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Chapter I: General Introduction 

Baculoviruses based insecticides: A brief retrospective 

“Of all viruses known to mankind, baculoviruses are the most beneficial from an 

anthropocentric [sic!] viewpoint.” (Miller, 1997). 

Lois Kathryn Miller, always reminds us with her statement that an insect disease can be useful 

for mankind, as long as the insect host is considered as a pest to our human-centered spheres 

(Passarelli et al., 2014). In fact, the first observation of baculovirus infection were documented 

in the silk production in the poem “De Bombyce” by the Italian bishop Marco Vida of Cremona 

at the end of the Renaissance (Benz, 1986). In the rearing of silk worm larvae (Bombyx mori), 

diseased caterpillars were accounted with symptoms which were referred to as “melting” or 

“wilting”. Taken together these two examples represent the negative outcome of baculovirus 

infection in commercial aspects. However, the use of baculovirus based insecticides can be 

dated back to late 19th century. Albeit, the knowledge about virus infection was limited, 

baculovirus mixtures were used to dam up outbreaks of the nun moths (Lymantria monacha) in 

pines in Europe (Huber, 1986). Since then, baculovirus based insecticides have emerged in 

numbers with over 60 biocontrol products and a commercial turnover of 49.2 million US$ in 

2010, representing about 12 % of the whole biocontrol product sales (Beas-Catena et al., 2014; 

Lacey et al., 2015). However, the development of baculovirus based products always has to 

succeed several hurdles, as reviewed in the OECD consensus document on the assessment of 

baculoviruses used as insecticides: “Baculoviruses…are endowed with a variety of application 

constraints. Among these, the narrow host range, a limited life time and the slow speed of action 

resulting in demands on application strategies, are important factors in their failure to 

effectively compete with chemicals…” (OECD, 2002). In this context, the commercial 

production of baculoviruses either depends on their hosts – which dictates rearing of a pest 

species – or. Nevertheless, once developed baculovirus based insecticides benefit from the 

durability their morphology and contribute to an environment friendly and sustainable pest 

control. 

Baculoviruses: Morphology, infection cycle and taxonomy 

The insect virus family of Baculoviridae comprises dsDNA viruses with rod-shaped, enveloped 

virions infecting larval stages of the insect orders Lepidoptera, Diptera and Hymenoptera. 

During their life-cycle baculoviruses produce an occluded phenotype of their virions, the so-

called occlusion derived virion (ODV). The ODVs are embedded in crystalline protein 

matrixes, termed occlusion bodies (OBs), which naturally protect the virions from hazardous 

environmental conditions as exposure to UV radiation, draught or excess humidity as well as 

enzymatic degradation (Eberle et al., 2012; Herniou et al., 2011). Based on their phylogenetic 

relationship, baculoviruses have been classified recently into four genera. This classification 

also reflects their host range and to certain extend the OB morphology (Figure 1). Viruses of 

the genera Alphabaculovirus and Betabaculovirus only infect species of the insect order 

Lepidoptera, whereas those from the genera Gammabaculovirus and Deltabaculovirus infect 

species from the orders Hymenoptera and Diptera, respectively (Herniou and Jehle, 2007). 

ODVs of alpha-, gamma- and deltabaculoviruses are occluded into polyhedral OBs. OBs of 

these genera are termed nucleopolyhedra which besides the morphology also implicates the 

main structural matrix protein: polyhedrin. In case of alphabaculoviruses nucleocapsids, can be 
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further enveloped singly or as multiple units in one envelope; historically, these observations 

where used to term corresponding viruses single nucleopolyhedrovirus or multiple 

nucleopolyhedrovirus, like for Autographa californica multiple nucleopolyhedrovirus 

(AcMNPV) (Ayres et al., 1994; Pang et al., 2001). The OB of a nucleopolyhedrovirus is 

generally 1 to 2 µm (or up to 15 µm) in size and contains few to several hundreds of virions. In 

contrast to alpha-, gamma- and deltabaculoviruses, that can occlude multiple enveloped virions 

into a polyhedral OB, the single-nucleocapsid virions of betabaculoviruses are occluded into an 

ovo-cylindrical, granule-shaped OB (Gati et al., 2017; Paillot, 1926). Species of the genus 

Betabaculovirus are termed granulovirus after their granule-shaped OBs. The granulovirus OB 

itself is relatively small with about 0.2 to 0.4 µm in diameter and about 0.5 µm in length, when 

compared to nucleopolyhedroviruses.  

 
Figure 1 Schematic illustration of baculovirus occlusion bodies (OBs) of (A) granulovirus (GV) and (B) 

nucleopolyhedrovirus (NPV). Structure of a baculovirus virion with a single nucleocapsid (C). GV have singly 

embedded virions surrounded by Granulin in a ovo-cylindrical matrix. The OBs of NPV are shaped polyhedral 

and embed up to many virions. In MNPV multiple nucleocapsids are enveloped, while SNPV virions only 

harbor one single nucleocapsid. Sizes of OBs are given only schematic, original sizes are mentioned in the 

paragraph. Originally published in Wennmann (2014).   
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The second baculovirus virion phenotype is the so-called budded virus, or seldomly also 

referred to as budded virion (BV). The BV phenotype is generated when the nucleocapsids bud 

through the plasma membrane at the surface of infected cells. BVs contain typically only one 

nucleocapsid and is responsible for the systemic cell to cell infection in the host (Harrison et 

al., 2018a). Latest native electron-microscopic (cryo-EM) investigations of the BV morphology 

of group I and group II Alphabaculovirus have revealed that BV share a common elongated 

ovoid shape (Figure 2) (Wang et al., 2016). The spikes of BVs from both groups, namely GP64 

in case of group I and F-protein in case of group II alphabaculoviruses, respectively, are 

incorporated in a 6-7 nm thick layer. Although both types of spikes are more or less distributed 

evenly over the surface, GP64 is located in higher densities at both apical ends of the BV. Prior 

findings of the BV morphology deriving from negative-staining electron microscopy describe 

this phenotype instead as long rod-shaped virions with apical ends containing the fusion 

proteins GP64 and/or F-protein (Figure 3) (Fraser, 1986; Harrap, 1972). 

 
Figure 2 Structural model of the baculovirus budded virus (BV) represented by AcMNPV. The major envelope 

protein GP64 is distributed at the polar ends of the ovoid shaped enveloped. The DNA genome is condensed by 

the protein P6.9 and organized as super coil in the nucleocapsid. The major capsid protein VP39 forms a spiral 

structure visualized by its relaxed state. Originally published in Wang et al. (2016) 

 
Figure 3 Schematic structural modell of the baculovirus budded virus (BV) deriving from negative-staining 

electron microscopy. The BVs show apical ends and belong to group I alphabaculoviruses (A), group II 

alphabaculoviruses, beta- and deltabaculoviruses (B) and gammabaculoviruses (C) Rohrmann (2013) 
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In host larvae, baculovirus infection undergoes a biphasic cycle connected to these distinct 

virion phenotypes. Readily after the ingestion of OB, the protein matrix is dissolved in the 

alkaline midguts of larvae and ODVs are released (Figure 4). As first obstacle, these virions 

must pass the peritrophic membrane (PM), which mainly consist of glycoproteins and chitin. 

This layer forms a natural physical barrier which protects the midgut epithelium from physical 

damage and pathogens. Baculoviruses may encode proteins which help to disintegrate the PM 

of the midgut. These proteins are described as enhancin proteins, enhancins, viral enhancing 

factors (vef), or after their first observations “synergistic factors” (Tanada, 1959). Synergistic 

factors, later referred as enhancins, were first reported for Pseudaletia unipuncta granulovirus 

(PsunGV). This granulovirus encodes for a synergistic factor that increases the susceptibility 

of Pseudaletia unipuncta nucleopolyhedrovirus to larvae of the armyworm, P. unipuncta, in 

co-infections (Tanada, 1959; Tanada and Hukuhara, 1971). In general, baculovirus enhancins 

belong to a metallopeptidase family (Lepore et al., 1996a). This family of peptidase contains a 

zinc binding motif of the amino acids histidine, glutamine, two variable amino acids and a 

posterior histidine (HEXXHX(8,28)E), a motif which is also found in bacterial enhancin-like 

peptidases (Galloway et al., 2005). In baculoviruses, these metalloproteases can be found either 

way as part of the occlusion body matrix, like in PsunGV, or also as components of the ODV, 

as demonstrated for Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) (Slavicek and 

Popham, 2005). Enhancins can further appear in multiple copies in the baculovirus genome, as 

shown for Xestia c-nigrum granulovirus (XcenGV), which encodes four copies of an enhancin. 

Although the function of enhancins is well-described, they are not necessarily essential for 

baculovirus infection in general, as not all baculoviruses encode these proteins. For these 

baculoviruses, infection is not fully understood.  

 
Figure 4 Per os infection by baculoviruses. A cross-sectional (cs) representation of the anatomy of an insect 

larva is depicted. A baculovirus occlusion body (OB) enters by oral uptake of contaminated food. OBs pass 

through the foregut end enter the alkaline midgut where they are dissolved in the lumen and release ODVs. The 

midgut is surrounded by the peritrophic membrane (PM). Originally published by Slack and Arif (2006) 
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In all baculovirus infections, the ODV fuse with cell surface of the epithelium cells and thusly 

release the nucleocapsids into the cells. This fusion is administered with the help of specific 

proteins linked to the ODV envelope: the per os infectivity factors (pifs). Eight genes, pif-0/p74 

(Ac138), pif-1 (Ac119), pif-2 (Ac22), pif-3 (Ac115), pif-4 (Ac96), pif-5 (Ac148/odv-e56), pif-6 

(Ac68), and vp91/p95 (Ac83) have been identified to encode for factors that are essential in the 

primary infection process (Fang et al., 2009; Javed et al., 2017; Nie et al., 2012; Sparks et al., 

2011; Zhu et al., 2013). In first experiments with deletion mutants of AcMNPV it has been 

demonstrated that at least the four proteins P74 (PIF-0), PIF-1, PIF-2 and PIF-3 form a stable 

complex on the surface of the ODV (Peng et al., 2010), however protein interaction assays 

(fluorescence complementation (BiFC) assays) demonstrated that six protein-protein 

interactions form the per os infectivity complex (PIF complex) (Zheng et al., 2017). As 

demonstrated by microscopic investigations of a genetically modified AcMNPV isolate, the 

nucleocapsids are delivered to the nuclei of infected cells in a cork-screw-drive manner 

managed by the manipulation of the cell structure protein actin. The baculovirus nuclear import 

has been lately reviewed, but in general for nucleopolyhedroviruses (Au et al., 2013). The 

transcription of baculovirus genes is linked to the infction cycle and can be roughly divided into 

three temporal stages during the infection: an early, late and very late phase (Friesen, 1997; Lu 

and Miller, 1997). During the early stage of infection, the host RNA polymerase II is used for 

baculovirus transcription, while with the beginning of the late stage baculoviruses encode for 

their own RNA polymerase. As mentioned, in alphabaculovirus infections the nuclear 

membrane remains intact, which leads to hypertrophied nuclei that may fill the entire cell as 

reviewed by Rohrmann (2013). In betabaculovirus infections, the nuclear membrane is 

degraded at an early point during infection and the nucleocapsids are assembled in a nuclear-

cytoplasmic milieu (Federici, 1997). After this first step of infection, the nucleocapsids bud 

through the plasma membrane and form the above described phenotype budded virus (BV). 

As transported via the hemolymph and the tracheal system, BVs soon cause infections in 

multiple tissues of the host (Engelhard et al., 1994). Essential for the systemic infection is the 

modified viral envelope of BVs, that differs in its components form ODVs. The main envelope 

fusion protein of group I alphabaculoviruses is GP64, while group II alphabaculoviruses and 

betabaculoviruses encode the homologous F-protein (Monsma et al., 1996; Pearson et al., 

2000). These proteins facilitate the virus entry as demonstrated in experiments with gp64 

deleted AcMNPV. In these experiments, the loss of GP64 was recovered with the F-protein 

deriving from either group II alphabaculoviruses or betabaculoviruses, which lead to a recovery 

of AcMNPV BV infectivity (Lung et al., 2002; Yin et al., 2003). Group I alphabaculoviruses 

can also contain genes for f-proteins, which may play also an essential role in virus infections 

of this group, however gp64 is restricted to alphabaculovirus lineage (Wang et al., 2014). The 

gp64 and f-protein genes are both transcribed during the early and late (Washburn et al., 2003) 

stage of infection and both proteins are incorporated into the cytoplasm membrane where they 

become part of the BV envelope during the event of budding. Here, the GP64 and F-protein 

interact with receptors of the host cell membrane that initiate the endocytosis of BVs. The 

responsible host receptors of this process are unknown. First, the BV becomes enclosed within 

a coated vesicle, the endosome, which later releases the nucleocapsid (Figure 5). In the final 

phase of infection, the assembly of ODVs, the second virus phenotype generated during the 

baculovirus replication cycle, is initiated. Nucleocapsids remain within the host cell and become 

enclosed by a de novo synthesized envelope that carries all ODV envelope proteins. At this time 
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of infection, the gene of the major OB matrix protein, polh/gran, reaches a very high level of 

transcription and expression. The Polyhedrin and/or Granulin constitutes the crystalline protein 

matrix of the OBs. The OBs are released to the environment from dying or dead liquefied larvae. 

Baculovirus taxonomy and molecular phylogeny 

In general, baculoviruses are normally named after the host, from which they have been initially 

isolated in followed by “nucleopolyhedrovirus” for alpha-, gamma- and deltabaculoviruses, e.g. 

Rachioplusia ou nucleopolyhedrovirus (Alphabaculovirus), Neodiprion lecontei 

nucleopolyhedrovirus (Gammabaculovirus) and Culex nigripalpus nucleopolyhedfrovirus 

(Deltabaculovirus), as well as the host plus “granulovirus” for betabaculoviruses (e.g. Cydia 

pomonella granulovirus). In order to counter the proliferation of different abbreviations of virus 

names, first authors of baculoviruses nowadays tend to follow certain rules, in which the first 

two letters of genus and species of a host followed by NPV (nucleopolyhedrovirus) or GV 

(granulovirus) are used. Examples are Agrotis ipsilon nucleopolyhedrovirus (AgipNPV), 

Plutella xylostella nucleopolyhedrovirus (PlxyNPV), or Phthorimaea operculella granulovirus 

(PhopGV). However, baculoviruses with historical references retained their traditional 

abbreviations, like Autographa californica multiple nucleopolyhedrovirus (AcMNPV), 

Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV), Rachioplusia ou multiple 

nucleopolyhedrovirus (RoMNPV), or Cydia pomonella granulovirus (CpGV), as their original 

abbreviations have been extensively used in the literatrue. In numbers, the majority of 

baculoviruses has been isolated from lepidopteran species, namely 456 alphabaculoviruses and 

148 betabaculoviruses, while only 30 gamma- and 27 deltabaculoviruses have been isolated 

from hymenopteran and dipteran species, respectively. Whereas microscopic differentiation of 

genera can be readily performed for large the number of alpha- and betabaculoviruses, the intra-

generic species differentiation is difficult, if not impossible, by microscopy methods, as all 

baculoviruses of a distinct genus have a common morphology. For this reason, species 

classification highly depends on molecular methods like molecular phylogeny of baculovirus 

genomes and conserved genes. All baculoviruses share double-stranded, circular supercoiled 

DNA genomes, with sizes varying from about 80 to 180 kilobase pairs (kb), encoding 90 to 180 

genes. Since the early 1990s, genomes of more than 60 baculoviruses have been fully sequenced 

and deposited to GenBank; including 155 genomes from isolates and/or strains of the genus 

Alphabaculovirus, 46 from Betabaculovirus, 2 from Gammabaculovirus and 1 from 

Deltabaculovirus, respectively (see Table 1 in the appendix of this thesis). However, these 

deposited complete genome sequences only contribute in parts to the taxonomic species list of 

Baculoviridae according to the ICTV. The reasons for these discrepancies are partial sequences 

which have been used in the past to recognize novel baculovirus species as well as missing data 

in case of recent complete sequences. The complete list of recognized baculovirus species can 

be found on https://talk.ictvonline.org/files/master-species-lists/m/msl/7185 (dated March 

2018). This list comprises all background information as proposals for the recognition and 

representing isolates. With the rising number of full genome sequences, baculovirus genomics 

has progressed in identifying highly conserved genes based on the predicted amino-acid 

sequences of the putative open reading frames. In all four baculovirus genera a set of 38 

homologous genes termed “baculovirus core genes” has been identified so far (Javed et al., 

2017; Wennmann et al., 2018). Strikingly, 19 of these baculovirus core genes are also conserved 

in the genomes of closely related nudiviruses, 11 in hytrosaviruses and 20 are present in 

polydnaviruses (Rohrmann, 2013). Additional conserved genes have been described for alpha- 
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and betabaculoviruses, as well as for some gammabaculoviruses (see Table 1). Phylogenetic 

analyses based on the putative amino-acid sequences of these 38 genes and evaluating of the 

nucleotide substitutions according to the Kimura two parameter substitution model (K2P) have 

emerged in assessment of evolutionary trees of baculoviruses (Garavaglia et al., 2012; Miele et 

al., 2011). 

Prior to the phylogenetics of the 38 core genes, evolutionary traits of alpha- and 

betabaculoviruses in particular can be based on concatenated alignments of the partial amino-

acid sequences of the three genes late expression factor (lef) 8, lef-9 and polyhedrin for 

alphabaculoviruses and/or granulin for betabaculoviruses, respectively (Jehle et al., 2006b). 

Albeit, polyhedrin homologs are also present in the two remaining baculovirus genera, this 

approach is driven by the fact that baculovirus infecting Lepidoptera only comprise alpha- and 

betabaculoviruses. Thus, the background information on the host range is important for 

supporting baculovirus phylogeny. The three genes polyhedrin/granulin, lef-8 and lef-9 harbor 

sufficiently enough variation, that the species demarcation can be based on the K2P nucleotide 

distances of these partial sequences to a certain extent. More than a decade ago, that particular 

species criterion was set arbitrary according to observations of resulting resolutions of the 

phylogenetic tree. In this context, additionally to other criteria, two baculoviruses are 

recognized to belong to different species when the K2P distance of these loci is larger than 0.05 

substitutions/site. K2P distances smaller than 0.015 between two isolates have been proposed 

to indicate isolates are definitely members of the same species. This species demarcation has 

been recently confirmed in comparisons of phylogenetic trees based on the 37 core genes with 

trees deriving from the concatenated polyhedrin/granulin, lef-8 and lef-9 sequences 

(Wennmann et al., 2018). For this reason, rules for identifying and including baculoviruses as 

novel species/isolates in the catalog of the ICTV are still valid. The species description 

comprises in addition to the phylogeny based on these K2P distances the host range as well as 

a description of the morphology and pathology. 

Table 1 Baculovirus core genes according to Garavaglia et al. (2012) and Javed et al. (2017) with designated 

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ORF number and gene function according 

to Rohrmann (2013) 

 

Gene designation AcMNPV ORF Description 

DNA Replication/processing: 

lef-2 6 DNA replication/primase-associated factor  

lef-1 14 DNA primase  

DNA polymerase 65 DNA replication  

helicase 95 Unwinding DNA  

alk-exo 133 Involved in DNA recombination and replication  

Transcription/RNA polymerase: 

p47 40 RNA polymerase subunit  

lef-8 50 RNA polymerase subunit  

lef-9 62 RNA polymerase subunit  

vlf-1 77 Involved in expression of the p10 and polh genes  

lef-4 90 RNA polymerase subunit/capping enzyme  

lef-5 99 Transcription initiation factor  

Structure   

vp1054 54 Nucleocapsid protein  

desmoplakin 66 Present in nucleocapsid  

gp41 80 Tegument protein  
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Table 1 Baculovirus core genes according to Garavaglia et al. (2012) and Javed et al. (2017) with designated 

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ORF number and gene function according 

to Rohrmann (2013) 

 

vp39 89 Major capsid protein  

odv-e25 94 ODV envelope protein  

p6.9 100 Nucleocapsid protein  

odv-ec43 109 Associated with ODV 72 69  

49k 142 Required for BV production  

odv-e18 143 ODV envelope protein  

odv-e27 144 ODV envelope protein  

Per os infectivity factors/ODV structure: 

pif-2 22 Required for per os infection (PIF-2)  

ac68 68 Required for per os infection (PIF-6)  

vp91/p95 83 Viral capsid-associated protein  

ac96 96 Required for per os infection (PIF-4)  

pif-3 115 Required for per os infection (PIF-3)  

pif-1 119 Mediates binding of ODV to midgut (PIF-1)  

p74 138 Mediates binding of ODV to midgut (PIF-0)  

odv-e56 148 ODV envelope protein (PIF-5)  

Predicted enzymes: 

ac53 53 Likely involved in nucleocapsid assembly 

p33 92 Sulfhydryl oxidase  

38k 98 Required for nucleocapsid assembly  

Other: 

ac78 78 Unknown function/transmembrane domain  

ac81 81 Unknown function  

p18 93 Egress of nucleocapsids  

p40 101 Subunit of protein complex  

p48 103 BV production and ODV envelopment  
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“Cutworms” and baculoviruses infecting Agrotis spp. 

The non-taxonomic term “cutworms” comprises several species from the lepidopteran family 

of Noctuidae. Among cutworms, the genus Agrotis forms the largest group with 739 reported 

species (Hill, 1983). The common cutworm or turnip moth, Agrotis segetum (Denis & 

Schiffermüller, 1775) (Figure 6), occurs all over Africa, Eurasia, South Asia and Japan, but has 

not been reported on the American continent (Hill, 1983) (Figure 7). Adult moths are of 30 to 

40 mm in wingspan and are of dark-brown color with black markings. As many other members 

of Noctuidae, A. segetum moths are nocturnal. Flight seasons have been reported to take from 

May to June and from August to September. Female moths can lay up to 1000 legs which are 

preferably placed on crops, or on the soil around. Depending on temperature, first instar larvae 

hatch after 3 (at +29-30 °C) to 24 days (at +10-12 °C) (Hill, 1983). They live on leaves but 

cause little to no harm to crops. With increasing age, larvae migrate into lower soil levels where 

they feed on root and stems of the vegetation. Larval development undergoes five to six instars 

within 24-40 days in which the larvae can reach 40-50 mm in size. The feeding behavior comes 

to a resting stage right before pupation starts. The pupae stage can last up to three weeks and 

adults once hatch emerge to the surface. 

Agrotis ipsilon (Hufnagel, 1766), or the black and greasy cutworm (Figure 8), has a very similar 

morphology, but can be easily differentiated by the Y-shaped black markings on the foreside 

of the wings, its genitalia or on a molecular level using the lepidopteran genetic marker for the 

cytochrome c oxidase gene. In contrast to the turnip moth, A. ipsilon is almost cosmopolitan 

distributed in the Northern hemisphere within 60 °N latitude and equator, as well as in South 

Africa, New Zealand, East Australia and parts of South America (Hill, 1983) (Figure 9). The 

flight behavior and larval development is similar to A. segetum. Members of both species are 

considered to be significant agricultural pests to many crops due to their polyphagous behavior. 

For example, A. ipsilon has been reported as pest organism in corn in the United States (Clement 

and McCartney, 1982; Engelken et al., 1990; Showers et al., 1983), or in turf grass (Potter, 

1998). Current pest management includes methods such as tillage, hand-collection, flooding, 

ploughing, the use of diatomaceous earth and chemical insecticides (mostly based on pyrethrin) 

or the use of entomopathogenic nematodes, bacteria (e.g. Bacillus thuringiensis) and fungi 

(Caballero et al., 1993; Gokce et al., 2013; Ignoffo and Garcia, 1979; Wraight et al., 2010).  

 

 

Figure 6 Agrotis segetum adult moth (A) and larva (B). Pictures downloaded from www.cabi.org, copyrights: 
©Crown Copy (A) and ©J. Porter (B). 
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Figure 8 Distribution map of the turnip moth, Agrotis segetum based on the EPPO database of quarantine pests 

available online at www.eppo.int. 
 

 

Figure 7 Agrotis ipsilon adult moth (A) and larva (B). Pictures downloaded from www.discoverlife.org, 

copyrights: ©Cameron Prybol (A) and ©Discover Life (B). 
 

 

Figure 9 Distribution map of the dark sword grass moth, Agrotis ipsilon based on the datasheet provided by 

CABI available online at www.cabi.org. 
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As for cutworms, the non-taxonomic term “Agrotis baculovirus complex” describes a group of 

baculovirus species, which have been isolated from the noctuid species A. segetum and 

A. ipsilon. So far, the Agrotis baculovirus complex comprises three species of the genus 

Alphabaculovirus, namely Agrotis ipsilon nucleopolyhedrovirus, Agrotis segetum 

nucleopolyhedrovirus A and Agrotis segetum nucleopolyhedrovirus B as well as the 

Betabaculovirus species Agrotis segetum granulovirus (Boughton et al., 1999; Jakubowska et 

al., 2006; Wennmann et al., 2015a; Zethner et al., 1987). Formerly, Agrotis segetum 

nucleopolyhedrovirus has been recognized as a single species, however based on the genetic 

distance between AgseNPV-A and AgseNPV-B they are now considered as two different 

baculovirus species (Wennmann et al., 2015a). Isolates from the four baculovirus species have 

been tested in bioassays with lepidopteran larvae for their specific host ranges. As presented by 

recent publications A. ipsilon nucleopolyhedrovirus (AgipNPV), A. segetum A and B 

nucleopolyhedrovirus (AgseNPV-A and AgseNPV-B, respectively) and A. segetum 

granulovirus (AgseGV) are able infect larvae of both A. segetum and A. ipsilon (El-Salamouny 

et al., 2003; Harrison, 2009). All four viruses are further able to simultaneously infect single 

larvae as demonstrated in particular in co-infections of AgseNPV-B and AgseGV in larvae of 

A. segetum (Wennmann and Jehle, 2014; Wennmann et al., 2015c). Furtherly, AgseNPV-A, 

AgseNPV-B and AgipNPV share homologues of different copies of the viral enhancing factor 

(vef) gene and a homologue of that, the enhancin, has also been identified in sequences of two 

Chinese isolates of AgseGV, AgseGV-L1 and AgseGV-XJ (Figure 10) (Wennmann et al., 

2015a). 

 
Figure 10 Phylogenetic analysis based on aligned amino acid sequence of enhancin/viral enhancing factors (vef) 

of Agrotis baculoviruses. Maximum Parsimony tree was calculated by using the tree-bisection-reconnection 

(TBR) algorithm. Percentage bootstrap values (1,000 replicates) are given at each node. The bacterial enhancin 

sequence of Bacillus anthracis Amens (GenBank accession no. AE017034) was used as outgroup. Originally 

published in Wennmann et al. (2015a). 

In addition to AgseGV-L1 and AgseGV-XJ, there are also Spanish and Danish isolates of 

AgseGV, which have been formerly used in biological control of cutworms (Zethner, 1980; 

Zethner et al., 1987). Whereas these two isolates have been characterized by RFLP analyses 

(Bourner et al., 1992) with indistinguishable profiles, complete genome sequences have been 

available only for AgseGV-L1 and AgseGV-XJ (Zhang et al., 2014), both showing only 
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negligible nucleotide differences. According to historic records from the Julius Kühn Institute 

(JKI), specimens of a European isolate of AgseGV, which has been termed AgseGV-DA, have 

been distributed from Germany to several research institutes in Europe, including the 

Horticulture Research International (Warwick, UK) and the Laboratory of Virology 

(Wageningen, the Netherlands). All these laboratory stocks apparently derived from the same 

original material: infected A. segetum larvae collected in Austria in 1964 and sent to Federal 

Biological Research Institute (now the JKI) in Darmstadt, Germany. AgseGV-DA was used as 

representative isolate for the species assignment of Agrotis segetum granulovirus (Gueli Alletti 

et al., 2015) and is characterized further as subject of this thesis.  

 

The “codling moth” and Cydia pomonella granulovirus 

The codling moth, Cydia pomonella (Linnaeus, 1758), is one of the most important pests in 

apple orchards. The greyish moth with a wing-spread of about 2 cm and a characteristic cross 

band of chocolate brown (Figure 10) deposits lays 50 to 75 eggs on leaves, twigs and fruits 

(Blomfield and Giliomee, 2011). Eggs hatch in about a week and after a few days the young 

larvae enter the fruit and eat their way to the core. Larvae complete development in three to 

five weeks. Then they leave the fruit and seek suitable places for hiding, such as underneath 

bits of loose bark and other protected places mainly on the tree and sometimes in the debris on 

the ground (Börner, 1997). Here cocoons are spun and pupation follows. Depending on climate, 

one, two or even more generations (in warm regions) are possible. The larvae of the codling 

moth injure and contaminate the fruits by feeding and feces: the literally worm in the apple is 

familiar to everyone. Fruits very often drop prematurely, those remaining are not marketable. 

Codling moth attacks mainly apples, but to lower extent also pears, quinces and walnuts can be 

affected. 

 

 
Figure 10 Cydia pomonella adult moth (A) and larva on discected apple (B). Pictures downloaded from 

www.agric.wa.gov.au, copyrights: ©Government of Western Australia, 2018. 
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Figure 11 Distribution map of the codling moth, Cydia pomonella based on the EPPO database of quarantine 

pests available online at www.eppo.int. 

Codling moth is generally controlled by chemical insecticides and/or biological control agents, 

such as Cydia pomonella granulovirus (CpGV), B. thuringiensis (Bt) preparations and/or 

pheromone-based mating disruption. Codling moth control with commercial CpGV 

preparations has been applied for 30 years and was mainly based on first CpGV 

isolatediscovered in Mexico, therefore termed “Mexican isolate” or CpGV-M (Tanada, 1964). 

The genome sequence of CpGV-M has been one of the first complete baculovirus sequences 

(Luque et al., 2001). According to phylogenetic analyses of both the partial sequences of lef-8, 

lef-9 and granulin as well as based on the analyses of 36 out of 38 baculovirus core genes, the 

next common relative to CpGV is Cryptophlebia leucetrata granulovirus, CrleGV (Figure 12) 

(Harrison et al., 2016; Lange and Jehle, 2003). 

In the last years reduced efficacy against Cydia pomonella granulovirus based commercial 

products has been reported in selected C. pomonella populations. In the past, all commercial 

CpGV preparation, registered in Europe, were based on the Mexican isolate CpGV-M. First 

observations on reduced susceptibility of C. pomonella populations to CpGV-M were made in 

Southern Germany since 2002 (Fritsch et al., 2005; Sauphanor et al., 2006). It was demonstrated 

that the observed failure of CpGV application was caused by genetically inherited resistance. 

The genetic basis of this particular resistance, termed type I resistance, was based on a Z-linked 

inheritance (Asser-Kaiser et al., 2010). Phenotypically, the isolate CpGV-M and similar isolates 

show little to no effect in larvae with type I resistance. Although the virus host interaction is 

not fully understood, the reduced infectivity is correlated by the presence of a distinct 24 bp 

insertions into gene pe38, coding for a supposed transcription factor of CpGV (Gebhardt et al., 

2014). Other CpGV isolates lacking this insertion were shown to be resistance-breaking (Eberle 

et al., 2008; Eberle et al., 2009; Gebhardt et al., 2014). Recently two novel types of resistance 

have been reported from two German field populations, NRW-WE and SA-GO, found in North 

Rhine-Westphalia and Saxony, respectively (Jehle et al., 2017; Sauer et al., 2017a). Type II 

resistance was described for laboratory codling moth strains CpR5M/CpR5S selected from 

NRW-WE-08. Inheritance of this resistance is determined as being dominant and autosomal 

(Sauer et al., 2017b). Larvae with this trait are resistant against isolates from the CpGV genome 

group A, like CpGV-M and from the CpGV genome group E (Jehle et al., 2017; Sauer et al., 

2017a). 
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The third type of resistance, termed as type III resistance, found in SA-GO showed mixed 

characteristics of type I and type II resistance (Sauer et al., 2017c). However, similar to type II 

resistance, larvae with type III resistancewere susceptible for isolates with the CpGV genome 

group B and are resistant for isolates from with the genome type A, C, D and E (Sauer et al., 

2017c). It has to be pointed out that resistance to CpGV isolates is still restricted to relatively 

few orchards where the majority of populations came from Germany, while eight populations 

originated from Italy, six from France, two from Austria and one from the Netherlands and 

Switzerland, respectively (Schmitt et al., 2013). Thus, strategies are necessary to effectively 

control these populations and to prevent the spread of the resistance. Different new CpGV 

isolates are available that are able to break the resistance the CpGV isolates reported (Jehle et 

al., 2017). 

In the past lineages of Cydia pomonella granulovirus have been characterized either by their 

restriction endonucleases profiles (REN) (Crook et al., 1985; Harvey and Volkman, 1983; 

Rezapanah et al., 2008) or by a combination of these profiles with nucleotide sequence data 

deriving from partial sequencing of the genes granulin, late expression factor (lef) 8 and lef-9 

(Eberle et al., 2009). These methods assessed the characterization of isolates from different 

geographic origins and comprised: the Mexican isolate CpGV-M and its cloned isolate CpGV-

M1 (Crook et al., 1997), the English isolate CpGV-E (Crook et al., 1985), the Russian isolate 

CpGV-R (Harvey and Volkman, 1983), twelve Iranian isolates (i.a. CpGV-I01, -I07, -I08, -I12, 

-I66, and -I68 and) (Eberle et al., 2008; Eberle et al., 2009; Rezapanah et al., 2008) and the 

Georgian isolates CpGV-G01 and -G02 (Eberle et al., 2009). The broad collection of Iranian 

isolates was first grouped into three CpGV lineages according to the comparison with CpGV-

M, -E2 and -R. Thus, these isolates either belonged to a CpGV-M-like, a CpGV-E-like or a 

CpGV-R-like lineage, while mixtures of different genotype lineages could also be readiliy 

identified by so called “sub-molar” bands in the restriction profiles (Rezapanah et al., 2008). 

However, only due to the addition of the partial sequence data, a fourth lineage could be 

introduced (Eberle et al., 2009). The fifth CpGV lineage was identified by analyses of the above 

described insertion in pe38 in the Candian isolate CpGV-S and by the molecular phylogeny of 

35 out of 38 baculovirus core gene of selected CpGV isolates from different genome lineages 

(Gebhardt et al., 2014). Recently, the alignment of six fully sequenced CpGV isolates, namely 

CpGV-M, CpGV -M1, CpGV -E2, CpGV -I07, CpGV-I12 and CpGV-S confirmed the division 

into five phylogenetic lineages of CpGV: the genome groups A to E (Figure 13) (Wennmann 

et al., 2017). The genomes of these representative isolates range from 120,816 bp to 124,269 

bp, for which CpGV-M and CpGV-I12 are the most derived lineages, followed by CpGV-E2 

and CpGV-S, whereas CpGV-I12 is the most ancestral lineage. From the most basal to the most 

derived lineages an overall trend of increasing genome sizes to certain extend also decreasing 

%GC-content was observed. Furthermore, a total number of 788 single nucleotide 

polymorphisms (SNPs) was detected compared to the CpGV-M sequence, of which 534 SNPs 

were specific for exclusively one representative isolate of the lineages. Therefore, besides to 

other mutations, genome group C (CpGV-I07) harbored 356 specific SNPs, genome group E 

(CpGV-S) 101, genome group B (CpGV-E2) 54, genome group D (CpGV-I12) 21 and finally 

genome group A (CpGV-M) two specific SNPs. The analyses of these isolate group-specific 

SNPs are useful for the identification of present genome groups in newly discovered CpGV 

isolates. 
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Figure 12 Relationships of CpGV and isolates of other baculovirus species, inferred from the predicted amino 

acid sequences of 36 baculovirus core genes. The phylogenetic tree was constructed using the minimum-

evolution (ME) method (P6.9 was excluded). Different genera are indicated with colored text background. Both 

the group I and II clades of genus Alphabaculovirus and the a and b clades of Betabaculovirus are indicated. 

Bootstrap values >50% for both ME and maximum likelihood (ML) analysis are indicated for each interior 

branch (ME/ML). Originally published in Harrison et al. (2016). 

 
Figure 13 CpGV phylogeny and evolutionary trends of CpGV-M, -I12, -E2, -S and -I07. Phylogeny is based on 

the minimum evolution method of the alignment of whole genome nucleotide sequences with 1000 bootstrap 

replicates. CpGV genome groups A to E are given to the right. Cryptophlebia leucotreta granulovirus (CrleGV) 

was set as outgroup. Group and isolate specific single nucleotide polymorphisms (SNPs) and additional specific 

genomic features are given below each branch. Originally published in Wennmann et al. (2017) 
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Next generation sequencing (NGS) in baculovirus virology and aims of the thesis 

Characterization of baculovirus, besides the pathology and common genera-specific 

morphology, undergoes also an extensive evaluation on a molecular level. As described for the 

molecular phylogeny, full genome sequences support the assessment of genomes by either the 

three baculovirus marker genes polyhedrin/granulin, lef-8 and lef-9 or by the so far 38 

baculovirus core genes, used for baculovirus classification (Jehle et al., 2006b; Wennmann et 

al., 2018). However, the genetic information given by fully sequenced genomes aside of these 

genes, e. g. in terms of insertions, deletions, inversions, duplications or occurrence of SNPs, 

also allows following species-specific micro-evolution and deciphering the complexity of 

baculovirus populations and co-evolution with the hosts (Gilbert et al., 2014; Gilbert et al., 

2016). One example for the fast development from classical sequencing of genes of interest 

(e.g. me53) to whole genome NGS sequencing is the comparison of Australian isolates of 

Helicoverpa armigera single nucleopolyhedrovirus (HaSNPV)(Baillie and Bouwer, 2012; 

Noune and Hauxwell, 2016). While the first attempts of characterizing two of these 

geographically distinct isolates concentrated on the two genes dbp1 and me53, the second 

approach from the same laboratory institute relied on the evaluation of the genomic composition 

of 22 isolates either originating from the Australian HaSNPV-AC53 or coming from Eurasia, 

North- and South-America. Although all isolates shared a generally high sequence identity to 

HaSNPV-AC53 (~94% - 99%) sequence differences were identified in several open reading 

frames (e.g. hoar, DNA-polymerase) and in homologous repeat sequences (hrs). 

