior. We used the lower of the two values as the end measure-

ment. It had p-values low enough for rejecting the null hypothesis of similar

populations in the following three models:

f1 had a TCT for CHL that was 1s faster than for FL, but 2s slower than

for HL.

tractor difference in TCT for CHL was increased to 2s faster than for FL

while reducing the lag behind HL to 1s. At the same time, it also

produced a 500 ms smaller standard deviation of 2.8s when compared

to both alternative algorithms.
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pocketwatch produced a situation, in which CHL produced better results

than both of the alternative algorithms. It beat FL by 5s and HLby

200ms.

The TCT results indicate the time needed to get familiar with the label

placement after the simulated user input stops. A smaller amount of time

indicates a layout of labels that is easier to understand. By following this

logic, CHL outperforms FL in all cases while it performs worse in models

with a low number of parts and similar or slightly better in models with large

amounts of meshes when compared to HL. A similar time related metric is

the first fixation time (FFT), which indicates when the first fixation formed.

Lower values indicate a possibly faster detection due to less time used for

searching. FFT also produced low enough p-values only in ABC task, where

we can observe the differences between four models as boxplots in Figure

5.12, which we can read as:

eye produced 200ms faster FFT for CHL than for FL, while 70ms slower

than HL.

f1 created a FFT with CHL smaller than both alternative algorithms with

100ms standard deviation, which is 170-400ms less then in other al-

gorithms. The difference in medians was 2.4s for FL and 100ms for

HL.

tractor produced a result lower for 4s when comparing the medians of CHL

and FL, while it was 50ms higher when compared with HL.

pocketwatch has a similar result of CHL being 4s faster than FL, while

being the same as HL.

A metric having significant differences across both tasks was the average

label gaze distance (ALGD), which was defined as an average of the Euclidean

distances between the label centers and the gaze point in pixels.
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Figure 5.12: From left to right we have boxplots of the FFT metric for

models eye, f1,tractor and pocketwatch. We see that CHL is always

better than FL, while it has similar time values with HL with the difference

only being up to 140ms but mostly around 50 ms. We consider 100ms a

relatively small difference since it is bellow fixation’s minimal duration of

200ms, which was determined by Sharafi et al. [20].

eye in the ABC task it produced 6-7 px longer distance than the alternative

methods for CHL, while in the tracking taks it produced a distance of

10 more than FL and only an insignicant 1 px difference from HL.

f1 was declared by p-value important only for the ABC task, where it pro-

duced 20-40px more distance than the alternative methods.

gpu produced a distance that is 20 px shorter than FL but 80 px longer then

HL in the ABC task for CHL. But in the Tracking task it produced

25-30px less distance than the alternative algorithms.

tractor had a significance by p-values indicated only in the ABC task, where

it produced a 10-30 px increase for CHL when compared to the alter-

native methods.

pocketwach produced a 10 px larger distance for CHL than FL in the ABC

task, while it had 10 px less distance than HL. In regard to the Tracking

task it produced 20 pixels less distance for CHL than both alternative

methods.

The varying behavior of the ALGD in different tasks is logical due to the

difference in the nature of the tasks. In the Tracking task, the test subject
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just had to observe the same label from the task start until its completion,

which would produce smaller distances in case of an algorithm preventing

huge label jumps from occurring too often. Task ABC, on the other hand,

was a static stimuli after stopping the animation, where the test subject had

to find all 3 labels as fast as possible. In this case, the ALGD was created

by averaging the individual label ALGD, which may be the reason for the

strange behavior since the metric was designed for the Tracking task.

By combining the results of the three metrics we see that our proposed

algorithm outperformed the floating label algorithm time-wise in task ABC

across models. When compared with hedgehog labeling, it produced worse or

similar results for less complex models, while improving the performance on

highly complex ones. This indicates an improvement regarding label layout

intuitiveness for complex models, which was one of the goals of this thesis.

The other goal was the reduction of label jumping, which can be detected in

the ALGD metric during tracking. Both metric’s behavior can be observed

the boxplots inside Figure 5.13.

Figure 5.13: The boxplots of seemingly significant differences when com-

paring the task completion time (TCT) and the average label gaze distance

(ALGD) for the pocketwatch model.

Besides the discussed three metrics and those removed from the test due

to being too low in sample size, which was only required to be five samples

per metric-algorithm pair in a task, we also got a pointer for statistically
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significant differences in 27 other metrics: AFD, AFDR, AFDT, AS, ASA,

ASL, ASR, FAS, FAS, FC, FDR, FDR, FR, FSC, FSC, FSD, FSD, FTD,

FTR, FVR, GSD, SC, SDS, SL, SS, STDFD and STDSA. However, most of

these metrics were determined to only have a statistically significant differ-

ences in one or two metric-algorithm pairs, which would limit us to a more

model focused discussion if we went into details in this section. However,

we also had exceptions such as AFDT and FVR, which were present across

multiple models and tasks. The problem of those metrics was that their

differences were relatively low ones of 100ms less dwell time and 3-8% less

fixation rate per label, which in the end mostly corresponds to the difference

of fixation counts (FC), which was higher in CHL than other algorithms by

an amount of 2-4 fixations more. However, the FC metric itself was regarded

as statistically significant only in two cases, even making the AFDT and

FVR results questionable. For those interested in observing the differences

in the disregarded metrics, please see the tables inside Appendix E.

Since we only used CHL inside the interactive task of Exploratory search,

we could not really study the general metrics as in other tasks. Therefore,

we focused on finding indications of how the participant’s progress went in-

side the task. While we could not use the blink metric in previous tasks due

to a low amount of samples, or in other words, almost no blinking present,

we still kept the measurements. By comparing the ranges of average blink

metrics across the models for each task on CHL’s method groups, we could

detect the participant looking away from the screen since the blink count and

durations are measured from invalid gaze measurements. In Table 5.7, we see

that the ABC and the Tracking task had model averages with no blinking

present, which naturally means that no blinks happened for the model in ei-

ther task during a CHL method group run in case of some participants, since

we cannot have negative counts. On the other hand, Exploratory search

almost certainly produced a blink per model, which we actually translate

into moments when the participant moved their gaze to the keyboard. The

maximum ranges may have increased, but not that much compared to Track-
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Metrics BCmin BCmax ABDmin ABDmax STDBDmin STDBDmax

ABC 0 1.42 0ms 187ms 0ms 41ms

Tracking 0 6 0ms 406ms 0ms 137ms

Search 1.42 2.27 141ms 234ms 6ms 48ms

Table 5.7: The blink metric comparison of minimum and maximum values

for CHL averages across models. The changes in the Exploratory search task

indicate a rise of invalid gaze measurements, which also happens when the

subject is looking away from the screen.

ing. But the almost certain look away from the screen to the keyboard and

mouse for confirming the interaction layout confirmed the participant’s ob-

servations that the used keyboard layout was not good, which in term took

their valuable time during the neighborhood search. This proves that initial

experiences with applications are important as mentioned by Pagulayan et

al. [48], even more so during time-limited experiments.

While the keyboard and mouse layout of interactions was far from perfect,

it did not hinder the participants from gathering any results. Since the task

was an open question type where no wrong answers were possible, we can

only check their finish times between the metrics and not their success rate.

While we wished to compare task completion times (TCT), we noticed that

almost all of the participants finished the individual subtask by using up all

of their time either due to the high complexity of the model or due to taking

their time to confirm their decisions from different angles and with the help of

explosions, not to mention the problems of the interaction keyboard layout.

Thus it resulted in the TCT comparison to be useless.

5.8.2 Visual Analytics Observations

A useful way of handling the eye-tracking data is also to use visual analytics

such as heatmaps, where some even plot averages across participants and
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produce informative plots. However, as Kurzhals et al. [15] mentioned, the

dynamic stimuli such as the ones in the Tracking task, where during tracking

there is no stop, result in no information. In our case only the starting point

of the label was recorded as a fixation since it took the participant a while

to notice the first jump of the label. Luckily for us, both the ABC and the

Exploratory tasks had enough static components. Actually, the whole ABC

task became static during the period of 10s meant for searching, which is

also the only section of the data that we compare for the ABC task across

metrics. The Exploratory search task was executed by the participants first

finding the search term and determining a desirable camera pose with whole

model in view including with the searched term model part. This was then

followed with almost no camera interactions and only explosion interactions

on their own intervals, creating an almost static setting to observe.

For the Exploratory search task, we prepared view presentations per

model of where most participants were positioned at least once during their

neighborhood search phase, which can be observed in Figure 5.14, where the

produced heatmaps for a random selection of participants were used. Since

the interactive task gave too much freedom to the test subjects, we decided

to prepare randomly selected plots to indicate the similarity of the results

across models and participants, meaning that the plots were not chosen from

a group of the best ones although it may seem so. Since the representations

do not take into account the individual differences between camera interac-

tions, the labels do not necessarily fall into the same place as is suggested

by the representative image. Therefore, we first plotted the searched term

label’s bounding boxes across time as colored squares according to the di-

mensions of the label at the moment of given position as well as the position

of the anchor point as an X of the same color in the same moment. We then

plotted the actual heatmap on top of the marked representative image. In

all of the heatmap plots, including those not present in Figure 5.14, we can

observe the participants focusing on the search term labels since the searched

term label represented their reference point in space as well as on the model
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parts around it, which is what we expected from an exploratory search. In-

terestingly, there are cases such as the f1 model, where focused on model

parts lie far from the goal, however this co-aligns with the observations that

were written down according to the participant’s vocal answers. In the case

of f1model particularly, many participants at first misinterpreted which part

represents the search term of the model, which was the console hidden inside

of the main body, but from the side it looked as if the label was marking

the main body. This can be easily attributed to the fact that most par-

ticipants ignored the invisibility information coded as label and leader line

transparency due to too much initial information during the learning phase.

Regarding the fixations in the empty space of the representative image, no-

tice that they are not far from the labels and the model, which indicates

that there was potentially a label or even a part positioned there after an

explosion was triggered to observe the inner structure of more complex mod-

els. Therefore, we conclude that our system suited the exploratory task well

while the interaction control layout needs improvements.

We also wished to prepare representative images for the ABC task plots,

however we were too late at noticing that a mistake had occurred in the code

regarding the user input simulation. While all of the same model subtasks

did execute the same sequence of instructions in the allocated time, we did

not take into account the differences caused by the CPU allocating process

times and only the passed time as an indicator of progress instead of the

number of passed instructions. This meant that the instructions were used

during their predefined time slots or key-frames, however the count differed

between participants and even among method groups. In practice this meant

that we had experiments not on identical stimuli as stimuli such as videos,

but only on similar stimuli. This is also most likely the reason for most of

distributions not being Gaussian across even same pair subtasks, during the

metric analysis, which was already taken into account during the analysis by

the use of non-parametrized tests and medians instead of averages in Subsec-

tion 5.8.1. Since we only had limited information available for reconstructing
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the whole scenes per stored record inside the already big original XML, we

did not decide to go into scene reconstruction, which would also likely over-

load the thesis time constraints. Therefore, we did not use a representative

image for the heatmaps but only empty space with the marked label and

anchor point positions instead. With Figures 5.15 and 5.16 we compare the

heatmaps across method groups and Latin square groups on the eye and

pocketwatch models to confirm the previously discovered differences in the

performance of CHL between the complex and the relatively simple models.

Inside the plots, we compare the amount of fixation away from the label AOIs

as well how strong the fixation was, which goes from blue to red according to

the growth of the fixation strength. The plots show situations aligned with

previous observations, since we can observe that CHL behaves similar to HL

in the case of simple models. We can also observe better performance in

regards to FL in general, while with complex objects it also performs better

than HL.
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Figure 5.14: On the left side we have representations of what a participant

may have seen during the Exploratory Search task. The representation was

created based on the observed general participant behavior, where they at

some point arrived at the camera pose presented in the representation, how-

ever depending on the participant’s previous interactions the label layouts

were most likely different. On the right side we can observe the heatmaps

with label bounding box and anchor point indicators for the label containing

the search term of randomly selected participants. While the background im-

age of the heatmap is just a representation with mistrustful label positions,

we can still observe the participant focusing on the search term, its referred

part as well as on the near neighborhood or their labels.
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Figure 5.15: The ABC task’s eye model heatmaps from three selected

participants of different Latin square groups. Each row is one participant’s

result in the following order: floating labels (FL), hedgehog labeling (HL) and

clustered hedgehog labeling (CHL). The rows are arranged in LAtin square

groups according to the A, B, C order. Group A started with FL and finished

with CHL, group B started with HL and finished with FL, while group C

started with CHL and finished with HL. Notice the similarity between CHL

and HL results when compared to FL.
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Figure 5.16: The ABC task’s pocketwatch model heatmaps from three

selected participants of different Latin square groups. Each row is one par-

ticipant’s result in the following order: floating labels (FL), hedgehog labeling

(HL) and clustered hedgehog labeling (CHL). The rows are arranged in LAtin

square groups according to the A, B, C order. Group A started with FL and

finished with CHL, group B started with HL and finished with FL, while

group C started with CHL and finished with HL. Notice the amount of con-

centrations around the label bounding boxes in CHL, which also produced

heatmaps with less general area fixations.
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Conclusion

The thesis proposed, implemented and evaluated the implementation of the

clustered version of the existing state of the art 3D label placement algorithm

Hedgehog labeling, proposed by Tatzgern et al. [8]. We extended his concept

from targeting only static and non-deforming objects to also include dynamic

and deformable objects, where we chose 3D exploded views as representative

of both deformable and dynamic 3D models.

