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“It's a dangerous business, Frodo, going out your door. 

You step onto the road, and if you don't keep your feet, 

there's no knowing where you might be swept off to.” 

- Samwise Gamgee 
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1. Summary 

 The use of food resources is one of the most important aspects of ecosystem 

functioning. Trophic relationships determine fluxes of matter and energy, shape 

interactions between organisms and ultimately direct the evolution of the species 

themselves. Competition is a fundamental biotic interaction, and niche partitioning 

constitutes an important mechanism to allow species coexistence. However, many other 

factors influence community structuring, and may change or supplant the outcomes of 

competition. Ants are one of the most abundant, widespread and ecologically relevant 

terrestrial organisms. On the ground of tropical forests, dozens of species may coexist, 

which raises the question: how similar are they? Behavioral and environmental 

mechanisms of coexistence have been proposed for ants, but the use of resources itself is 

surprisingly understudied, and the trophic niches of most species is unknown. In this 

thesis, I used three complementary methods, representing a gradient of source-

specificity/time-representativity, to describe patterns of resource use in a tropical and a 

temperate ant community. In the first study, I reviewed the available literature on resource 

use for the identified tropical species and compared it to field data obtained with baiting. 

Previous information was scant or inexistent for most species. Ants broadly used most 

resources available, but with quantitative differences between species. Wasmannia 

auropunctata has the most specialized niche, using only feces, a new behavior for the 

species. In the second study, my coauthors and I performed a laboratory experiment to 

describe fatty acid assimilation in ants. Two temperate ant species (Formica fusca and 

Myrmica rubra) displayed similar patterns and dynamics in composition, although 

amounts were influenced by their reproductive status. The main fatty acids (C16:0, C18:0 

and C18:1n9) were extensively synthesized from sugars, but we observed some diet-

specific ones that might work as biomarkers (C18:2n6, C18:3n3, C18:3n6). The experiment 

fulfilled a basic knowledge gap and set the ground for application of fatty acid analysis in 

an ecological context. In the third study, we put together field observations, fatty acid and 

stable isotope analyses to describe overall patterns of resource use and species’ niches in 

both communities. We observed a consistent picture of high, and quantitatively 

equivalent, generalism in both communities, regardless of species richness. Temperate 

species presented fatty acid patterns distinct from tropical ones, which may be related to 

environmental factors. Similarities in bait attendance, fatty acid compositions and isotope 
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signatures were all correlated in Brazil, thus all methods corresponded in their 

characterization of species’ niches to some extent, and were robust enough to detect 

differences even in a highly generalized community. Method complementarity was 

particularly important to understand the behavior of the most specialized species. In 

Germany, no correlations were observed, likely due to the small number of species 

available. Fatty acid analysis emerges as a powerful tool and may be applied to answer 

many questions related to resource use in ants, but use of fatty acids as biomarkers seems 

to be limited. In general, the results of this thesis agreed with the recent view that 

specialization does not increase with species richness towards the tropics. Several 

coexistence mechanisms may act to structure ant communities, with trophic niche 

partitioning playing a relatively small role in the ones we studied. No mechanism appears 

to be universal and community structure may be better understood on a case-by-case 

basis, at local scale.  
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2. Zusammenfassung 

Die Nutzung von Nahrungsressourcen ist einer der wichtigsten Aspekte der 

Funktionalität von Ökosystemen. Trophische Beziehungen bestimmen Materie- und 

Energieflüsse, prägen Interaktionen zwischen Organismen und lenken letztlich die 

Evolution der Arten. Die Konkurrenz ist eine fundamentale biotische Interaktion und die 

Nischenaufteilung ist ein wichtiger Mechanismus der die Koexistenz von Arten 

ermöglicht. Allerdings beeinflussen viele andere Faktoren die Strukturierung von 

Biozönosen und können die Auswirkungen von Konkurrenz verändern oder sogar 

verdrängen. Ameisen gehören zu den häufigsten, am weitesten verbreiteten und 

ökologisch relevantesten Landorganismen. Auf dem Boden tropischer Wälder koexistieren 

viele Ameisenarten, was die Frage aufwirft: Wie ähnlich sind sie untereinander? Als 