Furthermore, the genetic stability of virus isolates has been also analyzed for a South African 

Cryptophlebia leucotreta granulovirus (viz. CrleGV-SA) spanning a time period of 15 years 

(van der Merwe et al., 2017). Again, all sequenced isolates, in this case isolated at different 

time-points, showed a high identity to each other only differing up to 5% in SNPs. Taking 

together, the combination of the read-depth generated by the large datasets of NGS, in particular 

Solexa Illumina, can be assessed to identify and quantify the genomic composition of 

population of single baculovirus isolates (Chateigner et al., 2015). In case of an in vivo 

amplified isolate of Autographa californica multiple nucleopolyhedrovirus (viz. AcMNPV-

WP10) it was postulated that not only the population of physically separate OBs can be 

considered as diverse, within one single OB nucleocapsids possess different genetic traits. Thus, 

even single OBs are considered as presumably diverse in their genomic composition 

(Chateigner et al., 2015). 

The NGS sequencing was used in the following five chapters to (i) characterize the European 

isolate AgseGV-DA; (ii) to assess the virus stability of AgseNPV-B in continuous passages in 

insect cell culture and (iii) to quantify the genomic compositions of different commercially 

available CpGV isolates. In chapter II, the fully sequenced genome of AgseGV-DA is compared 

to the two Chinese isolates, AgseGV-L1 and AgseGV-XJ (Zhang et al., 2014), as these full 

genome sequences lacked details on putative open reading frames (ORFs). Furthermore, the 

molecular phylogeny based on 37 core genes for this particular isolate was compared to the 

phylogeny based on granulin, lef-8 and lef-9. To achieve a complete description qualifying for 

requirements for species inclusion by the ICTV this data was connected to the morphology of 

AgseGV-DA as well as to the pathology in host larvae. In chapter III the permissivity of the 

insect cell line AiE1611T was evaluated for AgseGV-DA and AgseNPV-B. The cell line 

AiE1611T had been generated from A. ipsilon eggs which are susceptible for AgipNPV 
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(Harrison and Lynn, 2008; Lynn and Harrison, 2016). While AgseGV and AgseNPV-B are able 

to co-infect susceptible larvae (Wennmann et al., 2015c), it has been demonstrated that 

AiE1611T is only permissive for AgseNPV-B.  

Several plaque purified clones of AgseNPV-B were characterized based on restriction patterns 

generated in digestions with EcoRI and HindIII and one particular clone, namely AgseNPV-B 

PP2 was used in chapter IV for the continuous passages in AiE1611T in order to assess the 

genomic stability in cell culture amplifications. The isolates from the continuous passages of 

PP2 were characterized by the in vivo activity in host larvae as well as by Solexa Illumina 

sequencing (NGS) and comparison of the fully sequenced genomes. AgseNPV PP2 showed 

endured a high genomic stability during the passages, while the responses in larvae were 

scattering over ten passages. In chapter V the construction of an in vitro cloned bacmid of 

AgseNPV-B, termed bAgseNPV-B, is described This bacmid is contains a deletion of about 43 

kb in the AgseNPV-B genome but still possesses the full bacterial cassette, which had been 

inserted by homologous recombination into hr6 of AgseNPV-B. The deletion and SNPs were 

characterized by NGS of bAgseNPV-B DNA isolated from Escherichia coli DH5-α clones 

carrying the bacmid as extra-chromosomal DNA. Finally, chapter VI combines data-sets 

generated of NGS of commercially available CpGV isolates with their responses in three 

codling moth populations with different susceptibility to CpGV-M and CpGV-S (Asser-Kaiser 

et al., 2011; Sauer et al., 2017a; Sauer et al., 2017b; Sauer et al., 2017c). It is shown in this 

chapter, that the differences in virulence of CpGV isolates  is correlated to different genomic 

compositions of the commercial isolates, which has been assessed by the comparing the 

different SNP compositions to those of the CpGV genome groups A to E (Wennmann et al., 

2017).  
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Chapter II: The genome sequence of Agrotis segetum granulovirus, isolate 

AgseGV-DA, reveals a new Betabaculovirus species of a slow killing 

granulovirus 

This chapter is published with few modifications in: 

Gueli Alletti, G., Eigenbrod, M., Carstens, E. B., Kleespies, R. G., Jehle, J. A. (2017),  

The genome sequence of Agrotis segetum granulovirus, isolate AgseGV-DA, reveals a 

new Betabaculovirus species of a slow killing granulovirus, J. Invert. Pathol., 146:48-68 

Abstract 

The European isolate Agrotis segetum granulovirus DA (AgseGV-DA) is a slow killing, type I 

granulovirus due to low dose-mortality responses within seven days post infection and a tissue 

tropism of infection restricted solely to the fat body of infected Agrotis segetum host larvae. 

The genome of AgseGV-DA was completely sequenced and compared to the whole genome 

sequences of the Chinese isolates AgseGV-XJ and AgseGV-L1. All three isolates share highly 

conserved genomes. The AgseGV-DA genome is 131,557 bp in length and encodes for 149 

putative open reading frames, including 37 baculovirus core genes and the per os infectivity 

factor ac110. Comprehensive investigations of repeat regions identified one putative non-hr 

like origin of replication in AgseGV-DA. Phylogenetic analysis based on concatenated amino 

acid alignments of 37 baculovirus core genes as well as pairwise distances based on the 

nucleotide alignments of partial granulin, lef-8 and lef-9 sequences with deposited 

betabaculoviruses confirmed AgseGV-DA, AgseGV-XJ and AgseGV-L1 as representative 

isolates of the same Betabaculovirus species. AgseGV encodes for a distinct enhancin gene, 

with a distant relation to the enhancins from the genus Betabaculovirus.  

Introduction 

The family of Baculoviridae comprises occluded dsDNA viruses with rod-shaped, enveloped 

virions infecting larval stages of the insect orders Lepidoptera, Diptera and Hymoptera. 

Infections of insect larvae with these viruses have been described long before any knowledge 

of structure and mode of infection arose (Benz, 1986). Based on their phylogenetic relationship, 

baculoviruses are classified into four genera, which also reflect their host range and to a certain 

extent, occlusion body (OB) morphology. Members of the genera Alphabaculovirus and 

Betabaculovirus only infect Lepidoptera, whereas viruses from Gammabaculovirus and 

Deltabaculovirus are specific for Hymenopteran and Dipteran species, respectively (Herniou et 

al., 2003; Jehle et al., 2006a). In contrast to alpha-, gamma- and deltabaculoviruses, that can 

occlude multiple enveloped virions into a polyhedral occlusion body (OB), the single-

nucleocapsid virions of betabaculoviruses are occluded into an ovo-cylindrical, granule-shaped 

OB (Gati et al., 2017). The term granulovirus is derived from that well-described OB 

morphology, previously used in baculovirus taxonomy (Theilmann et al., 2005). Currently, all 

granuloviruses are classified in the genus Betabaculovirus (Herniou and Jehle, 2007). 

Baculovirus phylogeny has been under intensive revision with the advent of molecular markers, 

based on conserved genes such as polyhedrin/granulin, lef-8, lef-9 and/or pif-2 (Herniou et al., 

2003; Jehle et al., 2006b). Extensive enhancement of baculovirus molecular phylogeny is based 

on a set of baculovirus core genes, predictably present in all baculovirus species. Until now, 37 

genes have been accepted as baculovirus core genes (Garavaglia et al., 2012) and their predicted 

amino-acid sequences are used for phylogenetic analyses. Aside from phylogeny-based 
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classification, three types of granuloviruses have been identified by their pathogenesis in 

infected host larvae (Federici, 1997). Slow-killing type I granuloviruses include Trichoplusia 

ni granulovirus (TnGV), Pseudaletia unipuncta granulovirus (PsunGV), Xestia c-nigrum 

granulovirus (XecnGV) and Adoxophyes orana granulovirus (AdorGV) (Hilton and 

Winstanley, 2008a; Mukawa and Goto, 2008). In type I granulovirus infections, the production 

of OBs is restricted to the fat body of host larvae, and larval development remains largely 

unaffected, allowing infected larvae to grow to their final larval stages. In contrast, fast-killing 

type II granuloviruses such as Cydia pomonella granulovirus (CpGV) (Tanada and 

Leutenegger, 1968), cause killing within a few days after infection and formation of OBs is not 

limited to the fat body but occurs systemically in multiple larval tissues, such as trachea, 

neurons, and others. Finally, infections caused by the type III granulovirus Harrisina brillians 

granulovirus (HbGV) have been so far observed only in larvae of Harrisina brillians. Their 

tissue tropism is limited to the midgut epithelium cells and, unlike other types of granuloviruses, 

the infected larvae discharge infectious granules and cells due to a diarrheic effect until they 

die within a week post infection (Federici, 1997). 

Infections of Agrotis species with isolates of Agrotis segetum granulovirus (AgseGV) have 

been well described since the late 1960s from field collected infected larvae (Zethner, 1980; 

Zethner et al., 1987). Since then, AgseGV has been considered as a candidate for the biological 

control of the so-called cutworm larvae of the turnip moth, Agrotis segetum and the ipsilon 

moth, Agrotis ipsilon, which are severe pests of numerous crops in the world (Dugdale, 1995). 

According to historic records from the Julius Kühn Institute (JKI), specimens of a European 

isolate of AgseGV, which we termed AgseGV-DA, have been distributed from Germany to 

several research institutes in Europe, including the Horticulture Research International 

(Warwick, UK) and the Laboratory of Virology (Wageningen, the Netherlands). All these 

laboratory stocks apparently derived from the same original material: infected A. segetum larvae 

collected in Austria in 1964 and sent to Federal Biological Research Institute (now the JKI) in 

Darmstadt, Germany.  Chinese AgseGV isolates have also been identified: AgseGV-XJ with 

the first complete AgseGV genome sequence, and AgseGV-L1, an isolate from Shanghai 

(Zhang et al., 2014). According to recent reports, the turnip moth, A. segetum, is invasive even 

to isolated areas of Chinese islands and considered as a pest species to various crops (Guo et 

al., 2015). With this background, the interest in AgseGV as a biological control agent has 

increased during the last decade, particularly in China (Yang et al., 2012).  

In the current study, whole genome sequencing with Solexa Illumina techniques was used to 

complement genome characterizations of AgseGV and to identify geographical differences 

between the two Chinese isolates AgseGV-XJ and AgseGV-L1 and the European isolate 

AgseGV-DA. As little is known about the pathogenesis of AgseGV in general, 

histopathological investigations were performed and infectivity parameters (LD50) were 

determined to assert the infection mode of AgseGV-DA in larvae of the turnip moth. These 

findings will help to facilitate the use of this betabaculovirus in biological control, irrespectively 

of its presence in mixed infections with Agrotis segetum nucleopolyhedrovirus B as described 

previously (Wennmann et al., 2015b) or used as single agent as in China (Yang et al., 2012). 
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Materials and Methods 

Insects 

Mass-rearing of A. segetum was performed at the Institute for Biological Control (JKI) in 

Darmstadt as described previously (Wennmann and Jehle, 2014). In brief, neonate larvae were 

kept on semi-artificial diet (Ivaldi-Sender, 1974) at 22 °C with a 16/8 h light/dark photoperiod 

until they reached the fourth instar (L4). For pupation, groups of up to 30 individuals were then 

transferred to plastic boxes (18.3 cm × 13.6 cm × 6.4 cm) containing 3 cm thick layers of 

vermiculite (<0.5 mm grain size). Additional diet was provided shortly before pupation. Pupae 

were collected every second day and incubated at 25 °C until the adults hatched. Adult moths 

were kept for two weeks in groups of about 30 – 50 individuals in transparent plastic cylinders 

(20 cm diameter, 25 cm height) that were covered inside with rough surfaced paper. Eggs were 

collected three times a week by replacing paper tissues and incubation at 25 °C in moist boxes 

for several days until hatching.  

AgseGV lineage and virus propagation 

A virus stock of AgseGV was provided by Doreen Winstanley, Horticulture Research 

International (HRI) collection, Warwick (UK). This virus originated from 112 infected A. 

segetum larvae that were collected in Vienna (Austria) by Otto Muhr in 1964. Occlusion bodies 

(OB) of this AgseGV isolate (termed AgseGV-DA) had been purified and sent to the Institute 

for Biological Control in Darmstadt in the late 1960s, from where it was handed over to the 

HRI by Ole Zethner in 1974. For the experiments presented in this study, virus was propagated 

with late third instars to early fourth instars of A. segetum fed with small pieces of artificial diet 

(8 mm³) that were overlaid with 106 OB of AgseGV-DA. Larvae that had consumed the entire 

diet cube within 12 h were transferred to normal diet and incubated individually under standard 

rearing conditions. Dead larvae were collected on a daily basis and stored at -20 °C for OB 

purification. Frozen larvae were homogenized in 0.5% sodium dodecyl sulfate (SDS) and 

treated with an ultra-sonic pulse before being filtered through a sandwich-filter consisting of 

layers of gaze with mesh cotton. The filtrate was repeatedly washed with water and centrifuged 

at 12,000 g for 15 min until the pellet had a whitish/light grey appearance. The pellet was 

resuspended in water and 2 ml of this suspension were loaded on a 55% - 80% glycerol gradient 

[gradient steps 80% / 70% / 60% / 55% (v/v) glycerol/water] and centrifuged at 4,000 g at 12 

°C in a swing-out rotor for 45 min to separate OB from cadaver debris. The OB band between 

60% and 70% glycerol was recovered with a sterile plastic Pasteur pipette and washed twice in 

water by spinning down in an Eppendorf 5418 R tabletop centrifuge at 12,000 g for 2 min and 

resuspending the pellet in water. Finally, the OB were recovered in sterile water and stored at -

20 °C. OB concentration was enumerated with a Petroff-Hauser hemocytometer (2.5 × 10-

3 mm² × 0.02 mm depth) and dark-field microscopy (Leica DM RBE).  

Determination of median lethal dose (LD50) 

To determine the median lethal viral dose-mortality response (LD50) of AgseGV-DA, full range 

bioassays were performed with late third instars to early fourth instars (L3-L4) of A. segetum. 

The larvae were starved overnight and subsequently fed with small cubic pieces of artificial 

diet (8 mm³) overlaid with serial 1:10 dilutions of AgseGV-DA suspensions of 83 to 8.3 × 106 

OB/cube. Each treatment consisted of triplicates of 25 – 30 tested larvae and 50 – 60 uninfected 

control larvae. Larvae that did not ingest the diet overnight were excluded from the experiment. 

The tested larvae were then transferred individually into 50 well boxes with normal diet and 
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mortality was scored 7 and 14 days post infection (dpi). Dose-response rates were estimated by 

probit analysis with ToxRat 3.2 software (ToxRat® Solutions).  

Histopathological studies 

To characterize the course of infection of AgseGV-DA in A. segetum larvae, selected L4 larvae 

from the full range bioassays were dissected for light microscopy, whereas L3 larvae of A. 

segetum fed with 2 × 10³ OB of AgseGV-DA were used for transmission electron microscopy 

(TEM). In both cases, larvae were collected 7 dpi and anesthetized with ethyl acetate before 

embedding. For light microscopy, specimens were fixed in in Bouin´s Gendre solution, 

embedded in paraffin (Histosec®) and a series of 6 µm longitudinal sections were produced 

with a SK4 rotary microtome (Leitz, Wetzlar). The serial sections were stained following the 

Heidenhain´s iron hematoxylin technique (Eberle et al., 2012) and were evaluated on a DMRB 

light microscope (Leica Microsystems). For transmission electron microscopy, a modified 

protocol was used as described previously (Rose et al., 2013). For this purpose, fat-bodies and 

midguts of infected larvae were dissected and either fixed in 3% glutaraldehyde or in Karnovsky 

solution at 4 °C for 24 h. After post-fixation with 2% osmium tetroxide for 5 h, samples were 

washed three times for 30 min each with 2.5% sucrose solution in 0.1 M cacodylic acid and 

then stained twice with 1% uranyl acetate and 2% wolfram phosphoric acid in 70% ethanol for 

30 min. Specimens were stepwise dehydrated by incubating in increasing concentrations of 

ethanol (70%, 80%, 96% and 100% v/v ethanol in water) for at least 1 hour per step, followed 

by embedding in Spurr solution (4.1 g/L 4-vinylcyclohexene dioxide, 1.43 g/L diglycidyl ether 

of polypropylene glycol, 5.9 g/L nonenyl succinic anhydrine, 0.1 g/L dimethylethanolamine). 

Ultra-thin sections of 50 – 100 µm were prepared using a LKB 8800A Ultratome III (L.K.B. 

Produkter Fabriks AB). After a final post-staining with 1% uranyl acetate and lead citrate, 

specimens were examined with a Zeiss 902 transmission electron microscope. 

DNA extraction and whole genome sequencing 

For purposes of whole genome sequencing, genomic DNA was isolated from AgseGV-DA OB 

as described previously (Wennmann and Jehle, 2014). The viral OB matrix was solubilized in 

0.1 M Na2CO3 at 60 °C for 1 h. The suspension was adjusted to pH 8 by titrating with 1 M HCl, 

then treated with RNaseA (90 µg/ml) at 37 °C for 10 min and then with Proteinase K (250 

µg/ml) and 1% SDS at 50 °C for a further 60 min. DNA was separated from protein debris by 

phenol/chloroform/ isoamylalcohol (25:24:1, v/v) extraction (O'Reilly et al., 1994) using Phase 

Lock Gel Tubes (5 PRIME) in order to avoid phenol/protein contamination. Finally, the viral 

DNA was ethanol precipitated (Sambrook, 2001). DNA concentration and purity were 

estimated by UV-VIS absorbance with a NanoDrop 2000c spectrophotometer. A total amount 

of 5 µg of ultra-pure genomic AgseGV-DA DNA was submitted for paired-end next generation 

sequencing by GATC Biotech plc (Konstanz, Germany). There, Solexa Illumina standard 

genomic libraries were produced and applied to Illumina HiSeq sequencing with up to 5 × 106 

100 bp read pairs. FastQ-files were delivered and additionally quality-filtered using the tool 

shed of the JKI Galaxy server (Afgan et al., 2016b). Read pairs with 50% consecutive bases 

below an average Phred quality score of 30 per read cycle (99.9% base call accuracy) were 

excluded from the analysis (Gordon, 2009). The conducted read pairs were used in a de novo 

assembly using a CLC Assembly Cell on the Galaxy server. The genome sequence generated 

for the isolate AgseGV-DA has been deposited in GenBank (accession number KR58466). In 

order to detect possible mixtures of genetic variations, including single nucleotide 
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polymorphisms (SNPs), insertions and deletions (InDels), the read-pairs were re-mapped 

against the de-novo genome sequence of AgseGV-DA with Bowtie2 aligner for short reads 

using standard parameters for very sensitive local alignment (Langmead and Salzberg, 2012b). 

Consecutively, the presence of SNPs and InDels < 10 bp was searched with SAMtools Mpileup. 

Regions of low coverage in the alignment were used to localize deletions that expanded more 

than 10 bp in the genome.  

Open reading frame and homologous repeat (hr) region annotation 

Open reading frames (ORFs) were annotated using criteria previously described (Wennmann 

et al., 2015a): they should not overlap by more than 100 bp and were >50 codons in length. The 

putative amino acid sequences from in silico predictions (standard codon usage) were used to 

identify viral and non-viral ORFs, as ascertained by PSI-BLAST against the RefSeq protein 

database from all organisms deposited in GenBank (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

ORFs that were identified within annotated baculovirus genes were only annotated if they had 

significant homolog matches (with e-values > 0.010) with other annotated baculovirus ORFs. 

In accordance with convention, the ORF coding for granulin was designated as the first ORF 

and the start codon adenine of the granulin ORF was designated as first nucleotide (bp) position 

of the genome. Homologous repeat (hr) regions were identified using the online tools REPuter 

(Kurtz et al., 2001) and the Tandem Repeat Finder (Benson, 1999). Additionally, inverted 

repeat sequences were identified with the EMBOSS palindrome tool 

(http://emboss.bioinformatics.nl/cgi-bin/emboss/palindrome). In cases of palindromes, 

secondary structures were predicted using the Vienna RNA secondary structure server 

(Hofacker, 2003). All annotated ORFs and repeat regions were compared to the genome 

sequences of AgseGV-XJ and AgseGV-L1 using the Mauve whole genome aligner of Geneious 

R10 (Darling et al., 2004).  

Molecular phylogeny and sequence comparison 

The relationship of AgseGV-DA, AgseGV-XJ and AgseGV-L1 to other baculoviruses was 

inferred by phylogenetic analysis based on the concatenated amino acid alignments of 37 

putative baculovirus core genes (Garavaglia et al., 2012) from the genomes of 23 

betabaculoviruses, 4 alphabaculoviruses, and a representative of gammabaculovirus and 

deltabaculovirus, respectively (Table S1). In order to avoid undesirable bias in the amino acid 

sequence alignments (Harrison et al., 2016), all core genes were identified and confirmed for 

their presence by PSI-BLAST and BLASTp. Thus, inferred amino acid sequences were aligned 

by ClustalW using Geneious R10 with default parameters. Pairwise genetic distances to each 

other were computed by the number of substitutions per site using the Kimura-2-parameter 

model (K2P) for base substitutions with MEGA7 (Kimura, 1980; Kumar et al., 2016).  

Results and Discussion 

Determination of dose-mortality response and histopathological studies of AgseGV-DA 

infections in A. segetum larvae 

The dose-mortality response of L3/L4 larvae per orally infected with a dilution series of 

AgseGV-DA did not achieve higher mortality than 61.4% at 7 dpi at the highest applied virus 

concentration of 8.3 × 109 OB/ml. Based on these data, LD50 was calculate to be 6.29 × 106 

OB/larva (Table 1) but the confidence limits of the cumulated mortality were broadened in the 

fit curve for higher OB doses. This effect also influenced a solid estimation of the LD90 at 7 

dpi, resulting in overlapping 95% confidence limits with the LD50 observed at the same time 
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(Table ). At 14 dpi, almost 100% mortality was reached with the applied concentration of 

8.3 × 109 OB/ml. The resulting dose-mortality response showed homogeneity of variance of the 

applied doses with defined LD10, LD50 and LD90 and divisible 95 % confidence limits (Table ). 

As expected, more larvae died within two weeks and compared to the LD50 of 7 dpi, the LD50 

decreased by a factor of 80 to 2.88 × 104 OB/larva at 14 dpi. The LT50 of infections was not 

calculated, as the calculated LD80 for 14 dpi exceeded the highest possible dose for application. 

However, the majority of the larvae died in their last larval stage, indicating a key characteristic 

of slow-killing granuloviruses.  

Table 1 Computed dose-mortality responses of AgseGV-DA in L3/L4 larvae of Agrotis segetum. Computed 

doses shown: LD10, LD50 and LD90 at 7 and 14 days post infection (dpi) with their corresponding 95% 

confidence limits (CL), the slope of the probit line and the goodness of the probit fit (χ²). Mortality rates of 3 

independent replicates were corrected for the control mortality rates (2.1% at 7 dpi and 2.8% at 14 dpi) 

according to Abbott (Abbott, 1925). 

dpi n 

LD10 

(95% CL)a 

OB/larva 

LD50 

(95% CL)a 

OB/larva 

LD90 

(95% CL) a 

OB/larva 

Slope χ² d(f) 

7 

455 

2.02 × 10³ 

(12.5 – 1.63x104) 

6.00 × 106 

(7.14x105 – 1.15x109) 

1.78 × 1010 

(2.11x108 – .57x1016) 
0.37 9.34 4 

       

14 
1.61 × 10² 

(3.24 – 1.06x103) 

2.88 × 104 

(6.54x10³ –6.33x105) 

5.16 × 107 

(7.41x105 – 2.56x109) 
0.57 12.79 4 

a CL (confidence limits) calculated by Fieller´s Theorem; d(f) degrees of freedom  

 

The early stage of infections with AgseGV-DA in A. segetum larvae was followed by 

histopathological analysis of infected larvae at 7 dpi. In contrast to uninfected larvae, infected 

larvae showed hypertrophic fat body at low doses of AgseGV-DA as shown for 8.3 × 104 

OB/larva. The correlation between infection and disintegrating fat body tissues was shown by 

the increasing number of OB applied and subsequently swelling of fat body, which culminated 

in disintegrated and highly hypertrophic fat body cells with the highest doses applied. The 

formation of OB was restricted only to the fat body and absent in other tissues like e.g. 

epidermis and hemocytes in light microscopy. This observation was confirmed by transmission 

electron microscopy (TEM) of fat body and midgut tissues (Figure 1). Fat body ultra-thin 

sections revealed formation of nucleocapsids and their occlusion (Figure 1 A), and foci of 

virogenic stroma (Xeros, 1956) (Figure 1 B). Around the virogenic stroma, large numbers of 

OB accumulated (Figure 1 B and C). Higher resolution confirmed the AgseGV-DA structures 

in detail, such as individually enveloped nucleocapsids occluded in the ovo-cylindrical granulin 

OB matrix, of approximately 450 × 150-200 nm (Figure 1 C & D). AgseGV-DA OBs were 

absent in midgut ultra-thin sections with few exceptions of migrated OBs at 7 dpi. These 

sections also showed intact tracheae and microvilli with no signs of infection. The absence of 

OBs in all tissues other than fat body indicated that virus infection, with high production of 

progeny OB, was restricted to the fat body at 7 dpi. Visual evaluation of the larvae of the 

bioassays, that were also the basis of this histopathological study, revealed that the infected 

larvae did not necessarily die in the infected instar but some infected larvae were able to develop 

to L4/L5 instars before dying from virus infection. Similar to the slow-killing granulovirus 

AdorGV (Wormleaton and Winstanley, 2001), AgseGV-DA revealed that the low mortality in 

the first week post infection, the tissue tropism of infection restrained to the fat body, and the 
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rather unaffected development of larvae until death are three key characteristics for type I 

granuloviruses (Federici, 1997).  

  

  
 

Figure 1 Transmission electron-micrographs of ultra-thin sections of the fat body of infected larvae at 7 dpi. 

(A) Nucleocapsid formation with longitudinal sections and cross-sections of nucleocapsids in cells of fat body; 

(B) large numbers of fully developed occlusion bodies (OB) and virogenic stroma; (C) longitudinal and cross-

sections of OBs around virogenic stroma, and (D) cross-sections and longitudinal sections of AgseGV OB 

showing the granulin matrix, ODV envelope and nucleocapsid (D). (LV = lipid vesicle, ER = endoplasmic 

reticulum, NL = nucleocapsid longitudinal, NC = nucleocapsid cross-section, VS = virogenic stroma, OBL = 

occlusion body longitudinal section, OBC = occlusion body transversal section, G = granulin matrix, E = ODV 

envelope, N = nucleocapsid). EM photographs provided by M. Eigenbrod. 

Genome composition and molecular phylogeny of AgseGV-DA 

Solexa Illumina HiSeq sequencing resulted in 5,532,755 read pairs with an average Phred 

quality score above 30. The de novo assembly of the reads with the CLC assembly cell yielded 

five large contigs, the largest being 131,557 bp in length with a GC-content of 37.3%. This 

contig shared 99.8% and 99.6% sequence identity with AgseGV-XJ and AgseGV-L1, 

respectively. The quality filtered reads were re-mapped against the AgseGV-DA sequence 

using the Bowtie2 local aligner with default parameters for highest sensitivity. A total number 

of 5,439,487 (98.3% of all) read pairs mapped against the AgseGV-DA sequence yielded an 

8,323-fold average genome coverage. Neither single nucleotide polymorphisms (SNPs), nor 

small insertion/deletion (InDel) mutations were detected in the alignment with MPileup, 

indicating that the AgseGV-DA isolate consisted of a single and highly pure genotype. The 

annotated sequence revealed that AgseGV-DA encodes 149 putative open reading frames 
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(ORFs), of which 72 are orientated clock-wise and 77 anti-clock-wise relative to the granulin 

ORF (Table S2). All 37 baculovirus core genes (Garavaglia et al., 2012), 18 granulovirus 

conserved genes, 72 genes with orthologues in other baculoviruses, and 21 putative ORFs that 

are unique in AgseGV-DA, AgseGV-XJ and AgseGV-L1 were identified (Figure 2 and Table 

4). With a few exceptions, the genome of AgseGV-DA can be physically divided into two main 

clusters of ORFs. One cluster spanning almost 40% of the circular genome from position 57,301 

to 104,845 nt harbors most of the baculovirus core genes. The second cluster includes less 

conserved genes, such as the betabaculovirus conserved genes and orthologues, and is 

interspersed by 19 of 21 unique AgseGV-DA genes. Similar to AgseGV-L1 (Zhang et al., 

2014), one bro gene was found in AgseGV-DA. A PSI-BLAST search of the putative amino 

acid (aa) sequence of the bro gene showed, that it shared 34% aa identity with Mamestra 

brassicae nucleopolyhedrovirus BRO-D and 30% aa identity with Mamestra configurata 

nucleopolyhedrobvirus BRO-E. The presence of 36 baculovirus core genes was confirmed by 

PSI-BLAST searches against all deposited baculovirus protein RefSeq. The baculovirus core 

gene p6.9 was identified by comparison of the three AgseGV p6.9 homologues. The BLASTp 

analysis showed that the three isolates AgseGV-DA, AgseGV -XJ and AgseGV -L1 shared an 

identical P6.9. Given the standard parameters for BLASTp and PSI-BLAST searches, this 

particular P6.9 did not show high homology to other baculovirus proteins. A comparison of a 

visually adjusted ClustalW alignment with relaxed penalties for gap-opening (5) and gap-

extension (0.1), however, confirmed the presence of this baculovirus core gene in AgseGV-DA 

(Figure 3). Nine conserved amino acids, present in all baculovirus P6.9, were also identified in 

the respective positions in AgseGV-DA P6.9. AgseGV-DA P6.9 further shares the highest 

amino acid identities with P6.9 sequences of the clade “a” granuloviruses HearGV, MoGV, 

PsunGV, XecnGV and SpfrGV (Garavaglia et al., 2012).  
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Figure 2 Map of the open reading frames (ORFs) of AgseGV-DA. ORF arrows indicate the ORF direction and 

position relative to granulin. Core gene = baculovirus core gene (red), β-cons. = conserved gene in 

Betabaculovirus (blue), orthol. = gene with orthologues in Baculoviridae (green), unique = unique gene in 

Agrotis segetum granulovirus (grey). 
 

 
Figure 3 Visually adjusted ClustalW alignment of putative p6.9 amino acid sequences of 23 Betabaculovirus species 

used in the phylogenetic analysis (Table S1). Fully conserved amino acids are shaded in black, grey indicates 80% 

identity. 

The analysis of the molecular phylogeny of AgseGV-DA with representative isolates of other 

baculovirus species (Table 3) was based on the concatenated alignments of the predicted amino 

acid sequences of 37 core genes, produced with ClustalW and default parameters. The 

minimum evolution phylogenetic tree (Rzhetsky and Nei, 1992) is given in Figure 4. All three 

isolates, AgseGV-DA, AgseGV-XJ and AgseGV-L1, form a unique branch within the 

betabaculovirus clade “a”, which clusters betabaculovirus species infecting larvae of the 

AgseGV    M-Y-RRRRSRSPGRRRS---------QRRRSNSGGE----YASSG---------------RRRSRSRSRSRS----GGRRRSRSRYGS-HHVNQY-----V* 

HearGV    MERTGRRRS----------RSRSRSPQRRRS---------YRRRSRSTSTGA--------RRR--SRS--------GYRRRSRSGQRR-NHVNQY-----V* 

MoGV      MERTGRRRS----------RSRSRSPQRRRS---------YRRRSRSASSGY--------RRRSRSRS--------GYRRRSRSGQRR-HHVNQY-----V* 

PsunGV    MERTGRRRS----------RSRSRSPQRRRS---------YRRRSRSPATGG--------RRRSRSRS--------GYRRRSRSGQRR-HHVNQY-----V* 

XecnGV    MERTGRRRS----------RSRSRSPQRRRS---------YRRRSRSTSTGA--------RRRSRSRS--------GYRRRSRSGQRR-NHVNQY-----V* 

SpfrGV    MERTGRRRS----------RSRS--PHRRRS---------YRRRSRSGTSGH--------RRRSRSRS--------YTRRRSRSGSRR-HHVNQY-----V* 

PhopGV    MV--RRRRSRS--------RSRS--P--------------YG-RSRSRSRSMGG------RRRSRSRSRSRS----PYRRRSR-------SSSSYLY---E* 

SpliGV    MV---RRRS----------RSRS--P--------------YRRRSRARRRSHRASEHMPARRRSRSRSRS------PYRRRSRSGGRR-HHINQY-----V* 

EpapGV    MV---RRRSRS--------RSRS--P--------------YRRRSRSRRSY----DEQPRRRRSRSRSRRRSRS--PYRRRS-------HHVNQY-----V* 

PlxyGV    MV---RRR-----------RSRS--PMRRRRRSRS-----YSPRRRSRSTAST-------RRRSRSRSRS------PRRRRSN------YHINQY-----I* 

CpGV      MV---RRR-----------RSRS--PNRRRS---------YRSRSRSRS-------------RSRSRSRSRSRS--PYRS-------HYHHINQY-----I* 

DisaGV    MT--RRRRSLRR-------RSRS--PRRRRSRSPTQH---YRRRSRSRS-TSPY------RRRSRSRSRS------PYRRR-------------YSRHEQV* 

PiGV      MPYRRRRRS----------RSRS--PS---S---------YRRRSR----GAEH-----TRRRSRSRSRSRSRS--PSRRRSSYR----HHINQY-----V* 

CrleGV    MV---RRR-----------RSRS--P--------------YRRRSRSRSRSGSDRSR--SRYRSRSRSRSRSRSRA--RSRSP----YHHHINQY-----I* 

PiraGV    MVY--RRR---PGRP----RSRSRSRSRSRSPS-------YRRTRT----------------RSRSRSRSRSRS--PYRRRSRIQ----HHINQY-----V* 

AdorGV    MVY--RRR---PGRP----RSRSRSRSRSRSRSRS-----YSRQQT------------HARRRSRSRS--------PYRRRSR-------HINQY-----V* 

ChocGV    MVY--RRR---PGRP----RSRSRSRSRS-----------YSRTAARARSRS------------RSRSRSRSRS--PYRRRS-----HQYHVNQY-----V* 

CnameGV   MPY--RRR---PGRP----RSRSRSRSRSPSTR-S-----YRSRA-------------------RSRSRSRSRS--PYRRRRSYSR---HHVNQY-----M* 

ClasGVB   MVY--RRR---PGRPRTRTRSRSRSRSRSRSTSKT-----YP-----------------HRYRSRSRSRSRS----PYRRRSQ------HHINQY-----V* 

ErelGV    MVY--RRR---PGRPRTRTRSRSRSRSRSRSTSRQ-----YPT-----------------RYRSRSRSRSRS----PYRRRSQ------HHINQY-----V* 

ClanGV    MV---RRR---PGRPRSRPRSRSSSNSRNRSRSRSQSRSPYRTRP-------------------RSRSRSRSRS--PYRRRSNTQ----HHVNQY-----V* 
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Lepidopteran family Noctuidae. Within this clade, they share PlxyGV as their nearest neighbor 

(Figure 4). Strikingly, PlxyGV showed a closer relationship to AgseGV-DA, AgseGV-XJ and 

AgseGV-L1 in the phylogenetic tree based on the amino acid alignments of 37 core genes than 

given by the substitution rates of nucleotides based on K2P-distances of partial granulin, lef-8 

and lef-9 sequences, which are used as species demarcation criterion (Table 2). The 

classification into slow-killing type I granuloviruses and fast-killing type II granuloviruses is, 

however, not reflected by the molecular phylogeny of granuloviruses with the two clades “a” 

and “b”, since both types of granuloviruses are represented in the two clades. 

Table 2 Estimates of evolutionary divergence by pairwise distances of concatenated partial granulin, lef-8 and 

lef-9. The number of base substitutions per site between betabaculovirus isolates representing their species are 

shown. Distances of the three Agrotis segetum granulovirus isolates are highlighted. Analyses were conducted 

using the Kimura 2-parameter (K2P) model with 1000 bootstrap replicates.  

 AgseGV-DA AgseGV-L1 AgseGV-XJ 

AgseGV-L1 0.0000   

AgseGV-XJ 0.0014 0.0014  

PlxyGV 0.3932 0.3955 0.3932 

XecnGV 0.3972 0.3970 0.3972 

CpGV 0.3553 0.3575 0.3575 
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Figure 4 Minimum evolution (ME) phylogenetic tree of AgseGV-DA and representative isolates of other 

baculoviruses (see Table S1) inferred from concatenated predicted amino acid sequences of 37 baculovirus core genes 

(standard genetic code). Close-Neighbor-Interchange (CNI) algorithm and Neighbor-joining (NJ) algorithm as initial 

tree were used. Ambiguous positions were removed for each sequence pair. There was a total of 19,904 positions in 

the final dataset. The optimal tree with the sum of branch lengths = 19.37 is shown. Taxon genera are indicated behind 

corresponding branches. Both betabaculovirus clades “a” and “b” are indicated in brackets. The percentage of 

replicates in bootstrap test (500 replicates) are shown next to the branches. The tree is drawn to scale, with branch 

lengths as evolutionary distances (Dayhoff matrix). Insert top left: Midpoint rooted ME subtree of AgseGV-DA, 

AgseGV-L1 and AgseGV-XJ based on whole genome nucleotide alignment.  