We used the calculation system provided by Kerbl et al. [7] as a back-

end system for the automated production of 3D exploded view models from

arbitrary CAD models, where labels can also easily be produced from the

part names from inside the CAD model. The proposed clustered hedgehog

labeling algorithm was implemented as Textplosion together with the sup-

port added for the back-end system support provided. The development

of Textplosion resulted in an innovative real-time interactive 3D model pre-

sentation application. The application allows interactive annotated presenta-

tions of the outer and the inner structures of complex arbitrary CAD models,

which is yet to be seen in commercial application in regards of automatiza-

tion level. The level automatization is only limited with manual labour of

selecting a reasonable subset of Textplosion generated labels or modifying

them and also by the preparation of arbitrary 3D models to be accepted

as input of the back-end system, which from our perspective is a black box
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due to separate development and security issues. While the number of HCI

was limited to two interactions for controlling the camera pose and four for

the explosion simulation, we have also shown results in unlimited varieties of

exploded views by stacking the interactions on top of one another.

The difference in using our proposed solution or the alternative floating

labels or hedgehog labeling was already noticed in the visual comparison of

the results. It was visible enough to be even noticeable in a visual comparison

of the static images while it is even more apparent in live action or in the

recordings. To scientifically prove that our solution works better we also

went further and prepared and executed a new kind of study for the area of

3D labeling algorithms, where user based studies enhanced with eye-tracking

are a novelty. This made us pioneer the area based on practices from other

areas.

In general, the subjective results of the experiments showed that the re-

sults of clustered hedgehog labeling are at least as equally good as the results

of original hedgehog labeling and better than floating labels. On the other

hand, there was not much statistical support for pointing out the improve-

ments from the normal hedgehog labeling. While no statistical support was

found, we cannot just deem there being no improvement observable to the

user on a subjective level since the results could have also turned out like

this due to a poor clustering metric set selection, the wrong K-means size

limitation or even by the user interaction simulation being too fast, which

was noted in the audio recordings. Many of the participants felt that the

system performed better during the interactive task since they could control

the speed of each interaction, while during observation tasks the speed was

automated according to the average focus of between 15 and 20 minutes.

During the interactive task it was noted that even the participants of our

experiments were fazed by the amount of possible interactions produced by

stacking only four basic explosion interactions. They even reported a lack of

time to try everything out to a satisfying degree.

The objective eye-tracking results further confirm that clustered hedgehog
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produces results of similar quality as hedgehog in less complex models in

regards to search tasks depending on the intuitiveness of the produced label

layout. However, it shows its real potential in models of higher complexity

due to the amount of exploded parts, where it outperforms the hedgehog

labeling. The objective results also confirm the significant improvement in

the Tracking task when compared to the floating labels algorithm. It goes

further by showing a similar amount of improvement in comparison to the

hedgehog labeling algorithm, which could not be proven in subjective results.

With a visual analysis of the plotted heatmaps, we confirmed the results

of the statistical analysis of objective metrics while we also looked at the

interactive task, which served as a usability test in its true meaning for our

implementation. While we confirmed the application to be well suited for

exploratory tasks on 3D exploded views, we also confirmed within its metric

ranges that the initial experience during the learning phase was strained due

to too much information being introduced in too little time.

Combining all of the study results together shows that our proposed al-

gorithm produced label layouts outperforming all of the floating label’s pro-

duced ones time-wise in the ABC task regardless of model selection, while

when compared with hedgehog labeling the layouts produced similar times

for less complex models and shorter times for highly complex ones. This

indicates an improvement regarding label layout intuitiveness for complex

models, which was one of the goals of the thesis. The other goal was the

reduction of label jumping, which was also detected by the ALGD metric

during inside the Tracking task results. Sadly, we did not have the time to

define or use a previously proposed dynamic stimuli visual analytics method,

such as the space-time cube proposed by Kurzhals and Weiskopf [32], to fur-

ther confirm the reduction of label jumping by using visual analytics. Visual

analytics can be a resourceful way of analyzing the eye-tracking data gathered

from interactive applications, as we have shown in the case of the heatmaps

of the semi static Exploratory search task. It was also effective in deter-

mining the possible origin of the non-normal distribution of the observation
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task results across metrics. However, further research and carefully prepared

studies are needed to find ways of analyzing the fully dynamic stimuli in an

efficient and simple way.

While our study showed some positive indications of improvement of our

proposed algorithm, it was also full of learning experiences, which could be

useful for future studies on Textplosion as well as for other researchers. An

obviously good practice for the future would be to separate the observation

and interaction usability tasks either among participants or by a longer pause

between the task changes or even as separate studies, since it requires some

effort to switch from observing to interacting. Our study actually barely fit

the allowed time range for focus time limitations of 15 to 20 minutes, not to

mention that the whole procedure for a single participant took a whole hour.

By adding the poorly designed interaction and input device mapping to

the tight time constraints, we observed that the participants were at a loss in

the start. Inside the invalid gaze measurements, we confirmed a rise of par-

ticipants looking away from the display in order to reconfirm the keyboard

keys outside the demonstration task, as well as forgetting the meaning of the

transparent labels, which delayed their progress. Since we were developing

the implementation on the set keyboard layout for a long time, we got too

used to it to notice the hidden problems that effected participants as new

users. Therefore, another good lesson for future studies is to construct pilot

tests with the initial application experience in mind even if it requires ad-

ditional steps and pilot participants. By including it inside the experiment

design requirements, it can potentially remove unexpected difficulties, which

appear due to poor thought processing, an example of this being our key

and mouse click mapping of the interactions. This bad mapping of the keys

and mouse was also one of the few negative remarks made during the open

interviews.

We also learned that another important part of the preparations for the

interactive application stimuli is being sure of the consistency of stimuli be-

tween the participants. This is a problem we can only solve by ourselves
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and not inside the pilot tests. Since only we know which stimuli need to be

identical, naturally if we do not notice the mistake, the pilot participants will

also fail to notice it. In our case, it was a problem caused due to relying on

the time passage instead of the CPU instruction count, which fairly said is a

natural mistake for novices in building studies on a level of interacted appli-

cations measured by eye-tracking. Our proposed solution for future studies

is to either measure both the instruction count and the elapsed time or to

simply prepare recordings of the stimuli and present those. While the first

option requires more input at the beginning, it also offers a way to store all

the gathered data already in sync as shown by us reconstructing some of

the faulty information from the huge amount of data we stored as our fail-

safe. Recordings, on the other hand, are simple to prepare and can easily be

restarted in case of failure, however the post-processing requires additional

work with synchronizing the data as well not providing a fail safe option for

faulty stored information.

Our final contribution inthe thesis is the creation of an exploded 3D model

dataset, which we plan to share with the community to potentially become

the starting block for an actual standardized dataset since none yet exists.

While it was designed with exploded views and similar dynamic and model-

deforming 3D model presentation techniques, it can also serve as a test bed

for the comparison of 3D labeling algorithms for static models or exploded

view interaction research.
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Appendix A

Textplosion Input Formats

Section 4.2 mentions that indirect access was given to produce back-end

OpenInvertor meta-data files for describing generated exploded views via the

system provided by Kerbl et al. [7]. Therefore, Textplosion’s internal data

hierarchy described in Subsection 4.2.1 was modeled after these meta-data

files. In order to achieve greater flexibility, we also developed our own JSON

format for keeping exploded view information. Both of these meta-data file

formats are described in this appendix.

A.1 Backend Provided Input Files

A.1.1 Assembly File Type (.ass)

Specifies how model parts can be loaded and which specification files belong

to them. It represents the starting point of meta-data loading. The first 6

lines represent header information in the following order:

1. Shebang indicating the file: Assembly file

2. File type tells format of geometry data: iv, obj, ...

3. Unique part count, which tells the number of unique geometry loads

133
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4. Unknown count - the information was not disclosed, but was also not

critical for us.

5. Count of movable parts without blockers

6. Movable & blocking part count tells the number of parts blocked in

their movement.

Following the header we have the content in a 3 line pattern, where third

line pattern is repeated based on the count of first:

1. Specification file count + part name: 1: press1 default

2. Path to geometry file: iv, obj, ...

3. Copies count + path to main specification file:

.1 ../testcases/prezz/filespecs/press1 default 0.spec

The filename for the main specification file does not only point towards

the main specification file type (.spec), but also to its derivatives (.dspec, ×
.fspec, .xspec, .xspec a), which all share the filename excluding the extension.

A.1.2 Specification File Type (.spec)

The main file that includes details regarding the loading geometry is the

specification file type. It defines an integer ID of the part in the system and

its transformation matrix. It has 17 values per part copy, in which the first

value of the first line is the Part ID, and the remaining 16 values form a 4x4

Transformation Matrix in rows:

17

-1 0 6.98297e-015 34.9389

0 1 0 103.53

-6.98297e-015 0 -1 -8.15629

0 0 0 1
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While a single geometry may have multiple copies, not all are part of the

same movement/specification group. Only the copies inside the same speci-

fication file belong to the same group. Therefore, a geometry can actually be

used by multiple specification groups as observed in the assembly file type,

where we actually retrieved the amount of specification files per geometry.

A.1.3 Direction Specification File Type (.dspec)

This derivative file type specifies the actual movement directions for the

movement/specification group of geometry copies. It also specifies the block-

ing and non-blocking copies in the given direction. The directions can be

either single-directional or cascading ones. File types of .xspec and .xspec a

are its binary version. The actual structure of the type is:

1. Unknown is a number or ID: 0

2. Single-directional direction count: 6

3. D Line specifies the 3D vector of singular direction:

D: 0.000000 0.530150 -0.847904

4. The blocking boolean series is a series of 0s and 1s, and specifies which

copy potentially blocks the current part in the previous line direction.

The 1s in the string mean a potential collision with the part, whose id

corresponds to the string index: 00100101100000000000000

5. Cascading direction count: 23

6. Line X specifies the intial pair 3D vector of singular direction:

X: -1.000000 0.000000 -0.000000 - -0.000000 -0.530150 0.847904

7. The last cascading direction vector: -1.000000 0.000000 -0.000000

8. Blocking boolean series: 00100101100000000000000

9. Empty line between copy specifications.
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Line pattern 3-4 repeats itself for the count defined in line pattern 2,

while line pattern 6-8 repeats itself for the count defined in line pattern 5.

A.1.4 Connection File Type (.csv)

It tells us which of the parts are touching each other in a form of a 0/1

matrix, where row and columns correspond to the received copy ids.

A.1.5 Label Specification File Type (.lspec)

This added format links label information to the exploded view model infor-

mation. It was self-defined following existing format patterns:

1. Shebang indicating the file: # Beta label format file

2. Label count: 13

3. Copy id: 2

4. Label offset: 0.000000 0.000000 0.000000

5. Label text:

This is a label text example

A.2 JSON Input Files

Since we will work with multiple JSON files, we have defined a JSON con-

tainer structure for read function re-usability. Each of the different JSON

formats is meant to be placed inside the data array for each copy. It counts

towards the same amount as in the count attribute, which works as a check

for corrupted files.
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1 { // f i l e d e s c r i p t i o n

2 ” id ” : ” id /name o f l a b e l f i l e ” ,

3 // f o r double check ing the user input

4 ” count” : 0 ,

5 // array o f l a b e l or other JSON ob j e c t s

6 ”data” : [ . . . ]

7 }

A.2.1 Model JSON Format

This format is a JSON Object that describes geometry, which correspond

to the back-end’s lines in assembly and specifications files. The part id of

the model JSON is used as an ID when grouping model parts, labels and

movement.

1 { // ob j e c t name in Unity and movement group id

2 ” pa r t i d ” : ”model part id ” ,

3 // path s t a r t s in same f o l d e r as JSON f i l e

4 ” source ” : ”path to OBJ f i l e ” ,

5 // model p o s i t i o n

6 ” po s i t i o n ” : { ”x ” : 0 , ”y ” : 0 , ”z ” : 0 }
7 // the Euler ang le r o t a t i on

8 ” r o t a t i on ” : { ”x ” : 0 , ”y ” : 0 , ”z ” : 0 }
9 }

A.2.2 Explosion JSON Format

A JSON Object describing a singular direction but without blockers defined.

Since labels and parts of same group should move in same direction, the

part id is also used as the id/description of the movement JSON. The only



138 APPENDIX A. TEXTPLOSION INPUT FORMATS

additional information needed is the actual movement described by its direc-

tion.

1 { // the id o f model/movement group

2 ” pa r t i d ” : ”model part id ” ,

3 // d i r e c t i o n components

4 ” d i r e c t i o n ” : { ”x ” : 0 , ”y ” : 1 , ”z ” : 0 }
5 }

A.2.3 Label JSON Format

This format is a JSON Object that describes labels with part id, initial offset

and the actual label text.

1 {
2 // the id o f model/movement group

3 ” pa r t i d ” : ”model part id ” ,

4 // i n i t i a l r e l a t i v e o f f s e t from model c en te r

5 ” po s i t i o n ” : { ”x ” : 0 , ”y ” : 0 , ”z ” : 0 }
6 // the d i sp l ayed text in the l a b e l

7 ” text ” : ”Label s t r i n g o f t ex t ”

8 }



Appendix B

Experiment Paperwork

For evaluating our solution with the user based study, we had to prepare

several documents. Since the experiments where run in both the Slovene and

English speaking environments, both versions were prepared. We present

the produced documents with short descriptions and afterwards with actual

documents following the same order as the descriptions.

Topic Introduction

The topic introduction used images for an easier explanation of the area

of our topic and experiment goals. Due to unclarity of true sources of the

images, we only present this document with a description.

As an icebreaker, we started the experiment by presenting a 2D exam-

ple of labeling the human body. This is something that most people should

have already seen in the course of their compulsory education. Using this

example, we also explained Schmalstieg and Hollerer’s six label placement

objectives [3] that we wish to fulfill automatically and how many are broken

in the given example. As an example of a real-time application with good

results, hedgehog labeling is presented in an AR application. We also ex-

plained that it was developed at the Graz University of Technology, which

also developed an exploded view generator as shown in the following image.

Using the exploded view images, we describe the benefits of using explosions
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as a way to present 3D models. Presenting the benefits of both produced

systems, we continued to explain the natural thought of combining them,

as seen in the last pair of images. By showing only a simple integration

of both concepts in the images, we presented its issues and challenges for

improvement that became a topic of a whole master thesis.