Erklärung für die Koexistenz dieser Arten wurden Verhaltens- und Umweltmechanismen 

herangezogen, aber die Ressourcennutzung ist bis heute überraschend wenig erforscht, 

und die trophischen Einnischung der meisten Arten sind nicht bekannt. In meiner 

Dissertation verwendete ich drei komplementäre Methoden, entlang eines Gradienten von 

Quellenspezifität/Zeit-Repräsentativität, um die Muster der Ressourcennutzung in 

tropischer und temperater Ameisengemeinschaften zu beschreiben. In der ersten Studie 

analysierte ich die vorhandene Literatur zur Ressourcennutzung für die vorgefundenen 

tropischen Arten und verglich diese mit über Köderfallen erhobenen Felddaten. Die 

Literaturrecherche offenbarte einen spärlichen Kenntnisstand in Bezug auf die einzelnen 

Arten. Die Ameisenarten nutzten überwiegend den Großteil aller verfügbaren Ressourcen, 

jedoch mit quantitativen Unterschieden zwischen den Arten. Wasmannia auropunctata 

benutzte nur Faeces, was bisher gänzlich unbekannt war, und es besetzt die 

spezialisierteste Nische. In der zweiten Studie führten meine Koautoren und ich ein 

Laborexperiment durch, um die Fettsäureassimilation bei Ameisen  aufzuklären. Zwei 

temperate Ameisenarten (Formica fusca und Myrmica rubra) zeigten ähnliche Muster und 

Dynamiken bei der Zusammensetzung ihrer Fettsäuren, obwohl die absoluten Mengen 

von dem jeweiligen reproduktiven Status beeinflusst wurden. Die Hauptfettsäuren (C16:0, 

C18:0 und C18:1n9) wurden überwiegend aus Zuckern synthetisiert, aber wir 

identifizierten einige diätspezifische Fettsäuren, die als Biomarker fungieren könnten 

(C18:2n6, C18:3n3, C18:3n6). Das Experiment füllte eine entscheidende Wissenslücke und 

lieferte die Grundlage für die Anwendung der Fettsäureanalyse in einem ökologischen 
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Kontext. In der dritten Studie führten wir eine stabile Isotopenanalyse durch und brachten 

die Ergebnisse mit unseren  Feldbeobachtungen und Fettsäureanalysen in 

Zusammenhang, um die Ressourcennutzung und die Einnischung der Arten in beiden 

Gemeinschaften aufzuklären. In beiden Gemeinschaften zeigte sich unabhängig von der 

Artenzahl ein hoher und quantitativ äquivalenter Grad an Generalismus. Temperate Arten 

zeigten Fettsäuremuster, die sich von denen der tropischen unterscheiden, was eine 

Konsequenz der divergierenden  Umweltfaktoren sein könnte. Die Ähnlichkeiten in Bezug 

auf Ködernutzung, Fettsäurenzusammensetzung und Isotopensignatur waren bei der 

tropischen   Gemeinschaft miteinander korreliert, so dass bei allen Methoden die  

Charakterisierung der jeweiligen Artnische übereinstimmte. Die Methoden  waren auch 

robust genug um Unterschiede selbst in einer hoch generalisierten Gemeinschaft zu 

erkennen. Methodenkomplementarität war besonders wichtig, um das Verhalten der 

spezialisiertesten Arten zu verstehen. Bei der temperaten Gemeinschaft wurden jedoch 

keine derartigen Korrelationen festgestellt, was wahrscheinlich in der kleineren Anzahl an 

Arten begründet lag. Die Fettsäureanalyse stellt somit ein adäquates Werkzeug dar, um 

viele Fragen in Zusammenhang mit der Ressourcennutzung bei Ameisen aufzuklären. Die 

Verwendung von Fettsäuren als Biomarker hat allerdings Grenzen. Insgesamt stimmen 

die Ergebnisse dieser Arbeit mit der neueren Ansicht überein, dass der Grad der 

Spezialisierung in Biozönosen eben nicht mit einer höheren Artenvielfalt, wie in den 

