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Abstract

In this work, the nonlinear oscillation behavior of rotors in floating ring bearings is investigated numer-
ically by means of transient run-up simulations. Non plain bearing designs are considered, which are
commonly used in turbocharger applications. Furthermore, a mass-conserving cavitation model based on
two-phase theory is employed, which is well suited for transient journal motions due to subsynchronous
oscillations. Special axial boundary conditions are introduced, which better reflect open-ended bear-
ings. In contrast to classical cavitation approaches, which assume degassing of dissolved air as the main
mechanism, this boundary condition leads to sucking-in of air from the surroundings during squeeze
motion of the journal. The numerical model is separated into a rotor and a bearing model, which are
implemented in commercial software tools. Both subsystems are joined by means of one of two coupling
methods, which enables the creation of detailed, easily interchangeable and updateable subsystems.
Dynamic-static solver coupling is used for rotors in single film bearings with non mass-conserving cav-
itation models. An explicit co-simulation approach is employed for rotors in floating ring bearings or
bearings with a mass-conserving cavitation model. In the first case, only the rotor subsystem is time-
dependent. In the latter case, both subsystems are time-dependent and are solved with their respective
solvers. All time-dependent subsystems use stable, implicit BDF solvers. The rotor is modeled using
multibody dynamics software. The partial differential equation of the bearing subsystem is discretized
with the Finite Element method, which yields high flexibility concerning the gap geometry.
The influences of the bearing geometry and different parameters are investigated using a symmetric
JEFFCOTT rotor. Also, an asymmetric, heavy turbocharger is considered. A non mass-conserving penalty
cavitation approach yields a smooth pressure profile. The run-up behavior and the stability threshold are
almost identical to the often-used half-SOMMERFELD (GÜMBEL) condition. The hydrodynamic pressure in
pockets or grooves is negligible due to their large gap size. However, the hydrostatic pressure has to be
considered, which can stabilize or destabilize the system, depending on the lubricant supply geometry.
The differences between non mass-conserving and the mass-conserving cavitation model are small for
purely synchronous oscillations due to small unbalance. The two-phase model yields a lower stability
threshold rotor speed, which is further decreased for open-ended bearings. Non mass-conserving models
implicitly assume that the bearing gap is completely filled with lubricant at all times. During squeeze mo-
tion, the pressure build-up upon load-reversal is instantaneous. The pressure build-up is delayed for the
mass-conserving cavitation model, which yields reduced radial damping. Furthermore, the circumferen-
tial extend of the pressure profile during whirl motion is smaller due to cavitation for mass-conserving
models. The load carrying capacity is decreased, which may often yield higher eccentricities during sub-
synchronous oscillations. A two-phase model can also entail a different bifurcation behavior, especially
for insufficient lubricant supply.
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1 Introduction

The demand for more efficient machinery with higher power density leads to an increase of the rotation
speed of rotor systems. Combined with lightweight design, this yields a rise of unwanted oscillations,
which reduce the efficiency, the comfort and the operational lifetime of the machinery or may even lead
to its destruction.
Rotors with high rotation speeds are often supported in hydrodynamic fluid film bearings due to their
high damping compared to rolling element bearings. The cross-section of a journal bearing is exemplary
shown in figure 1.1. The rotor journal has an eccentric position with respect to the bearing shell. The
liquid lubricant is dragged into the converging gap through the rotation of the journal. This generates a
hydrodynamic pressure in the lubricant film, which lifts the rotor journal and completely separates rotor
and stator. The lubricant is usually supplied through openings in the bearing shell and leaves the bearing
in axial direction (not shown).
Rotors supported in hydrodynamic journal bearings are subject to nonlinear effects due to the fluid-
structure interaction. At a certain rotor-speed, self-excited oscillations with a frequency below the rotor-
speed emerge, the so-called oil whirl. This frequency can lock into a natural frequency of the rotor-
bearing system, which leads to the so-called oil whip, see e.g. [KB08; Sze11; Cra90]. The amplitudes
of these sub-synchronous oscillations often exceed those of the synchronous unbalance oscillation and
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Figure 1.1.: Cross-section of a cylindrical journal bearing with lubricant supply at the top

1



prevent the safe operation of the rotor-bearing system above a threshold rotor-speed. Sub-synchronous
oscillations are also the main cause for undesired acoustics in automotive turbochargers, see e.g. [NS15;
Sch10]. Additionally, combination frequencies and jump phenomena occur. This behavior strongly
depends on the nonlinear fluid-dynamics of the lubricant films and the geometry of the bearings.
Journal bearings are subject to cavitation, which occurs due to the limited ability of fluid lubricants to
support tensile stresses, see e.g. [BH10; DT79]. The oil in the lubrication cycle usually contains some
dissolved air, which has no time to excrete in the oil reservoir, see [PB85; Nik99]. When the local pressure
decreases, dissolved air is released. Additionally, air enters the bearing gap through the axial ends of
the bearing and the lubricant evaporates at very low pressures. The lubricant film ruptures, resulting
in cavities filled with gas and/or vapor, which is also schematically shown in figure 1.1. These cavities
have very little density and viscosity compared to the liquid lubricant film and thus the load carrying
capacity and damping is reduced drastically, see e.g. [Boe10; ZV88; Phe61]. Lightweight rotors – such as
turbocharger rotors – are characterized by non-static operational behavior and large journal movements,
see e.g. [Sch10], and are thus likely to be influenced by cavitation. Often, simple approaches are used to
model cavitation, such as the well-known half-SOMMERFELD (GÜMBEL) or REYNOLDS boundary conditions,
see e.g. [KB08; Sze11]. These approaches yield satisfactory results under stationary conditions and high
bearing loads, see e.g. [DT79], yet they do not take into account the conservation of mass.

Turbochargers are rotor systems with high and transient rotor-speed, low weight and low static load.
Figure 1.2 shows a CAD representation of an automotive turbocharger. The hot exhaust gas from an
internal combustion engine drives a turbine wheel, which is connected over a shaft to a compressor
wheel. The remaining energy in the exhaust gas is used to compress the intake air, which increases the
power and overall efficiency of the combustion engine. Today, turbochargers are used to downsize the
cylinders of engines while keeping their power constant, in order to reduce fuel consumption.
Often, floating ring bearings are used for light rotors with high rotation speeds. This creates a series

Entry of Hot Exhaust Gas

Entry of

Compressor Wheel Turbine Wheel

Intake Air

Figure 1.2.: Cross-section of an automotive exhaust turbocharger with full-floating ring bearings
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connection of two lubricant films in each bearing. The oil whirls/whips occurring in one lubricant film are
mutually damped by the other lubricant film, which enables operation speeds above the threshold rotor-
speed of single-film bearings. The manufacturing costs are lower compared to more sophisticated journal
bearing designs such as tilting-pad bearings, which are used in heavy turbomachinery to increase the
threshold speed. If the floating rings are allowed to rotate freely – a so-called full-floating configuration
– a synchronization of the oil whirl/whip of the inner and the outer oil film can occur, the so-called total
instability, which entails very high amplitudes and may result in the destruction of the turbocharger,
see [Sch09b]. In the so-called semi-floating configuration, the rotation of the floating ring is prevented
and the outer lubricant film acts as a squeeze-film damper. This setup is favorable concerning sub-
synchronous oscillations, yet it entails higher friction losses, see e.g. [BS15].

Today, numerical models are widely used to efficiently and economically analyze the behavior, to im-
prove the performance and to insure the safe operation of complex technical systems. Validated models
can reduce the amount of costly experiments. Nonlinear rotor systems – such as turbochargers in floating
ring bearings – are sensitive to parameter changes and are thus often investigated through transient run-
up simulations. The hydrodynamics of the lubricant films are often simplified to reduce the calculation
time. Analytic solutions such as the short bearing theory are very fast, yet are limited to plain bearing
designs and non mass-conserving cavitation approaches. More accurate is the calculation of the hydro-
dynamics using numerical discretization methods. The results can be calculated a-priori and saved in
look-up tables, which reduces the calculation time. Yet the amount of data increases exponentially with
the number of dependent variables, which reduces the efficiency for more complex bearing designs and
more accurate physical modeling. Due to advances in computer hardware, the solution of the discretized
equations in every time-step of the simulation becomes increasingly common.
The equations of motion of the rotor system and the partial differential equations governing the hydro-
dynamics of the lubricant films can be solved in a single, so-called monolithic model. Yet this yields a
large equation system and a trade-off for the numerical solver, which cannot be optimized for one type of
equations. Furthermore, not many existing software tools are multi-purpose – e.g. multibody dynamics
and finite elements – and thus the equation system has to be implemented manually in low-level pro-
gramming tools, e.g. FORTRAN, C or MATLAB. This may yield fast software tools, yet requires high effort,
deep knowledge of several fields and is inflexible concerning changes of the model.
Many existing commercial software tools are tailored to a specific task, e.g. rotor dynamics, multibody
dynamics or fluid dynamics. These tools facilitate the modeling of subsystems by specialized engineers,
which allows a higher level of detail. For example, rotor shafts with complex geometry can be discretized
with finite elements. Bearing models can consider complex geometries and accurate physics descriptions
such as mass-conserving cavitation models. The subsystems can be coupled to form an overall system
by means of a co-simulation approach, see e.g. [Bus12; Sch15; VAS09]. All subsystems use specialized
solvers with their respective time-step sizes, usually implicit solvers with error-dependent time-step con-
trol. The coupling variables are exchanged at to-be-defined time points and approximated in between.
Co-simulation also enables the straightforward update and exchange of the subsystems. In some cases,
it can also be advantageous with respect to the simulation time, e.g. for mechanical systems with many
bodies. These systems can be separated into many weakly coupled subsystems, which are then solved in
parallel, see e.g. [KS17].
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1.1 Literature Review

In the last decades, sophisticated bearing models have been developed which include many different
effects such as mass-conserving cavitation, influence of lubricant supply, thermal models and complex
bearing geometries, e.g. [Mit90; Fuc02; Mer08; Bob08; Hag12]. These tools are well suited to perform
detailed analyses for different steady-state operating conditions, yet they are usually not directly coupled
with rotor models due to their high calculation times. Look-up tables are derived for transient run-up
simulations, see e.g. [NS13].

The influence of the bearing geometry on the stability of rotor systems in single lubricant film bearings
has been comprehensively discussed in literature, see e.g. [AME80; AF81; BAG77; LFL82; LCA80]. Cylin-
drical bearings often include grooves to improve the lubricant supply. The influence of axial grooves has
been investigated e.g. in [FL82; FKB02] and the influence of circumferential grooves e.g. in [Dow+85;
NCL10; Cho+11]. Bearings with preloaded geometry, so-called multilobe bearings, rise the onset fre-
quency of the instability of rotor systems, see e.g. [FL82; LF82]. Tilting-pad bearings have a very good
stability behavior, yet are expensive to manufacture, see e.g. [NFG17; SAKH17].
Most of these studies consider linear stability-analyses for rigid rotors in single film journal bearings
under stationary operating conditions, which give no insight into the transient behavior and on sub-
synchronous oscillations. Thus, the results can not be directly adapted to more complex rotor systems
under transient operation. Furthermore, bearings with non rotating shells are usually considered. Float-
ing ring bearings consist of a series connection of an inner and an outer fluid film, which are mutually
influenced. Additional research is required to study the influence of the bearing geometry on transient
rotor systems in floating ring bearings.

Cavitation effects in journal bearings have received a lot of attention in the last sixty years. A recent
literature review is given in [BH10].
The early investigations of cavitation in journal bearings have been restricted to steady-state operation,
i.e. a purely rotating journal, where the shape and location of the cavity are similar to figure 1.1 and
remain stationary. In order to model cavitation, the fluid film was divided into a fully-developed fluid
film area, which contains only liquid lubricant, and a cavitated area, which contains lubricant and gas.
The mass-conserving description of the boundaries between these areas led to the JFO-theory, see [JF57;
Ols65]. This procedure is based on experimental observations, yet the phenomena leading to cavitation
are not physically described. Furthermore, only the pressure in the fully-developed fluid film is calcu-
lated, while it is set to a constant value – usually ambient pressure – in the cavitated area.
The most prominent application of the JFO-theory is the algorithm developed by ELROD, see [Elr81]. It
is explained in section 3.3.3.1. Variations have been published in [VK89; KB91a; SP02; AOE15]. These
algorithms are complimentary, since different equations and different unknowns are used in the fully-
developed fluid film area than in the cavitated area. Usually, the whole bearing gap is discretized, which
might lead to problems if grid points alternately belong to either the fully-developed fluid film or the
cavitated area. This requires a fine mesh and numerous iterations, which makes this approach unfea-
sible for run-up simulations. Possible solutions are the smoothing of the boundary, see [Nit+16], or a
transformation of the solution domain into the fully-developed fluid film area using ALE-techniques, see
e.g. [Sch09a].
Numerical results agree well with experiments for moderate to heavy loads. In this case, the difference
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in the hydrodynamic pressure predicted by non mass-conserving and mass-conserving cavitation models
is often negligible, see [KB91b; Goo+07]. A reduction of the load-carrying capacity for mass-conserving
cavitation models has been observed for low eccentricities, which are related to high rotation speeds,
see [PB85]. Additionally, mass-conserving models yield more accurate predictions of thermal properties
and friction losses, see [BH10].

In dynamically loaded bearings, the cavitated area changes drastically during operation. However, the
effect leading to cavitation remains the same, namely a local expanding bearing gap, see [GPP06]. Only
scarce literature exists on cavitation in dynamically loaded journal bearings.
Cavitation has a large influence on the performance of squeeze-film dampers, which has been thor-
oughly investigated in literature. In these bearings, the journal does not rotate and usually performs a
whirling motion. Whirling motions with high amplitudes are also encountered in journal bearings during
sub-synchronous oscillations. ZEIDAN and VANCE investigated gaseous and vaporous cavitation regimes
in squeeze-film dampers with high-speed pictures and measurements of the rotating pressure profile,
see [ZV88]. No cavitation takes place for very low whirl speeds or high supply pressure. A large cavity
forms for slightly higher whirl speeds, which follows the movement of the journal without affecting the
positive pressure, resembling the cavitation in a journal bearing with constant rotor-speed. This cavity
breaks up into small bubbles for increasing whirl speed. The bubbles do not collapse in the high pressure
region, which results in a reduced area of the fully developed lubricant film and thus a lower load carry-
ing capacity. More and smaller gas bubbles appear with higher whirl speed. The build-up of pressure is
delayed, which reduces the effective damping of the bearing.
Further experiments on the same test rig have been reported in [DSA98]. It was found that for higher
air entrainment, the fluid viscosity and damping capability decrease. Furthermore, an increasing area
in the fluid film was observed, where no pressure is generated due to gaseous cavitation. The authors
further noticed that for high amounts of air entrainment, the cavitation regime is unstable and leads to
unreproducible pressures for consecutive cycles of the journal motion. Thus, worse correlation between
experiments and numerical models is usually achieved for squeeze-film dampers and dynamically loaded
bearings than for stationary loaded bearings.
BOEDO numerically investigated the influence of mass-conserving cavitation models by considering a
bearing under sinusoidal loads, see [Boe10]. The complimentary, finite element cavitation algorithm
presented in [KB91a] was used. It was found that at the load reversal, a cavity has formed in the ex-
panded part of the bearing gap, which has to be filled again with lubricant in order to support the load.
This behavior can only be captured with mass-conserving models, which consider the spatial and tempo-
ral time history of the fluid density. Non mass-conserving models on the other hand assume a completely
filled lubricant gap at all times, which wrongly yields that the complete load carrying capacity of the film
is available upon load reversal. However, comparison to experimental results given in [Phe61] revealed
that good agreement is only achieved for small bearing gaps used in engine bearings and when vaporous
cavitation is assumed. Open-ended bearings with greater gaps such as turbochargers or squeeze-film
dampers favor gaseous cavitation, see [ZV88].

Complimentary cavitation models do not consider the cavitated area and assume a constant pressure,
usually ambient pressure. It has been observed experimentally that the pressure in the cavitated area can
become smaller than ambient pressure due the surface tension of gas bubbles, see [DT79; BH84]. The
tensions remain moderate due to the release of gas. Two-phase models consider the physical processes of
bubble generation and collapse. A homogeneous mixture fluid is assumed, whose density and viscosity
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locally depend on the amount of free gas. The fully-developed fluid film and the cavitated area are
not clearly separated. The pressure in the cavitated area is also calculated and can become lower than
ambient pressure. Gaseous cavitation is considered as the main mechanism.
Mixtures of NEWTONIAN liquid and ideal gas exhibit non NEWTONIAN behavior, see [Cha+93]. Analytical
relations between the mixture pressure and its density and viscosity have been derived e.g. in [PB85;
FH86; Nik99; GPP06; Goo+07]. Empirical ansatz-functions for the solubility of air in the lubricant have
been used in [ES10; ES11; Li+12]. The mixture density decreases with higher amounts of released
gas, see e.g. [Nik99]. The derivation is straightforward and is almost equal for isothermal and adiabatic
conditions, see [FH86]. The mixture viscosity is more complicated to obtain, since it depends on the
size of the air bubbles and the shear rate, see [PB85]. Several existing viscosity models are reviewed
in [FH86]. Small bubbles require more time to excrete the mixture, see [Nik99]. However, small bubbles
coalesce over time to larger bubbles, see [Goo+07]. Bubbles in dynamically loaded journal bearings and
squeeze-film dampers can become as large as the local gap size, see [DSA01a].
Two-phase models have been derived and applied to journal bearings by several authors. CHAMNIPRASART

et al. derived a binary mixture model derived from the continuum theory of mixtures consisting of two
coupled nonlinear differential equations describing the component densities, see [Cha+93]. The fluid
is assumed homogeneous and isotropic, which implies a small bubble size. Calculation of a bearing
submerged in an oil bath under steady-state operation yielded qualitative agreement with experimental
results conducted in [BH84]. However, the model is sophisticated and requires several parameters,
which are difficult to obtain. Furthermore, the change of the mixture viscosity has not been considered.
A model for squeeze-film dampers was presented in [DSA01a]. Relations for the mixture density and
viscosity derived in [Dia99] were plugged into the compressible REYNOLDS equation. Good agreement
with experimental results was found for the damping force.
A similar model has been derived by PEEKEN and BRENNER in [PB85], which was used by several authors,
see [Fuc02; Mer08; NS13]. This model is explained in section 3.3.3.2.

Most studies neglect sucking-in of air from the surroundings, since bearings are assumed with tight
axial seals or which are submerged in an oil bath. This is a rare case in practice. Journal bearings and
squeeze-film dampers are often axially open to the surroundings. Air is sucked into the bearing gap
due to translational motion of the journal. This effect increases with higher frequencies and amplitudes,
see [ZV88; Raj+93; Wan+17].
Another important aspect is the mass-transfer between liquid and air. Usually, an equilibrium between
the gas and the liquid phase is assumed, i.e. the collapse and reformation of the fully-developed fluid film
occur instantaneously according to the change of the bearing gap. This assumption is in good agreement
with the non mass-conserving REYNOLDS boundary condition under steady-state operation, see [GPP06;
Li+12]. However, this assumption may become inaccurate at high frequencies and journal amplitudes,
since air bubbles persist in the high-pressure zone of the lubricant film, see [ZV88]. Degassing and
reabsorption of gas in liquid are slow processes compared to typical revolution times in journal bearings,
see [SB92]. The case that the bubbles are not reabsorbed has been considered in [FH86; GPP06].
This yields significantly different pressure profiles and journal equilibrium positions and entails transient
behavior even for steady-state operation. However, the increased compressibility of the mixture allows
better adaption to geometry changes, see [GPP06]. The rate of air absorption is difficult to obtain. The
actual behavior probably is in between the two extreme cases of instant and no reabsorption.
Two-phase models may be not applicable for heavily loaded journal bearings with constant speed, since
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they underestimate the load-carrying capacity, see [Raj+93]. The physical modeling of the liquid/air
interaction makes them feasible for bearings under transient loads such as squeeze-film dampers or
journal bearings for light rotors such as turbochargers.
Additionally, a pressure build-up in the cavitated area has been observed experimentally in submerged
bearings. GROPER and ETSION theoretically related this effect to transient flow reversal at the end of the
cavitated area, see [GE02]. The influences of shear of the cavity or mass-transfer between liquid and gas
phase on the pressure build-up in the cavitated area was found to be negligible, see [GE01].

Cavitation influences the dynamic behavior of rotors in journal bearings. Reduced damping due to dis-
solved air in the lubricant has been observed for squeeze-film dampers in [ZV88; DSA98; Wan+17]
and also for tilting-pad bearings in [NFG17; SAKH17]. Cavitation also influences the rotordynamic sta-
bility and whirl amplitudes, see [Bre86]. KÖHL experimentally observed bubbly flow in the bearing of
a turbocharger during sub-synchronous oscillations using a transparent bearing housing, see [KKF14;
Köh15]. This is also apparent in the outflow of the bearing and has been noticed by other researchers,
see e.g. [ZV88; DSA98]. Increased sub-synchronous amplitudes due to cavitation have been experi-
mentally observed for a rotor supported in tilting-pad bearings in [NFG17]. This effect increases for
insufficient oil supply and increasing rotor-speed and decreases for higher bearing loads. NITZSCHKE et
al. investigated the influence of mass-conserving cavitation for an elastic rotor in multilobe bearings
using a multibody model and the ELROD cavitation algorithm. The oil whip occured at a lower rotation
speed than for the non mass-conserving half-SOMMERFELD model, see [Nit+13].
Insufficient oil supply might lead to flow starvation, which has been numerically investigated for a rotor
in tilting-pad bearings in [SAKH17]. It has been found that cavitation firstly occurs in the unloaded sec-
tions of the bearing. The amount of oil in the bearing gaps decreases with higher shaft speeds, therefore
the systems natural frequencies are reduced due to the increased compressibility of the lubricant film.
The drag torque of the lubricant film determines the speed of the floating rings in turbochargers, which
has a large influence on the occurrence of sub-synchronous oscillations. A reduced drag torque due to
cavitation has been observed in [SAKH17]. WANG et al. performed a CFD analysis of a floating ring with
a two-phase model, see [WR17]. They found that the ring-speed decreases with higher amounts of air in
the lubricant films. This effect had a stronger influence than the heating of the lubricant due to friction.

Turbocharger systems have been thoroughly investigated in the last decade, both experimentally and
numerically. Numerical run-up simulations provide a fast and cost-effective way to analyze the effects
of different parameters on the oscillation behavior during the design process. SCHWEIZER has made a
detailed analysis of the nonlinear bifurcation behavior during run-ups of turbocharger rotors in full-
floating ring bearings with plain geometry using a flexible multibody model in [Sch10]. The influences
of different parameters have been investigated and the results have been compared to experiments.
DANIEL et al. performed a sensitivity analysis of different bearing parameters with design methods,
see [Dan+13]. The geometry of the bearings and the shaft have also been tuned systematically using
a sensitivity analysis and neural networks in [Kou+15]. An important parameter for the dynamical
bifurcation behavior of turbocharger rotors are the rotation speeds of the floating rings. KÖHL replaced
the cast iron bearing housing with a transparent acrylic glass housing and optically measured the ring
speed, see [KKF14]. The above mentioned studies treat turbochargers in full-floating ring bearings.
Semi-floating ring bearings have been investigated e.g. in [SAV10; BS15].
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Additionally to the rotor itself, various authors have investigated the influence of the housing, which
is mounted to the internal combustion engine. BOYACI examined the transmission behavior of the tur-
bocharger housing using a multibody software and the short bearing theory for the bearings, see [BS17].
A resonance of the housing is excited and effectively transmits the second sub-synchronous oscillation
into the driver cabin. The transmitting behavior can be improved by detuning the eigenfrequencies of
the housing. However, a careful design of the bearings is still inevitable in order to prevent damage to
the system. It has also been found that the feedback from the housing oscillations to the bearing gap
sizes is negligible and the housing can be considered rigid for the calculation of the bearings.
Engine induced oscillations have been investigated in [SA+10; TWP11]. Super-synchronous frequencies
which are multiples of the combustion engine speed are common according to the number of cylinders.
Yet these frequencies are low-frequency sub-synchronous oscillations concerning the turbocharger rotor
due to its high rotor-speed.

For run-up simulations used in industry during the design process, bearing forces are often calculated
with analytical approximations such as the short bearing theory, see e.g. [Kou+15; BS17], or using
look-up tables, see e.g. [NS13]. The influences of complex, non plain bearing geometries, non constant
lubricant temperatures and mass-conserving cavitation are often neglected. On the contrary, detailed
CFD analyses of floating ring bearings are performed, which take several hours for one operating point,
see e.g. [EOR15b; Por+14; Wan+17; WR17]. Recent publications aim to close the gap between these
different approaches using nonlinear rotor-bearing models for run-up simulations. An overview is given
in the following.
The influence of axial thrust bearings on the lateral rotor oscillations has been investigated in [Cha+16].
Axial thrust provides additional damping to the system and may shift the sub-synchronous oscillations
to higher rotor-speeds. The inclusion of a thermal model is important for the accurate prediction of
the behavior at high rotor-speeds. A decoupled thermo-hydrodynamic model is sufficient for transient
run-up simulations.
The design of floating ring bearings of turbochargers usually includes grooves to optimize the oil supply
for the inner oil film. The grooves also affect the sub-synchronous oscillations. Compared to floating
ring bearings with plain surfaces, a circumferential groove in the outer gap entails a reduced frequency
range of the second sub-synchronous oscillation. On the contrary, the load carrying capacity of the outer
lubricant film is reduced, which yields larger outer eccentricities and a decreased onset frequency of the
third sub-synchronous oscillation, see [Now+15b]. The same tendency has been observed in [Wos+15].
A reduced frequency range of the second sub-synchronous oscillation can also be achieved using floating
rings with axial grooves in their inner surfaces, see [Now+15a]. Experiments with a large number of
different full-floating ring geometries performed in [Kir14] also show that axial grooves can lower the
amplitude of sub-synchronous oscillations.
The influence of preloaded bearing geometry in floating ring bearings has been investigated in [EOR15a;
Ber+17]. It has been found that this geometry reduces sub-synchronous oscillations compared to plain
bearing designs with the cost of increased friction losses.
NITZSCHKE et al. have investigated the influence of misalignment and the connecting channels in floating
ring bearings, see [Nit+11]. The pressure in the inner and outer lubricant films has been coupled using a
penalty formulation. The influence of misalignment and the connecting channels on the sub-synchronous
oscillations is rather small except for the onset of the total instability, see [Sch09b]. Differences between
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numerical and experimental results have been attributed to the lack of a thermal model and the flexibility
of the rotor shaft, which was not considered.

Additionally to non plain bearing designs, recent publications aim to improve the modeling of cavitation
effects. NGUYEN-SCHÄFER has carried out run-up simulations of a turbocharger with a two-phase model
from [PB85] using look-up tables, see [NS13].
In [Eli+16], Eling et al. investigated the influence of the model depth using three bearing models with
increasing complexity. The rotor-bearing system was implemented as a monolithic model in Comsol Mul-
tiphysics. The bearing models differ in their lubricant supply geometry, the consideration of tilting, their
thermal model and their cavitation model. For mass-conserving cavitation, a modified ELROD algorithm
introduced in [AOE15] has been used. The authors concluded that the fast short bearing approach al-
ready gives a good indication of the system behavior. A distributed thermal model has only little effect
compared to a lumped thermal model. The influence of mass-conserving cavitation was found to be
small, yet only single-film bearings were considered. On the other hand, the lubricant supply showed a
significant influence due to the hydrostatic load on the journal.
Recently, NITZSCHKE investigated the effect of mass-conserving cavitation on the oscillation behavior of
automotive turbochargers in floating ring bearings, see [Nit17]. In contrast to this work, a monolithic
model has been implemented as compiled code. This yields a fast model, yet the adaption of the model
or exchange of components requires a sufficient knowledge of the overall system. The lubricant gap has
been discretized with finite volumes, which are flow-conservative by design, yet less flexible concerning
the geometry than finite elements. Mass-conserving cavitation has been considered by means of a reg-
ularized ELROD algorithm, see [Nit+16]. The time-dependency of the modified REYNOLDS equation due
the compressibility of the lubricant/gas mixture is considered with backward differences using stored
values of the lubricant fraction. The bearing model is a sub-function of the rotor model and thus uses the
same time-step size. The bearing model includes a lumped thermal model, which gives constant temper-
atures during one time-step and neglects the coupling between the REYNOLDS and the energy equation,
see [SAK04; SA+12]. The model has been compared to less sophisticated bearing models concerning
their prediction of the sub-synchronous oscillations for different bearing gaps and rotor unbalances. It
has been observed that the ELROD and half-SOMMERFELD models behave analogous to parameter changes
except for the unbalance. Furthermore, results obtained with the short bearing solution are closer to
more sophisticated models than a look-up table solution. The minimal bearing gap during operation is
smaller when mass-conserving cavitation is considered. The regularized ELROD algorithm has also been
applied to an elasto-hydrodynamic (EHD) problem, namely the piston rod bearing on a crankshaft of an
internal combustion engine, see [NWD17].

The level of detail of numerical turbocharger models used for run-up simulations has significantly im-
proved in the last decade. Yet most authors use their own in-house bearing models, which are pro-
grammed in low-level programming languages and are integrated into the rotor model as sophisticated
sub-functions.
Coupling of different software tools facilitates the development of subsystems with easy-to-use, special-
ized software tools developed by specialized engineers. This can help to further improve the model
depth of the investigated systems, since the engineers working on the individual subsystems only require
a basic knowledge of the other components to define the coupling variables.
BUSCH developed a dynamic-static interface for the coupling of commercial multibody and commercial
finite-element software and performed run-up simulations of an automotive turbocharger, see [BS12].
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Yet for bearing models with classical non mass-conserving cavitation modeling, this coupling approach
requires a large amount of parallel processes.
SCHMOLL developed a dynamic-dynamic coupling interface for commercial software tools, which was
applied to hydraulic, electrodynamic and flexible mechanical systems, see [Sch15]. This approach re-
quires far less parallel processes and is also applicable to rotor-bearing systems, when mass-conserving
cavitation is considered.

1.2 Problem Formulation

This work aims to further improve the numerical modeling of light rotors in floating ring bearings such
as turbochargers. Highly accurate rotor-bearing models can be used to predict the influences of design
parameters and reduce the amount of expensive experiments. The numerical model is used to perform
transient run-up simulations to study the influences of modeling assumptions on the nonlinear oscillation
behavior.

The rotor is represented by a multibody system. The equations of motion consist of a set of nonlinear
differential-algebraic equations. The commercial multibody system software MSC Adams is used for the
modeling and the numerical integration of the system. A JEFFCOTT rotor is used for preliminary studies.
Flexible shafts are often modeled using TIMOSHENKO beam elements, see e.g. [Eli+16; Nit17]. Here, a
modally reduced finite element representation is used to model the shaft of a turbocharger.