 



 

29 

Pairwise distances were computed for the concatenated alignments of the partial granulin, lef-

8 and lef-9 sequences using the Kimura-2-parameter (K2P) model (Kimura, 1980) and 1000 

bootstrap replicates. According to the propositions of Jehle et al. (Jehle et al., 2006b), two 

baculoviruses were recognized to belong to different species when the K2P distances of these 

loci were larger than 0.05 substitutions/site. Baculoviruses with K2P distances smaller than 

0.015 substitutions/site were proposed to belong to the same species. All three isolates 

AgseGV-DA, AgseGV-XJ and AgseGV-L1 showed pairwise K2P distances of maximum 0.014 

to each other, indicating that they should be considered as different isolates of the same 

baculovirus species. In contrast, pairwise distances to all other baculovirus species were above 

0.05 as shown, for example, in a subset of the pairwise distances of AgseGV-DA, AgseGV-XJ, 

AgseGV-L1, PlxyGV and XecnGV as representatives of the betabaculovirus clade “a” and 

CpGV from the clade “b” (Table 2). It is therefore suggested that all three AgseGV-DA, -XJ, -

L1 are isolates of a single species, termed Agrotis segetum granulovirus, which was proposed 

to and accepted by the International Committee on Taxonomy of Viruses (ICTV) (Adams et 

al., 2016; Gueli Alletti et al., 2015). The sequence of AgseGV-DA sequence was chosen as 

representative of the Agrotis segetum granulovirus type species sequence for the following 

reasons. Although the complete genome sequence of AgseGV-XJ became available almost a 

decade ago, this sequence lacked 17 ORFs that were not annotated but identified in AgseGV-

L1 and AgseGV-DA. Also, numerous ORFs in the AgseGV-XJ sequence were not originally 

annotated as baculovirus core genes. Further, studies on the genome sequence of AgseGV-L1 

(Zhang et al., 2014) did not include biological data such as granule structure or investigations 

on the pathology. In addition, characteristics such as the isolation of AgseGV-DA from infected 

larval material, the host range, and infections of larvae were previously described (Zethner, 

1980). 

AgseGV Enhancins and taxonomic representation 

A major sequence difference among the three isolates AgseGV-DA, AgseGV-XJ, AgseGV-L1 

was identified in the putative AgseGV enhancin gene. Baculoviruses enhancins alternatively 

termed viral enhancing factors (VEF), have accounted for a synergistic effect between two 

heterologous baculoviruses, as described for co-infections of the armyworm 

Pseudaletia unipuncta in co-infections with Pseudaletia unipuncta granulovirus and 

Pseudaletia unipuncta nucleopolyhedrovirus (Tanada and Hukuhara, 1971).They play an active 

role in the degradation of the peritrophic membrane (PM) (Lepore et al., 1996b). This mucin-

rich intestinal layer functions as a primary barrier between midgut lumen and midgut epithelium 

that has to be penetrated by occlusion derived virions (ODVs) originating from dissolved OB 

to initiate primary infection of midgut epithelium cells. A possible mode of enhancin function 

derives from a metalloprotease-like zinc-binding domain HEXXH that is found in many 

baculovirus Enhancins (Bischoff and Slavicek, 1995; Rawlings and Barret, 1995; Toprak et al., 

2012) and also some Bacillus bacteria. However, this particular HEXXH motif is missing in 

the putative Enhancins of AgseGV-XJ and AgseGV-L1 (Wennmann et al., 2015a). All three 

Enhancins from AgseGV-DA, AgseGV-XJ and AgseGV-L1 were aligned based on their 

predicted amino acid sequence using ClustalW with default parameters. They share a stretch of 

865 conserved amino acids at their N-termini, which is followed by 28 identical amino acid 

positions in AgseGV-XJ and AgseGV-L1. In one region of the enhancin sequence, namely 

between the genome positions 56,401 and 56,725, a statistically significant decrease based on 

the mean coverage and its standard deviation (s.d.) at each position, from an average coverage 
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of 8323-fold (s.d. = 620, n = 131,557) to only 4,851-fold coverage (s.d. = 1767, n = 324) was 

observed (t-test, p = 0.0001). This particular decline indicated some deletions or false 

alignments of the short sequencing reads in this particular region. A thorough analysis of the 

sequence assembly  

 

 
Figure 5 Minimum Evolution (ME) tree of baculovirus Enhancins, inferred from the alignment of Enhancin 

amino acid sequences by using CNI with NJ as initial tree. Bootstrap percentages (1000 replicates) are shown 

next to the branches. The tree is drawn to scale, with branch lengths as evolutionary distances (Dayhoff matrix). 

The bacterial Enhancin sequence of B. anthracis Amens (Acc-N°. AE017034) was used as outgroup 

files covering this region revealed numerous repeat sequences, which were eventually resolved 

by PCR amplification and Sanger sequencing of the amplicons. This repeat region in the 

AgseGV-DA enhancin consists of 12 iterative repeats of a 24-mer 5´-

ACTCCTGAACCTWCTCCYCCACCT-´3. Strikingly, this repeat is also present as 11-fold 

repeat in AgseGV-XJ but is completely absent in AgseGV-L1. The mentioned repeats in 

AgseGV-DA and AgseGV-XJ are responsible for a 12- and 11-fold repetition of a predicted 

amino acid motif TPEPTPPP and lead to a putative enrichment of the amino acid proline at the 

C-termini of the two Enhancins. Because of these repetitions, the putative Enhancins of 

AgseGV-DA and AgseGV-XJ share 96% aa identity, whereas the aa identity of the AgseGV-

DA and AgseGV-L1 Enhancins is only 85%. The amino acid consensus sequence of the 

AgseGV Enhancin alignment was used in PSI-BLAST searches in order to identify 37 Enhancin 
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homologues from different species. These sequences also included a predicted bacterial 

Enhancin from Bacillus anthracis Amens (GenBank Acc.-N° AE017034), the Viral Enhancin 

Factors (VEF) of Agrotis segetum nucleopolyhedrovirus A (AgseNPV-A), Agrotis segetum 

nucleopolyhedrovirus B (AgseNPV-B) and Agrotis ipsilon nucleopolyhedrovirus (AgipNPV). 

All 37 identified homologues were aligned to the Enhancins of AgseGV-DA, AgseGV-L1 and 

AgseGV-XJ using ClustalW. This alignment was used to infer a Minimum Evolution (ME) 

phylogenetic tree using the B. anthracis Enhancin as an outgroup (Figure 5). The ME tree could 

be divided into a single clade of Enhancins from the genus Betabaculovirus and a number of 

paralogues from the genus Alphabaculovirus. The closest alphabaculovirus Enhancin neighbor 

was represented by the VEF from Lonomia obliqua nucleopolyhedrovirus (LoobNPV). The 

Enhancins from the three AgseGV isolates showed a high genetic distance to those of all other 

granuloviruses as well as to the VEFs from AgseNPV-A, AgseNPV-B and AgipNPV,  

emphasizing the absence of a horizontal gene transfer of the enhancins between Agrotis NPVs 

and the AgseGVs (Wennmann et al., 2015a). Most of the nucleotide variations between 

AgseGV-DA, AgseGV-XJ and AgseGV-L1 were located in their distinct enhancin genes but 

were little in the remaining parts of the genomes. The very opposite of genetic divergence is 

reflected by this relation; although there is geographic distance between the European AgseGV-

DA and the Chinese AgseGV-XJ and AgseGV-L1, all three viruses share evolutionarily highly 

stable and similar genomes. Thus, AgseGV isolates appear to be considerably homogenous 

compared to other granuloviruses, e.g. geographic isolates of CpGV, for which differences in 

the ORF content and in their virulence to different codling moth populations were reported 

(Eberle et al., 2009; Gebhardt et al., 2014; Rezapanah et al., 2008). The highly-conserved 

genome sequences in the three AgseGV isolates presumably indicate a similar pathology in 

larvae of A. segetum. Thus, our findings on their close phylogenetic relationship may facilitate 

future efforts in developing a biological control agent based on AgseGV, as the high sequence 

similarity suggests a similar pathogenicity of the three isolates. 

Intergenic repeats, palindromic sequences and putative origins of replication 

Analysis of repeats and palindromes in AgseGV-DA also identified the presence of four direct 

repeats and one palindromic sequence (Figure 6 and Figure 7). Two of these direct repeats 

have already been reported for AgseGV-L1 (Figure 6) as homologous regions (hrs) (Zhang et 

al., 2014) and are present in AgseGV-DA within the genome positions 19,895 – 19,943 (hr1) 

the intergenic region between the ORF22 and ORF23, and at the genome positions 85,045 – 

85,108 (hr2) in the intergenic region between odve27 and ORF100. The third repetition unit of 

hr2 overlaps with the 3´end of ORF100 in five nucleotides. Another short two-fold direct repeat 

of 24 identical nucleotides, namely dr3a/b was found in the intergenic region between pp34 and 

ORF21 at the genome positions 16,862 – 16,885 (Figure 7). Further direct repeats, dr4a/b/c, 

consisting of up to 52 bp long repetitions were located in the same intergenic region as hr2, 

between odve27 and ORF100. 

One inverted repeat, Pal-1, was found in the intergenic region of ORF23/ORF24. The inverted 

repeats were 42 nt in length and inclosed a non-coding 444-bp region containing three direct 

repeats dr5a/b/c of 5’-YAGATGGCGY-3’ in its center (Figure 8). Pal-1was not confined by 

direct repeats, which would have been a signal for a possible transposition of the whole element. 

Blastn searches for whole region with both palindromic ends did not reveal any significant hits 

with an E-value < 0.01, except for homologous sequences present in AgseGV-XJ and AgseGV-
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L1. The function of such palindromic sequences in baculoviruses is unknown, though similar 

structures are present in numerous non-coding RNAs, such as tRNA cloverleaf structure. Blastn 

searches did not identify any hit for non-coding RNA, nor did the structure resemble any 

palindromic sequences reported for other baculoviruses (Hilton and Winstanley, 2008b). 

However, similar structures with inverted repeats around a region with a duplication of 

restriction endonuclease target sides have been reported for the Cydia pomonella granulovirus 

isolates CpGV-I01 and CpGV-E2 (Eberle et al., 2009). Homologous regions (hrs) of many 

alphabaculoviruses consist of short palindromic sequences which are present in multiple 

locations within the genome (Rohrmann, 2013). They were characterized as enhancers as well 

as origins of replication (Kool et al., 1993; Pearson and Rohrmann, 1995). Although the hrs of 

betabaculoviruses are more variable and often lack palindromes in contrast to hrs from NPVs 

(Hilton and Winstanley, 2008b), they are also present in several positions within the genome. 

The short direct repeats observed in AgseGVs, however, do not exhibit any homology to 

alphabaculovirus oris. These findings are in accordance with previous investigations of 

granulovirus hr-like origins of replication (Harrison et al., 2016; Hilton and Winstanley, 2008b) 

that did not discover any homologous region in analysis of the AgseGV genomes submitted to 

GenBank. 

 

 

Figure 6 ClustalW alignment of the direct repeats hr1 and hr2 in the genome of AgseGV-DA. Positions of at 

least 60% shared identity are shaded black, ambiguities are shaded grey. 

 

 

Figure 7 ClustalW alignment of two direct repeats dr3 (A) and dr4 (B) conducted by genome analysis with 

REPuter and Tandem Repeat Finder. Positions of at least 60% shared identity are shaded black, ambiguities 

are shaded grey. 

 



 

33 

 

Figure 8 Intergenic region (genome nucleotide position 19,274 – 19,800 in AgseGV-DA) with inverted repeat 

sequences Pal-1a and Pal-1b at each end of 444 bp and the threefold direct repeats of 5’-YAGATGGCGY-3’ 

(dr5a, dr5b, dr5c) in its center. 

Conclusion 

Our pathological studies classify AgseGV-DA as a type I granulovirus based on the typical 

characteristics of slow infection rates in A. segetum larvae and a tissue tropism restricted to the 

fat body of infected caterpillars. Illumina genome sequencing of AgseGV-DA providing a more 

than 8000-fold coverage did not reveal any single nucleotide polymorphisms, insertion or 

deletions, defining AgseGV-DA as a genetically highly homogenous genotype. The genome of 

the European isolate AgseGV-DA shows a close relationship to the two Chinese isolates 

AgseGV-XJ and AgseGV-L1, as demonstrated by fully co-linear genomes, high nucleotide 

conservation and a small genetic distance. The three isolates are therefore considered as 

representatives of the same Betabaculovirus species Agrotis segetum granulovirus. 
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Table 3 Baculovirus isolates (n = 30) used to infer the molecular phylogeny based on concatenated alignments 

of 37 predicted amino acid sequences of baculovirus core genes 

Organism/Isolate/Strain Acc. N° Abbreviation Size (bp) % GC 

Autographa californica multiple 

nucleopolyhedrovirus 
NC_001623 AcMNPV 133,894 40.7 

Agrotis ipsilon multiple nucleopolyhedrovirus NC_011345 AgipNPV 155,122 48.6 

Agrotis segetum nucleopolyhedrovirus NC_007921 AgseNPV-A 147,544 45.7 

Agrotis segetum nucleopolyhedrovirus B KM102981 AgseNPV-B 148,981 45.7 

Adoxophyes orana granulovirus NC_005038 AdorGV 99,657 34.5 

Agrotis segetum granulovirus DA KR584663 AgseGV-DA 131,557 37.3 

Agrotis segetum granulovirus L1 KC994902 AgseGV-L1 131,442 37.3 

Agrotis segetum granulovirus XJ NC_005839 AgseGV-XJ 131,680 37.3 

Clostera anastomosis granulovirus CaLGV-Henan NC_022646 CaLGV-Henan 101,818 46.7 

Choristoneura occidentalis granulovirus NC_008168 ChocGV 104,710 32.7 

Clostera anachoreta granulovirus ClanGV-HBHN HQ116624 
ClanGV-

HBHN 
101,487 44.4 

Clostera anastomosis granulovirus ClasGV-B KR091910 ClasGV-B 107,439 37.8 

Cnaphalocrocis medinalis granulovirus KP658210 CnmeGV 112,060 35.2 

Cydia pomonella granulovirus NC_002816 CpGV-M1 123,500 45.3 

Cryptophlebia leucotreta granulovirus NC_005068 CrleGV 110,907 32.4 

Diatraea saccharalis granulovirus KP296186 DisaGV 98,392 34.9 

Epinotia aporema granulovirus NC_018875 EpapGV 119,082 41.5 

Erinnyis ello granulovirus KJ406702 ErelGV 102,759 38.7 

Helicoverpa armigera granulovirus NC_010240 HearGV 169,794 40.8 

Mocis sp. granulovirus KR011718 MoGV 134,272 38.3 

Phthorimaea operculella granulovirus NC_004062 PhopGV 119,217 35.7 

Plodia interpunctella granulovirus KP864638 PiGV 112,536 44.2 

Pieris rapae granulovirus NC_013797 PiraGV 108,592 33.2 

Plutella xylostella granulovirus NC_002593 PlxyGV 100,999 40.7 

Pseudaletia unipuncta granulovirus NC_013772 PsunGV 176.677 39.8 

Spodoptera frugiperda granulovirus isolate VG008 KM371112 SpfrGV 140,913 46.2 

Spodoptera litura granulovirus NC_009503 SpliGV-K1 124,121 38.8 

Xestia c-nigrum granulovirus NC_002331 XecnGV 178,733 40.7 

Neodiprion lecontei nucleopolyhedrovirus AY349019 NeleNPV 81,755 33.4 

Culex nigripalpus nucleopolyhedrovirus NC_003084 CuniNPV 108,252 50.9 
 

 

 0 
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Table 4 Annotation of Open reading frames (ORF) of AgseGV-DA, AgseGV-L1 and AgseGV-XJ as annotated (columns 1 and 2), the annotated ORF names (3), the 

conserved occurrence in other baculovirus genera (baculovirus core genes = α+β+γ+δ, conserved in Alpha-, Beta- and Gammabaculovirus = α+β+γ, conserved in Alpha-, 

Beta- and Deltabaculovirus = α+β+δ, conserved in Alpha- and Betabaculovirus = α+β, conserved Betabaculovirus genes = β, orthologues in other baculoviruses = bac. 

ortho., AgseGV-DA/L1 unique genes = unique) (4); the genome sequence position in AgseGV-DA and orientation relative to granulin (5); the amino acid (aa) number of 

predicted gene products (6), the next baculovirus homolog (7), regarding to PSI-BLAST/BLASTp with shared amino acid identity (%) (8) 

(1) 

AgseGV-DA/-L11 

(2) 

AgseGV-XJ1  

(3) 

Name 

(4) 

Conservation 

(5) 

Position 

(6) 

aa 

(7) 

Homolog 

(8) 

% Identity 

1 1 granulin α+β+γ 1 → 747 249 ErelGV 90 

2 2 p78/83 bac. ortho. 744  1,412 223 ChocGV 50 

3 3 pk-1 α+β 1,084 → 2,238 385 PlxyGV 63 

4 4 4 unique 2,290 → 4,557 756 none -- 

5 5 5 bac. ortho. 4,591  5,100 170 AdhV 38 

6 -- 6 bac. ortho. 5,195  6,007 271 AgipNPV 40 

7 6 7 β 6,103  6,657 185 PhopGV 51 

8 7 8 β 6,647 → 6,910 88 PhopGV 40 

9 8 ie-1 bac. ortho. 7,073  8,464 464 XecnGV 41 

10 9 ac146 α+β 8,484 → 9,086 201 DisaGV 40 

11 10 ac145 α+β+γ 9,126  9,425 100 SpliGV 58 

12 11 odv-e18 α+β+γ+δ 9,438  9,716 93 SpliGV 51 

13 12 49k α+β+γ+δ 9,717  11,057 447 DisaGV 52 

14 13 14 bac. ortho. 11,073  11,798 242 SpliGV 27 

15 14 15 bac. ortho. 11,839  12,474 212 PhopGV 43 

16 15 pif-5 α+β+γ+δ 12,599  13,657 353 ChocGV 58 

17 16 17 bac. ortho. 13,716 → 13,943 76 HearGV 42 

18 17 dUTPase bac. ortho. 14,026  14,604 193 EpapGV 44 

19 18 pep-1 β 14,622  15,242 207 CrleGV 57 

20 19 Baculo PEP N bac. ortho. 15,299 → 16,351 351 ErelGV 60 

21 20 pe/pp34 bac. ortho. 16,366 → 16,806 147 ClanGV 60 

22 21 22 unique 16,960  17,763 268 none -- 

23 22 23 unique 17,896  18,723 276 none -- 

24 -- 24 unique 20,030 → 20,245 72 none -- 

25 -- 25 unique 20,403 → 20,576 58 none -- 

26 23 26 bac. ortho. 20,649 → 22,004 452 PiraGV 25 

27 24 27 bac. ortho. 22,377 → 23,468 364 PlxyGV 27 
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Table 4 Annotation of Open reading frames (ORF) of AgseGV-DA, AgseGV-L1 and AgseGV-XJ as annotated (columns 1 and 2), the annotated ORF names (3), the 

conserved occurrence in other baculovirus genera (baculovirus core genes = α+β+γ+δ, conserved in Alpha-, Beta- and Gammabaculovirus = α+β+γ, conserved in Alpha-, 

Beta- and Deltabaculovirus = α+β+δ, conserved in Alpha- and Betabaculovirus = α+β, conserved Betabaculovirus genes = β, orthologues in other baculoviruses = bac. 

ortho., AgseGV-DA/L1 unique genes = unique) (4); the genome sequence position in AgseGV-DA and orientation relative to granulin (5); the amino acid (aa) number of 

predicted gene products (6), the next baculovirus homolog (7), regarding to PSI-BLAST/BLASTp with shared amino acid identity (%) (8) 

28 25 ac23 α+β+δ 23,507 → 25,303 599 PiraGV 55 

29 -- 29 unique 25,342  25,668 109 none -- 

30 26 30 unique 25,803 → 26,525 241 none -- 

31 27 31 β 26,488  27,312 275 CpGV 32 

32 28 32 bac. ortho. 27,324  27,899 192 SpfrGV 52 

33 29 pif-3 α+β+γ+δ 27,911 → 28,486 192 ErelGV 49 

34 30 34 bac. ortho. 28,481  28,720 80 CpGV 34 

35 31 cathepsin bac. ortho. 28,723  29,706 328 PiraGV 62 

36 32 chitinase bac. ortho. 29,752 → 31,509 586 PiraGV 62 

37 33 odv-e66 α+β 31,481  33,517 679 OpMNPV 37 

38 34 38 β 33,545 → 33,880 112 CpGV 49 

39 35 lef-2 α+β+γ+δ 33,927 → 34,472 182 SpliGV 50 

40 36 40 bac. ortho. 34,475 → 34,726 84 SpliGV 50 

41 -- 41 unique 34,775  34,981 69 none -- 

42 37 RNR1 bac. ortho. 35,074  36,921 616 EpapGV 63 

43 38 RNR2 bac. ortho. 37,117 → 38,226 370 EpapGV 58 

44 39 44 bac. ortho. 38,639 → 39,907 423 AgipNPV 48 

45 -- 45 unique 39,974  40,186 71 none -- 

46 40 46 β 40,243  40,671 143 ClanGV 37 

47 41 metalloprotease β 40,734  42,179 482 TiniGV 40 

48 42 p13 bac. ortho. 42,272 → 43,069 266 ChocGV 63 

49 -- 49 unique 43,075 → 43,260 62 none -- 

50 43 pif-2 α+β+γ+δ 43,277 → 44,425 383 DisaGV 57 

51 -- 51 unique 44,456  44,728 91 none -- 

52 44 52 unique 44,827  45,021 65 none -- 

53 45 53 bac. ortho. 45,042 → 47,564 841 MoGV 32 

54 46 ac106/107 α+β+γ 47,585  48,244 220 SpliGV 70 

55 -- ac110 α+β (+γ+δ) 48,265 → 48,417 51 DisaGV 61 

56 47 ubiquitin α+β 48,414  48,707 98 SpliGV 86 

57 48 odv-ec43 α+β+γ+δ 48,747 → 49,868 374 EpapGV 59 
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Table 4 Annotation of Open reading frames (ORF) of AgseGV-DA, AgseGV-L1 and AgseGV-XJ as annotated (columns 1 and 2), the annotated ORF names (3), the 

conserved occurrence in other baculovirus genera (baculovirus core genes = α+β+γ+δ, conserved in Alpha-, Beta- and Gammabaculovirus = α+β+γ, conserved in Alpha-, 

Beta- and Deltabaculovirus = α+β+δ, conserved in Alpha- and Betabaculovirus = α+β, conserved Betabaculovirus genes = β, orthologues in other baculoviruses = bac. 

ortho., AgseGV-DA/L1 unique genes = unique) (4); the genome sequence position in AgseGV-DA and orientation relative to granulin (5); the amino acid (aa) number of 

predicted gene products (6), the next baculovirus homolog (7), regarding to PSI-BLAST/BLASTp with shared amino acid identity (%) (8) 

58 49 ac108/p11 α+β+γ 49,881 → 50,192 104 CpGV 58 

59 50 59 bac. ortho. 50,168  50,572 135 AdorGV 30 

60 51 pp31 bac. ortho. 50,600  51,424 275 DisaGV 45 

61 52 lef-11 α+β+γ 51,408  51,728 107 PsunGV 60 

62 -- 62 unique 51,834  52,001 56 none -- 

63 53 iap-3 bac. ortho. 52,032 → 52,841 270 AngeNPV 40 

64 54 sod bac. ortho. 52,893  53,363 157 ClanGV 67 

65 -- 65 unique 53,529  53,804 92 none -- 

66 55 enhancin bac. ortho. 53,826 → 56,768 981 PsunGV 27 

67 56 p74/pif-0 α+β+γ+δ 57,301  59,328 676 CpGV 50 

68 57 acetyltransferase-like bac. ortho. 59,382  59,981 200 PhopGV 59 

69 58 69 bac. ortho. 60,033  60,440 136 MabrNPV 30 

70 59 70 β 60,674  61,141 156 CrleGV 64 

71 60 p47 α+β+γ+δ 61,233 → 62,444 404 EpapGV 59 

72 61 ac38 α+β 62,564 → 63,226 221 SpliGV 77 

73 62 p24 α+β 63,242 → 63,775 178 EpapGV 60 

74 63 38.7 bac. ortho. 63,791  64,372 194 PlxyGV 48 

75 64 lef-1 α+β+γ+δ 64,303  65,064 254 ClanGV 58 

76 65 pif-1 α+β+γ+δ 65,108 → 66,751 548 DisaGV 38 

77 66 fgf-1 β 66,736  67,413 226 SpliGV 37 

78 -- 78 unique 67,445  67,843 133 none -- 

79 -- 79 unique 67,848 → 68,060 71 none -- 

80 67 80 β 68,011 → 68,337 109 SpliGV 32 

81 68 lef-6 α+β 68,334  68,582 83 CpGV 44 

82 69 dbp α+β+γ 68,633  69,523 297 EpapGV 35 

83 70 83 bac. ortho. 69,411  69,713 101 PiraGV 46 

84 71 84 bac. ortho. 69,664  70,542 293 EpapGV 24 

85 72 p48 α+β+γ+δ 70,529 → 71,713 395 CpGV 62 

86 73 p12 α+β 71,718 → 72,038 107 CpGV 53 

87 74 p40 α+β+γ+δ 72,102 → 73,223 374 SpliGV 59 
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Table 4 Annotation of Open reading frames (ORF) of AgseGV-DA, AgseGV-L1 and AgseGV-XJ as annotated (columns 1 and 2), the annotated ORF names (3), the 

conserved occurrence in other baculovirus genera (baculovirus core genes = α+β+γ+δ, conserved in Alpha-, Beta- and Gammabaculovirus = α+β+γ, conserved in Alpha-, 

Beta- and Deltabaculovirus = α+β+δ, conserved in Alpha- and Betabaculovirus = α+β, conserved Betabaculovirus genes = β, orthologues in other baculoviruses = bac. 

ortho., AgseGV-DA/L1 unique genes = unique) (4); the genome sequence position in AgseGV-DA and orientation relative to granulin (5); the amino acid (aa) number of 

predicted gene products (6), the next baculovirus homolog (7), regarding to PSI-BLAST/BLASTp with shared amino acid identity (%) (8) 

88 75 p6.9 α+β+γ+δ 73,256 → 73,441 62 none -- 

89 76 lef-5 α+β+γ+δ 73,474  74,229 252 SpliGV 55 

90 77 38k α+β+γ+δ 74,182 → 75,075 298 DisaGV 53 

91 78 ac96/pif-4 α+β+γ+δ 75,078  75,563 162 EpapGV 49 

92 79 helicase α+β+γ+δ 75,550 → 79,020 1157 MoGV 54 

93 81 odv-e25 α+β+γ+δ 79,065  79,718 218 PhopGV 69 

94 82 p18 α+β+γ+δ 79,750  80,253 168 EpapGV 51 

95 83 p33 α+β+γ+δ 80,320 → 81,078 253 PiraGV 60 

96 84 ChaB-like bac. ortho. 81,075  81,320 82 SpliGV 57 

97 85 lef-4 α+β+γ+δ 81,657  83,063 469 PiraGV 49 

98 86 vp39 α+β+γ+δ 83,102 → 83,980 293 SpliGV 50 

99 87 odv-e27 α+β+γ+δ 84,046 → 84,942 299 SpliGV 60 

100 88 100 β 85,104  86,249 382 EpapGV 34 

101 89 101 bac. ortho. 86,262  87,569 436 AdhV 25 

102 90 102 β 87,656 → 88,030 125 CrleGV 67 

103 91 vp91/p95 α+β+γ+δ 88,027  89,997 657 ClanGV 37 

104 93 tlp α+β 89,966 → 90,499 178 SpfrGV 34 

105 94 ac81 α+β+γ+δ 90,480 → 91,073 198 SpliGV 60 

106 95 gp41 α+β+γ+δ 91,105 → 92,034 310 CpGV 64 

107 96 ac78 α+β+γ+δ 92,103 → 92,420 106 XecnGV 33 

108 97 vlf1 α+β+γ+δ 92,389 → 93,537 383 PhopGV 63 

109 98 109 bac. ortho. 93,520  94,068 183 SpliGV 41 

110 99 110 bac. ortho. 94,119 → 94,376 86 CpGV 60 

111 100 ac75 α+β+γ 94,417 → 94,863 149 DisaGV 53 

112 101 dnapol α+β+γ+δ 94,869  98,306 1146 EpapGV 59 

113 102 desmoplakin α+β+γ+δ 98,308 → 100,515 736 SpfrGV 26 

114 103 lef-3 α+β 100,512  101,540 343 XecnGV 27 

115 104 ac68/pif-6 α+β+γ+δ 101,512 → 101,901 130 ChocGV 57 

116 105 116 β 101,968 → 102,501 178 ErelGV 36 

117 106 iap-5 β 102,520 → 103,371 284 PhopGV 46 
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Table 4 Annotation of Open reading frames (ORF) of AgseGV-DA, AgseGV-L1 and AgseGV-XJ as annotated (columns 1 and 2), the annotated ORF names (3), the 

conserved occurrence in other baculovirus genera (baculovirus core genes = α+β+γ+δ, conserved in Alpha-, Beta- and Gammabaculovirus = α+β+γ, conserved in Alpha-, 

Beta- and Deltabaculovirus = α+β+δ, conserved in Alpha- and Betabaculovirus = α+β, conserved Betabaculovirus genes = β, orthologues in other baculoviruses = bac. 

ortho., AgseGV-DA/L1 unique genes = unique) (4); the genome sequence position in AgseGV-DA and orientation relative to granulin (5); the amino acid (aa) number of 

predicted gene products (6), the next baculovirus homolog (7), regarding to PSI-BLAST/BLASTp with shared amino acid identity (%) (8) 

118 107 lef-9 α+β+γ+δ 103,355 → 104,845 497 EpapGV 71 

119 108 f-protein bac. ortho. 104,851 → 105,297 149 EpapGV 66 

120 109 120 unique 105,281  106,129 283 none -- 

121 110 DNA ligase bac. ortho. 106,171  107,868 566 PiraGV 58 

122 111 122 bac. ortho. 108,049 → 108,225 59 ChocGV 42 

123 112 123 unique 108,261  108,485 75 none -- 

124 113 fgf-2 β 108,540  109,721 394 PiraGV 35 

125 114 p10 bac. ortho. 109,789  110,160 124 ClanGV 35 

126 -- 126 bac. ortho. 110,168  110,578 137 ErelGV 29 

127 115 alk-exo α+β+γ+δ 110,597 → 111,790 398 PiraGV 51 

128 116 helicase-2 bac. ortho. 111,768 → 113,183 472 SpfrGV 55 

129 117 129 bac. ortho. 113,176  114,081 302 SpliGV 33 

130 -- 130 bac. ortho. 114,150  114,647 166 SpliGV 25 

131 118 lef-8 α+β+γ+δ 114,756  117,407 884 CpGV 67 

132 119 132 bac. ortho. 117,411  118,310 300 XecnGV 31 

133 120 133 bac. ortho. 118,305 → 118,775 157 SpfrGV 33 

134 121 134 bac. ortho. 118,789  118,992 68 EpapGV 44 

135 122 ac53 α+β+γ+δ 118,961 → 119,371 137 PhopGV 50 

136 123 136 bac. ortho. 119,366  120,799 478 PsunGV 45 

137 124 137 β 120,861  121,976 372 SpliGV 36 

138 125 138 bac. ortho. 121,979  122,164 62 PsunGV 44 

139 126 lef-10 bac. ortho. 122,163 → 122,393 77 PiraGV 49 

140 127 vp1054 α+β+γ+δ 122,254 → 123,249 332 DisaGV 50 

141 -- 141 bac. ortho. 123,328 → 123,513 62 MoGV 52 

142 -- 142 unique 123,510 → 123,887 126 none -- 

143 128 fgf-3 β 123,937 → 124,851 305 ChocGV 37 

144 129 egt bac. ortho. 124,868  126,256 463 LacoGV 60 

145 130 145 unique 126,361 → 126,984 208 none -- 

146 131 me53 α+β 127,085 → 128,014 310 PlxyGV 50 

147 132 he65 bac. ortho. 128,064  129,638 525 PsunGV 46 
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Table 4 Annotation of Open reading frames (ORF) of AgseGV-DA, AgseGV-L1 and AgseGV-XJ as annotated (columns 1 and 2), the annotated ORF names (3), the 

conserved occurrence in other baculovirus genera (baculovirus core genes = α+β+γ+δ, conserved in Alpha-, Beta- and Gammabaculovirus = α+β+γ, conserved in Alpha-, 

Beta- and Deltabaculovirus = α+β+δ, conserved in Alpha- and Betabaculovirus = α+β, conserved Betabaculovirus genes = β, orthologues in other baculoviruses = bac. 

ortho., AgseGV-DA/L1 unique genes = unique) (4); the genome sequence position in AgseGV-DA and orientation relative to granulin (5); the amino acid (aa) number of 

predicted gene products (6), the next baculovirus homolog (7), regarding to PSI-BLAST/BLASTp with shared amino acid identity (%) (8) 

148 -- bro bac. ortho. 129,769  131,058 430 MabrNPV 34 

149 -- 149 unique 131,180 → 131,530 117 none -- 
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Chapter III: Agrotis segetum nucleopolyhedrovirus but not Agrotis 

segetum granulovirus replicate in AiE1611T cell line of Agrotis ipsilon 

This chapter is published with few modifications in: 

Gueli Alletti, G., Carstens, E. B., Weihrauch, B., Jehle, J. A. (2018),  

Agrotis segetum nucleopolyhedrovirus but not Agrotis segetum granulovirus  

replicate in AiE1611T cell line of Agrotis ipsilon, J. Invert. Pathol., 151:7-13 

Abstract 

Both Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) and Agrotis segetum 

granulovirus (AgseGV) belong to a cluster of four baculoviruses that are infective for different 

Agrotis species. Belonging further to different baculovirus genera, namely Alphabaculovirus 

and Betabaculovirus, respectively, AgseNPV-B and AgseGV are candidates to investigate virus 

interactions in co-infections. However, for the investigation of virus interactions on a cellular 

level, permissive insect cell-lines are needed. The cell line AiE1611T deriving from 

Agrotis ipsilon eggs has been shown to be permissive for several Alphabaculovirus isolates. In 

this study, virus replication was followed based on microscopic analysis of infected and 

transfected cells, as well as on a molecular level by PCR of DNA and cDNA of selected 

baculovirus transcripts. While the permissivity was not verified for AgseGV, AgseNPV-B 

produced occlusion bodies in both infection with hemolymph of infected larvae and 

Lipofectamin transfection with AgseNPV-B genomic DNA. In addition to the possibility to 

investigate virus interaction of AgseNPV-B with other alphabaculoviruses, the permissivity of 

AiE1611T for AgseNPV-B further offers the possibility a biological selection to separate 

AgseNPV-B from AgseGV. 

Introduction 

The family of Baculoviridae comprises occluded dsDNA viruses with rod-shaped virions 

infecting larval stages of the insect orders Lepidoptera, Diptera and Hymoptera (Herniou et al., 

2011; Jehle et al., 2006a). Based on their phylogenetic relationship, baculoviruses are classified 

in four genera, which also reflect their host association and to a certain extent the morphology 

of their occlusion body (OB), a proteinaceous matrix covering the occlusion derived virion 

(ODV) phenotype. Members of the genera Alphabaculovirus and Betabaculovirus are specific 

for Lepidoptera, whereas viruses form Gamma- and Deltabaculovirus infect Hymopteran and 

Dipteran species, respectively (Herniou et al., 2003; Jehle et al., 2006a). While 

betabaculoviruses normally occlude a single virion in an ovoid OB, the polyhedral protein 

matrices of alpha-, gamma- and deltabaculoviruses contain few to multiple ODVs. These 

differences in the OB morphology were recognized in an earlier classification, namely 

granuloviruses and nucleopolyhedroviruses (Theilmann et al., 2005). ODVs are the phenotype 

responsible for per os infections of larvae, the second virion phenotype, the budded virus (BV) 

is responsible for the intercellular transmission of infection (Federici, 1997). Baculoviruses are 

highly virulent for the larval stages of their insect hosts and generally exhibit a narrow host 

range to a single or a few host species (Cory and Bishop, 1997; Cory and Myers, 2003; Herniou 

et al., 2004). This characteristics have been utilized for the development and commercialization 

of baculovirus biocontrol agents of pest insects in agriculture, horticulture and forestry (Black 

et al., 1997; Moscardi, 1999).  
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Four baculoviruses have been isolated from larvae of the cutworm species Agrotis segetum and 

A. ipsilon (Lepidoptera: Noctuidae), namely Agrotis segetum nucleopolyhedrovirus A 

(AgseNPV-A), Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B), Agrotis ipsilon 

nucleopolyhedrovirus (AgipNPV) and Agrotis segetum granulovirus (AgseGV), belonging to 

four distinct species of the genera Alphabaculovirus and Betabaculovirus, respectively (Gueli 

Alletti et al., 2015; Jakubowska et al., 2006; Wennmann et al., 2015a). Recently, AgseNPV-B 

has been shown to infect A. segetum larvae and its potential role as a biological control agent 

of Agrotis species has been proposed (Wennmann et al., 2015a; Wennmann et al., 2015c). Under 

in vivo conditions, infections with AgseNPV-B are often associated with AgseGV in co-

infections fueling the interest in studying mechanism of alphabaculovirus and betabaculovirus 

co-infections in Lepidoptera (Wennmann et al., 2015c). On the other hand, cell lines derived 

from A. ipsilon eggs have been shown to be permissive for the closely related AgipNPV 

(Harrison and Lynn, 2008). These cell lines, namely AiE1611T and AiEd6T, exhibit favorable 

growth conditions, form monolayers of spherical cells and produce OBs when infected with 

AgipNPV. As such, a cell line system would be an ideal tool to study baculovirus mixed 

infections at the cellular level so we investigated whether the cell line AiE1611T is permissive 

to AgseNPV-B and AgseGV. AgseNPV-B but not AgseGV was also able to replicate 

AiE1611T cells. 