Tropen, zunimmt. Verschiedene Koexistenzmechanismen können 

Ameisengemeinschaften strukturieren, wobei die trophische Nischenpartitionierung in 

den untersuchten Gemeinschaften nur eine untergeordnete Rolle spielt. Kein 

Mechanismus scheint universell zu sein, und die Struktur einer Gemeinschaft kann nur 

auf lokaler Ebene und  einzelfallbezogen verstanden werden.  
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3. Introduction 

 What do ants eat? This is a simple, and even a bit silly, question. Most people will 

have a ready answer to it, such as “the sugar in my kitchen, for sure” or “the plants in my 

yard, of course”. Or one may look to the trails running all over their walls and cry out 

“these little pests are everywhere, eating everything!”.  They are not wrong: small tramp 

ants flourish in urban habitats, while New World leaf-cutter ants have eaten more than 

one rose garden or agricultural plot. 

 However, simple questions often have complicated answers. There are thousands of 

ant species described, and many still undescribed. These species occupy almost all 

terrestrial ecosystems, and their numeric abundance and biomass rivals all other animal 

groups (together with another people’s friends, termites). Thus, the answer to “what does 

this ant eat in my house?” might be easy. “What does this ant eat in nature?” gets a bit 

more complicated. And “what are the trophic niches of ant species in this community?”, a 

truly challenge. 

 However, before actually delving into that, I must answer a much harder question: 

“why did you spend years of your life studying what ants eat?”… 

 

3.1. Getting the big picture: use of trophic resources and ecosystem functioning 

 The use and partitioning of food resources is a central aspect of community 

functioning. Trophic interactions govern the flux of matter and energy in ecosystems, 

through complex food webs with several pathways leading from producers to consumers 

and detritivores (Polis and Strong 1996). Other fundamental interactions, such as 

competition and mutualism, direct result of resource use, or highly influenced by it 

(Schoener 1974). 

Niche partitioning is considered one of the most important mechanisms allowing 

species coexistence, and may ultimately link to evolutionary processes of adaptation and 

character displacement (Schluter 2000, Reitz and Trumble 2002). The logic behind niche 

partitioning is summarized in the so-called “principle of competitive exclusion”: two 

species with the same niche and distinct competitive abilities cannot coexist, because, 
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given enough time, competitive pressure would lead to the exclusion of the weaker 

competitor (Hardin 1960). Thus, species must adapt their niches to reduce competition, or 

be locally extinct. Interspecific competition has long been a hot topic among ecologists 

(Connell 1983). The existence of competition is a given for any natural scientist that 

observed an agonistic interaction between two animals, a tree struggling to develop under 

the other’s shade, or a cat stealing food from the dog’s bowl. The relevance of competition 

to structure communities and guide biological evolution, however, is often debated. In a 

vacuum, makes sense to expect competitive exclusion when species use the same 

resources, but one does it more efficiently. In reality, several mechanisms act together to 

structure communities, and in certain cases competition may be relegated to a secondary 

role (Cerdá et al. 2013). 

The complex and context-dependent nature of biological communities results in 

few robust generalizations and poor predictive power at this ecological level (Lawton 

1999). Far from being a “weakness”, this only means that community ecology works better 

at local scales, where patterns and processes are more easily explained and the role of 

individual units (e.g. species) can be better understood. Such “case studies” are useful by 

themselves, and ultimately contribute to the progress of scientific knowledge in general 

(Simberloff 2004). 

 One earlier generalization related to competition and resource use was proposed by 

MacArthur (1972). He suggested that more stable environmental conditions in the tropics 

diminish constraints for evolutive change, and allow more specialized species to arise 

there, compared to temperate ecosystems. Specialization eases competitive pressure and, 

as consequence, more species can coexist. This would lead to a positive relationship 

between species richness and specialization towards the tropics. However, this idea was 

put in question by recent studies (Vázquez and Stevens 2004, Schleuning et al. 2012, 

Morris et al. 2014, Frank et al. 2018). Specialization may be similar, or even increase in 

temperate regions. Again, this relationship might be context-dependent and vary 

according to the study system. Tropical vs. temperate levels of specialization in resource 

use is an ongoing debate that would benefit from more diverse comparisons. 
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3.2. Getting the focus: trophic biology of ants 