In contrast to approximate solutions such as the short-bearing solution, the discretization of the REYNOLDS

equation with finite-elements facilitates the implementation of non plain bearing geometries and addi-
tional effects, with the cost of longer computation times. The commercial software COMSOL Multiphysics
is used.
Mass-conserving cavitation has a large impact on the load carrying and damping capacity provided by
the lubricant films. This is especially relevant in floating ring bearings due to the series connection of
the inner and outer lubricant films. The literature review shows that complimentary cavitation models
such as the ELROD algorithm might not be suited for transient journal movements with high amplitudes.
In this work, the REYNOLDS equation is expanded with a two-phase flow cavitation approach, which yields
a single differential equation for the whole lubricant gap. A complementary problem and the use of a
switch function are avoided by introducing pressure-dependent mixture density and viscosity. A simple
ansatz function is used for the relation between pressure and the local lubricant fraction, which can be
easily adopted to different physical cavitation models. In this work it is tuned to reflect the ELROD algo-
rithm for better comparison with classical non mass-conserving cavitation models. An artificial diffusion
approach is used to numerically stabilize the solution. Many existing studies consider axially sealed
bearings and do not consider sucking-in of air from the surroundings. A special axial boundary condition
is introduced, which describes open-ended bearings more accurately.

In order to close the gap between academic research and application in industry, commercial software
tools are used to implement the rotor and the bearing models. These tools use implicit solvers with
variable time-step size. User-created sub-functions are used in both tools to exchange input and output
values. For non mass-conserving cavitation models, a semi-implicit dynamic-static coupling approach
is used, see [BS12]. Mass-conserving cavitation models on the other hand entail a time-dependent
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REYNOLDS equation, which is difficult to implement in commercial software when the bearing model is
realized as a sub-function of the rotor model, see [Nit+13]. Instead, an explicit co-simulation technique
is used, see [Sch15].

The coupled rotor-bearing model is used for transient run-up simulations. A JEFFCOTT rotor in single film
bearings and floating ring bearings and a turbocharger in floating ring bearings are considered. Different
bearing geometries and parameter variations emphasize the differences between non mass-conserving
and mass-conserving cavitation models.

1.3 Outline

The physical properties of the rotor models used in this work are explained in chapter 2. Furthermore,
the solver is briefly explained.
The hydrodynamic lubrication theory is laid out in chapter 3. The bearing forces acting on the rotor and
the floating rings are calculated with the REYNOLDS equation. A review of cavitation mechanisms and
well-known mass-conserving cavitation modeling approaches is given in section 3.3.
The bearing model is explained in chapter 4. Firstly, different bearing designs used in turbochargers
and the influence of lubricant supply are discussed. Floating ring bearings are explained in detail. The
mass-conserving cavitation model used in this work is introduced in section 4.2. It is compared to other
cavitation models by means of pre-defined motions of the journal.
The solver coupling methods used in this work are explained in chapter 5.
Transient run-up simulations are performed with the coupled rotor-bearing model. Firstly, the two-phase
cavitation approach is compared to classical cavitation models using a JEFFCOTT rotor in single oil films
in chapter 6. The influences of the axial boundary conditions, lubricant supply with different geometries,
shaft stiffness and unbalance on the stability threshold and the sub-synchronous oscillations are investi-
gated.
Then, a JEFFCOTT rotor and a turbocharger in floating ring bearings are considered in chapter 7. Espe-
cially the nominal gap sizes and the lubricant supply pressure strongly influence the oscillation behavior.
Finally, the work is summarized and an outlook is given in chapter 8.
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2 Rotor Models

The physical properties of the different rotor models used in this work are discussed in the next section.
The rotors are modeled using the commercial multibody software MSC Adams, which yields a nonlinear
differential-algebraic equation system. An implicit Backward Differential Formula (BDF) method is used
for the time integration, which is briefly explained in section 2.2.2. Ordinary differential equations
of simple rotor models are given for clarity. Usually, the floating rings are also part of the multibody
system. They are treated in section 4.1.5. The numerical model and the time integration are explained
in section 2.2.

2.1 Physical Description

The interaction between the nonlinear stiffness and damping properties of the bearings with the rotor
yields sub-synchronous oscillations. In order to understand the influence of the bearing model described
in chapter 4, the complexity of the rotor is gradually increased. The simplest rotor in journal bearings is a
rigid journal, which is described in the next section. However, no oil whip occurs due to the infinitely high
critical bending speed. A JEFFCOTT rotor is the simplest flexible rotor, which is explained in section 2.1.2.
Finally, a turbocharger model is discussed in section 2.1.3.

2.1.1 Symmetric Rigid Rotor

A symmetric rigid rotor without tilting can be treated as a point mass at the position of its center of mass.
The rotor has the mass m and the (predefined) rotation speed α̇R. The unbalance is U=meCM , where
eCM is the eccentricity of the center of mass CM with respect to the geometrical center J of the journal,
see figure 2.1. The relations between these two points are

xCM = xJ − eCM sinαR ,

yCM = yJ + eCM cosαR .
(2.1)

Without loss of generality, the phase angle of the unbalance is set to zero. This can be changed by adding
an offset angle to αR.
The bearing forces Fx and Fy act in point J and depend nonlinearly on the displacement and velocity of
the journal. The rotor is subject to gravity g. NEWTON’s law applied to the rotor yields

mẍCM = 2Fx(xJ , ẋJ , yJ , ẏJ , αR, α̇R) ,

mÿCM = 2Fy(xJ , ẋJ , yJ , ẏJ , αR, α̇R)−mg .
(2.2)
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By inserting equation (2.1), the equations of motion for the geometrical center of the rotor J are derived,

mẍJ = 2Fx(xJ , ẋJ , yJ , ẏJ , αR, α̇R) + U
[
α̈R cosαR − α̇2

R sinαR
]
,

mÿJ = 2Fy(xJ , ẋJ , yJ , ẏJ , αR, α̇R) + U
[
α̈R sinαR + α̇2

R cosαR
]
−mg .

(2.3)

The two equations are coupled through the anisotropic bearing forces Fx and Fy.

y
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2Fx
2Fy

J

CM

αR
eCM

yCM

yJ

xCM xJ

g

0

m

Figure 2.1.: Kinematics and kinetics of a symmetric rigid rotor

2.1.2 Symmetric JEFFCOTT Rotor

The JEFFCOTT rotor is a simple, yet powerful model to study the behavior of flexible rotors. Also, some
effects of turbochargers can be shown with this simple rotor model. Since the rotor only has one natural
mode, fewer sub-synchronous oscillations are present than in a turbocharger, see chapter 7.
The rotor consists of a rigid disk with mass mD and a massless flexible shaft with stiffness c, see fig-
ure 2.2. Additionally, stiffness-proportional shaft damping di and external damping do acting on the disk
are considered. The rotor-speed ωR(t)= α̇R is predefined. A symmetric rotor is considered, thus both
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Figure 2.2.: Kinematics and kinetics of a symmetric JEFFCOTT Rotor
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journals perform the same motion and can be treated as a single body. A small mass mJ is considered to
entail an invertible mass matrix. The center of mass CM of the disk is eccentric with the distance eCM
from the geometrical center D of the disk, where the flexible shaft is connected. The nonlinear bearing
forces Fx and Fy act on the journals at the point J .
NEWTON’s law is applied to the disk and the journals. By inserting equation (2.1), the equations of motion
for the journals J and the geometrical center of the disk D are derived, see e.g. [GNP02],

mJ

mD

mJ

mD




ẍJ

ẍD

ÿJ

ÿD

+


di −di

−di di+do

di −di

−di di+do




ẋJ

ẋD

ẏJ

ẏD

+

+


c −c

−c c

c −c

−c c




xJ

xD

yJ

yD

 =


2Fx(xJ , ẋJ , yJ , ẏJ , α̇R)

U
(
α̈R cosαR − α̇2

R sinαR
)

2Fy(xJ , ẋJ , yJ , ẏJ , α̇R)−mJg

U
(
α̈R sinαR + α̇2

R cosαR
)
−mDg

 .

(2.4)

The motion of the disk and the journals is coupled by means of the shaft stiffness c and damping di.
The horizontal and the vertical direction are only coupled by means of the anisotropic journal bearing
forces Fx and Fy. The right-hand side corresponds to that of the rigid rotor (2.3), yet the unbalance and
bearing forces act on different bodies.

2.1.3 Turbocharger Rotor

Figure 2.3 schematically shows a turbocharger rotor with floating rings. The compressor wheel on the
left and the turbine wheel on the right are assumed to be rigid bodies. They are connected with a
flexible shaft, which is represented by a modally reduced finite-element model. The compressor wheel
is plugged on the shaft and fixed with a nut. The turbine wheel is joined to the shaft through friction
welding and is heavier than the compressor wheel. Unbalance masses are considered at the compressor
and at the turbine wheel. The shaft is assumed to be dynamically balanced due to its small radius. The
rotational speed of the turbine is given via a kinematic constraint and is linearly increased during a run-
up simulation. The maximum rotor-speed can be as high as 5000 Hz for light turbochargers.
The two floating ring bearings are located in between the compressor and the turbine wheel. The axial
bearing is not considered in this work. The floating rings are modeled as rigid bodies. Since tilting
is not considered, they are restricted to planar motion through constraints. The bearing forces and
torques are calculated in the bearing model and are externally applied on the shaft and the floating
rings, corresponding to each oil film.
The motion of the rotor is dominated by rigid body modes, which are superimposed by slight bending of
the shaft. In the so-called conical mode, the rotor moves in an hourglass shape, while the center of the
rotor stays approximately still. In the so-called cylindrical mode, all points of the rotor perform a circular
whirl motion with the same phase, see also [Sch10]. Due to the overhanging masses of the compressor
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wheel and the turbine wheel, gyroscopic torques act on the rotor, which split the natural frequencies
into forward and backward modes, yet only the forward modes are excited by the unbalance and the
journals. In practice, measurements of the shaft oscillation and rotation are conducted at the nut of the
compressor wheel, due to its accessibility and large oscillation amplitudes. Thus, the waterfall diagrams
showed in this work are also calculated from the oscillations at this point.

Nut

Compressor Wheel Turbine Wheel

ωR
Shaft

Floating Rings

Unbalances

Figure 2.3.: Schematic representation of a turbocharger rotor with floating rings

2.2 Numerical Modeling

In this section, firstly the general equations of motion of a multibody system are given. Then, the
time-dependent solver is explained.

2.2.1 Multibody Dynamics

Ordinary differential equations for every degree of freedom of each rigid body with respect to its center
of mass are formulated. Additionally, equations of motion of the flexible bodies are considered. The
degrees of freedom are restricted by nonlinear algebraic constraint equations g(q, t), which formulate
e.g. a fixed connection, an alignment condition or a joint. This yields a system of nonlinear differential
algebraic equations, see [Sha13],

M(q)q̈ = F(q, q̇, t,u)−GT (q, t)λ with q(t= t0) = q0 and q̇(t= t0) = q̇0 ,

0 = g(q, t) , y = y(q, q̇) .
(2.5)

The symmetric mass matrix is denoted by M(q). The vectors of generalized coordinates and velocities
are q and q̇, respectively. The initial displacements and velocities at the time t0 are denoted with q0

and q̇0. The vector F contains the applied, gyroscopic and elastic forces. The forces/torques generated
by the lubricant films are collected in the input vector u, which is provided by the bearing model. The
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vector g contains the algebraic constraint equations. The resulting constraint forces are−GT (q, t)λ with
the JACOBIAN GT (q, t) = ∂g/∂q and the vector of LAGRANGE multipliers λ. The term y(q, q̇) indicates
the output vector of the multibody system, containing the relevant kinematic quantities needed for the
calculation of the lubricant films, which are transferred to the bearing model.
Constraint equations can be formulated regarding displacements, velocities and accelerations. In this
work, constraints on the velocity level are also used, the so-called Index 2 formulation. The equation
system is stabilized by including auxiliary LAGRANGE multipliers, which force the system to fulfill the
constraints also on the position level, see [Sha13].

2.2.2 Numerical Time Integration

The solution of time-dependent differential equations requires initial conditions, which leads to an Initial
Value Problem

q̇ = f(q(t), t) , q(t0) = q0 . (2.6)

The vector q contains the states of the system with the initial conditions q0 at time t0. The vector f

usually contains nonlinear functions of q and t. For linear systems with time-independent coefficients,
f =Aq, where A is a matrix with constant coefficients. Usually no analytic solution exists for nonlinear
systems and an approximate numerical solution has to be calculated. Differential equations with higher
order derivatives can be reduced to first order systems through transformation into state space. Par-
tial differential equations are reduced to ordinary differential equation systems by spatial discretization,
which is described in section 3.4.1.
Equation (2.6) is solved approximately and step-wise with the usually variable step-size h. Many dif-
ferent methods exist, which have different properties concerning numerical stability, error, numerical
damping and efficiency. They can be divided into two categories:

• For explicit methods, the state at the next time-step tn+1 only depends on states of the past,
e.g. q(tn+1)=q(tn)+h f(q(tn), tn). The state at the next step is directly calculated, thus no
nonlinear equation system has to be solved. For partial differential equations, the size of the
time-steps is limited through the spatial mesh size, since the spatial propagation of information is
limited, see [Sch99].

• For implicit methods, the state at the next time-step also depends on states which are not yet
calculated, e.g. q(tn+1)=q(tn)+h f(q(tn+1), tn+1). Thus, a usually nonlinear equation system has
to be solved. This is mostly done approximately using NEWTON’s method. Implicit methods are
stable for larger time-steps than explicit methods, especially for stiff systems. Yet a large numerical
effort is required to compute the JACOBIAN. For partial differential equations, changes in the solution
at one node affect all nodes in the next time-step. This removes the stringent limit on the time-step
size of explicit methods.

In this work, Backward Differential Formula (BDF) methods are used, which are implicit multi-step meth-
ods suited for stiff problems. The time-derivative q̇(tn+1) at the next time-step is approximated with
polynomials with variable order using past time-steps. BDF methods are often implemented as predictor-
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corrector schemes. In the predictor-step, an initial guess for the next state is calculated using an explicit
extrapolation with a polynomial using past time-steps. Then, an implicit iteration at the current time-
step is performed using NEWTON’s method, the so-called corrector-steps. The iteration is aborted, when a
specified error is reached. Usually, the JACOBIAN does not change significantly during the corrector-steps.
Thus, many solvers give the possibility to reduce the number of these time-consuming calculations.

The time-steps tn which the method takes are usually free and depend on the error and the specified
tolerance. The results are saved at pre-defined, equidistant output-steps, which are either directly calcu-
lated or interpolated from the free time-steps. The output step-size ∆Tout has to be chosen small enough
that the highest frequency fmax is resolved. This can be checked using the NYQUIST–SHANNON sampling
theorem: The sampling frequency fout should be larger than twice the maximum frequency fmax. This
yields

∆Tout <
1

2 fmax
. (2.7)

In this work, the output step-size ∆Tout =5 · 10−5 s is used, which fulfills the NYQUIST–SHANNON theorem
for frequencies up to 10.000 Hz. The rotor-journal-bearing systems investigated in this work mostly ex-
perience synchronous and sub-synchronous oscillations. Thus, the maximum occurring frequency fmax
equals the maximum rotor-speed ωR,max.
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3 Hydrodynamic Lubrication Theory

The basic hydrodynamic lubrication theory is recapitulated in this chapter. Many books exist on this sub-
ject, e.g. [Bar10; KB08; LS78; PS61; Hor06; Sze11]. The REYNOLDS equation is used for the calculation
of the pressure in thin fluid films, which are characteristic for journal bearings. Its derivation from the
NAVIER-STOKES equation and the continuity equation is briefly reviewed in the next section. Then, the
geometry and kinematics of radial journal bearings are explained. General equations for the bearing
forces and the bearing torque are given. A dimensionless form of the REYNOLDS equation presented in
section 3.2.5 reduces the number of coupling variables in a coupled simulation. In order to achieve real-
istic results, cavitation has to be considered. A physical explanation of cavitation effects and an overview
of existing modeling approaches is given in section 3.3. The numerical solution using finite elements are
explained in section 3.4.

3.1 Derivation of the REYNOLDS Differential Equation

In order to calculate the current state of a fluid, conservation laws for mass, momentum and energy
are formulated. The solution of these differential equations using appropriate boundary conditions and
material laws yields the current density, velocity, pressure, inner energy and temperature of the fluid.
The conservation of mass for a compressible fluid is defined by the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0 (3.1)

with the local fluid density ρ and the current velocity vector v, which reads v = [u, v, w]T in Cartesian
coordinates.
The conservation of momentum of a fluid with friction is described by the NAVIER-STOKES equation. For
a compressible NEWTONIAN fluid – which is a good approximation for oil – it reads

ρ
Dv

Dt
= −∇p+ η

[
∇2v +

1

3
∇ (∇ · v)

]
+ F , (3.2)

see e.g. [Bar10; Sze11]. D/Dt is the material derivative. The pressure is denoted with p, η is the dynamic
viscosity of the fluid. The vector F contains volume forces such as gravitation. Equations (3.1) and (3.2)
are sufficient for the calculation of isothermal flow. If non isothermal flow is considered, additionally the
conservation of energy has to be taken into account, see e.g. [Bar10; Pin90; Hor06; Sze11].

For laminar flow, the inertia forces on the left side and the volume forces F in (3.2) are negligible
compared to the forces generated by pressure and viscosity. The REYNOLDS number Re is the ratio be-
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tween inertia forces and viscous forces in a fluid and is used to determine, whether a flow is laminar or
turbulent. Adjusted to radial bearings the condition for laminar flow reads

Re =
ρ v l

η
=
ρωRC

η
< 2300 , (3.3)

see [Mit90]. The velocity v is derived from the radius R and the angular velocity ω of the fluid film. In
floating ring bearings, ω depends on the ring speed and the rotor-speed and is larger in the inner fluid
film. The problem-specific characteristic length l is chosen as the nominal gap size C (see figure 3.2),
which is usually larger for the outer fluid film. Due to the larger velocities, the lubricant temperature
is higher in the inner fluid film, resulting in a lower dynamic viscosity η. Table A.1 on page 113 lists
values of Re for two turbocharger applications using extremal values. For all bearings investigated in this
work, condition (3.3) is fulfilled even at maximum rotation speed. Thus, no turbulent flow has to be
considered. However, turbulent flow may be relevant for squeeze film dampers with large gap sizes or
bearings with steps, which have been studied in [Fuc02].

Figure 3.1 shows a bearing gap with the velocities of the two rigid surfaces in Cartesian coordinates. In
hydrodynamic bearings, the thickness h(x̃) of the fluid film is 2 to 3 orders of magnitude smaller than the
other dimensions of the gap. Thus, the change of the fluid velocity w and the pressure p in z-direction are
negligible. Furthermore, the gradients in z̃-direction dominate compared to gradients in other directions,
∂/∂x̃, ∂/∂ỹ�∂/∂z̃. Taking all of the above into account, the NAVIER-STOKES equation (3.2) simplifies to

∂p

∂x̃
= η

∂2u

∂z̃2
,

∂p

∂ỹ
= η

∂2v

∂z̃2
and

∂p

∂z̃
= 0 . (3.4)

Integration of equations (3.4) yields the fluid velocities u and v in x̃- and ỹ-direction. The integration
constants are eliminated using the assumption that the fluid sticks to the surfaces, i.e. u(z̃=0)=U1 and
u(z̃=h)=U2 . If the relative movement of journal and bearing shell in axial direction is neglected,
V1 =V2 =0 and the resulting flow velocities are

u =
1

2η

∂p

∂x̃
(z̃ − h)z̃ + U1

(
1− z̃

h

)
+ U2

z̃

h
and v =

1

2η

∂p

∂ỹ
(z̃ − h)z̃ . (3.5)

The flow velocity u consists of two parts, namely the pressure-driven HAGEN-POISEUILLE flow and the
shear-driven TAYLOR-COUETTE flow. By inserting (3.5) into the continuity equation (3.1) and integrating

x̃

z̃

ỹ

h(x̃)

V2

W2

U2

V1

W1

U1

Figure 3.1.: General hydrodynamic gap with gap size h and surface velocities in Cartesian coordinates
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over the height h of the bearing gap, the REYNOLDS differential equation is derived. For compressible
fluids it reads

∂

∂x̃

[
ρ

η

h3

12

∂p

∂x̃

]
+

∂

∂ỹ

[
ρ

η

h3

12

∂p

∂ỹ

]
=

1

2
(U1+U2)

∂(hρ)

∂x̃
+
∂(hρ)

∂t
, (3.6)

see e.g. [Bar10; LS78; KB08; Sze11]. Note that ∂h/∂t = W2 − W1 . In (3.6), p(x̃, ỹ) denotes the
unknown pressure distribution, η the dynamic fluid viscosity, ρ the fluid density and U1, U2 the surface
velocities in x̃-direction. The gap function h(x̃, ỹ, t) describes the height of the fluid film. For constant
parameters η and ρ, the pressure field p(x̃, ỹ) does not explicitly depend on time, since h(x̃, ỹ, t) is a
known function of the surface displacements and velocities.

3.2 Radial Journal Bearings

The general REYNOLDS equation (3.6) can be applied to many hydrodynamic lubrication problems with
thin fluid films. The most common applications in rotordynamics are radial and axial hydrodynamic
bearings. In this section, equations and assumptions for radial journal bearings are given. The special
case of a cylindrical bearing is discussed, which is the foundation for more complex bearing geometries
explained in section 4.1.

The geometry of a radial, cylindrical journal bearing is shown in figure 3.2. The kinematics applies to non
cylindrical bearings as well. The bearing shell and the journal are assumed parallel, since misalignment
is not considered in this work. The origin of the absolute xyz-coordinate system is the center of the shell.
The radii of the shell and the journal are R and r, respectively. The diameter of the shell is D=2R. The
axial width of the bearing in z-direction is B. The nominal gap size is denoted with C=R−r. The
displacement of the journal relative to the shell is described with the Cartesian displacements Dx and

x

Θ
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h

δ

R

ωS ωJ

C

Dy

p(φ, z)

r

Dx

er

eδ

J

y

x̃

e

0

Figure 3.2.: Geometry and kinematics of a cylindrical radial bearing (dotted line: central position of the
journal)
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Dy or with the radial displacement e and the angle δ with respect to the x-axis. Often, the dimensionless
eccentricity

ε = e/C =
1

C

√
D2
x +D2

y (3.7)

is used to describe the radial displacement. The angular speed of the shell and the journal are ωS and
ωJ , respectively. The local gap size h(x̃) depends on the position of the journal relative to the shell and
the bearing geometry.
The absolute angle φ= x̃/R and the dimensionless axial coordinate z= ỹ/B are introduced. The ỹ-axis
and the z-axis are identical. Since h � R , a relation between the surface velocities U1, U2 and the
angular speeds ωS , ωJ can be formulated:

U1 + U2 ≈ R(ωJ + ωS) = Rω . (3.8)

With the dimensionless gap functionH=h/C and the relative nominal gap size ψ=C/R, equation (3.6)
can be written as

∂

∂φ

[
ψ2

12

ρ

η
H3 ∂p

∂φ

]
+

(
R

B

)2
∂

∂z

[
ψ2

12

ρ

η
H3∂p

∂z

]
=
ω

2

∂(Hρ)

∂φ
+
∂(Hρ)

∂t
. (3.9)

The terms on the left side of (3.9) are the diffusion in circumferential and axial direction, respectively.
They result from the pressure-driven HAGEN-POISEUILLE flow in equation (3.5) and compensate disconti-
nuities in the pressure profile over time.
The terms on the right side induce the pressure in the bearing gap due to the motions of journal and
shell. The first term results from the shear-driven TAYLOR-COUETTE flow in equation (3.5) and describes
the pressure build-up due to rotation of the journal and the shell. The derivative of the gap function H
with respect to the circumferential coordinate φ describes the spatial change of the gap. Hydrodynamic
pressure is generated as the lubricant is pulled into a converging gap by the moving surfaces. In lit-
erature this is often referred to as the physical wedge and is the main effect in hydrodynamic journal
bearings for separating the journal and the shell during operation. No pressure is generated by this term
in cylindrical bearings if ε=0, since then H=const. .
The second term describes the pressure build-up due to a temporal change of the bearing gap at a fixed
location and is neglected in stationary studies. The pressure is generated by a radial motion of the
journal, which is called the squeeze film damper effect in literature. Furthermore, also the circular whirl
motion of the journal with respect to the shell is included in this term, which diminishes the physical
wedge.

3.2.1 Boundary Conditions

For the solution of equation (3.9), boundary conditions for the pressure p have to be formulated. The
curvature of the surfaces in a thin fluid film is negligible. Thus, the gap geometry is developed into a
2-dimensional surface, see figure 3.3. Additionally to the dimensionless axial coordinate z, the dimen-
sionless circumferential coordinate x=φ/(2π) is used in the implementation. For the sake of brevity, the
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angle φ is used here.
The edges φ=0 and φ=2π are identical. This is enforced in the solution by applying the periodic
boundary condition

p(φ=0, z) = p(φ=2π, z) and

[
∂p

∂φ

]
φ=0, z

=

[
∂p

∂φ

]
φ=2π, z

. (3.10)

In most bearing applications, the fluid film is open to the surroundings at the axial boundaries. Thus,
the pressure on the boundaries z=0 and z=1 equals the atmospheric pressure p0 . This is imposed by
the DIRICHLET boundary conditions

p(φ, z=0) = p(φ, z=1) = p0 . (3.11)

So far, only plain bearings were considered. More complex geometries such as grooves or bore holes
enforce additional boundary conditions or partially replace those mentioned above, see section 4.1.

z

φ0

1

2π

Figure 3.3.: Developed gap geometry of a plain cylindrical bearing

3.2.2 Temperature-dependent Viscosity

The dynamic viscosity η of oil strongly depends on the temperature T , see e.g. [Pin90]. This relation can
be approximated with an exponential function for usual oil types,

η(T ) = η0 e

Aoil
∆T

+Coil . (3.12)

The constant parameters Aoil and Coil are determined by a curve fitting method using measured viscosi-
ties for different temperatures. In this work, an isothermal model is used. Thus, the lubricant viscosity η
is calculated a-priori assuming a constant temperature T during run-up.
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3.2.3 Hydrodynamic Forces

For rotordynamic simulations, the hydrodynamic bearing forces are required to calculate the current
state of the rotor. The resulting pressure profile p(φ, z) is decomposed into the components px(φ, z) and
py(φ, z) in x- and y-direction, respectively. The resulting forces Fx and Fy acting on the journal in x- and
y-direction are calculated by integration of the pressure components px and py over the surface area A
of the developed gap geometry,

Fx =

∫∫
A

px dA = A

2π∫
0

1∫
0

p(φ, z) sinφdz dφ ,

Fy =

∫∫
A

py dA = − A

2π∫
0

1∫
0

p(φ, z) cosφdz dφ .

(3.13)

Using the resulting hydrodynamic bearing force F =
√
F 2
x + F 2

y , the SOMMERFELD-number So can be
calculated,

So =
ψ2

DBη ω
F , (3.14)

see e.g. [GNP02; LS78]. It can be interpreted as a dimensionless bearing force. If the location of the
journal is stationary, i.e. Ḋx=Ḋy=0 and ω=const., the SOMMERFELD-number So is a measurement for
the load carrying capacity of the bearing. The force F then equals the external load on the journal,
e.g. a part of the weight of the rotor. An equilibrium position of the shaft in the bearing sets in, which
is a function of the SOMMERFELD-number So. This enables a classification of rotor systems supported in
journal bearings:

• A large So represents a heavy rotor (or a rotor subjected to high load) with a small rotation speed
whose equilibrium position has a relatively high eccentricity ε . Typical applications are immobile
turbines for electrical power generation.

• A small So denotes a light rotor with a high rotation speed whose equilibrium position is close
to the center of the bearing shell. Turbochargers and vertical rotors belong to this group, see
e.g. [GNP02].

3.2.4 Bearing Torque

A torque develops due to the shear of the fluid film, which acts on the journal and the shell and is the
main reason for power losses in rotor systems supported in journal bearings. For floating ring bearings,
the angular speed of the floating ring is determined by the torques in the inner and outer fluid films and
heavily affects the occurrence of subsynchronous oscillations. The accurate calculation of the bearing
torque is thus important for the design of rotors supported by journal bearings.
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The shear stress τxy of a NEWTONIAN fluid in laminar flow is proportional to the velocity gradient. The
shear stress at the surface of the journal is

τxy = −η ∂u
∂z̃

∣∣∣∣
z̃=h

(3.15)

with the velocity u in x̃-direction, see figure 3.1. The bearing torque acting on the journal is calculated
by integration of the shear stress τxy over the surface A of the journal,

MR = R

∫∫
A

τxy dA . (3.16)

Using equation (3.5) with h=CH and U2 − U1 ≈ R(ωJ − ωS) yields

MR = −R
2η

C
(ωJ − ωS)

∫∫
A

1

H
dA− RC

2

∫∫
A

∂p

∂x̃
H dA . (3.17)

The first term results from the shear-driven TAYLOR-COUETTE flow and is proportional to the difference of
the angular velocities ωJ and ωS of journal and shell.
The second term resulting from the pressure-driven HAGEN-POISEUILLE flow is often neglected due to
high shear. Yet only scarce literature exists on its influence. In [Köh15], KÖHL derived an analytical
expression for the bearing torque resulting from the HAGEN-POISEUILLE flow based on the short bearing
theory and compared it to the torque resulting from the TAYLOR-COUETTE flow for typical turbocharger
applications. In most cases, the influence of the HAGEN-POISEUILLE flow is negligible. Its importance
increases for high journal eccentricities ε and a large ratio B/D. This tendency is stronger in the inner
lubricant film. Furthermore, the influence of the HAGEN-POISEUILLE flow is less pronounced in a circular
whirl motion (e.g. sub-synchronous oscillation) than in pure rotation (e.g. synchronous vibration with
small unbalance). Since the REYNOLDS equation is solved in every time-step in this work, this term can
be easily evaluated. Its influence is investigated in section 7.2.5.
The bearing torque acting on the shell is analogously calculated, yet the shear stress τxy has to be
evaluated at the surface of the shell, i.e. z̃=0, see e.g. [Hor06]. This changes the sign of the second term
in equation (3.17). The first term remains unchanged, since the velocity gradient due to the TAYLOR-
COUETTE flow is linear and is thus equal on both surfaces.
An advantage of neglecting the HAGEN-POISEUILLE flow is that the bearing torque does not depend on the
pressure gradient. This enables its calculation on the rotor side of the coupled simulation, which reduces
the number of coupling variables, see also section 3.2.5. In [Fel16], FELSCHER reformulated the bearing
torque as a function of the bearing forces, which makes the integration of the pressure gradient in (3.17)
unnecessary.
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3.2.5 Dimensionless REYNOLDS Equation

In this work, bearing models which use non mass-conserving cavitation models are coupled to the rotor
model using semi-implicit dynamic-static solver coupling, which is explained in section 5.1. For this
method, the calculation of a partial derivative is required for each coupling variable in order to com-
pute the JACOBIAN matrix for the BDF solver of the rotor model. Usually, finite differences are used to
approximate the partial derivatives, which results in Nf (Nc+1) parallel computations of the REYNOLDS

equation for Nc coupling variables and Nf lubricant films. This is computational expensive and might
even make run-up simulations of turbochargers in floating ring bearings unfeasible on computers with a
small number of cores. Thus, it is advantageous to reduce the number of input variables of the bearing
model.