Material and Methods 

Insects 

Mass-rearing of A. segetum was performed as described previously (Wennmann and Jehle, 

2014). In brief, neonate larvae were kept on semi-artificial diet (Ivaldi-Sender, 1974) at 22 °C 

with a 16/8 h light/dark photoperiod until they reached the fourth larval stage. Pupae were 

collected and kept at 25 °C until the adults hatched. Adult moths were kept in plastic cylinders. 

Eggs were incubated at 25 °C in moist boxes until neonates hatched.  

Cell line and maintenance 

Stocks of the A. ipsilon cell line AiE1611T were provided by Robert L. Harrison from the 

Agricultural Research Service of the United States Department for Agriculture (Harrison and 

Lynn, 2008). AiE1611T cells were maintained in ExCell420 (Sigma Aldrich) serum free insect 

cell culture medium supplemented with 3% fetal bovine serum (Fisher Scientific), 10 U/ml 

penicillin and 0.1 mg/ml streptomycin. The AiE1611T cells were maintained in 25 cm² (T25) 

Greiner® cell culture flasks at 26 °C and split on a weekly basis into fresh T25 cell culture flasks 

(4 × 106 cells per flask) (Lynn, 2002).  

Viruses  

Virus stocks of Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) and Agrotis segetum 

granulovirus (AgseGV, isolate DA) were originally provided by Doreen Winstanley, 

Horticulture Research International (HRI) collection, Warwick (UK) as previously described 

(Gueli Alletti et al., 2017b; Wennmann et al., 2015a). AgseNPV-B and AgseGV were 

propagated in late third or early fourth instar larvae by feeding them with diet plugs (8 mm³) 

overlaid with either 1000 OBs of AgseNPV-B (1 × 106 OBs/ml), or with 106 OBs of AgseGV 

(1 × 109 OBs/ml). AgseNPV-B and AgseGV OBs were purified out of diseased cadavers as 

previously described (Wennmann and Jehle, 2014). AgseNPV-B OB concentration was 

measured in refractive phase-contrast microscopy using a Neubauer-improved hemocytometer. 
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AgseGV OB concentration was measured with a Petroff-Hauser hemocytometer (0.02 mm 

depth) in dark-field microscopy (Leica DM RBE).  

Transfection AiE1611T cells with genomic DNA from either AgseGV or AgseNPV-B 

Genomic DNA was isolated from either AgseNPV-B OBs or AgseGV OBs by dissolving the 

OB matrix with 0.1 M Na2CO3 followed by pH adjustment to pH 7 with 0.1 M HCl, protein 

and RNA digestion, a standard phenol/chloroform extraction and ethanol precipitation 

(Sambrook and Russell, 2001; Wennmann et al., 2015c). DNA concentration and purity were 

measured with a NanoDrop 2000c spectrophotometer. About 1 × 106 AiE1611T cells were 

transfected 2 µg genomic DNA with the aid of Lipofectamin® (Invitrogene) treated with from 

either AgseNPV-B or AgseGV (Felgner et al., 1987). Due to their different refractions in light 

microscopy, putatively infected cells were identified by the formation of OBs (occ+) for 

AgseNPV-B and cytopathological effects (CPE) for AgseGV compared to control wells treated 

with Lipofectamin® and water only.  

Cell debris and OBs were separated from BV and suspended in TEK-buffer (1 M Tris-EDTA 

pH 7.5, 0.15 M KCl). After an incubation at 65 °C for 30 min, sodium dodecyl sulfate and 

proteinase K were added in final concentrations of 3% and 0.2 M, respectively, followed by a 

further incubation at 65 °C for 30 min. DNA was purified by phenol/chloroform extraction and 

ethanol precipitation (Gross-Bellard et al., 1973; Sambrook and Russell, 2001). Supernatants 

from transfections with AgseNPV-B DNA and AgseGV DNA, respectively, were used to infect 

a second round of cells. DNA from these infections was extracted as described and all samples 

were subjected to PCR reactions with specific primers for AgseNPV-B polyhedrin (UKf_2.2: 

GCCGAGGATCCATTTTTTG , UKr_2: CGCAGAG CGTGTTGAGCTAAA, 260 bp 

fragment) and AgseGV granulin (GVf_spez03 GACAGGCGTATA TCGGAAGC, GVr_spez 

TGAGCGACGTAATCTGGATG, 347 bp fragment), respectively. PCR conditions were 

identical as below. 

RNA purification from transfected cells and RT-PCR of selected AgseNPV-B and 

AgseGV genes 

Laboratory equipment and surfaces were treated with 0.1% (v/v) diethyl pyro carbonate/water 

(DEPC Carl Roth®) or RNase AWAY® (Carl Roth®) to avoid RNase contamination. Cells and 

supernatants were harvested from transfections. Cells and possible OBs were separated from 

supernatants by centrifugation at 300 g and 10 °C for 10 min. Supernatants were removed and 

the pelleted cells derived from transfections with genomic DNA of AgseNPV-B or AgseGV 

were resuspended in 1.2 ml of RLT Plus (QIAGEN®) before purification of RNA using a 

QIAGEN® RNeasy® Plus Mini Kit. Total RNA was measured by UV-VIS absorbance. Reverse 

transcription of 1 µg of RNA was performed using the iScript™ Reverse Transcription 

Supermix for RT-qPCR kit (BIO-RAD©). PCR reactions of cDNA samples were conducted in 

order to detect transcription of selected AgseNPV-B and AgseGV genes (Table 1). Amplicons 

were generated in separate PCR reactions (0.2 µM primer pairs, 1 µl of cDNA added to Axon®1 

× reaction buffer BD detergent and Mg2+ free buffer, 2 mmol MgCl2, 0.2 mmol of a dNTP mix 

(each nucleotide with equimolar quantities of 10 mM) and 2.5 U Taq polymerase (Axon®). PCR 

regime: 3 min initial denaturation at 95 °C, followed by 35 cycles of 30 sec denaturation at 95 

°C, 30 sec primer annealing at 58 °C and DNA elongation for 30 sec at 72 °C. PCR amplicons 

were electrophoresed through 3% (w/v) agarose gels at 8 V/cm in TBE buffer for 120 min 
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(Sambrook and Russell, 2001). Separated amplicons were visualized by staining the gels with 

6 µl of Midori Green Advance (Biozym) per 100 ml agarose solution and documented under 

UV light. 

Comparison of budded virus of AgseNPV-B from infected A. segetum larvae with DNA 

from AgseNPV-B transfected cells 

Late third to early fourth instars were fed with small pieces of artificial diet (~8 mm³) overlaid 

with 1 – 2 µl of AgseNPV-B OB suspension (106 OBs/ml) At day 3 post infection, larvae were 

anesthetized with hemolymph suspension was carefully collected clipping one of the anterior 

legs. The hemolymph was sterile-filtered through a 0.2 µm Whatman® membrane. For the initial 

amplification of BV, 0.5 ml of the pooled hemolymph was used to infect 2 × 106 cells. For the 

comparison, about 1 × 106 AiE1611T cells were transfected with 1 µg of genomic DNA from 

AgseNPV-B with the aid of Lipofectamin. Supernatant of occ+ was filtered and used for a 

second round of infection (2 × 106 AiE1611T cells). In both cases, infection was checked 

visually on a daily basis until 75% were occ+. Genomic DNA was subsequently digested with 

EcoRI and HindIII (FastDigest, Thermo Scientific) in order to conclude possible differences of 

intracellular DNA that derived either from transfections of cells (AgseNPV-B TRA) or from 

infections with A. segetum hemolymph (AgseNPV-B HEM). The fragments were separated by 

0.8% agarose gel electrophoresis at 8 V/cm in TAE buffer and were visualized by staining the 

gels with 6 µl of Midori Green Advance (Biozym) per 100 ml. The pattern and size of the 

restriction fragments of the clones were compared to EcoRI and HindIII digestions of the 

AgseNPV-B (KM102981) (Wennmann et al., 2015a). 

Determination of the median tissue culture infective dose (TCID50) 

The concentration of plaque forming units (pfu/ml) of budded virus (BV) suspensions was 

determined by end-point dilution titration with 3 × 10³ cells/well (O'Reilly et al., 1994; Reed 

and Muench, 1938). Occ+ wells were scored on a daily basis by refractive phase-contrast for 

seven days. Concentration of plaque forming/infectious units (pfu) were calculated based on 

Poisson-distributed estimation of infection (O'Reilly et al., 1994). 

Table 1 Oligonucleotide primers specific for Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) and 

Agrotis segetum granulovirus (AgseGV) used for reverse transcription PCR. Given are their target genes, their 

names, positions of amplicons in the genome, the expected amplicon sizes and the primer sequences. 

NPV Gene Primer name Pos. in genome Size (bp) Primer sequence (5‘– 3‘) 

 
vef-1 

prAsBvef1-f 

prAsBvef1-r 
72,627 – 72,746 120 

TCGAGCTGTTGGACAACGAC 

TCCACCTGTATTGCAGCTCG 

 
efp 

prAsBefp-f 

prAsBefp-r 
12,160 – 12,379 220 

CGAACACACCAATCTGCACG 

TTTAACTACGGCCAGCGTCA 

 
polyhedrin 

prAsBpolh-f 

prAsBpolh-r 
467 – 606 140 

TCGTCGAACCTGTGTACGTC 

TTCCCATATGACGCGGTTGA 

 
ie-1 

prAsBie1-f 

prAsBie1-r 
140,868 – 141,067 200 

ACCAAACGGGCCTTGTACTC 

GGAGTCGATATTCCGCTGCA 

 
lef-8 

prAsBlef8-f 

prAsBlef8-r 
119,969 – 120,148 180 

TCGCGACAGTCCAACTTTGA 

AACCTTTTCGTGGCCAGTGT 

 
vp39 

prAsBvp39-f 

prAsBvp39-r 
83,849 – 84,008 160 

ATTCCGTGGCAACTCTGTGG 

GGTGACTTCTTCTTCGCGGG 
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Table 1 Oligonucleotide primers specific for Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) and 

Agrotis segetum granulovirus (AgseGV) used for reverse transcription PCR. Given are their target genes, their 

names, positions of amplicons in the genome, the expected amplicon sizes and the primer sequences. 

GV Gene Primer name Pos. in genome Size (bp) Primer sequence (5‘– 3‘) 

 
enhancin 

prAsGVenh-f 

prAsGVenh-r 
54,623 – 54,772 150 

GACGTGGGCGAGCATATTTG 

GGAAAAGGAGTTCTGGCCGA 

 
f-protein 

prAsGVfpro-f 

prAsGVfpro-r 
23,927 – 24,046 120 

AGCCTTTTCGGAGGAGCTTT 

GTCGGTGCTGTTTTCATGCT 

 
granulin 

prAsGVgran-f 

prAsGVgran-r 
112 – 311 200 

GACAGGCGTATATCGGAAGCT 

CGTGTCCAAGTTTCGCGAAG 

 
ie-1 

prAsGVie1-f 

prAsGVie1-r 
7,690 – 7,839 150 

ACAACTCTTGCACCGAGGAC 

TCGCTGAAATTCACGCCAAC 

 
lef-8 

prAsGVlef8-f 

prAsGVlef8-r 
115,297 – 115,466 170 

TCCACTTTTTGTCCCCTCACC 

GACGTGGAGGGATGGAATCG  

 

vp39 
prAsGVvp39-f 

prAsGVvp39-r 
83,343 – 83,542 200 

AACAGAACACCGAAGACGCT 

CTGTAATTTGGCGAGCACGT  
 

 

Plaque purified AgseNPV-B clones 

Plaque purified clones of AgseNPV-B were isolated from amplified BV suspensions. The virus 

was adsorbed to the cells for 90 min at 26 °C with gentle rocking every 15 min. BV suspensions 

were removed by aspiration and the cells were overlaid with 2 ml of 0.8% low melt agarose 

(Roth) dissolved in ExCell420 with 3% FBS, 10 U/ml penicillin and 0.1 mg/ml streptomycin 

(Brown and Faulkner, 1978; Cooper, 1961; O'Reilly et al., 1994). The cells were monitored on 

a daily basis and a randomized set of occ+ (0.5 – 2 mm) plaques was picked at 7 dpi. Each 

isolated plaque was used to infect 1 × 106 cells. Infected cells were harvested at 7 dpi Cell debris 

and OBs were separated from BV. The DNA was extracted from the pelleted cells and OBs and 

subjected to digestion with HindIII. Fragments were separated in a 0.8% agarose gel 

electrophoresis at 8 V/cm in TAE buffer for 4 h followed by staining with Midori Green 

Advance and documentation under UV light. Restriction patterns of the clones were size-

compared to a HindIII in silico digestion of the AgseNPV-B genome sequence (KM102981).  

Full-range bioassays for determination of the median lethal viral dose (LD50) 

Full range bioassays were performed with OBs of the original in vivo produced virus stock of 

AgseNPV-B and the in vitro produced AgseNPV-B PP 2. Serial 1:10 dilutions of purified OBs 

were prepared and fed to L2/L3 A. segetum larvae with small cubic pieces of artificial diet 

(8 mm³) overlaid each with 1 µl of virus treatment, or water in cases of control groups. Each 

treatment consisted of 25 – 30 tested animals and 50 uninfected control animals, three to four 

independent replicates were performed. Larvae that did not ingest the offered diet within 12 h 

were excluded from the experiment. The groups of tested larvae were transferred into individual 

50-well boxes containing 50 ml of premixed Stonefly Heliothis diet (Ward´s Science). 

Mortality rates were scored at 1 dpi (to exclude larvae killed by handling) and at 7 dpi to score 

mortality caused by virus treatment. The mortality rates at 7 dpi were corrected for control 

mortality according to Abbott (1925). Probit analysis was performed with software ToxRat 3.0; 

the infectivity was compared in a parallel line assay (ToxRat Solutions GmbH, Alsdorf, 

Germany). 
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Figure 1 Light micrograph at (A) 200-fold and (B) 400-fold resolution of Giemsa stained AiE1611T cells 

transfected with 2 µg genomic DNA from AgseGV. Cells show signs of bloated nuclei and disordered cell 

division. (C) Phase-contrast micrograph at 200-fold resolution of AiE1611T cells transfected with 2 µg 

AgseNPV-B DNA. Foci of occlusion bodies are concentrated in regions of cell nuclei at 10 days after 

transfection. 

Results 

Infection and transfection experiments using budded virus and DNA 

From a total of six wells of AiE1611T cells transfected with genomic DNA of AgseGV, after 

10 days, only one well showed any cells with cytopathological effects (CPE). In Giemsa-stained 

micrographs of these particular candidate cells, nuclei of the cells were enlarged as shown by 

the enrichment of the purple red DNA complexed with Giemsa-stain. The enlarged nuclei were 

embedded in a thin layer of bluish stained cytoplasm. At higher resolution, cells were spotted 

that had stopped cell division, which resulted in bloated cells with more than one enlarged 

nucleus (Figure 1A, 1B). However, the other wells did not show any signs of CPE or signs of 

AgseGV infection. When AiE1611T cells were transfected with purified AgseNPV-B DNA, 

the cells produced OBs within 10 days (Figure 1C). In addition, infection with hemolymph 

derived from A. segetum larvae infected with AgseNPV-B resulted in visible OB production 

within 3 days post infection (data not shown). Phase-contrast microscopy showed three 

different kinds of cells: cells without OBs, cells with few OBs and cells with large numbers 

OBs, often densely packed, in the nuclei. The formation of OBs was a clear evidence for virus 

replication and completion of the infection with AgseNPV-B.  

RFLP and PCR analyses of AgseNPV-B clones and AgseGV transfected cells 

When total cellular DNA was isolated from transfected or infected cells and subjected to PCR 

using granulin/polyhedrin-specific primers, specific products were confirmed for AgseNPV-B 

but not for AgseGV (data not shown). When supernatants of these transfections, were used to 

infect fresh cells, OBs (data not shown) and positive PCR signals from cell pellets (Figure 2) 

was only observed with AgsNPV-B but not with AgseGV supernatants, indicating that 

AgsNPV-B but not AgseGV had produced infective BV. Restriction analysis of the isolated 

total intracellular DNA, originating from transfection with AgseNPV-B (TRA) of from 

infection with hemolymph derived BV of AgseNPV-B (HEM) provided identical EcoRI and 

HindIII digests (Figure 3), which were typical for AgseNPV-B (Wennmann et al., 2015). Both 

infections of AgseNPV-B (TRA) and AgseNPV-B (HEM) produced budded viruses in the cell 

culture supernatant, with titers of 1.9 × 105 pfu/ml and 1.5 × 106 pfu/ml, respectively. 

RT-PCR 
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To provide further evidence that AgseGV was not replicating in AiE1611T cells, transcription 

patterns of selected ORFs were determined by RT-PCR. Total intracellular RNA from cells 

showing CPE following transfection with AgseGV-DNA was analyzed for a selection of early, 

late and very late virus genes from both AgseGV and AgseNPV-B (vef-1/enhancin, efp/f-

protein, polyhedrin/granulin, ie-1, lef-8, vp39). Only two faint bands, i.e. granulin and ie-1, 

were identified in the cDNA samples of AgseGV transfected cells (Figure 4 A). In contrast, 

AgseNPV-B RNA produced positive cDNA signals for all tested ORFs (Figure 4B). 

Plaque purification of AgseNPV-B and bioassays  

Plaque purification was performed for both AgseNPV-B (TRA) and AgseNPV-B (HEM). In 

total ten isolates were identified and purified from plaques at 7 dpi. Six plaques derived from 

AgseNPV-B (HEM) (AgseNPV-B PP1 - PP6) and four plaque purified genotypes derived from 

AgseNPV-B (TRA) (AgseNPV-B PP7 – PP10). Total intracellular DNA was extracted from 

AiE1611T cells infected with the plaque purified material in order to assess restriction fragment 

analysis of these isolates (Figure 5). All isolates showed similar RFLP patterns and were 

considered as genetically identical isolates of AgseNPV-B. 

OBs of AgseNPV-B PP2 were used for the bioassays and compared to in vivo produced 

AgseNPV-B. The LD50 of this clone was 296 OB/larva compared to the LD50 of 150 OB/larva 

of the in vivo produced AgseNPV-B OB (Table 2). Based on the criterion of overlapping 

confidence intervals of the LC50 value (Robertson and Preisler, 1992), the in vivo and in vitro 

produced OBs did not differ in their activity in A. segetum larvae. 
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Figure 2 PCR of total intracellular DNA after infections 

with supernatants of AgseNPV-B and AgseGV transfected 

cells; (lane 1) non target control (NTC) with water and 

specific primers for AgseNPV-B polyhedrin and AgseGV 

granulin; (lane 2) uninfected cells with both specific primer 

pairs; (lane 3) genomic AgseNPV-B DNA with polyhedrin 

primers (positive control); (lane 4) cells from AgseNPV-B 

infection with specific primers; (lane 5) genomic AgseGV 

DNA with granulin primers (positive control) ; (lane 6) cells 

from AgseGV infection with specific primers. Size marker 

(bp) is given to the left. 
 

 
Figure 3 EcoRI and HindIII restriction 

analysis of 1 µg total intracellular DNA 

isolated from infected cells with AgseNPV-B 

TRA (A), AgseNPV-B HEM (B). Fragments 

were separated on a 0.8% agarose gel in 1 × 

TAE at 8 V/cm for 4 h. Size marker (kbp) is 

given to the left; inverse photograph. 

 
Figure 4 PCR with specific primers for selected (A) AgseGV and (B) AgseNPV-B genes. Amplicons were 

produced in PCRs with cDNA (left), no-RT controls (middle) from RNA of infected cells and with genomic 

DNA of AgseGV and AgseNPV-B (right). AgseGV: (1) enhancin, (2) f-protein, (3) granulin, (4) ie-1, (5) lef-

8, and (6) vp39. AgseNPV-B: (1) vef-1, (2) efp, (3) polyhedrin, (4) ie-1, (5) lef-8, and (6) vp39. For expected 

fragment sizes see Table 1. Amplicons were separated on a 3% agarose gel in 1 × TBE at 8 V/cm for 120 min. 

Size marker (bp) is given to the left; inverse photograph. 
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Figure 5 HindIII restriction analysis of 5 µg total intracellular DNA isolated from cells infected with plaque purified 

isolates (PP1 – PP10). (A) PP1 – PP6 derived from hemolymph of AgseNPV infected larvae, (B) PP7 – PP10 from 

cells transfected with AgseBPV-B DNA. Fragments were separated on a 0.8% agarose gel in 1 × TAE at 8 V/cm 

for 4 h. Size markers (kbp) are given to the left; inverse photograph. 

 

Table 2 Median lethal dose (LD50) of AgseNPV-B produced in vivo and in vitro with L2/L3 instars of A. segetuma 

AgseNPV-B 
No. individuals per 

bioassay / No replicates 

LD50 (95% CL) 

OB/larva 
Slopeb p(χ²)c Potency  

in vivo  1120 / 4 150 (35 – 424) 0.68 0.002 1  

in vitro  430 / 3 296 (170 – 515) 0.89 0.146 0.43  

a Mortality rates were scored on day 7 post infection and corrected for control mortality (Abbott, 1925). CL (confidence 

limits) calculated by Fieller´s Theorem; df degrees of freedom; Relative Potency according to dose-response of AgseNPV-

B ORI 
b The validity criterion of parallelism was confirmed as p(F) values were < 0.05.  
c Heterogenity correction of the fitted confidence limits was performed when p(χ²) values of the fit curves were < 0.05. 

 

Discussion 

Both AgseNPV-B and AgseGV belong to a cluster of four baculoviruses that infect different 

Agrotis species (Jakubowska et al., 2006; Wennmann et al., 2015a; Zethner, 1980; Zethner et 

al., 1987; Zhang et al., 2014). In this study, we demonstrated that AiE1611T cells are fully 

permissive for AgseNPV-B infection leading to production of viral OBs. This result was not 

restricted to transfections with genomic AgseNPV-B DNA, but also to infection with naturally 

obtained BV from infected Agrotis segetum larvae. It appears that AiE1611T cells are 

permissive for a wide range of Alphabaculoviruses including AgipNPV (Harrison and Lynn, 

2008), AgseNPV-A (El-Menofy and Jehle, unpublished results), AgseNPV-B (this study), 
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Autographa californica multiple nucleopolyhedrovirus (AcMNPV), Anagrapha falcifera 

multiple nucleopolyhedrovirus (AfMNPV), Anticarsia gemmatalis multiple 

nucleopolyhedrovirus (AgMNPV), Galleria mellonella nucleopolyhedrovirus (GmNPV), 

Heliothis armigera nucleopolyhedrovirus (HearNPV), Plutella xylostella nucleopolyhedrovirus 

(PlxyNPV) and Rachiplusia ou nucleopolyhedrovirus (RoMNPV) (Harrison and Lynn, 2008). 

In addition to OB production, AgseNPV-B infections were also confirmed by RT-PCR and PCR 

or REN analyses. AgseNPV-B OBs produced in vitro in AiE1611T cells were infective to A. 

segetum larvae as confirmed with bioassays. Although AiE1611T cells have a broad host range 

for many alphabaculoviruses, it was not permissive for the betabaculovirus AgseGV. In RT-

PCR, only faint bands for ie-1 and granulin were detected. In general, ie-1 possesses an early 

promoter with a canonic CAGT motif recognized by host RNA polymerase (Blissard et al., 

1992; Pullen and Friesen, 1995a; Pullen and Friesen, 1995b). Recognition of ie-1 promoter is 

host independent and has been reported even in mammalian cell lines (Pfeifer et al., 1997; 

Theilmann and Stewart, 1991). Additionally to the host independent transcription of ie-1, it also 

appears to be transcribed irrespectively from complete infection cycles (Kovacs et al., 1992). 

The granulin gene is a homologue to the polyhedrin gene of alphabaculoviruses. It is considered 

as a very late gene transcribed by a baculovirus RNA polymerase. Its expression is thought to 

appear only after virus replication. This generalized picture of polyhedrin/granulin transcription 

maybe challenged by some betabaculoviruses, because recent reverse transcriptionanalyses and 

micro-array studies of Cydia pomonella granulovirus (CpGV) revealed some early transcription 

of granulin under in vivo infection conditions (Schneider and Jehle, unpublished results). The 

lack of transcription of other late AgseGV ORFs, such as enhancin, f-protein, lef-8, vp39, 

provide clear evidence that AgseGV is not able to replicate and that the transcription is 

presumably blocked at an early stage of infection. For this reason, despite to some 

cytopathological effects in transfections with AgseGV DNA, neither DNA replication (data not 

shown) nor RNA transcription could be demonstrated. In general, only a very few cell cultures 

permissive for betabaculoviruses have been reported; the best studied system is the cell line 

CpDW1 which replicates CpGV (Gebhardt et al., 2014; Hilton and Winstanley, 2007; 

Winstanley and Crook, 1993). 

Although AgseNPV-B and AgseGV belong to different baculovirus genera, namely 

Alphabaculovirus and Betabaculovirus, they are both able to cross- and co-infect larvae of the 

hosts A. segetum and A. ipsilon (El-Salamouny et al., 2003; Wennmann and Jehle, 2014; 

Wennmann et al., 2015c; Zethner, 1980; Zethner et al., 1987). Hence, a combined infection of 

these two viruses, could serve as a promising model to investigate virus-virus interaction of two 

baculoviruses from different genera (Wennmann et al., 2015c). Due to the lack of replication of 

AgseGV in AiE1611T, these studies, however, cannot be extended to cell culture. However, 

AiE1611T cells allow replication of AgseNPV-B under in vitro conditions, which will provide 

new opportunities for studying its pathology on molecular level. Its permissivity to AgseNPV-

B and many other alphabaculoviruses allows mixed infection studies using virus isolates from 

different alphabaculovirus species. Under natural infection condition of A. segetum larvae, 

AgseNPV-B and AgseGV often occur mixed because of co-infections. Since we could not find 

any hint that AgseGV can replicate in AiE1611T, this cell line may also be used as a biological 

selection system to purify AgseNPV-B from AgseGV.  
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Chapter IV: Agrotis segetum nucleopolyhedrovirus B shows high genome 

stability during serial in vitro passages in AiE1611T cells 

This chapter is intended for submission.  

Abstract 

Ten serial infections of the plaque purified clone PP2 of Agrotis segetum nucleopolyhedrovirus 

(AgseNPV-B) were performed in the permissive cell line AiE1611T to study the stability of the 

viral genome during cell culture passage. A loss of virulence was observed right after the first 

round of passaging, then PP2 remained relatively stable over ten passages. This was observed 

by the absence of few polyhedra phenotypes in phase contrast microscopy and by next-

generation sequencing (NGS) of five selected passages. NGS sequencing revealed that defective 

particles were absent over ten passages and that only very few mutations, in total only 19 single 

nucleotide polymorphisms (SNPs), occurred throughout the experiments. Two of these SNPs 

were located in the baculovirus core gene vp91. A moderate multiplicity of infection (MOI = 

1) was applied. The results show that despite the decreased virulence, AgseNPV-B (PP2) is 

therefore a tentative candidate for the production of a microbial pest control agent in AiE1611T 

cells due to its genome stability observed in ten serial passages. 

Introduction 

The Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) Agrotis segetum 

nucleopolyhedrovirus A (AgseNPV-A) and Agrotis ipsilon nucleopolyhedrovirus (AgipNPV), 

as well as the Agrotis segetum granulovirus (AgseGV), form a cluster of baculoviruses 

infecting different Agrotis species (Wennmann et al., 2015a). These viruses have some potential 

of being used as biocontrol agent of different cutworm species, such as Agrotis segetum, 

A. ipsilon or A. exlamationis (El-Salamouny et al., 2003; Jakubowska et al., 2006). The genome 

of AgseNPV-B is 148,981 bp in size and encodes 150 putative open reading frames (orf), as 

well as six putative homologous repeat sequences (hrs). Based on the phylogenetic analyses of 

the amino acid (aa) sequences of 37 core genes from 43 baculovirus genome sequences it was 

found that AgseNPV-B is most closely related to AgipNPV but both viruses belong to different 

Alphabaculovirus species (Wennmann et al., 2015a). In addition, infection experiments of 

Agrotis larvae revealed that AgseNPV-B had a similar virulence  as AgipNPV (El-Salamouny 

et al., 2003). As for all baculoviruses, AgseNPV-B has two virion phenotypes: (1) occlusion 

derived virions (ODVs), which are embedded in a proteinaceous occlusion body (OB) are 

responsible for per os infections of larvae and for horizontal transmission from larvae to larvae, 

and (2) budded viruses or budded virions (BVs), which are responsible for a cell-to-cell 

transmission of infection within larvae (Gueli Alletti et al., 2017a; Herniou et al., 2011). In 

general, BVs are also infectious for susceptible insect cell lines (Volkman and Summers, 1977), 

though suspensions of purified ODVs may also initiate infections of cell culture, but to a far 

lower extend (Lynn, 2003). 

Whereas BVs contain only one nucleocapsid, the OBs of alphabaculoviruses contain numerous 

ODVs with single or multiple enveloped nucleocapsids. Recent concepts of baculovirus 

population genetics, that were based on ultra-deep sequencing approaches, suggested that single 

OBs of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) can be considered 

as genetically diverse populations of genotypes due to the large number of diverse 

nucleocapsids (Chateigner et al., 2015). In infections of larvae, competition between these 
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different genotypes of an isolate results in a stabilizing effect on genomes of baculovirus 

populations. Consequently, genotypes with infective phenotypes for larvae are maintained as 

the predominant form in serial in vivo passages. Opposing to serial in vivo infections, serial 

in vitro passages of BVs through susceptible cell lines, can act as a bottleneck for the BV 

phenotype and even peril the loss of virus activity in host larvae. Recently, the insect cell line 

AiE1611T deriving from Agrotis ipsilon eggs has been identified to be permissive for several 

alphabaculoviruses, including AgseNPV-B (Gueli Alletti et al., 2017a; Harrison and Lynn, 

2008). The cell line exhibit favorable growth conditions, forms monolayers of spherical cells 

and produces large numbers of AgseNPV-B OBs, when infected with AgseNPV-B BV. Thus, 

AgseNPV-B is a candidate for the in vitro production of a biological control agent against 

Agrotis species. However, any production of virus in permissive cell lines is affected by 

limitations that alter yield, activity and performance of virus progeny. Of great importance is 

the passage effect in serial infections in cell culture (Krell, 1996), which describes an alternation 

of the selection pressure in favor of the BV phenotype. As a consequence, mutant genotypes 

lacking ODV specific genes that are necessary for in vivo infection might be accumulated over 

several rounds of in vitro infections.  

Two main virus mutants have been observed in serial in vitro passages: few polyhedra (fp) 

mutants that are characterized by low numbers of newly produced OBs per infected cell (Fraser 

et al., 1983; Potter et al., 1978), and defective interfering particles (DPIs) that have large 

deletions (Rohrmann, 2013). One of the reasons for DPI accumulation is their replication 

advantage during in vitro infection because of the smaller genome sizes. The accumulation of 

DPIs depends highly on the multiplicity of infection employed (Kool et al., 1991). As shown 

by electron microscopy and molecular studies, low multiplicities of infection assist selection 

against fp and DPI mutants in serial passages (Kool et al., 1991; Zwart et al., 2008). Classical 

approaches to identify DPI production include the analyses of DNA endonuclease restriction 

fragment patterns deriving from digestions of DNA isolated from infected cell cultures. Since 

large parts of the baculovirus genome can be missing in DPI mutants, restriction patterns of 

DPIs differ to those of wild-type genomes in these analyses. However, small mutations, such 

as single nucleotide polymorphisms (SNPs), small insertions and deletions of few base pairs 

cannot be easily identified by these methods.  

By applying Solexa Illumina sequencing we investigated the genomic stability of AgseNPV-B 

over ten serial passages in the cell line AiE1611T when a moderate multiplicity of infection 

was applied. The in vivo activity of cell culture produced OBs was further tested in bioassays 

using larvae of A. segetum. It was found that the biological activity and the genome 

compositions of AgseNPV-B remained rather stable during the passage experiment.  

Material and Methods 

Insects, cell line and maintenance 

Mass-rearing of A. segetum was performed as described previously (Wennmann and Jehle, 

2014). Stocks of the A. ipsilon cell line AiE1611T were provided by Robert L. Harrison from 

the Agricultural Research Service of the United States Department for Agriculture (Harrison 

and Lynn, 2008). AiE1611T cells were maintained as previously described (Gueli Alletti et al., 

2017a) and split on a weekly basis into fresh T25 cell culture flasks (4 × 106 cells per flask) 

(Lynn, 2002). 
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Viruses 

An occlusion body (OB) stock of Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B) 

[species Agrotis segetum nucleopolyhedrovirus B, genus Alphabaculovirus] was provided by 

Doreen Winstanley, Horticulture Research International (HRI) collection, Warwick (UK). 

After budded viruses (BV) were prepared from larvae, suspensions of this virus were plaque 

purified in vitro in cell cultures of AiE1611T as previously described (Gueli Alletti et al., 

2017a). One of these purified clones, namely AgseNPV-B PP2 (abbreviated PP2 in the 

following) showed a high virus titer in determinations of the TCID50, as well as typical OB 

formation (Occ+) in infections of AiE1611T cells. PP2 was therefore subjected to experiments 

in serial infections of the cell culture AiE1611T. 

Determination of the median tissue culture infective dose (TCID50) 

The concentration of plaque forming units (pfu/ml) of BV suspensions was determined by end-

point dilution titration with 3 × 10³ cells/well (O'Reilly et al., 1994; Reed and Muench, 1938). 

Occ+ wells were scored on a daily basis by refractive phase-contrast for seven days. 

Concentration of plaque forming/infectious units (pfu) were calculated based on Poisson 

distributed estimation of infection (O'Reilly et al., 1994). 

Serial infections of AiE1611T cells 

The initial density of seeded cells was 4 × 104 cells/cm². The cells were infected with a 

multiplicity of infection (MOI) of 1 pfu per cell for the initial infection with PP2 and incubated 

at 26 °C for one week. All consecutive passages (PP2 #1 – PP2 #10) included a determination 

of the TCID50 as described above, followed by an infection with a MOI = 1 for one week under 

the same conditions as in the initial infection. For DNA sequencing, the first, third, fifth, seventh 

and tenth passage (PP2 #1, #3, #5, #7 and #10) were seeded in T75 cell culture flasks to yield 

higher amounts of OBs, for all other passages cells were seeded in T25 for easier maintenance. 

Samples of the passages #1, #3, #5, #7 and - #10 were divided equally and used either for total 

DNA extraction or for OB purification, as previously described (Gueli Alletti et al., 2017a). 

The obtained OBs were separated from cells by disintegrating the cell membrane in 0.1% SDS 

and ultra-sonic treatment for 10 min at room temperature, before they were pelleted at 20,000 

g. Concentration of OBs was measured in refractive phase-contrast microscopy with a 

Neubauer improved hemocytometer. 

Full-range bioassays for determination of the median lethal viral dose (LD50) 

Full range bioassays were performed with OBs of the original virus stock of AgseNPV-B (in 

the following: ORI), and the passages #1, #3, #5, #7 and #10 of PP2. Second to third instars 

(L2/L3) of A. segetum larvae were starved overnight and then fed with a small cube (2 × 2 × 2 

mm) of artificial diet (Wennmann et al., 2015c), each overlaid with 1 µl of serial tenfold OB 

dilutions resulting in final doses of 1 to 105 OBs per cube. For untreated control groups water 

instead of OB suspensions were applied. Each treatment group consisted of 25 – 30 larvae, 

whereas 50 additional larvae were used for the untreated control group. Animals that did not 

ingest the inoculum within 12 h were excluded from the experiment. Then, the larvae were 

individually placed in each well of a bioassay tray (Licefa, Germany), each well contained about 

1 ml of premixed Stonefly Heliothis diet (Ward´s Science). Larval mortality was recorded at 7 

days post infection (dpi) and corrected for mortality of untreated controls (Abbott, 1925). The 

dose-responses were subjected to Probit analysis with linear maximum likelihood regression 

(ToxRat 3.0) (Lehmann et al., 2016). Confidence limits (CL) of 95% were computed based on 
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Fieller´s Theorem and mortality within the passages was compared based on parallel line assays 

(PLA) of quantal responses and 95% CL. In cases, that corresponding dose-response lines did 

not fulfill the criterion of linearity in PLA, F-statistics were used to investigate parallelism of 

lines based on standard operating procedures of the European Pharmacopeia Commission 

(https://www.edqm.eu/ en/european-pharmacopoeia-commission). 