Ants (Hymenoptera: Formicidae) are among the most abundant groups of 

invertebrates in terrestrial ecosystems (Kaspari 2000). Currently there are 13452 species 

and 1909 subspecies described (Bolton 2018). Although this number pales in comparison to 

some other insect families, their eusocial organization leads to a huge number of 

individuals and large contribution to ecosystem biomass. They also present a 

comparatively high number of different behaviors, and, in most terrestrial ecosystems, can 

be found in all strata (underground, inside leaf-litter, ground’s surface1, understory, 

canopy). They attain their peak on tropical forests, where dozens of species may coexist at 

the same spot. Litter samples of 1 m2 routinely yield 20-30 or more species (Ryder Wilkie 

et al. 2010, Silva and Brandão 2010). This represents thousands of individuals sharing the 

same space, which raises the question: how different are these species? 

Hölldobler and Wilson (1990) famously stated that “competition is the hallmark of 

ant ecology”. The combination of high local species richness with high biomass is expected 

to translate into strong competition, and to evolutive pressure for more diversified and/or 

specialized niches. Some behavioral mechanisms of coexistence have been proposed, and 

their generality confirmed or debunked (Fellers 1987, Andersen 2000, Parr and Gibb 2012). 

Other factors have been show to disrupt competitive relationships in specific contexts, 

such as different tolerances to temperature or preferential action of parasitoids on 

dominant species (Cerdá et al. 1997, Feener et al. 2008). 

Trophic niche partitioning is less explored, and the use of food resources itself is 

surprisingly understudied. In general terms, most ants are regarded as omnivorous, 

feeding on a combination of living prey, dead arthropods, seeds and plant exudates 

(Kaspari 2000, Blüthgen and Feldhaar 2010, Lanan 2014). Several specialized behaviors are 

known, such as the famous leaf-cutter ants, mushroom harvesters, specialized granivory, 

and specialist predation (Davidson 1977, Baroni Urbani and De Andrade 1997, Brandão et 

al. 2012, Beeren et al. 2014). Even though these specialists are highly interesting from a 

scientific viewpoint, the truth is that the trophic niches of most species remain poorly 

																																																													
1 Epigeic (or “ground-dwelling”) ants are the ones that forage primarily on the ground’s surface. Many 
epigeic species also forage on vegetation or inside the leaf-litter. However, they are distinct from “true” leaf-
litter ants that forage almost exclusively inside this stratum, which demands particular adaptations (Kaspari 
and Weiser 1999, Silva and Brandão 2010). 
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know. This is particularly true for the dozens of species of the “boring generalist” genera 

such as Camponotus, Pheidole and Solenopsis, which make up the largest share of tropical 

communities (Kaspari 2000, and Chapter 5 in this thesis). More is known for temperate 

species, but not always. Lanan (2014) stressed that even for the abundant, widespread and 

thoroughly studied Lasius niger (Linnaeus 1758), there is relatively little information 

reported in the literature about its behavior and natural history in the wild. 

 Part of the issue is the widespread use of morphospecies in myrmecology. 

Morphospecies (or "parataxonomic units" – Krell 2004) are informal groups separated by 

external morphology and identified only to a higher taxonomy category, such as Pheidole 

sp.1 or Coleoptera sp.367. They are less used in temperate communities, because 

taxonomy of these ants is more established (e.g. Seifert 2007). On the other hand, the 

taxonomy of many of the most important tropical genera is far from being solved, even in 

light of valuable recent efforts (Wilson 2003, Wild 2007, Bolton and Fisher 2011, LaPolla et 

al. 2011). Community lists with high proportion of morphospecies still are an everyday 

reality for tropical myrmecologists. When produced with care and a certain level of 

taxonomic expertise, morphospecies lists might be useful to study general patterns (Oliver 

and Beattie 1996, but see Krell 2004 for a critical view). However, this also leads to a 

significant waste of information, since the data on a given morphospecies is only 

applicable to a particular study. It cannot be compared, compiled or used as reference for 

future works. Currently, morphospecies are a necessary evil, but this can be alleviated by 

allocating effort to the identification step, and/or establishing partnerships with 

taxonomists. 