The number of input variables is determined by the evaluated right-hand side of the REYNOLDS equation.
For a cylindrical bearing described with the absolute angular coordinate φ, the right-hand side given in
equation (4.5) contains 5 input variables, namely the Cartesian displacements (dx, dy) and velocities
(ḋx, ḋy) of the journal with respect to the shell in x- and y-direction as well as the sum ω of the angular
velocities ωJ and ωS of journal and shell, see section 4.1.1. The sum ω of the angular velocities can
only be used as a coupling variable instead of the individual angular velocities ωJ and ωS , if the HAGEN-
POISEUILLE flow in the bearing torque (3.17) is neglected and the torque is evaluated in the rotor model.
As long as tilting of the journal with respect to the shell is not considered, 5 input variables are sufficient
to calculate the hydrodynamic bearing forces, also for more complex geometries such as bearings with
bore holes, pockets, grooves and bearings with preloaded pads.

The number of input variables can be reduced by introducing a dimensionless time τ = ω0 t with the
reference angular velocity ω0 . Thus, the derivatives with respect to time are written as

˙(. . . ) =
∂

∂t
(. . . ) = ω0

∂

∂τ
(. . . ) = ω0(. . . )′ . (3.18)

For ρ=const., a dimensionless REYNOLDS differential equation for cylindrical bearings is derived from
equation (3.9), see [Vra01; Boy11],

∂

∂φ

(
H3∂Π

∂φ

)
+

(
R

B

)2
∂

∂z

(
H3∂Π

∂z

)
= Ω0

∂H

∂φ
+ 2

∂H

∂τ
(3.19)

with the dimensionless pressure

Π =
ψ2

6ηω0
p (3.20)

and the dimensionless angular velocity ratio Ω0 =ω/ω0 . Only the dimensionless parameter R/B re-
mains. If the reference angular velocity ω0 is defined equal to ω , Ω0 =1 and ω is not needed as a
coupling variable.
The dimensionless REYNOLDS equation (3.19) has a singularity at ω0 =0, which makes the choice ω0 =ω
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not suitable for squeeze film dampers. Furthermore, since the dimensionless pressure Π depends on
ω0 , constant pressure boundary conditions change during run-up if ω0 changes. This is circumvented by
choosing a constant ω0 , with the disadvantage that no reduction of coupling variables is achieved.

For a cylindrical bearing, H=1+ε cos Θ (see e.g. [LS78]). Using the relation φ = Θ+ δ+π/2 (see
figure 3.2), the right-hand side of (3.19) is evaluated as

Ω0
∂H

∂φ
+ 2

dH

dτ
= ε(Ω0 − 2δ′) cos(φ− δ) + 2ε′ sin(φ− δ) (3.21)

with 4 dimensionless input variables, namely the eccentricity ε , see equation (3.7), the angle δ and the
dimensionless velocities

ε′ =
ε̇

ω0
=

ė

Cω0
=
DxḊx +DyḊy

C2ω0ε
and δ′ =

δ̇

ω0
=
DxḊy −DyḊx

C2ω0ε2
. (3.22)

The term (Ω0−2δ′) in (3.21) is the so-called effective hydrodynamic angular velocity of the fluid film,
see [LS78]. By inserting (3.20) into (3.13), the dimensionless forces fx and fy are defined,

fx = 3
2π∫
0

1∫
0

Π(φ, z) sinφdz dφ ,

fy = −3
2π∫
0

1∫
0

Π(φ, z) cosφdz dφ .

(3.23)

The dimensioned forces are Fx = d fx and Fy = d fy with

d =
DBη

ψ2
ω0 . (3.24)

The norm of the dimensionless force vector equals the SOMMERFELD-number So,

So =
√
f2
x + f2

y , (3.25)

see equation (3.14).

When a plain cylindrical bearing is considered, the absolute angular position δ of the journal is not
required to describe the pressure profile, but only the relative angular coordinate Θ starting at the widest
gap, see figure 3.2. In this case, the partial derivatives with respect to φ in the REYNOLDS equation (3.19)
are replaced with partial derivatives with respect to Θ. This yields

Ω0
∂H

∂Θ
+ 2

dH

dτ
= ε(2δ′ − Ω0) sin(Θ) + 2ε′ cos(Θ) (3.26)

for the right-hand side of (3.19). The calculation of the pressure in a relative coordinate system does
not yield additional terms in the REYNOLDS equation, since inertia forces are neglected, see section 3.1.
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The whirl speed δ′ has to be incorporated manually into equation (3.26), since the derivatives of H are
evaluated in a relative coordinate system, see [LS78]. The resulting bearing forces are also evaluated in
the relative coordinate system,

fr = 3
2π∫
0

1∫
0

Π(Θ, z) cos Θ dz dΘ ,

fδ = 3
2π∫
0

1∫
0

Π(Θ, z) sin Θ dz dΘ .

(3.27)

Here, fr is the dimensionless force in radial er-direction and fδ is the dimensionless force in tangential
eδ-direction, see figure 3.2. They are transformed into the absolute xy-coordinate system by means of

[
fx
fy

]
=

[
cos δ − sin δ

sin δ cos δ

] [
fr
fδ

]
. (3.28)

The transformation is performed in the rotor side of the coupled simulation. Thus, this coordinate
transformation reduces the coupling variables to ε, ε′ and δ′. However, this is only possible for bearings
which are plain in circumferential direction, which includes bearings with circumferential grooves, see
section 4.1.2.

3.3 Cavitation

The REYNOLDS equation assumes that the bearing gap is completely filled with lubricant at all times. If
a single-phase liquid lubricant is considered, the density ρ is assumed constant, since liquids are almost
incompressible. During pure rotation of the journal, the continuity of mass causes the lubricant in the
convergent part of the gap to flow out of the bearing in axial direction. The lubricant in the divergent
part of the bearing gap would need to expand in order to fill the gap, which results in tensions in
the fluid. The resulting theoretical pressure in the divergent gap is below ambient pressure p0. Other
reasons for tensions in the fluid are squeezing or whirling motions of the journal, which lead to a local
expansion of the gap. Liquids only support very small tensions in the same order of magnitude than
the surface tension, see e.g. [BH10]. Thus, the lubricant film ruptures where p<p0 is predicted. These
regions are partially filled with gas or vapor and the pressure remains above a to-be-defined cavitation
pressure pcav≤p0 . Gas and vapor have a much lower density and dynamic viscosity than the lubricant
and are much more compressible. An overview of different cavitation mechanisms is given in the next
section.
Many cavitation models exist which prevent unrealistic pressures below the ambient pressure. Usually,
simple and efficient approaches are used for rotordynamic simulations, which do not take into account
the conservation of mass. Such approaches are explained in section 3.3.2.
An efficient and physically accurate cavitation model is needed to correctly model the mass flow in the
bearing, especially for further research on the influence of oil connecting channels and the development
of a sophisticated thermal model. In order to be mass-conserving, the REYNOLDS equation has to be
modified to account for a mixture consisting of liquid lubricant and gas or vapor. Mass-conserving
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cavitation models are explained in section 3.3.3. The cavitation model used in this work is given in
section 4.2.

3.3.1 Cavitation Mechanisms

Detailed overviews of cavitation phenomena and available model approaches are laid out in [BH10;
DT79; BBK89]. Three main effects can be distinguished:

Gaseous cavitation

Motor oil usually contains dissolved air, which is released when the pressure falls below the saturation
pressure, analogous to sparkling water or soda. The saturation pressure of air in oil is close beneath the
ambient pressure p0, see [BH10].
Experiments in [PB85] show that dissolved gas does not affect the density and viscosity of the lubricant,
but only the undissolved gas. When the pressure falls beneath the saturation pressure of the dissolved
gas, bubbles start to grow either at the rough surfaces of journal and shell or at small particles dispensed
in the lubricants. The probability of outgassing can be reduced by applying a high external pressure
on the bearing, see [ZV88]. As the pressure increases in the converging part of the bearing gap, the
gas bubbles are re-absorbed in the liquid lubricant. However, the absorption is a slower process than
the release of gas, see [GPP06]. Thus at high rotation speeds, the air bubbles may persist in the high
pressure region of the fluid film, see [ZV88]. They move with the same speed as the surrounding liquid,
thus homogeneous flow can be assumed. Since the rate of absorption is difficult to obtain, the release and
re-absorption of gas are usually assumed instantaneous in literature. The other extremal case, namely
that no re-absorption takes place, is investigated in [FH86; GPP06].
The bubbles start to grow with decreasing pressure and form large gas cavities, which are stationary
for pure rotation of the journal. The liquid is transported in between, above or below the cavity, see
figure 3.4. The pressure in the cavities equals the cavitation pressure pcav, if the surface tension is
neglected, see [GPP06]. In this case, it can be assumed that no evaporated lubricant is present in the gas
cavities due to the low vapor pressure of oil, see [BH84].

u
z

φ

Line of Film Rupture

ω

u=0
Gas Cavities

Journal

Gas Cavities

Liquid Streamer
u

z

φ

p=pcavFully Developed

Line of Film Rupture
Lubricant Film

Figure 3.4.: Onset of cavitation in form of streamers (fingers); left: cross-section of the journal bearing;
right: top view of the developed lubricant film; figures analogous to [BH10]
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The amount of dissolved gas in the lubricant at atmospheric pressure p0 is given by the BUNSEN-coefficient
αB=Vg,s/V with the total volume V of the fluid and the volume Vg,s of the dissolved gas. For air in
motor oil αB≈8−12 %, see [PS61]. The value of αB does only weakly depend on the pressure and
temperature, see [PB85]. Since the volume of the liberated gas is small, this effect is not dominant in
open-ended bearings, see [SA10].

Sucked-in air

The lubricant film is open to the atmosphere in most journal bearing applications and thus air is sucked
into the fluid film, if the pressure is below the ambient pressure p0. This is also called Ventilation. Most
journal bearings are open-ended, i.e. axially open to the surroundings and sucking-in of air is more
probable than the slow degassing of dissolved air. This is especially the case for bearings with transient
journal movements such as in turbochargers and squeeze film dampers. Ventilation is amplified at high
whirl-frequencies and large amplitudes, see [ZV88].

Vaporous cavitation

If the pressure falls below the evaporation pressure – which is usually far beneath the ambient pres-
sure p0 – the lubricant evaporates. Evaporation is a very fast process compared to gaseous cavitation,
see [SB92]. Usually, very low pressures beneath the evaporation pressure of motor oil only occur in
bearings, which are axially sealed or submerged in an oil bath. Furthermore, the lubricant has to be
very pure, since small impurities facilitate gaseous cavitation, which suppresses vaporous cavitation,
see [ZV88]. In [BH84], the chemical content of the cavitation area was investigated experimentally for a
fully submerged bearing. It was found that the bubbles mostly contain air. Vapor bubbles do not persist
in the positive pressure region and immediately collapse as soon as the pressure increases above the
vapor pressure of the lubricant, thus not affecting the positive pressure, see [ZV88].
High flow velocities can decrease the pressure below the evaporation pressure almost instantaneously,
e.g. in steam turbines or near ship propellers (BERNOULLI’s principle). The vapor bubbles can implode
rapidly, which can severely damage the surfaces. Such damages are seldom observed in usual journal
bearing applications. This effect is the so-called bubble cavitation, which is often just called cavitation.
In this work, cavitation refers to the general occurrence of cavities filled with gas or vapor.

3.3.2 Non Mass-Conserving Cavitation Models

Non mass-conserving models approximately account for cavitation effects. While they do not consider
the detailed mechanisms leading to cavitation explained in the last section, they prevent unrealistic
pressures below the ambient pressure and are usually easy to implement and efficient.

If the REYNOLDS equation (3.9) with constant lubricant density ρ is solved without additional measures,
pressures below the ambient pressure p0 are predicted. The neglect of cavitation effects is the so-called
SOMMERFELD boundary condition. While it is non physical in most applications, it yields a smooth solution
and is valid for bearings with high external pressure, see [Fuc02].
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Widely used in literature is the half-SOMMERFELD or GÜMBEL model. Firstly, the pressure is calculated using
the SOMMERFELD boundary condition. Then, the pressure is set equal to the cavitation pressure pcav
wherever p<pcav . Usually, the cavitation pressure is set equal to the ambient pressure p0. Effective
pressures are sufficient for the calculation of the hydrodynamic forces. If the ambient pressure is set to 0,
a possible implementation is

phS =
1

2
(p+ |p|) . (3.29)

This condition is easily implemented and numerically efficient. The fact that it is enforced a-posteriori
leads to problems if the pressure is coupled to other variables, since pressures below the cavitation
pressure pcav occur during the solution process. An example are the connecting channels in floating ring
bearings, where the pressures in the inner and outer lubricant films are coupled, see section 4.1.5.5.
Furthermore, the gradient of the pressure and thus the lubricant flow is discontinuous at the borders of
the cavitation area. Generally this does not cause any problems in rotordynamic simulations, since only
the integrated pressure is used as a coupling variable.

An unsteady gradient is prevented by applying the REYNOLDS or SWIFT-STIEBER cavitation boundary con-
dition

p(φ = φ∗) = 0 and

[
∂p

∂φ

]
φ=φ∗

= 0 (3.30)

at the unknown coordinate φ∗. During the solution, φ∗ has to be determined iteratively such that (3.30)
is fulfilled. The REYNOLDS condition is mass-conserving for the full lubricant film, yet not for the cavitated
region, see [Bar10]. The flow in the bearing gap is continuous except at the onset of the cavitation zone,
see [BH10]. While generally preferable to the simple half-SOMMERFELD condition, the REYNOLDS condition
is less numerically efficient.

Another possible solution to circumvent discontinuous flow and p<pcav during the solution process is
a penalty approach, see e.g. [Wu86; SM09]. A pressure-dependent penalty term P (p), which becomes
very large for p<pcav , is subtracted from the right-hand side of the REYNOLDS equation (3.9). This acts
as an additional source term for the hydrodynamic pressure, which elevates p to pcav in the cavitated
area. The penalty term P should be almost zero for p≥pcav in order to affect the pressure in the full
lubricant film region as little as possible. The resulting pressure profile is similar to one obtained with the
REYNOLDS boundary condition. The penalty approach is not mass-conserving, since lubricant is generated
in the cavitated area. A suitable penalty function for pcav =p0 is

P = a e
−b p−p0

p0 . (3.31)

The parameters a and b have no physical meaning and have to be adjusted to the specific lubrication
problem. The prefactor a should be small to ensure P ≈0 for p≥pcav . The exponent-factor b should be
large to ensure p ≈ pcav in the cavitation area. There is no lower boundary for p and for some kinematic
input values, p might drop well below pcav, if b is not large enough.

30



The REYNOLDS equation (3.9) becomes nonlinear in p with the penalty approach. The solution may
not converge for extremal values of a and b, especially for high eccentricities ε. In practice, it became
apparent that a non-constant b(ε) enables good convergence while still ensuring that p≈pcav in the
cavitation area. The relation

b = 104−2ε (3.32)

is used in this work. The prefactor is chosen as a=0.01.

3.3.3 Mass-Conserving Cavitation Models

The underlying phenomena of cavitation, namely the appearance, growth, interaction and collapse of
bubbles filled with air or vapor, are microscopic and random. For this reason, usually a macroscopic
approach is chosen to model cavitation in journal bearings. The two-phase mixture is approximated
with a single-phase pseudo-fluid, see [Car92]. The appearance of gas is accounted for by a mixture
density ρ and a mixture dynamic viscosity η, which are reduced locally in the area of cavitation.
The amount of liquid lubricant is described with the lubricant fraction ϑ=Vl/V , where V is the total
volume of the mixture and Vl the volume of the liquid lubricant. The complementary part 1−ϑ=Vg/V

is called void fraction or aeration ratio, where Vg is the volume of the gas in the mixture. The density
ratio ρ/ρl is also commonly used, with the density ρl of liquid lubricant at atmospheric pressure p0. A
cavitation model has to ensure the conservation of liquid mass in the whole bearing gap in order to be
mass-conserving. On the other hand, the mass of the gas is usually neglected. Then, a relation between
the lubricant fraction ϑ and the mixture density ρ can be derived

ρ

ρl
=
ml+mg

Vρl
≈ ml

Vρl
=
Vl
V

= ϑ . (3.33)

The total masses of liquid and gas in the mixture are ml and mg, respectively.

Existing mass-conserving cavitation models can be roughly divided into two categories, see [Bar10]:

• Complimentary models divide the fluid film domain into two subdomains, namely the fully devel-
oped lubricant film, which is completely filled with liquid, and the cavitated area, which contains a
mixture of lubricant and gas. During the solution process, the areas of the subdomains have to be
determined iteratively. The most prominent example is the well-known ELROD-algorithm, which is
explained in the next section.

• Two-phase models express the mixture density ρ in the compressible REYNOLDS equation (3.6) as a
function of the pressure p, which yields an equation valid for the whole fluid film. This method is
explained in further detail in section 3.3.3.2. This is also the basis for the cavitation model used in
this work, which is described in section 4.2.
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3.3.3.1 Complimentary ELROD Algorithm

The cavitation boundary condition developed by JAKOBSSON and FLOBERG, see [JF57], as well as OLSSON,
see [Ols65], is an enhancement of the REYNOLDS cavitation boundary condition, see section 3.3.2. This
so-called JFO-condition enforces continuity additionally at the onset of the cavitation area and is mass-
conserving for the whole bearing gap. The film thickness in the cavitated area is allowed to be smaller
than the local gap size. The velocity u at the onset of the cavitation area is zero, see figure 3.4.
It is assumed that p=pcav in the cavitated area and usually pcav =p0 is chosen. Thus, the derivatives
of p on the left-hand side of the REYNOLDS equation (3.9) vanish in the cavitated area and the liquid
lubricant is only transported via TAYLOR-COUETTE flow in streamers. The fluid film is separated into two
subdomains with different differential equations and usually different unknown variables:

• In the fully developed fluid film, ϑ=1 and the pressure p is unknown.

• In the cavitated area, p=pcav and the lubricant fraction ϑ is unknown.

The JFO-condition yields equations for the calculation of the cavitation boundaries. Bubble dynamics
are not considered and thus the boundaries of the cavitation zone change instantly with changes of the
bearing gap. Furthermore, no mass-transfer between the liquid lubricant and the gas phase is considered.
The results agree well with experimental data for medium to high loads, see [BH10].

The well-known cavitation algorithm developed by ELROD, see [Elr81], with extensions from VIJA-
YARAGHAVAN and KEITH, see [VK89], fulfills the JFO-condition without solving it directly. The lubricant
fraction ϑ and the pressure p are linked by assuming a compressible lubricant. The compressibility of a
single phase fluid is described with the bulk modulus β,

β = ρ
∂p

∂ρ
. (3.34)

Equation (3.34) is integrated with the boundary condition ρ=ρl for p=pcav, which yields

p(ϑ) = pcav + g β lnϑ (3.35)

with ϑ=ρ/ρl. In order to vary the pressure only in the fully developed fluid film, the switch function g(ϑ)

is introduced,

g = 0

g = 1
for

ϑ < 1

ϑ ≥ 1
. (3.36)

Inserting (3.35) into (3.9) yields

∂

∂φ

[
ψ2

12η
H3gβ

∂ϑ

∂φ

]
+

(
R

B

)2
∂

∂z

[
ψ2

12η
H3gβ

∂ϑ

∂z

]
=
ω

2

∂(Hϑ)

∂φ
+
∂(Hϑ)

∂t
. (3.37)
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This differential equation is solved for ϑ. During the solution process, the switch function g(ϑ) is updated
for each node separately. The left-hand side of (3.37) vanishes for g=0. If ϑ<1, ϑ is interpreted as the
lubricant fraction and p=pcav. If ϑ≥1, ϑ is interpreted as the ratio of densities and the pressure p is
calculated using (3.35). This relation is illustrated in figure 3.5. The logarithmic function (3.35) appears
linear due to the large bulk modulus β. Since the area of the cavity is not known a-priori, several
iterations have to be performed until an accurate solution is reached. The mesh has to be relatively fine
in order to resolve the cavitated area. In reality, the bulk modulus β of oil is very high, β ≈ 109 Pa.
To achieve a numerically stable solution, β is usually chosen orders of magnitude smaller and looses its
physical meaning. The bulk modulus β in figure 3.5 is chosen small in order to qualitatively demonstrate
the compressibility of the lubricant.

Figure 3.5.: Relation between pressure p and lubricant fraction ϑ for the ELROD model, β=2·106 Pa

Several modifications of the ELROD algorithm have been proposed. Numerical oscillations due to a high
bulk modulus β can be reduced with artificial viscosity, see [Sze11]. The algorithm was adopted to Finite
Elements in [KB91a] with the assumption of a non-compressible liquid. A single universal variable, which
incorporates the pressure p and the lubricant fraction ϑ, was introduced in [SP02]. The switch function
was replaced by Boolean expressions of this universal variable in [AOE15]. A smoothing of the switch
function g proposed in [Nit+16] combines two independent differential equations for easier treatment
and enables a coarser mesh solution. All complimentary approaches have in common that no change of
the fluid properties in the cavitated region is considered. This is acknowledged with two-phase models.
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3.3.3.2 Two-Phase PEEKEN Model

In the complimentary cavitation models discussed so far, it is assumed that p=pcav =p0 in the cavitated
area. However, it has been shown experimentally that p<p0 can occur, see [DT79; BH84]. Liquids can
support tensions in the order of magnitude of the surface tension, see [FH86; Bar10]. Furthermore, the
transport of mass between the liquid and gas phase has been neglected so far.
Two-phase models derive a relation for the lubricant fraction ϑ with the use of fundamental laws for
bubble growth. Gaseous cavitation, namely the release of dissolved air in the lubricant, is usually con-
sidered as the main mechanism, see e.g. [Cha+93; GPP06; Li+12]. It is assumed that the liquid is not
oversaturated with gas, i.e. at atmospheric pressure p0, the liquid contains the maximal amount of dis-
solved gas. Additionally, an equilibrium state for the diffusion between the liquid and the gas phase is
implied, i.e. the release and re-absorption of gas at cavitation pressure is instantaneous. The total mass
of the gas in the bearing is constant, thus no sucking-in from air is considered.

The bubble fraction r = Vg/Vl is defined. Its relation to the lubricant fraction ϑ is

ϑ =
Vl

Vl + Vg
=

1

1+r
. (3.38)

The laws of HENRY-DALTON and BOYLE-MARIOTTE give a relation between the bubble fraction r, the pres-
sure p and the temperature T , which yields the relation ϑ(p, T ). In [PB85], PEEKEN determined the
change of the gas volume Vg using the ideal gas law under the assumption of isothermal flow, since
the mass of gas is negligible. Assuming that no bubbles are present at the cavitation pressure pcav,
i.e. r(p=pcav)=0, yields

r = −αB
p−pcav

p
. (3.39)

This relation is only applicable in the partially filled film. In the fully developed fluid film, p>pcav and
ϑ=1 is enforced manually. The relation between the pressure p and the lubricant fraction ϑ is exemplary
shown in figure 3.6. In contrast to complimentary cavitation models, the pressure in the cavitated area
is variable.

It was discussed in section 3.3.1 that gaseous cavitation may not be the main effect in dynamically
loaded bearings. In section 4.2, a cavitation model is introduced which uses an arbitrary relation ϑ(p).
This enables the consideration of mass-conserving cavitation with a single differential equation. In this
work, the function ϑ(p) is adopted to reflect the ELROD algorithm.
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Figure 3.6.: Relation between pressure p and lubricant fraction ϑ for the PEEKEN model

3.3.3.3 Mixture Viscosity

The mixture viscosity η is influenced by two opposing effects and depends on the size of the air bubbles
and the shear rate, see [PB85]. Small bubbles are dominated by surface tension and the viscosity in-
creases with the bubble size, see [Ein05; Nik99; Goo+07]. Large bubbles are more deformable and are
dominated by shear tension. The mixture viscosity decreases with increasing bubble radius, see [Nik99].
This is the usual case in journal bearings, see [PB85]. Since the viscosity of gas is negligible compared to
that of liquid lubricant, an approach analogous to equation (3.33) can be made for the mixture viscosity,
see [Car92]. The proportional relation

ρ

ρl
=
η

ηl
(3.40)

was proposed in [KB91a], where ηl is the lubricant viscosity. This approach is also used in this work, see
section 4.2.

3.4 Solution of the REYNOLDS Equation

A classification of rotor systems supported by journal bearings based on the SOMMERFELD-number So is
made in section 3.2.3. The rotor-speed ω of heavy rotors usually changes very slowly during operation
or stays constant, e.g. for electrical power generation it is coupled to the power grid frequency. Then,
the rotor shaft performs small whirl motions around the equilibrium position in the bearing, e.g. due
to unbalance. This enables the linearization of the hydrodynamic forces with respect to the equilibrium
position. This is done for several constant rotor-speeds ω , which results in stiffness and damping coef-
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ficients. These rotor-speed-dependent coefficients are calculated a-priori and stored in look-up tables.
The coefficients are interpolated during simulations.
For light rotors such as turbochargers, the rotation speed of the rotor changes rapidly. Furthermore,
various sub-synchronous whirl motions above the linear stability threshold occur in the operating range
and the oscillations due to unbalance are not small. Thus, linearizing the bearing forces with respect to
stationary equilibria is not valid for such systems.

Since no closed-form solution of the REYNOLDS equation (3.6) exists, all solutions are approximate. Tran-
sient solutions can be separated into analytical solutions of a simplified REYNOLDS equation or numerical
discretizations of the full REYNOLDS equation.
Possible simplifications of the REYNOLDS equation are the assumption of an infinitely short or an infinitely
long bearing, see e.g. [LS78]. In both approaches, the diffusion in one film direction is neglected, en-
abling a closed-form solution of the bearing forces for plain cylindrical bearings. These approaches are
very efficient and do not depend on a numerical mesh, yet they are only valid in a certain range of the
ratio B/R and are restricted to simple cylindrical bearing designs. However, especially the short bearing
theory yields acceptable results and is still widely used in analytical studies and in industry.
In order to calculate bearings with finite length and more complex gap geometries, numerical discretiza-
tion methods are used. This also enables the consideration of additional effects, such as sophisticated
cavitation or temperature models. The numerical solution is either calculated a-priori and stored in
look-up tables, see e.g. [Bob08; Fuc02; Mer08; Mit90] or computed in every time-step, see e.g. [Boy11;
Nit+13; Sch10]. The former method is fast and yields accurate results. Yet the amount of stored data
increases exponentially with the number of input variables, which makes the method unfeasible for more
sophisticated bearing models. The effort can be reduced by a separate solution and superposition of pure
journal rotation and pure squeeze motion, yet this entails an error due to different cavitation regimes.
Thus, no look-up table solutions are used in this work, but the REYNOLDS equation is solved in every
time-step. An overview of commonly used discretization methods and considerations for the generation
of the mesh are given in the next section.

3.4.1 Discretization Methods

Partial differential equations on complex geometries are solved approximately with the use of discretiza-
tion methods. An a-priori defined mesh divides the geometry into a finite number of elements in which
the partial differential equation is approximately solved. This results in linear or nonlinear equation
systems. The unknowns are the state variables of the partial differential equation at discrete points in
the geometry which are defined by the mesh.

The most important discretization methods are Finite Differences (FD), Finite Volumes (FV) and Finite
Elements (FE). A comparison between these methods is made in [DR06], which is briefly recapitulated
here:

• The main idea of the Finite Difference method is the approximation of the derivatives with dif-
ference quotients. This method is very accurate and easy to implement for simple geometries.
However, high effort is required to adapt the method to more complex geometries.
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• In the Finite Volume method, the partial differential equation is integrated over the volume el-
ements. The volume integrals are converted into surface integrals using GAUSS’s theorem. The
fluxes of adjacent volume elements are set equal, which makes the discretized equations conserva-
tive. This makes the method popular in computational fluid dynamics. The solutions are usually
computed in the center of the volumes. The method is easier to implement than the FE method,
yet the realization of higher degree approximations is more difficult. The method is more flexible
with regard to geometry than FD, but less than FE.

• The Finite Element method is a special case of the GALERKIN method. A residual function is gen-
erated by inserting trial functions into the partial differential equation and integrating over the
volume. The trial functions depend on the unknown solution. The residual function is then mini-
mized, resulting in discrete equations for each element, which are composed in an equation system
for the whole geometry. The use of the weak form of the partial differential equation reduces the
requirements for the differentiability of the solution ansatz functions.
The Finite Element method is far developed in structural mechanics, where it derives from the prin-
ciple of virtual work. In the last decades, its importance in fluid modeling increased, see [Rod91].
Its main advantages are its total flexibility with regard to geometry, see e.g. [ANG77], and the
simple realization of higher degree approximations. On the other hand, its implementation is more
complex than FD or FV. Since the discretized equations are not exactly conservative, numerical
oscillations may occur in convection-dominated problems. In this case, artificial diffusion can be
used for stabilization, see section 4.2.1.3.

In this work, the commercial finite-element software COMSOL Multiphysics is used for the calculation of
the hydrodynamic forces and torques.

3.4.2 Mesh

Additionally to the choice of the discretization method, the structure of the numerical mesh has a high
influence on the accuracy and efficiency of the calculation. The following considerations are partially
taken from [Sch99].
Discretization meshes can be categorized into unstructured and structured meshes. Unstructured meshes
are predominantly constructed using triangles in two-dimensional and tetrahedrons in three-dimensional
space. This enables automatic mesh generation for arbitrary geometries, which makes them popular
in structural mechanics. On the contrary, more elements are needed to fill up the geometry and less
accuracy is achieved compared to structured meshes with equal element size.
Structured meshes usually are constructed using quadrangles in two-dimensional and hexahedrons in
three-dimensional space. This requires a higher implementation effort, yet less storage usage. This
also enables a simple identification of neighbor elements. Especially rectangular grids entail a minimal
bandwidth of the system matrix and have a high accuracy, since errors from opposing edges partially
cancel out. For these reasons, structured rectangular-like grids are widely used in computational fluid
dynamics, where a low numerical error and high efficiency are more important than structural flexibility.
In order to minimize the numerical error, the shape of the mesh elements has to fulfill some requirements:
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• Sharp or reflex angles entail large gradients in the ansatz functions, which leads to higher numer-
ical errors. This is avoided in automatic mesh generation e.g. by minimizing the smallest angle in
each element. Especially rectangular meshes enable a simple calculation of the diffusion fluxes.

• The edges of the elements should have similar lengths to improve convergence of the solution.

• Adjacent elements should not strongly vary in size, especially in areas where large solution gradi-
ents are expected. Otherwise, the order of the discretization method is significantly reduced.

In contrast to the last statement, the efficiency of the calculation may be improved by using more and
smaller elements in areas where large solution gradients are expected and less elements elsewhere.
These areas are usually located at boundaries with sharp angles or large curvature, e.g. near the lubricant
supply.