Data Collection Agreement

Since user based studies require us to collect personal information, collec-

tion of which is considered a breach of privacy, we also prepared agreement

forms for collecting personal information and opinions as well as for record-

ing video and audio sessions. All participants were required to fill out and

sign the form or otherwise be removed from the study. By signing the forms,

the participants also agreed to transferring their rights of ownership on all

collected data.

Study Specific Questionnaires

The following document combines multiple questionnaires on the same page

to reduce the amount of overall paperwork, which would also effect the test

subject’s performance. The first part is a short personal data collection

questionnaire that also asks about prior experience with 2D screen and 3D

world HCI, in which we even considered 3D games as experience. The middle

questionnaire was used after an individual task was finished to set ranks as

how the test subject observed different methods. The final questionnaire

was used after all tasks had been completed. It provides extra feedback

information regarding the system we built.

SEQ & NASA TLX Questionnaire

After each method group of subtasks inside of a task finishes, the test subject

is asked to fill out SEQ & NASA TLX questionnaires, which measure the

perceived difficulty of the current task run. To reduce the paper amount
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and stress due to it, both questionnaires are united on the same page. Both

questionnaires are well established in regards of retrieving user experience

from the perceived difficulty. While SEQ asks only about general difficulty

on a scale from 1 to 7 and always needs to be answered first, NASA TLX on

the other hand consists of divided difficulty perceptions into 6 different scales

from 0 to 100 points [45, 47]. Due to the six well defined scales in NASA

TLX defined for English, we used a standardized Slovene version, which was

selected from a variety of translations to match the results to the English

equivalent.

Task Instructions

We also present the instructions for each task prepared for the test subject

to read besides hearing our vocal explanation of the task. It was a way for

them to reconfirm the explained instructions or application controls.



Evaluation of Algorithms for Label Placement inside 3D Exploded Views

Personal data and experiment video/audio data collection agreement

By signing this agreement I agree to have my eyes recorded by an eye-tracking device for the whole
duration of the evaluation of algorithms for label placement inside 3D exploded views. With my 
signature I also agree to have my voice recorded during the evaluation for purposes of better post 
analysis of the gathered data. At the same time the signature is also used as an agreement to collect 
my personal data, opinions and computer measurements taken by the experiment programs.

Finally the signature also transfers all the rights of ownership of any collected data during the 
evaluation to both the Institute of Computer Graphics and Vision from the Graz University of 
Technology and the Laboratory for Computer Graphics and Multimedia from the University of 
Ljubljana Faculty of Computer and Information Science.

Full name: _________________________ Place & date: ___________________________

Signature: _______________________________

Evalvacija algoritmov za postavitev oznak v razstavljenih 3D modelih

Soglasje o zajemu osebnih podatkov in video/audio vsebine testiranja

Spodaj podpisani soglašam s tem, da se celotna evalvacija algoritmov za postavitev oznak  v 
razstavljenih 3D modelih snema z napravo za sledenje vida.  Soglašam tudi z zajemom zvoka tekom
raziskave za namene izboljšave kasnejše analize podatkov, kakor tudi s pisno predanimi osebnimi 
podatki in mnenji ter z meritvami zajetimi s strani računalniškega eksperimentalnega programa.

S podpisom soglašam tudi s tem, da so posnetki, meritve in zapisi nastali tekom raziskave last 
Inštituta za računalniško grafiko in vid, Tehnične univerze Gradec in Laboratorija za računalniško 
grafiko in multimedije, Fakultete za računalništvo in informatiko, Univerze v Ljubljani.

Ime in priimek: _________________________ Kraj, datum: ____________________________

Podpis: _______________________________
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B.1 Data Collection Agreement



Initial Personal Data Collection

Age:  _________________________ Gender:  _________________________

Experience with 3D graphics applications (Blender, CAD, Maya, MeshLab, … ) :

Midway Ranking Questionnaire

Task  ABC Tracking Exploratory Search

Identification 
Number

Method Success
Rank

1. 2. 3. 1. 2. 3.

Final Questionnaire

(Circle your chosen answers, a multiple answer choice needs also an importance rank)

Overall, how difficult or easy did you find this experiment (all tasks together)?

1 2 3 4 5 6 7

Very Easy                                       Very Difficult

The most difficult task was ABC Tracking Exploratory Search

The easiest task was ABC Tracking Exploratory Search

The label layouts were stable (when it changed, I knew intuitively, where a label was):

Always for each method With some models With some methods

Most of the time Never, it was always randomly positioned

How different were the label layouts between methods inside a task (for same model)?

Very different        Maybe 1 method differed Similar No difference

Did you understand the meaning of label transparency? Yes  No Didn’t notice

Did label transparency help or distract you in your tasks?

 Was helpful    Was distracting Caused no difference / I ignored it
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B.2 Study Specific Questionnaires



Začetni zajem osebnih podatkov

Starost:  _________________________ Spol:  _________________________

Dosedanje izkušnje z aplikacijami za 3D grafiko (Blender, CAD, Maya, MeshLab, … ) :

Vmesni vprašalnik za po zaključku posamezne naloge

Naloga  ABC Sledenje Raziskovanje

Identifikator

Rank uspešnosti
metod

1. 2. 3. 1. 2. 3.

Zaključni vprašalnik

(Zgolj obkroži ponujene vrednosti, po vprašalniku sledi pogovor)

Zahtevnost celotnega eksperimenta (vseh nalog)

1 2 3 4 5 6 7

Zelo lahko                                       Zelo težko

Najbolj zahtevna naloga je bila ABC Sledenje Raziskovanje

Najbolj enostavna metoda je bila ABC Sledenje Raziskovanje

So bile razporeditve oznak stabilne (so se spreminjale, vendar sem vedel, kaj je kje):

Vselej vsako metodo Pri posameznih modelih Pri določenih metodah

Večino časa Ne, vselej naključna postavitev

So se razporeditve oznak razlikovale med metodami znotraj posamezne naloge?

Zelo različne        Morda ima 1 metoda drugačno     Bile podobne Ni bilo razlike

Ste razumeli prosojnost oznak? Razumel Nisem razumel Nisem opazil

Je prosojnost pomagala ali škodila?   Pomagala     Škodila   Ni razlike / sem ignoriral



Fill out the identification number and the questions!

ABC Task Method A
Identification number: ______________________

Overall, how difficult or easy did you find this task?

1 2 3 4 5 6 7

Very Easy                                       Very Difficult

Mental 

Demand
How mentally demanding was the task?

Very Low                                       Very High

Physical 

Demand
How physically demanding was the pace of the task?

Very Low                                       Very High

 Temporal 

Demand
How hurried or rushed was the pace of the task?

Very Low                                       Very High

Performance
How successful were you in accomplishing what you

were asked to do?

Perfect        Failure

Effort 
How hard did you have to work to accomplish your

level of performance?

Very Low          Very High 

Frustration
How insecure, discouraged, irritated, stressed and

annoyed were you

Very Low          Very High 
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B.3 SEQ & NASA TLX Questionnaire



Izpolni identifikator in lestvice po danem vrstnem redu!

Naloga ABC Metoda A
Identifikator: ______________________

Splošna zahtevnost

1 2 3 4 5 6 7

Zelo lahko                                       Zelo težko

Mentalna 

zahtevnost
Kako mentalno zahtevna je bila naloga?

Zelo nizko                                       Zelo visoko

Fizična 

zahtevnost
Kako fizično zahtevna je bila naloga?

Zelo nizko                                       Zelo visoko

 Časovna 

zahtevnost
Kako zahteven (hiter oz. nagel) je bil tempo naloge ?

Zelo nizko                                       Zelo visoko

Izvedba
Kako uspešni ste bili pri doseganju tega, kar je naloga

od vas zahtevala?

Odličen        Neuspešen

Trud 
Kako zelo ste se mogli potruditi, da ste dosegli vaš

nivo uspešnosti reševanja naloge?

Zelo malo          Zelo veliko 

Frustracija
Kako negotovi, nemotivirani, razdraženi, pod stresom

in razburjeni ste bili?      

Zelo malo          Zelo veliko 



ABC Task Steps

1. In the ABC Task, we test on the intuitiveness of label placement.

2. Prepare your left hand finger on the ESC key, which will need pressing.

3. When you press SPACE to start the the subtask, three green colored labels will 

glow for 3 seconds.

4. During those 3 seconds, remember the text of all three labels.

5. After the glowing stops, an animation with camera rotation, zooming and explosion 

interactions is run for 5 seconds.

6. After the animation, the program will wait 10 seconds for you to find the three 

labels again.

7. When you find all three labels, press ESC and start circling with your eyes 

between them to form a triangle. Continue doing this until the black screen 

appears, but you can release the ESC key.
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B.4 Task Instructions



Naloga ABC

1. V nalogi ABC preizkušamo intuitivnost porazdelitve oznak.

2. Pripravi prst leve roke na tipko ESC, ki jo boš moral pritisniti v nadaljevanju.

3. Ko ob začetku pritisneš tipko PRESLEDEK / SPACE za začetek podnaloge, bodo 

na prikazanem 3D modelu 3 sekunde svetile tri oznake in njim pripadni kosi.

4. Zapomni si besedilo oznak v dodeljenih 3 sekundah.

5. Ko kosi in oznake prenehajo svetiti, se prične 5 sekund animacije, kjer se bo 

pogled vrtel, približal, oddaljil in sam 3D model bo šel narazen oz. eksplodiral.

6. Po 5 sekundah animacije se bo model ustavil na mestu in na voljo imaš 10 sekund,

da najdeš zapomnjene oznake.

7. Ko najdeš vse 3 oznake, pritisni tipko ESC in prični z očmi med njimi skakati, 

da tvoriš trikotnik, kot na prikazani sliki. Počni to, dokler ne poteče 10 sekund.



Tracking Task Steps

1. This task focuses on label jumping inside the scene.

2. You only need to press SPACE to start a subtask, but otherwise only use your eyes.

3. A glowing green label will blink for 2 seconds.

4. Find it and focus on it and its corresponding model part pair, which also glows.

5. After the glowing stops, another 14 seconds animation will be run. During this 

animation, focus on the label and do not lose it. If you do lose it, find it.

6. Focus on the label unitl the next instruction screen appears



Naloga Sledenje

1. Ta naloga preučuje skakanje oznak po prostoru.

2. V tej nalogi potrebuješ uporabiti zgolj svoje oči po začetnem pritisku PRESLEDKA.

3. Na začetku naloge bo ena izmed oznak zeleno utripala 2 sekundi.

4. Najdi utripajočo oznako in kateri kos modela prikazuje.

5. Do konca naloge z očmi sledi oznaki in jo poskusi ne izgubiti.

6. Po prenehanju utripanja se bo pričela nova animacija vrtenja in eksplozij, ki bo 

trajala 14 sekund.

7. Če med animacijo izgubiš oznako, jo le poišči znova in nadaljuj sledenje.

8. Naloga in sledenje se konča ko se pojavi črn oz. siv zaslon navodil.



Exploratory Search Task Steps

1. In this task, you will interact with the system and not only observe it.

2. We wish to get feedback about the system.

3. For that to happen, we need to introduce you the interactions you can access via 

mouse and keyboard. First, remember all controls and explosion interactions.

◦ Camera/View movement controls:

▪ Zoom in: LEFT SHIFT key

▪ Zoom out: RIGHT SHIFT key

▪ Moving/rotating the camera in 4 directions:    AWSD or ARROW keys

• the keys correspond to the direction the camera moves

• the scene appears to move in opposite direction than the pressed key.

▪ Part selection – to make it glow green: MOUSE hover

• hovering over either label or its paired model part will make both glow.

• any explosion interaction on either will be applied to both.

◦ Explosion interactions:

▪ Explosion Animation: Keys 1 and 2 – 1 for forward, 2 for reverse

• It explodes all parts while holding the key down.

• When released, it stays in set positions.

• Reverse explosion moves parts until they reach their initial positions.

▪ Drag & Drop Explosion: Mouse  Click, Hold, Drag and Release

• It takes the drag size of the mouse but uses an internal direction to apply 

the size and move it there.

• Until mouse release, it keeps dragging.

▪ Offset Explosion: Mouse Click + SPACE bar

• Each part has a predefined step size for its set explosion direction.

• It moves the part and label for one step only or returns it to its initial state.

▪ Riffling Explosion: Mouse Hover + CTRL key

• The hovered part gets slightly moved while its predefined blockers get 

moved for a much bigger step, which makes us see the internal structure.

◦ Experiment jump to next task is ESC key.



4. You will see a label text present in the scene on the instructions page.

5. You have one minute to find its paired model part and explore its 

neighborhood. A part is a neighbor if it seems touching or almost touching 

our part.

6. The supervisor will write down the found parts for you.

◦ Not all parts have labels due to screen constraints.

◦ Describe them as best as you can.

◦ You can even say: It is the part between the part with label A and the part with 

label B.

7. When you are sure about your answer or the time is up, press ESC to continue to 

the next model.

8. There is only one method group here, so each model will be visited only once.

9. Use the Demo model to get familiar with the controls and the task. There is not time

limit set for the demo.

Kopito’s neighborhood:

◦ Magazin,

◦ Spring,

◦ The wall touching Kopito, Magazin and spring.



Naloga Raziskuj

1. V tej nalogi boš sistem lahko tudi upravljal, ne samo opazoval.

2. Želimo pridobiti kakšen komentar o sistemu po končani nalogi.

3. Da lahko z nalogo pričnemo, si moraš najprej zapomniti načine upravljanja 3D 

Modela. Pred nadaljevanjem si zapomni vse tipke in načine eksplozij!

◦ Upravljanje kamere/pogleda:

▪ Zoom in / Približaj: LEVA SHIFT tipka

▪ Zoom out / Oddalji: DESNA SHIFT tipka

▪ Premikanje/vrtenje kamere v 4 smeri:    AWSD ali SMERNE tipke

• pritisk tipke premakne kamero v podano smer, gor premakne gor kamero.