Sequencing and consensus genome assembly 

About 50 ng purified DNA samples of AgseNPV-B ORI and the selected passages PP2 #1, #3, 

#5, #7, #10 were subjected to NexteraXT library preparation and an Illumina NextSeq500 

paired-end sequencing (StarSEQ Ltd., Mainz Germany). Each sequencing produced 

approximately 1.0 – 2.5 Mio reads with an average length of 151 nucleotides (nt), resulting in 

an average of about 1000- to 2500-fold genome coverage when a genome size of 148,981 bp 

for AgseNPV-B is assumed (Wennmann et al., 2015a). A heuristic assembly strategy 

combining de novo assembly, re-mapping and Sanger sequencing was followed for the correct 

consensus genome assembly and detection of mutations. De novo assembly was conducted 

using the Edena assembly program with standard parameters (Hernandez et al., 2008; 

Hernandez et al., 2014). The contigs produced in that assembly were aligned against the 

AgseNPV-B reference genome using the native Geneious assembler for mapping (Geneious 

R9.1 Biomatters Ltd.). Large contigs (> 1000 bp) that did not match to the reference genome 

were compared to the nucleotide collection database (nr/nt) using the basic local alignment 

search tool for nucleic acids (blastn) in order to identify contaminating nucleic acids (Altschul 

et al., 1990; Johnson et al., 2008). The consensus sequences were aligned to the AgseNPV-B 

reference sequence using the Mauve whole genome aligner of Geneious (Darling et al., 2004). 

Re-arrangements in the alignment were further investigated by designing flanking sequencing 

primers and submitting the amplicons for Sanger sequencing (StarSEQ Ltd., Mainz Germany).  

Detection of deletions, insertions and single nucleotide polymorphisms to AgseNPV-B  

Read-pairs with 50% consecutive bases below an average Phred quality score of 30 per read 

cycle (99.9% base call accuracy) were excluded from the analyses (Gordon, 2009). Obtained 

read-pairs were re-mapped against AgseNPV-B reference genome (KM102981) using the 

Bowtie2 aligner for short reads with standard parameters for very-sensitive local alignment of 

reads on the JKI Galaxy server (Afgan et al., 2016a; Langmead and Salzberg, 2012a; 

Mielczarek and Szyda, 2016; Ye et al., 2015; Ziemann, 2016). Insertions and deletions (InDel) 

were identified by their breakpoints using Pindel (Ye et al., 2009). Single nucleotide 

polymorphisms (SNPs) were detected with the SAMtools MPileup tool (Li et al., 2009). The 

average threshold of the quality of mutations in the alignment was set to a Phred-scaled 

probability of 20 (99% base call accuracy in the alignment) or higher in order to take into 

account possible errors due to Illumina sequencing and Bowtie2(Li, 2011a; Li, 2011b; Li and 

Durbin, 2009). The statistical analyses were assessed using the R-package “Bioconductor” 

(MacQueen, 1966; R Development Core Team, 2015; Robinson, 2016). 
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Results 

Influence of serial infections to OB production and infectivity in host larvae 

Infections of AiE1611T cells with PP2 produced large numbers of OBs within 7 days post 

infection (dpi) as observed in phase-contrast microscopy of these infected cells (Figure 1A). In 

infected cells, OBs appeared as large, refractive polyhedrons within the Giemsa-stained nuclei 

and were aggregated within the nuclei (Figure1B). The formation of numerous OBs per cell did 

not decrease after 10 rounds of serial passaging, as shown exemplarily for the eighth passage, 

PP2 #8 (Figure C, D). OB formation was generally visible starting at 3 dpi and resulted in highly 

packed cells at 7 dpi (Figure C, D). No visual evidence for fp phenotypes was observed in any 

serial passaging step. The OBs of the passages PP2 #1, #3, #5, #7 and #10 were harvested and 

used for both the determination of the lethal dose-responses and to investigate the genomic 

stability. The employed MOI and infected cell numbers were identical for each passage, also 

the harvested OB amounts were similar, ranging from 1.12 × 105 OB/µl for PP2 #7 to 

3.29 × 105 OB/µl for PP2 #1 (P < 0.05, Tukey-HSD) (Table 1). As the OB production in 

different passages was in the same range of magnitude, a mean concentration of 

2.38 × 105 ± 8.27 ×104 OB/µl for all passages and thus an OB productivity of 397 OB per 

infected cell was estimated. 

In bioassays with ORI a LD50 of 150 OB/larva was observed, the LD50 of PP2 #1 was 296 

OB/larva. For PP2 #3 to #7 the LD50 were about 10-fold reduced whereas PP2 #10 showed a 

similar LD50 as PP2 #1. This corresponded to a change of the potency from 1.97 in passage #1, 

to 16.7 (#7) to 1.8 (#10). As the number of test animals and the biological replicates were not 

uniform within the single passages, statistical tests for the comparison slopes was based on the 

F distribution. Here, no statistical differences of slopes of the probit lines were found according 

to F-test statistics, although the slope of the probit line of PP2 #7 was flatter than those of all 

other passages. Furthermore, the in vivo virulence of the OBs decreased during the passage 

experiments until PP2 #7, but in the end this decline was reverted with passage #10. Therefore, 

the trend of a declining in vivo virulence with increasing passage number could not be fully 

concluded from the experiments. 

Table 1 Production and biological activity of occlusion bodies (OBs) of different AgseNPV-B passages. Given 

are the OB concentration obtained and the,median lethal dose (LD50) of AgseNPV-B ORI and the passages 

#1, #3, #5, #7, #10 of AgseNPV-B PP2 with L2/L3 instars of A. segetuma. 

 

Passage 
OB conc. ± SDb 

[105 × OB/µl] 

No. individuals 

per bioassay 

LD50 (95% CL) 

OB/larva 
Slopec p(χ²)d df Potencye 

ORI 1.8 ± n.d.A 1120 150 (35 – 424) 0.68 0.002 4 1 

#1 3.29 ± 0.76B 430 296 (170 – 515) 0.89 0.146 3 1.97 

#3 2.16 ± 0.27C 725 1921 (1350 – 2727) 0.94 0.525 3 12.8 

#5 2.44 ± 0.33C 752 2131 (768 – 6053) 0.87 0.042 3 14.2 

#7 1.12 ± 0.27D 1167 2507 (736 – 14108) 0.51 0.002 4 16.7 

#10 2.90 ± 0.49BC 726 265 (56 – 879) 0.86 0.012 3 1.8 
 

a Mortality rates were scored on day 7 post infection and corrected for control mortality (Abbott, 1925). CL (confidence limits) 

calculated by Fieller´s Theorem; df degrees of freedom; Relative Potency according to dose-response of AgseNPV-B ORI 

b Same letters indicate overlapping 95% family-wise CL in multiple comparisons of means in Tukey-HSD-Test 

c The validity criterion of parallelism was confirmed as p(F) values were < 0.05. 

d Heterogenity correction of the fitted confidence limits was performed when p(χ²) values of the fit curves were < 0.05. 

ePotencies are calculated as the quotient of LD50 values from #1, #3, #5, #7 and #10 to ORI 
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Figure 1 Phase-contrast micrograph of AiE1611T cells infected with PP2 at 7 dpi. Cells show intact structure 

and signs of late infection as high numbers of occlusion bodies are formed (A). Light-micrograph of Giemsa-

stained cells infected with PP2. Cell structure is disrupted; occlusion bodies are assembled in the centers of the 

cells (B). Phase-contrast micrographs of a high passage of AgseNPV-B PP2 (#8) at 3 dpi (C) and 7 dpi (D).  

 

Table 2 Assembly reports of reads with an average Phred-quality score ≥ Q30 generated by NextSeq500 NGS 

assembled against the AgseNPV-B reference genome sequence (KM102981) using the Bowtie2 mapper.  

AgseNPV-B 

Sample 

Reads pairs 

≥ Q30 

No of read pairs 

assembled to RefSeq 

No. of read pairs not 

assembled to RefSeq 

Mean coverage 

± SD 

%GC 

contenta 

ORI 193,138 158,136 (90%) 35,002 (18%) 316 ± 323 43.7 

PP2 #1 1,160,163 695,277 (60%) 464,886 (40%) 1370 ± 243 46.3 

PP2 #3 1,196,424 1,104,009 (92%) 92,415 (8%) 2162 ± 377 45.3 

PP2 #5 1,120,376 1,008,500 (90%) 111,876 (10%) 1959 ± 930 43.5 

PP2 #7 1,204,968 778,537 (65%) 426,431 (35%) 1532 ± 458 46.6 

PP2 #10 956,470 954,650 (> 99%) 1,820 (< 1%) 1812 ± 360 45.0 
 

a%GC content refers to the content of all mapped reads (not to the %GC-content of the genome sequence) 
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Figure 2 Coverages of Bowtie2 assemblies of AgseNPV-B (ORI) and the passages #1, #3, #5, #7 and #10 of PP2 

according to their genome position [nt] in the reference AgseNPV-B sequence (KM102981) 

Comparison of AgseNPV-B ORI and the AgseNPV-B reference genome sequence 

The original AgseNPV-B virus stock (Wennmann et al., 2015a), termed ORI in this study, was 

re-sequenced in this NGS approach and compared to the reference genome sequence (Acc. No. 

KM102981) that was determined by 454 sequencing. The Solexa Illumina data resulted in 316-

fold average global coverage of the genome. One reason for this low coverage compared to the 

sequenced clones from serial infections (Table 2) was a low yield of high-quality reads due to 

problematic clustering in the sequencing flow-cell. The coverage of the reads fluctuated over 

the reference genome sequence (Figure 2). The presence of large deletions was evaluated by a 

de novo assembly of the obtained reads and by aligning the contigs to the AgseNPV-B reference 

genome. A large deletion would have resulted in a decrease of sequencing coverage to zero of 

an expanded genome region in comparison to the reference sequence. However, such extended 

gaps in the coverage could not be observed in the obtained of AgseNPV-B ORI indicating a 

lack of major deletions in the passages. The presence of smaller deletions, insertions or 

duplications (up to 10 nt) was analyzed using the detection tool PinDel. Although two insertions 

were detected (data not shown), they were not considered for the further analyses as the Phred 

quality score even fell below the quality criterion of 13 (95% base call accuracy).  

In the analyses of single nucleotide polymorphisms (SNPs), SNPs were assessed when the 

Phred quality score was ≥ 20 (99% base call accuracy). The obtained sequencing reads of the 

initial AgseNPV-B ORI already comprised single nucleotide polymorphisms in 10 nucleotide 

positions, when mapped with Bowtie2 and in 5 positions when mapped with BWA-MEM, 

respectively (Table 3 and 4). Only on position, namely a proposed transversion from G to T at 

nucleotide (nt) position 972 in orf1629 was identified with a variant frequency of 100% in both 

assembly strategies. As this SNP was transmitted to all following passages in the serial 

infections with 100% variant frequency, it rather reflects an annotation error in the reference 

genome of AgseNPV-B, which was sequenced on an Abi Solid 454 platform in 2014 

(Wennmann et al., 2015a). Re-evaluation of the original 454 raw data confirmed that this the 
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reference genome sequence has indeed a thymine residue at this position and not a guanin. The 

fourteen remaining SNPs were identified in homologous repeat sequences (11 in hr1 and 3 in 

hr3) and in asb018, causing a silent mutation due to a change from guanine to adenine in this 

AgseNPV-B specific orf. All but one identified SNPs in ORI were supported by read coverages 

above the mean global read coverages per nucleotide position of 316 ± 323 reads. The exception 

is the SNP at nt position 972, with only 440 read coverage.   

Table 2 Single nucleotide polymorphisms observed between the AgseNPV-B reference genome (KM102981) 

and the sequences passages in MPileup analyses of Bowtie2 assemblies. The variations are based on the original 

genotype at one of the 16 nucleotide positions on the reference genome. SNPs were quality filtered by their 

mapping quality (Phred quality ≥ 20) with a resulting base call accuracy of 99% or greater.  

Position 

Variant frequency [%] 

Total coverage [reads]b Change Variations CDS/hr 
AA-

Effect 
ORI #1 #3 #5 #7 #10 

972a 
100 

440 

100 

1,685 

100 

2,964 

100 

2,674 

100 

1,658 

100 

2,961 
G → T Transversion orf1629 none 

18,450 
40 

763 

40 

1,226 

30.8 

2,794 

42.3 

4,536 

50 

1,339 

50 

3,974 
C → T Transition hr1 none 

18,454 
75 

827 

40 

1,226 

30.8 

2,886 

48 

4,680 

50 

1,426 

47.4 

4,126 
G → T Transversion hr1 none 

18,462 
50 

699 

40 

1,226 

30.8 

2,793 

47.8 

4,684 

50 

1,442 

62.5 

3,740 
C → A Transversion hr1 none 

18,493 
50 

895 

50 

1,217 

28.6 

2,772 

45 

4,537 

60 

1,391 

35.3 

3,952 
T → G Transversion hr1 none 

18,501 
57.1 

1,504 

50 

1,219 

28.6 

2,973 

45 

4,596 

60 

1,399 

33.3 

5,268 
A → C Transversion hr1 none 

18,505 
57.1 

1,509 

40 

1,224 

26.7 

3,000 

47.4 

4,637 

60 

1,411 

31.6 

5,304 
A → G Transition hr1 none 

18,657 
77.8 

670 

62.5 

1,159 

52.4 

2,915 

50 

3,912 

60 

1,336 

80 

2,982 
A → T Transversion hr1 none 

18,669 
80 

705 

50 

1,277 

57.1 

3,162 

50 

4,221 

50 

1,453 

72.7 

3,164 
T → G Transversion hr1 none 

18,670 
77.8 

701 

25 

1,217 

33.3 

3,013 

34.5 

4,039 

16.7 

1,388 

50 

3,085 
T → C Transition hr1 none 

18,676 
0 

532 

37.5 

1,117 

25 

3,751 

14.3 

3,813 

33.3 

1,319 

30.4 

2,934 
G → T Transversion hr1 none 

18,678 
0 

533 

37.5 

1,173 

25 

2,720 

14.3 

3,731 

33.3 

1,309 

25 

2,888 
A → C Transversion hr1 none 

86,291 
0 

250 

0 

1,435 

30.8 

2,849 

12.5 

2,396 

66.7 

1,493 

25 

1,724 
A → G Transition vp91 D→E 

86,313 
0 

282 

0 

1,377 

46.2 

2,874 

25 

2,343 

66.7 

1,459 

25 

1,720 
T → C Transition vp91 D→G 

128,603 
0 

423 

50 

1,349 

66.7 

2,084 

75 

1,674 

66.7 

1,552 

0 

1,959 
G → A Transition vef-3 none 

128,625 
0 

541 

50 

1,387 

60 

2,099 

28.6 

1,769 

50 

1,630 

0 

2,150 
C → T Transition vef-3 P→S 

aThe single nucleotide polymorphism can be considered as an artefact deriving from false ad initio nucleotide information 

in the reference sequence. 
bThe total coverage is the sum of reads of the reference and the variant nucleotide at the SNP position. 
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Table 3 Single nucleotide polymorphisms observed between the AgseNPV-B reference genome (KM102981) 

and the sequenced passages in MPileup of BWA-MEM assemblies. The variations are based on the original 

genotype at one of the 5 nucleotide positions on the reference genome. SNPs were quality filtered by their 

mapping quality (Phred quality ≥ 20) with a resulting base call accuracy of 99% or greater. 

Position 

Variant frequency [%] 

Total coverage [reads]b Change Variations CDS/hr AA-Effect 

ORI #1 #3 #5 #7 #10 

972a 
99.7 

292 

100 

771 

100 

1,137 

100 

1,101 

100 

687 

99.9 

1,247 
G → T Transversion orf1629 none 

17,740 
2.6 

78 

2.6 

610 

2 

1,131 

2.7 

1,278 

3.2 

504 

20.5 

1,035 
G → A Transition asb018 none 

57,725 
27.7 

719 

0 

345 

6.8 

1,015 

12.8 

842 

0.7 

458 

11.1 

1,502 
T → A Transversion hr3 none 

57,739 
29.4 

714 

0.6 

348 

6.3 

932 

11.2 

758 

0.4 

471 

12.5 

1,467 
T → A Transversion hr3 none 

57,746 
51.3 

772 

0.8 

470 

5.1 

1,138 

7.7 

977 

0.9 

634 

10.7 

1,649 
T → A Transversion hr3 none 

aThe single nucleotide polymorphism can be considered as an artefact deriving from false ad initio nucleotide information 

in the reference sequence. 
bThe total coverage is the sum of reads of the reference and the variant nucleotide at the SNP position. 

 

Genome analyses of serially passaged AgseNPV-B PP2 

Illumina sequencing of different passages was performed to study the dynamic of genomic 

changes of AgseNPV-B through ten serial passages in cell culture. Like for AgseNPV-B ORI, 

larger deletions were not detected in the serial passages as no extended break-in was observed 

in coverages of the de novo assembled contigs aligned to the AgseNPV-B reference genome 

(KM102981). Some larger contigs that did not map against the reference sequence were 

assigned as homologous to Agrotis ipsilon mitochondrial sequences (GeneBank: KF163965) 

and were considered to be derived from contamination of the samples with host DNA. Bowtie2 

re-mapping of reads with an average Phred quality score of 30 or higher concluded in mean 

global coverages in the plaque purified clones that ranged from 1370-fold (PP2 #1) to 2162-

fold (PP2 #3) nucleotide coverages (Figure 2). The high fluctuations might be caused by the 

method how sequenced reads were initially generated. The approach presented here utilized a 

transposase-like enzyme. Therefore, sequencing inserts from this transposase reaction ranged 

from several hundred bp up to 2 kb which led to an unevenly distribution in the Solexa Illumina 

reads. However, certain positions were identified in all serial passaged with very low coverages 

in the sequencing reads. Such an exemplary position spans in the genome from nucleotide 

position 102,540 to 102,600 in an AgseNPV-B specific orf (asb099). This region is region is 

characterized by a repetition of the 14 nucleotides GAT TTP CTT ACP GY. Although 

fluctuations of the sequencing reads in the AgseNPV-B ORI mapping do not allow an 

identification of the low coverage, the in-break at this particular position in PP2 #1 to #10 

derives from an error in the reference sequence. The PinDel analyses did not allow any 

assessment of insertions or deletions at this position (Phred quality score below the criterion of 

Q20), another possible explanation could be that beginning with the first passage a deletion of 

roughly 40 nucleotides was introduced at this position. Following the coverages in figure 1, 

several other positions could be identified with coverages converging to zero, e.g. around 

nucleotide position 50,000. However, the coverages around those positions were all within the 

range of the mean coverage and the standard deviation. 
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In variant calling with the multi-sample variant caller MPileup 20 SNPs with a base calling 

accuracy of 99% were identified using data from Bowtie2 or BWA-MEM (Table 3 and 4) from 

passage #3 to #7. Two SNPs were identified in each vp91 and vef-3, which encodes a virion 

capsid protein associated with the per os infectivity factors and a viral enhancing factor, 

respectively. The transitions in vp91 presumably caused in both cases an amino acid change 

from aspartic acid to glutamic acid at nt position 86,291, and from aspartic acid to glycine at 

nucleotide position 86,313. While in vef-3 one transition concluded in a silent mutation, 

whereas the transition at nt position 128,625 may have caused an amino-acid change from 

proline to serine. The transitions in vp91 were not detected in ORI and #1, and in addition the 

transitions in vef-3 were not detected in ORI and #10.  

The variant frequencies of identified SNPs fluctuated within the passages with no evident 

pattern. For example, the frequency of the single SNP in asb018 increased only in the last 

passage (#10) to 20%, whereas it ranged between 2% and 3% in the remaining passages, 

including ORI. The mean frequency of SNPs in hr1 dropped from initial 51% in ORI to 43 and 

34% in #1 and #3, respectively and increased in the following passages again to almost 50%. 

An almost similar development was observed in hr3, with exception for PP2 #7. Here the mean 

frequency dropped from initial 36% to 0% in #1 which was followed by an increasing frequency 

in #3, #5 and #10. The two SNPs in vef-3 were introduced in the first passage (PP2 #1) with 

50% and inherited to all following passages. The frequencies almost increased simultaneously 

and ranged between 28.6 and 75% in the passages #3, #5 and #7. In the last passage of PP2, 

#10, the frequency of the SNPs dropped back to 0%. The two SNPs in vp91 were introduced in 

the third passage (PP2 #3) and inherited to all following passages. The highest SNP frequencies 

and therefore putative point mutations were observed in PP2 #7 with 66.7%, whereas the 

frequencies dropped back to 25% in the last passage of PP2 #10.  

Discussion 

The aim of this study was to determine the in vivo virulence and the genetic stability of 

AgseNPV-B OBs that derived from serial infection of BV through the cell line AiE1611T, 

which was evaluated using BVs from each passage for passing on the infection. In the serial 

passages high numbers of OBs were produced during all passage steps. Formation of fp 

mutants) was not observed during the passage experiment. Previously, fp mutants have been 

observed for several baculoviruses passaged in cell culture, often related to aberrations of the 

fp/25k gene. In passages of AcMNPV) insertions of host-derived transposable elements or large 

deletions caused the fp phenotype (Beames and Summers, 1989; Harrison and Summers, 1995). 

The deletion of transposon sites has been shown to delay the insertion of transposable elements 

in that particular gene but it does not prevent from insertion (Giri et al., 2012; Giri et al., 2010). 

In contrast, the fp mutants from Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) 

and Helicoverpa armigera nucleopolyhedrovirus (HearNPV) were caused by small indel 

mutations. In LdMNPV, insertions of 1 bp or small deletions of 8 to 24 bp  (Bischoff and 

Slavicek, 1997) whereas in HearNPV alternation of only few nucleotides as (Lua et al., 2002) 

were responsible. Fp mutants of AcMNPV and LdMNPV were in particular observed when 

viruses were employed at a high infection dose(MOI), whereas with HearNPV fp mutants were 

also produced at a low MOI (0.5 pfu/cell) (Lua et al., 2002). All fp mutants observed so far 

share the same phenotypic key characteristics, which are (i) a reduced number of OBs, with a 

reduced number of virions, (ii) an overproduction of BV, and (iii) a decreased in vivo virulence 
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of OBs (Beames and Summers, 1989; Bischoff and Slavicek, 1997; Bull et al., 2003; Giri et al., 

2012; Harrison and Summers, 1995; Lua et al., 2002). AgseNPV-B PP2 may be less affected 

by these mutations or the moderate MOI (= 1) employed may have reduced this effect. Similar 

to HearNPV, where a 28-fold reduced in vivo activity within six consecutive passages was 

observed (Lua et al., 2002), the calculated LD50 values of AgseNPV-B PP2 varied during the 

passages. The LD50 values of ORI and PP2 #1 OBs appeared to be similar, hence the cell culture 

production of PP2 had no immediate effect on the in vivo activity. However, a 10-fold increase 

of the LD50 was noted for the passages PP2 #3 – #7, whereas PP2 #10 showed a similar lethal 

dose response as ORI and PP2 #1. A logic explanation of this observation cannot be given and 

may be a result of the experimental limitations. Due these limits neither technical nor biological 

replicates could be obtained and each bioassay was carried out only once. A clear trend of 

change of virulence over time could not be observed. Therefore, these results suggest that the 

observed differences are in the variability of the chosen in vivo system and may not reflect a 

significant decrease or increase of virulence during the passage experiment. A possible reason 

for the different responses might also be that tested A. segetum larvae ranged between 2nd and 

3rd instars in their larval stages. In general, infection of only L1 larvae may provide more 

homogenous results due to their higher susceptibility to virus infection. In contrast for infecting 

in L2/L3 larvae more infective virus particles are deemed necessary (Evans, 1983; Smits and 

Vlak, 1988). The scattering age of tested animals in this approach is reflected by the large and 

partially overlapping 95% confidence limits of the determined median lethal doses. However, 

LD50 determination of L1 larvae is also very difficult to achieve because they feed very little 

medium resulting in an extremely high variability of virus uptake. Therefore, the use of L2/L3 

larvae scattering in age was a compromise dictated by the biological system and needed to 

access a full uptake of virus medium.  

On the other hand, there are also examples, that the in vivo activity of in vitro cloned baculovirus 

isolates can be increased by serial in vivo passages (Arrizubieta et al., 2014). Another point of 

concern when producing baculoviruses in vitro is the yield of OBs. In case of AgseNPV-B PP2, 

a mean production of 397 OBs per cell were observed over all passages. This amount of OBs 

per cell is in yield range comparable to other NPVs, for example HearNPV produced in early 

in vitro passages (~225 OBs/cell) (Lua et al., 2002) and those from selected clones of HearNPV 

strain H25EA1(~200-600 OBs/cell) (Nguyen et al., 2011). Furthermore, baculovirus yields 

normally decrease with growing passage numbers as demonstrated for several other 

alphabaculoviruses, e.g. AcMNPV, LdMNPV, AgMNPV (Anticarsia gemmatalis multiple 

nucleopolyhedrovirus), HearNPV (Castro et al., 1997; Chakraborty and Reid, 1999; Huynh et 

al., 2015).  

In addition to the in vivo activity, the genetic stability of different viral passages was compared 

in mappings of Solexa Illumina reads to the AgseNPV-B reference genome sequence 

(KM102981), the only AgseNPV-B genome sequence available deriving from de novo 

assemblies of genomic AgseNPV-B sequenced with an ABi Solid 454 platform. Large deletions 

or insertions were neither observed in the genome sequence of AgsNPV-B ORI (original 

isolate), nor in any of the obtained genome sequences of the serially passaged clone PP2. 

Although SNPs were identified in only 20 positions of AgseNPV-B ORI, a high identity to the 

reference genome sequence was demonstrated. In general, different SNPs were identified when 

the reads were mapped with Bowtie2 or with BWA-MEM. Also, BWA-MEM resulted in lower 
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coverages than Bowtie2. This is caused by the two different algorithms behind the mapping 

strategies. BWA-MEM excludes more reads from the mapping, when the base-call accuracy at 

their ends is below the threshold. Although this rigorous mapping may lead to detection of less 

SNPs, as a lower number of variant reads are mapped against the reference sequence, it also 

guarantees high quality in detected SNPs. In contrast Bowtie2, maps more reads at certain 

positions, as the ends of reads with low quality are clipped. On the one hand, this increases the 

coverage artificially. However, it also harbors the possibility of detecting false positive SNPs. 

The differences in the two strategies demonstrated that a clear SNP detection and variant 

quantification could not be performed with the data given for AgseNPV-B ORI and the passages 

PP2 #1 to #10. Furthermore, almost all SNPs were localized in hr1. In contrast to other hrs in 

the AgseNPV-B genome hr1 is relatively short, but still has been reported as a similar hotspot 

for recombination as other hrs in AgseNPV-B, also for flanking open reading frames 

(Wennmann et al., 2015a). Biologically, this underlines the role of hrs and their lax sequence 

structure consisting of several repeat units to promote mutation as recombination events and 

point mutations, besides being described as possible origins of replication and enhancers of 

transcription in baculoviruses (Guarino et al., 1986; Pearson and Rohrmann, 1995). However, 

the repeat sequences within one single hr and the identity of different hrs also contributes to 

misplacing sequencing reads when mapping against the reference sequence. In case of this 

sequencing approach, the inserts were generated on random base by a Nextera transposase kit 

prior sequencing (pers communication StarSeq). Therefore, the resulting sequencing reads 

could not be attributed to a certain region in the genome sequence, e.g. clearly to the region of 

hr1 or a different hr. Moreover, the detected variant frequencies, e.g. in vp91, cannot be 

explained by a biological background. In theory, when considering a uniform MOI of 1 plaque 

forming unit per cell, every cell is infected by one budded virus. Thus, a mutation in vp91 would 

have to occur independently in the first round of replication in every infected cell. However, 

the variant frequencies in vp91 and vef-3 but also in the hrs again decreased in the consecutive 

passages. Still, as only a small number of SNPs was detected and, it can be generally concluded 

that AgseNPV-B ORI and PP2 consist of homogenous genomes and passaging of PP2 has rather 

no effect on the occurrence of point mutations when passed in a MOI of 1 in 

AiE1611T.Alongside the absence of fp-mutants and the lack of SNPs also major genomic 

deletions were not observed. Such deletions would have led to the accumulation of defective 

interfering particles (DIP). Normally, DIPs lack large portions of the genome, which feature a 

benefit in replication, but they depend on the presence of complete genomes as helpers in 

replication or represent genomes lacking genes not essential for in vitro replication (Heldens et 

al., 1996; Kool et al., 1991). The generation of DIPs is enhanced when high MOIs (>5) are 

employed because the likely-hood of co-replication of DPIs and full genomes in single cells is 

favored compared to low MOIs when replication of DPIs cannot be rescued by trans factors 

provided by full viral genomes (Kool et al., 1991; Zwart et al., 2008).  

In terms of NGS quantification, such accumulation of DIPs would have been evident, when 

sequencing coverages of larger genomic regions have dropped from PP2 #1 to #10 compared 

to global mean coverage. Although highly scattering coverage lines were noticed, in particular 

in #5 and #7, no systematic change in the coverage could be detected through the series of 

passages of PP2. Dropping sequence coverages as an indicator for a large consecutive deletion 

was observed in a deletion mutant recombinant AgseNPV-B bacmid: bAgseNPV-B (Chapter 

V). In bAgseNPV-B 42,443 bp are deleted between genome position 6,290 and 48,733, 
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resulting in a sequence coverage converging to zero when mapped against the AgseNPV-B 

genome sequence. In the serial passages, the observed genome stability might have been a 

consequence of a moderate MOI (MOI = 1) employed. A similar effect is described in passages 

with lower MOI for the production of a LdMNPV clone that does not accumulate fp-mutants 

in serial infections of the host cell culture Ld652Y (Slavicek et al., 2001). In this system, 

extensive plaque purification assays were assessed at a MOI of 0.1 in order to reach a stable 

LdMNPV clone. Apparently, the system of PP2 in serial infections in AiE1611T cells achieved 

a similar equilibrium with a ten times higher employed MOI.  

The focus of this study was on the development of a data-based pipeline to detect crucial 

mutations, without depending on RFLP analyses or cloning and sequencing of genes of interest. 

In this context NGS methods, such as Solexa Illumina, which relies on the ‘sequencing by 

synthesis’ method, or even latest state of the art methods as nanopore sequencing (e.g. MinION 

sequencing), have introduced sequence data-based methods to investigate baculovirus diversity, 

as well as micro-evolutionary and evolutionary processes (Chateigner et al., 2015; Gueli Alletti 

et al., 2017c; van der Merwe et al., 2017). Solexa Illumina generates data with reliable read 

depths, which means that even SNP distribution can be resolved in high genome fold coverages. 

Thus, genetic lineages of mutations and their relative abundances can be directly correlated the 

sequencing reads of a virus population, as shown for the genomic constitution of different Cydia 

pomonella granulovirus (CpGV) isolates (Gueli Alletti et al., 2017c). One advantage of 

MinION sequencing over Solexa Illumina is that the DNA molecule does not need to be 

fragmented in small pieces of sequencing inserts. However, this sequencing method has been 

so far used only in combination with Solexa Illumina sequencing, as demonstrated for 

geographically and genetically diverse Cryptophlebia leucotreta granulovirus (CrleGV) isolates 

from South Africa (van der Merwe et al., 2017) and did not allow a quantification of SNPs in 

different isolates. The advantage of the NGS approach used in this study was to detect and to 

quantify small variations, caused from serial passaging steps at moderated MOIs. Combined 

with the stable production of OBs in cell culture and its relatively high genome stability, 

AgseNPV-B is a tentative candidate for the production of a biological control agent in 

AiE1611T cells. 
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Chapter V: Solexa Illumina Sequencing of bAgseNPV-B reveals a deletion 

mutant bacmid of Agrotis segetum nucleopolyhedrovirus B 

Abstract 

To make the AgseNPV-B genome accessible to genetic modifications, the construction of a 

bacmid carrying the Geneome of AgseNPV-B was envisaged. This bacmid, termed bAgseNPV-

B was generated by homologous recombination in the homologous repeat sequence (hrs) hr6. 

Though bAgseNPV-B DNA replicated in E. coli, it lacked infectivity and viral replication in 

cell lines. Solexa Illumina Sequencing revealed that bAgseNPV-B represented a defective virus 

of AgseNPV-B with a deletion of 42,443 bp in the AgseNPV-B genome but a correctly inserted 

bacterial cassette. The deletion affected 42 orfs from the ORFs asb005 to adb046 and two hrs. 

AiE1611T cells can be transfected with DNA of bAgseNPV-B and show cytopathological 

effects, however the infection is blocked at an early stage with missing DNA replication 

correlated to the deletion of lef-1, lef-2 and me53 and no spreading of virus infection was 

observed. 

Introduction 

In the terminology of baculovirus molecular biology, bacmids are defined as recombinant DNA 

deriving from baculoviruses incorporated with bacterial plasmids in their genomes that replicate 

either in insect cell cultures and in bacteria (O'Reilly et al., 1994). First generations of 

recombinants consisted of deletion mutants of p10 and/or polyhedrin, both genes with strong 

baculovirus promotors in insect cell cultures. Although p10 is not a major occlusion body (OB) 

protein, deletion of this gene also alters the correct expression of the major occlusion body 

protein Polyhedrin. Phenotypes of such deletion mutants are defined as occ-, according to their 

lack to produce OBs, but importantly the insertion of genes of interest into these sequences is 

consequently regulated by the polyhedrin and/or p10 promotors. Both promotors are active at 

the terminal stage during infection and are regulated by transcriptional activators, like the very 

late expression factor 1 (VLF-1). Furthermore, at the very late stage of infection, genes are 

transcribed at a high rate due to efficiency of the baculovirus RNA polymerase and LEF4, which 

ensures an efficient capping, transport and translation. Thus, replacing the polyhedrin or p10 

ORF with a heterologous ORF of interest under the polyhedrin or p10 promoter, results in a 

high and efficient expression of that ORF of interest (Merryweather-Clarke et al., 1994). A 

bacmid is therefore a circular covalently closed DNA molecule with origins of replication 

(ORIs) allowing to replicate in E. coli as well as in insect cells. This facilitates the manipulation 

of baculovirus genomes as the bacmid itself can function as acceptor of heterologous ORFs in 

E. coli, but the expression can be perfomed in insect cell culture. Such bacmids therefore consist 

of a (complete) baculovirus genome with a bacterial cassette containg an ori, regulatory 

sequences as well as an antibiotic resistance gene as a selection marker inserted ideally in an 

intergenic region (Hilton et al., 2008). Such plasmids must contain a bacterial ori, which allows 

a complete replication of the recombinant DNA, exceeding the size of >100 kb and a selection 

marker, such as genes for antibiotic resistance. If a gene of interest should be inserted into the 

plasmid, a system of the introduction of that gene is needed. This can either be managed by 

directed restriction of the bacmid in that region and ligation with the gene of interest, by 

homologous recombination or by inserting the gene of interest by transposition. Within the 

available Bac-to-Bac system (©ThermoFisher Scientific) a transposase helper plasmid, a donor 
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transfer plasmid and a recognition site for the transposition in the bacmid can be used readily 

for the transposition of a gene of interest (Figure 1). Correct insertion should be followed by 

reporter genes such as the common bacterial beta-galactosidase gene lacZ (Pijlman et al., 2002). 

If the gene of interest is not inserted with a baculovirus promotor, additional insertion of such 

a promotor is deemed necessary for the latter expression in insect cell culture. Such a plasmid 

can be of course introduced itself into the baculovirus genome by restriction and ligation with 

specific enzymes, however in that case both the baculovirus genome and the plasmid need 

unique restriction site that allow a directed ligation. In case of bAgseNPV-B a different 

approach was followed, although two restriction enzymes, namely SbfI and AvrII were 

identified as unique cutters in the baculovirus genome of AgseNPV-B (KM102981) 

(Wennmann et al., 2015a). The recognition sites for SbfI and AvrII are localized in the genes 

chitinase and vef-3, respectively. Albeit these genes might not be essential for AgseNPV-B, a 

restriction/ligation approach would have included the recovery of these genes if the deletion 

and/or truncation should be avoided. However, as previously demonstrated transfection of the 

insect cell line AiE1611T with genomic AgseNPV-B DNA concluded in both production of 

budded virus and OBs which can be assessed for the infection of more AiE1611T cells or larvae, 

respectively. Furthermore, continuous passaging of AgseNPV-B in the cell line AiE1611T does 

not accumulate defective genomes as demonstrated in ten passages of AgseNPV-B plaque 

purified clone (Chapter IV). This allowed an approach including the insertion of the plasmid 

pBAC-asb134/135 (Figure 2) into the genome of AgseNPV-B by homologous recombination 

in the laboratory workhorse Escherichia coli strain DH5α.  

 

Figure 1 Bac-to-Bac system as commercially available by ThermoFisher Scientific. A gene of interest is 

cloned into the pFastBac donor plasmid from which it is moved into the bacmid by transposition with the aid 

of the helper plasmid expressing Tn7-transposase. The bacmid containing the inserted gene is amplified in 

E. coli been selected by blue/white selection due to the lacZ reporter gene. Amplified bacmids are extracted 

and used to transfect insect-cell cultures, which produce recombinant virus and can be readily used for the 

recombinant gene expression. 
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Material and Methods 

Construction of the plamid pBAC-asb134/135 

The plasmid pBAC-asb134/135 was constructed by inserting the genomic region of AgseNPV-

B spanning over the two open reading frames asb134 and asb135 as well as the homologous 

region hr6 which is flanked by the ORFs utilizing directed ligation into the unique restriction 

site for Bsu36I of the plasmid pBAC-BB which was kindly provided by Monique van Oers 

from the University of Wageningen, Netherlands (Pijlman et al., 2002), comprising a mini-F 

replicon for autonomous replication in E. coli, a kanamycin resistance gene as selection marker 

and a Tn7 recognition site for transposition within the reporter gene lacZ. 