In this work, a Cartesian equidistant mesh is used for the discretization wherever possible and quadran-
gles elsewhere. Quadratic element ansatz functions are chosen for the approximation of the solution,
which are a good compromise between accuracy and efficiency, see [Sch99].
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4 Journal Bearing Model

After the general theory of hydrodynamic lubrication has been laid out, bearing geometry and mass-
conserving cavitation modeling are treated in this chapter. Bearing designs which are commonly used
in turbochargers are discussed in section 4.1. Particular attention is paid to floating ring bearings in
section 4.1.5. The mass-conserving cavitation model used in this work is introduced in section 4.2.

4.1 Bearing Geometry

The geometry of the fluid film gap is described through the gap function h(φ, z), see figure 3.2 on
page 20. Arbitrary bearing designs can be described with h(φ, z), as long as the fluid film is thin and
its curvature is negligible compared to the other dimensions of the bearing. The bearings used in tur-
bochargers usually are cylindrical. The governing equations are given in the next section.
In most applications of journal bearings, the shell, the journal or both do not have plain surfaces due
to indentations such as grooves, bore holes or pockets. These features are used to supply lubricant to
the gap or to alter the pressure profile, usually to improve the stability of the system. On the contrary,
the load carrying capacity is reduced with respect to a plain bearing. Compared to the thin fluid film,
these indentations are large chambers and the fluid inside does not generate significant hydrodynamic
pressure. Since the REYNOLDS equation is only valid in thin fluid films, these areas are omitted in its
solution and the resulting pressure profile p is only defined in the remaining area. There is no difference
for the mathematical treatment whether the indentations are in the journal or the shell. The pressure
inside the indentations is assumed constant and acts as a boundary condition for the thin fluid film. The
pressure in the omitted areas applies a hydrostatic load on the shell and the journal, which has to be
accounted for in the bearing forces. Furthermore, the shear stress in the indentations is not significant
for the generation of the bearing torque, which results in a reduced surface area A in equation (3.17).
The special cases of circumferential grooves and axial grooves are discussed in sections 4.1.2 and 4.1.3.
The influences of lubricant supply are explained in section 4.1.4. Floating ring bearings are often used
in turbocharger applications. Their properties are examined in detail in section 4.1.5.

4.1.1 Cylindrical Bearings

The gap function h of a cylindrical bearing shown in figure 3.2 is given by

hcyl = C + e cos(Θ) , (4.1)

see e.g. [LS78]. The relation between the relative angle Θ and the absolute angle φ is

φ = Θ + δ +
π

2
. (4.2)

39



This yields

hcyl = C + e sin(φ−δ) = C + e (cos δ sinφ−sin δ cosφ) . (4.3)

With the relations Dx=e cos δ and Dy=e sin δ , the dimensionless gap function H=h/C is written as

Hcyl = 1 + dx sinφ− dy cosφ (4.4)

with the dimensionless Cartesian displacements dx=Dx/C and dy=Dy/C. The use of Cartesian co-
ordinates instead of ε-δ-coordinates facilitates the coupling with the rotor model, since no coordinate
transformation has to be carried out.

If a non mass-conserving cavitation approach from section 3.3.2 is used, the fluid is assumed incom-
pressible (i.e. ρ=const. ) and ρ cancels out in the REYNOLDS equation (3.9). With the use of (4.4), the
right-hand side of (3.9) is evaluated which yields

ω

2

∂Hcyl
∂φ

+
∂Hcyl
∂t

=
(ω

2
dx − ḋy

)
cosφ+

(ω
2
dy + ḋx

)
sinφ . (4.5)

This further illustrates that the hydrodynamic pressure in the fluid film gap can be generated by two
parts: the physical wedge is a combination of the relative displacements dx , dy and the angular veloc-
ity ω=ωJ+ωS of the journal and the shell; the squeeze film damper effect is caused by the relative
velocities ḋx , ḋy.

A simple formula for the bearing torque – which is widely used in literature – is derived for cylindrical
bearings if the HAGEN-POISEUILLE flow in (3.17) is neglected:

M
R,cyl ≈ −

R2η

C
(ωJ − ωS)

A√
1− ε2

(4.6)

with the hydrodynamic effective surface area A of the fluid film, which is A=πDB for plain cylindrical
bearings. The areas of grooves, pockets or bore holes have to be subtracted from A .

4.1.2 Circumferential Grooves

Circumferential grooves are usually used to improve the oil supply of the bearing gap by distributing the
oil over the whole circumference. They can be located at one of the axial boundaries, e.g. in squeeze
film dampers, or in one of the surfaces of the bearing gap, e.g. in the outer surface of a floating ring,
see figure 4.4. The main difference to the ambient boundary condition is the higher pressure due to the
oil supply. Bore holes which connect to the groove do not have to be modeled since the hydrodynamic
pressure in the grooves is neglected and their area is omitted in the calculation of the REYNOLDS equation.
The hydrostatic forces cancel out for a constant pressure in the groove. Furthermore, the rotation of the
surfaces does not need to be considered in floating rings since the geometry is rotationally symmetric.
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Thus, the dimensionless REYNOLDS equation with the minimal number of three input variables can be
used, see section 3.2.5.

As an example, figure 4.1 shows the developed gap geometry of a bearing with a central circumferential
groove. The groove separates the fluid film into two subdomains. Each subdomain is rectangular with the
length 2πR and the width b=B/2. Since tilting of the journal is omitted, the resulting pressure profile
and the shear stress distribution in both subdomains is symmetric. Thus, it is sufficient to solve the
REYNOLDS equation only for one subdomain and double the resulting forces and torque. Furthermore,
the axial extent of the groove does not influence the result. The boundary conditions are periodicity
in circumferential direction, constant ambient pressure p0 for the outer axial boundaries and constant
groove pressure psup≥p0 for the inner axial boundaries.
The width b of each subdomain is small compared to the bearing radius R , which permits the use of
the short bearing approximation. A modified short bearing solution with asymmetric axial boundary
conditions is given in appendix B.

z

φ0

0.5

2π

A/2

A/2

p0

p0

psup

periodic

periodic

Figure 4.1.: Developed gap geometry with a central circumferential groove

4.1.3 Axial Grooves

Axial grooves extent over the whole width of a radial bearing and divide the surface into several bearing
sections. They are usually used to improve the stability of a rotor system by influencing the pressure
profile in the bearing gap. Axial grooves are by design present in bearings with preload such as lemon
bore or multilobe bearings, but they are also used in cylindrical bearings. Figure 4.2 exemplarily shows
the developed gap geometry of a bearing with three evenly spaced axial grooves, which was investigated
in [Now+15a]. The pressure in the grooves equals the ambient pressure p0 , if the grooves are open to
the environment. The area A of the fluid film is reduced compared to a plain surface and the pressure
profile is divided, which decreases the load carrying capacity. To compensate, the axial width B of the
bearing can be increased. If the bearing has more than one groove and they are evenly spaced over the
circumference, the hydrostatic force cancels out.
Axial grooves also influence the bearing torque, as the integrals in (3.17) have to be evaluated for each
bearing section separately. The resulting torque is smaller compared to that of a plain cylindrical bearing.
Equation (4.6) with the effective hydrodynamic fluid film area A is a good approximation for the bearing
torque. For axial grooves in a floating ring, their rotation has to be considered during the solution of the
REYNOLDS equation, see section 4.1.5.3.
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Figure 4.2.: Developed gap geometry with three evenly spaced axial grooves

4.1.4 Lubricant Supply

In radial journal bearings, the lubricant flows out of the bearing gap at the axial boundaries and thus
has to be replaced continuously. The lubricant is usually supplied through an inlet in the shell of the
bearing. The inlet often opens into a larger pocket or groove to distribute the lubricant over a wider
area. Typically the lubricant supply pressure psup is higher than the ambient pressure p0 in order to
ensure that the bearing gap does not run dry.
It is assumed that the pressure inside the inlet equals the supply pressure psup , since the thin bearing
gap acts as a throttle for the lubricant. The supply pressure psup is imposed as a boundary condition
for the lubricant film. The influence of the boundary condition on the hydrodynamic pressure profile is
determined by the magnitude of diffusion, which is proportional toH3, see equation (3.9). The lubricant
supply affects the pressure only locally for a small gap size H , while it affects a larger area for a larger
gap size.
For lightweight rotors, the hydrostatic pressure inside the inlet has a substantial effect on the stability of
the system. The pressure acts normal to the journal surface, see figure 4.3. Without loss of generality,
the y-axis is placed in the center of the inlet, which is assumed symmetric with respect to the y-axis.
The angular extend of the inlet is Θg . To calculate the hydrostatic force Fsup acting on the journal, the
vertical component of the effective radial pressure

pstat = psup − p0 (4.7)

y

x

psup−p0ϕ

R

Θg

Figure 4.3.: Calculation of the hydrostatic lubricant supply force inside the inlet
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has to be integrated over the curved inlet area Ain,

Fsup = −pstat

∫∫
Ain

cosϕdAin . (4.8)

There is no force in x-direction since the horizontal pressure components cancel out.

For a rectangular pocket or groove with axial width b this yields

Fsup, pocket = −pstat

Θg/2∫
−Θg/2

b∫
0

cosϕRdϕdz = −pstat bD sin

(
Θg

2

)
. (4.9)

The curvature of the inlet can usually be neglected for inlet geometries with small angular extend Θg

such as bore holes without groove or pocket. This yields

Fsup, bore ≈ −Abore pstat , (4.10)

where Abore is the surface area of the inlet. Even for small bearing diameters D – such as the inner fluid
film in floating ring bearings from typical turbocharger applications – the error is negligible.

The deflection of the lubricant from the inlet into the gap generates another force component. How-
ever, it is negligible compared to the hydrostatic force (4.8) for typical journal bearing applications,
see [Now10; Bau11].

The ambient pressure p0 is specified as the initial condition for the pressure field in the numerical so-
lution of the REYNOLDS equation. This leads to an inconsistency in the first time-step, if a supply pres-
sure psup > p0 is imposed at a boundary. This is circumvented by multiplying the pressure boundary
condition at the inlet and the hydrostatic force (4.8) with the time-dependent scale function f(t) ,

f = 1− e−t/t1 . (4.11)

This function is 0 for t=0 and quickly tends to 1 as t increases, f >0.99 for t≥4.7 t1 . The time con-
stant t1 is chosen as 10 ms in this work, which is small enough to not significantly influence the run-up
behavior, yet large enough that the micro-step size of the solver does not decrease.

4.1.5 Floating Ring Bearings

A floating ring is a hollow cylinder, which embeds the rotor shaft and moves independently from the
housing and the rotor. Figure 4.4 exemplarily shows two full floating rings with different surface geome-
tries. The clearances between rotor, floating ring and housing are filled with lubricant, which results in
two serially connected fluid films, see figure 4.5. Floating ring bearings enable operation speeds above
the linear stability threshold of the rotor system, since the whirl or whip in one fluid film is mutually
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damped by the other fluid film. Furthermore, manufacturing costs are low compared to more complex
bearing geometries with improved stability behavior such as multilobe or tilting-pad bearings. For these
reasons, floating ring bearings are usually used in turbocharger applications. If only one long floating
ring is used and its rotation around the rotor axis is blocked, the configuration is termed semi floating,
while two separate floating rings which rotate freely are called full floating.

Figure 4.4.: Full-floating rings with plain surfaces (left) and with a circumferential groove in the outer
surface (right)

Only the outer fluid film is supplied directly with lubricant through inlets in the housing. In order to
supply lubricant to the inner fluid film, the fluid films are connected through channels in the floating
ring. In many studies, these connecting channels holes are neglected, see e.g. [Boy11; Eli+16; Sch10;
Wos+15]. Section 4.1.5.5 gives some insight on their influence.
If the coupling of the inner and outer fluid film is neglected, the bearing forces in each film are calculated
analogous to a single fluid film. In the next section, the input variables for both fluid films – deriving from
the motion of the rotor shaft and the floating ring – are explained. The equations of motion of a floating
ring are given in section 4.1.5.2. If the surfaces of the floating ring are not rotationally symmetric, it is
beneficial to solve the REYNOLDS equation in a coordinate system, which is fixed to the floating ring, see
section 4.1.5.3. Lastly, the floating ring deforms due to temperature and rotation, which is discussed in
section 4.1.5.4.

4.1.5.1 Input Variables for the Inner and Outer Fluid Film

In order to solve the REYNOLDS equation (3.9) for floating ring bearings, the following input variables are
required for the inner and outer bearing gap:

• the relative displacements (Dx, Dy) of the journal with respect to the shell,

• the relative velocities (Ḋx, Ḋy),

• the angular velocities ωJ and ωS of journal and shell, respectively.
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Let (xF , yF ) denote the absolute displacements of the floating ring with respect to the center of the
bearing housing, see figure 4.5. The displacements in the outer fluid film are

Dx,o = xF and Dy,o = yF . (4.12)

With the absolute displacements (xJ , yJ) of the rotor journal, the relative displacements in the inner
fluid film are written as

Dx,i = xJ − xF and Dy,i = yJ − yF . (4.13)

The relations for the relative velocities (Ḋx, Ḋy) are analogous to those of the relative displace-
ments (Dx, Dy). The absolute displacements (xJ , yJ) and the corresponding velocities (ẋJ , ẏJ) of the
rotor journal at the location of the bearing are calculated in the rotor model, see section 2.1. Analogous
to equation (3.7), the outer and inner eccentricities εo and εi can be defined,

εo =
1

Co

√
Dx,o+Dy,o and εi =

1

Ci

√
Dx,i+Dy,i , (4.14)

with the outer and inner nominal gap sizes Co and Ci.
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Figure 4.5.: Kinematics of a floating ring bearing

The angular velocities ωJ and ωS of journal and shell for the outer fluid film are

ωJ,o = ωF and ωS,o = 0 (4.15)

and for the inner fluid film

ωJ,i = ωR and ωS,i = ωF (4.16)

45



with the angular velocities ωR and ωF of the rotor and the floating ring, see figure 4.5. This yields
ωo=ωF in the outer and ωi=ωR+ωF in the inner fluid film for the sum of the angular velocities ω in
the right-hand side of the REYNOLDS equation (3.9).

4.1.5.2 Equations of Motion for the Floating Ring

When the hydraulic coupling due to the connecting channels is neglected, the hydrodynamic
forces (3.13) in the inner and outer fluid film are calculated separately and the kinetics of the float-
ing ring are calculated inside the rotor model. If both the inner and the outer fluid film are solved
simultaneously in one bearing model, the kinetics of the floating ring are incorporated into the bearing
model.

The hydrodynamic forces in the outer fluid film are denoted with Fx,F and Fy,F and are applied in the
center F of the floating ring, see figure 4.5. The forces in the inner fluid film are Fx,J and Fy,J . They are
applied in the center J of the rotor journal (actio) and negatively in F on the floating ring (reactio), see
figure 4.6. The bearing torque (3.17) is denoted with MF for the outer fluid film and acts on the floating
ring. The torque MJ of the inner fluid film acts positively on the rotor shaft (actio) and negatively on
the floating ring (reactio). Then, the equations of motion for the floating ring read

mF ẍF = Fx,F − Fx,J

mF ÿF = Fy,F − Fy,J −mF g

θF ω̇F = MF −MJ

(4.17)

with the mass mF and the moment of inertia θF of the floating ring. The sign of the second term in the
bearing torque (3.17) is changed for MJ acting on the floating ring, since in this case, the shear torque
has to be evaluated at the surface of the shell.

g

Fx,J

Fy,J

Fy,F

Fx,F

mF , θF

MF−MJ

mF g

Figure 4.6.: Free-body diagram of a floating ring bearing
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The bearing subsystem is not time-dependent when a non mass-conserving cavitation model is used.
Thus, dynamic-static solver coupling is used for the calculation of the rotor-bearing system, see sec-
tion 5.1. This method requires partial derivatives of the forces with respect to each coupling variable,
which is computationally expensive, see section 3.2.5. The inclusion of the time-dependent differential
equations (4.17) into the bearing model enables the use of co-simulation approaches, which do not re-
quire partial derivatives, see section 5.2. Then, both lubricant films have to be solved simultaneously in
one bearing model, which increases the calculation time of one time-step. The resulting bearing model
has more degrees of freedom, and the calculation of the inner and outer film cannot be fully parallelized.
However, this approach is still more efficient for non mass-conserving models with floating ring bear-
ings, since more parallel computations can be performed on one PC. This is not necessary when the
mass-conserving two-phase model explained in section 4.2 is used, since the time-dependent REYNOLDS

equation (4.31) directly enables the use of a co-simulation method.

4.1.5.3 Rotating Bearing Geometry

Floating rings feature connecting channels to supply lubricant to the inner fluid film. Additionally, other
non plain geometries such as grooves or preloaded pads (e.g. [EOR15a]), can be present in the surfaces.
The REYNOLDS equation (3.9) is formulated using the absolute angle φ, see figure 3.2. If the surfaces of
the floating ring are not rotationally symmetric, it is beneficial to use a rotating coordinate system which
is fixed to the floating ring. Otherwise, the position of connecting channels or grooves changes with time
and thus the FE mesh has to be changed in every time-step.
Figure 4.7 shows the coordinates for the inner bearing gap. The relative position of the journal with
respect to the shell is given through the Cartesian coordinates (Dx,i, Dy,i) or the cylindrical coordinates
e and δ. The relative angle Θ is measured from the widest gap and is used for the description of the

p(φ∗, z)

y

x

Θ

φ∗

h

e δDy,i

Dx,i

αF
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F

Figure 4.7.: Coordinates for rotating bearing geometry
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gap function h . The angular displacement of the floating ring geometry is given through the absolute
angle αF with

ωF = α̇F . (4.18)

The angle φ∗ is the relative circumferential coordinate with respect to the rotating shell. The relation
between the coordinates is

φ∗ + αF = Θ + δ +
π

2
. (4.19)

By comparing this expression to equation (4.2), it follows that

φ = φ∗ + αF . (4.20)

Thus, φ has to be substituted in the gap function (e.g. equation (4.4)), in the right-hand side of the
REYNOLDS equation (e.g. equation (4.5)), and in the calculation of the bearing forces (3.13). Since the
inertia forces of the fluid film are neglected, no additional terms occur due to the relative coordinate
system. Note that ∂φ=∂φ∗ and no additional term on the right-hand side due to ∂H/∂t occurs, since
the angular velocity ωS = α̇F of the surface of the shell is already accounted for.
These relations can also be used for the outer bearing gap, e.g. if the outer surface of the floating ring is
not rotationally symmetric.

4.1.5.4 Change of Bearing Gaps During Operation

The gap sizes of the inner and the outer fluid films change during operation due to deformations of the
rotor shaft, the floating rings and the housing. This effect cannot be neglected, since the resulting bearing
forces and torques strongly depend on the gap size, which is enters the REYNOLDS equation through the
relative gap size ψ, see e.g. equation (3.9). The resulting relative gap size of the inner or outer film is

ψ =
C

R
+ εr, o − εr, i (4.21)

where εr,o and εr,i are the radial strains of the outer and inner surface, respectively, which result from
heating and centrifugal acceleration. The deformation of the solids due to the hydrodynamic or hydro-
static pressure is usually neglected for turbochargers. However, it is important in applications with very
high load, e.g. crank shafts, [KSR15; NWD17], or with elastic housings, e.g. aero engines, [Wan+17].

The relation between strain and stress in a linear elastic solid is given by Hooke’s law. For a 2-dimensional
stress state in cylindrical coordinates it reads

εr =
1

E
(σr − ν σφ) + αT∆T , (4.22)
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see [Mar11]. The material properties of the solid are YOUNG’s modulus E , POISSON’s ratio ν and the
thermal expansion coefficient αT . The radial and circumferential stresses σr and σφ are determined
by the balance of momentum for an infinitesimal small element. This leads to differential equations
for the stresses which are solved by formulating appropriate boundary conditions. Stresses are also
caused by non constant temperature fields. In [Mar11], solutions for a 2-dimensional stress state and
the resulting strains are given. The second term in (4.22) is the thermal expansion for a constant
temperature difference ∆T with respect to ambient temperature.
Table A.2 on page 114 lists resulting strains of the rotor shaft, the floating ring and the housing due to
rotation and thermal expansion for two different turbocharger applications. Worst case parameters are
used which maximize the influences of rotation and non-constant temperature fields.

The temperature TR in the rotor shaft is assumed constant due to the high thermal conductivity of steel
and equal to the lubricant temperature Ti of the inner fluid film. Thus, the stresses σr and σφ only result
from the rotation speed ωR. The deformation due to rotation at maximum rotation speed is one order
of magnitude smaller than the deformation due to constant temperature. This is reasonable due to the
relatively small radius of the rotor shaft.

The temperature in the floating ring decreases in radial direction and is a function of the lubricant tem-
peratures Ti and To in the inner and outer fluid film, which act as boundary conditions. The stationary
thermal conduction equation for solids without heat sources and constant conductivity is ∇2T =0 . In
cylindrical coordinates it reads

∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2

∂2T

∂φ2
+
∂2T

∂z2
= 0 , (4.23)

see e.g. [Spu13]. The temperatures in the fluid films are assumed homogeneous, thus the temperature
gradient in circumferential φ-direction vanishes. Furthermore, also the temperature gradient in axial
z-direction is neglected since the heat transfer from the solid to the liquid lubricant is much larger than
the heat transfer in axial direction to the surrounding air. Figure 4.8 shows two numerical solutions
of (4.23) using Comsol Multiphysics with the assumption of thermal radiation in axial direction. The
resulting temperature profile is almost linear in radial direction.
For comparison, the thermal expansion is also calculated assuming a constant medium temperature
TF =(Ti+To)/2 . The difference to the thermal expansions assuming a linear temperature distribution
is small, see table A.2.
The rotation speed ωF of the floating rings is a fraction of the rotor-speed ωR , usually ωF <0.4ωR .
The deformations due to rotation at maximum rotation speed are smaller than the thermal expansion,
especially for the outer surface.

The temperature TH of the housing is assumed constant and equal to the lubricant supply tempera-
ture Tsup , which is usually smaller than the temperature To of the outer fluid film. The housing exhibits
the smallest relative deformation due to the relatively low temperature.

Due to the strains of the surfaces, the inner bearing gap increases while the outer bearing gap decreases.
The expansions of the rotor shaft and the floating ring due to rotation were approximated with a 2-
dimensional stress state. In reality, the stress state is three-dimensional and it is assumed that the
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Figure 4.8.: Radial temperature field in a floating ring for two different turbocharger applications, see
table A.2

deformations in radial direction are smaller due to the additional stress in axial direction. Furthermore,
the deformations increase quadratically with the rotation speed. Even at maximum rotation speed, the
thermal expansion remains the biggest influence on the bearing gaps. Additionally, the temperatures
in the fluid films probably increase during run-up due to higher friction, which is not considered in
the isothermal approach. Without a sophisticated thermal model and realistic boundary conditions, the
temperatures of the solids have to be calculated using the lubricant temperatures, which are estimated
from measured lubricant supply and outflow temperatures. Thus in future work, the inclusion of a
thermal model should be prioritized over the consideration of centrifugal stresses in the floating rings.
An approximate formula for the change of the relative bearing gaps is derived by assuming a constant
temperature in the solids and neglecting the stresses due to rotation. Inserting (4.22) into (4.21) yields

ψo ≈
Co
Ro

+ αT,H∆TH − αT,F∆TF and

ψi ≈
Ci
Ri

+ αT,F∆TF − αT,J∆TR .

(4.24)

With this simple formula, the gap sizes are calculated a-priori without introducing additional state vari-
ables, while still accounting for the most important influence.
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4.1.5.5 Connecting Channels

Similar to oil inlet geometries and grooves, the connecting channels in floating ring bearings are not thin
fluid films and thus the REYNOLDS equation is not valid there. The channels are holes in the 2-dimensional
fluid film geometry and the inner and outer fluid film have to be coupled using boundary conditions for
these holes.

Only scarce literature on connecting channels and their influence exists. In [EOR15b], three-dimensional
CFD simulations (full NAVIER-STOKES-equations) of a connecting channel have been performed. These cal-
culations are computationally expensive, since a fine mesh is required to resolve the thin fluid films. It
was found that the flow inside the channels is rather complicated and results in pressure spikes due to a
throttle effect at the transition from the channel to the thin gap. Yet also a pressure balance between the
inner and the outer fluid film takes place.
The actual flow cannot be captured accurately with the REYNOLDS equation. Thus, some simple ap-
proaches have been made, which consider the coupling by setting the pressure at the connecting channel
boundaries in the inner and outer fluid film equal, see e.g. [Por+14; Wos+11]. Results show that the
influence on the pressure distribution in the bearing gaps is only local, due to the small diffusion in thin
films, see equation (3.9).

The coupling requires the simultaneous calculation of the pressure in both fluid films. This favors the
calculation of the kinetics of the floating ring in the bearing model, see section 4.1.5.2. The flow through
the connecting channels is only realistic, if mass-conserving cavitation models are used. This is especially
important for the implementation of a realistic thermal model.
For the rotor systems with floating ring bearings investigated in chapter 7, the holes of the connecting
channels in the outer bearing gap are contained within a circumferential groove, see figure 7.1. Since
the pressure in the groove is assumed constant, the pressure in the connecting channels is also constant
and no hydraulic coupling has to be considered. However, two other effects are considered in this work,
which are explained in the following.

The mass of the fluid inside the connecting channels is not negligible and is accelerated in radial direction
due to the rotation of the floating ring. This results in a pressure difference at the channel boundaries in
the inner and outer fluid film.
Let Acc denote the projected area of the connecting channels, see figure 4.9. The inner and outer radii of
the floating ring are Ri and Ro. A cylindrical volume element of lubricant inside the connecting channel
with the infinitesimal small radial extent dR located at radius R has the infinitesimal small mass dm.
Then, the infinitesimal centrifugal force dFcf acting on a fluid volume is

dFcf = Acc dp = Rω2
F dm , (4.25)

with the angular velocity ωF of the floating ring. The mass dm can be expressed as dm=ρlAcc dR with
the lubricant density ρl, which yields

dp = Rω2
F ρl dR . (4.26)
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Figure 4.9.: Centrifugal pressure in connecting channels of full-floating ring bearings

Integration of the infinitesimal pressure dp over the radial extend of the connecting channels yields the
pressure difference ∆p between the inner and outer fluid film,

∆p =

Ro∫
Ri

dp = ω2
F ρl

Ro∫
Ri

RdR = ω2
F

ρl
2

(
R2
o −R2

i

)
, (4.27)

see also [EOR15b]. The relation between the inner and outer pressure boundaries pchannel,i and
pchannel,o is

pchannel,o = pchannel,i + ∆p . (4.28)

In chapter 7, the pressure in the connecting channels is given through the pressure psup in the circumfer-
ential groove in the outer fluid film. It is assumed that the pressure difference is divided equally between
the inner and outer fluid film. Thus, the boundary condition for the connecting channels in the inner
fluid film is

pchannel,i = psup −
∆p

2
. (4.29)

It is assumed that the pressure in the circumferential groove is not influenced significantly due to the
connecting channels due to its large volume.
The hydrostatic pressure inside a connecting channel applies the radial force (4.10) on the rotor shaft
and the housing. The forces acting on the floating ring cancel out. If the pressure in all connecting
channels is equal, e.g. due to a circumferential groove, the sum of the forces cancels out. If both fluid
films are fully coupled, the pressure in the connecting channels results from the hydrodynamic pressure
profiles in both fluid films and is different for each channel. This results in a hydrostatic force with
time-dependent magnitude and orientation on the shaft.
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4.2 Mass-Conserving Cavitation Model for Rotordynamic Simulations

The cavitation model used in this work was introduced in [NSS16]. It uses a predefined function ϑ(p)

for the lubricant fraction, which is inserted into the REYNOLDS equation (3.9). This yields a single equa-
tion in p, which is valid in the whole fluid film and is easily implemented in commercial software. The
modified REYNOLDS equation is derived in the next section. The model can be adopted with different
functions ϑ(p), to reflect a complimentary model (section 3.3.3.1) or a model with bubble dynam-
ics (section 3.3.3.2). In this work, the function ϑ(p) is tuned to reflect the ELROD algorithm, see
section 4.2.1.1. Special attention is paid to the axial boundary conditions in section 4.2.1.2, which
cannot be adopted directly from classical approaches. Numerical oscillations can occur when using
finite elements for convection-dominated problems, which have to be stabilized with artificial diffu-
sion, see section 4.2.1.3. Furthermore, the assumption of a liquid/gas mixture influences the bearing
torque, which is explained in section 4.2.1.4. The model is compared to non mass-conserving cavitation
approaches in section 4.2.2.

4.2.1 General Two-Phase REYNOLDS Equation

The two-phase flow is approximated by a compressible single-phase fluid with mixture density ρ and
mixture viscosity η. The lubricant content is described with the lubricant fraction ϑ. The relation be-
tween ρ and ϑ is given by equation (3.33). For the mixture viscosity η, the density-proportional relation
proposed in [KB91a] is used. This yields

ϑ =
ρ

ρl
=
η

ηl
. (4.30)

Equation (4.30) is used to eliminate the mixture density ρ and the mixture viscosity η in the compressible
REYNOLDS equation (3.9). Assuming that the lubricant fraction ϑ is pressure-dependent yields

−H∂ϑ

∂p

∂p

∂t
+

∂

∂φ

[
ψ2

12ηl
H3 ∂p

∂φ

]
+

(
R

B

)2
∂

∂z

[
ψ2

12ηl
H3∂p

∂z

]
− ω

2
H
∂ϑ

∂p

∂p

∂φ
= ϑ

[
ω

2

∂H

∂φ
+
∂H

∂t

]
. (4.31)

The liquid lubricant density ρl cancels out. Equation (4.31) explicitly depends on time t and is nonlinear
in p. The derivative ∂ϑ(p)/∂p can be calculated a-priori, since ϑ(p) is a known function. The bearing
forces do not directly depend on the lubricant fraction ϑ and are calculated analogously to non mass-
conserving models. In the fully developed lubricant film, ϑ=1 and (4.31) simplifies to a bearing with
incompressible lubricant and the SOMMERFELD cavitation condition. The function ϑ(p) is defined in the
next section.

A dimensionless form of (4.31) analogous to section 3.2.5 requires the introduction of a dimensionless
time τ . Since the bearing model is coupled to rotor models and the time t is a coupling variable, the
dimensioned form (4.31) is used.
Equation (4.31) is solved using the commercial finite element software Comsol Multiphysics. For the time
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discretization, an implicit BDF method with variable time-step size and variable polynomial degree up
to 5 is used, see also section 2.2.2.

4.2.1.1 Relation between Pressure and Lubricant Fraction

A pre-defined relation between the pressure p and the lubricant fraction ϑ is used, similar to the two-
phase model explained in section 3.3.3.2. There, the relation ϑ(p) is derived from bubble dynamics
assuming gaseous cavitation. It is argued in section 3.3.1 that this may not be the main cause in open-
ended bearings, especially under high dynamic loads. The ELROD algorithm is a more general approach
to model cavitation. As soon as the pressure drops to the cavitation pressure pcav, a cavity forms, which
can also be open to the surrounding atmosphere, thus reflecting the sucking-in of air. The disadvantages
of the complimentary ELROD algorithm are

• the neglected changes of fluid properties in the cavity which yields p=pcav,

• the discrete division of the bearing gap into the fully developed fluid film and the cavitated region,
which requires a fine mesh.