 Another reason for this knowledge gap is the simple lack of direct observation. 

Many species present cryptic behaviors, particularly the ones that live above surface or on 

tree canopies. Even for the more conspicuous epigeic species, most biological information 

comes from collection data that can be gathered in a typical biodiversity assessment, e.g. 

geographical records, nesting sites and colony structure (e.g. AntWeb 2018). Aspects that 

demand specific study designs, such as use of trophic resources, are less known. All things 

considered, use of trophic resource remains an open topic in ant ecology. 

 Are ants a good “model” to study competition and resource use in terrestrial 

arthropods? Not likely. Ants are a minute part of the ca. 1 million described insect species 
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(Stork 2018). Although some authors speculate that Hymenoptera might be the richest 

insect order, the far majority of these species are solitary parasitic wasps (Forbes et al. 

2018). True social insects are few and far between. Ants as a group have traits that make 

them different from many other animals, regarding resource use: 

(1) Colonies are sessile: ant colonies are limited to the resources available around the nest. 

Foraging distances might extend to a few hundred meters in ants with large colonies and 

medium/large body size (Carroll and Janzen 1973, Bowers and Porter 1981). Most species, 

however, have smaller ranges, so much that distances of 5-10 m are considered a good 

compromise between sample independence and field effort in biodiversity inventories 

(Fisher 1999, Agosti and Alonso 2000). Colonies are not completely static, though: they can 

change nest location under disturbance or unfavorable conditions, and residence times are 

highly variable (Hölldobler and Wilson 1990). Most of these changes are within a couple of 

meters (Smallwood 1982), but this may be enough to change the available resources for 

small ants. Army ants of the subfamily Dorylinae, which have no fixed nest and migrate 

for long distances while foraging, are another clear exception. However, more often than 

not, nests are fixed, and local resources have stronger influence on ants than on free-living 

organisms. 

(2) Workers have a diet more limited than larvae: as all holometabolous insects, ants 

acquire most of their structural biomass during the larval stages (Blüthgen and Feldhaar 

2010). The only part that changes size in adults is the gaster2: in short term, it greatly 

expands when workers ingest high amount of liquid food; in medium term, storage or use 

of lipid reserves in the fat body may change their body weight. Hymenopterans have a 

digestive tract adapted to liquid feeding: crop and midgut are linked by the 

proventriculus, which work as a pump, and limit the passage of solid particles with larger 

size (Eisner 1957). In ants, the crop acquired a role of storage organ, and the 

proventriculus also acts as a dam, holding the stored food, which otherwise would 

proceed into the midgut and be digested. In the subfamilies Formicinae and 

Dolichoderinae, the proventriculus acquired such a specialized structure for holding large 

																																																													
2 Ant body parts use a different nomenclature due to the fact that, during embryonic development, the first 
abdominal segment is fused to the thoraxic ones. Thus, the visual/functional equivalents of thorax and 
abdomen are called mesosoma (or alitrunk) and gaster, respectively. The second abdominal segment (or the 
second and third in some subfamilies) is modified to become an independent segment linking those two 
body parts, the petiole (or petiole and post-petiole).	
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amounts of liquids that the passage of any solid particle seems to be impossible (Eisner 

and Happ 1962). In any case, adult workers have limited assimilation of solid foods. 

Larvae, on the other hand, do not have these morphological limitations and possess more 

diversified enzymes. For these reasons, they are sometimes called the “digestive caste” of 

the colony (Hölldobler and Wilson 1990, Erthal et al. 2007). 

(3) Ants share food: larvae and workers presumably have different diets. However, food 

can be shared through trophallaxis (regurgitation of stored food) between workers and 

larvae. Trophallaxis is more widespread in phylogenetically derived subfamilies such as 

Formicinae and Myrmicinae, but species of primitive subfamilies present other 

mechanisms of food sharing (Hölldobler and Wilson 1990). Thus, the gathered nutrients 

can be shared among individuals of diverse castes and ages within the colony (Howard 

and Tschinkel 1981). 