• ker se pogled premika s kamero, se zdi, da se model premika v obratno 

smer, torej da bo pritisk gor navidezno zavrtel model dol.

▪ Izbira kosa modela – zasveti zeleno: postavi MIŠKO na element.

• ko postaviš miško na kos ali oznako, se bosta obarvala/izbrala oba.

• premik/eksplozija kosa bo tudi premaknil oznako.

◦ Razstavljanje modela / Eksplozije:

▪ Eksplozijska animacija: Tipki 1 in 2 – 1 eksplodira, 2 pa povrne nazaj

• Eksplozija se nadaljuje dokler pritiskaš tipko.

• Povratna/vzratna/rikverc eksplozija se premika do osnovne začetne lege.

▪ Povleci In Spusti eksplozija: z MIŠKO povleči izbrani kos

• Kolikor povlečeš, za toliko se bo premaknil kos, vendar v vnaprej 

definirano smer, ne nujno v smeri vlečenja.

• Dokler ne spustiš pritiska na miški, lahko vlečeš prej izbrani element.

▪ Eksplozijski korak: hkrati pritisni MIŠKO in PRESLEDEK/SPACE tipko

• Vsak kos ima definiran osnovni korak v eksploziji.

• S to metodo premaknemo izbrani kos za točno en korak oz. če je kos že 

v odmaknjeni legi, ga povrnemo v začetno lego.

▪ Listanje or. Riffling: drži CTRL tipko in izberi element

• Vsak kos ima definirane ovire v svoji smeri eksplozije, v katere lahko trči.

• Listanje uporabi te definicije, da premakne izbrani kos malce iz začetne 

lege, hkrati pa še odmakne vse njegove ovire za veliko večji korak.

• Tako vidimo kakšni so odnosi med deli ter notranjo zgradbo modela.



4. V tej nalogi poleg osnovnih navodil prejmeš tudi besedilo izbrane oznake.

5. Tvoja naloga je najti oznako z danim besedilom in njej pripadajoči kos modela.

6. Uporabi prej opisana upravljanja/interakcije, da najdeš sosede iskanega kosa.

◦ Sosed je kos, za katerega se zdi, da se (skoraj) dotika iskanega kosa.

7. Da ne bo predolgo trajalo, imaš minuto časa in ni nepravilnih odgovorov!

8. Jaz bom zapisoval vse kose, ki jih označiš za sosede

◦ Pazi, nimajo vsi kosi oznake, ker ni prostora na zaslonu.

◦ Za kose brez oznak uporabi domišljijo in poskusi jih opisati.

◦ Lahko jih tudi opišeš kot: KOS, KI JE SOSED KOSU A IN KOSU B

9. Ko si zadovoljen z odgovori oziroma je minunta potekla, pritisni ESC tipko za 

nadaljevanje.

10.V tej nalogi je zgolj en sklop, tako boš vsak model raziskoval zgolj enkrat.

11. Demonstracijski model nima časovne omejitve. Uporabi ga za seznanitev s tipkami.

Primer soseščine kosa Kopito:

◦ Magazin,

◦ Vzmet,

◦ Stranica na kopitu in ob magazinu in vzmeti.



Appendix C

Scenario File Format

Scenario files are files that define a simulation of user inputs needed for con-

sistent simulation during experiments. For clarity, we name the files with

a .scenario extension. The first line should always be a simulation dura-

tion time-frame, which defines the duration in seconds such as also other

notations:

time−frame 60

All instruction lines are additive, which means that any time overlap will

be combined. E.g. overlapping up and right will cause a rotation toward the

top right corner for the second of overlap. On the other hand, contradictory

values will negate each other’s effect. E.g. overlapping up and down will

produce nothing.

We also included glowing and blinking instructions for triggering part

glowing to indicate a part to the user:

glow 18 0 5

b l ink 18 7 10

The camera instructions can be either zoom or rotations, of which the
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latter are just arrow-key left-right or up-down options for simulating consis-

tent rotation around the model as a user would. Both types start with the

instruction type, followed by the start and end times that form an inclusive

interval[start, end]:

up 0 5

down 7 10

r i gh t 0 5

l e f t 10 15

zoom−in 6 12

zoom−out 50 60

For explosion interactions, we define keywords with prefixes explode and

reverse and suffixes all, offset, drag and riffling. Note that riffling only

has an effect limited by time, therefore no reverse version exists. Reverse

time is defined to start closing riffling for the same duration it was being

opened.

// s t a r t exp l o s i on animation f o r durat ion [ 3 s , 12 s ]

explode−a l l 3 12

reve r s e−a l l 15 20

// o f f s e t c l i c k f o r part 18 on 22/25 s

explode−o f f s e t 18 22

reve r s e−o f f s e t 18 25

// drag & drop exp l o s i on takes as parameters :

// part id , magnitude , s t a r t and end time .

explode−drag 18 50 40 50

reve r s e−drag 18 50 50 55

// parameters are : part id , s t a r t and r ev e r s e time

explode−r i f f l i n g 18 30 35



Appendix D

Experiment Parameters

Textplosion allows a variety of changeable input parameters that can dras-

tically effect the performance of the algorithm. For reproduction purposes,

we recorded the used default values and boolean flags in the experiments.

Values used during the experiment:

Texture resolution 128x128

Label transition duration 300f

Rotation constant 20.0f

Zoom speed 20.0f

Anchor point invisibility 0.66f

Unfreeze angle 25f

Unfreeze zoom 0.25f

Label margin 0.5f

Local search padding 7

Anchor attraction 1.5f

Surrounding repulsion 0.8f
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Contour repulsion 0.3f

View border repulsion 1.0f

Label repulsion 2.0f

Anchor line repulsion 1.0f

Contour influence 1

View border influence 5

Anchor line influence 1.1f

K-means cluster count 4

Flags 1 2 3 4 5

Initializeonly X - - - -

Reoderclusterlabels - X X X X

Freezecheck - X X X X

Anchorlinerepulsion - - X X X

Sharedlabelrepulsion - - X X X

Transferlabelrepulsion - - X X X

Clustering - - X X X

Position - - X X X

Explosiondirection - - - X X

Positionchange - - - X X

Focuspointdistance - - - - X

Table D.1: The difference of option support between prepared user expe-

rience label placement methods. An X stands for the flag to be set to use

the option inside the method, while - is for ignoring the option. The method

numbering corresponds to the method numbering in Subsection 5.3.3



Appendix E

Metric evaluation

Since we collected several tens of GB of data due to storing everything we

could think of as a fail safe, we first needed to filter the data, which we

did by creating CSV files per participant and task with rows containing

only information important for our metric calculations. By setting the limit

to 38 or 64 columns per row depending on amount of labels important for

each task, we reduced the amount of data to just over a single GB of data.

The difference in column count is due to ABC task storing information on

three selected labels, while the remaining tasks only store information for

the tracked or search term label. Note also that all coordinate values were

recalculated into Tobii’s active display coordinate system(ADCS) following

the equations 5.7 and 5.8. The row structure of the CSV was designed as

followed:

1. Participant ID stores the row number of participants inside the sub-

jective results CSV,

2. Task type can be either: ABC, TRACKING, EXPLORATORYSEARCH,

3. Task ID is the experiment identification number,

4. Subtask ID equals the suffix of the corresponding XML file name,

5. Method is the subtask’s method,

159
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6. Method letter corresponds to the method name presented to the test

subject,

7. Model is the codename of 3D model used in subtask,

8. Model order tells the order in task’s shuffle of 5 models in range [1,5],

9. Unique part count holds a count of unique OBJ files,

10. Part count represents the count of all model parts, unique or copied

prefabs,

11. Label count tells the amount of labels,

12. Timestamp identifies measurements inside the XML file and is gen-

erated as a long value of microseconds since 1990,

13. Subtask time represent the time since subtask start and is simply a

difference of current and first retrieved timestamp,

14. Gaze validity determines if row represent valid eye gaze information,

which is needed for the row to be useful,

15. Gaze U average is the average between left and right eye’s gaze U

coordinate on display screen in ADCS,

16. Gaze V average is the V version of Gaze U Average,

17. Left pupil validity determines if left pupil diameter is valid,

18. Left pupil diameter recorded left eye pupil diameter,

19. Right pupil validity determines if right pupil diameter is valid,

20. Right pupil diameter recorded right eye pupil diameter,

21. Scenario key-frame determines the progress stage of an experiment

scenario,
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22. Scenario ∆t represents subtask time in seconds,

23. Manual time notification determines if the test subject already re-

ported the time with ESC key,

24. Cluster number can be either 1 for single cluster mode or K-mean’s

K value, which was in our case 4,

25. Empty cluster count tells if any of the clusters holds no part and

label pair.

Label subrow follows after the 25th column and repeats itself for each

label the test subjected had to keep track of. It was defined to contain 13

values in the following order:

1. Part ID corresponds to the id connecting mesh and label,

2. LU = label center’s U coordinate,

3. LV = label center’s V coordinate,

4. Gaze distance is the euclidean distance between gaze and label center,

5. StartU = label’s bounding box start U coordinate,

6. StartV = label’s bounding box start V coordinate,

7. EndU = label’s bounding box end U coordinate,

8. EndV = label’s bounding box end V coordinate,

9. APU = label anchorpoint’s U coordinate,

10. APV = label anchorpoint’s V coordinate,

11. Label center visibility marks if whole label is visible in view area,

12. Anchor point visibility informs if any pixel is visible to the system,
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13. Annotation visibility tells if label, anchor point and leader line are

visible to the system.

After data reduction was finished, we could finally focus on producing

actual metrics from the data. Since we were unsure, which metrics would

work with our interactive and dynamic system, we started the analysis by

aggregating all possible metrics mentioned in eye-tracking literature from

Chapter 2 and calculated the values for the following 35 unique metrics:

1. [ABD] - Average Blink Duration,

2. [AFD] - Average Fixation Duration,

3. [AFDR] - AOI Fixation Duration Ratio is the ratio between time

duration on AOI label and whole time duration between AOIs,

4. [AFDT] - AOI Fixation Dwell Time is the time of fixations spent

on individual AOI labels.

5. [ALGD] - Average Label Gaze Distance is the Euclidean distance

between gaze coordiantes and projected label centers,

6. [AS] - AOI Attention Switch is the fixation switch count to other

AOI’s count rate over all AOIs duration time,

7. [ASA] - Average Saccade Angle is the angle by which a saccade

leaves a fixation to enter another,

8. [AS] - Average Saccade Duration,

9. [ASL] - Average Saccade Length,

10. [ASR] - AOI Sample Rate is the number of gaze samples gathered

onto the AOI label divided by the total duration time,

11. [BC] - Blink Count is the count of longer durations of invalid gaze

data,
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12. [BR] - Blink Rate is the blink count divided by the finish time,

13. [F2SR] - Fixation to Saccade Ratio,

14. [FAS] - Fixation Attention Switch is the AS alternative over whole

task duration,

15. [FC] - Fixation Count,

16. [FDR] - Fixation Duration Ratio is the ratio of AOI label’s fixation

duration sum over AOG’s fixation duration time,

17. [FDS] - Fixation Duration Sum,

18. [FFT] - First Fixation Time is the overall first fixation without

regard to location,

19. [FR] - AOI Fixation Rate is the fixation count inside the AOI label

divided by FC,

20. [FSC] - Fixation AOI Switch Count is the count of all jumps

between AOIs inside a translation matrix,

21. [FSD] - Fixation Spatial Density is the density of fixation visits to

a 10x10 equally spaced grid dividing the view,

22. [FTD] - Fixation Transition Density is the density of the AOI

translation matrix,

23. [FTR] - Fixation Time Rate is the ratio between FDS and TCT,

24. [FVR] - AOI Fixation Visit Rate is the percentage of fixations

belonging to the AOI,

25. [GSD] - Grid Sample Density is the raw gaze sample version of

FSD,

26. [SC] - Saccade Count,
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27. [SDS] - Saccade Duration Sum,

28. [SL] - Scanpath Length,

29. [SS] - Scan Speed is the SL divided by TCT,

30. [STDBD] - Standard Deviation of Blink Duration,

31. [STDFD] - Standard Deviation of Fixation Duration,

32. [STDPD] - Standard Deviation of Pupil Diameter,

33. [STDSA] - Standard Deviation of Saccade Angle,

34. [STDSD] - Standard Deviation of Saccade Duration.

35. [TCT] - Task Completion Time is either the end time allocated

to each task or in case of ABC task the minimum between a manually

reported time by pressing the ESC key and the time detected from

detecting triangle forming with AOI translation matrix,

We calculated all of the 35 metrics due to uncertainties of our interactive

application generating dynamic stimuli. In truth ABC task could have been

mostly considered a task with observed static stimuli, since we researched

the data collected after the animation stops to observe his search behavior.

We say mostly, since we are uncertain if the metrics were not effected due

the dynamic stimuli from the animation part occurring just before metric

calculations start. For tracking task we were certain of its dynamic compo-

nent, therefore we even researched gaze sample related metrics besides the

standard fixation ones. We thought the interactive task would also follow

the dynamic stimuli route, however after observing participants getting fa-

miliar with the system at a slow pace, we noticed it had actually a strong

static component due to the relatively long intervals between interactions,

which we used in our favor to draw fixation heatmaps instead of the initially

planned grid-sample related metrics. We preferred fixations to gaze samples

due to their higher probability of being initiated by the observer, while gaze
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samples as individual point may even be parts of saccades just passing by

or even just a false positive by the eye-tracker in worst case. We say higher

probability instead of certainty, since literature still questions, how much are

fixations initiated by the observer instead of subconscious actions [16].