In order to reflect the ELROD algorithm, ϑ(p) resembles the inverse function of figure 3.5 on page 33.
A smoothed step function is used for ϑ(p) in order to reduce the stiffness of the numerical model.
Cavitation occurs for p<pcav. The film is completely filled with liquid lubricant for p≥pcav. The
function has to be steep at p≈pcav in order to achieve an approximate complimentary problem with a
continuous function:

• For p≥pcav, the fluid film is assumed fully developed. The liquid lubricant is considered incom-
pressible, thus ϑ≈1. The pressure p changes to fulfill the REYNOLDS equation (4.31).

• For p<pcav, the fluid film is assumed cavitated. Due to a steep gradient ∂ϑ/∂p at p≈pcav, the
pressure p only drops slightly below pcav and the lubricant fraction ϑ varies in the cavitated area.

If the pressure drops further, ϑ tends to zero, thus the gap is completely filled with gas or vapor. Yet this
can be prevented by ensuring sufficient lubricant supply and did not occur in any simulations performed
in this work. The relation is shown in figure 4.10.

The gradient ∂ϑ/∂p must not become zero, otherwise the first term in equation (4.31) vanishes, which
causes an error in the time-dependent solver. This is circumvented by incorporating a very small gradient
ϑ′0 =10−3, which is greatly exaggerated shown in figure 4.10. A third degree polynomial is chosen for
the step and linear functions elsewhere:

ϑ(p) =



ϑ′0
p

pcav

(1− ϑ′0x0)
[
(1−mϑ)p̃2(3−2p̃) +mϑp̃

]
+ ϑ′0x0

1 + ϑ′0

(
p

pcav
− 1

)

p

pcav
< x0

for x0 ≤
p

pcav
≤ 1

p

pcav
> 1

(4.32)
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ϑ′0
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[(1−mϑ)6p̃(1−p̃) +mϑ]

ϑ′0

p

pcav
< x0
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p

pcav
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p
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> 1

(4.33)

with the scaled pressure function p̃ and the scaled slope mϑ

p̃ =
p/pcav − x0

1− x0
and mϑ = ϑ′0

1− x0

1− x0ϑ′0
. (4.34)

The steepness is controlled with the parameter x0 , which marks the onset of the slope, see figure 4.10.
In the results shown in chapters 6 and 7 the parameter x1 is used,

x1 =
x0 + 1

2
, (4.35)

which is the location of the steepest gradient.
A polynomial of fifth degree does not yield an advantage to the polynomial of third degree. An addi-

tional parameter would be introduced, which offers only a slight margin between the extremal values,
since overshoot has to be prevented.
Equation (4.32) has smooth derivatives at p/pcav =x0 and p/pcav =1. It has been found for the applica-
tions considered in this work that the influence is negligible for ϑ′0<10−2 and that it would be sufficient

Figure 4.10.: Step-like ansatz function for the lubricant fraction ϑ as a function of the pressure p
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to add ϑ′0 only in the derivative ∂ϑ/∂p. Since the effort to implement equation (4.32) is small, it is used
as shown.

The parameter x0 influences the results of the model. The JFO boundary conditions are better reflected,
the closer x0 tends to 1. On the contrary, a steep gradient in ϑ(p) increases calculation times and leads
to numerical instabilities. This is examined in chapter 6.

The ansatz function (4.32) is compared to the ELROD and the PEEKEN cavitation models in figure 4.11.
Furthermore, also a detailed two-phase model from PRIEST introduced in [GPP06] is shown for a constant
temperature, which is derived from the solubility of a refrigerant in synthetic oil. This mixture is used in
cooling machines for the lubrication of the compressor and accurate material laws for the density and the
solubility are available. The mass-fraction w0 of gas at ambient condition is derived from the material
laws given in [GPP06]. The bulk modulus β of the ELROD model is chosen small in order to illustrate the
compressibility of the liquid lubricant for p>pcav. The BUNSEN-coefficient αB is an usual value for air in
oil, see [PS61]. The steepness parameter x0 is chosen relatively small to make the smoothed step visible.
Furthermore, the gradient ϑ′0 is exaggerated.
The models are similar, except the PEEKEN model. All models yield a zero lubricant fraction for p=0

and ϑ≈1 for p≥pcav. The model used in this work qualitatively falls between the PRIEST and the ELROD

model. The cavitation pressure pcav from the PRIEST model depends on the temperature of the mixture,
because it influences the solubility of the refrigerant in the liquid lubricant. Almost no difference between
the ansatz function (4.32) and the ELROD model can be seen for usual values of β and x0. Furthermore,
also the relation ϑ(p) from the PEEKEN model tends to the other models, if enough air is available, i.e.
αB is large.

Pa

Figure 4.11.: Comparison of the ansatz function ϑ(p) with ELROD, PEEKEN and PRIEST cavitation models
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4.2.1.2 Axial Boundary Conditions and Lubricant Supply

Usually, the pressure at the axial boundaries of the bearing is set to ambient pressure, see sec-
tion 3.2.1. The pressure cannot drop below the ambient pressure p0 in many cavitation models, e.g.
half-SOMMERFELD or ELROD. Thus, the axial pressure gradient ∂p/∂z always yields an outflow of the
lubricant out of the bearing gap in the fully developed fluid film and zero axial flow in the cavitated
region. With the use of a penalty approach (section 3.3.2), a two-phase model (section 3.3.3.2) or the
cavitation model from this section, the pressure p drops below the ambient pressure p0 in the cavitated
region. If the pressure p is fixed to ambient pressure p0 at the axial boundaries, lubricant flows from the
surrounding atmosphere into the gap. This implicitly resembles a bearing submerged in a lubricant bath.
Yet this is a rare case in practice. Most journal bearings are free to air at their axial boundaries, thus no
lubricant can enter the bearing gap from the surrounding atmosphere.

In [NSS17], a NEUMANN boundary condition was introduced,

(
R

B

)2
ψ2

6ηl

[
H3∂p

∂z

]
φ, z = 0, t

= g(p) ,

(
R

B

)2
ψ2

6ηl

[
H3∂p

∂z

]
φ, z = 1, t

= −g(p) , (4.36)

with the pressure-dependent penalty function g

g = a e
b
p−p0

p0 . (4.37)

Axial flow from the surrounding into the cavitated region is prevented by g≈0 for p≤p0. A steeply
increasing g for p>p0 yields a strong outflow, which lowers the axial pressure to the ambient pres-
sure p0. Thus, the boundary condition (4.36) acts similar to a DIRICHLET boundary condition for the fully
developed fluid film. The parameters a and b have to be chosen analogous to the cavitation penalty
approach in section 3.3.2. It has been found that a=0.01 and b=100 yield good results for all operating
conditions.

The solution of the REYNOLDS equation (4.31) with only NEUMANN and periodic boundary conditions may
yield problems, since the level of the pressure is not defined and all solutions with a constant offset also
fulfill the boundary conditions. Thus, a lubricant inlet has to be defined, which is a DIRICHLET boundary
condition with a constant feeding pressure psup. This is also plausible from a physical standpoint, since
a journal bearing without lubricant supply would run dry.

4.2.1.3 Artificial Diffusion

The modified REYNOLDS equation (4.31) contains the convective term −ωH ∂ϑ/∂p ∂p/∂φ, which is not
present in the classical single-phase REYNOLDS equation (3.9). This term becomes very large compared
to the diffusion terms for large rotation speeds ω and steep gradients ∂ϑ/∂p. This leads to numerical
oscillations in p and ϑ, which distort the results, yield large calculation times and may prevent the
solver to converge. Such oscillations usually occur in finite element problems, which are dominated by
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convection, i.e. the ratio of velocity to viscosity is high, which yields steep gradients in the solution,
see [Rod91]. The oscillations disappear with a finer mesh, i.e. the local element size has to be small
enough to resolve the gradients of the solution. However, the required element size may be to small for
practical calculations. Numerical stabilization techniques exist, which allow for a coarser mesh solution,
while still suppressing numerical oscillations. In this work, an artificial diffusion approach is used, which
is explained in this section.

As a simple example, a transport problem is considered, see [DR06],

∂p

∂t
+ β · ∇p = ∇ · (c∇p) + f , (4.38)

with a source term f . Numerical oscillations occur, if the convection coefficient β=‖β‖ is large com-
pared to the diffusion coefficient c. This can also be expressed with the local PECLET number

Pe =
hβ

2c
(4.39)

with the local mesh element size h. No oscillations occur, if Pe<1. This also illustrates that the solution
can be stabilized by choosing a small enough element size h.
One approach to keep the PECLET number Pe below 1 is to add additional, so-called Artificial Diffusion

cad = γhβ , (4.40)

to the diffusion coefficient c , see [Kuz10]. γ is a constant parameter. The resultant PECLET number with
Artificial Diffusion is

Pead =
hβ

2c+ 2γhβ
=

1
1

Pe
+ 2γ

. (4.41)

It is evident that Pead<1 for γ≥0.5. The Artificial Diffusion term cad is added to both diffusion coeffi-
cients in equation (4.31), with β=−ω/2H ∂ϑ/∂p. This is so-called Isotropic Artificial Diffusion.

The addition of Artificial Diffusion suppresses numerical oscillations, yet the results are not exact,
since the differential equation is altered. Assuming a constant element size h, the Artificial Diffusion
term (4.40) is only large, where steep gradients ∂ϑ/∂p occur. Yet it does not vanish, if the existing diffu-
sion c is already large enough to yield Pe<1.
RODDEMAN proposed an enhancement termed Consistent Artificial Diffusion in [Rod91], which makes the
Artificial Diffusion term additionally dependent on the local PECLET number Pe:

cad,cons = γ hβfcons (4.42)
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with the function

fcons =

√
Pe2

32 + Pe2 . (4.43)

The resultant PECLET number with Consistent Artificial Diffusion is

Pead,cons =
hβ

2c+ 2γhβfcons
=

1
1

Pe
+ 2γfcons

. (4.44)

It follows that Pead,cons<1 for

γ fcons ≥ 0.5

(
1− 1

Pe

)
. (4.45)

If γ=0.5 is chosen as before, the condition simplifies to fcons≥(1−1/Pe), which is visualized in fig-
ure 4.12. The function fcons is already optimized to fulfill this condition. It is also visible that the
Consistent Artificial Diffusion term (4.42) tends to 0, if the local PECLET number Pe is small enough.
It has been found that the influence of consistent artificial diffusion on the results is small for the simu-
lations performed in this work. Yet the additional effort to implement it is small and it has no significant
impact on the calculation time, therefore it is used throughout this work.

Peclet number Pe
0 1

f(
Pe

)

0

1

1-1/Pe
fcons

Figure 4.12.: Visualization of necessary condition for Pe<1 with Consistent Artificial Diffusion
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4.2.1.4 Influence on the Bearing Torque

During operation of a rotor-bearing system, the bearing gaps are partially filled with liquid lubricant and
gas. Since the viscosity of gas is negligible compared to that of liquid lubricant, the shear stress τxy in
the cavities is also negligible. However, the gas phase usually does not extend over the whole gap, see
figure 3.4. The local amount of remaining liquid lubricant is described with the lubricant fraction ϑ.
Thus, the factor

f
MR,red(ϑ) =

1

A

∫∫
A

ϑ dA (4.46)

is defined, which describes the global lubricant fraction in the bearing gap. The factor f
MR,red equals 1,

if the gap is completely filled with lubricant and 0, if no lubricant is present. It is inserted in the integrals
of the bearing torque (3.17) in order to account for the reduced shear stress τxy in the cavitated region.
A similar approach has been used in [Nit17].

4.2.2 Comparison with Non Mass-Conserving Cavitation Approaches

In this section, the behavior of a journal bearing considering mass-conserving cavitation is compared
to that of bearings with the non mass-conserving half-SOMMERFELD and penalty cavitation approaches.
This lays the foundation to explain the influence on the rotordynamic stability, which is investigated in
chapter 6 for rotors in single lubrication films and in chapter 7 for rotors in floating ring bearings. The
journal is kinematically driven to investigate basic motions, namely pure rotation, radial squeeze and
whirl. This enables a direct comparison of the resulting pressure profiles, which would be different in a
dynamic simulation due to the different equilibrium positions.
The parameters of the considered bearing are given in table 4.1. The bearing is plain cylindrical with a
free axial boundary, see equation (4.36). Lubricant is supplied to the bearing gap through a circumfer-
ential groove at one axial end of the bearing, i.e. z=1, with psup =pcav =p0 . The bearing dimensions
comply with the inner fluid films of the rotors in floating ring bearings investigated in chapter 7. The oil
viscosity corresponds to motor oil with a temperature of 100 ◦C. The deformation of shaft and housing
described in section 4.1.5.4 is already accounted for in the warm gap size C. The steepness parameter x1

of the mass-conserving cavitation model is 0.99.

Table 4.1.: Bearing parameters

Name Symbol Value Unit

Bearing width B 20 mm
Bearing diameter D 25 mm
Nominal radial bearing gap (warm) C 40 µm
Oil viscosity (warm) η 10 mPas
Ambient pressure p0 1 bar
Supply pressure psup 1 bar

60



4.2.2.1 Pure Rotation

Firstly, the pressure profiles resulting from pure rotation with a constant rotation speed of 20 Hz are com-
pared. The equilibrium position of the mass-conserving two-phase model is calculated with a dynamic
simulation using a rigid rotor (point mass) with mass ≈ 6 kg without unbalance. A stiff rotor with little
unbalance exhibits a similar motion, as long as the rotation speed varies slowly and no sub- or super-
synchronous oscillations are present. The resulting journal displacements are used as input values for
the static calculations of the non mass-conserving models. Additionally, results using the ELROD and the
PEEKEN model are shown, which also use the equilibrium position calculated with the two-phase model
as input.

Figure 4.13 shows the cross-sections of the pressure profiles, the gap function H and the lubricant
fraction ϑ in the centerline of the bearing, i.e. z=0.5. The lubricant flows from left to right. In the
converging part of the gap, the pressure rises and no gas is present, thus ϑ=1 . The highest pressure
is reached in front of the smallest gap. At the location of the smallest gap the pressure collapses. As
soon as the cavitation pressure pcav =p0 =1 bar is reached, a cavity forms, which is seen in the declining
lubricant fraction ϑ. Here, the bearing gap is partially filled with gas. At the location of the largest gap,
the cavity ends and ϑ rises to 1.
The pressure profile calculated with the two-phase model is similar to that obtained with the penalty ap-
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Figure 4.13.: Pressure profile p and lubricant fraction ϑ during pure rotation for different cavitation mod-
els, circumferential groove at z=1
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proach. No difference in the centerline pressure can be seen between free-to-air or oil-bath (not shown).
Despite the different pressure profiles of the half-SOMMERFELD and the penalty cavitation approaches,
they exhibit an almost identical stability behavior, see section 6.3. Yet the model with mass-conserving
cavitation exhibits a reduced stability. Thus, no direct conclusions concerning the stability behavior can
be drawn from the pressure profiles resulting from pure rotation.
The pressure calculated with the two-phase model drops only slightly below the cavitation pressure pcav
if the steepness parameter x1 is close to 1. The pressure of the PEEKEN model drops far below pcav, while
the lubricant fraction is higher in the cavitated area.

Additionally, a bearing with one axial groove at the top of the bearing (φ=0=2π) with the opening
angle Θg=15◦ is considered. Also the pressure calculated with the classical ELROD model is shown,
see figure 4.14. The resulting pressures using different cavitation approaches are closer than for the
bearing with a circumferential groove. The two-phase model is again close to the penalty approach. The
maximum pressure of the ELROD and the PEEKEN model are close to the half-SOMMERFELD model, yet the
beginning and end of the cavitated area are different. Again, the pressure of the PEEKEN model drops
below pcav, while the lubricant fraction in the cavitated area is higher than for the other models.
The lubricant fraction is 1 at the location of the axial groove, thus the cavitated area is smaller compared
to the bearing with a circumferential groove. The shape of the cavitated area is similar for the two-phase
and the ELROD model, yet the reformation areas of the lubricant film at φ ≈ π/2 and φ ≈ 2π are smaller
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and the lubricant fraction rises later and more suddenly for the ELROD model. This is probably due to
the infinitely high steepness of the density-pressure-relation ρ(p) in the ELROD model, which is smooth
in the two-phase model, see also figure 4.11.

4.2.2.2 Squeeze Motion

Now, a radial, sinusoidal squeeze motion of the journal is imposed by means of the vertical displace-
ment Dy(t),

Dy(t) = −Cεmax sin(2πft) (4.47)

with εmax =0.6, f=10 Hz. The journal does not rotate, i.e. ωR=0. This investigation was performed
experimentally in [Phe61] to research the influence of cavitation in squeeze film dampers. Related nu-
merical studies have been conducted in [Boe10]. In this work, the resulting vertical bearing forces Fy
are compared for different cavitation models and different axial boundary conditions. The use of an in-
tegrated result enables to compare the time history of the transient results. Three periods of the journal
motion are shown in figure 4.15. Also the local gap size H(φ=π) at the bottom of the bearing is plotted.
The journal firstly moves downward, which generates a positive vertical force Fy. As the journal reaches
its lowest position Dy=−Cεmax, its velocity and the vertical force become zero. The journal moves
upwards and a negative vertical force is induced by the lubricant film.
The non mass-conserving half-SOMMERFELD and penalty approach yield an identical force in each period
of the journal movement due to not being time-dependent. The change in direction of the journal yields
a non smooth force graph for the half-SOMMERFELD approach, probably due to the non smooth pressure
profile. The force calculated with the penalty approach is smooth and slightly larger.
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Figure 4.15.: Vertical bearing force during three periods of vertical, harmonic squeeze motion
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A larger difference can be observed for the mass-conserving cavitation model. In the first half period of
the journal motion, the force is close to the forces calculated with the non mass-conserving cavitation
approaches. After the change of direction of the journal, the force stays small for some time and then
suddenly rises. The delay in the build-up of the force becomes larger in the next oscillation of the journal
and then reaches a steady state. This behavior can be explained by cavitation effects. The downward
movement of the journal generates a cavitated area in the top of the bearing. When the journal moves
back upwards, no hydrodynamic pressure can be generated until the gap on top of the bearing is again
filled with lubricant, i.e. ϑ=1. The non mass-conserving cavitation approaches implicitly assume a fully
developed lubricant film at all times, thus the force is generated immediately after the change of direc-
tion of the journal. This difference has also been pointed out in [Boe10].
When the oil bath axial boundary condition is used, the pressure can build up more quickly due to the
additional lubricant supply through both axial boundaries. The bearing with the free-to-air boundary
condition loses lubricant at one axial boundary. In both cases, lubricant is supplied through a circumfer-
ential groove at one axial boundary.
The difference between the non mass-conserving and the mass-conserving cavitation models becomes
smaller, when the supply pressure psup is increased. This is caused by the improved lubricant supply
and thus a smaller cavitated area. This is further investigated in section 6.4.4.
A superimposed rotation ωR=2πf has little effect on the results (not shown). Then, the build-up of the
bearing force is more gradual and the overshoot of the force with the free-to-air boundary condition is
reduced.

In a dynamic simulation, the delayed pressure build-up yields larger eccentricities in oscillating journal
motions when mass-conserving cavitation is considered. Radial motion components are present in sub-
synchronous oscillations and in whirl motions due to unbalance. This behavior can explain the reduced
stability threshold speed compared to rotors in bearings considering non mass-conserving cavitation,
which is shown in chapters 6 and 7.

4.2.2.3 Whirl Motion

Lastly, a circular whirling motion of the journal center without rotation of the journal (ωR=0) is consid-
ered according to

Dx(t) = Cε cos(δ̇t)

Dy(t) = Cε sin(δ̇t)
(4.48)

with δ̇=2π10 rad/s. To start the calculation of the time-dependent mass-conserving cavitation model
with an eccentric journal position, an accurate initial condition of the pressure profile p is required,
whose calculation is costly. It is more efficient to quickly increase the eccentricity ε at the beginning of
the simulation,

ε(t) = εmax
(

1− e−t/t1
)
. (4.49)
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with εmax =0.6 and the time constant t1 =10 ms. The hydrodynamic pressure profile follows the move-
ment of the journal and reaches a steady state in a rotating reference frame. The graph of the resulting
bearing forces is thus mainly influenced by the whirl speed δ̇ and is sinusoidal when ε(t)=εmax. Thus,
the pressure profile and the bearing forces are not well suited to compare the different cavitation ap-
proaches for this kind of motion.
Instead, the pressure at a fixed location at the bottom of the bearing is compared, i.e. p(φ=π, z=0.25),
see figure 4.1. This kind of investigation was also performed experimentally in [DSA98]. Figure 4.16
shows three periods of the whirl motion of the journal center. Again, the gap size H(φ=π) at the bottom
of the bearing is plotted. It reaches a maximum, when δ̇t=π/2 and a minimum when δ̇t=3/2π. In the
first rotation, the maximum is slightly smaller due to the time-dependent increase of ε. The pressure at
the bottom of the bearing which is calculated with the non mass-conserving approaches increases imme-
diately, when the local gap size starts to decrease. The pressure calculated with the penalty approach is
again slightly larger than that using the half-SOMMERFELD condition. With the two-phase model, there is a
delay in the pressure build-up, which is greater for the bearing with free-to-air boundary condition. It can
be seen in a rotating reference frame that the pressure profile has a smaller circumferential extend for the
two-phase model due to cavitation. The pressure suddenly vanishes for all models, when the local gap
size starts to increase. Furthermore, the pressure drops below the cavitation pressure pcav =p0 =1 bar
when the mass-conserving model is used.
A superimposed rotation ωR=2πf reduces the maximum pressure and makes the increase of the pres-
sure more gradual for the two-phase model, yet has again no qualitative effect on the results (not shown).

The results are in good agreement to those obtained experimentally in [DSA98]. The results obtained
with non mass-conserving cavitation models correspond to experimental results where no cavitation
has been observed, while the results calculated with the two-phase model are similar to experimental
results with gaseous cavitation. In [DSA98], the pressure occasionally drops far below pcav during
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Figure 4.16.: Hydrodynamic pressure at the bottom of the bearing during three periods of circular whirl
motion
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an increasing local gap size due to vaporous cavitation, which is not modeled in the mass-conserving
cavitation approach used in this work.
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5 Solver Coupling

In this work, the rotor-bearing system is decomposed into subsystems, which exchange coupling variables
through a coupling interface. The subsystems of rotor and bearings are modeled in separate software
tools – namely multibody dynamics and FEM – which use different integration methods, different solvers
and have different time-step sizes (i.e. multi method, multi solver, multi scale). Compared to a single
monolithic model, the decomposition into subsystems allows easier upgrade, reuse and exchange of
models, e.g. different rotors or different bearing geometries. Components of a complex system can be
modeled by specialized engineers. Furthermore, the efficiency of the subsystem solvers can be increased,
since they can be optimized for the individual equations.
An additional numerical error is introduced through the coupling procedure. Thus, a coupled system
of physically and numerically stable subsystems can become unstable. In some cases, the decoupling
can increase the overall efficiency of the method, since the subsystems have lesser degrees of freedom
and can be calculated in parallel. The exchange of coupling variables requires an additional effort,
which is small for the models considered in this work, since the number of coupling variables is small.
An example for systems with many coupling variables is a bearing with a deformable shell, a so-called
elasto-hydrodynamic bearing (EHD).

Two different coupling methods are applied in this work:

• Dynamic-static solver-coupling is used, if only one subsystem is explicitly time-dependent and the
others are stationary. The stationary subsystems can be seen as complex sub-functions of the time-
dependent system. The static subsystems do not have to be computed in every NEWTON iteration
step of the time-dependent system, which greatly reduces the computational effort. The procedure
is explained in the next section.

• Co-simulation methods are used to couple several time-dependent subsystems. The method used
in this work is explained in section 5.2.

A detailed description can be found in [Sch15]. Different choices of coupling variables are possible
for mechanical systems, see e.g. [SL14]. In this work, a force/displacement coupling approach is used,
i.e. the forces and torques from the bearings and the displacements and velocities of the rotor and the
floating rings are exchanged.

5.1 Dynamic-Static Solver-Coupling

The bearing subsystems are not time-dependent, if non mass-conserving half-SOMMERFELD or penalty
cavitation approaches are used, see section 3.3.2. Discretizing the REYNOLDS equation yields a set of
algebraic equations. The rotor subsystem is integrated using an implicit BDF method, which performs
one predictor-step and multiple corrector-steps per time-step, see section 2.2.2.

67



In the simplest case, the hydrodynamic forces are calculated in every predictor- and corrector-step. This
is the so-called full-implicit method. Additionally, the BDF-method requires the JACOBIAN for the corrector-
steps, which are calculated using NEWTON’s method. The partial derivatives of the forces with respect
to the coupling variables are calculated with difference quotients using perturbed coupling variables.
If the partial derivatives are not specified, the multibody software MSC Adams calculates the perturbed
forces with respect to every coupling variable sequentially, which is very time-consuming. Thus, the
perturbed forces are calculated in parallel processes. At least 4 processes are required for each lubricant
film, since the minimal number of input variables is 3, see section 3.2.5. The JACOBIAN does not have to
be calculated in every corrector-step, since the partial derivatives usually change slowly. The amount of
calculations of the JACOBIAN can be controlled with the pattern-option of the solver in MSC Adams.

In order to reduce the numerical effort, BUSCH proposed a semi-implicit method, which reduces the
number of calculations of the bearing model, see [Bus12; BS12]. The forces and the perturbed forces are
only calculated once per time-step. During the corrector-steps, the forces are extrapolated linearly using
the partial derivatives with respect to the coupling variables, which are already needed for the JACOBIAN.
BUSCH used the last (converged) corrector-step as the operating point of the linearization. SCHMOLL

found that using the predictor-step as the operating point reduces the numerical error, see [Sch15],
which is also applied in this work. During the predictor-step, the states are extrapolated. The JACOBIAN

is calculated using the chain rule.
The semi-implicit method reduces the effort by a factor of 3-4, depending on the average number of
corrector-steps. The results are congruent to those using the full-implicit method.

5.2 Dynamic Co-Simulation

A co-simulation scheme is used to couple several time-dependent subsystems. This is the case for a rotor-
bearing with a mass-conserving cavitation model, which makes the REYNOLDS equation time-dependent,
see section 4.2.1. The bearing subsystems also become time-dependent, if the equations of motion of
the floating ring are included in the bearing model. This is necessary, if hydraulic coupling is considered,
but also beneficial for non mass-conserving cavitation models. No partial derivatives with respect to the
coupling variables are needed when using a co-simulation scheme, see [Sch15]. Thus, far less parallel
processes are needed compared to the dynamic-static solver-coupling, which reduces the workload of
the CPU and the number of licenses. The evaluation of one time-step takes longer due to the greater
amounts of degrees of freedom, yet more parallel simulations (e.g. parameter studies) can be performed
on a single PC, which increases the overall efficiency.
Since commercial software tools usually do not give the possibility to save the current solver state of
the system and to repeat a time-step, an explicit co-simulation scheme has to be used, see e.g. [Bus12;
Sch15; SS11; Sch+13; SLL15]. Currently, new standards such as the Functional Mock-up Interface are
developed, see [Jun17], which will allow the use of more stable implicit co-simulation methods in the
future, see e.g. [SL14; SLL15; Sch+15].

Both subsystems use their respective time-integration method. In this work, BDF-methods with variable
step size and variable order of the extrapolation polynomials are used. Thus, the time-step sizes of the
subsystems – the so-called micro-step sizes h – are different. Both subsystems require coupling variables
from the other subsystem, e.g. the rotor subsystem needs the bearing forces and the bearing subsystems
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need the kinematic quantities of the rotor. The coupling variables are only exchanged at so-called macro
time points. Their time-difference is called macro-step size H . The macro-step size can be constant,
fixed to the micro-step size of one subsystem or an automatic control can be implemented. The coupling
variables are inter- or extrapolated during one macro-step using the previously computed values at the
macro time points. This introduces an additional numerical error to the simulation. Two different
schemes for approximating the coupling variables can be distinguished:

• In the JACOBI type, the coupling variables of both subsystems are extrapolated and the subsystems
can calculate their micro-steps simultaneously. This is especially efficient, if the calculation times
of the subsystems are in the same magnitude, since the calculation has to wait for the slowest
subsystem before the next macro-step can be started.

• In the GAUSS-SEIDEL type, the coupling variables of one subsystem are interpolated, and extrapo-
lated for every other subsystem. This improves the numerical stability, see [Sch15; Bus12], since
interpolated coupling variables can not overshoot. However, the calculation of the subsystems has
to be carried out sequentially.

The calculation time of the bearing subsystems dominates the calculation time of the coupled rotor-
bearing systems investigated in this work. Thus, the parallel JACOBI type yields no advantage and the
more stable GAUSS-SEIDEL type is used in this work, which is explained in the next section.

5.2.1 Sequential Gauß-Seidel Scheme

The GAUSS-SEIDEL scheme used in this work is implemented as a master-slave method, see [Sch15;
Bus12]. The rotor subsystem is the master subsystem with micro-step size hM , the bearings are slave
subsystems with micro-step sizes hS,i. The step sizes of the bearing subsystems are usually smaller than
that of the rotor subsystem. The macro-step size H is set equal to the micro-step size of the master,
i.e. H=hM . A larger macro-step size H has no advantage for the rotor-bearing systems investigated in
this work, since the calculation time of the subsystems is large compared to the overhead time of the
coupling due to the large amount of degrees of freedom in the subsystems compared to the small number
of coupling variables.