The two AgseNPV-B specific ORFs asb134 and asb135 flanking hr6 in the AgseNPV-B 

genome were PCR amplified individually using primers up- and downstream from these ORFs. 

In second step, the two individual amplicons were fused in a second PCR amplification, which 

generated a fragment of 1,251 bp containg asb134 and asb135 connected to a 309 bp spacer 

sequence, but not hr6. The primer pairs of this second PCR amplifaction were constructed 

containing the recognition site for the restriction endonuclease Bsu36I. This fragment was 

consequently column-purified and inserted into the plasmid pBAC-Bsu36I (Pijlman et al., 

2002) by restriction with Bsu36I and inserted using T4 DNA ligase (Figure 2) (Thermo Fisher 

Scientific). Bacterial cultures of Eschericha coli DH 5α were transformed by electroporation 

(Sambrook and Russell, 2001) and positive clones were identified by selection on kanamycine 

and PCR amplification of asb134. Positive clones were amplified in LB medium overnight and 

plasmid DNA was extracted using a column-based midi prepation kit (Promega).  

Generation of bAgseNPV-B in AiE1611T and amplification in E. coli DH5 α cells 

Each 1 µg of DNA of AgseNPV-B and pBAC-asb134/135 were used to transfect about 1 × 106 

AiE1611T cells with the aid of Lipofectamin® (Invitrogene) (Felgner et al., 1987). Infection 

was checked visually on a daily for cytopathological effects (CPE) and the formation of 

occlusion bodies (occ+) by comparing to control wells treated with Lipofectamin® and water 

only. Cell debris and from supernatant and suspended in TEK-buffer (1 M Tris-EDTA pH 7.5, 

0.15 M KCl). After an incubation at 65 °C for 30 min, sodium dodecyl sulfate and proteinase 

K were added in final concentrations of 3% and 0.2 M, respectively, followed by a further 

incubation at 65 °C for 30 min. DNA was purified by phenol/chloroform extraction and ethanol 

precipitation (Gross-Bellard et al., 1973; Sambrook and Russell, 2001). The extracted DNA 

was used to transform E. coli DH5 α cells by electroporation (Sambrook and Russell, 2001). 

Clones carrying bAgseNPV-B were selected by growth on kanamycine as well as by the PCR 

of asb134 and polyhedrin. DNA of these clones was isolated and used for the comparison of 

restriction digests with EcoRI and HindIII with in silico deduced digests of the putative 

bAgseNPV-B sequence. 

Detection of deletions, insertions and single nucleotide polymorphisms to bAgseNPV-B  

DNA was isolated from bAgseNPV-B positive clones using a column-based midi prepation kit 

(Promega). About 50 ng purified DNA samples of bAgseNPV-B were subjected to NexteraXT 

library preparation and an Illumina NextSeq500 paired-end sequencing (StarSEQ Ltd., Mainz 

Germany). The sequencing produced approximately 1.0 – 2.5 Mio reads with an average length 

of 151 nucleotides (nt), resulting in an average of about 1000- to 2000-fold genome coverage 

when a genome size of 157,042 bp for nAgseNPV-B is assumed. Read-pairs with 50% 
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consecutive bases below an average Phred quality score of 30 per read cycle (99.9% base call 

accuracy) were excluded from the analyses (Gordon, 2009). Obtained read-pairs were re-

mapped against the in silico deduced bAgseNPV-B sequence using the Bowtie2 aligner for 

short reads with standard parameters for very-sensitive local alignment of reads on the JKI 

Galaxy server (Afgan et al., 2016a; Langmead and Salzberg, 2012a; Mielczarek and Szyda, 

2016; Ye et al., 2015; Ziemann, 2016). Insertions and deletions (InDel) were identified by 

evaluating the coverage of read pairs in the Bowtie2-mapping. Single nucleotide 

polymorphisms (SNPs) and InDels of few base pairs were detected with the SAMtools MPileup 

tool (Li et al., 2009). The average threshold of the quality of mutations in the alignment was set 

to a Phred-scaled probability of 20 (99% base call accuracy in the alignment) or higher in order 

to take into account possible errors due to Illumina sequencing and Bowtie2 (Li, 2011a; Li, 

2011b; Li and Durbin, 2009). The statistical analyses were assessed using the R-package 

“Bioconductor” (MacQueen, 1966; R Development Core Team, 2015; Robinson, 2016). 

 

Figure 2 Bacmid-Cassette – pBAC-asb134/135: Plasmid backbone derived from pBAC-BB (Pijlman et al., 

2002). Insert consisting of asb134 and asb135 with 309 bp spacer in between was added by restriction with 

Bsu36I and successive ligation. The bacterial backbone comprises a mini-F replicon (replication in E. coli) and 

a Kanamycin resistance gene (selection on Kanamycin). 
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Results 

Generation of bAsgeNPV-B  

The successful homologous recombination was screened by PCR of the baculovirus gene 

polyhedrin in kanamycin-resistant clones and DNA of these clones was extracted and submitted 

to digestions with the restriction enzymes HindIII and EcoRI (data not shown) to size compare 

the fragments to in silico digestions of AgseNPV-B (KM102981) as well as the theoretical 

sequence of bAgseNPV-B (Figure 3) in case of a successful homologous recombination. The 

correct insertion of the plasmid was checked by PCR and subsequent Sanger sequencing with 

primers flanking the regions of homologous recombination. In that way, the plasmid pBAC-

asb134/135 was inserted in the AgseNPV-B genome at the predicted position, which also 

concluded in deletion of hr6. The initial euphoria for the homologous recombination was 

dulled, when transfected AiE1611T cells showed CPE without formation of OBs, but above all 

when the restriction patterns did not match to either the sequence of AgseNPV-B nor to the 

theoretical sequence of bAgseNPV-B. By comparison with the in silico digestions the resulting 

bAgseNPV-B was lacking a certain amount of its genome size. However, the restriction 

analyses did not make clear whether this aberration was caused by a single deletion, or by 

several deletions. In order to gain information on the deleted region and which part of the 

AgesNPV-B genome sequence (or even pBAC-asb134/135) was affected, the DNA samples of 

one clone were submitted for sequencing with Solexa Illumina (StarSeq GmbH, Mainz, 

Germany) with rigorous successive analyses of the obtained sequencing products. 

Deleted open reading frames (orfs) and homologous regions (hrs) in bAgseNPV-B 

Sequencing of the bAgseNPV-B sample generated a total number of 1,998,835 reads with a 

base call accuracy of 99.9 (Q30) or above. In total 1,158,923 of these reads (58%) mapped 

against the theoretical genome sequence of bAgseNPV-B (Figure 3), 839,912 reads remained 

unmapped (42%). The mapping consulted in a global 1,520-fold mean coverage. As observed 

in the analyses of digestions of bAgseNPV-B DNA with EcoRI and HindIII (data not shown), 

a deletion of 42,443 bp was identified between the genome positions 6,290 and 48,733 

(Figure 4). This deletion spanned over 27% of the full theoretical genome sequence and 

included the deletion of 42 orfs as well as the two homologous regions hr1 and hr2 (Table 1). 

The deleted orfs included the six baculovirus core genes odv-e56, lef-1, lef-2, pif-1, pif-2 and 

alk-exo, three orfs specific for the genera Alpha- and Betabaculovirus (me53, p24, gp37), 12 

orfs with orthologues in other baculovirus genomes as well as 21 unique AgseNPV-B orfs. 

Furthermore, as observed in the cell culture passages of AgseNPV-B PP2 (see chapter IV), a 

deletion of three nucleotides, namely of one CGA repetition, was identified between the 

genome positions 102,240 and 102,242.  

Detection of single nucleotides polymorphisms (SNPs) and deletions of few nucleotides 

The mapped reads were subsequently used in analyses with MPileup to detect single nucleotide 

polymorphisms (SNPs) and deletions of few nucleotides. For quality reasons the mutations 

were filtered according to their mapping quality and only mutations with a Phred quality score 

of 20 or above (99% accuracy) were analyzed. In total five transitions, three transversions and 

one deletion were detected (Table 2). In hr3, three transitions and three transversions were 

detected ranging in their variant frequency from 48% to 68%. The single deletion of two 

nucleotides was detected in the AgseNPV-B unique orf asb096 with 100% variant frequency. 
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The remaining transitions were identified in the bacterial cassette in intergenic regions with a 

variant frequency of 100%. 
Table 4 Deleted open reading frames (orf) and homologous regions (hrs) in bAgseNPV-B. Given are the 

annotated orf (1), the conserved occurrence (baculovirus core genes = α+β+γ+δ, Alpha- and Betabaculovirus = 

α+β, Alpha-, Beta- and Deltabaculovirus = α+β+δ, orthologues in other baculoviruses = bac. ortho. and 

AgseNPV-B unique genes = unique) (2), the genome sequence position in AgseNPV-B and orientation relative 

to polyhedrin (3) and the amino acid (aa) number of predicted gene products (4) 

(1) 

orf/hrs 

(2) 

Conservation 

(3) 

Position 

(4) 

aa 

asb005A unique 5877  6329 151 

asb006 unique 6350 → 7114 255 

odv-e56 α+β+γ+δ 7162 → 8268 369 

me53 α+β 8592 → 9653 354 

efp α+β+ δ 10,535  12,589 685 

asb010 unique 12,740  13,699 320 

gp16 bac. ortho. 13,787  14,080 98 

p24 α+β 14,107  14,817 237 

asb013 unique 14,896 → 15,255 120 

lef-2 α+β+γ+δ 15,212 → 15,856 215 

asb015 unique 15,870  16,043 58 

asb016 unique 16,064 → 16,540 159 

asb017 unique 16,738 → 17,493 252 

asb018 unique 17,650  18,333 228 

hr1 n.a. 18,428 .. 18,683 n.a. 

38.7k bac. ortho. 18,750  19,856 369 

lef-1 α+β+γ+δ 19,858  20,517 220 

cathepsin bac. ortho. 20,779  21,927 383 

he65 bac. ortho. 22,022 → 23,644 541 

asb023 unique 23,724  24,155 144 

chitinase bac. ortho. 23,346 → 26,091 582 

asb025 unique 26,149  26,451 101 

gp37 α+β 26,492 → 27,274 261 

ptp-2 bac. ortho. 27,271  27,765 165 

egt bac. ortho. 27,926 → 29,530 535 

asb029 unique 29,753 → 30,289 179 

asb030 unique 30,195 → 30,968 258 

asb031 unique 31,040  33,757 906 

asb032 unique 34,068 → 34,610 181 

pkip-1 bac. ortho. 34,718 → 35,215 166 

asb034 unique 35,409  35,741 111 

arif-1 bac. ortho. 35,746  36,549 268 

pif-2 α+β+γ+δ 36,464 → 37,699 412 

pif-1 α+β+γ+δ 37,726 → 39,369 548 

asb038 unique 39,425 → 39,688 88 

fgf bac. ortho. 39,725  40,828 368 

asb040 unique 41,173 → 41,901 243 

alk-exo α+β+γ+δ 41,956  43,173 406 

hr2 n.a. 43,213 .. 43,593 n.a. 

asb042 unique 44,327  44,653 109 

asb043 unique 44,667 → 45,839 391 

asb044 unique 45,882  46,283 134 

rr2B bac. ortho. 46,380 → 47,321 314 

asb046B unique 47,498 → 48,892 465 
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Table 4 Deleted open reading frames (orf) and homologous regions (hrs) in bAgseNPV-B. Given are the 

annotated orf (1), the conserved occurrence (baculovirus core genes = α+β+γ+δ, Alpha- and Betabaculovirus = 

α+β, Alpha-, Beta- and Deltabaculovirus = α+β+δ, orthologues in other baculoviruses = bac. ortho. and 

AgseNPV-B unique genes = unique) (2), the genome sequence position in AgseNPV-B and orientation relative 

to polyhedrin (3) and the amino acid (aa) number of predicted gene products (4) 

A asb005 is truncated by a deletion of 40 bp  
B asb046 is truncated by a deletion of 1,236 bp 

 

 

Figure 3 Genome sequence of bAgseNPV-B consisting of baculovirus genome and pBAC-

asb134/135 (Bacmid Cassette) inserted into the genome by homologous recombination. The deletion 

of 42,443 bp of the AgseNPV-B genome is highlighted as black bar in the genome sequence. 
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Figure 4 Coverage Bowtie2-Alignment against bAgseNPV-B genome sequence. In total 42,443 bp (6,290 .. 48,733) were deleted from the genome (inbreak of coverage). One 

additional dinucleotide deletion with a Phred-Quality score >30 was identified between 94,363 .. 94,634 in analyses of the Bowtie2-BAM file using MPileup. Additionally, one 

deletion of three nucleotides was identified between 102,240 .. 102,242 by analyses of the coverage. The Bacmid-Cassette was inserted between 133,338..141,984 bp. 
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Table 5 Single nucleotide polymorphisms and deletions observed between the bAgseNPV-B reference genome 

and the Bowtie2 assemblies identified with MPileup. The mutations were quality filtered by their mapping 

quality (Phred quality ≥ 20) with a resulting base call accuracy of 99% or greater. Given are the nucleotide 

position in bAgseNPV-B (1), the affected open reading frame (orf) or homologous region (hrs) (2), the mutation 

type (3), the nucleotide change (4) and the variant frequency of the mutation in % (6). 

(1) 

Position 

(2) 

orf/hrs 

(3) 

Type 

(4) 

Change 

(6) 

Variant Frequency [%] 

57,185 hr3 Transition A → G 68 

57,188 hr3 Transition A → G 57 

57,195 hr3 Transversion A → T 68 

57,196 hr3 Transversion T → A 50 

57,203 hr3 Transversion T → A 48 

57,208 hr3 Transition T → C 65 

94,363 asb096 Deletion CGCCGCAC → CCGCAC 100 

139,649 n.a. Transition T → C 100 

140,220 n.a. Transition A → G 100 
 

 

Discussion 

The selection for bAgseNPV-B, as being a recombinant AgseNPV-B isolate with an insertion 

of the bacterial cassette pBAC-asb134/135, was based on a PCR based detection of amplicons 

of the AgseNPV-B polyhedrin gene as well on screening of kanamycin resistant clones on 

selective medium. As polyhedrin was not affected by the deletion of consecutive 42 kilo base-

pairs (kbp) in the AgseNPV-B genome, the selection method mentioned above was not sensitive 

enough to detect possible deletions of that size. The first signs of such a large deletion during 

RFLP analyses (data not shown) were confirmed by full genome sequencing of the selected 

bAgseNPV-B clone. NNGS data were further used to confirm the correct insertion of pBAC-

asb134/135 into the AgseNPV-B genome between the nucleotide positions 

133,338 and 141,984 bp. The insertion of the bacterial cassette already replaced one 

homologous region in the AgseNPV-B genome, namely hr6. In addition, hr1 and hr2 (position 

angeben) were additionally deleted, as shown bythe NGS. Thus, bAgseNPV-B comprised 

deletions of three out of six recognized hrs, which are generally assumedas both possible origins 

of replications and transcriptional enhancers in baculoviruses (Kool et al., 1993; Pearson et al., 

1992; Pijlman et al., 2002). However, as described for recombinant isolates of Autographa 

californica multiple nucleopolyhedrovirus (AcMNPV), deletion of individual hrs or cohorts of 

these sequences does not automatically alter the virus replication of these AcMNPV isolates in 

cell culture (Wu et al., 1999).  

More importantly than the deletion of these three hrs, the deletion of 42 kbp also affected genes 

essential for the baculovirus replication and infection cycle. Baculovirus replication is 

characterized by the expression of a baculovirus specific DNA polymerase and its accessory 

proteins at a early stage of infection (Tomalski et al., 1986). Likewise to other DNA 

polymerases, DNA polymerization in baculoviruses requires free hydroxyl groups which are 

supplied by RNA primers (Watson et al., 2004). These RNA primers are catalyzed by enzymes 

referred to as “primase”, which are represented by LEF-1 in baculoviruses (Mikhailov and 

Rohrmann, 2002). The deletion of lef-1 therefore concludes with fatal consequences for 

baculovirus replication, and deletion mutants can be considered as non-viable. While lef-1 

encodes for the primase, lef-2 encodes for a DNA primase accessory factor, which interacts 

with both, the DNA matrix and LEF-1 (Kool et al., 1994). Although the deletion of lef-2 can be 
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compensated in the replication, e.g. through DNA nicking, it also has an essential role in the 

transcription of late genes (Wu et al., 2010). For this reason, lef-2 deleted AcMNPV isolates 

are considered as non-viable. The selected bAgseNPV-B isolate also lacks the gene me53, in 

addition to deletions of lef-1 and lef-2. ME53 is involved in both the transcription of early and 

late genes (de Jong et al., 2011). Furthermore, cells infected with AcMNPV mutants lacking 

me53 show preliminary signs of infections, such as the occurrence of cytopathological effects 

(CPE) but do not produce viable virus progeny (Xi et al., 2007). These observations are 

consistent to those of bAgseNPV-B: AiE1611T cells that were transfected with DNA of 

bAgseNPV-B showed CPE after 10 to 14 days post transfection. However, neither did the 

infection spread to the surrounding cells, nor did transfected cells produce occlusion bodies 

(OBs). Therefore, deletion of me53 may already block the early stage of infection, which is 

characterized by the formation of budded virus (BV) and infections spreading from cell to cell. 

However, the missing infectivity in cell culture cannot be correlated to me53 only, as 42 orfs 

and two hrs had been deleted. Beyond the deletions of genes essential in replication and 

regulation of genes, possible bAgseNPV-B OBs also might lack essential structural proteins, 

so called “per os infectivity factors” (pifs) as pif-1, pif-2 and odv-e56 (pif-5) were deleted in the 

genome. These structural proteins are associated with occlusion derived virion (ODV) and are 

responsible for an infection of host larvae. Summarized, we found no evidence that bAgseNPV-

B was capable for replication in insect cells and the infection might be blocked inter-cellular in 

AiE1611T cells and in host larvae.  

In this context bAgseNPV-B represents an isolate similar to defective interfering viruses (DIs). 

DIs are commonly produced in baculovirus populations. They have been classically observed 

in continuous passaging through permissive cells, where they can appear rapidly when high 

multiplicities of infection are employed (Pijlman et al., 2001). DIs are characterized by large 

deletions in their genomes, which can affect regulatory and structural genes. Therefore, DIs 

may lack the ability to replicate on their own and always require fully functional genomes to 

compensate the deleted genes. DIs have also been observed in natural populations of 

baculoviruses like for Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV) isolates (Simon 

et al., 2010). Here, larvae of the fall armyworm Spodoptera frugiperda were infected with mixed 

ratios of SfMNPV full genomes and SfMNPV DIs and the virus progenies produced were 

compared to ratios of DIs to full genomes observed in natural samples of SfMNPV. 

Interestingly, the ratio of DIs to full genomes always reached the identical numbers after several 

passages through the host larvae as in natural populations of of SfMNPV. However, the co-

replication with a fully functional virus as helper has still to be tested for bAgseNPV-B. This 

could be readily performed in AiE1611T, since this cell culture is permissive for AgseNPV-B 

and a broad range of alphabaculoviruses. The bacterial cassette inserted in bAgseNPV-B allows 

further to assess the function of deleted genes, e.g. me53 more in detail for AgseNPV-B or to 

insert the deleted sequences since with pBAC-asb134/135 a fully functional Tn7 insertion sites 

is integrated into bAgseNPV-B..
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Chapter VI: Next Generation Sequencing to identify and quantify the 

genetic composition of resistance-breaking commercial isolates of Cydia 

pomonella granulovirus 

This chapter is published with modifications in: 

Gueli Alletti, G., Sauer, A. J., Weihrauch, B., Fritsch E., Undorf-Spahn, K., Wennmann, 

J. T., Jehle, J. A. (2017), Using Next Generation Sequencing to Identify and Quantify the 

Genetic Composition of Resistance-Breaking Commercial Isolates of Cydia pomonella 

Granulovirus, Viruses, 9(9): e250 

Abstract 

The use of Cydia pomonella granulovirus (CpGV) isolates as biological control agents of 

codling moth (CM) larvae is important in organic and integrated pome fruit production 

worldwide. The commercially available isolates CpGV-0006, CpGV-R5, and CpGV-V15 have 

been selected for the control of CpGV resistant CM populations in Europe. In infection 

experiments, CpGV-0006 and CpGV-R5 were able to break type I resistance and to a lower 

extent also type III resistance, whereas CpGV-V15 overcame type I and the rarely occurring 

type II and type III resistance. The genetic background of the three isolates was investigated 

with next generation sequencing (NGS) tools by comparing their nucleotide compositions to 

whole genome alignments of five CpGV isolates representing the known genetic diversity of 

the CpGV genome groups A to E. Based on the distribution of single nucleotide polymorphisms 

(SNPs) in Illumina sequencing reads, we found that the two isolates CpGV-0006 and CpGV-

R5 have highly similar genome group compositions, consisting of about two thirds of the CpGV 

genome group E and one third of genome group A. In contrast, CpGV-V15 is composed of 

equal parts of CpGV genome group B and E. According to the identified genetic composition 

of these isolates, their efficacy towards different resistance types can be explained and 

predictions on the success of resistance management strategies in resistant CM populations can 

be made.  

Introduction 

Cydia pomonella granulovirus (CpGV) belongs to the genus Betabaculovirus in the family of 

Baculoviridae (Herniou et al., 2011). A number of isolates from different geographic regions 

have been found since its first detection in Mexico (Mexican isolate, CpGV-M) (Tanada, 1964; 

Tanada and Leutenegger, 1968). Depending on the isolate, the circular dsDNA genome of 

CpGV ranges from 120.8 to 124.3 kbp, encoding 137 to 142 open reading frames (ORFs) 

(Gebhardt et al., 2014; Wennmann et al., 2017; Wormleaton and Winstanley, 2001). Based on 

phylogenetic analyses of their genome sequences, all known CpGV isolates can be classified 

into five genome groups A to E, describing different phylogenetic lineages. Representative 

isolates are CpGV-M (genome group A), CpGV-E2 (B), CpGV-I07 (C), CpGV-I12 (D), and 

CpGV-S (E) (Eberle et al., 2009; Gebhardt et al., 2014). Although these isolates share a highly 

conserved genome architecture with similar sizes, collinear ORF arrangements, and %GC 

contents (Gebhardt et al., 2014), differences have been noted by restriction length 

polymorphisms (RFLPs) (Crook et al., 1985; Eberle et al., 2009; Rezapanah et al., 2008), single 

nucleotide polymorphisms (SNPs) in conserved genes (Eberle et al., 2009), and finally by their 

genome sequences (Crook et al., 1985; Eberle et al., 2009; Garavaglia et al., 2012; Gebhardt et 

al., 2014; Miele et al., 2011). Cydia pomonella granulovirus has a narrow host range and is 
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highly virulent against the Lepidopteran pest species Cydia pomonella (codling moth, CM) and 

to a lower extent to a very few closely related Tortricids (Lacey et al., 2005; Zingg et al., 2012). 

Known as a fast-killing granulovirus, neonate CM larvae succumb within four to six days after 

infection with CpGV. Because of these characteristics, CpGV has been developed and 

intensively used as a commercial biocontrol agent of CM in virtually all pome fruit production 

areas since its first registration in Switzerland in 1989. Most of these commercial products were 

based on the isolate CpGV-M (Asser-Kaiser et al., 2007). 

Cases of laboratory selected resistance of insects to baculoviruses have only rarely been 

described, e.g., for Phthorimaea operculella/PhopGV (Briese, 1982; Briese and Mende, 1983), 

Anticarsia gemmatalis/Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) 

(Abot et al., 1996), Trichoplusia ni/Trichoplusia ni single nucleopolyhedrovirus (TnSNPV) 

(Milks and Myers, 2000; Milks and Theilmann, 2000), and Adoxophyes honmai/Adoxophyes 

honmai nucleopolyhedrovius (AdhoNPV) (Iwata et al., 2017; Nakai et al., 2017). In 2005, 

however, the first cases of CM field populations with a more than 1000-fold reduced 

susceptibility to commercial CpGV products were reported from Germany and France (Fritsch 

et al., 2005; Sauphanor et al., 2006; Schmitt et al., 2013). For CpRR1, a genetically homogenous 

inbred strain which derived from a resistant CM field population from South Germany, it was 

shown that CpGV resistance is inherited by an incomplete dominant and monogenic mode that 

is linked to the Z chromosome (Asser-Kaiser et al., 2010; Asser-Kaiser et al., 2011; Zichová et 

al., 2013). Laboratory CM strains which derived from the French CM population RGV showed 

similar responses in full-range bioassays as CpRR1, although these strains have shown 

inheritance patterns that could not be fully explained by a Z-chromosmal linkage (Berling et 

al., 2009; Berling et al., 2013; Graillot et al., 2013). However, it was proposed to term this form 

of CpGV resistance as type I resistance (Jehle et al., 2017). Strikingly, type I resistance 

appeared to only be targeted against CpGV-M (genome group A), since CpGV isolates from 

genome groups B to E were shown to be resistance-breaking (Berling et al., 2009; Eberle et al., 

2008; Gebhardt et al., 2014). Using molecular analyses, it was further shown that type I 

resistance in CpRR1 was targeted against the viral gene pe38 of CpGV-M (Gebhardt et al., 

2014; Jehle et al., 2017). Recently, two novel types of field resistances have been discovered: 

A proposed type II resistance appeared in a field population, termed NRW-WE, in North-West 

Germany (Jehle et al., 2017). Larvae of this population showed resistance not only against 

CpGV-M (genome group A), but also against CpGV-I07, -I12, and -S representing genome 

groups C to E, respectively; only CpGV-E2 (genome group B) appeared to overcome type II 

resistance (Jehle et al., 2017). Two laboratory strains, CpR5M and CpR5S, were selected from 

NRW-WE by exposing the offspring of five consecutive inbred mass crosses to either CpGV-

M or CpGV-S, respectively (Sauer et al., 2017a; Sauer et al., 2017b). It was demonstrated that 

type II resistance followed a dominant, monogenic but autosomal inheritance pattern. 

Furthermore, a cross-resistance to at least two CpGV isolates, CpGV-M and CpGV-S, was 

observed (Sauer et al., 2017a). In addition, a further field population from Germany, termed 

SA-GO, possessed a third resistance type (type III), which is directed against CpGV isolates 

from the genome types A and E. Selection and crossing experiments indicated a highly complex 

polygenic inheritance pattern with some mixed characteristics of type I and type II resistance 

(Sauer et al., 2017c). 
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Because CpGV resistances are isolate dependent, novel commercial products based on diverse 

CpGV isolates have been tested in the field and were eventually registered (Berling et al., 2009; 

Brand et al., 2017; Zingg, 2010). Three different isolates, namely CpGV-0006, CpGV-R5, and 

CpGV-V15, are currently commercially available in Europe. To ensure their field efficacy and 

to develop optimum resistance management strategies (Union, 2009; Union, 2013), knowledge 

of their activity against different types of CpGV resistance, as well as their composition of 

genome groups, are essential. In the present study, we tested the activity of the commercial 

isolates CpGV-R5, CpGV-0006, and CpGV-V15 against different laboratory selected CM 

strains representing different known resistance types I to III. The currently known genetic 

diversity of CpGV can be differentiated by SNPs that are unique for single CpGV genome 

groups A to E and which are distributed across the genome (Wennmann et al., 2017). In 

combination with next generation sequencing techniques, the SNP distribution was used to 

identify and quantify the putative CpGV genome groups present in the commercial isolates. 

Materials and Methods 

Insects 

Five different strains of Cydia pomonella (codling moth, CM) were maintained for 

experimental purposes at the Institute for Biological Control in Darmstadt; one strain being 

susceptible to all CpGV isolates, termed CpS, and four resistant strains termed CpRR1 (Asser-

Kaiser et al., 2007), CpR5M, and CpR5S, as well as CpRGO (Sauer et al., 2017a). While 

CpRR1 exhibits type I resistance, CpR5M and CpR5S possess a type II resistance, and CpRGO 

a type III resistance. All CM strains were reared under the same laboratory conditions (Asser-

Kaiser et al., 2007; Asser-Kaiser et al., 2011; Gebhardt et al., 2014). In brief, adult moths were 

kept at 26 °C, 60% relative humidity, and 16/8 h light/dark photoperiod for 10–14 days in 

groups of about 80–100 individuals in transparent plastic cylinders (14 cm diameter, 25 cm 

height), lined with transparent plastic sheets for oviposition. Egg sheets were incubated at 26 

°C and immediately after hatching, neonate larvae were transferred to autoclavable 50-well 

plates containing a semi-artificial diet (Asser-Kaiser et al., 2011; Ivaldi-Sender, 1974). Insects 

of the last larval stage were allowed to pupate in corrugated cardboard stripes. 

Viruses 

All CpGV isolates were isolated from commercial CpGV products: The isolate CpGV-0006 

derived from the product MadexMAX and CpGV-V15 from MadexTOP (both Andermatt 

Biocontrol, Stahlermatten, Switzerland). Isolate CpGV-R5 is the active ingredient of 

Carpovirusine EVO2 (Arysta Lifescience, Noguères, France) (Commission, 2008; EFSA, 

2012). The CpGV occlusion bodies (OB) contained in the products were purified as described 

previously (Jehle et al., 1992) in order to avoid residues of pesticide formulations. 

Resistance Testing 

The mortality responses of the neonate larvae of each strain CpS, CpRR1, CpR5M, CpR5S, and 

CpRGO were tested by incorporating the purified OB of either CpGV-0006, CpGV-R6, or 

CpGV-V15 at the final discriminating concentration of 5.8 × 104 OB/mL into the semi-artificial 

diet. This concentration causes >95% mortality in susceptible CpS neonates after seven days 

(Asser-Kaiser et al., 2007). CpGV-V15 OBs derived from an unformulated test product were 

diluted according to the OB concentration determined by counting with a Petroff-Hauser 

counting chamber (2.5 × 10−3 mm2 × 0.02 mm depth) in dark-field microscopy (Leica DM 
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RBE) in at least three independent replications. The isolates CpGV-V006 and CpGV-R5 

derived from formulated commercial products were diluted according to the OB concentrations 

given on the label. Larvae that did not survive handling within the first 24 h were excluded from 

the analysis. The mortality rates of larvae were determined at seven and 14 days post infection 

(dpi) in three to five independent repetitions for each CpGV treatment. Each treatment included 

control groups with untreated neonates of CpS, CpRR1, CpR5M, CpR5S, and CpRGO. The 

mortality rates of the CpGV treatments were corrected for the corresponding control mortality 

according to Abbott (Abbott, 1925). The corrected mortality rates were used to compute the 

arithmetic mean mortality and the standard deviation (SD) of each treatment. Differences in the 

mean mortality responses were evaluated for significance (p < 0.05) using analysis of variance 

(ANOVA) and the Tukey’s Honestly Significant Difference test (Tukey-HSD) comparison of 

means with standard R code (R version 3.3.1 in RStudio 1.0). 

Alignment of CpGV Isolates 

For the detection of SNPs, a ClustalW alignment of genome nucleotide sequences of five CpGV 

isolates, namely CpGV-M (KM217575), CpGV-E2 (KM217577), CpGV-I07 (KM217574), 

CpGV-I12 (KM217576), and CpGV-S (KM217573), was used. This alignment was used to 

infer SNPs specific for the CpGV genome groups A, B, C, D, and E (Eberle et al., 2009; 

Gebhardt et al., 2014), which were represented by the mentioned CpGV isolates. 

DNA Extraction & Whole Genome Sequencing 

For purposes of whole genome sequencing of commercial isolates CpGV-0006, CpGV-R6, or 

CpGV-V15, genomic DNA was isolated from CpGV OB as described previously (Arends and 

Jehle, 2006). The viral OB matrix was solubilized in 0.1 M Na2CO3 at 60 °C for 1 h. The 

suspension was adjusted to pH 8 by titrating with 1 M HCl, treated with RNaseA (90 µg/mL) 

at 37 °C for 10 min, and then with Proteinase K (250 µg/mL) and 1% SDS at 50 °C for a further 

60 min. DNA was separated from protein debris by phenol/chloroform/isoamylalcohol 

(25:24:1, v/v) extraction (O'Reilly et al., 1994) using Phase Lock Gel Tubes (all purchased from, 

Carl Roth GmbH + Co. KG, Karlsruhe, Germany) in order to avoid phenol/protein 

contamination. The viral DNA was precipitated with ethanol and finally dissolved in ultra-pure 

water (Sambrook and Russell, 2001). DNA concentration and DNA purity was estimated by 

ultraviolet-visible absorbance spectroscopy (UV-Vis) with a NanoDrop 2000c 

spectrophotometer. Paired-end next-generation sequencing of 50 ng purified DNA each was 

performed by using a NexteraXT library preparation and an Illumina NextSeq500 sequencing 

system (StarSEQ Ltd., Mainz, Germany). The sequencing approach produced approximately 

2.5 million paired end read-pairs per sample of 151 nucleotides in length. 

Detection of Single Nucleotide Polymorphisms 

For the sequence assembly of CpGV-0006, CpGV-R5, and CpGV-V15, the conducted paired-

end reads were quality filtered excluding reads with less than a 50% average Phred quality score 

below 30 (base-call accuracy 99.9%) per read cycle (Gordon, 2009). The quality-filtered reads 

were re-mapped against the CpGV alignment consensus sequence using the Bowtie2 aligner 

(ver. 2.3.0, source code downloaded from http://bowtie-

bio.sourceforge.net/bowtie2/index.shtml and compiled last in January 2017) for short 

sequencing reads with standard parameters for very-sensitive local alignments (Langmead and 

Salzberg, 2012a). Each re-mapping was used in order to infer genome type specific SNPs in 
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CpGV-0006, CpGV-R5, and CpGV-V15, respectively, using the Geneious RC10 native SNP 

prediction tool with default parameters (Kearse et al., 2012). SNPs within the assembled 

sequences with an average mapping quality above 30 (base-call accuracy 99.9%) were 

identified and quantified by comparing the nucleotide sequences with the SNP map generated 

for the five genome groups of CpGV (Wennmann et al., 2017). SNPs with lineage specific 

nucleotide information as described previously (Wennmann et al., 2017) were carried out for 

the further analyses. The distinct nucleotide frequencies of these SNPs were quantified using 

the Geneious RC10 native SNP prediction tool. The SNP information was subsequently 

extracted by evaluating the nucleotide frequencies specific for a genome group at each 

particular SNP using descriptive statistics in R (ver. 3.0). 

Results 

Resistance Testing with Commercial CpGV Products 

Three commercial CpGV isolates, namely CpGV-R5, CpGV-0006, and CpGV-V15, were 

tested for their infectivity of neonates of susceptible CpS and resistant CpRR1, CpR5M, 

CpR5S, and CpRGO. Virus-induced mortality of CpS neonates was between 91% (CpGV-V15) 

and 100% (CpGV-0006) after seven days and between 99% (CpGV-R5) and 100% (CpGV-

0006 and CpGV-V15) after 14 days for all treatments and did not show any significant 

differences (ANOVA, post-hoc Tukey HSD test, p < 0.05) (Figure 1). For type I resistant 

CpRR1, mortality ranged between 62% (CpGV-V15) and 98% (CpGV-0006) after seven days 

and increased to 86% (CpGV-V15) to >98% (CpGV-0006, CpGV-R5) after 14 days. Though 

statistically not significant, CpGV-V15 caused a tendentiously lower mortality in CpRR1 than 

the two other isolates. For type II resistant strains CpR5M and CpR5S, mortality was 8 to 17% 

for the isolates CpGV-R5 and CpGV-0006 after seven days and increased to no more than 37% 

mortality after 14 days of exposure. In contrast, the mortality of CpR5M and CpR5S larvae 

caused by CpGV-V15 was between 48% and 49% after seven days and increased to >85% after 

14 days, which was statistically different from treatments with R5 and 0006 (ANOVA, post-

hoc Tukey HSD test, p < 0.05). Type III resistant CpRGO neonates showed a mortality of 53% 

for CpGV-R5, 64% for 0006, and 91% for CpGV-V15 after seven days. The mortality increased 

to 80% for both CpGV-R5 and CpGV-0006, and to 100% for CpGV-V15 after 14 days. The 

different treatments did not differ statistically (Figure 1). 

The results clearly indicate a very similar activity of CpGV-R5 and CpGV-0006. Both isolates 

showed a high virulence against the strains CpS and CpRR1, and also an effect on CpRGO. 

However, these two isolates did not cause the high mortality of neonates of CpR5M and CpR5S, 

neither after seven nor 14 days. Only the isolate CpGV-V15 was able to cause >85% mortality 

for all tested CM strains after 14 days. 
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Figure 1 Resistance testing in different Cydia pomonella strains with novel Cydia pomonella granulovirus isolates. 

Mortality of neonates of CpS, CpRR1, CpR5M, CpR5S, and CpRGO (type I to III resistance) tested for resistance 

on artificial diet containing the commercial CpGV isolates 0006 (black bars), R5 (grey bars), or V15 (white bars) 

at the discriminating concentration of 5.8 × 104 occlusion bodies per mL. Abbott (1925) corrected mean mortality 

and standard error of mean (error bars) were determined at seven days (A) and 14 days (B) post infection. The 

total number of tested individuals (n) and independent replicates (N) are given below the chart. Columns marked 

by different letters differed significantly (analysis of variance (ANOVA), post-hoc Tukey´s Honestly Significant 

Differences test, p < 0.05). 