(4) Ants have different foraging modes: eusociality does not mean that ants work together 

all the time. Some species only forage solitarily, while others present different levels of 

recruitment to food sources (Lanan 2014). Recruitment may be as simple as one individual 

recruiting a single nest mate (tandem recruitment), to the establishment of foraging trails 

with huge worker mobilization (mass recruitment). Two methodological caveats arise 

from this. First, number of individuals in a pitfall trap or bait is a poor predictor of species 

abundance or preference for a resource. Individual-based data can be useful for ecosystem 

analyses (e.g. removal rates of a given resource), but, for species analyses, frequency of 

occurrence on samples is used as a proxy for true abundance/preference (Gotelli et al. 

2011). Second, the functional role of a species cannot be inferred from worker size, as 

sometimes it is made for other groups (Scheffer et al. 2018). A colony of small, mass 

foraging Myrmicinae can retrieve larger items than it would be expected for their size, and 

may consume resources in a higher rate than a colony of large, solitary foraging Ponerinae. 

 All things considered, extrapolation of biological patterns from ants to other 

organisms, or vice-versa, should be done very carefully. The same is valid for methods, 

which should be adapted to these particularities. Being a “bad model” means that we 

should focus our research effort elsewhere? Not at all. Simple personal interest for a 

biological group is a good incentive to perform basic science, although it might raise a few 

eyebrows in funding agencies. From a more objective point of view, the importance of ants 
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in terrestrial ecosystems is reason enough for their study (Folgarait 1998). Few other 

animal groups combine such cosmopolitan distribution, with high abundance of biomass, 

presence in all strata and many different functions performed. Understanding ants is 

understanding a huge, albeit peculiar, part of any terrestrial ecosystem. 

 

3.3: Getting the answers: one method to rule them all? 

 To understand a single species’ niche is far from a trivial task. The 

multidimensional nature of such niches makes it challenging to measure all relevant 

variables and, after getting odd results, researchers may always ask themselves what 

factor they missed, or whether their judgment of “relevance” was correct. Each available 

method provides certain kinds of reliable data and deals with a subset of factors, while 

being less suitable in other contexts. Researchers also are subject to pragmatic trade-offs: 

they have to choose whether they want broader geographical coverage, or a more time-

representative dataset, or to get a larger portion of the variation in the study object (e.g. 

more species, strata or vegetation types in a sampling site), and so on. 

A logical consequence of these considerations is that, for every research question, 

there is a more suitable method to be chosen (Birkhofer et al. 2017). This approach fits well 

works with one or few defined hypotheses to be tested. On the other hand, another 

conclusion is that methods may be combined to complement each other’s strengths and 

weaknesses (Bestelmeyer et al. 2000). This approach is particularly useful in descriptive 

studies, when the purpose is to get an in-depth picture of the study system (and they still 

allow hypothesis testing, but usually of a more restricted nature). 

In this thesis, I adopted the second approach: three methods with different 

properties were applied to assess resource use in ants. These methods, described in detail 

in the respective chapters, were: baiting (Chapters 5 & 7), fatty acid analysis (Chapters 6 & 

7) and stable isotope analysis (Chapter 7). They represent a gradient of source-

specificity/time-representativity trade-offs. Baiting (as field observations in general) 

brings direct information on resources used, but only as a temporal “snapshot”: unless 

repeated over and over again, there is no guarantee that today’s observations represent 

what ants ate yesterday, or will eat tomorrow. On the other hand, the isotopic composition 



	
	

	18 

of a holometabolous insect is a long-term representation of its diet, but brings little 

information on actual sources or behaviors. Fatty acids are intermediate: the composition 

of stored fat is relatively stable, and is influenced both by amounts and sources of food. 

While the two first techniques have a long story in ant research, fatty acid analysis still is 

incipient for terrestrial organisms. It was never applied to ants in an ecological context, 

and little previous information on lipid metabolism existed for them.  