The procedure is schematically shown in figure 5.1. Two subsystems are considered with one output
each, namely yM and yS . The filled circles represent values, which are calculated by the subsystem
solvers. Firstly, the time-step from tn to tn+1 of the master subsystem is calculated. Due to the use
of implicit subsystem solvers, the integration requires the coupling variable of the slave subsystem at
the time tn+1, which is extrapolated using the function ỹS defined by the known values of yS at the
macro time points tn−1 and tn. Then, the slave subsystem is integrated. This requires coupling variables
from the master subsystem, which are calculated using the interpolation ỹM . The extra- and interpolated
values are represented by blank circles. After the slave system has reached the next macro time-step tn+1,
the process is repeated. Ideally, the slave subsystem performs calculations at the macro time points.
In commercial software tools, the micro-steps hS are usually not directly controllable, thus the values
at the macro-steps are interpolated. Linear functions ỹS and ỹM are shown in figure 5.1 for clarity.
LAGRANGE-polynomials of order 2 are used in this work, which is a good compromise between stability
and efficiency.
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Due to the extrapolation, the coupling variables received by the master subsystem can overshoot, which
might lead to a reduction of the micro-step size hM and thus the macro-step size H . BUSCH proposed a
continuous approximation technique in [Bus16], which yields more smooth coupling variables. However,
a sharp decline of the macro-step size H has not been observed for the investigated systems. It has been
found that for these problems, an equal maximum allowed solver step-sizes hmax in the rotor and the
bearing subsystems yields the fastest co-simulation.

yM

yS

hM =H

hS

ỹM

t

ttn−1 tn tn+1 tn+2

Master (Rotor)

Slave (Bearing)

hS
hS

ỹS

Figure 5.1.: Explicit co-simulation approach: sequential GAUSS-SEIDEL Master-Slave scheme
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6 Jeffcott Rotor in Single Film Bearings

In this chapter, the behavior of a symmetric JEFFCOTT rotor in single film bearings is investigated using
transient run-up simulations. Rotors in floating ring bearings are investigated in chapter 7. In order to
understand the influence of different bearing designs and cavitation effects, a simple rotor is considered.
A symmetric rigid rotor is the simplest rotor model. However, due to the lack of a linear system natural
frequency, no oil whip occurs. The JEFFCOTT rotor on the other hand takes the flexibility of the rotor
into account and can be used to study many effects of realistic rotors in journal bearings. In this work,
the JEFFCOTT rotor is modeled in the commercial multibody software MSC Adams. This is because the
ordinary differential equations of more complex rotor systems – such as turbochargers – are costly to
obtain due to their many degrees of freedom and thus are usually modeled using commercial software.
After the system parameters are given in the next section, two non mass-conserving cavitation ap-
proaches are compared in section 6.3, namely the half-SOMMERFELD and a penalty approach. In sec-
tion 6.4, results obtained with the mass-conserving cavitation model introduced in section 4.2 are dis-
cussed. For comparison, also results obtained with the penalty approach are shown.

6.1 System Parameters

The reference parameters of the JEFFCOTT rotor are given in table 6.1. The rotor is prevented from tilting
using a constraint. The total weight m+mJ and the unbalance U of the rotor resemble a large engine
turbocharger. The journal massmJ – see figure 2.2 – must not be too small, otherwise the micro step size
of the bearing model is greatly reduced. The shaft stiffness c is chosen rather low to reduce the natural
frequency of the system. The stiffness of the journal bearings changes with the rotor-speed ωR and is high
compared to the stiffness of the shaft. If the bearings are assumed infinitely stiff, the natural frequency
of the rotor is 145 Hz. The first natural frequency of the linearized rotor-bearing system is slightly lower
due to the added flexibility of the bearings. Small external damping do and shaft damping di are added,
which act on the disk as well as between the disk and the journals, respectively. The rotor-speed is
linearly increased from 0 to fmax =300 Hz in Tsim =10 s.

Table 6.1.: Reference parameters of the JEFFCOTT rotor

Name Symbol Value Unit

Rotor mass m 6 kg
Journal mass mJ 100 g
Shaft stiffness c 5000 N/mm
Unbalance U 3 gmm
External damping do 1 Ns/m
Shaft damping di 0.1 Ns/m
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The bearing dimensions are given in table 4.1 on page 60. The supply pressure psup in the groove
equals the ambient pressure p0. Due to the axial symmetry of the system, only one bearing has to be
calculated and the forces and the torque are doubled. Furthermore, the resulting pressure profile is
axially symmetric, since misalignment is not considered. Thus, only one axial half of the developed
bearing gap geometry has to be discretized.

6.2 Solver Parameters

Table 6.2 lists the solver parameters of the rotor, modeled in MSC Adams, and the bearings, modeled
in Comsol Multiphysics. The ouptut step size ∆Tout,A of the rotor model fulfills the NYQUIST–SHANNON

sampling theorem up to frequencies of 10 kHz. The ouptut step size ∆Tout,C of the bearing model is
chosen larger due to difficulties of Comsol Multiphysics to handle large amounts of output data. However,
all system variables which require a high time resolution can be extracted from the rotor model.
For non mass-conserving cavitation models, the REYNOLDS equation (3.9) is not time-dependent and only
the relative error tolerance εrel,C is required in Comsol Multiphysics. The rotor and the bearing model
are coupled with the dynamic-static solver coupling approach described in section 5.1. In order to reduce
the effort of calculating partial derivatives of the bearing forces with respect to the coupling variables,
the dimensionless REYNOLDS equation (3.19) is used in this case. Thus, the pressure p in the penalty
approach (3.31) is replaced with the dimensionless pressure Π.
For simulations using the two-phase model, the master/slave co-simulation method of the GAUSS-SEIDEL

type described in section 5.2.1 is applied with MSC Adams as master. Thus, the macro step size H of the
co-simulation equals the variable step size of the implicit BDF method in MSC Adams and is limited by the
maximum solver step size hmax, A. Second degree polynomials are used for the inter- and extrapolation

Table 6.2.: Time-dependent solver parameters

Name Symbol Value

Rotor model (MSC Adams)

Maximum solver step size hmax, A 10−3 ms

Initial solver step size hinit, A 10−5 ms

Output step size ∆Tout,A 5·10−2 ms

Relative error tolerance εrel, A 10−6

Bearing model (Comsol Multiphysics)

Maximum solver step size hmax,C 10−3 ms

Initial solver step size hinit, C 10−5 ms

Output step size ∆Tout,C 1 ms

Relative error tolerance εrel,C 10−5

Absolute error tolerance (scaled) εabs,C 10−6

Absolute error tolerance coupling (scaled) εabs,coupling,C 1020

Maximum BDF order pmax,C 5

Minimum BDF order pmin,C 1
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of the coupling variables. The relative error tolerance εrel,C of Comsol Multiphysics greatly influences
the number of micro steps and thus the overall simulation time. The absolute tolerance regarding the
coupling variables εabs,coupling,C is chosen very large in order to make the time-dependent solver of
Comsol Multiphysics insensitive to sudden changes of the coupling variables. However, the coupling
variables given to the slave subsystem are quite smooth due to the interpolation of the states of the
master subsystem, see section 5.2.1.

The solution of the nonlinear equation system using NEWTON’s method also has a large influence on the
calculation time, especially for the bearing model. Comsol Multiphysics gives several settings, which were
optimized for the systems investigated in this work. They are given in table 6.3. The time-consuming
calculation of the JACOBIAN is minimized, since it does not change significantly during the corrector-steps.
A small number of iterations is sufficient, since the time-step size is small and thus the initial condition
for NEWTON’s method is already close to the solution.

Table 6.3.: Settings for NEWTON’s method in Comsol Multiphysics

Name Selection

Nonlinear method Constant

Damping factor 1

JACOBIAN update Minimal

Termination technique Iterations or tolerance

Number of iterations 3

Relative error tolerance 10−5

6.3 Comparison of Half-SOMMERFELD and Penalty Cavitation Approaches

Firstly, run-up simulations using two non mass-conserving cavitation approaches explained in sec-
tion 3.3.2 are compared, namely the often used half-SOMMERFELD (GÜMBEL) approach and a penalty
formulation. The bearings feature a central circumferential groove, see section 4.1.2. The axial width B
of the bearings equals the sum of the widths b of the two subdomains, B=2b, see also figure 4.1.

Figure 6.1 a) shows the resulting eccentricities ε of the journals, which are equal in both bearings due
to symmetry. At the beginning of the simulation, the rotor journal is located in the middle of the bearing
shell, ε=0 and ωR=0. Due to gravity, the rotor journal drops inside the oil film and the eccentricity ε
increases. The drop is damped through the squeezing of the oil film. With increasing rotor-speed ωR, the
load carrying capacity of the oil film increases, i.e. the rotor weight can be supported at a lower journal
eccentricity ε, thus the eccentricity decreases. Now, an equilibrium position for the journal exists, which
moves on an approximate semicircle (the so-called GÜMBEL curve) towards the center of the bearing shell
with increasing rotor-speed, see also the journal center orbit in figure 6.1 b). In typical turbocharger
applications, the rotor-speed changes more rapidly and the journal orbit is more complex. The journal
performs small oscillations around the equilibrium due to unbalance with increasing amplitudes for
increasing rotor-speed ωR. The amplitude of this synchronous oscillation is largest at the simulation time
≈4.8 s due to the critical speed of the shaft, which is strongly damped and thus barely visible. At a certain
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rotor speed, another frequency component emerges, which is approximately half of the rotor-speed and
is called an oil whirl. This rotor-speed corresponds to the stability threshold of the linearized system. The
journal center performs a circular whirl motion with increasing radius. When the center of the journal
is close to the center of the bearing shell, the bearing looses its load carrying capacity. At ≈ 6.5 s, The
eccentricity ε increases rapidly until it reaches a high value. This behavior usually prevents the operation
of the rotor system for higher rotation speeds. In this work, this point is referred to as stability threshold
or instability for short.
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Figure 6.1.: Comparison of Half-SOMMERFELD and penalty cavitation approach; a) journal eccentricity ε;
b) dimensionless journal center orbit

The results obtained with the two different non mass-conserving cavitation approaches are very sim-
ilar, especially the stability threshold is identical. The journal eccentricity of the system with the
half-SOMMERFELD cavitation approach is slightly greater before the oil whirl. This is due to the smaller
calculated pressure for identical input values, see also figure 4.13. In order to carry the same weight, a
model which generates smaller pressure for the same input variables adjusts to a larger eccentricity in a
dynamic simulation. However, even with large differences in the forces for constant input variables, the
differences in the dynamic simulation stay moderate. This is due to the progressive stiffness of journal
bearings in radial direction, i.e. a slightly higher eccentricity generates a much larger bearing force.

6.4 Mass-Conserving Cavitation

In the remainder of this chapter, the influence of the mass-conserving cavitation approach introduced
in section 4.2 on the stability of the JEFFCOTT rotor in journal bearings is investigated. The free-to-air
axial boundary condition (4.36) is used, which is more common in practice than an oil bath. With this
boundary condition, a lubricant supply is necessary when mass-conserving cavitation models are used,
otherwise the lubricant film runs dry. A cylindrical bearing with a central circumferential groove, which
is described in section 4.1.2, yields a lubricant supply over the whole circumference of the bearing and
is thus often used in practice. Furthermore, the lubricant film has a simple rectangular geometry (see
figure 4.1), which enables easy generation and scaling of the numerical mesh for convergence studies.
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For comparison, also lubricant supply through an axial groove at the top of the bearing is considered in
section 6.4.4.1. A more complicated lubricant supply geometry, namely bore holes, is used in chapter 7.

6.4.1 Mesh Resolution and Steepness of the Ansatz Function

Firstly, the convergence of the time-dependent REYNOLDS equation (4.31) is verified using run-up simu-
lations with increasing resolution of the numerical mesh. The tests are performed for different values
of the steepness parameter x1 =(x0+1)/2 of the ansatz function (4.32). For comparison, also simula-
tions using the penalty approach are performed, which are converged for the mesh resolution 10×20

(axial×circumferential), see figure 6.2.
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Figure 6.2.: Rectangular mesh of one axial half of the bearing with 10×20 elements

In figure 6.3, the resulting eccentricities of a JEFFCOTT rotor in bearings with a central circumferential
groove are shown. The stability thresholds of the systems with mass-conserving cavitation are slightly
different for each x1 and are always at a lower rotor-speed than for the penalty approach. The threshold
converges with finer mesh resolution to a higher rotor-speed for all x1 except x1 =0.99, where it con-
verges to a lower speed. The eccentricity before the stability threshold with mass-conserving cavitation
converges to that with penalty approach for x1≥0.999. For x1≤0.99, the eccentricity is larger than for
the penalty approach. Furthermore, for a constant mesh resolution, the results obtained with the mass-
conserving cavitation model approach the result obtained with the penalty model for increasing x1. The
threshold speeds for x1 =0.9995 are slightly lower.

The eccentricities with x1 =0.9 differ largely from the results with higher x1. The eccentricities before
the stability threshold are larger and additionally, the transition into the oil whirl is more gradual. This
qualitative difference can be explained through investigation of the pressure profile p and the lubricant
fraction ϑ during simulation, which are shown for two different values of the steepness parameter x1 in
figure 6.4. Due to symmetry, only one subdomain of the bearing with circumferential groove is shown.
The results are taken from the simulations shown in figure 6.3 using 20×40 mesh elements at the
simulation time 4 s.
At this time, the rotor performs only small oscillations around the equilibrium position due to unbalance.
Thus, the resulting pressure profile results almost entirely from the static weight of the rotor and is
located at the bottom of the bearing (φ=π). At the circumferential lubricant feeding groove (z=0.5),
the pressure equals the supply pressure psup =p0 =1 bar and the lubricant fraction ϑ equals 1. At the
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Figure 6.3.: Convergence study for the mass-conserving cavitation model with different steepness param-
eters x1 using a cylindrical bearing with a central circumferential feeding groove

axial boundaries of the bearing (z=0), the pressure in the fully developed lubricant film is approximately
equal to the ambient pressure p0. The lubricant fraction ϑ is below 1, i.e. the cavitated area is open to
the surrounding.
The area of hydrodynamic pressure, i.e. p>p0, corresponds with the area where the bearing gap is
completely filled with liquid lubricant, i.e. ϑ=1. For x1 =0.9, this area is substantially smaller than for
x1 =0.99. As a consequence, the pressure profile with x1 =0.9 has to be steeper in order to yield the
same load carrying capacity, which results in a higher eccentricity ε in figure 6.3 a). The area of the fully
developed fluid film, i.e. ϑ=1, does not change significantly for x1>0.99, yielding similar results in the
run-up simulations. The pressure profile varies for x1≤0.99 and is insensitive to the mesh resolution for
x1≥0.999. On the other hand, the lubricant fraction ϑ in the cavitated area is insensitive to the mesh
resolution for x1≤0.99 and varies more strongly for x1≥0.999.
Another difference can be seen in the pressure in the cavitated area, which is visibly below p0 for x1 =0.9,
see figure 6.4 a). The minimal pressure is directly related to the steepness parameter x1, which is evident
from the shape of the ansatz function ϑ(p), see figure 4.10. The lubricant fraction ϑ can strongly vary for
p<pcav =p0, while the pressure can only drop to≈x0 pcav as long as ϑ>0. In all simulations performed
in this work, ϑ stayed well above 0.
It has been observed that for large x1 (e.g. x1≥0.999), numerical oscillations may occur in the result
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Figure 6.4.: Pressure profile p and lubricant fraction ϑ for different steepness parameters x1 in one sub-
domain of a cylindrical bearing with a circumferential feeding groove

despite artificial diffusion, which are especially visible in ϑ(φ, z) and during whirling motion of the rotor,
i.e. above the stability threshold rotor speed. This leads to large calculation times and sometimes failure
of the simulation. These oscillations disappear with increasing mesh resolution, yet this may be too
costly in simulation time. Simulations with low x1, e.g. x1 =0.9, are fast and do not experience these
numerical oscillations, yet it is shown in figure 6.3 that their results can differ strongly from the results
obtained with non mass-conserving cavitation approaches. In order to determine a value of x1, which
yields the most physically accurate results, extensive comparisons with experimental data are needed,
which are not within the scope of this work. Instead, the penalty approach is used as a qualitative
reference. It yields smooth pressure profiles and experiences the same stability behavior than the widely
used half-SOMMERFELD cavitation approach. For rotors in single film bearings using the mass-conserving
cavitation model, a mesh resolution of 10×20 elements and the steepness parameter x1 =0.99 is a good
compromise between accuracy and calculation time and is used in the remainder of this chapter, if not
stated otherwise.
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6.4.2 Rotordynamic Stability

In this section, the influence of the cavitation approach on the rotordynamic stability is investigated in
more detail. In order to focus on the destabilizing effect of the journal bearings, a rigid rotor without
unbalance (U=0) and without external damping (do=0) is considered. The other parameters remain
unchanged, the total mass is m+mJ . The bearings are cylindrical with a central circumferential feeding
groove. Figure 6.5 compares the stability obtained with the penalty approach and the mass-conserving
cavitation model.

Figure 6.5 a) shows the journal eccentricity. It is qualitatively similar to the results obtained with the
JEFFCOTT rotor. However, no synchronous response and no critical speed are present due to the lack
of unbalance. The sudden increase of the eccentricity occurs at a lower rotor-speed when using the
two-phase model, also small oscillations occur at ≈3 s.

The orbits of the journal center are very similar to those shown in figure 6.1 b). The orbit calculated
with the two-phase model is less smooth during the transient motion towards the equilibrium position
at the beginning of the simulation. The journal center moves slowly towards the bearing center for
both models. When mass-conserving cavitation is considered, the journal center starts to spiral out at a

time / s
0 2 4 6 8

jo
ur

na
le

cc
en

tr
ic

it
y

0

0.2

0.4

0.6

0.8

1a)

horizontal displacement
-0.2 0 0.2 0.4 0.6 0.8

ve
rt

ic
al

di
sp

la
ce

m
en

t

-0.8

-0.6

-0.4

-0.2

0

0.2
b)

time / s
0 2 4 6 8

ef
fe

ct
iv

e
ro

ta
ti

on
/

ra
d/

s

-200

-100

0

100

200c)

Two-Phase
Penalty

Figure 6.5.: Stability analysis of a rigid rotor without unbalance
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position further away from the bearing center than for the penalty approach. The small oscillations at
≈3 s are visible in the orbit as well, but they vanish before the system becomes unstable.

A reliable criterion for the sudden increase of the journal eccentricity ε can be obtained through the
right-hand side of the REYNOLDS equation (3.9). Considering that the bearings are cylindrical, i.e.
H=1+ε sin(φ−δ) , the right-hand side is evaluated in cylindrical ε-δ-coordinates, which yields

ω

2

∂H

∂φ
+
∂H

∂t
=
ε

2
(ω − 2δ̇) cos(φ− δ) + ε̇ sin(φ− δ) . (6.1)

This expression is multiplied by ϑ in the mass-conserving cavitation model, see equation (4.31). The
squeeze velocity ε̇ and the journal whirl speed δ̇ are given in equations (3.22). From this formulation
it is evident that the pressure is generated by two terms. The first term on the right-hand side induces
the physical wedge and provides the load carrying capacity in hydrodynamic journal bearings. The term
ωeff =ω−2δ̇ is called the effective angular velocity of the journal, see e.g. [LS78]. The second term
generates pressure due to the squeeze film damper effect. The effective angular velocity ωeff is a measure
for the hydrodynamic load carrying capacity of the bearing. It has high peaks due to the singularity in δ̇
for ε=0, which vanish when multiplying it with ε. The term ε ωeff is plotted in figure 6.5 c) for the two
different cavitation models.
Due to the slow increase of the rotor-speed and U=0, the position of the journal center coincides
with its equilibrium position on the GÜMBEL-curve for rotation speeds below the stability threshold and
thus δ̇≈0. The effective angular velocity ωeff increases due to the linear increase of ω. When the
stability threshold speed is reached, small oscillations occur and the whirl speed δ̇ increases, thus ωeff
decreases. As soon as ωeff =0, the first term in equation (6.1) vanishes. The bearing loses its load
carrying capacity due to the physical wedge. The squeeze term is not able to carry the rotor weight alone
and the eccentricity ε increases rapidly, until a new equilibrium is found, namely a stable limit cycle. The
results are qualitatively similar for both cavitation approaches and the time where ωeff =0 corresponds
well with the sudden increase in ε, also for rotors with small unbalance (not shown). However, the
whirling motion of the journal begins earlier, namely at the stability threshold of the linearized system.
The small oscillations at ≈3 s do not significantly influence the effective angular velocity ωeff.

6.4.3 Ambient Boundary Conditions

As can be seen in figure 6.4 a), the pressure can drop below the ambient pressure p0 when using the
mass-conserving cavitation model. The often used DIRICHLET boundary condition (3.11) – namely en-
forcing ambient pressure p0 at the axial boundaries of the bearing gap – can then be interpreted as a
bearing submerged in an oil bath, since the lubricant fraction ϑ equals 1 at the axial boundaries and the
resulting axial pressure gradient entails lubricant flow from the surrounding into the gap. The free-to-air
NEUMANN boundary condition introduced in section 4.2.1.2 yields an almost zero axial gradient of the
pressure and ϑ<1 at the axial boundary of the cavitated area. This is the more common case in practice
and thus this boundary condition is used in this work.
In this section, the influence of the free-to-air boundary condition on the run-up behavior is discussed
by comparing the result to one obtained with the oil bath boundary condition. Since an lubricant sup-
ply is needed for free-to-air bearings, both simulations are performed with a circumferential feeding
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groove. The bearings are discretized with 10×20 elements in one subdomain. For comparison, also a
result obtained with the penalty cavitation approach is shown, which also uses the free-to-air boundary
condition. However, it has been found that the influence of the axial boundary condition is negligible
for the penalty approach. The journal eccentricities of run-up simulations with two different steepness
parameters x1 are shown in figure 6.6. The results with the free-to-air boundary condition are the same
as in figure 6.3 a) and b).
The rotor in an oil bath has a higher stability threshold speed than the rotor with bearings which are
free-to-air for both steepness parameters x1. For x1 =0.99, the result of the rotor in an oil bath obtained
with the mass-conserving cavitation model is almost identical to the result obtained with the penalty
approach. Using the oil bath condition, also the gradual transition into the oil whirl with x1 =0.9 van-
ishes and the result is closer to the penalty approach. This is likely due to the improved lubricant supply
compared to the free-to-air bearing, since lubricant can flow into the bearing gap from both sides. The
axial boundary condition has a significant influence on the stability and the qualitative behavior and
thus the use of the classical DIRICHLET axial boundary condition is not sufficient for a mass-conserving
cavitation model where p<p0 can occur. Large differences in the resulting fluid film forces depending
on the axial boundary condition were also observed in experiments conducted on squeeze film dampers
in [DSA01b].
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Figure 6.6.: Comparison of axial boundary conditions

The influence of the axial boundary condition on the pressure profile p and the lubricant fraction ϑ is
investigated in figure 6.7. The results are taken from the simulations in figure 6.6 b) at the simulation
time 4 s. The resolution of the mesh is 10×20 elements, the steepness parameter is x1 =0.99.
The resulting pressure profiles are similar, which is evident from the well matching eccentricities up to
the threshold of instability. The maximum pressure for the free-to-air boundary condition is 2.13 bar
and for the oil bath condition 2.17 bar. Differences are visible at the ambient boundary z=0. For the
free-to-air boundary condition, the pressure at the axial boundary of the fully developed fluid film is
above the ambient pressure p0. This is due to the fact that p(z=0)

!
=p0 is enforced using the penalty

approach (4.36). A better approximation of the ambient pressure p0 at the axial boundary could be
enforced by choosing a higher exponent factor b in the penalty function g(p). However, this impairs the
condition of the numerical model and it has been found that a small offset in the axial pressure does not
significantly influence the results of run-up simulations. For the oil bath, the axial pressure equals p0 due
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to the DIRICHLET boundary condition.
On the other hand, the lubricant fraction ϑ largely differs for the two axial boundary conditions. While
pure lubricant (ϑ=1) is present at the circumferential feeding groove (z=0.5) in both cases, it is visible
that the cavitated area is only open to the surrounding for the free-to-air boundary condition. When a
DIRICHLET boundary condition is used at the ambient boundary (z=0), the lubricant fraction ϑ is 1 due
to the shape of the ansatz function ϑ(p), see also figure 4.10. Thus, liquid lubricant is present over the
whole circumference of the bearing, which can be interpreted as an oil bath.
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Figure 6.7.: Pressure profile p and lubricant fraction ϑ for oil bath and free-to-air axial boundary condi-
tions in one subdomain of a cylindrical bearing with a circumferential feeding groove

6.4.4 Lubricant Supply

In this section, the influences of the lubricant supply geometry and the supply pressure psup on the
rotordynamic behavior are investigated. Two different geometries are considered, namely a bearing
with central circumferential feeding groove and a bearing with one axial feeding groove at the top of
the bearing, which both entail a very simple rectangular developed gap geometry. The latter yields a
behavior, which is very similar to a plain cylindrical bearing for psup =p0. This is due to the fact that
the groove is opposite of the pressure profile when the bearing mainly supports the weight of the rotor.
On the other hand, the load carrying capacity of the bearing with a circumferential groove is reduced
compared to a plain cylindrical bearing, since the pressure profile is split into two narrower subdomains,
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see also [Now+15b]. The pressure profile has to become steeper in order to support the rotor weight,
which results in a larger journal eccentricity ε.

6.4.4.1 Axial Feeding Groove

The developed bearing geometry with a single axial feeding groove is shown in figure 6.8. Due to symme-
try, only one axial half of the bearing is discretized, using 10×20 mesh elements (axial×circumferential).
The symmetry is enforced by setting the axial pressure gradient to zero at z=0.5. The groove is located
at φ=0, its opening angle Θag is 15 ◦. The lubricant can be supplied to the groove e.g. through a bore
hole inside the groove. Thus, the pressure pag in the axial groove depends on the supply pressure psup.
However, a constant groove pressure pag=psup cannot be used in combination with a constant ambient
pressure p0 at the axial boundaries, as this leads to an inconsistency at the corners of the developed fluid
film area. Instead, the relation

pag = p0 + (psup − p0)
(

1− e−z/z1

)(
1− e−t/t1

)
(6.2)

is used. The groove pressure pag equals the ambient pressure p0 for z=0 and increases to psup for
increasing z. The parameter z1 is set to 0.1. Furthermore, the time-dependent term prevents inconsistent
initial conditions, see also section 4.1.4.
The area of the groove is omitted in the calculation of the hydrodynamic forces due to its large gap size.
Yet the hydrostatic force, which exists for psup>p0, cannot be neglected. It is calculated by assuming
the pressure distribution (6.2) over the whole circumference of the groove and integrating it over the
surface of the groove.

z

φ0

0.5

2π

pag pag

free-to-air

Symmetry: ∂p
∂z =0

Θag

2
Θag

2

Figure 6.8.: Developed gap geometry and boundary conditions of the cylindrical bearing with one axial
lubricant feeding groove

Figure 6.9 compares the journal eccentricities obtained with the penalty and the mass-conserving cav-
itation approach for increasing supply pressures psup. The journal eccentricity ε before the stability
threshold increases with increasing supply pressure psup, which has also been reported in [Hor06]. Fur-
thermore, the stability threshold also increases with the supply pressure for both the two-phase model
and the penalty approach. This is due to a higher static load acting on the journal shaft, which has a
similar effect than an increased rotor weight. Bearings with a feeding pocket or bore at the top of the
bearing show an analogous behavior (not shown).
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Figure 6.9.: Comparison of penalty approach and two-phase cavitation model for different groove pres-
sures psup in cylindrical bearings with one axial feeding groove at the top

The influence of the supply pressure psup is also investigated by comparing the pressure profiles for two
supply pressures in figure 6.10. The pressure profiles are calculated using the penalty approach assuming
pure rotation (ε̇= δ̇=0). The input variables are taken from figure 6.9 at the simulation time 1 s, i.e.
ωR=30 Hz and ε=0.227 for psup =p0, ε=0.311 for psup =2 bar.
The hydrodynamic pressure is higher for the higher supply pressure, which is due to the larger journal
eccentricity. Even though the overall pressure is higher for psup =2 bar, both pressure profiles provide
the same load carrying capacity, since the pressure partially cancels out in the integration of the bearing
forces (3.13). Furthermore, cavitation is only present in the part φ>π, and the cavitated area becomes
smaller for increasing supply pressure psup due to the inflowing lubricant. Contrary to the a bearing
with periodic boundary conditions in circumferential direction, the end of the cavitated area does not
depend on the gap function H , but is predetermined by the location of the axial feeding groove.
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Figure 6.10.: Half pressure profiles p for different groove pressures psup of a cylindrical bearing with one
axial feeding groove at the top of the bearing

6.4.4.2 Circumferential Feeding Groove

Now, the influence of the lubricant supply pressure psup is investigated for the cylindrical bearing with
one central circumferential feeding groove. The groove pressure is set constant and equals the supply
pressure psup. As before, the hydrodynamic pressure generated by the groove is neglected due to its
large gap size. The hydrostatic pressure acting on the journal cancels out due to symmetry. The mesh
resolution is 10×20 elements and the steepness parameter x1 is 0.99.
The results obtained with the penalty and the mass-conserving cavitation approach for increasing supply
pressure psup are shown in figure 6.11. The results with psup =p0 =1 bar are shown in figure 6.6 b).
The amplitude at the critical speed at ≈4.8 s is less pronounced, i.e. the damping is higher, despite a
larger eccentricity. Compared to the bearing with one axial feeding groove at the top of the bearing (see
figure 6.9), the difference between the penalty approach and the mass-conserving cavitation model is
smaller. The stability threshold speed is decreased with increasing supply pressure psup, which has also
been observed in [Cho+11; Now+15b]. The system becomes immediately unstable for psup =4 bar.
The strong oscillations in the eccentricity at the beginning of the simulation in figure 6.11 d) are caused
by a circular whirl motion of the journal, whose center does not coincide with the bearing center. The
eccentricity sharply declines when the journal center closely passes the center of the bearing shell. With
increasing rotor-speed, the radius of the whirling motion increases and its center moves towards the
bearing center, thus the oscillations in the eccentricity vanish.

The reduction of the stability threshold speed due to increased supply pressure psup can be explained
by comparison of the pressure profiles, see figure 6.12. The pressure profiles are calculated using
the penalty approach, assuming pure rotation (ε̇= δ̇=0). The input variables are taken from fig-
ures 6.6 b) and 6.11 b) at the simulation time 1 s, i.e. ωR=30 Hz and ε=0.485 for psup =p0, ε=0.393

for psup =2 bar.
If the supply pressure psup is larger than the ambient pressure p0, the resulting pressure profile is a su-
perposition of the hydrodynamic pressure and a linear hydrostatic pressure distribution over the whole
circumference of the bearing due to the boundary conditions. This can be shown using the short bearing
approximation, see appendix B. The hydrostatic pressure does not contribute to the load carrying capac-
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Figure 6.11.: Comparison of penalty approach and two-phase cavitation model for different groove pres-
sures psup in cylindrical bearings with a circumferential feeding groove

ity, since the integrals in the calculation of the bearing forces (3.13) are zero if the pressure does not
change in φ-direction. The maximum pressure is almost equal for both groove pressures (2.42 bar for
psup =p0, 2.44 bar for psup =2 bar). Thus, the hydrodynamic pressure, which is the resulting pressure
profile minus the hydrostatic pressure distribution, is smaller for the higher supply pressure psup. This
entails a lower journal eccentricity ε for the same load carrying capacity. Similar to the bearing with an
axial feeding groove, the size of the cavitated area decreases with increasing supply pressure psup due
to the inflowing lubricant and can even vanish completely.
For high supply pressures psup and low journal eccentricities ε, the hydrostatic pressure can cover the
hydrodynamic pressure completely. This reduces the load carrying capacity to zero, thus no equilibrium
position exists with a low eccentricity. The system is almost immediately destabilized at a low rotation
speed, which can be seen in figure 6.11 d).
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Figure 6.12.: Pressure profiles p for different groove pressures psup in one subdomain of a cylindrical
bearing with a circumferential feeding groove

6.4.5 Rotor Shaft Stiffness

Now, the influence of the shaft stiffness c of the JEFFCOTT rotor on the stability of the system is investi-
gated. The behavior with the mass-conserving cavitation model is compared to that obtained with the
penalty approach. The bearings are free-to-air and the lubricant is supplied through an axial feeding
groove at the top of the bearing. Due to symmetry, only one axial half of the bearing gap is discretized
with 10×20 mesh elements. Figure 6.13 shows the results with the low stiffness 1000 N/mm and those
obtained with a rigid rotor. The behavior using the default value c=5000 N/mm falls in between the two
cases shown in figure 6.13 and is shown in figure 6.9 a).
The less stiff rotors exhibit a lower stability threshold speed. This is expected, since there is a connec-

tion between the critical speed of the shaft and the whirl entry frequency, see [Hor06]. Furthermore, the
critical speed is reduced for c=1000 N/mm to ≈66 Hz at ≈2.2 s. The critical speed of the rigid rotor is
infinitely high, thus no resonance can be seen. The difference between the results with penalty approach
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Figure 6.13.: Comparison of penalty approach and two-phase cavitation model for different shaft stiff-
nesses c of the JEFFCOTT rotor in cylindrical bearings with one axial feeding groove at the
top
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and the mass-conserving cavitation model is smaller for c=1000 N/mm. In this case, the bearings are
rather stiff compared to the rotor shaft and might have a lower influence on the overall system behavior.