The analysis began with normal test’s on individual samples, which pro-

duced p-values noted in Tables E.1, E.2, E.3, E.4, E.5 and E.6. After normal

test failure we decided to use the Kruskal-Wallis H-test to determine if sam-

ples can be combined across models as shown in Figure 5.11. The resulting

p-values in Tables E.8 and E.7 confirmed samples being of different popula-

tions and we had to analyze metrics by individual models between metrics,

where Kruskal-Wallis H-test was used to determine any significant difference

between method on individual metrics. The metrics and model pairs with

potential significant difference between methods have bold p-values in Ta-

bles E.13, E.14, E.15, E.16, E.17, E.18, E.19, E.20, E.21 and E.22 and bold

metrics inside the individual model’s overview of medians and standard de-

viations in Tables E.9, E.10, E.11 and E.12. Note that not all the metrics

are written in the tables due to some metrics being of no use for the task,

such as metrics focusing on jumps between AOI’s would have not potential

in Tracking task due to only 1 AOI label present. Another reason for metrics

missing is the absence of enough data in the samples for the statistical tests

to give reasonable results. Such an example were the blinking metrics due to

absence of blinking in case of most models as seen in Table 5.7.
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Metric FLeye HLeye CHLeye FLf1 HLf1 CHLf1

AFD 0.104 0.001 7.4E-09 0.581 2.1E-07 0.723

AFDR 4.6E-41 1.6E-15 1.6E-15 2.5E-10 2.5E-10 3.4E-05

AFDT 0.183 0.293 0.070 0.042 0.006 0.153

ALGD 1.6E-13 3.0E-12 1.2E-05 1.5E-07 3.1E-05 0.818

AS 1.5E-04 2.6E-07 9.7E-09 0.237 7.7E-05 1.9E-04

ASA 7.4E-05 4.1E-13 3.5E-08 0.086 0.330 0.104

ASD 1.4E-06 0.058 2.9E-12 2.2E-05 7.0E-10 5.1E-04

ASL 0.044 0.006 5.4E-08 6.6E-08 1.3E-11 4.6E-05

ASR 0.001 0.109 0.162 0.146 8.6E-11 3.6E-12

F2SR 0.151 0.047 2.2E-06 3.7E-04 5.0E-07 5.8E-05

FAS 6.6E-06 0.002 0.007 0.668 0.117 0.005

FC 0.102 0.204 0.110 0.092 0.208 5.7E-04

FDR 0.175 0.810 0.530 0.501 0.097 2.1E-09

FDS 0.031 0.020 0.023 0.066 0.113 6.8E-07

FFT 5.1E-09 0.006 8.1E-15 4.4E-07 4.3E-04 0.216

FR 4.6E-41 1.6E-15 1.6E-15 2.5E-10 2.5E-10 3.4E-05

FSC 3.4E-04 0.020 0.543 0.392 0.070 0.016

FSD 0.352 0.029 0.560 0.612 0.282 0.339

FTD 0.050 0.633 0.843 0.910 0.055 0.164

FTR 0.171 0.230 0.149 0.940 0.409 1.9E-04

FVR 0.177 0.536 0.375 0.814 0.015 1.1E-09

GSD 0.139 0.001 0.288 0.003 0.024 0.560

SC 2.3E-06 0.014 6.4E-04 0.373 0.067 0.385

SDS 0.002 0.004 0.006 0.140 0.032 2.1E-14

SL 1.2E-12 2.7E-05 5.2E-06 0.003 6.2E-04 0.421

SS 6.6E-14 5.9E-07 4.6E-07 6.6E-04 1.3E-04 0.200

STDFD 0.023 4.3E-08 9.2E-07 0.300 0.877 0.126

STDPD 0.005 0.028 0.002 0.108 0.038 5.1E-04

STDSA 0.005 0.007 0.357 0.218 0.005 0.256

STDSD 0.008 0.001 0.061 2.3E-06 3.4E-10 5.8E-06

TCT 0.001 0.003 0.119 0.928 0.111 0.205

Table E.1: Normal distribution test results for ABC task per algorithm

for eye and f1 models. Presented are the p-values, which are in bold when

normal distribution is not rejected by the significance level of α = 0.05
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Metric FLgpu HLgpu CHLgpu FLtractor HLtractor CHLtractor

AFD 0.002 3.2E-07 1.0E-06 0.850 0.228 0.342

AFDR 4.6E-41 4.6E-41 2.5E-10 2.5E-10 1.6E-15 9.8E-04

AFDT 0.106 0.647 0.002 0.481 0.008 0.214

ALGD 4.0E-07 0.003 0.019 9.9E-08 0.208 0.598

AS 0.167 0.004 0.327 0.527 5.9E-04 2.0E-04

ASA 0.108 0.340 0.136 0.354 6.5E-09 0.038

ASD 4.9E-05 3.8E-06 1.2E-07 1.8E-07 8.8E-08 3.5E-05

ASL 8.9E-07 3.0E-05 9.3E-05 0.011 4.6E-11 0.013

ASR 0.106 0.002 4.7E-12 0.478 4.2E-11 2.3E-09

F2SR 1.6E-05 2.2E-07 0.045 2.4E-09 6.9E-05 4.4E-04

FAS 0.520 0.017 0.402 0.742 0.037 0.009

FC 0.030 0.123 0.003 0.017 2.4E-04 2.5E-09

FDR 0.085 0.086 4.8E-04 0.291 2.3E-07 5.7E-05

FDS 2.1E-05 0.022 0.002 0.020 7.9E-04 4.0E-09

FFT 4.0E-13 4.0E-07 6.8E-05 1.0E-04 0.190 7.3E-12

FR 4.6E-41 4.6E-41 2.5E-10 2.5E-10 1.6E-15 9.8E-04

FSC 0.623 0.012 0.465 0.579 0.500 0.044

FSD 0.878 0.153 0.459 0.700 0.059 0.391

FTD 0.078 0.224 0.344 0.573 0.147 0.008

FTR 0.097 0.282 0.039 0.013 0.032 0.009

FVR 0.187 0.258 5.4E-06 0.017 6.3E-08 2.0E-04

GSD 0.751 0.472 0.272 0.103 0.169 0.009

SC 0.061 0.501 0.810 0.551 0.075 0.934

SDS 4.0E-04 3.9E-04 1.2E-07 0.024 3.2E-06 0.661

SL 0.069 0.006 0.681 5.4E-06 0.725 0.252

SS 2.6E-04 4.5E-04 0.475 6.7E-08 0.444 0.009

STDFD 1.2E-05 5.1E-12 7.5E-11 0.019 0.341 0.399

STDPD 0.005 0.818 0.018 6.5E-04 4.0E-04 0.245

STDSA 0.324 0.108 0.993 0.322 0.997 0.042

STDSD 0.002 0.028 2.4E-04 1.0E-05 5.2E-13 4.8E-06

TCT 0.178 0.030 0.105 0.690 0.092 0.157

Table E.2: Normal distribution test results for ABC task per algorithm for

gpu and tractor models. Presented are the p-values, which are in bold when

normal distribution is not rejected by the significance level of α = 0.05
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Metric FLpocketwatch HLpocketwatch CHLpocketwatch

AFD 2.9E-07 0.878 1.1E-04

AFDR 4.6E-41 4.6E-41 4.6E-41

AFDT 0.484 0.368 8.2E-04

ALGD 0.020 3.5E-04 0.086

AS 2.6E-05 0.145 0.010

ASA 0.012 3.1E-09 0.208

ASD 2.9E-14 0.002 1.2E-08

ASL 0.001 0.499 0.008

ASR 0.002 0.059 4.7E-10

F2SR 1.1E-07 5.4E-06 8.6E-05

FAS 0.172 0.174 1.2E-04

FC 0.150 0.973 0.085

FDR 0.010 0.046 0.016

FDS 0.113 0.058 0.065

FFT 0.240 1.5E-07 6.5E-06

FR 4.6E-41 4.6E-41 4.6E-41

FSC 0.214 0.252 0.002

FSD 0.788 0.217 0.603

FTD 0.143 0.057 0.976

FTR 0.685 0.010 0.311

FVR 0.002 0.278 0.001

GSD 0.245 1.2E-07 0.116

SC 0.495 0.358 0.248

SDS 0.130 0.035 0.014

SL 0.314 0.004 0.748

SS 0.261 0.478 0.505

STDFD 2.0E-10 0.757 0.003

STDPD 0.015 0.126 0.111

STDSA 0.290 2.9E-08 0.018

STDSD 1.0E-11 7.9E-04 1.3E-06

TCT 0.654 0.574 0.468

Table E.3: Normal distribution test results for ABC task per algorithm

for pocketwatch model. Presented are the p-values, which are in bold when

normal distribution is not rejected by the significance level of α = 0.05
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Metric FLeye HLeye CHLeye FLf1 HLf1 CHLf1

AFD 0.503 0.540 0.151 0.008 9.8E-04 1.4E-08

AFDT 0.289 0.250 0.273 2.7E-04 0.085 0.135

ALGD 0.381 0.057 1.4E-14 8.7E-05 0.026 0.037

AS 0.670 0.841 0.829 0.874 0.374 0.877

ASA 1.0E-10 3.6E-07 0.612 0.376 1.1E-07 0.403

ASD 9.3E-13 9.1E-09 1.7E-13 0.026 1.4E-05 2.6E-04

ASL 1.6E-12 1.8E-11 8.6E-07 2.5E-07 8.9E-08 2.3E-05

ASR 0.051 0.008 0.106 7.1E-08 5.0E-06 0.013

F2SR 0.015 6.0E-08 6.7E-05 0.008 1.2E-05 0.001

FC 0.003 0.195 0.030 0.008 0.019 0.243

FDR 0.058 0.042 0.194 0.657 0.230 0.637

FDS 3.1E-04 1.4E-09 1.6E-04 0.004 9.3E-05 8.7E-04

FFT 4.6E-04 2.2E-13 2.1E-09 2.8E-05 5.8E-07 2.6E-13

FSD 0.141 0.064 0.096 0.003 0.036 0.575

FTD 0.582 0.582 0.582 0.582 0.582 0.582

FTR 3.5E-04 0.084 0.029 0.007 0.010 1.3E-05

FVR 6.7E-05 3.6E-06 0.118 0.036 0.086 0.055

GSD 0.212 0.258 0.105 0.003 0.202 0.363

SC 0.079 0.102 0.042 0.213 0.167 0.100

SDS 0.002 5.3E-15 1.5E-07 2.3E-06 5.5E-09 1.6E-04

SL 7.1E-07 0.008 8.2E-14 2.3E-05 0.050 0.002

SS 5.0E-04 0.074 2.4E-12 0.058 0.051 0.028

STDFD 0.121 0.119 0.017 0.236 0.252 0.211

STDPD 0.651 0.268 0.025 0.320 0.542 0.518

STDSA 0.019 0.013 0.168 0.117 0.036 0.036

STDSD 8.1E-11 7.3E-11 0.524 0.091 1.7E-06 3.3E-07

Table E.4: Normal distribution test results for Tracking task per algorithm

for eye and f1 models. Presented are the p-values, which are in bold when

normal distribution is not rejected by the significance level of α = 0.05
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Metric FLgpu HLgpu CHLgpu FLtractor HLtractor CHLtractor

AFD 0.991 0.440 5.0E-04 6.4E-05 1.1E-07 1.3E-04

AFDT 0.944 0.105 0.004 0.356 0.210 0.560

ALGD 0.005 7.3E-14 5.4E-06 0.320 4.1E-14 0.299

AS 0.503 0.050 0.731 0.316 0.402 0.721

ASA 0.058 5.5E-10 0.001 6.7E-05 0.260 0.299

ASD 0.005 0.013 0.002 1.1E-09 0.043 2.2E-09

ASL 0.011 2.3E-10 0.003 0.009 0.027 0.009

ASR 2.9E-05 0.001 0.057 0.068 9.4E-05 4.9E-08

F2SR 0.005 5.0E-08 1.2E-04 0.294 8.9E-05 2.3E-04

FC 0.030 7.5E-04 0.014 0.110 1.1E-05 0.004

FDR 0.451 0.059 0.142 0.478 0.808 0.263

FDS 0.126 0.054 0.001 9.5E-04 4.8E-08 2.1E-06

FFT 1.3E-04 1.2E-10 1.7E-13 3.5E-06 2.8E-04 4.4E-15

FSD 0.287 0.002 3.5E-04 0.056 0.004 0.368

FTD 0.582 0.582 0.582 0.582 0.582 0.582

FTR 4.1E-07 0.175 0.619 0.003 0.070 0.120

FVR 0.674 0.201 0.270 0.151 0.109 0.027

GSD 0.653 1.8E-04 0.008 0.014 0.208 0.360

SC 3.7E-04 5.5E-04 0.084 0.028 0.241 0.156

SDS 0.098 0.033 0.004 4.4E-09 1.7E-11 0.004

SL 0.002 1.4E-07 1.0E-10 0.182 0.020 3.1E-04

SS 9.9E-06 0.024 3.6E-12 0.229 0.235 0.001

STDFD 0.264 0.081 0.029 0.713 0.633 0.617

STDPD 0.111 0.205 0.439 3.7E-05 0.478 0.032

STDSA 0.003 0.057 0.095 0.687 8.5E-05 0.053

STDSD 0.132 0.461 1.0E-08 3.8E-12 0.008 0.015

Table E.5: Normal distribution test results for Tracking task per algorithm

for gpu and tractor models. Presented are the p-values, which are in bold

when normal distribution is not rejected by the significance level of α = 0.05
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Metric FLpocketwatch HLpocketwatch CHLpocketwatch