Detection of Genome Type Specific SNPs in the CpGV Alignment 

The genome sequences of five CpGV isolates, each one representing a CpGV genome group 

(CpGV-M: A, CpGV-E2: B, CpGV-I07: C, CpGV-I12: D, CpGV-S: E), were aligned against 

each other (for details see [6]). By considering each nucleotide position in the alignment and 

ignoring possible gap positions, a CpGV consensus sequence with a theoretical genome size of 

126,225 bp was produced. According to the whole genome assembly, 650 positions with 

possible SNPs were identified in the Solexa Illumina reads (Wennmann et al., 2017). These 

SNPs were either specific for one genome group, or specific for a combination of at least two 

genome groups (Figure 2). One additional position, encoding for three possible lineage specific 

nucleotides as assessed by Wennmann et al. (Graillot et al., 2016), was excluded in the analysis 

of the Solexa Illumina reads. The vast majority (534 positions or 82%) were specific for a single 

genome group. The fewest SNPs were assigned to genome group A (CpGV-M) with only two 

unique SNPs located close to each other on the genome (Figures 2 and 3). In contrast, genome 

group C (CpGV-I07) contained the largest number of 356 SNPs, which were distributed almost 

evenly over the genome. Genome group E (CpGV-S) contained 101 SNPs, whereas 54 SNPs 

and 21 SNPs were identified for genome group B (CpGV-E2) and genome group D (CpGV-
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I12), respectively. A smaller fraction of identified SNPs, namely 117, were found in two 

genome groups. 

 

 

Figure 2 Number of genome positions in the CpGV whole genome alignment consensus sequence that encode for 

alleles with single nucleotide polymorphisms (SNPs) either specific for single genome groups (red columns) or 

two genome groups (blue columns). No common SNPs were detected for the combined genome groups AB, BD, 

or AE. The corresponding alleles are listed after the slashes. 

 

Figure 3. Distribution of SNPs specific to one of the five genome groups A to E of the CpGV whole genome 

alignment. Genome groups are indicated to the left, SNPs are represented by bars along the relative genome 

positions in the CpGV consensus sequence. Genome group A carries two SNPs, genome group B 54 SNPs, 

genome group C 356 SNPs, genome group D 21 SNPs, and genome group E 101 SNPs. 
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Genome group composition of CpGV-0006, CpGV-R5 and CpGV-V15 

In order to evaluate the genome group composition of CpGV-0006, CpGV-R5, and CpGV-

V15, DNA samples of these isolates were purified from commercial CpGV products and 

subjected to Solexa Illumina sequencing. Due to different formulations and possible 

contaminants, such as phenolic buffers, in the DNA samples, the sequencing of CpGV-0006 

and CpGV-V15 was based on NexteraXT libraries, while classical Solexa Illumina libraries 

had to be produced for CpGV-R5 prior to sequencing. These circumstances affected the 

sequencing efficiency, resulting in various amounts of 151 bp read pairs being yielded (Table 

1). 

Table 1 Assembly reports of read pairs with an average Phred-quality score ≥Q30 generated by NextSeq500 next-

generation sequencing and assembled against the CpGV alignment consensus sequence using the Bowtie2 mapper.  

CpGV 

Isolate 

Reads Pairs 

≥ Q30 

Number and Percentage of 

Read Pairs Assembled to 

CpGV Consensus 

Number and Percentage of 

Read Pairs Not Assembled to 

CpGV Consensus 

Mean 

Coverage ± 

SD 

0006 736,927 729,391 (99%) 7536 (1%) 1690 ± 515 

R5 1,517,362 240,501 (16%) 1,273,861 (84%) * 565 ± 180 

V15 1,232,807 1,231,217 (>99%) 1590 (<1%) 2848 ± 557 

*Read pairs in CpGV-R5 that did not map against the CpGV alignment consensus sequence were identified to 

derive mostly from contamination with DNA from Cydia pomonella. SD: standard deviation. 

To determine the composition of the isolates, the frequency of each of the 534 genome group 

specific SNPs, which vary from two (CpGV-M, group A) to 356 (CpGV-I07, group C) 

positions, was determined [6]. Apparently, the very few specific SNPs of group A make the 

identification and quantification of genome group A much more difficult than that of groups 

with higher numbers of specific SNPs. Therefore, group A can hardly be quantified by itself; a 

good estimation of genome group A frequency, however, is given by determining the 

complement of the frequencies of SNPs specific for the genome groups B, C, D, and E. A 

further estimator for the presence of a given genotype is not only the frequency of a given SNP, 

but also the presence of the group-specific SNPs at all. In the sequencing approach of CpGV-

0006, 729,391 read pairs were mapped against the CpGV consensus sequence. Consequently, 

a 1690-fold average genome coverage was achieved. In this assembly, a total number of 210 

SNPs in the reads were assigned to lineage specific alleles according to their position and 

nucleotides (Figures 4–6). The SNPs distributed in CpGV-0006 could be grouped into four 

different frequency levels throughout the consensus sequence (Figure 4). With few exceptions, 

the SNPs of B, C, and D were assorted to frequencies below 10%, SNPs of group A and ABCD 

between 20–40%, and SNPs of group E between 60–80%. Exceptions to this assortment were 

observed at very few positions in the consensus sequence. The number of lineage specific SNPs 

was critical for the assessment of the genome group composition. Variation was detected at 

only 19 of the 356 alleles identified in genome group C (Figure 5), suggesting that isolates of 

lineage C were likely not a constituent of CpGV-0006. This was also observed for the genome 

groups B with four of the 19 variations detected and D with 12 of the 21 variations detected, 

respectively. Further, nucleotides representing these SNPs only appeared in very low median 

frequencies of about 1%. In contrast, SNPs with nucleotide variations identical to A and E 

alleles occurred in 100% of the Illumina reads. That indicated that CpGV-0006 was presumably 

only composed of SNPs from the lineages A or E, e.g., CpGV-M and CpGV-S. This hypothesis 

was supported by the high number of 160 SNPs identified for these genome groups divided into 



 
 
 

82 

nucleotides representing either group A or E. The median frequency of SNPs typical for genome 

group A reached 32%, while SNPs specific for genome group E reached a 67% median 

frequency. Therefore, the SNPs were subdivided into four combined (genome) groups, 

representing either genome group A or E, or the combination of A and E (AE), as well as the 

corresponding combination of B, C, and D (BCD). Once more, by observing the aspect of 

symmetry (Figure 6) for points in datasets of distinct genome groups, the following pattern was 

observed: The frequencies of genome groups A, AD, ACD, ABD, and ABCD (representing A) 

were all mirror inversed to the frequencies of genome groups BCDE, BCE, BE, CE, and E 

(representing E). Further, the genome groups ABCE, ABDE, ABE, ACDE, and ADE 

(representing A or E) all reached almost 100% SNP frequencies, while the genome groups B, 

BC, C, CD, and D acted here as symmetric counterparts and only achieved ca. 1% SNP 

frequencies. Thus, CpGV-0006 only consisted of isolates from the genome group A and E. As 

observed in the geometric dot-plots (Figure 6), the combined genome groups in all investigated 

isolates had overlapping 95% confidence limits. As a consequence, the frequency calculations 

were based on the median frequencies. The total number of data points of these combined 

groups was set up as a weighting factor for the median frequency. In that way, the initial 

overestimated frequency of BCD was corrected to 0%, leaving a genome group composition of 

CpGV-0006 consisting of 32% genome type A and 68% genome type E, and the differences 

between these weighted medians were evaluated by a post-hoc Tukey HSD test (Table 2). 

A similar picture was observed for the isolate CpGV-R5. Here, the sequencing approach had to 

be performed with classic Solexa Illumina DNA libraries and only 487,002 read pairs (16%) 

could be mapped against the CpGV consensus sequence (Table 1). The remaining unmapped 

read pairs were de novo assembled using the Geneious native assembler. The largest contigs 

were submitted to Blastn searches and hits were allotted to Bacillus cereus, Escherichia coli, 

and C. pomonella. As the majority of these read pairs mapped against the mitochondrial genome 

sequence of C. pomonella (Acc.-N° JX407107) with an average 90-fold genome coverage, there 

was enough evidence that the sequenced non-CpGV DNA mostly derived from host larvae. 

Albeit this resulted in a reduced genome coverage, a total number of 192 lineage specific alleles 

were identified in the assembled reads (Figure 4 and Figure 5). In contrast to CpGV-0006, more 

variation was observed in the frequency levels (Figure 4). In general, the SNPs of C and D were 

grouped together according to their rather low frequencies, A and ABCD to their range of 20–

40% SNP frequencies, and E to their range of 60–80%. Exceptions to this general classification 

were observed in the nucleotide positions of about ca. 37,000 to ca. 44,000 nt, and ca. 60,000 

and 65,000 nt, as well as, in particular, between ca. 87,000 and ca. 100,000 nt (Figure 4). At 

these positions, several SNPs that were specific for either E or ABCD showed inversed 

frequencies compared to the general observation. Inversions as observed in these positions 

might indicate possible events of recombination. As for CpGV-0006, only very few SNPs 

specific for the genome groups C or D (12 in total) were detected in CpGV-R5. In particular, 

none of the 54 SNPs specific for the lineage of the genome type B were detected in CpGV-R5 

(Figure 5). This suggested that isolates of lineage B were not a constituent of CpGV-R5. Again, 

SNPs representing the genome types C and D showed a low median frequency of 5%. Hence, 

CpGV-R5 was composed of 95% of SNPs from the lineages of genome type A or E. In CpGV-

R5, nucleotides of these SNPs showed more variation in their frequencies, compared to CpGV-

0006, e.g., E/ABCD compensating for E or A. Again, the initial median frequencies were 
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corrected by weighting with the number of data points of each group (Table 2). Similar to 

CpGV-0006, CpGV-R5 therefore contained SNPs from the lineages of genome type A to 36% 

and from genome type E to 64%. 

In the case of CpGV-V15, a different composition was observed. Here, by the Bowtie2 mapping 

of 1,231,217 read pairs (>99% of total reads) against the CpGV consensus sequence, a 2848-

fold mean coverage was achieved and 253 lineage specific alleles were identified. In CpGV-

V15, SNPs specific to the genome types B reached almost 50% frequency, as much as SNPs 

specific to the genome type E reached almost 50% frequency over the consensus sequence 

(Figure 4). Similar to CpGV-0006 and CpGV-R5, the genome types C and D were almost 

absent as indicated by the very low numbers of SNPs specific for these genome groups (Figure 

5). SNPs specific for alleles of A, C, and D yielded together median frequencies of only 6%. 

However, due to the low number of SNPs specific for genome group A in general, it was 

impossible to resolve whether an isolate of this genome group was present at all. Therefore, 

SNPs from these lineages were grouped together as ACD representing any isolate different 

from those deriving from the genome types B and E. Variations from these two lineages formed 

the two main components of CpGV-V15 with almost equal quantities. Amongst others, this was 

observed by the high frequencies of SNPs containing nucleotides for both B (50 out of 54) and 

E (97 out of 101). When considering the SNPs that encoded nucleotides for either B or E, slight 

variations in median frequencies were observed. However, both groups showed similar 

frequencies of about 50% (Figure 6). After weighting the median frequencies with the number 

of data points, CpGV-V15 contained 48% of isolates from genome group B and 50% from 

genome group E, while this difference in the frequencies was not confirmed by the post-hoc 

Tukey HSD test (p = 0.95). In contrast, only 2% of the composition was assigned to isolates 

from the combined genome groups A, C, and/or D (Table 2). Therefore, CpGV-V15 has a 

qualitatively and quantitatively different genome group composition when compared to CpGV-

0006 and CpGV-R5. As in CpGV-0006 and CpGV-R5, two group E specific SNPs, namely at 

the positions 17,007 nt and 118,508 nt, were not found in CpGV-V15 (Figure 4).  
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Table 2 Genome group compositions of CpGV-0006, CpGV-R5, and CpGV-V15 mean and median frequencies 

of SNP variants with correspondent 95% confidence limits and five to 95 percentiles, respectively. Weighted 

medians are calculated by weighting the medians with the number of individual points from a dataset (data size 

= n). Post-hoc Tukey´s Honestly Significant Differences test (Tukey-HSD) was performed to evaluate 

significant differences in medians (p = 0.05) 

CpGV 

Isolate 

Genome 

Groups 

Combined 

Group 

Data 

Size (n) 

Mean (95%-

CL) (%) 

Median  

(5–95%) (%) 

Weight. 

Median 

(%) 

0006 

A, AD, ACD, 

ABD, ABCD 
A 160 33 (32–34) 32 (27–38) 32 

BCDE; BCE; 

BE, CE, E 
E 160 65 (63–67) 67 (55–72) 68 

B, BC, C, CD, D BCD 50 3 (2–4) 1 (0.6–7) 0 

R5 

A, AD, ABD, 

ACD, ABCD 
A 177 41 (39–43) 36 (26–77) 36 

BCDE, BCE, 

BE, CE, E 
E 177 57 (54–60) 64 (18–74) 64 

BC, C, CD, D CD 1 15 9 (5–13) 5 (1–26) 0 

V15 

ABD, ABCD, B, 

BC 
B 188 48 (47–50) 49 (36–57) 48 * 

ACDE, ADE, 

CE, E 
E 188 52 (51–54) 51 (43–64) 50 * 

A, AD, ACD, C, 

D 
ACD 65 15 (11–20) 6 (2–50) 2 

1: None of the 54 possible SNPs specific for genome type B were detected in CpGV-R5. 

*: identical medians (by Tukey-HSD) are marked with asterisks 
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Figure 4 Frequencies of SNP variants specific for one of the CpGV genome types (A, B, C, D, E) or the 

combination ABCD (complement to E) in CpGV-0006 (A); CpGV-R5 (B) and CpGV-V15 (C) according to their 

nucleotide position in the CpGV consensus sequence. Blue: genome type E in CpGV-0006, -R5 and -V15; red: 

genome type A in CpGV-0006 and -R5, as well as genome type B in CpGV-V15; open symbols: other genome 

groups as indicated. 
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Figure 5 Frequencies  (%) of SNP variants specific for one of the CpGV genome groups (A, B, C, D, E) or a 

combination of the genome groups in CpGV-0006 (A); CpGV-R5 (B) and CpGV-V15 (C). Given are the number 

of identified SNPs at the bottom line with all distinct possible SNPs in brackets, as well as box-whisker-plots with 

the median frequency of SNP variants given as lines and outliers as circles. 
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Figure 6 Geometric dot-plot charts of SNPs found in the Bowtie2 mappings of CpGV-0006 (A); CpGV-R5 (B); 

and CpGV-V15 (C). Given are the frequencies of nucleotide reads at positions assigned to the genome groups A, 

B, C, D, and E, as well as combinations of these. Data points are grouped together by genome groups A, E, and 

BCD for CpGV-0006 and CpGV-R5, as well as by genome B, E, and ACD for CpGV-V15, respectively. 
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Discussion 

Ever since the first appearance of CM field populations resistant against commercial CpGV 

products, investigations have successfully identified resistance-breaking CpGV isolates 

(Berling et al., 2009; Eberle et al., 2008). Some of these isolates have been eventually used in 

new commercial CpGV formulations. However, CM populations did not only develop type I 

resistance against genome group A (Gebhardt et al., 2014), but also resistance against other 

genome groups, such as C, D, and E (type II and type III resistance) (Jehle et al., 2017), 

hampering early attempts to overcome resistance by using alternative CpGV isolates. So far, 

the natural genetic diversity of CpGV seems to be sufficient to break type I to III resistance, by 

applying CpGV isolates from different genome groups (Sauer et al., 2017a; Sauer et al., 2017b; 

Sauer et al., 2017c). In the present study, three novel commercial isolates, CpGV-0006, CpGV-

R5, and CpGV-V15, were tested for their efficacy against different resistance types. The 

isolates CpGV-0006 and CpGV-R5 showed a similar activity against, i.e., high mortality in 

CpRR1, low mortality in CpR5M and CpR5S, and a somewhat intermediate mortality in 

CpRGO. CpGV-V15, in contrast, was the only commercial isolate with good activity in all 

resistant CM strains. Apparently, the activity of these isolates correlated well with their genetic 

composition, which we determined by a genome-wide identification of single nucleotide 

polymorphisms (SNPs) from next-generation sequencing (NGS) data. The high redundancy of 

NGS sequencing data does not only allow identification, but also the quantification of genetic 

variability within a given CpGV sample. 

The frequencies of SNPs being characteristic for one of the genome groups were distributed 

evenly over the genome sequence, suggesting that CpGV-0006 and CpGV-V15 likely consisted 

of mixtures of separate CpGV lineages. In the case of CpGV-R5, the distribution was inversed 

in three genome regions, i.e., between ca. 37,000–44,000, ca. 60,000–65,000, and ca. 87,000–

100,000 nt (Figure 4). This finding may indicate regions of recombination of the lineages A 

(e.g., CpGV-M) and E (e.g., CpGV-S) at these positions. On the other hand, the complete lack 

of two group E specific SNPs, namely at the positions 17,007 nt and 118,508 nt, in all three 

isolates hints to a sequencing error in the underlying original genome sequence of CpGV-S 

rather than a mutation or recombination at these two sites. Similar to the approach presented in 

this study, NGS data has been used to observe and evaluate occurring mutations over several 

passages, e.g., for several passages of Autographa californica multiple nucleopolyhedrovirus 

(AcMNPV) in the alfalfa looper (Chateigner et al., 2015) or in serial passages of Agrotis 

segetum nucleopolyhedrovirus B (AgseNPV-B) in permissive cell cultures (Gueli Alletti, 

unpublished data). In these studies, the NGS data was used either to compare the differences 

within AcMNPV at the beginning and the end of the experiment, or in order to demonstrate 

genomic stability in the case of AgseNPV-B. The NGS approach for the detection of genome 

group-specific SNPs in this study resembles a heuristic method for the detection and 

quantitation of genotype variation in mixtures. It highly depends on the nucleotide information 

given by the genome sequence alignment of presumably pure CpGV isolates. In the same way, 

this apparent key prerequisite also makes it highly adaptable when novel CpGV isolates will be 

described in the future. Albeit the mutation dynamics not being evaluated, the correlation of 

genome compositions and biological activities already displayed a possible origination of 

CpGV-0006, CpGV-R5, and CpGV-V15. 
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The analyses of the NGS data set revealed that all commercial products contain mixtures of at 

least two genome groups, though of different identity: Both CpGV-R5 and CpGV-0006 consist 

of a mixture of genome groups A (ca. 33%) and E (67%), whereas CpGV-V15 is composed of 

genome groups B (49%) and E (51%). These different compositions correlate with the 

differences observed in the resistance testing. Type I resistance can be broken by isolates from 

genome group B to E (Gebhardt et al., 2014; Jehle et al., 2017). The presence of genome group 

E in CpGV-0006 and CpGV-R5 explains the activity against CpRR1. The mean mortality of 

CpRR1 infected with either CpGV-R5 or CpGV-0006 (98% mortality) appeared to be higher, 

though statistically not significant, than obtained with single genome groups A and E (11% and 

72%, respectively) (Sauer et al., 2017c), suggesting some synergistic effect, when A and E are 

combined. Similar effects were also identified in the larvae of the resistant CM strain RGV 

from France, where some synergy of mixed application of CpGV-M and the resistant-breaking 

CpGV-R5 in infection experiments were noticed (Graillot et al., 2016). We assume that CpGV-

0006 and CpGV-R5 were selected in CM populations with type I resistance. Strikingly, both 

isolates showed a highly similar composition suggesting an independently selected and 

stabilized composition of CpGV populations when selected in resistant CMs. In experiments 

with Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV), it has been demonstrated that 

laboratory virus genotype mixtures achieved an almost identical composition of genotypes of 

wild type isolates (Clavijo et al., 2009). Other than effects which presumably derive from virus-

virus interactions, the limiting factor of virus selection was the host, Spodoptera frugiperda, 

which was more susceptible to mixtures of genotypes than to single genotypes of SfMNPV 

(Lopez-Ferber et al., 2003; Simon et al., 2005; Simon et al., 2010). Given these similar 

observations, the prevalence of partially resistant insect populations represents a bottleneck in 

the dynamics of virus isolates which attenuate to a certain virus composition. 

Nevertheless, no synergism of group A and E CpGV isolates of CpGV-R5 or CpGV-0006 was 

observed in CMs with type II resistance; corroborating recent findings which demonstrated the 

lack of efficacy of single and combined applications of genome group A and E CpGVs in 

CpR5M and CpR5S (Sauer et al., 2017c). Isolate CpGV-V15 (mixture of genome group B and 

E) induced a mortality of 50% and 85% after seven and 14 days, respectively. It was shown for 

CpR5M and CpR5S that the single application of CpGV-E2 (genome group B) caused 85% and 

>99% mortality after seven and 14 days, respectively (Sauer et al., 2017a) Hence, the synergism 

of group B and E in overcoming type II resistance is not supported. From a laboratory view, the 

application of pure genome group B instead of mixtures of group B and E appears to be 

promising to maximize efficacy on CM populations with type II resistance. 

It was proposed that the development of type I resistance could be the consequence of the 

exclusive use of CpGV-M in previous commercial products. For this reason, resistance 

management strategies are essential to restore and sustain the efficacy of CpGV products. Such 

strategies should exploit the full genetic diversity of CpGV, including resistance breaking 

isolates. The rotation of different CpGV isolates could be useful to avoid the continued selection 

of resistance in the field. Our findings, however, indicate that CpGV-0006 and CpGV-R5 have 

a highly similar composition of CpGV isolates from genome groups A and E; additionally, their 

effect on different resistance types is more or less equal. In conclusion, a rotation of these two 

commercial isolates in the field would not have the desired effect of alternating the selective 

agent in populations with type I resistance. For type II and type III resistance, their efficacy is 
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not considered to be sufficient. Any resistance management should therefore include the 

optimized use of CpGV isolates from different genome groups, as wells non-virus alternatives, 

such as the application of bacteria, fungi, nematodes, and beneficial arthropods as biological 

control tools. 
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Chapter VII: General Discussion 

When defining virus diversity, it important to clarify the terms “strain” and “isolate”, which are 

often mistaken for one of the other. Strains of baculovirus species are characterized as 

genetically homogenous and their generation often requires extensive laboratory work; e.g. 

plaque purification of clones and selection in vitro in susceptible insect cell culture, or in vivo 

limiting dilution series in host larvae. A prominent example is the cloned Cydia pomonella 

granulovirus (CpGV) strain CpGV-M1 (Crook et al., 1997), which has been considered as the 

type strain for Cydia pomonella granulovirus species. In contrast, baculovirus isolates can 

contain different genotypes of one species and hence are considered genetically more diverse. 

Even occlusion bodies (OBs) of betabaculovirus isolates, which contain only one nucleocapsid 

per OB, can be composed of genotype mixtures as demonstrated for example for CpGV 

infection of single larvae (Rezapanah et al., 2008). A good example for this genotypical 

diversity is the Autographa californica multiple nucleo-polyhedrovirus (AcMNPV) isolate 

AcMNPV-WP10 (Chateigner et al., 2015). AcMNPV-WP10 derived from a natural population 

of AcMNPV and was amplified in a single infection in 500 highly susceptible cabbage looper 

(Trichopolusia ni) larvae. As a result, AcMNPV-WP10 presumably contained a mixture of 

several different AcMPNV genotypes compared to the type strain AcMNPV-C6, which were 

classified by their unique variant frequency pattern of mutations. Still, given this molecular 

background information isolates can still be distinguished from each other and characterized 

based on their genetic lineages (Gueli Alletti et al., 2017c; van der Merwe et al., 2017). 

In context of the registration of baculoviruses as biological control agents, a clear definition of 

the biological identity is inevitable as for example defined in the European regulations 

1107/20091 and 283/20132. Baculoviruses benefit from shared characteristics regarding the 

impact on human health and non-target organisms (OECD, 2002). In consequence, in the EU 

baculoviruses used as plant protection agents are approved on their species level as active 

ingredient, and novel isolates of these species can be included in the list of active substances 

based on the common identity. Furthermore species, but also isolates, may consist of mixtures 

of different, but sufficientsimilar genotypes. Specific isolates may also contain more than one 

species, be it by contamination or co-infection as reported for example for AgseNPV-B 

(Wennmann and Jehle, 2014). However, the use of isolates consisting of more than one species 

as baculovirus based plant protection products is not feasible also in the aspect of identity 

information requirements for the registration. Nevertheless, such differences in the genotypes 

do not alter the risk assessment towards non-target organisms or the environment, specific 

lineages may influence some biological properties such as the virulence in hosts, as observed 

for CpGV (Gueli Alletti et al., 2017c; Jehle et al., 2017). This emphasizes the utmost necessity 

for describing baculovirus diversity on a detailed molecular level, be it on species or strain level 

and demands for tools for unequivocal identification, such as RFLP or whole genome 

sequencing. Within the scope of this thesis, it was elucidated how next generation sequencing 

                                                      
1  Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant 

protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC 
2 Commission Regulation (EU) No 283/2013 of 1 March 2013 setting out the data requirements for active substances, in accordance with 

Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on 

the market 



 
 
 

92 

can contribute on describing the diversity of baculovirus isolates, based on three different 

isolates and scenarios: the comparison of geographically distant virus isolates with high genetic 

similarity in case of AgseGV-DA and the two Chinese isolates AgseGV-XJ and –L1; the 

attempt to describe the genetic stability of a in vitro cloned AgseNPV-B genotype under the 

selection pressure of consecutive amplifications in cell culture; and the genomic diversity 

within each of the commercial CpGV isolates, CpGV-0006, CpGV-R5 and CpGV-V15. 

Recently, two isolates of AgseGV were isolated in China, namely AgseGV-XJ in Xinjiang in 

North-West China and in a distance of 3,390 km AgseGV-L1 in Shanghai on the East coast of 

China. Their fully sequenced genomes were provided in comparison to each other by Zhang et 

al. (2014). The European isolate presented in this thesis, AgseGV-DA, originally derived from 

field collections in Vienna, Austria (Chapter II). All three isolates have their origins in 

geographically distant and confined spots and one would assume that this separation may have 

led to distinct genetic lineages. However, all three isolates show 99.6 to 99.8% nucleotide 

identity with most of the differences in the enhancin gene (Chapter II). The speed of killing and 

the gross pathology as observed microscopically in tissue of infected larvae defines AgseGV-

DA as a “slow”-killing granulovirus. Slow-killing baculoviruses are common within 

betabaculoviruses infecting larvae of Noctuidae, e.g. as for Helicoverpa armigera granulovirus 

(HearGV), Trichoplusia ni granulovirus (TnGV), Adoxophyes orana granulovirus (AdorGV) 

and Xestia c-nigrum granulovirus (XecnGV) and occassionly also in alphabaculoviruses, e.g. 

Adoxophyes honmai nucleopolyhedrovirus (AdhoNPV) (Federici, 1997; Harrison and Popham, 

2008; Jehle et al., 2006b; Takahashi et al., 2015; Wormleaton and Winstanley, 2001). 

Pathological traits, like the speed of kill, are not monophyletic traits in betabaculoviruses, but 

rather evolved independently. (Jehle et al., 2006b). In case of AgseGV, one reason for the slow 

killing behavior is their restricted infection to midgut epithelium and fat body cells. Thus, 

infected larvae can develop further and do not stop feeding. In consequence, they decease and 

liquify more later. Unfortunately, there is no data available on the infectivity of AgseGV-XJ or 

AgseGV-L1 in A. segetum larvae. Hence, it may only be assumed that the slow killing 

pathology also applies to the two Chinese isolates. In contrast, infections with 

alphabaculoviruses and fast killing betabaculoviruses, like CpGV, are able to infect all larval 

tissues and cause a fast endemic spread of the infection, resulting in a relatively quick death 

and complete disintegration of the larval body. Albeit full genome sequences of AgseGV have 

been available previously, the full description of the gross pathology has not been described 

yet. For this reason, AgseGV-DA was proposed as the type isolate for the species AgseGV, as 

the investigations to this isolate provided all necessary information on identity, host range and 

pathology, as well as the morphology (Chapter II, Gueli Alletti et al., 2017b).  

AgseGV was classified following two different approaches; based on the comparison of the 

Kimura-two-parameter (K2P) nucleotide distances of concatenated granulin/polyhedrin, late 

expression factor (lef) 8 and lef-9 alignments of Alpha- and Betabaculovirus species and by 

molecular phylogeny of alignments of the 38 baculovirus core genes (Jehle et al., 2006b; 

Wennmann et al., 2018). The advantage of the K2P-approach derives from the large number of 

sequences from different Alpha- and Betabaculovirus species due to the development of 

degenerated primers for these genes (Jehle et al., 2006b). Thus, the collection of taxon-specific 

sequences of these marker genes exceeds the number of fully sequenced baculovirus genomes 
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by far. And furthermore, the phylogenetic analyses based on K2P-distances resolves the 

relationship between alpha- and betabaculoviruses as adequate as the molecular phylogeny 

based on the alignments of the baculovirus core genes (Wennmann et al., 2018). However, the 

limitation of this method is the scarce conservation of polyhedrin in gammabaculoviruses and 

the absence of its homologue in deltabaculviruses as well as the restriction that the K2P-

distances based method has been developed primarily for alpha- and betabaculoviruses (Afonso 

et al., 2001; Duffy et al., 2006; Garcia-Maruniak et al., 2004; Jehle et al., 2006b; Lauzon et al., 

2004; Miele et al., 2011; Perera et al., 2007; Wennmann et al., 2018). Therefore, in order to 

assess a full picture of baculovirus evolution, baculovirus core gene-based phylogeny is deemed 

necessary. Another benefit of analyzing full genome sequences is the possibility to follow 

evolutionary lineages beyond nucleotide-based analyses, e.g. for the assessment of inversions, 

reiterations/duplications and translocations of whole genes as demonstrated for the viral 

enhancin factors (vef) of AgseNPV-B, AgseNPV-A and AgipNPV (Wennmann et al., 2015a). 

Similar to AgseGV, AgseNPV-B has shown no genotype variation when sequenced on an ABI 

SOLiD next generation sequencing platform as described by Wennmann et al. (2015a). This 

homogenous genome sequence was confirmed by the Solexa Illumina approach used in this 

thesis, with only one adaption to the published ABI SOLiD genome sequence (a change of 

guanine to thymine at nucleotide position 972) (Chapter IV). In contrast to this genomic 

homogeneity, a variation within the gene for the baculovirus ecdysteroid UDP-

glucosyltransferase (egt) was observed in field isolates of the North American AgipNPV 

Illinois strain (Harrison, 2009). Plaque purified clones of AgipNPV with a non-functional egt 

could be separated within three consecutive infections in insect cell culture. On the one hand, 

these isolates showed an increased speed of kill, but on the other hand they also showed a 

reduced pathogenicity (Harrison, 2013). The deletion of of egt was also investigated for the 

model baculovirus AcMNPV and it was confirmed that this enzyme catalyses the transfer of 

glucose from UDP-glucose to ecdysteroids, which are insect molting hormones (O´Reilly and 

Miller, 1989; O´Reilly and Miller, 1990). The expressed EGT is translocated to the hymolymph 

of infected larvae and forms an ecdysteroid-UDP-sugar-enzyme ternary complex (Evans and 

O´Reilly, 1998; Evans and O´Reilly, 1999) and its active role in interfering with molting was 

demonstrated by in vivo assays with egt deletion mutants of AcMNPV been inserted host-

owned juvenile hormone esterase genes (Eldridge et al., 1992). By interfering with the insect 

molting, infected larvae die at an earlier larval instar stage (O´Reilly and Miller, 1989) und thus 

the speed of kill is increased. However, histopathological investigations revealed that the altered 

sped of kill is rather influenced by the degeneration of the Malpighian tubules due to EGT, and 

not necessarily to the disrupted molting (Flipsen et al., 1995). As the whole larval development 

is influenced by EGT, this may also affect their climbing behavior to some extend, which is 

referred to as “tree-top” disease (Ros et al., 2015; van Houte et al., 2014a; van Houte et al., 

2014b). Although, such features as a reduced speed of kill may be of special interest in pest 

control by baculoviruses, the low number of selection rounds in insect cell culture needed to 

produce egt mutants in AgipNPV, however, has shown that there is certain instability in the 

distribution of AgipNPV genotypes in this isolate. 

After all, baculovirus based products demand virus isolates with high genome stability for 

quality control, be it as information on mutation rate of traits related to the mode of action under 



 
 
 

94 

environmental conditions or during the production process. Here, it is shown that AgseNPV-B 

features high genome stability in ten consecutive infection rounds in a susceptible insect cell 

culture. This has been tested in the insect cell line AiE1611T, which has been tested before for 

its susceptibility to AgseGV and AgseNPV-B (Chapter III). Not only did infections and 

transfections with AgseNPV-B produce numerous OBs, moreover, the AiE1611T cells were 

only permissive for AgseNPV-B but not for AgseGV. Hence, infection of this cell culture could 

be used to separate mixtures of AgseNPV-B and AgseGV which may occur during in vivo 

propagation of the virus, but different mixtures e.g. AgipNPV and AgseGV have still to be 

tested in AiE1611T (Wennmann and Jehle, 2014; Wennmann et al., 2015c). Although the 

in vivo virulence of the tested isolate AgseNPV-B PP2 (deriving from plaque purified clone N° 

2) scattered in A. segetum larvae during the ten consecutive infections, the genome of 

AgseNPV-B PP2 remained stable. Mutations such as few polyhedra (fp) mutants, defective 

interfering particles (DIP), but also as observed for the egt mutant AgipNPV isolate, were 

absent in AgseNPV-B PP2. Furthermore, AgseNPV-B PP2 showed an average ~6,700-fold 

increased virulence in its LD50 in A. segetum larvae compared to AgseGV-DA, although such 

comparison formally requires parallelism of the probit lines (REF). Thus, the robust genome 

stability and the comparably high virulence make AgseNPV-B an excellent candidate for a 

baculovirus control agent against A. segetum. The Solexa Illumina NGS used in evaluating the 

genome stability could not satisfactorily resolve single nucleotide polymorphisms (SNPs), as 

most of the SNPs were identified within homologous repeat sequences (hrs). AgseNPV-B 

carries six of these hrs sequences which range in number of repetition units and length. Hrs 

sequences presumably act as replication origins and/or enhancers of transcription (Kool et al., 

1993; Leisy and Rohrmann, 1993; Pearson et al., 1993). However, as demonstrated in the 

sequential deletion of all hrs in AcMNPV, these sequences are rather involved in the production 

of budded virus and the expression of late proteins, as the hrs-deleted AcMNPV mutants still 

produced functional occlusion bodies in the Spodoptera frugiperda cell culture Sf21 (Bossert 

and Carstens, 2018)One of the hrs (hr6) of AgseNPV was used as target for homologous 

recombination in AiE1611T cells to generate a recombinant baculovirus consisting of a hr6 

deleted AgseNPV-B with the bacterial plasmid pBAC-asb134/135 inserted containing a lacZ 

and kanamycin-resistance gene, as well as a bacterial mini-F origin of replication. 

Unfortunately, amplification of this so-called AgseNPV-B bacmid, bAgseNPV-B, resulted in a 

deletion of 42,443 bp between ORF asb005 and ORF asb046, which was confirmed by Solexa 

Illumina sequencing and mapping against the in silico deduced sequence of bAgseNPV-B 

(Chapter V),  as well as by the endonuclease restriction analysis using the enzymes HindIII and 

EcoRI (data not shown). Again, most of the detected SNPs in bAgseNPV-B were identified in 

hr3. But as the methodology included the in vitro production in E. coli DH5α, it can be assumed 

that bAgseNPV-B was a genetically homogenous genotype. In consequence, the SNP detection 

with Solexa Illumina was either not satisfactory, or impossible as as single nucleotide mutations 

might have been absent in the genome. Thus, the detected SNPs rather resemble artefacts from 

false mapping against the in silico deduced genome sequence of bAgseNPV-B. However, this 

method has shown on the other hand that large deletions can be detected easily by their coverage 

in mappings of Solexa Illumina reads against a reference sequence (here bAgseNPV-B) and 

confirmed the methodology used to detect large deletions in the serial passages of AgseNPV-B 

PP2 in AiE1611T.  
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Taken together, both baculovirus examples from AgseGV and AgseNPV-B showed highly 

homogenous genomes of a given isolate. In contrast a different picture was elucidated by the 

genomic analyses of the three CpGV isolates, CpGV-0006, CpGV-R5 and CpGV-V15. When 

speaking of genotypical diversity in CpGV it is important to mention that based on phylogenetic 

and RFLP analyses of their genome sequences, all known CpGV isolates can be classified into 

five genome groups (A to E), describing different phylogenetic lineages. Representative isolates 

are CpGV-M (genome group A), CpGV-E2 (B), CpGV-I07 (C), CpGV-I12 (D), and CpGV-S 

(E) (Eberle et al., 2009; Gebhardt et al., 2014). Great efforts have been made in characterizing 

these representative isolates in comparison to CpGV-M (genome group A), e.g.  in terms of the 

presence of a 24 nt iteration within the gene pe38 in CpGV-M (Gebhardt et al., 2014), 

differences in the restriction patterns (Eberle et al., 2008; Eberle et al., 2009) or lineage-specific 

SNP distribution (Wennmann et al., 2017). In the approach presented in Chapter VI of this 

thesis all three tested isolates were mixture of at least two different genotypes, namely to 32-

36% genome group A and to 64-68% genome group B for the two isolates CpGV-0006 and 

CpGV-R5, and to 48% genome group B and 50% genome group E for CpGV-V15. These 

different genotype compositions could be attributed to specific mortality responses in codling 

moth larvae with different types of resistance, which of course has to be tested in dose-response 

bioassays whenever products based on these isolates are sought to be commercially marketed. 