6.4.6 Rotor Unbalance

The influence of the rotor unbalance U is investigated using the same bearing geometry as in the pre-
vious section, namely one axial feeding groove at the top of the bearing. Figure 6.14 shows the results
with two different large unbalances. The result with the reference unbalance U=3 gmm can be seen in
figure 6.9 a).
The stability threshold speed increases with increasing unbalance except for the penalty approach with
U=50 gmm, where the threshold speed is slightly lower than for U=3 gmm. The critical speed of the
system is clearly visible for higher unbalances. The synchronous oscillation amplitudes increase with
the unbalance and are higher when the mass-conserving cavitation model is used. This is because the
movement of the journal has a higher whirl component for larger unbalances, which entails a reduced
radial force and thus higher eccentricities for the two-phase model, see section 4.2.2.3. A smaller min-
imal gap size considering mass-conserving cavitation was also observed in [NWD17]. The difference in
the stability threshold speed between the penalty approach and the mass-conserving cavitation model is
smaller for high unbalances than for U=3 gmm.
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Figure 6.14.: Comparison of penalty approach and two-phase cavitation model for different unbal-
ances U of the JEFFCOTT rotor in cylindrical bearings with one axial feeding groove at the
top
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7 Rotors in Floating Ring Bearings

In this chapter, rotors in floating ring bearings are investigated. The mutual damping of the inner and
outer lubricant film of floating ring bearings enables operation speeds above the linear stability threshold
of a rotor in single oil films. On the contrary, additional sub-synchronous oscillations can occur, which
are induced by the interaction of the lubricant films with the natural modes of the rotor system.
The geometry of the floating rings is explained in the next section. Then, firstly a symmetric JEFFCOTT

rotor is considered in section 7.2, with which various influences – such as cavitation modeling approach,
supply pressure and bearing torque – are investigated. Finally, exhaust turbochargers are studied in
section 7.3.
The solver parameters of the rotor and the bearing subsystems are the same as for single film bearings
and are given in section 6.2.

7.1 Floating Ring Geometry

The floating rings used in this chapter correspond to those of the turbocharger investigated in section 7.3
and are schematically shown in figure 7.1. The dimensions are given in table 7.1. The inner and outer
bearing gap are connected by 6 evenly spaced, circular bore holes with diameter Dcc. The geometry of
the inner bearing gap is plain cylindrical besides the bore holes. The outer bearing gap is cylindrical and
features a central circumferential groove, which divides the outer bearing gap into two sections. The bore
holes are contained within the groove. For simplicity, it is assumed that also the lubricant supply from
the bearing housing is contained within the groove. Thus, the pressure inside the circumferential groove

Dcc

Figure 7.1.: Schematic cross-section of a floating ring with circumferential groove and connecting chan-
nels shown in figure 4.4
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and the bore holes equals the supply pressure psup due to the much smaller height of the gaps. The
supply pressure psup is thus imposed as a DIRICHLET boundary condition at the circumferential groove
in the outer bearing gap and at the bore holes in the inner bearing gap. The axial boundary condition is
free-to-air.
Due to symmetry, only one half of the bearing gaps needs to be discretized. The mesh used for the outer
lubricant films is shown in figure 6.2. The mesh used for the inner lubricant films is shown in figure 7.2.
The bore holes appear elliptic due to the dimensionless geometry.
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Figure 7.2.: Rectangular mesh of one axial half of the bearing with bores, discretized with 10×24
elements

7.2 Jeffcott Rotor

Firstly, a symmetric JEFFCOTT rotor which is described in section 2.1.2 is considered. The parameters of
the rotor and the bearings are given in table 7.1. The parameters are similar to those used in chapter 6.
A relatively high journal mass mJ improves the numerical stability behavior of the model. This is also
a more accurate representation of a real rotor, where the mass is spread rather then lumped. The shaft
stiffness c is increased to better reflect actual turbochargers, which are rather stiff. The rotor-speed is
increased linearly from 0 to fmax =900 Hz in Tsim =3 s.
The two floating rings are identical. The mass is small and could be neglected, since it does not influence
the results. The moment of inertia around the axis of rotation is small and only slightly influences the
ring speed ωF during transient operation.
The geometry of the inner lubricant film corresponds to the values given in table 4.1. The gap sizes
change during operation due to warming. The lubricant supply temperature Tsup of the investigated
turbocharger is 70 ◦C. The lubricant temperatures To and Ti of the outer and inner film are assumed
to be 80 ◦C and 100 ◦C, respectively. The inner temperature is higher due to the warm shaft and the
higher friction losses. The temperature TR of the rotor shaft equals Ti, while the temperature TF of the
floating rings is assumed to be (Ti+To)/2. The temperature of the housing equals the lubricant supply
temperature, i.e. TH =Tsup. The gap sizes given in table 7.1 are the warm gap sizes, which are rounded
values based on calculated values using equation (4.24). The oil viscosities are rounded values bases on
equation (3.12).
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Table 7.1.: Reference parameters of the JEFFCOTT rotor in floating ring bearings

Name Symbol Value Unit

Rotor mass m 5 kg
Journal mass mJ 1 kg
Shaft stiffness c 20000 N/mm
Unbalance U 3 gmm
External damping do 1 Ns/m
Shaft damping di 0.1 Ns/m

Floating ring mass mF 75 g
Moment of inertia θF 20 kgmm2

Diameter of connecting channels Dcc 2.5 mm

Inner bearing width Bi 20 mm
Inner bearing diameter Di 25 mm
Inner nominal radial bearing gap (warm) Ci 40 µm
Inner oil viscosity (warm) ηi 10 mPas

Outer bearing width Bo 2·8 mm
Outer bearing diameter Do 40 mm
Outer nominal radial bearing gap (warm) Co 50 µm
Outer oil viscosity (warm) ηo 20 mPas

Ambient pressure p0 1 bar
Supply pressure psup 2 bar
Oil density ρl 830 kg/m3

7.2.1 Cavitation Approach

Firstly, the influence of the cavitation model on the stability behavior is investigated by comparing run-
up simulations calculated using the half-SOMMERFELD condition and the penalty approach explained in
section 3.3.2 with results obtained with the two-phase model introduced in section 4.2. For the latter,
two different values for the steepness parameter x1 are used.

The outer and inner film eccentricities εo and εi , see equation (4.14), are shown in figures 7.3 a) and b),
respectively. At the beginning of the simulation, the rotor journal and the floating ring are located in the
center of the bearing and drop due to gravity. Thus, both eccentricities rise analogous to the results with
single lubricant film bearings shown in chapter 6. The rotor-speed ωR increases and also the rotation
speed of the floating ring ωF due to the friction torque in the inner lubricant film, which can be seen in
the ratio ωF/ωR in figure 7.3 c). Thus, the load carrying capacities of the inner and the outer lubricant
film increase and the eccentricities decrease. Both the floating ring and the rotor journal move towards
a central position in their respective lubricant films.
The inner eccentricity εi increases suddenly (at ≈0.5 s for the system with half-SOMMERFELD condi-
tion). This is the instability (bifurcation) caused by the inner lubricant film, which is called inner
sub-synchronous oil whirl/whip here or Subi for short. The rotation speed of the inner lubricant film
is ω=ωR+ωF ≈1.2ωR , thus the stability threshold is reached at a lower rotor-speed ωR than for single

90



time / s
0 0.5 1 1.5 2 2.5 3

flo
at

in
g

ri
ng

ec
ce

nt
ri

ci
ty

0

0.2

0.4

0.6

0.8

1a)

time / s
0 0.5 1 1.5 2 2.5 3

ro
to

r
jo

ur
na

le
cc

en
tr

ic
it

y

0

0.2

0.4

0.6

0.8

1b)

time / s
0 0.5 1 1.5 2 2.5 3

ri
ng

sp
ee

d
/

ro
to

r
sp

ee
d

0

0.1

0.2

0.3

0.4

0.5

0.6 Half-Sommerfeld
Penalty
Two-Phase, x1 =0.9
Two-Phase, x1 =0.95

c) d)

time / s
0.5 1 1.5 2 2.5

fr
eq

ue
nc

y
/

H
z

200

400

600

800

Penalty

-70

-60

-50

-40

-30

-20

-10
e)

Sy
nc

hr
on

ou
s

Subi
Subo

ωR

(ωR
+ω

F
)/2

ωF/2

time / s
0.5 1 1.5 2 2.5

fr
eq

ue
nc

y
/

H
z

200

400

600

800

Two-Phase, x1 =0.95

-80

-70

-60

-50

-40

-30

-20

-10

f)

Sy
nc

hr
on

ou
s

Subi
Subo

ωR

(ωR
+ω

F
)/2

ωF/2

Figure 7.3.: Comparison of half-SOMMERFELD, penalty and mass-conserving cavitation models

lubricant films. The rotor journal moves on an approximately circular whirl motion. This motion is
damped by the outer lubricant film, which is visible in strong oscillations in the outer eccentricity εo.
Furthermore, the rotation speed ωF of the floating ring increases sharply at the beginning of Subi due
to the increase of εi, which increases the friction torque in the inner lubricant film. The ratio ωF/ωR
decreases with increasing rotor-speed ωR , yet the absolute speed ωF still increases. The inner eccentric-
ity εi decreases until the whirl motion vanishes.
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After Subi , the system can return to pure synchronous oscillations due to unbalance. For this param-
eter set, the system directly enters the instability produced by the outer lubricant film, which is called
outer sub-synchronous oil whirl/whip or Subo and can be identified in the sudden increase of the outer
eccentricity εo at≈2.25 s for the system with half-SOMMERFELD condition. The rotation speed of the outer
lubricant film is ω=ωF ≈0.25ωR, thus this instability occurs at a high rotor-speed ωR. The oscillations
are damped by the inner fluid film, yet the inner eccentricity εi stays small. The friction torque in the
outer fluid film increases with the outer eccentricity εo , thus the ratio ωF/ωR decreases.
The absolute vertical displacements yD of the rotor disk are shown in figure 7.3 d). The motion of the
rotor disk is very similar to that of the journals, since the rotor is rather stiff. The displacement of the
disk equilibrium position relative to the center of the bearing is caused by the weight of the rotor and is
the sum of the journal displacement in the bearings and the bending of the rotor shaft.
The frequency content is investigated using a short FOURIER transform of the vertical displacement yD of
the rotor disk. For the penalty approach, it is shown in figure 7.3 e). The amplitude is given in dB, with
the sum of the nominal bearing gap sizes Ci+Co as reference value. The synchronous oscillation with
the frequency ωR is rather small due to low unbalance. The two sub-synchronous oil whirls/whips are
clearly visible. Additional multiple frequency components, also super-synchronous, have much smaller
amplitudes. Subi starts with an oil whirl with the frequency (ωR + ωF)/2, which locks into the natural
mode of the rotor at ≈0.8 s and becomes an oil whip. The frequency of the oil whip changes due to the
nonlinear stiffness of the bearings. Subi bifurcates into Subo at ≈2.25 s, which is an oil whirl with the
frequency ωF/2. Subi and Subo can also occur simultaneously for different parameters.

The two non mass-conserving cavitation models experience an almost identical behavior. The inner whirl
occurs at a slightly lower rotation speed when using the half-SOMMERFELD condition.
The results obtained with the two-phase model are qualitative similar, yet the stability thresholds and
amplitudes differ significantly. The influence of a small steepness parameter x1 =0.9 is smaller than for
rotors in single lubricant films, see figure 6.3 on page 76. The stability threshold for x1 =0.9 is again
lower than for higher x1.
The onset rotor-speeds of Subi and Subo are lower for the two-phase model, analogous to rotors in single
lubricant films. The amplitudes of the whirl/whip motions are larger. The larger inner eccentricity εi
yields a stronger increase of the floating ring speed ωF , see figure 7.3 c). Also the outer eccentricity εo
is larger during Subi. This is due to the delayed pressure build-up during whirl motion, which entails
a larger eccentricity, see section 4.2.2.2. The inner whirl ends at a lower rotor-speed due to the more
quickly decreasing ratio ωF/ωR , which is caused by the larger outer eccentricity εo. Again, the system
directly enters Subo.
The vertical displacements yD of the rotor disk shown in figure 7.3 d) show that the absolute oscillations
of the rotor are much larger for the two-phase model during Subi and only slightly larger during Subo.
This may be explained with the different lubricant supply geometries in the inner and outer bearing gaps.
The circumferential groove in the outer gap provides a better lubricant supply than the bore holes used
in the inner bearing gap. Thus, the lubricant film is less cavitated in the outer bearing gap, especially
with higher supply pressure psup. This condition is closer to non mass-conserving cavitation models,
which implicitly assume a fully developed lubricant film.
Figure 7.3 f) shows the short FOURIER transform for the two-phase model with x1 =0.95, which is very
similar to the result with x1 =0.9 (not shown). The frequencies of Subi and Subo are very similar to those
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of the result using the penalty approach. However, Subi starts almost at the beginning of the simulation.
Subi bifurcates into Subo at a lower rotor speed at ≈1.9 s.

Lastly, the calculation times of the run-ups using different cavitation models and calculated with different
simulation methods are compared. The simulations were performed on a desktop PC with Intel i7-3770
CPU and 20 GB RAM. To make the results more general, not the passed time (i.e. Wall-Clock-Time) is
compared, which is 5−9 days for the shown results. Instead, the following values are used, which give
more insight into the differences:

• Time/Reynolds is the average calculation time of one micro-step, i.e. one converged solution of the
REYNOLDS equation including all iterations of NEWTON’s method. Usually, the number of iterations
does not change strongly during a simulation, since the time-steps are small and thus a good initial
condition for NEWTON’s method exists. Thus, the calculation time of one micro-step depends mostly
on the mesh resolution and the hardware, including the workload of the CPU.

• The ratio of the number of micro- and macro-steps is called Multi Scale Factor. Because the GAUSS-
SEIDEL master-slave co-simulation scheme is used, the step size hA of the rotor system equals the
macro step size H , see section 5.2.1. The average step-size of the rotor is always close beneath the
maximum allowed step size hmax,A. The bearing system takes smaller steps hC , especially during
sub-synchronous whirl motions. A high Multi Scale Factor thus indicates many calculations of the
bearing model, which almost completely determines the overall calculation time.

• The Simulation Speed is the ratio of simulated time Tsim and the Wall-Clock-Time. This value
enables direct comparison of different models also for different Tsim, if the results are qualitatively
similar.

Run-up simulations can also be performed with a monolithic Comsol model, which includes all 4 lubri-
cant films and the ordinary differential equations of the JEFFCOTT rotor and the floating rings. Usually,
this enables the use of the greater maximum allowed step size hmax =1 ms, since no error is made due
to the coupling. A co-simulation enables the consideration of more complex rotors and is the standard
method used in this work.
The REYNOLDS equation for non mass-conserving cavitation models is not time-dependent, thus the im-
plicit dynamic-static solver-coupling is normally used, see section 5.1. Asymmetrical rotor systems with
floating ring bearings require at least 16 parallel processes, which requires CPUs with many cores or
parallel calculation on different PCs. Furthermore, the large number of required licenses also reduces
the profitability of this method.
Including the differential equations of the floating ring into the bearing model enables co-simulation of
systems with non mass-conserving cavitation models, which reduces the number of processes to 1 per
bearing. However, this requires the simultaneous calculation of the inner and outer lubricant film in one
bearing model, which increases the calculation time of one micro-step.

The efficiency of different cavitation models and simulation methods is compared in table 7.2. The Multi
Scale Factor is only valid for co-simulations, since a monolithic model and the dynamic-static solver-
coupling have only one time-dependent solver.
For the non mass-conserving half-SOMMERFELD and penalty approaches, the calculation time of one micro-
step is much larger when using co-simulation or a monolithic model than for the dynamic-static solver-
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coupling. This is due to the greater amount of degrees of freedom in the bearing model, which incorpo-
rates the inner and the outer lubricant film and the equations of motion of the floating ring. However, the
use of co-simulation is nevertheless favorable compared to dynamic-static solver coupling, since many
more parallel calculations can be performed on a single PC.
The calculation time of one micro-step is greater for the penalty approach than the half-SOMMERFELD

model due to the introduced nonlinearity, which yields a reduced calculation speed for the solver-
coupling. However, calculations with the penalty approach require less micro-steps, which leads to
an overall increase of the calculation speed when using co-simulation or a monolithic model.

Table 7.2.: Efficiency of different cavitation models and simulation methods

Simulation Cavitation Time/Micro-step / Micro-steps / Speed /
Method Model ms Macro-steps ms/h

Solver-Coupling Half-SOMMERFELD 39 - 93
Solver-Coupling Penalty 42 - 66

Co-Simulation Half-SOMMERFELD 73 2.1 23
Co-Simulation Penalty 124 1.0 28
Co-Simulation Two-Phase, x1 =0.9 47 4.4 18
Co-Simulation Two-Phase, x1 =0.95 48 5.3 14

Monolithic Model Half-SOMMERFELD 74 - 55
Monolithic Model Penalty 111 - 74
Monolithic Model Two-Phase, x1 =0.9 90 - 7.8
Monolithic Model Two-Phase, x1 =0.95 91 - 5.7

The calculation time of one micro-step of the two-phase model using co-simulation is higher than for
the half-SOMMERFELD and penalty models using dynamic-static solver-coupling. In both methods, only
one lubricant film is computed in the bearing model. There is no need to include both lubricant films
and the equations of motion of the floating ring into the bearing model for the two-phase model, since
the REYNOLDS equation is already time-dependent. The amount of micro-steps is much larger for the
two-phase model compared to the co-simulation of the non mass-conserving models. The number of
macro-steps taken by the rotor model is only slightly increased (not shown). The smaller micro-step size
strongly affects the simulation speed, which is much lower for the two-phase model. A greater steepness
parameter x1 strongly increases the number of micro-steps and thus decreases the simulation speed.
The calculation of a monolithic model is faster than co-simulation for the half-SOMMERFELD and penalty
models, which is expected due to the higher maximum allowed solver step-size hmax =1 ms. Inter-
estingly, a monolithic model performs far worse than co-simulation when using the two-phase model.
This is mainly due to a strongly increased calculation time of one micro-step, which is caused by an
increased number of NEWTON iterations. The average micro-step size is slightly reduced compared to
the co-simulation, which worsens the performance of the monolithic model. Due to the small micro-
step sizes taken by the solver, a greater allowed maximum step-size hmax yields no advantage over the
co-simulation.

It has been observed that the step-size taken by Comsol strongly varies. A large step-size yields a poor
starting condition for the NEWTON procedure in the next time-step, which increases the amount of it-

94



erations. A lower allowed maximum step-size hmax yields more evenly step-sizes, which reduces the
number of NEWTON iterations. A trade-off has to be found between a large number of micro-steps with
few NEWTON iterations or a small number of micro-steps with many NEWTON iterations.
Additionally, an option is available in Comsol, which reduces the number of recalculations of the JACO-
BIAN, which greatly reduces the calculation time of the micro-steps. Yet with this option enabled, the
time-dependent solver performs more micro-steps and the overall calculation time is similar. The op-
tion is used for the half-SOMMERFELD and the two-phase model. However, the penalty model does not
converge with this option enabled.

7.2.2 Run-down

In this section, the results of a consecutive run-up and run-down using the penalty cavitation approach
are shown. The rotor-speed is increased linearly from 0 to 700 Hz in 10 s, then kept constant for 0.5 s
and after that linearly decreased to 0 in 10 s. The acceleration and deceleration are chosen low in
order to reduce transient effects. The outer bearing gap size is increased to Co=90µm to yield smaller
eccentricities.
The inner and outer eccentricities are plotted versus the rotor-speed in figure 7.4, which allows a direct
comparison of the sub-synchronous whirls/whips during run-up and run-down. The on- and offset rotor-
speeds of the sub-synchronous whirls/whips are very different for the run-down, whereas the amplitudes
are almost equal. This is amplified with increasing acceleration and deceleration of the rotor-speed.
This illustrates that several stable limit cycle solutions can be present at the same rotor-speed. When
the rotor-speed is increased, the whirl motion starts, when the synchronous motion becomes unstable.
During run-down, the system remains in the whirl/whip motion until it becomes unstable. However, it
is possible for the system to jump to the other solution earlier due to external excitation, see [Hor06].
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Figure 7.4.: Hysteresis effect of run-up and run-down simulation
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7.2.3 Outer Bearing Gap Size

The bearing gap sizes have a large influence on the behavior of rotors in journal bearings. They
determine the stiffnesses and damping capabilities of the individual lubricant films and the overall
bearing. Thus, they influence the appearance and severity of sub-synchronous oscillations. The ra-
tio ψi/ψa with ψi+ψa=const. is commonly used to tune the sub-synchronous oscillations of turbocharg-
ers, see [Die15].
The bearing has the highest linearized stiffness and damping, if both the inner and the outer fluid film
provide equal stiffness and damping due to the series connection. The inner film of the considered float-
ing ring bearing is relatively stiff due to the small nominal gap size, thus the influence of a lower outer
gap size Co is investigated. Figure 7.5 shows the results of run-up simulations performed with three
different outer gap sizes Co, using the penalty approach on the left and the two-phase cavitation model
on the right. The results with Co=50µm are the same as in figure 7.3. Figures 7.5 a) and b) show the
the outer eccentricities εo, figures 7.5 c) and d) the inner eccentricities εi. The onset of the inner sub-
synchronous is not influenced by Co , yet the eccentricities are larger and it extends over a larger rotor
speed range with smaller Co , which is undesirable. The onset of the outer sub-synchronous is shifted to
a higher rotor speed with smaller Co .
The influences are much greater for the two-phase model, yet qualitatively similar, except forCo=40µm.
For Co=50µm, the amplitude of Subi gradually decreases until it vanishes, which is also the case when
using the penalty approach. For Co=45µm, the amplitude decreases slowly and Subi suddenly bifur-
cates at ≈1.6 s. Subi does not end in the investigated rotor speed range for Co=40µm and has high
eccentricities. This behavior is undesirable, since it leads to loud noise and damages in the bearing.
Furthermore, this simulation took the longest calculation time due to a high amount of micro-steps in
the bearing model.
The ratios of floating ring speed ωF to rotor speed ωR are shown in figures 7.5 e) and f). The floating ring
speed increases more strongly during Subi for smaller Co. This is counter intuitive, since a smaller Co
should lead to an increase of the outer, decelerating bearing torque. However, this effect is overlaid by
the higher inner eccentricities. The increase of the floating ring speed is higher for two-phase model,
due the slightly higher eccentricities compared to the penalty approach, which progressively increase the
inner, accelerating bearing torque.

7.2.4 Supply pressure

The inclusion of a mass-conserving cavitation model allows a more accurate investigation of the lubricant
supply pressure psup. Figure 7.6 shows results with three different supply pressures for the penalty
approach on the left and the mass-conserving two-phase model on the right. For both cavitation models,
the onset rotor-speed of the sub-synchronous oil whirls is reduced with increasing supply pressure. For
the outer whirl this is due to the circumferential groove, which destabilizes the system with higher supply
pressure, see section 6.4.4.2. If all bore holes have the same supply pressure, they have a similar effect,
yet to a lesser extent. This explains the lower onset rotor-speed of the inner whirl. Furthermore, also the
eccentricities during the inner whirl increase.
For the two-phase model, these effects are more pronounced. For psup =p0 =1 bar, no inner whirl is
present. The oscillations at ≈1 s are due to the natural mode of the system. For higher supply pressures,
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Figure 7.5.: Influence of outer gap size Co for penalty and two-phase cavitation models

the inner eccentricity during the inner whirl is severely increased. This leads to a rapid increase of the
floating ring speeds, see figure 7.6 f). Furthermore, a higher supply pressure leads to less cavitation in
the bearings, while a too low supply pressure can drastically reduce the load carrying capacity, a so-called
starved condition.
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Figure 7.6.: Influence of lubricant supply pressure psup for penalty and two-phase cavitation models
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7.2.5 Bearing Torque

The bearing torque given in equation (3.17) consists of two terms, which result from the shear-driven
TAYLOR-COUETTE flow and the pressure-driven HAGEN-POISEUILLE flow. The latter term is often neglected,
since the shear flow dominates at high rotation speeds. Furthermore, its calculation is elaborate in
approximate solutions such as short bearing or look-up tables, since the pressure profile is not explicitly
calculated. In these cases, the simple formula (4.6) is often used. In a coupled simulation, where
the REYNOLDS equation is solved in every time-step, the pressure-driven term can be easily calculated.
Additionally, the bearing torque is reduced due to cavitation, since the lubricant film is not completely
filled with liquid and gases have almost no resistance to shear stress, see section 4.2.1.4.
Both influences are investigated in figure 7.7. The mass-conserving two-phase model is used. The supply
pressure is reduced to psup =1.5 bar, to increase the influence of cavitation. Three results are compared:

• All Terms considers TAYLOR-COUETTE flow and HAGEN-POISEUILLE flow and the reduction due to cav-
itation

• Only Couette considers only the shear-driven TAYLOR-COUETTE flow with reduction due to cavitation

• One-Phase considers both terms without reduction due to cavitation.

The outer eccentricity shown in figure 7.7 a) is very similar for all cases, only the offset rotor-speed of
the inner sub-synchronous whirl is different. The influence on the inner eccentricity is analogous, with
almost unchanged amplitudes and is therefore not shown here. The ratio ωF/ωR given in figure 7.7 b)
shows almost no influence of the pressure-driven HAGEN-POISEUILLE flow on the ring speed. The floating
ring speed differs only slightly when no reduction due to cavitation is considered, probably because the
effects of the inner and outer films partially cancel out. When the supply pressure psup is increased, this
difference becomes even smaller, since less cavitation is present.
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Figure 7.7.: Influence of contributing terms in the friction torque on the oscillation behavior
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7.2.6 Connecting Channels

The hydraulic coupling between the outer and the inner fluid film is neglected due to the circumferential
groove in the outer bearing gap, which determines the pressure in the connecting channels. However,
their geometry is modeled and it is shown in section 7.2.4 that the supply pressure in the inner bearing
gap has a significant influence on the rotordynamic behavior. A result with bore hole geometry according
to figure 7.2 in the inner bearing gap is compared to a result obtained with plain inner surfaces of the
floating ring in figure 7.8. The floating rings have a circumferential groove in their outer surface. The
penalty approach is used for both simulations, since a free-to-air bearing with two-phase model and
without lubricant supply geometry runs dry. The supply pressure is chosen as psup =p0 =1 bar, since no
lubricant supply is present in the inner film when the inner surface of the floating ring is plain.
The outer eccentricity shown in figure 7.8 a) is very similar for both inner ring geometries, since the
geometry in the outer bearing gap is not changed. One can see that the onset rotor-speed of the outer sub-
synchronous whirl is slightly lower for the floating ring with plain inner surface. The inner eccentricity
shown in figure 7.8 b) is larger with bore hole geometry, especially in the inner sub-synchronous whirl,
whose onset rotor-speed is decreased. When a bore hole passes the hydrodynamic pressure profile, the
resulting force is reduced due to the low predefined pressure. However, the effect on the hydrodynamic
pressure profile is only local. The diffusion is proportional to the third power of the gap size C, see
equation (3.6). Usually the gap size C is smaller for the inner bearing gap. This yields a high pressure
gradient at the bores.
When the supply pressure psup is increased, the rotor-bearing system is destabilized. The hydrodynamic
carrying force is diminished by the hydrostatic pressure of the bores, which generates no resulting force
due to symmetry. This is analogous to bearings with circumferential grooves, see section 6.4.4.2.
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Figure 7.8.: Influence of the geometry of the inner lubricant film using the penalty approach

Furthermore, the pressure difference ∆p in the connecting channels between the inner and outer fluid
film due to the centrifugal acceleration of lubricant is considered, see section 4.1.5.5. The influence of
∆p is investigated in figure 7.9 by comparing the result to one obtained with neglected pressure differ-
ence. The two-phase model is used for both simulations. The influence is small, since the centrifugal
acceleration is small due to small radii and rotation speed of the floating rings. Only at high rotor-speeds
the pressure difference ∆p becomes significantly large and slightly influences the oscillations of the outer
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whirl.
This test was conducted with parameters of the heavy turbocharger given in table 7.1. When a light
turbocharger according to table A.1 is considered, the resulting floating ring speed is higher, yet the radii
are smaller, yielding a comparable pressure difference ∆p. Furthermore, bubbles start to appear in the
lubricant films during sub-synchronous oscillations at high rotor-speeds, see [Köh15]. This reduces the
density of the lubricant in the channels and thus ∆p.
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Figure 7.9.: Influence of the pressure difference ∆p due to centrifugal acceleration using the penalty
approach

7.3 Exhaust Turbocharger

In this section, run-up simulations of a heavy turbocharger used in large engines are performed using the
penalty cavitation approach and the two-phase model. The total mass of the rotor is ≈6 kg. The turbine
wheel weights ≈ 4 kg, the compressor wheel ≈ 1 kg. The unbalances are set to 2 gmm at the turbine
wheel and 1 gmm at the compressor wheel. No external damping is applied to the rotor. The rotor speed
is increased linearly from 0 to 1200 Hz in 4 s.
The floating ring bearing geometry is schematically shown in figure 7.1. The mass and the geometry
parameters of the floating rings are given in table 7.1. During operation, the gap sizes change due to
thermal deformation of the shaft, the floating rings and the housing. The temperatures of the solids
are determined by the oil temperatures, see section 4.1.5.4. The oil supply temperature is 70 ◦C. The
oil temperatures in the outer films are assumed 75 ◦C on the compressor and 80 ◦C on the turbine side.
The oil temperatures in the inner films are assumed 95 ◦C on the compressor and 105 ◦C on the turbine
side. The temperatures on the turbine side are higher due to the hot exhaust gas. The warm gap sizes are
calculated with equation (4.24). The oil viscosity also depends on the temperature and is calculated with
equation (3.12). The warm gap sizes and warm oil viscosities are similar to those used for the JEFFCOTT

rotor (table 7.1), yet different for the two bearings due to different temperatures.
The ambient pressure p0 is 1 bar. The steepness parameter of the two-phase model is chosen as x1 =0.9.
The lubricant supply and the boundary conditions for the lubricant films are the same as in section 7.1.
Two different supply pressures psup are considered.
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Three distinct sub-synchronous oscillations can occur in turbochargers supported in floating ring bear-
ings, which are usually termed with Sub 1 to Sub 3, see [Sch10]. For a rotor with low load, the frequency
of the whirl is approximately half of the effective fluid viscosity in the bearing gap, which is ωF in the
outer gap and ωF +ωR≈1.3ωR in the inner gap. The whirl changes into a whip at the intersections
of these frequencies with the forward modes of the rotor-bearing system. Furthermore, a jump can oc-
cur from one sub-synchronous oscillation into another or several sub-synchronous can be present at the
same time. Usually, two natural modes exist in the rotor-speed range of the system, namely a conical
and a cylindrical mode, see also section 2.1.3. The three sub-synchronous oscillations are characterized
as follows:

• The first sub-synchronous (Sub 1) is generated by the oil whirl/whip of the inner oil film. The rotor
oscillates in the conical mode. This oscillation is of little interest due to its small amplitudes and
occurrence at low rotor-speeds.