AFD 0.058 0.187 0.047

AFDT 0.247 0.352 0.153

ALGD 0.101 4.6E-14 0.011

AS 0.039 0.491 2.0E-04

ASA 0.251 0.007 0.055

ASD 4.7E-04 0.104 4.9E-11

ASL 3.7E-10 7.0E-11 1.3E-06

ASR 4.3E-05 0.054 0.492

F2SR 0.004 1.7E-07 0.007

FC 9.4E-04 0.048 0.005

FDR 0.045 0.106 0.028

FDS 0.022 0.041 0.003

FFT 0.051 0.008 6.4E-08

FSD 1.1E-05 0.015 2.8E-04

FTD 0.582 0.582 0.582

FTR 0.074 0.182 0.286

FVR 0.045 0.109 0.098

GSD 2.1E-05 0.002 1.5E-07

SC 2.4E-05 0.013 1.3E-04

SDS 0.022 0.031 0.002

SL 3.3E-05 0.018 5.0E-06

SS 0.007 0.021 0.059

STDFD 0.004 0.088 0.081

STDPD 0.324 0.072 0.181

STDSA 0.005 0.001 7.8E-04

STDSD 0.040 0.163 0.008

Table E.6: Normal distribution test results for Tracking task per algorithm

for pocketwatch model. Presented are the p-values, which are in bold when

normal distribution is not rejected by the significance level of α = 0.05
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Metric Hmodel pmodel Halgorithm palgorithm Hboth pboth

AFD 632.413 1.5E-139 638.113 8.6E-141 899.798 4.1E-196

AFDR 706.860 9.6E-156 713.990 2.7E-157 929.161 1.7E-202

AFDT 496.133 6.6E-110 500.605 7.0E-111 715.706 3.9E-156

ALGD 632.413 1.5E-139 638.113 8.6E-141 899.798 4.1E-196

AS 632.427 1.5E-139 638.128 8.5E-141 899.804 4.1E-196

ASA 112.935 2.2E-26 201.380 1.0E-45 270.146 2.2E-59

ASD 627.890 1.4E-138 633.551 8.4E-140 894.044 7.3E-195

ASL 621.882 2.9E-137 633.551 8.4E-140 890.529 4.2E-194

ASR 632.414 1.5E-139 638.115 8.6E-141 899.799 4.1E-196

F2SR 576.732 1.9E-127 548.724 2.4E-121 806.004 9.5E-176

FAS 633.119 1.0E-139 638.833 6.0E-141 900.100 3.5E-196

FC 410.630 2.7E-91 488.198 3.5E-108 656.673 2.5E-143

FDR 632.442 1.5E-139 638.143 8.5E-141 899.811 4.1E-196

FDS 632.413 1.5E-139 638.113 8.6E-141 899.798 4.1E-196

FFT 632.413 1.5E-139 638.113 8.6E-141 899.798 4.1E-196

FR 706.860 9.6E-156 713.990 2.7E-157 929.161 1.7E-202

FSC 132.857 9.7E-31 17.851 2.4E-05 170.587 9.1E-38

FSD 633.085 1.1E-139 638.798 6.1E-141 900.085 3.5E-196

FTD 638.711 6.4E-141 644.526 3.5E-142 902.468 1.1E-196

FTR 632.413 1.5E-139 638.113 8.6E-141 899.798 4.1E-196

FVR 632.497 1.4E-139 638.199 8.2E-141 899.834 4.0E-196

GSD 632.525 1.4E-139 638.228 8.1E-141 899.846 4.0E-196

SC 519.303 6.0E-115 571.118 3.2E-126 783.306 8.1E-171

SDS 627.890 1.4E-138 633.551 8.4E-140 894.044 7.3E-195

SL 627.890 1.4E-138 633.551 8.4E-140 894.044 7.3E-195

SS 623.104 1.6E-137 625.474 4.8E-138 885.698 4.7E-193

STDFD 490.814 9.5E-109 495.238 1.0E-109 708.520 1.4E-154

STDPD 632.413 1.5E-139 638.113 8.6E-141 899.798 4.1E-196

STDSA 198.467 4.5E-45 258.608 3.5E-58 360.965 4.1E-79

STDSD 592.273 8.0E-131 597.612 5.5E-132 845.934 2.0E-184

TCT 632.413 1.5E-139 638.113 8.6E-141 899.798 4.1E-196

Table E.7: Kruskal-Wallis test results from comparing Tracking task metrics

paired of with corresponding model or algorithm indicators. With all of the

p-values under the significance level of α = 0.05 we rejected the hypothesis

of same population needed for combining metrics across models.
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Metric Hmodel pmodel Halgorithm palgorithm Hboth pboth

AFD 624.875 6.5E-138 630.515 3.9E-139 888.961 9.2E-194

AFDT 526.685 1.5E-116 531.439 1.4E-117 756.314 5.9E-165

ALGD 629.398 6.8E-139 635.072 3.9E-140 895.415 3.7E-195

AS 624.881 6.5E-138 630.521 3.9E-139 888.963 9.2E-194

ASA 75.396 3.9E-18 130.150 3.8E-30 193.119 1.2E-42

ASD 608.293 2.6E-134 613.787 1.7E-135 866.347 7.5E-189

ASL 552.600 3.4E-122 599.834 1.8E-132 823.148 1.8E-179

ASR 628.239 1.2E-138 633.173 1.0E-139 893.451 9.8E-195

F2SR 577.110 1.6E-127 561.056 5.0E-124 812.161 4.4E-177

FC 78.889 6.6E-19 159.456 1.5E-36 218.104 4.4E-48

FDR 565.592 5.1E-125 532.714 7.3E-118 785.392 2.8E-171

FDS 624.875 6.5E-138 630.515 3.9E-139 888.961 9.2E-194

FFT 624.876 6.5E-138 630.516 3.9E-139 888.961 9.2E-194

FSD 627.215 2.0E-138 632.897 1.2E-139 889.957 5.6E-194

FTD 510.154 5.9E-113 394.577 8.3E-88 590.486 6.0E-129

FTR 622.469 2.2E-137 626.422 3.0E-138 884.743 7.6E-193

FVR 565.737 4.7E-125 532.853 6.8E-118 785.453 2.8E-171

GSD 629.805 5.5E-139 635.487 3.2E-140 895.589 3.4E-195

SC 384.584 1.3E-85 478.306 5.0E-106 633.240 3.1E-138

SDS 608.293 2.6E-134 613.787 1.7E-135 866.347 7.5E-189

SL 593.459 4.4E-131 607.892 3.2E-134 853.204 5.4E-186

SS 604.691 1.6E-133 607.680 3.6E-134 860.050 1.7E-187

STDFD 129.934 4.2E-30 131.110 2.3E-30 220.083 1.6E-48

STDPD 629.398 6.8E-139 635.072 3.9E-140 895.415 3.7E-195

STDSA 107.863 2.9E-25 147.735 5.4E-34 223.458 3.0E-49

STDSD 521.310 2.2E-115 526.018 2.1E-116 748.852 2.4E-163

Table E.8: Kruskal-Wallis test results from comparing Tracking task metrics

paired of with corresponding model or algorithm indicators. With all of the

p-values bellow the significance level of α = 0.05 we rejected the hypothesis

of same population needed for combining metrics across models.
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Metric Heye peye Hf1 pf1 Hgpu pgpu

AFD 0.490 0.783 2.270 0.321 4.034 0.133

AFDR 1.012 0.603 1.092 0.579 4.049 0.132

AFDT 1.443 0.486 12.385 0.002 11.918 0.003

ALGD 6.046 0.049 17.817 1.4E-04 31.889 1.2E-07

AS 4.649 0.098 7.008 0.030 8.977 0.011

ASA 1.367 0.505 0.527 0.768 0.186 0.911

ASD 1.556 0.459 0.488 0.783 0.619 0.734

ASL 0.229 0.892 1.134 0.567 2.483 0.289

ASR 0.992 0.609 26.811 1.5E-06 21.452 2.2E-05

F2SR 1.635 0.442 0.227 0.893 0.732 0.694

FAS 2.675 0.263 5.529 0.063 0.563 0.755

FC 1.337 0.512 6.272 0.043 7.831 0.020

FDR 1.234 0.540 21.461 2.2E-05 10.807 0.005

FDS 1.362 0.506 2.866 0.239 1.513 0.469

FFT 15.979 3.4E-04 59.562 1.2E-13 0.457 0.796

FR 1.012 0.603 1.092 0.579 4.049 0.132

FSC 1.842 0.398 8.058 0.018 0.511 0.775

FSD 0.277 0.871 6.445 0.040 0.007 0.996

FTD 1.856 0.395 6.315 0.043 0.832 0.660

FTR 1.585 0.453 11.761 0.003 5.455 0.065

FVR 0.503 0.778 17.785 1.4E-04 14.494 7.1E-04

GSD 0.174 0.916 7.898 0.019 0.829 0.661

SC 0.599 0.741 4.529 0.104 4.134 0.127

SDS 0.747 0.688 3.020 0.221 12.371 0.002

SL 0.975 0.614 7.182 0.028 4.498 0.105

SS 1.304 0.521 9.212 0.010 4.091 0.129

STDFD 0.689 0.709 2.602 0.272 4.318 0.115

STDPD 0.591 0.744 2.090 0.352 2.752 0.253

STDSA 2.127 0.345 0.447 0.800 0.145 0.930

STDSD 0.839 0.658 0.512 0.774 1.945 0.378

TCT 0.845 0.655 8.856 0.012 0.878 0.645

Table E.9: Kruskal-Wallis test results from comparing ABC task metrics

separated per algorithms on eye, f1 and gpu models. The difference in

medians between algorithms is statistically significant for those metrics that

have bold p-values bellow the significance level of α = 0.05.
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Metric Htractor ptractor Hpocketwatch ppocketwatch

AFD 0.574 0.750 1.464 0.481

AFDR 10.951 0.004 Too similar samples

AFDT 18.772 8.4E-05 0.236 0.889

ALGD 10.321 0.006 9.254 0.010

AS 20.275 4.0E-05 8.376 0.015

ASA 1.581 0.454 8.279 0.016

ASD 1.523 0.467 0.366 0.833

ASL 3.796 0.150 6.530 0.038

ASR 39.491 2.7E-09 0.899 0.638

F2SR 4.087 0.130 0.021 0.989

FAS 13.587 0.001 10.867 0.004

FC 3.798 0.150 0.743 0.690

FDR 38.198 5.1E-09 0.647 0.723

FDS 3.411 0.182 0.595 0.743

FFT 55.896 7.3E-13 55.344 9.6E-13

FR 10.951 0.004 Too similar samples

FSC 16.309 2.9E-04 5.840 0.054

FSD 6.521 0.038 0.596 0.742

FTD 32.555 8.5E-08 0.752 0.687

FTR 21.685 2.0E-05 11.255 0.004

FVR 35.766 1.7E-08 0.623 0.732

GSD 9.126 0.010 0.991 0.609

SC 6.798 0.033 0.308 0.857

SDS 1.132 0.568 2.409 0.300

SL 11.976 0.003 3.587 0.166

SS 20.454 3.6E-05 13.116 0.001

STDFD 1.171 0.557 0.023 0.989

STDPD 0.658 0.720 0.160 0.923

STDSA 0.940 0.625 7.623 0.022

STDSD 0.946 0.623 0.674 0.714

TCT 12.097 0.002 24.597 4.6E-06

Table E.10: Kruskal-Wallis test results from comparing ABC task metrics

separated per algorithms on tractor and pocketwatch models. The dif-

ference in medians between algorithms is statistically significant for those

metrics that have bold p-values bellow the significance level of α = 0.05.
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Metric Heye peye Hf1 pf1 Hgpu pgpu

AFD 0.081 0.960 1.439 0.487 11.181 0.004

AFDT 0.024 0.988 3.016 0.221 9.517 0.009

ALGD 6.546 0.038 0.641 0.726 11.306 0.004

AS 0.702 0.704 1.156 0.561 2.909 0.234

ASA 1.657 0.437 1.395 0.498 6.236 0.044

ASD 1.068 0.586 0.786 0.675 0.946 0.623

ASL 4.501 0.105 4.440 0.109 5.038 0.081

ASR 3.429 0.180 6.858 0.032 1.320 0.517

F2SR 0.899 0.638 1.691 0.429 4.043 0.132

FC 1.857 0.395 0.563 0.755 3.375 0.185

FDR 1.366 0.505 2.875 0.237 5.769 0.056

FDS 2.824 0.244 4.501 0.105 1.012 0.603

FFT 0.530 0.767 0.448 0.799 0.078 0.962

FSD 2.656 0.265 0.738 0.691 4.700 0.095

FTR 2.731 0.255 2.319 0.314 3.404 0.182

FVR 2.257 0.324 0.405 0.817 3.327 0.189

GSD 1.562 0.458 2.000 0.368 6.630 0.036

SC 1.569 0.456 5.045 0.080 1.691 0.429

SDS 1.069 0.586 4.453 0.108 1.546 0.462

SL 5.265 0.072 0.671 0.715 2.628 0.269

SS 6.271 0.043 2.541 0.281 2.526 0.283

STDFD 0.273 0.873 4.106 0.128 1.883 0.390

STDPD 0.328 0.849 0.520 0.771 1.581 0.454

STDSA 3.180 0.204 1.255 0.534 6.110 0.047

STDSD 3.042 0.218 0.610 0.737 0.528 0.768

Table E.11: Kruskal-Wallis test results from comparing Tracking task met-

rics separated per algorithms on eye, f1 and gpu models. The difference in

medians between algorithms is statistically significant for those metrics that

have bold p-values bellow the significance level of α = 0.05.
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Metric Htractor ptractor Hpocketwatch ppocketwatch

AFD 2.645 0.266 2.367 0.306

AFDT 5.341 0.069 3.270 0.195

ALGD 4.072 0.131 6.912 0.032

AS 3.998 0.135 0.787 0.675

ASA 0.763 0.683 0.645 0.724

ASD 0.951 0.621 1.003 0.606

ASL 0.649 0.723 0.514 0.773

ASR 1.408 0.495 1.928 0.381

F2SR 2.130 0.345 0.675 0.714

FC 0.959 0.619 1.378 0.502

FDR 2.831 0.243 2.759 0.252

FDS 3.698 0.157 2.872 0.238

FFT 2.535 0.282 0.927 0.629

FSD 0.079 0.961 1.296 0.523

FTR 3.032 0.220 5.907 0.052

FVR 1.425 0.490 2.039 0.361

GSD 0.256 0.880 0.411 0.814

SC 2.929 0.231 1.439 0.487

SDS 3.220 0.200 2.112 0.348

SL 0.939 0.625 0.026 0.987

SS 0.139 0.933 0.264 0.876

STDFD 21.918 1.7E-05 3.478 0.176

STDPD 4.009 0.135 0.134 0.935

STDSA 1.125 0.570 0.648 0.723

STDSD 0.663 0.718 0.770 0.680

Table E.12: Kruskal-Wallis test results from comparing Tracking task met-

rics separated per algorithms on tractor and pocketwatch models. The

difference in medians between algorithms is statistically significant for those

metrics that have bold p-values bellow the significance level of α = 0.05.
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Metric FLmed FLstd HLmed HLstd CHLmed CHLstd