 

3.4: Getting to work: resource use in tropical and temperate ants 

 In this thesis, my coauthors and I took a descriptive approach to finally answer 

what ants eat. We focused on describing local patterns on a tropical and a temperate 

community, which strongly differed in species richness and composition. We applied a 

field protocol adapted from previous works, and complemented it with stable isotope and 

fatty acid analyses. Also, I dedicated special effort to get the best taxonomic resolution 

possible, and to see how our results contribute to understand the role of individual 

species. In Chapter 5, I performed a literature review on trophic niche of the identified 

tropical species and compared this previous knowledge (or lack of it) with the observed 

field data. In Chapter 6, we experimentally assessed dynamics and patters of fatty acid 

assimilation in ants, to fill a basic knowledge gap and set the ground to apply fatty acid 

analysis to this group. Finally, in Chapter 7, we put together all data to get a source-

specific and time-representative view on resource use, and to describe and compare both 

communities. 
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4. Study sites 

(for maps of the sites, see Annex I) 

4.1. Brazil 

 Desterro Conservation Unit (UCAD) is located in Florianópolis, southern Brazil 

(27o31’38’’ S, 48o30’15’’ W, altitude ca. 250 m). Regional climate is humid subtropical (Cfa – 

Köppen). Average annual temperature and precipitation is 20.5 ºC and 140 mm per month 

(EPAGRI/CIRAM). 

Vegetation consists of Atlantic forest sensu stricto (= ombrophilous dense forest), a 

stripe of dense forests that runs along eastern Brazilian coast (Oliveira-Filho and Fontes 

2000). The Atlantic Forest is considered the fourth “hottest” global hotspot of biodiversity 

(Myers et al. 2000). However, due to its coastal distribution, it has one of the longest and 

most intensive history of antropogenic disturbance among Brazilian ecosystems. An 

estimated 12-16% of the original vegetation remains, often in a very fragmented state. 

(Soares-Filho et al. 2014). Parts of UCAD were selectively logged or converted into 

pastures in the past. The current forest has 50-60 years of relatively undisturbed 

regeneration (Ladwig 1998). 

The site is located in the subtropics, and near the southern boundary of the 

ombrophilous dense forest distribution. However, the high rainfall rate along the coast 

allows high productivity, and provides a tropical aspect for the Atlantic forest even at 

higher latitudes (ant species richness, for instance, increases towards the south – Silva and 

Brandão 2014). Additionally, most species included in this work are widespread across the 

Neotropics (Janicki et al. 2016). 

Four plots of 4 x 4 sample points were set up across a hillside. Sample points were 

separated by 10 m. Plots were separated by 30-100 m and covered relatively homogeneous 

vegetation, although they were chosen to represent some variation in canopy heights and 

understory structure. Sampling was performed during the day and the night, as a way of 

increasing sample intensity and collect species with preference for a given period 

(although few species had any preference – see Chapter 5). 
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4.2 Germany 

 The Prinzenberg is a hill in Eberstadt-Darmstadt, southeastern Germany 

(49o50’14”N, 08o40’01”E, altitude ca. 250 m). Regional climate is temperate (Cfb – Köppen). 

Average annual temperature and precipitation is 10.1 ºC and 64 mm per month (Deutsche 

Wetterdienst). 

The site is part of the Naturpark Bergstrasse, which covers a large area between the 

rivers Main, Neckar and Rhine (www.geo-naturpark.net). It is a public park used for a 

wide range of activities related to recreation, local economy and biodiversity protection. 

The vegetation is variable, including patches of mixed forests, beech forests, meadows, 

pastures and orchards. 

In Germany, lower ant species richness and abundance were expected, thus the 

sampling was directed to assess the highest number possible. No distinct nocturnal 

community was expected, thus the sampling was performed only during the day, but with 

an increased effort of 80 sample points. Three plots were established to cover different 

vegetations: (1) a patch of mixed forest dominated by oaks; (2) a patch of nearly-

monotypic beech forest; (3) an open meadow/apple orchard. 

My exploratory samples revealed ca. 20 ant species across the site, but only seven 

provided enough records to be included in this work (Chapter 7). These seven included 

Formica fusca and Myrmica rubra, thus we chose them for the fatty acid experiment 

(Chapter 6), although in this case colonies were obtained from a specialized store 

(Antstore, www.antstore.net). 
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5. Natural history of ants: what we (do not) know about trophic and temporal niches of 

Neotropical species 

Félix Baumgarten Rosumek. 2017. Published in Sociobiology 64(3): 244-255 (full text in 

Annex II). 