• The second sub-synchronous (Sub 2) also results from the inner oil film, yet the rotor oscillates in
the cylindrical mode. The frequency is high and does change slowly with increasing rotor speed,
resulting in unwanted acoustics. Sub 2 is characterized by high eccentricities in the inner lubricant
films.

• The third sub-synchronous (Sub 3) is generated by the oil whirl/whip of the outer oil film. The
rotor again oscillates in the conical mode. The amplitude of the rotor oscillation is usually very
high, yet the frequencies are low. Sub 3 is characterized by high eccentricities in the outer lubricant
films and does not vanish for increasing rotor-speed.

7.3.1 Supply pressure 2 bar

Firstly, the oil supply pressure psup is set to 2 bar. Figures 7.10 a) – d) show the outer and inner eccentric-
ities. All three sub-synchronous oscillations are present in both results. Sub 1 begins at ≈0.2 s (i.e. 60 Hz
rotor speed) and is only little affected by the cavitation model. Sub 1 ends at ≈1.1 s (i.e. 330 Hz) for the
penalty approach and at ≈0.9 s (i.e. 270 Hz) for the two-phase model. The onset of Sub 2 directly fol-
lows the end of Sub 1. Sub 2 begins at a lower rotor speed and has higher amplitudes for the two-phase
model. This behavior corresponds to that of the inner sub-synchronous of the symmetric JEFFCOTT rotor
in floating ring bearings. Due to the higher weight of the turbine wheel compared to the compressor
wheel, the eccentricities at the onset of Sub 2 change less suddenly on the turbine side. The amplitudes
of Sub 2 rise with increasing rotor speed. For the two-phase model, unstable motions appear at ≈1.5 s

(i.e. 450 Hz). Sub 2 suddenly ends at ≈1.9 s (i.e. 570 Hz) for the two-phase model. This bifurcation
is not present in the result obtained with the penalty approach. The amplitudes of Sub 3 are almost
equal for both cavitation approaches, yet its onset is at a lower rotor speed when the two-phase model is
considered (≈3.3 s with penalty approach and ≈2.5 s for the two-phase model, i.e. 990 Hz and 750 Hz,
respectively). This behavior corresponds to that of the outer sub-synchronous of the JEFFCOTT rotor in
floating ring bearings. The run-up using the two-phase model is only performed up to 3 s (i.e. 900 Hz
rotor speed) due to the reduced onset speed of Sub 3.
The ratios between the floating ring speed and the rotor speed are shown in figures 7.10 e) and f). For
both cavitation approaches, the floating ring speed on the compressor side is higher due to the higher
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Figure 7.10.: Comparison of penalty and mass-conserving cavitation model for an exhaust turbocharger
with psup =2 bar

inner eccentricity on this side, which increases the accelerating torque of the inner lubricant film, and the
lower outer eccentricity on this side, which decreases the decelerating torque of the outer lubricant film.
Differences in the floating ring speeds for the two cavitation models directly correlate with differences in
the eccentricities. The lower torque of the two-phase model due to a partially filled lubricant film seems
to have little effect on the ring speed.
The frequency contents of the results are investigated in figures 7.11 g) and h) using a short time FOURIER
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Figure 7.11.: Comparison of penalty and mass-conserving cavitation model for an exhaust turbocharger
with psup =2 bar (continued)

transform. The synchronous oscillations due to unbalance can be seen over the whole rotor speed range.
Sub 1 – Sub 3 are clearly visible, furthermore many combination frequencies with low amplitudes can be
seen. Sub 1 starts with an oil whirl, whose frequency correlates with (ωR+ωF )/2. At ≈0.5 s (i.e. 150 Hz
rotor speed), this frequency locks into the conical mode of the rotor and becomes an oil whip. Sub 2
also starts with an oil whirl, which becomes an oil whip as soon as (ωR+ωF )/2 locks into the cylindrical
mode of the rotor. The frequency of the mode changes over time due to the nonlinearity of the bearings,
which entails a rotor-speed-dependent stiffness. Sub 2 is present up to the maximum rotor speed. Sub 3
is a whirl in the investigated rotor speed range, whose frequency correlates with ωF/2. The onset rotor
speeds of Sub 2 and especially Sub 3 are lower for the two-phase model, yet the frequencies are similar
due to the similar floating ring speeds. A different behavior of Sub 2 at ≈1.9 s (i.e. 570 Hz) for the
two-phase model is probably due to a synchronization effect.
Figures 7.11 i) and j) show the lubricant fraction in the whole bearing gap over time, i.e.

∫
A
ϑ(t)dA,

which is only available in the mass-conserving two-phase model. Cavitation is present in both lubricant
films over the whole rotor speed range. The relative lubricant fraction is lower in the outer gaps. How-
ever, the volume of the outer gap is ≈1.5 times larger and thus the absolute amount of oil is higher. The
lubricant fraction decreases during Sub 1 and Sub 2. Since the lubricant fraction is 1 at the lubricant sup-
ply per definition (psup>p0), the only possible source of air has to be sucking-in from the surroundings.
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The pressure difference ∆p due to centrifugal forces stays well below psup−p0 =1 bar during the whole
rotor speed range, thus sufficient lubricant supply is also present at the oil bores in the inner film. The
lower lubricant fraction on the compressor side is caused by the higher eccentricities due to the lower
static load.

7.3.2 Supply pressure 1.2 bar

Now, a low oil supply pressure of psup =1.2 bar is considered. Low supply pressure can yield insufficient
lubricant supply, also called starvation. This is especially critical in the inner bearing gaps due to lubricant
supply through small communication bore holes. The outer bearing gap is usually supplied through a
large pocket which extends over a large portion of the bearing. Furthermore, often circumferential
grooves in the floating ring are used to further distribute the lubricant, which is also the case for the
investigated turbocharger. If not enough lubricant is present to support the rotor, the solid surfaces are
not completely separated by lubricant and mixed friction occurs. This is not considered in the present
lubrication model and large eccentricities lead to numerical difficulties. Thus, only the influence of
smaller, but still sufficient lubricant supply is investigated.
Again, run-up simulations with the penalty approach and the mass-conserving two-phase model are
performed. Figures 7.12 a) – d) show the outer and inner eccentricities. The influence of the supply
pressure is small for the penalty approach. Only the onset of Sub 3 occurs at a significantly higher rotor
speed of 1110 Hz at≈3.7 s. The result obtained with the two-phase approach on the other hand is heavily
affected by the lower supply pressure. The inner eccentricities differ from those of the penalty approach
also at low rotor speeds. Large oscillations are present, which vanish suddenly at ≈1.3 s (i.e. 390 Hz
rotor speed). The turbocharger performs small oscillations up to the onset rotor speed of Sub 3, which
is not significantly influenced by the supply pressure.
The ratios between the floating ring speed and the rotor speed are shown in figures 7.12 e) and f).
The differences between the two cavitation models again correlate with the different eccentricities. The
floating ring speed ratio of the two-phase model changes less over the rotor speed range than for the
higher supply pressure. Again, the influence of the eccentricities is dominant over the reduced friction
torques due to smaller lubricant fractions.
The short time FOURIER transforms are shown in figures 7.13 g) and h). The result obtained with the
penalty approach is only slightly influenced by the supply pressure, except the earlier onset rotor speed
of Sub 3. For the two-phase model, the bifurcation behavior is different. Sub 1 extends up to ≈1.3 s
(i.e. 390 Hz rotor speed). The amplitudes of Sub 2 are low, thus the oscillations are almost purely
synchronous between ≈1.3 s and ≈2.5 s (i.e. 390 Hz and 750 Hz). Sub 2 vanishes completely with the
onset of Sub 3 for the two-phase model.
The lubricant fractions of the two-phase model over time are shown in figures 7.13 i) and j). The different
behaviors on the turbine and compressor side are due to the different loads on the bearings caused by the
asymmetry of the turbocharger. Less oil is present in the inner and the outer film on the heavily loaded
turbine side compared to psup =2 bar over the whole rotor speed range. This is due the high oscillations
of Sub 1. The amount of air does only slightly increase during the synchronous motion starting at≈1.3 s.
The motions of the journal and the floating ring have a larger radial squeeze component, which leads to
sucking-in of air and prevents the reformation of the lubricant film. On the lightly loaded compressor
side, the lubricant fraction is only reduced during sub-synchronous oscillations of Sub 1 and Sub 3. The
lubricant fraction suddenly decreases with sub-synchronous oscillations and quickly returns to 1 as soon
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Figure 7.12.: Comparison of penalty and mass-conserving cavitation model for an exhaust turbocharger
with psup =1.2 bar

as mostly synchronous oscillations are present, similar to the result with higher supply pressure. The
journal and the floating ring perform mostly circular motions with little squeeze in radial direction.
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Figure 7.13.: Comparison of penalty and mass-conserving cavitation model for an exhaust turbocharger
with psup =1.2 bar (continued)
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8 Conclusion

In this work, the influences of lubricant supply geometry and a mass-conserving cavitation model on the
nonlinear oscillation behavior of rotors in single lubricant film journal bearings and in floating ring bear-
ings have been investigated numerically by means of transient run-up simulations. The time-dependent
rotor and bearing models have been implemented in commercial software tools with implicit solvers,
which have been coupled using an explicit co-simulation approach. This procedure facilitates the de-
velopment of detailed, easily interchangeable and updateable subsystems by specialized engineers with
specialized software tools.

8.1 Summary

A literature review given in section 1.1 showed that cavitation effects in journal bearings have been
mostly investigated under steady-state operating conditions, i.e. constant or slowly changing rotor speeds
with none or little synchronous oscillations due to unbalance around an equilibrium position. In this case,
complimentary cavitation algorithms – which divide the fluid film into a fully developed and a cavitated
area – are sufficient. Lightweight rotors such as turbochargers exhibit a highly transient behavior and
sub-synchronous whirl motions are present during a large part of the operating range. Many works have
investigated cavitation effects in squeeze film dampers, where a large reduction of the damping capability
has been observed. In these cases, usually a two-phase cavitation approach is employed, which considers
the physical process of bubble generation and is valid in the whole fluid film.

The physical properties of the rotor models investigated in this work have been explained in chapter 2.
The rotor-bearing systems are externally excited by unbalance and self-excited through the nonlinear,
anisotropic hydrodynamic bearing forces. A symmetric JEFFCOTT rotor is the simplest flexible rotor,
which has been used to systematically investigate the influence of mass-conserving cavitation. The be-
havior of turbocharger rotors is dominated by rigid body modes with slight bending. These modes in
combination with the lubricant films are responsible for typically encountered sub-synchronous oscilla-
tions. An implicit BDF-method is used to solve the algebraic differential equation systems resulting from
the multibody representation of the rotor systems.

The hydrodynamic lubrication theory has been revised in chapter 3. Only laminar flow is encountered
in typical floating ring bearing geometries used in turbochargers. The compressible REYNOLDS equation
is the basis for mass-conserving cavitation models. General formulas for the calculation of the bear-
ing forces and the friction torque have been given. A dimensionless REYNOLDS equation with few input
variables is beneficial for the dynamic-static solver coupling used for rotor-bearing models with non
mass-conserving cavitation models. The number of input variables can be reduced through the introduc-
tion of a dimensionless time and further decreased for plain cylindrical bearings through a coordinate
transformation.
Different types of cavitation and their physical processes have been described in section 3.3.1. Non
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mass-conserving and mass-conserving cavitation models have been explained. The latter can be roughly
divided into two categories. Complimentary models such as the famous ELROD algorithm divide the fluid
film into two distinct areas, while two-phase models consider the whole fluid film. Usually, only the
degassing of dissolved air is considered in the latter. The sucking-in of air from the surroundings may be
dominant in open-ended bearings with transient journal motions.
Finally, the numerical solution of the REYNOLDS equation has been discussed. The Finite Element method
has the highest flexibility concerning the geometry and is thus used in this work.

Bearing geometries commonly used in turbochargers have been described in section 4.1. Grooves and
bore holes used for oil supply are not modeled as part of the hydrodynamic fluid film due to their larger
gap size. The hydrostatic force generated by oil pressure in the omitted areas has to be considered sepa-
rately. This has a significant influence, especially for light rotors.
Floating ring bearings form a series connection of an inner and an outer fluid film, which can be cal-
culated individually with the general REYNOLDS equation. It is beneficial to use a coordinate system
fixed to the floating ring for rotating geometries such as connecting channels or axial grooves. The
thermal deformation of shaft, floating ring and housing increases the inner and reduces the outer bear-
ing gap significantly. The influence of centrifugal acceleration on the deformation was found to be
much smaller. Including the equations of motion of the floating rings into the bearing model enables
co-simulation also for non mass-conserving cavitation models. This is less computationally expensive
than the dynamic-static solver coupling usually employed, since no partial derivatives with respect to the
coupling variables have to be computed.

In section 4.2, the mass-conserving two-phase model used in this work is explained. The mixture density
and viscosity are assumed proportional to the lubricant fraction, since the density and viscosity of gas
are negligible. This yields a single differential equation valid in the whole bearing gap, which is easy
to implement into commercial software. An arbitrary relation between the pressure and the lubricant
fraction can be used. In this work, it is tuned to reflect the ELROD algorithm using a smooth step function
for better comparison with non mass-conserving cavitation models. Artificial Diffusion is necessary to
achieve results without numerical oscillations for coarse discretization meshes used in run-up simula-
tions, due to the steep gradient in the relation between pressure and the lubricant fraction.
The axial boundary conditions of the fluid film have to be changed when a two-phase model is used,
since the assumption of a constant ambient pressure implies a bearing submerged in an oil bath, which
is a rare case in practice. A special NEUMANN boundary condition based on a penalty approach acts as a
DIRICHLET boundary condition for the fully developed fluid film and prevents inflow of liquid lubricant in
the cavitated area, which better reflects an open-ended bearing. Furthermore, a reduction of the bearing
torque in a cavitated lubricant film due to the negligible viscosity of gas is considered.
Comparison of the two-phase model with other cavitation approaches showed good qualitative agree-
ment considering pure rotation. The present model yields a pressure profile similar to the ELROD model
and the half-SOMMERFELD approach. For classical two-phase models based on bubble dynamics, the pres-
sure drops far below the ambient pressure in the cavitated area, while the lubricant fraction stays high.
This yields a completely different rotordynamic behavior.
Significant differences between non mass-conserving approaches and the two-phase model used in this
work have been found for kinematic squeeze and whirling motions. During squeeze motion, the two-
phase model shows a delayed pressure build-up when the bearing gap expands, which is stronger in
open-ended bearings. Non mass-conserving cavitation models implicitly assume a completely filled bear-
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ing gap at all times, which yields an instantaneous pressure build-up after load reversal. This may entail
a reduced radial damping capability for the two-phase model. During whirl motion, the pressure profile
has a smaller circumferential extend for the two-phase model, which may yield a lower load carrying
capacity and thus higher eccentricities during sub-synchronous whirl motions.

The rotor and bearing subsystems use different solvers and have different time-step sizes. Coupling
procedures are needed to inter- and extrapolate coupling variables, which are explained in chap-
ter 5. Two different coupling methods are used in this work, namely dynamic-static solver coupling
for rotor-bearing systems with non mass-conserving cavitation models, and co-simulation for systems
with mass-conserving cavitation models or with floating ring bearings. The bearing subsystems domi-
nate the calculation time of the overall systems due to the higher amount of degrees of freedom and
smaller time-step sizes.
A reduction of costly calculations of the bearing subsystem for the dynamic-static solver coupling is
achieved using the semi-implicit method developed by BUSCH, see[BS12]. However, many parallel eval-
uations of the bearing subsystems are required in order to compute the JACOBIAN for the rotor system.
Co-simulation of the GAUSS-SEIDEL type computes the subsystems sequentially, yet a better stability is
obtained compared to the parallel JACOBI type, due to the partially interpolation of coupling variables.
The macro-step size is coupled to the rotor system (Master-Slave method).

In chapter 6, the influence of the mass-conserving cavitation model on the rotordynamic behavior has
been evaluated using a JEFFCOTT rotor in single oil films. The parameters of the rotor and the bearings
resemble a heavy turbocharger and its inner oil film.
Firstly, the penalty approach has been compared to the widely used half-SOMMERFELD condition. The re-
sults were very similar, especially the stability threshold is almost identical. Thus, the penalty approach
has been used as a qualitative reference in this work, since the resulting pressure profiles are smooth
and more similar to those obtained with the mass-conserving cavitation model.
Then, the convergence behavior of the mass-conserving cavitation model was investigated for different
values of the steepness parameter x1. Good convergence to the ELROD model is achieved for high values
of x1. However, the simulation time is increased considerably and the simulation may fail after the sta-
bility threshold has been reached. The results with x1 =0.9 differ notably from those using higher x1.
The influence of the cavitation model on the rotordynamic stability has been investigated using a rigid
rotor without unbalance. It could be seen that the sudden increase of the journal eccentricity coincides
with the loss of load carrying capacity, which is caused by an increasing whirl speed δ̇ of the journal
center.
Since the pressure can drop below the ambient pressure p0, flow of lubricant from the surrounding into
the bearing gap has to be prevented numerically when an open-ended bearing is considered, which is the
usual case in practice. It has been shown that this axial boundary condition has a significant influence
on the rotordynamic behavior of the system and further reduces the stability threshold compared to a
bearing in an oil bath.
The use of a mass-conserving cavitation model and the free-to-air boundary condition enables the de-
tailed investigation of oil supply geometry and the supply pressure psup. It was found that for a bearing
with lubricant supply at the top of the bearing, e.g. an axial feeding groove or a pocket, the eccentricity
and the stability threshold speed increase with the supply pressure. This is due to an increased load on
the journal, which is mainly induced by hydrostatic pressure. In contrast to that, the system in bearings
with circumferential feeding grooves is destabilized with increasing supply pressure. In this case, the
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hydrostatic pressure on the groove reduces the load carrying capacity of the bearing.
Finally, the influences of the shaft stiffness and rotor unbalance were examined. The stability thresh-
old is decreased for a more flexible rotor and the difference between the penalty approach and the
mass-conserving cavitation model is smaller. The synchronous oscillation amplitudes increase with the
unbalance and are larger for the mass-conserving cavitation model.
With only one exception (figure 6.11 c)), the onset of instability is predicted at a lower rotation speed
when mass-conserving cavitation is considered. The results resemble those using the penalty approach
more with increasing x1. The differences are small during purely synchronous oscillations with small
unbalance.

The influence of mass-conserving cavitation on rotors in floating ring bearings has been investigated in
chapter 7. The inner and outer lubricant films are connected in a series connection, which allows rotor
speeds above the linear stability threshold of a rotor in single film bearings with the same geometry due
to mutual damping.
Firstly, a symmetric JEFFCOTT rotor was considered. Two sub-synchronous oscillations appear, which are
caused by the inner and outer fluid films. The onset rotor speeds of the sub-synchronous oscillations
are lower for the two-phase model than for non mass-conserving cavitation models. Additionally, the
eccentricity during the inner sub-synchronous is larger. The outer film is less influenced by cavitation,
probably due to better lubricant supply with a circumferential groove compared to bore holes in the
inner film. The influence of the steepness parameter x1 is smaller than for rotors in single film bearings.
The efficiency of different cavitation models and simulation methods has been compared. Co-simulation
with non mass-conserving cavitation models entails higher calculation times of one time-step of the bear-
ing model compared to dynamic-static solver coupling, yet far more parallel computations are possible.
The number of micro-steps has a large influence on the overall calculation time for co-simulation and
monolithic models, especially for the two-phase model. A trade-off has to be found between the number
of micro-steps and iterations of NEWTON’s method, which is tuned through the maximum allowed solver
step-size.
The influences of the outer gap size and the supply pressure have been examined for the penalty and the
two-phase model. A lower outer gap size increases the stiffness of the considered floating ring bearings,
which yields larger amplitudes and a larger speed range of the inner sub-synchronous. A higher supply
pressure entails a lower onset rotor speed of both sub-synchronous oscillations, due to the destabilizing
effect of circumferential grooves and bore holes. These effects are more severe for the two-phase model.
Furthermore, different bifurcation scenarios can appear.
Two different effects on the bearing torque have been studied. It has been found that the pressure-
driven HAGEN-POISEUILLE flow is negligible in the considered application. The influence of a reduced
bearing torque due to cavitation is very small, since the effects on the inner and outer film partially
cancel out. The floating ring speed is mostly determined by the inner and outer eccentricities.
The effect of the pressure difference in the connecting channels due to the centrifugal acceleration of the
floating rings has only a small influence at high rotor speeds. Even if full hydraulic coupling of inner and
outer oil film (no circumferential groove) is considered, the pressure profile is mainly influenced locally,
see [Zei16; Nar17].
Finally, a turbocharger with two different supply pressures was considered, which experiences three
sub-synchronous oscillations. The onset rotor speeds of Sub 2 and Sub 3 are lower with the two-phase
model. A lower supply pressure has a small effect for the non mass-conserving penalty approach, yet the
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result with the two-phase model is heavily affected. Unstable motions in the inner lubricant films appear
and the bifurcation behavior is different. The lubricant fraction decreases during sub-synchronous oscil-
lations, due to sucking-in of air from the surroundings. On the lighter loaded compressor side, more air
is present due to the sudden increase of the eccentricities, yet the bearing gaps are refilled more quickly
due to a weaker squeeze component of the eccentricities compared to the heavily loaded turbine side.

8.2 Outlook

The steepness parameter x1 of the mass-conserving two-phase model was chosen close to 1 in order
to reflect the often used ELROD cavitation model. It remains to be tested through experiments if this
assumption is valid for lightweight rotors. Furthermore, most cavitation models available in literature
and also the one used in this work assume instant degassing and reabsorption of gas. Persistent bubbly
flow has been experimentally observed for high rotation speeds and during sub-synchronous whirl/whip
motions, see [Köh15; ZV88]. It should be determined in future research, if the assumption that the gas is
not reabsorbed in these operating conditions is a better reflection of the actual behavior. For this reason,
different cavitation models could be appropriate during sub-synchronous whirl/whip motions than for
purely synchronous motion. In the present model, this can be easily achieved through variation of the
steepness parameter x1 depending on the journal motion.
An important step to increase the physical accuracy of the present rotor-bearing model is the inclusion of
an efficient temperature model, in order to automatically determine the transient temperature profiles
in the lubricant films. This includes a (lumped) thermal model of the rotor, the housing and the floating
rings as well as a thermal model of the lubricant films.
In this work, the hydraulic coupling of the inner and outer fluid film was implemented for a bearing with
a circumferential groove in the outer fluid film, which is not part of the hydrodynamic fluid film. Full
hydraulic coupling for plain surfaces with boreholes is easily implemented and should be investigated in
detail.
A detailed investigation of starvation effects in the fluid films is only possible considering mass-
conserving cavitation. However, mixed friction can occur, which is not covered in the present model.
Finally, the calculation time of the present cavitation model could be further reduced using more sophis-
ticated stabilization approaches.
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A Tables

Table A.1.: Reynolds number Re for critical turbocharger parameters, calculated with (3.3)

Application Passenger Car Turbocharger Large Engine Turbocharger
Rotor Weight 100 g 6 kg
max. Rotor-Speed 5000 Hz 1500 Hz

Inner Oil Film:

Angular Velocity ω 1.3·5000 Hz 1.3·1500 Hz
Bearing Diameter D 7 mm 25 mm
Nominal Bearing Gap C 15µm 35µm
Oil Viscosity η 12 mPas 12 mPas
Oil Density ρ 0.9 g/cm3 0.9 g/cm3

Reynolds Number Re 193 482

Outer Oil Film:

Angular Velocity ω 0.3·5000 Hz 0.3·1500 Hz
Bearing Diameter D 11 mm 40 mm
Nominal Bearing Gap C 35µm 50µm
Oil Viscosity η 12 mPas 12 mPas
Oil Density ρ 0.9 g/cm3 0.9 g/cm3

Reynolds Number Re 136 212
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Table A.2.: Deformations of rotor shaft, floating ring and housing assuming a two-dimensional stress
state

Application Passenger Car Turbocharger Large Engine Turbocharger
Rotor weight 100 g 6 kg
max. Rotor-Speed 5000 Hz 1500 Hz

Rotor Shaft (Steel):

YOUNG’s modulus E 210 GPa 210 GPa
POISSON’s ratio ν 0.27 0.27
Density ρ 7870 kg/m3 7870 kg/m3

Thermal expansion coefficient αT 1.18·10−5 K−1 1.18·10−5 K−1

Angular Velocity ω 5000 Hz 1500 Hz
Diameter D 7 mm 25 mm
Temperature TR=Ti 100 ◦C 100 ◦C

Rotation Strain εr,rot 0.083·10−3 0.095·10−3

const. Temperature Strain εr,T const. 0.944·10−3 0.944·10−3

Floating Ring (Brass):

YOUNG’s modulus E 78 GPa 78 GPa
POISSON’s ratio ν 0.37 0.37
Density ρ 8860 kg/m3 8860 kg/m3

Thermal expansion coefficient αT 1.85·10−5 K−1 1.85·10−5 K−1

Angular Velocity ω 0.4·5000 Hz 0.4·1500 Hz
Inner Diameter Di 7 mm 25 mm
Outer Diameter Do 11 mm 40 mm
Inner Oil Temperature Ti 100 ◦C 100 ◦C
Outer Oil Temperature To 80 ◦C 80 ◦C

Inner Surface:

Rotation Strain εr,rot 0.492·10−3 0.584·10−3

Temperature Field Strain εr,T 1.450·10−3 1.450·10−3

const. Temperature Strain εr,T const. 1.295·10−3 1.295·10−3

Outer Surface:

Rotation Strain εr,rot 0.271·10−3 0.314·10−3

Temperature Field Strain εr,T 1.281·10−3 1.281·10−3

const. Temperature Strain εr,T const. 1.295·10−3 1.295·10−3

Housing (Cast Iron):

POISSON’s ratio ν 0.28 0.28
Thermal expansion coefficient αT 1.17·10−5 K−1 1.17·10−5 K−1

Diameter D 11 mm 40 mm
Temperature TH =Tsup 60 ◦C 60 ◦C

const. Temperature Strain εr,T const. 0.468·10−3 0.468·10−3
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B Extended Short Bearing Theory

The numerical calculation of the REYNOLDS equation in every time-step of a run-up simulation yields
accurate results and can easily incorporate complex bearing geometries and additional effects such as
mass-conserving cavitation, yet it requires a high computational effort. Analytical approximations such
as the infinitely long or short bearing are very fast, yet are usually only valid for plain cylindrical bearings
without additional effects and only yield good results under certain requirements.
If the diameter-to-width ratio D/B of a bearing is large, the diffusion in circumferential direction is
negligible compared to the diffusion in axial direction. A rule of thumb is D/B ≥ 4 , see [Sze11]. This
yields the so-called short bearing theory (see e.g. [Vra01; Boy11; Sze11; LS78]), which is often used
in rotordynamic studies. Its application also yields acceptable results for turbochargers with smaller
ratio D/B.
A very suitable application is a bearing with a circumferential groove (see section 4.1.2), since each
indivdual hydrodynamic bearing section with width b=B/2 has a high ratio D/b. However, the groove
pressure psup is usually higher than the ambient pressure p0 and the classical short bearing theory is
only given in literature for equal axial boundary conditions. For this reason, an extended short bearing
theory with arbitrary axial boundary conditions was introduced in [Now+15b] and is given in this
appendix. It was applied to a turbocharger in floating rings with circumferential grooves and the results
were compared to a calculation with finite-length journal bearings using dynamic-static solver-coupling
explained in section 5.1. It was shown that the extended short bearing theory yields good results for
bearings with a circumferential groove while greatly reducing the calculation time.

As for the short bearing theory, a plain cylindrical bearing (gap function H=1+ε cos Θ , see e.g. [LS78])
without tilting is assumed. If the diffusion in circumferential direction is neglected, the dimensionless
REYNOLDS equation (3.19) for one bearing section simplifies to an ordinary differential equation,

(
R

B

)2
∂

∂z

(
H3∂Π

∂z

)
= ε(2δ′ − Ω0) sin(Θ) + 2ε′ cos(Θ) = frhs(Θ) . (B.1)

Note that the relative angular coordinate Θ starting at the widest gap is used, see figure 3.2. Equa-
tion (B.1) is integrated twice with respect to z . The axial boundary conditions are

Π (Θ, z=0) = Π0 and Π (Θ, z=0.5) = Πsup , (B.2)

see figure 4.1. The periodic boundary condition (3.10) is already satisfied due to the periodicity of the
gap functionH . This yields an analytical expression for the pressure profile Π(Θ, z) with the SOMMERFELD

cavitation condition:
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)
+ Π0 (1− 2 z) + Πsup 2 z . (B.3)
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The dimensionless hydrodynamic bearing forces generated by one bearing section are calculated us-
ing (3.27), in which the upper integration boundary of z is replaced by 0.5.
In the classical short bearing theory, the non mass-conserving half-SOMMERFELD (GÜMBEL) cavitation ap-
proach is applied by only integrating over regions where p≥ p0. Since Π0 = Πsup = 0 is assumed, the
boundaries of the cavitated area are straight lines in axial direction and their positions in Θ-direction
can be calculated as a function of ε, ε′ and δ′. Closed-form solutions of the appearing integrals are given
in literature, see e.g. [LS78].
The cavitation boundaries are complex for the asymmetric boundary conditions (B.2), see e.g. fig-
ure 6.12 b). In this case, an analytical integration of (B.3) is rather sophisticated and thus a numerical
integration was used in [Now+15b]. The resulting calculation time is slightly larger than for the analyt-
ical short bearing solution, yet far lower than the calculation time of the discretized REYNOLDS equation
for finite bearings.
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