AFD 399.588 119.031 384.448 147.408 388.611 183.159

AFDR 0.333 1.1E-16 0.333 0.062 0.333 0.062

AFDT 284.056 134.052 282.206 153.300 224.839 189.430

ALGD 191.551 26.491 192.784 28.824 198.675 18.890

AS 1.9E-04 1.5E-04 2.6E-04 1.9E-04 1.8E-04 2.0E-04

ASA 3.688 11.121 4.537 16.663 8.098 9.173

ASD 222.063 195.093 292.384 197.366 242.533 289.284

ASL 84.577 76.924 83.319 101.299 84.391 96.880

ASR 0.054 0.085 0.078 0.057 0.065 0.047

F2SR 0.536 0.271 0.536 0.511 0.500 0.389

FAS 1.0E-04 1.2E-04 1.7E-04 1.3E-04 1.7E-04 9.0E-05

FC 5.000 6.402 7.500 6.432 7.000 6.175

FDR 0.189 0.090 0.178 0.075 0.159 0.095

FDS 2176.218 2774.667 2970.098 2759.168 2376.077 2899.215

FFT 10259.329 456.086 9992.871 197.225 10065.029 1264.309

FR 0.333 1.1E-16 0.333 0.062 0.333 0.062

FSC 1.000 1.731 2.000 1.780 2.000 1.145

FSD 0.040 0.028 0.045 0.024 0.045 0.027

FTD 0.444 0.185 0.556 0.204 0.444 0.189

FTR 0.168 0.181 0.247 0.189 0.190 0.231

FVR 0.156 0.088 0.162 0.075 0.162 0.091

GSD 0.090 0.055 0.095 0.045 0.090 0.039

SC 11.000 16.698 12.500 17.183 12.500 16.610

SDS 2681.414 3553.268 3924.970 3239.243 3614.081 3302.657

SL 895.015 3181.249 1714.786 2993.643 1381.813 2021.945

SS 0.068 0.271 0.120 0.199 0.112 0.173

STDFD 133.014 106.313 143.067 145.476 138.370 198.784

STDPD 0.128 0.052 0.117 0.056 0.110 0.063

STDSA 11.149 15.431 10.777 12.932 23.499 12.401

STDSD 149.972 160.538 183.129 192.237 150.794 127.043

TCT 11552.842 2851.913 12236.635 2517.149 11963.655 1915.761

Table E.13: List of metric medians and standard deviations on the eye

model during ABC tasks. The bold metrics correspond to the statistically

significant median differences between metrics of different algorithms, ac-

cording to Table E.9.
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Metric FLmed FLstd HLmed HLstd CHLmed CHLstd

AFD 443.030 105.538 477.251 170.188 421.611 100.950

AFDR 0.333 0.086 0.333 0.086 0.333 0.117

AFDT 387.501 241.771 319.340 221.988 216.512 132.879

ALGD 184.655 31.613 200.196 26.751 219.691 31.894

AS 2.2E-04 1.3E-04 1.9E-04 1.6E-04 1.1E-04 1.3E-04

ASA 4.493 3.733 5.993 4.779 4.629 4.146

ASD 225.117 168.389 212.401 241.998 214.998 171.730

ASL 91.818 78.524 94.488 157.709 102.724 58.690

ASR 0.057 0.042 0.043 0.061 0.011 0.032

F2SR 0.403 0.370 0.481 0.347 0.404 0.319

FAS 1.0E-04 7.0E-05 7.6E-05 8.2E-05 5.2E-05 6.8E-05

FC 13.000 6.082 15.000 6.200 17.000 4.796

FDR 0.145 0.069 0.110 0.093 0.046 0.065

FDS 6273.295 2731.469 6922.828 2626.416 7655.645 2025.253

FFT 12230.147 502.445 9970.650 269.697 9876.270 99.529

FR 0.333 0.086 0.333 0.086 0.333 0.117

FSC 2.000 1.280 1.000 1.255 1.000 1.017

FSD 0.070 0.025 0.070 0.027 0.085 0.026

FTD 0.389 0.155 0.333 0.178 0.333 0.149

FTR 0.325 0.130 0.405 0.158 0.438 0.121

FVR 0.118 0.064 0.105 0.090 0.040 0.065

GSD 0.135 0.055 0.130 0.054 0.155 0.049

SC 28.500 17.766 30.000 20.279 44.000 17.633

SDS 9137.896 3114.686 9015.768 3172.167 9226.727 1485.405

SL 2800.495 1947.869 2987.640 2542.705 3690.064 1806.278

SS 0.133 0.117 0.175 0.173 0.234 0.125

STDFD 242.253 135.070 225.573 147.299 182.331 114.997

STDPD 0.096 0.045 0.108 0.051 0.097 0.062

STDSA 17.694 9.568 20.069 11.966 18.221 10.051

STDSD 167.927 150.353 217.588 219.735 172.239 146.550

TCT 17998.250 3087.376 14857.572 3268.101 17048.914 3118.660

Table E.14: List of metric medians and standard deviations on the f1model

during ABC tasks. The bold metrics correspond to the statistically signif-

icant median differences between metrics of different algorithms, according

to Table E.9.
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Metric FLmed FLstd HLmed HLstd CHLmed CHLstd

AFD 406.191 94.715 388.302 98.202 385.526 88.274

AFDR 0.333 1.1E-16 0.333 1.1E-16 0.333 0.086

AFDT 306.355 109.010 248.588 101.133 172.099 129.366

ALGD 346.977 35.677 242.201 50.113 329.554 53.179

AS 2.8E-04 1.9E-04 3.4E-04 1.9E-04 2.0E-04 1.3E-04

ASA 6.266 4.453 7.069 4.258 5.938 4.614

ASD 239.724 165.878 244.000 204.283 267.330 193.745

ASL 156.861 100.868 143.642 89.723 164.501 101.045

ASR 0.070 0.034 0.053 0.040 0.019 0.059

F2SR 0.460 0.247 0.483 0.355 0.515 0.236

FAS 1.5E-04 9.5E-05 1.8E-04 1.3E-04 1.5E-04 1.2E-04

FC 11.500 5.249 16.500 5.381 17.500 5.157

FDR 0.157 0.053 0.099 0.064 0.077 0.076

FDS 4785.463 2292.793 6756.274 2074.574 6994.994 2145.627

FFT 9754.131 503.662 9704.181 330.180 9693.074 403.018

FR 0.333 1.1E-16 0.333 1.1E-16 0.333 0.086

FSC 2.000 1.326 2.000 1.615 2.000 1.617

FSD 0.070 0.021 0.065 0.030 0.065 0.030

FTD 0.333 0.123 0.333 0.114 0.333 0.167

FTR 0.339 0.153 0.472 0.151 0.502 0.169

FVR 0.129 0.039 0.096 0.051 0.067 0.070

GSD 0.210 0.056 0.210 0.075 0.210 0.072

SC 22.000 14.782 34.000 15.972 34.000 16.432

SDS 7811.071 2733.442 9093.491 2380.049 9193.415 1761.721

SL 4181.564 2964.907 4662.694 2910.241 6358.970 2783.847

SS 0.297 0.233 0.349 0.233 0.412 0.240

STDFD 192.776 113.557 140.605 184.821 139.551 146.578

STDPD 0.105 0.041 0.127 0.043 0.127 0.045

STDSA 19.441 10.259 22.196 11.270 20.019 11.488

STDSD 182.959 147.577 202.317 187.809 242.371 165.151

TCT 13967.782 2012.417 12990.718 2365.847 12885.224 2788.422

Table E.15: List of metric medians and standard deviations on the gpu

model during ABC tasks. The bold metrics correspond to the statistically

significant median differences between metrics of different algorithms, ac-

cording to Table E.11.
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Metric FLmed FLstd HLmed HLstd CHLmed CHLstd

AFD 389.998 71.568 387.224 59.517 374.003 64.008

AFDR 0.333 0.086 0.333 0.062 0.333 0.156

AFDT 359.928 149.518 160.379 97.716 103.629 121.482

ALGD 363.378 28.805 384.372 25.596 399.118 41.591

AS 1.5E-04 9.1E-05 1.4E-04 1.1E-04 5.3E-05 8.7E-05

ASA 6.098 4.416 4.899 5.737 4.304 4.103

ASD 215.164 145.539 265.405 293.298 241.565 131.339

ASL 137.483 78.604 179.346 177.122 165.155 73.058

ASR 0.054 0.038 0.027 0.039 0.006 0.011

F2SR 0.452 0.253 0.479 0.444 0.400 0.241

FAS 1.0E-04 6.2E-05 9.8E-05 9.7E-05 0.0E+00 6.4E-05

FC 12.500 6.889 16.500 4.919 17.000 3.413

FDR 0.124 0.074 0.064 0.076 0.018 0.029

FDS 5212.941 2851.574 6339.914 2063.256 6767.376 1378.862

FFT 14439.660 718.970 10126.100 202.546 10176.057 577.723

FR 0.333 0.086 0.333 0.062 0.333 0.156

FSC 2.000 1.282 1.500 1.299 0.0E+00 0.958

FSD 0.090 0.041 0.090 0.030 0.110 0.032

FTD 0.444 0.208 0.333 0.087 0.111 0.110

FTR 0.263 0.112 0.371 0.131 0.364 0.105

FVR 0.111 0.071 0.057 0.077 0.020 0.026

GSD 0.210 0.104 0.265 0.094 0.290 0.065

SC 28.500 14.661 34.500 16.689 39.000 13.035

SDS 6983.890 3377.490 9265.597 2705.032 9187.873 304.584

SL 3459.500 3177.423 4581.602 2715.956 5576.107 1846.152

SS 0.158 0.162 0.254 0.166 0.350 0.138

STDFD 151.002 94.447 167.155 80.502 134.060 59.386

STDPD 0.110 0.046 0.107 0.053 0.105 0.049

STDSA 19.279 11.371 18.401 10.436 17.033 11.522

STDSD 210.714 138.525 208.102 427.406 201.322 132.797

TCT 19252.883 3479.262 15983.008 3317.863 16998.970 2800.162

Table E.16: List of metric medians and standard deviations on the tractor

model during ABC tasks. The bold metrics correspond to the statistically

significant median differences between metrics of different algorithms, ac-

cording to Table E.10.
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Metric FLmed FLstd HLmed HLstd CHLmed CHLstd

AFD 373.638 102.357 383.075 70.180 355.789 101.902

AFDR 0.333 1.1E-16 0.333 1.1E-16 0.333 1.1E-16

AFDT 221.138 92.437 235.356 113.992 212.502 136.893

ALGD 224.851 30.683 245.020 24.877 235.461 22.904

AS 1.4E-04 1.3E-04 2.5E-04 2.3E-04 2.1E-04 2.2E-04

ASA 9.315 6.574 6.602 5.223 5.012 3.623

ASD 243.765 480.316 236.512 152.921 221.153 238.777

ASL 99.732 55.954 140.587 51.404 111.838 61.812

ASR 0.025 0.049 0.050 0.040 0.040 0.061

F2SR 0.455 0.359 0.459 0.319 0.485 0.310

FAS 5.0E-05 3.9E-05 1.1E-04 1.0E-04 9.5E-05 9.4E-05

FC 16.000 7.120 16.000 4.944 19.000 6.995

FDR 0.086 0.093 0.094 0.055 0.094 0.084

FDS 6484.248 2759.040 6911.728 2041.533 6711.857 2436.115

FFT 13895.630 500.032 9904.052 250.196 9904.027 298.102

FR 0.333 1.1E-16 0.333 1.1E-16 0.333 1.1E-16

FSC 1.000 0.753 2.000 1.537 1.000 1.321

FSD 0.075 0.039 0.070 0.022 0.070 0.028

FTD 0.333 0.116 0.333 0.118 0.333 0.128

FTR 0.297 0.126 0.423 0.136 0.406 0.156

FVR 0.083 0.090 0.086 0.056 0.087 0.079

GSD 0.160 0.078 0.175 0.051 0.180 0.063

SC 30.000 17.748 29.500 14.929 32.500 18.028

SDS 9904.030 3417.802 9254.503 2262.834 9310.005 3072.460

SL 2753.145 2093.497 3800.885 1943.116 4231.157 2386.748

SS 0.140 0.100 0.264 0.125 0.236 0.160

STDFD 138.938 166.652 144.294 65.721 144.425 112.413

STDPD 0.102 0.053 0.115 0.053 0.120 0.065

STDSA 22.936 11.914 20.871 12.573 16.993 9.819

STDSD 203.383 277.826 193.227 173.760 180.430 216.442

TCT 19075.224 3319.534 14384.150 2170.699 14156.550 2915.079

Table E.17: List of metric medians and standard deviations on the

pocketwatch model during ABC tasks. The bold metrics correspond to

the statistically significant median differences between metrics of different

algorithms, according to Table E.10.
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Metric FLmed FLstd HLmed HLstd CHLmed CHLstd