In terms of baculovirus diversity, two different evolutionary trends are presented by CpGV and 

the two Agrotis specific baculoviruses (AgseNPV-B/AgseGV). In case of CpGV, the 

genotypically mixed isolates can be correlated to different responses in resistant codling moth 

populations. So far all laboratory examined resistant codling moths populations could be 

summarized into three different resistance patterns in which codling moth with type I resistance 

are not susceptible to CpGV-M-like isolates (genome group A), type II and III resistant codling 

moths are resistant to CpGV-M and CpGV-S like isolates, but with different inheritance 

patterns of these resistances (Asser-Kaiser et al., 2007; Asser-Kaiser et al., 2010; Berling et al., 

2013; Sauer et al., 2017a; Sauer et al., 2017b; Sauer et al., 2017c). While these different 

populations were investigated extensively in laboratory experiments with “pure” imbred 

individuals, it is important to note that in nature codling moth populations may occur as 

mixtures of differently resistant individuals. Furthermore, pure imbred populations often suffer 

from reduced fertility. The successful propagation of viruses on the other hand the possibility 

to infect its host and also the access to large numbers of host individuals in order to spread 

horizontally. Mixtures as observed in the three commercial isolates therefore resemble an 

adaption to the circumstances in laboratory selections: susceptible larvae get infected either 

way and decease and while the consecutive infection in resistant larvae may influence the 

heterogeneity of the virus (Graillot et al., 2014) and vice versa the selection pressure given by 

the resistance-breaking genotypes may reduce the size of resistant individuals due to the 

lowered fecundancy in the laboratory selections. Genotype mixtures were absent in AgseGV 

and AgseNPV-B, but mixtures of both virus species were obtained from infected larvae due to 

their ability to co-infect single larvae (Wennmann et al., 2015c). Mixed infections of 

betabaculoviruses and alphabaculoviruses have also been observed in different host-virus 

complexes, such as in Pseudaletia unipuncta in mixed infections with Pseudaletia unipuncta 

granulovirus (PsunGV) and Pseudaletia unipuncta nucleopolyhedrosis virus (now classified as 

Mythmia unipuncta nucleopolyhedrovirus; MyunNPV) as well as for Trichoplusia ni (with no 
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detailed characterization of the infecting viruses) (Harrison et al., 2018b; Lowe and Paschke, 

1968; Tanada and Hukuhara, 1971). The sources of recombination between the baculovirus 

genomes have inter-generic hurdles in mixed infections of nucleopolyhedroviruses and 

granuloviruses. One possible obstacle in mixed infection is the case of super-infection or co-

occlusion of different viruses, as for example observed in simultaneous superinfections of 

invertebrate cells by Lymantria dispar nucleopolyhedrovirus (LdMNPV) and AcMNPV 

(McClintock and Dougherty, 1987). However, superinfections of two different baculoviruses 

are constrained by the infection cycle of baculoviruses per se. During baculovirus infection the 

RNA II polymerase of the host in inactivated and soon replaced by the baculovirus-own RNA 

polymerase, thus transcription of two different baculoviruses and consequently a successful 

superinfection is limited to the period before inactivation of the host RNA polymerase II 

(Beperet et al., 2014). Nevertheless, superinfection between different virus families does also 

occur with baculoviruses and the transmitted virus progeny often contains mixed or co-occluded 

viruses. One example is the superinfection of Spodoptera exigua nucleopolyhedrovirus 

(SeMNPV) with the iflavirus of Spodoptera exigua SeIV1 (Jakubowska et al., 2016; Virto et 

al., 2014).  

But what efforts have been made to detect baculovirus diversity? In the past, approaches to 

detect the diversity and evolution of CpGV included extensive analyses of restriction fragment 

length polymorphisms and hence a broad background knowledge of presumably pure CpGV 

isolates/strains (Eberle et al., 2009). Analyses of mixed infections of AgseNPV-B and AgseGV 

was limited to quantitative PCR (qPCR) reactions, which again demanded knowledge about the 

genome sequences as highly specific primers had to be developed (Wennmann and Jehle, 2014; 

Wennmann et al., 2015c). In the same manner mixtures of SeMNPV and SeIV1 were 

exclusively quantified by qPCR (Jakubowska et al., 2016). Alternatives to visualize the genetic 

variation of baculoviruses also were limited on few genes, like in the laboratory intensive 

analyses by denaturating gradient gel electrophoresis (DGGE) of the two Helicoverpa armigera 

nucleopolyhedrovirus genes dbp1 and me53 from an Australian isolate (Baillie and Bouwer, 

2012). In contrast, next generation sequencing of such samples generates large datasets, which 

can be analyzed by automated protocols, which simply need some background information on 

the sequences and elaborated coding. The sequence analyses of AgseNPV-B, as bacmid or 

passed over several rounds in cell culture, have shown that Solexa Illumina sequencing can be 

readily used to evaluate the presence of large genomic deletions. A deeper application is given 

by the analyses of the CpGV isolates, where background information on the appearance of 

SNPs in the genome was already available. Here, the presented sequencing approach readily 

provided the composition of the three CpGV isolates. In conclusion, next generation sequencing 

(NGS) of baculovirus isolates provides a comprehensive genome comparison of whole 

genomes and a detailed evaluation of genotype mixtures. With the ongoing changes in 

legislation on methods to provide the identity of baculoviruses, NGS methods represent a 

contemporary tool to address not only scientific questions but also regulatory needs. 
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Summary 

The family of Baculoviridae comprises occluded double-stranded DNA viruses with rod-

shaped, enveloped virions infecting larval stages of the insect orders Lepidoptera, Diptera and 

Hymoptera. Due to their narrow host range, their high virulence to target insects and the absence 

of adverse effects to human health and the environment, several baculovirus species are already 

in use as biological control agents in pest control.  

One possibility for their use, is for control of cutworms. Cutworms are severe soil pests of many 

agricultural and horticultural crops that live near or underneath the soil surface and feed 

polyphagous on seedlings, stems, roots and other parts of the plant and among other species 

they also comprise the genus Agrotis. In the past, four baculovirus species were isolated from 

Agrotis segetum and A. ipsilon, namely: Agrotis segetum nucleopolyhedrovirus A (AgseNPV-

A), Agrotis segetum nucleopolyhedrovirus B (AgseNPV-B), Agrotis ipsilon 

nucleopolyhedrovirus (AgipNPV) and Agrotis segetum granulovirus (AgseGV). All these 

species are promising candidates for a baculovirus based plant protection product for the control 

of cutworms. The focus here was laid on AgseGV and AgseNPV-B, as these species have 

already been extensively investigated at the Julius Kühn Institute in Darmstadt.  

The European isolate AgseGV-DA was identified as a slow-killing type I granulovirus due to 

the low dose mortality response and the tissue tropism of infection restricted solely to the fat 

body of infected larvae. The fully NGS sequenced genome of AgseGV-DA showed no sequence 

variation and was more than 99% identical to those of the Chinese isolates AgseGV-XJ and 

AgseGV-L1. The AgseGV-DA genome is 131,557 bp in length and contains 149 putative open 

reading frames, including 37 baculovirus core genes and the per os infectivity factor ac110 as 

well as one putative non-hr like origin of replication. AgseGV has a distinct enhancin gene, 

with a distant relation to the enhancins from the genus Betabaculovirus. Although all three 

isolates belong to the species Agrotis segetum granulovirus, AgseGV-DA was proposed as the 

type isolate due to the complete sequence and pathology description to the International 

Committee for Virus Taxonomy (ICTV). The permissivity of the insect cell culture AiE1611T 

was evaluated for AgseGV-DA and AgseNPV-B which is the prerequisite for in vitro 

experiments. While AgseGV and AgseNPV-B can co-infect susceptible larvae, it has been 

demonstrated that AiE1611T is only permissive for AgseNPV-B but not for AgseGV, as 

evidenced by two experiments with baculovirus derived DNA transfected cells and in infections 

with hemolymph containing budded virus from infected larvae. AgseNPV-B produced large 

numbers of occlusion bodies and the virus was selected in one round of plaque purification for 

additional experiments. Among the twelve genetical and morphological identical isolates, one 

isolate termed PP2 was used in particular to investigate the virus stability in ten consecutive 

passages in AiE1611T cells. The cell culture was further used to generate a recombinant 

AgseNPV-B clone, the bacmid bAgseNPV-B. AgseNPV-B PP2 showed endured a high 

genomic stability during the passages, while the dose-mortality responses in larvae were 

scattering over ten passages. A loss of virulence was observed right after the first round of 

passaging, then the activity of PP2 remained stable over ten passages. This was observed by the 

absence of few polyhedra phenotypes in phase contrast microscopy and by next-generation 

sequencing (NGS) of five selected passages. NGS sequencing revealed that defective particles 

were absent over ten passages. The few single nucleotide polymorphisms (SNPs) detected by 
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this approach were mostly within homologous repeat sequences, which make a correct mapping 

of the short sequencing reads difficult due to their repetitive nature. Thus, no conclusions were 

drawn from these SNPs. The proof of method for detecting large deletions was given by 

sequencing the bacmid bAgseNPV-B (chapter V). This bacmid was deleted by roughly 43 kb 

in the AgseNPV-B genome but still possesses the full bacterial recombinant DNA inserted by 

homologous recombination into hr6 of AgseNPV-B. The deletion additionally affected 42 orfs 

and two hrs. In consequence, AiE1611T cells could be transfected with DNA of bAgseNPV-B 

and showed cytopathological effects, however the infection was blocked at an early stage with 

missing DNA replication and no spreading of virus infection was observed. This is possibly 

correlated to the deletion of lef-1, lef-2 and me53 in bAgseNPV-B  

The second baculovirus example presented here, is the use of Cydia pomonella granulovirus 

(CpGV). CpGV has a narrow host range and is highly virulent against the Lepidopteran pest 

species Cydia pomonella (codling moth; CM) and to a lower extent to a very few closely related 

Tortricids and has been developed and intensively used as a commercial biocontrol agent of 

CM in virtually all pome fruit production areas. CpGV comprises several isolates and extensive 

phylogenetic has brought evidence that all isolates can be divided into five genome groups or 

lineages. The basics for this classification are distinct trends on the genome level such as, 

insertions and deletions, and as focused here genome group specific SNPs. Data-sets generated 

of NGS of commercially available CpGV isolates were combined with their responses to 

codling moth types expressing different types (I - III) of CpGV resistance. In infection 

experiments, CpGV-0006 and CpGV-R5 were able to break type I resistance and to a lower 

extent also type III resistance, whereas CpGV-V15 overcame type I and the rarely occurring 

type II and type III resistance. Based on the distribution of SNPs in Illumina sequencing reads 

it was found that both CpGV-0006 and CpGV-R5 have highly similar genome group 

compositions, consisting of about two thirds of the CpGV genome group E and one third of 

genome group A. In contrast, CpGV-V15 is composed of about equal parts of CpGV genome 

group B and E. According to the identified genetic composition of these isolates, their efficacy 

towards different resistance types can be explained and predictions on the success of resistance 

management strategies in resistant CM populations can be made for future CpGV isolates based 

in this. 
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Zusammenfassung 

Die Familie Baculoviridae umfasst doppelsträngige DNA Viren mit stabförmigen, umhüllten 

Virionen, welche Larvenstadien der Insektenordnungen Lepidoptera, Diptera und Hymenoptera 

infizieren. Aufgrund ihres oftmals sehr engen Wirtsspektrums und dem Fehlen von negativen 

Einflüssen auf die menschliche Gesundheit und die Umwelt, werden bereits einige 

Baculovirusarten in biologischen Pflanzenschutzmitteln verwendet. 

Ein möglicher Einsatz ist die Bekämpfung von Erdraupen. Erdraupen stellen ernstzunehmende 

Bodenschadorganismen im Garten- und Ackerbau dar und umfassen neben anderen Arten auch 

die Gattung Agrotis. Sie leben nahe oder unterhalb der Oberfläche wo sie sich polyphag von 

den Setzlingen, Stämmen, Wurzeln und anderen Pflanzenteilen ernähren. In jüngster 

Vergangenheit wurden aus den Arten Agrotis segetum und A. ipsilon vier Baculovirusarten 

isoliert: Agrotis segetum nucleopolyhedrovirus A (AgseNPV-A), Agrotis segetum 

nucleopolyhedrovirus B (AgseNPV-B), Agrotis ipsilon nucleopolyhedrovirus (AgipNPV) und 

Agrotis segetum granulovirus (AgseGV). All diese Arten sind vielversprechende Kandidaten 

für biologische Insektizide gegen Erdraupen auf Basis von Baculoviren. Der Fokus dieser 

Arbeit lag jedoch auf AgseGV und AgseNPV-B aufgrund der langjährigen 

Forschungserfahrung mit diesen beiden Arten am Julius-Kühn-Institut in Darmstadt. 

Aufgrund seiner geringen Mortalität in A. segetum Larven und des beobachteten Zelltropismus, 

der aufe eine Infektion des Fettkörpers und des Mitteldarmepitheliums beschränkt ist, wurde 

das europäische Isolat AgseGV-DA als langsam wirkendes Typ I Granulovirus identifiziert. 

Die vollständige mit NGS sequenzierte Genomsequenz beinhaltete lediglich einen homogenen 

Genotyp und war mehr als 99% identisch zu den beiden chinesischen Isolaten AgseGV-XJ und 

AgseGV-L1. Das AgseGV-DA Genom hat eine Größe von 131,557 bp und enthält 149 

mögliche offene Leserahmen (orfs), unter anderem 37 Baculoviruskerngene und den 

Infektionsfaktor ac110, sowie einen möglichen non-hr Replikationsursprung. AgseGV besitzt 

für ein spezielles enhancin Gen, welches eine entfernte Verwandtschaft zu jenen enhancin 

Genen aufweist, die bisher in der Gattung Betabaculovirus entdeckt wurden. Wenngleich alle 

drei AgseGV Isolate derselben Spezies angehören, so wurde AgseGV-DA als das 

speziesbeschreibende Isolat vom Internationalen Komitee für Virustaxonomie (ICTV) wegen 

seiner vollständigen Beschreibung der Genomsequenz und Pathologie ausgewählt.  

Die Permissivität der Insektenzellkultur AiE1611T gegenüber AgseGV-DA und AgseNPV-B, 

wurrde untersucht, da sie die Grundvoraussetzung jedwelcher in vitro Experimente darstellt. 

Während AgseGV und AgseNPV-B anfällige Larven koinfizieren könne, zeigte sich in 

Experimenten mit transfizierter DNA und infektiöser Hämolymphe von infizierten Larven, dass 

AiE1611T Zellen lediglich für AgseNPV-B permissiv sind, aber jedoch nicht für AgseGV. In 

AiE1611T Zellen wurden vielfache Okklusionskörper von AgseNPV-B produziert und das 

Virus wurde in einer Runde eines „Plaque Purification“ Assay für die weiteren Experimente 

selektiert. Von zwölf genotypisch und morphologisch identischen Isolaten, wurde eines, PP2 

genannt, benutzt um die Virusstabilität in zehn aufeinanderfolgenden Passagen in AiE1611T 

Zellen untersucht. Weiterhin wurde die Zellkultur für die Untersuchung eines rekombinanten 

Virusklons, dem Bacmid bAgseNPV-B, benutzt. AgseNPV-B PP2 erwies sich als genomisch 

stabil, wohingegen die Infektionsrate in Larven über die Passagen schwankte. Während in der 
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ersten Passage ein Verlust der Virulenz zu verzeichnen war, blieb diese im weiteren Verlauf 

stabil. Gleichzeitig wurde über den Verlauf von zehn Passagen das Auftreten sogenannter „few 

polyhdera“ Mutanten weder mikroskopisch noch in der Genomanalyse beobachtet. Die 

wenigen Einzelnukleotidpolymorphismen (SNPs), welche mit diesem Verfahren ermittelt 

wurden, lagen im Bereich von „homologous repeat“ Sequenzen (hrs). Eine exakte Zuordnung 

der kurzen Sequenzierungs-Reads war deshalb aufgrund der repetitiven Natur dieser hrs nicht 

möglich, weswegen keine weiteren Schlüsse aus diesen SNPs gezogen wurden. Die 

Methodenvalidierung für die Detektion von Deletionen gelang mithilfe des Bacmids 

bAgseNPV-B. Dieses Bacmid war um schätzungsweise 43 kb im AgseNPV-B Genom deletiert, 

besaß aber weiterhin die bakterielle rekombinante DNA, welche durch homologe 

Rekombination im hr6 eingesetzt wurde. Die Deletion umfasste 42 orfs und zwei hrs. Als 

Konsequenz konnten AiE1611T zwar transfiziert werden, was an dem cytopathologischen 

Effekt ersichtlich war, die Infektion wurde jedoch zu einem frühen Zeitpunkt blockiert und 

verteilte sich nicht auf benachbarte Zellen. Dies korreliert wahrscheinlich mit dem Fehlen der 

AgseNPV-B Gene lef-1, lef-2 und me53. 

Bei dem zweiten exemplarischen Baculovirus das hier behandelt wurde, handelt es sich um das 

Cydia pomonella granulovirus (CpGV). CpGV besitzt ein sehr enges Wirtsspektrum und wirkt 

sehr effizient gegen die lepidoptären Schädlinge Cydia pomonella (Apfelwickler, CM) und im 

geringeren Maße auch gegen nahe artverwandte Wickler. Aufgrund dessen wurde CpGV 

erfolgreich zu einem biologischen Insektizid entwickelt, welches nahezu im gesamten Obstbau 

Verwendung findet. CpGV umfasst einige Isolate und die intensive phylogenetische Forschung 

an CpGV konnte unter anderem beweisen, dass man die Isolate in fünf Genomgruppen/-typen 

unterteilen kann. Die Unterteilung gibt bestimmte Trends wieder, unter anderem Insertionen 

und Deletionen und abstammungslinienspezifische SNPs, welche hier im Fokus stehen. 

Datensätze aus NGS Sequenzierungen der kommerziellen Isolate CpGV-0006, CpGV-R5 und 

CpGV-V15 wurden bezüglich ihrer genomischen Zusammensetzung mit ihrer Wirkung in 

verchiedenen Larven Populationen mit den Resistenztypen I - III kombiniert. In Infektionen, 

waren die Isolate CpGV-0006 und CpGV-R5 resistenzbrechend für die Typ-I Resistenz und 

ebenso in geringerem Umfang für die Typ-III Resistenz. Aufgrund der SNP Verteilung der 

Illumina Sequenzen konnte gefolgert werden, dass beide Isolate genomisch beinahe identisch 

waren und zu zwei Dritteln aus Genomtyp E und zu einem Drittel aus Genomtyp A bestanden. 

Im Gegensatz dazu besteht CpGV-V15 zu etwa gleichen Teilen aus den Genomytpen B und E 

und bricht alle drei Resistenztypen. Die unterschiedliche Wirksamkeit lässt sich mit der 

Zusammensetzung aus verschiedenen Genomtypen erklären, was für zukünftige CpGV Isolate 

verwendet werden kann um ihren möglichen Erfolg in der Bekämpfung resistenter 

Apfelwicklerpopulationen vorherzusagen. 
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Appendix 

Table 3 Complete genome sequences of baculovirus isolates deposited at GenBank; including 155 genome 

sequences from the genus Alphabaculovirus, 46 from Betabaculovirus, 2 from Gammabaculovirus and 1 from 

Deltabaculovirus. Sequences list downloaded in March 2018 

Isolate/Strain Name Genome size [bp] Acc.-N° 

Alphabaculovirus:   

Adoxophyes honmai NPV 113,220 NC_004690 

Adoxophyes orana nucleopolyhedrovirus 111,724 NC_011423 

Agrotis ipsilon multiple nucleopolyhedrovirus 155,122 NC_011345 

Agrotis segetum nucleopolyhedrovirus 147,544 NC_007921 

Antheraea pernyi nucleopolyhedrovirus isolate AnpeMNPV-L2 126,246 EF207986 

Antheraea pernyi nucleopolyhedrovirus 126,629 DQ486030 

Antheraea pernyi nucleopolyhedrovirus 126,629 NC_008035 

Antheraea pernyi nucleopolyhedrovirus DNA, strain: Liaoning 126,593 LC194889 

Anticarsia gemmatalis multiple nucleopolyhedrovirus isolate 

AgMNPV-2D 
132,239 DQ813662 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-26 
131,678 KR815455 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-27 
131,172 KR815456 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-28 
130,745 KR815457 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-29 
130,506 KR815458 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-30 
130,741 KR815459 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-31 
132,126 KR815460 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-32 
131,494 KR815461 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-33 
131,059 KR815462 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-34 
131,543 KR815463 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-35 
132,176 KR815464 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-36 
131,216 KR815465 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-37 
131,855 KR815466 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-38 
130,740 KR815467 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-39 
130,698 KR815468 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-40 
132,180 KR815469 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-42 
130,949 KR815470 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-43 
132,077 KR815471 
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Table 3 Complete genome sequences of baculovirus isolates deposited at GenBank; including 155 genome 

sequences from the genus Alphabaculovirus, 46 from Betabaculovirus, 2 from Gammabaculovirus and 1 from 

Deltabaculovirus. Sequences list downloaded in March 2018 

Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate 

AgMNPV-37 
131,855 NC_031761 

Anticarsia gemmatalis nucleopolyhedrovirus 132,239 NC_008520 

Apocheima cinerarium nucleopolyhedrovirus 123,876 NC_018504 

Autographa californica multiple nucleopolyhedrovirus isolate WP10 133,926 KM609482 

Autographa californica nucleopolyhedrovirus clone C6 133,894 L22858 

Autographa californica nucleopolyhedrovirus strain E2 133,966 KM667940 

Mutant Autographa californica nucleopolyhedrovirus isolate vAcRev-1 118,582 KU697902 

Mutant Autographa californica nucleopolyhedrovirus isolate vAcRev-2 138,991 KU697903 

Bombyx mandarina nucleopolyhedrovirus isolate S1 126,770 FJ882854 

Bombyx mandarina nucleopolyhedrovirus S2 129,646 JQ071499 

Bombyx mori nuclear polyhedrosis virus isolate T3 128,413 L33180 

Bombyx mori NPV strain Cubic 127,465 JQ991009 

Bombyx mori NPV strain Zhejiang 126,125 JQ991008 

Bombyx mori NPV strain India 126,879 JQ991010 

Bombyx mori NPV strain Guangxi 126,843 JQ991011 

Bombyx mori nucleopolyhedrovirus isolate C1 127,901 KF306215 

Bombyx mori nucleopolyhedrovirus isolate C2 126,406 KF306216 

Bombyx mori nucleopolyhedrovirus isolate C6 125,437 KF306217 

Bombyx mori nucleopolyhedrovirus strain Brazilian 126,861 KJ186100 

Bombyx mori nucleopolyhedrovirus DNA, isolate: H4 127,459 LC150780 

Buzura suppressaria nucleopolyhedrovirus isolate  

Hubei 
120,420 NC_023442 

Buzura suppressaria nucleopolyhedrovirus isolate Guangxi 121,268 KM986882 

Catopsilia pomona nucleopolyhedrovirus isolate 416 128,058 NC_030240 

Choristoneura fumiferana DEF MNPV 131,160 NC_005137 

Choristoneura fumiferana multiple nucleopolyhedrovirus 129,593 NC_004778 

Choristoneura murinana alphabaculovirus strain Darmstadt 124,688 NC_023177 

Choristoneura occidentalis alphabaculovirus 128,446 KC961303 

Choristoneura rosaceana alphabaculovirus 129,052 NC_021924 

Chrysodeixis chalcites nucleopolyhedrovirus 149,622 NC_007151 

Chrysodeixis chalcites nucleopolyhedrovirus genotype ChchSNPV-

TF1-C 
150,079 JX560539 

Chrysodeixis chalcites nucleopolyhedrovirus genotype ChchSNPV-

TF1-B 
149,080 JX560540 

Chrysodeixis chalcites nucleopolyhedrovirus genotype ChchSNPV-

TF1-G 
149,039 JX560541 

Chrysodeixis chalcites nucleopolyhedrovirus genotype ChchSNPV-

TF1-H 
149,624 JX560542 

Chrysodeixis chalcites SNPV TF1-A 149,684 JX535500 

Pseudoplusia includens SNPV isolate IA 140,808 KU669289 

Pseudoplusia includens SNPV isolate IB 138,869 KU669290 

Pseudoplusia includens SNPV isolate IC 140,859 KU669291 

Pseudoplusia includens SNPV isolate ID 140,787 KU669292 

Pseudoplusia includens SNPV isolate IF 139,181 KU669293 
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Table 3 Complete genome sequences of baculovirus isolates deposited at GenBank; including 155 genome 

sequences from the genus Alphabaculovirus, 46 from Betabaculovirus, 2 from Gammabaculovirus and 1 from 

Deltabaculovirus. Sequences list downloaded in March 2018 

Pseudoplusia includens SNPV isolate IG 139,116 KU669294 

Clanis bilineata nucleopolyhedrosis virus 135,454 NC_008293 

Condylorrhiza vestigialis MNPV 125,767 NC_026430 

Agrotis segetum nucleopolyhedrovirus B isolate English 148,981 KM102981 

Cyclophragma undans nucleopolyhedrovirus isolate Whiov 140,418 KT957089 

Dasychira pudibunda nucleopolyhedrovirus isolate ML1 136,761 KP747440 

Ecotropis obliqua NPV 131,204 NC_008586 

Ectropis obliqua nucleopolyhedrovirus strain unioasis 1 130,145 KC960018 

Epiphyas postvittana NPV 118,584 NC_00308 

Euproctis pseudoconspersa nucleopolyhedrovirus 141,291 NC_012639 

Helicoverpa armigera multiple nucleopolyhedrovirus 154,196 EU730893 

Helicoverpa armigera NPV NNg1 DNA 132,425 AP010907 

Helicoverpa armigera NPV strain Australia 130,992 JN584482 

Helicoverpa armigera NPV 130,759 NC_003094 

Helicoverpa armigera nucleopolyhedrovirus strain LB1 131,966 KJ701029 

Helicoverpa armigera nucleopolyhedrovirus strain LB3 130,949 KJ701030 

Helicoverpa armigera nucleopolyhedrovirus strain LB6 130,992 KJ701031 

Helicoverpa armigera nucleopolyhedrovirus strain SP1A 132,481 KJ701032 

Helicoverpa armigera nucleopolyhedrovirus strain SP1B 132,265 KJ701033 

Helicoverpa armigera nucleopolyhedrovirus strain L1 136,760 KT013224 

Heliocoverpa armigera nucleopolyhedrovirus G4 131,405 AF271059 

Helicoverpa armigera SNPV isolate H25EA1 130,440 KJ922128 

Helicoverpa SNPV AC53 130,442 KJ909666 

Helicoverpa SNPV AC53 strain AC53C1 130,460 KU738896 

Helicoverpa SNPV AC53 strain AC53C3 130,443 KU738897 

Helicoverpa SNPV AC53 strain AC53C5 130,442 KU738898 

Helicoverpa SNPV AC53 strain AC53C6 130,435 KU738899 

Helicoverpa SNPV AC53 strain AC53T2 130,437 KU738901 

Helicoverpa SNPV AC53 strain AC53C9 130,437 KU738900 

Helicoverpa SNPV AC53 strain AC53T4.1 130,440 KU738902 

Helicoverpa SNPV AC53 strain AC53T4.2 130,436 KU738903 

Helicoverpa SNPV AC53 strain AC53T5 130,439 KU738904 

Helicoverpa zea single nucleocapsid nucleopolyhedrovirus 130,869 AF334030 

Helicoverpa zea single nucleopolyhedrovirus strain HS-18 130,890 KJ004000 

Helicoverpa zea single nucleopolyhedrovirus isolate Br/South 129,694 KM596835 

Hemileuca sp. nucleopolyhedrovirus 140,633 NC_021923 

Hyphantria cunea nucleopolyhedrovirus 132,959 NC_00776 

Lambdina fiscellaria nucleopolyhedrovirus isolate GR15 157,977 NC_026922 

Leucania separata nuclear polyhedrosis virus strain AH1 168,041 NC_008348 

Lonomia obliqua multiple nucleopolyhedrovirus isolate SP/2000 120,023 KP763670 

Lymantria dispar MNPV 161,046 NC_001973 

Lymantria dispar multiple nucleopolyhedrovirus strain 3029 161,712 KM386655 

Lymantria dispar multiple nucleopolyhedrovirus isolate 2161 163,138 KF695050 
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Table 3 Complete genome sequences of baculovirus isolates deposited at GenBank; including 155 genome 

sequences from the genus Alphabaculovirus, 46 from Betabaculovirus, 2 from Gammabaculovirus and 1 from 

Deltabaculovirus. Sequences list downloaded in March 2018 

Lymantria dispar multiple nucleopolyhedrovirus strain 3054 164,478 KT626570 

Lymantria dispar multiple nucleopolyhedrovirus strain 3041 162,658 KT626571 

Lymantria dispar multiple nucleopolyhedrovirus strain Ab-a624 161,321 KT626572 

Lymantria dispar multiple nucleopolyhedrovirus isolate LdMNPV-45/0 161,006 KU862282 

Lymantria dispar multiple nucleopolyhedrovirus isolate LdMNPV-27/2 164,158 KP027546 

Lymantria dispar multiple nucleopolyhedrovirus isolate BNP 157,270 KU377538 

Lymantria dispar multiple nucleopolyhedrovirus isolate RR01 159,729 KX618634 

Lymantria dispar multiple nucleopolyhedrovirus isolate LdMNPV-27/0 161,727 KY249580 

Lymantria xylina MNPV isolate LyxyMNPV-5 156,344 GQ202541 

Lymantria xylina MNPV 156,344 NC_013953 

Mamestra brassicae MNPV strain K1 152,710 NC_023681 

Mamestra brassicae multiple nucleopolyhedrovirus isolate CTa 153,890 KJ871680 

Mamestra brassicae multiple nucleopolyhedrovirus strain CHb1 154,451 JX138237 

Mamestra configurata NPV-A 155,060 NC_003529 

Mamestra configurata nucleopolyhedrovirus A 90/4 153,656 AF539999 

Mamestra configurata NPV-B 158,482 NC_004117 

Maruca vitrata MNPV 111,953 NC_008725 

Mythimna unipuncta nucleopolyhedrovirus strain #7 148,482 MF375894 

Operophtera brumata nucleopolyhedrovirus isolate OpbuNPV-MA 119,054 MF614691 

Orgyia leucostigma NPV 156,179 NC_010276 

Orgyia pseudotsugata MNPV 131,995 NC_001875 

Peridroma alphabaculovirus isolate GR_167 151,109 NC_024625 

Philosamia cynthia ricini nucleopolyhedrovirus virus 125,376 JX404026 

Plutella xylostella multiple nucleopolyhedrovirus isolate CL3 134,417 DQ457003 

Pseudoplusia includens SNPV IE 139,132 NC_026268 

Rachiplusia ou multiple nucleopolyhedrovirus 131,526 AY145471 

Spilosoma obliqua nucleopolyhedrosis virus isolate IIPR 136,141 KY550224 

Spodoptera exigua nucleopolyhedrovirus complete genome 135,611 NC_002169 

Spodoptera exigua multiple nucleopolyhedrovirus isolate VT-SeAl1 135,653 HG425343 

Spodoptera exigua multiple nucleopolyhedrovirus isolate VT-SeAl2 134,972 HG425344 

Spodoptera exigua multiple nucleopolyhedrovirus isolate VT-SeOx4 142,709 HG425345 

Spodoptera exigua multiple nucleopolyhedrovirus isolate HT-SeG24 135,292 HG425346 

Spodoptera exigua multiple nucleopolyhedrovirus isolate HT-SeG26 135,718 HG425348 

Spodoptera exigua multiple nucleopolyhedrovirus isolate HT-SeSP2A 135,395 HG425349 

Spodoptera exigua multiple nucleopolyhedrovirus isolate HT-SeG25 135,556 HG425347 

Spodoptera frugiperda MNPV isolate 19 132,565 EU258200 

Spodoptera frugiperda MNPV isolate 3AP2 131,331 EF035042 

Spodoptera frugiperda MNPV isolate Nicaraguan 132,954 HM595733 

Spodoptera frugiperda MNPV genotype SfMNPV-G defective 128,034 JF899325 

Spodoptera frugiperda multiple nucleopolyhedrovirus isolate 

Colombian 
134,239 KF891883 

Spodoptera littoralis NPV isolate AN1956 137,998 JX454574 

Spodoptera litura nucleopolyhedrovirus strain G2 139,342 AF32515 

Spodoptera litura nucleopolyhedrovirus II 148,634 EU780426 
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Table 3 Complete genome sequences of baculovirus isolates deposited at GenBank; including 155 genome 

sequences from the genus Alphabaculovirus, 46 from Betabaculovirus, 2 from Gammabaculovirus and 1 from 

Deltabaculovirus. Sequences list downloaded in March 2018 

Spodoptera litura nucleopolyhedrovirus II 148,634 NC_011616 

Sucra jujuba nucleopolyhedrovirus isolate 473 135,952 NC_028636 

Thysanoplusia orichalcea NPV isolate p2 132,978 NC_019945 

Trichoplusia ni SNPV 134,394 NC_007383 

Betabaculovirus:   

Adoxophyes orana granulovirus 99,657 NC_005038 

Adoxophyes orana granulovirus strain Miyazaki 99,507 KM226332 

Agrotis segetum granulovirus 131,680 NC_005839 

Agrotis segetum granulovirus strain L1 131,442 KC994902 

Agrotis segetum granulovirus strain DA 131,557 KR584663 

Artogeia rapae granulovirus isolate Wuhan 108,592 NC_013797 

Choristoneura fumiferana granulovirus 104,710 NC_008168 

Clostera anachoreta granulovirus 101,487 NC_015398 

Clostera anastomosis granulovirus B 107,439 KR091910 

Clostera anastomosis granulovirus Henan 101,818 NC_022646 

Cnaphalocrocis medinalis granulovirus 112,060 KP658210 

Cnaphalocrocis medinalis granulovirus strain Enping 111,246 NC_029304 

Cryptophlebia leucotreta granulovirus 110,907 NC_005068 

Cydia pomonella granulovirus 123,500 NC_002816 

Cydia pomonella granulovirus isolate CpGV-S 123,193 KM217573 

Cydia pomonella granulovirus isolate CpGV-I07 120,816 KM217574 

Cydia pomonella granulovirus isolate CpGV-M 123,529 KM217575 

Cydia pomonella granulovirus isolate CpGV-I12 124,269 KM217576 

Cydia pomonella granulovirus isolate CpGV-E2 123,858 KM217577 

Diatraea saccharalis granulovirus 98,392 NC_028491 

Epinotia aporema granulovirus 119,082 NC_018875 

Erinnyis ello granulovirus 102,759 NC_025257 

Erinnyis ello granulovirus isolate ErelGV-94 102,726 KX859079 

Erinnyis ello granulovirus isolate ErelGV-98 102,685 KX859080 

Erinnyis ello granulovirus isolate ErelGV-99 102,764 KX859081 

Erinnyis ello granulovirus isolate ErelGV-00 102,745 KX859082 

Erinnyis ello granulovirus isolate ErelGV-AC 102,741 KX859083 

Erinnyis ello granulovirus isolate ErelGV-PA 102,616 KX859084 

Helicoverpa armigera granulovirus 169,794 NC_01024 

Mocis latipes granulovirus 134,272 NC_029996 

Mythimna unipuncta granulovirus isolate MyunGV#8 144,673 NC_033780 

Phthorimaea operculella granulovirus 119,217 NC_004062 

Phthorimaea operculella granulovirus isolate SA 119,004 KU666536 

Pieris rapae granulovirus strain E3 108,476 GU111736 

Pieris rapae granulovirus 108,658 JX968491 

Plodia interpunctella granulovirus isolate Cambridge 112,536 NC_032255 

Plutella xylostella granulovirus 100,999 NC_0025 

Plutella xylostella granulovirus isolate PxGV_C 100,980 KU529791 
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Table 3 Complete genome sequences of baculovirus isolates deposited at GenBank; including 155 genome 

sequences from the genus Alphabaculovirus, 46 from Betabaculovirus, 2 from Gammabaculovirus and 1 from 

Deltabaculovirus. Sequences list downloaded in March 2018 

Plutella xylostella granulovirus isolate PxGV_K 101,004 KU529792 

Plutella xylostella granulovirus isolate PxGV_M 100,986 KU529793 

Plutella xylostella granulovirus isolate PxGV_T 100,978 KU529794 

Plutella xylostella granulovirus isolate SA 100,941 KU666537 

Pseudaletia unipuncta granulovirus strain Hawaiin 176,677 EU678671 

Spodoptera frugiperda Betabaculovirus isolate VG008 140,913 NC_026511 

Spodoptera litura granulovirus isolate SlGV-K1 124,121 DQ288858 

Xestia c-nigrum granulovirus 178,733 NC_002331 

Gammabaculovirus:   

Neodipiron abietes nucleopolyhedrovirus 84,264 NC_008252 

Neodipiron lecontei nucleopolyhedrovirus 81,755 NC_005906 

Neodipiron sertifer nucleopolyhedrovirus 86,462 NC_005905 

Deltabaculovirus:   

Culex nigripalpus nucleopolyhedrovirus 108,252 NC_003084 
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