AFD 931.278 329.893 848.798 317.154 959.498 539.697

AFDT 932.666 482.863 914.161 534.940 889.641 708.214

ALGD 50.521 17.046 58.463 22.060 59.979 68.583

AS 2.7E-04 7.8E-05 2.7E-04 1.3E-04 2.7E-04 1.5E-04

ASA 6.276 18.090 7.004 9.488 9.530 6.798

ASD 169.892 198.938 192.194 280.756 170.906 288.910

ASL 20.543 196.847 37.322 189.738 40.723 270.995

ASR 0.271 0.340 0.188 0.282 0.200 0.301

F2SR 0.220 0.321 0.200 0.417 0.203 0.255

FC 1.000 4.494 6.500 6.537 5.500 4.487

FDR 1.000 0.318 0.679 0.359 0.718 0.323

FDS 1104.767 4719.047 3991.605 5319.447 3911.685 4993.898

FFT 3652.945 280.203 3630.741 560.755 3672.006 419.546

FSD 0.010 0.019 0.030 0.027 0.025 0.022

FTR 0.292 0.229 0.572 0.215 0.537 0.240

FVR 1.000 0.332 0.487 0.374 0.633 0.335

GSD 0.050 0.040 0.050 0.037 0.060 0.036

SC 9.000 35.056 21.000 35.877 21.500 35.465

SDS 954.874 5961.486 4485.685 5909.473 5385.032 5535.718

SL 360.013 2581.026 934.484 1723.589 1975.090 8588.603

SS 0.042 0.158 0.065 0.108 0.153 0.492

STDFD 0.0E+00 409.622 364.753 321.491 312.323 372.677

STDPD 0.114 0.042 0.103 0.040 0.105 0.055

STDSA 17.448 14.164 19.422 14.274 25.103 12.745

STDSD 117.385 197.371 150.914 260.176 144.028 84.527

Table E.18: List of metric medians and standard deviations on the eye

model during Tracking tasks. The bold metrics correspond to the statisti-

cally significant median differences between metrics of different algorithms,

according to Table E.11.
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Metric FLmed FLstd HLmed HLstd CHLmed CHLstd

AFD 842.234 363.693 761.184 744.213 773.891 714.099

AFDT 1210.247 891.005 877.149 812.367 993.735 937.432

ALGD 68.864 44.107 93.301 65.945 71.812 62.686

AS 2.6E-04 1.2E-04 1.7E-04 1.3E-04 2.6E-04 1.3E-04

ASA 7.331 4.396 5.694 9.713 7.391 4.333

ASD 210.960 129.796 263.803 249.988 219.775 141.715

ASL 31.770 49.925 58.662 200.509 37.987 112.832

ASR 0.153 0.191 0.054 0.148 0.052 0.075

F2SR 0.250 0.159 0.353 0.371 0.290 0.243

FC 13.000 7.132 9.000 8.028 12.000 6.190

FDR 0.554 0.274 0.373 0.318 0.498 0.287

FDS 8482.823 7368.827 4878.720 4405.166 9748.598 4399.358

FFT 3714.008 271.491 3708.457 329.299 3719.559 540.539

FSD 0.045 0.028 0.040 0.042 0.050 0.029

FTR 0.640 0.175 0.628 0.172 0.683 0.159

FVR 0.379 0.279 0.333 0.306 0.333 0.275

GSD 0.070 0.050 0.090 0.071 0.100 0.050

SC 44.000 44.304 23.000 20.701 38.500 31.728

SDS 14311.990 8193.222 7350.320 5452.712 11108.718 4897.336

SL 1806.445 2869.952 2433.185 2472.167 2921.275 2425.002

SS 0.093 0.114 0.170 0.235 0.165 0.203

STDFD 661.720 467.664 411.326 344.141 614.191 263.162

STDPD 0.128 0.043 0.112 0.045 0.119 0.046

STDSA 23.867 10.464 19.287 13.793 22.595 9.002

STDSD 171.538 121.733 234.659 297.714 171.715 161.112

Table E.19: List of metric medians and standard deviations on the f1

model during Tracking tasks. The bold metrics correspond to the statisti-

cally significant median differences between metrics of different algorithms,

according to Table E.11.



185

Metric FLmed FLstd HLmed HLstd CHLmed CHLstd

AFD 585.496 183.380 920.175 464.652 804.473 573.940

AFDT 535.727 251.228 960.424 595.586 916.013 803.803

ALGD 93.842 36.307 86.641 176.844 65.798 50.203

AS 3.2E-04 1.3E-04 2.8E-04 1.1E-04 2.9E-04 1.1E-04

ASA 1.486 6.907 3.879 18.858 10.057 10.995

ASD 203.466 150.355 171.893 149.050 169.699 136.786

ASL 60.075 144.164 28.013 188.378 33.938 103.380

ASR 0.264 0.208 0.363 0.339 0.212 0.292

F2SR 0.429 0.321 0.333 0.512 0.273 0.297

FC 6.000 6.192 3.500 5.794 4.000 5.974

FDR 0.573 0.295 0.931 0.348 0.785 0.304

FDS 3775.081 3725.006 2603.692 3695.341 3436.433 4339.476

FFT 3608.530 212.095 3586.325 369.077 3597.428 397.192

FSD 0.035 0.030 0.020 0.031 0.025 0.026

FTR 0.522 0.209 0.513 0.211 0.594 0.282

FVR 0.500 0.286 0.750 0.341 0.667 0.291

GSD 0.085 0.048 0.040 0.051 0.050 0.044

SC 13.500 18.830 13.000 24.640 12.000 30.737

SDS 3858.356 4242.811 2853.516 4112.511 3297.642 4606.738

SL 1449.002 1524.611 451.690 1639.523 810.448 4946.744

SS 0.145 0.178 0.060 0.151 0.082 0.376

STDFD 203.778 224.309 270.924 392.744 379.267 509.222

STDPD 0.092 0.041 0.090 0.033 0.104 0.033

STDSA 2.148 14.189 2.381 14.701 26.674 14.624

STDSD 128.284 142.781 123.097 101.263 136.200 167.179

Table E.20: List of metric medians and standard deviations on the gpu

model during Tracking tasks. The bold metrics correspond to the statisti-

cally significant median differences between metrics of different algorithms,

according to Table E.11.
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Metric FLmed FLstd HLmed HLstd CHLmed CHLstd

AFD 669.228 363.492 600.958 379.748 637.687 237.434

AFDT 975.690 454.182 743.913 506.294 827.188 420.949

ALGD 137.745 33.382 130.529 170.798 114.701 46.445

AS 3.1E-04 1.3E-04 3.1E-04 1.4E-04 2.4E-04 1.2E-04

ASA 6.936 5.882 5.218 4.937 6.217 4.934

ASD 265.575 183.335 257.796 198.740 210.961 214.624

ASL 63.916 102.789 78.360 104.044 73.089 112.636

ASR 0.112 0.125 0.092 0.145 0.060 0.145

F2SR 0.313 0.209 0.364 0.341 0.322 0.315

FC 10.000 14.287 16.000 8.643 15.000 8.338

FDR 0.492 0.273 0.395 0.276 0.323 0.290

FDS 6067.881 9383.476 9426.583 4757.987 10203.812 5025.721

FFT 3786.177 254.317 3763.975 258.450 3730.668 1307.345

FSD 0.065 0.064 0.090 0.051 0.080 0.049

FTR 0.665 0.149 0.603 0.143 0.623 0.181

FVR 0.373 0.222 0.333 0.258 0.236 0.265

GSD 0.130 0.127 0.165 0.121 0.170 0.103

SC 34.500 54.101 34.000 29.743 42.000 30.691

SDS 6539.757 11092.762 11847.091 5508.535 13468.161 5291.714

SL 3510.086 3763.033 2531.057 3630.999 2813.576 3610.272

SS 0.205 0.160 0.226 0.214 0.229 0.225

STDFD 647.409 257.783 305.414 136.666 374.907 166.040

STDPD 0.130 0.065 0.110 0.044 0.102 0.040

STDSA 21.358 10.611 13.637 11.373 20.988 10.928

STDSD 224.992 217.949 218.909 222.276 177.651 143.362

Table E.21: List of metric medians and standard deviations on the tractor

model during Tracking tasks. The bold metrics correspond to the statisti-

cally significant median differences between metrics of different algorithms,

according to Table E.12.



187

Metric FLmed FLstd HLmed HLstd CHLmed CHLstd

AFD 1027.042 833.063 860.495 619.429 697.758 773.984

AFDT 1221.350 932.320 832.738 676.175 1025.192 755.519

ALGD 111.853 37.170 114.155 144.946 96.331 30.808

AS 2.7E-04 1.2E-04 2.7E-04 1.3E-04 2.7E-04 1.3E-04

ASA 8.157 6.372 5.000 7.535 5.658 6.206

ASD 205.871 144.025 232.401 167.003 190.462 214.906

ASL 21.663 88.520 35.511 179.878 30.773 276.665

ASR 0.489 0.358 0.413 0.331 0.543 0.285

F2SR 0.250 0.232 0.207 0.664 0.250 0.264

FC 3.000 12.115 3.000 7.172 1.000 6.285

FDR 0.887 0.309 0.703 0.344 1.000 0.274

FDS 3436.426 7931.409 3441.978 4919.819 2370.527 3983.885

FFT 3747.329 251.806 3730.664 219.500 3758.417 384.412

FSD 0.020 0.049 0.020 0.039 0.010 0.029

FTR 0.694 0.239 0.564 0.221 0.522 0.220

FVR 0.633 0.339 0.667 0.341 1.000 0.314

GSD 0.040 0.080 0.045 0.083 0.040 0.064

SC 20.500 47.875 23.000 28.515 13.000 19.662

SDS 3131.087 8704.672 3541.917 5443.854 2209.533 4563.342

SL 584.408 3242.376 454.547 2335.679 558.323 1487.325

SS 0.071 0.159 0.061 0.164 0.068 0.137

STDFD 332.298 500.107 275.399 326.937 0.0E+00 258.554

STDPD 0.112 0.047 0.108 0.051 0.118 0.044

STDSA 23.277 13.133 18.191 14.418 19.909 13.319

STDSD 161.056 128.955 142.823 152.491 122.704 122.199

Table E.22: List of metric medians and standard deviations on the

pocketwatch model during Tracking tasks. The bold metrics correspond

to the statistically significant median differences between metrics of different

algorithms, according to Table E.12.
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[4] T. Götzelmann, K. Ali, K. Hartmann, T. Strothotte, Form follows func-

tion: Aesthetic interactive labels., Computational aesthetics 5.

[5] E. Ferguson, Engineering and the Mind’s Eye, Engineering/history of

science and technology, MIT Press, 1992.

URL https://books.google.si/books?id=WcqaKE_Eg1IC

[6] M. Agrawala, D. Phan, J. Heiser, J. Haymaker, J. Klingner, P. Hanra-

han, B. Tversky, Designing effective step-by-step assembly instructions,

in: ACM Transactions on Graphics (TOG), Vol. 22, ACM, 2003, pp.

828–837.

[7] B. Kerbl, D. Kalkofen, M. Steinberger, D. Schmalstieg, Interactive disas-

sembly planning for complex objects, Computer Graphics Forum 34 (2)

189

https://books.google.si/books?id=qPU2DAAAQBAJ
https://books.google.si/books?id=qPU2DAAAQBAJ
https://books.google.si/books?id=qPU2DAAAQBAJ
https://books.google.si/books?id=WcqaKE_Eg1IC
https://books.google.si/books?id=WcqaKE_Eg1IC
http://dx.doi.org/10.1111/cgf.12560
http://dx.doi.org/10.1111/cgf.12560


190 BIBLIOGRAPHY

(2015) 287–297. doi:10.1111/cgf.12560.

URL http://dx.doi.org/10.1111/cgf.12560

[8] M. Tatzgern, D. Kalkofen, R. Grasset, D. Schmalstieg, Hedgehog label-

ing: View management techniques for external labels in 3d space, in:

Virtual Reality (VR), 2014 iEEE, IEEE, 2014, pp. 27–32.

[9] K. Hartmann, K. Ali, T. Strothotte, Floating labels: Applying dynamic

potential fields for label layout, in: International Symposium on Smart

Graphics, Springer, 2004, pp. 101–113.

[10] J. B. Madsen, M. Tatzqern, C. B. Madsen, D. Schmalstieg, D. Kalkofen,

Temporal coherence strategies for augmented reality labeling, IEEE

transactions on visualization and computer graphics 22 (4) (2016) 1415–

1423.

[11] A. Dünser, R. Grasset, M. Billinghurst, A survey of evaluation tech-

niques used in augmented reality studies, Human Interface Technology

Laboratory New Zealand, 2008.

[12] R. Azuma, C. Furmanski, Evaluating label placement for augmented

reality view management, in: Proceedings of the 2nd IEEE/ACM inter-

national Symposium on Mixed and Augmented Reality, IEEE Computer

Society, 2003, p. 66.

[13] W. Dong, H. Liao, F. Xu, Z. Liu, S. Zhang, Using eye tracking to evalu-

ate the usability of animated maps, Science China Earth Sciences 57 (3)

(2014) 512–522.

[14] L. Herman, S. Popelka, V. Hejlova, Eye-tracking analysis of interactive

3d geovisualization, J. Eye Mov. Res 10 (2).

[15] K. Kurzhals, M. Burch, T. Pfeiffer, D. Weiskopf, Eye tracking in

computer-based visualization, Computing in Science & Engineering

17 (5) (2015) 64–71.

http://dx.doi.org/10.1111/cgf.12560
http://dx.doi.org/10.1111/cgf.12560


BIBLIOGRAPHY 191

[16] J. R. Bergstrom, A. Schall, Eye tracking in user experience design, El-

sevier, 2014.

[17] A. T. Duchowski, Eye tracking methodology, Theory and practice 328.

[18] R. J. Jacob, K. S. Karn, Eye tracking in human-computer interaction

and usability research: Ready to deliver the promises, in: The mind’s

eye, Elsevier, 2003, pp. 573–605.

[19] T. Blascheck, K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, T. Ertl,

State-of-the-art of visualization for eye tracking data, in: Proceedings

of EuroVis, Vol. 2014, 2014.

[20] Z. Sharafi, T. Shaffer, B. Sharif, Y.-G. Guéhéneuc, Eye-tracking metrics
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