Synopsis: Our understanding of the natural history of Neotropical ants is limited, due to 

lack of descriptive efforts and widespread use of morphospecies in literature. Use of 

trophic resources and period of activity are two central niche aspects little explored for 

most species. This work aimed to broadly review the literature and provide empirical field 

data on these aspects for 23 species. The fieldwork was carried out in the Atlantic forest of 

southern Brazil. Trophic and temporal niches were assessed with pitfall traps and seven 

kinds of bait representing natural resources. Crushed insects were the preferred resource, 

whereas bird feces and living prey were less exploited. Most species broadly used the 

resources, but pronounced quantitative differences were found. Odontomachus chelifer 

(Latreille, 1802) and Pachycondyla striata Smith, 1858 were relatively well studied and field 

data matched previous accounts. They were the only species that consistently used large 

prey, and avoided oligosaccharides. Wasmannia auropunctata (Roger, 1863) differed 

remarkably from previous studies, using feces as its sole trophic resource. The six Pheidole 

species had no previous records and presented quantitative differences in resource use. 

Most species had no strong preference for period of activity. Camponotus zenon Forel, 1912 

was nocturnal and Crematogaster nigropilosa Mayr, 1870, Linepithema iniquum (Mayr, 1870) 

and Linepithema pulex Wild, 2007 were diurnal. Complementary methods, context-

dependence and descriptive studies have a central role in the understanding of ant natural 

history. Community assessments can contribute significantly to this knowledge if 

researchers also pay attention to the individual species involved. 
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6. Patterns and dynamics of neutral lipid fatty acids in ants – implications for ecological 

studies 

Félix Baumgarten Rosumek, Adrian Brückner, Nico Blüthgen, Florian Menzel and Michael 

Heethoff. 2017. Published in Frontiers in Zoology 14:36 (full text in Annex III). 

Synopsis: Trophic interactions are often difficult to observe directly. Several indirect 

techniques, such as fatty acid analysis, were developed to assess these interactions. Fatty 

acid profiles may indicate dietary differences, while individual fatty acids can be used as 

biomarkers. Ants are among the most important terrestrial animal groups, but little is 

known about their lipid metabolism, and no study so far used fatty acids to study their 

trophic ecology. We set up a feeding experiment with high- and low-fat food to elucidate 

patterns and dynamics of neutral lipid fatty acids (NLFAs) assimilation in ants. We asked 

whether dietary fatty acids are assimilated through direct trophic transfer, how diet 

influences NLFA total amounts and patterns over time, and whether these assimilation 

processes are similar across species and life stages. Ants fed with high-fat food quickly 

accumulated specific dietary fatty acids (C18:2n6, C18:3n3 and C18:3n6), compared to ants 

fed with low-fat food. Dietary fat content did not affect total body fat of workers or 

amounts of fatty acids extensively biosynthesized by animals (C16:0, C18:0, C18:1n9). 

Larval development had a strong effect on the composition and amounts of C16:0, C18:0 

and C18:1n9. NLFA compositions reflected dietary differences, which became more 

pronounced over time. Assimilation of specific dietary NLFAs was similar regardless of 

species or life stage, but these factors affected dynamics of other NLFAs, composition and 

total fat. We showed that ants accumulated certain dietary fatty acids via direct trophic 

transfer. Fat content of the diet had no effect on lipids stored by ants, which were able to 

synthesize high amounts of NLFAs from a sugar-based diet. Nevertheless, dietary NLFAs 

had a strong effect on metabolic dynamics and profiles. Fatty acids are a useful tool to 

study trophic biology of ants, and could be applied in an ecological context, although 

factors that affect NLFA patterns should be taken into account. Further studies should 

address which NLFAs can be used as biomarkers in natural ant communities, and how 

factors other than diet affect fatty acid dynamics and composition of species with distinct 

life histories.  



	
	

	 23 

7. Unveiling community patterns and trophic niches of tropical and temperate ants 

using an integrative framework of field data, stable isotopes and fatty acids 

Félix Baumgarten Rosumek, Nico Blüthgen, Adrian Brückner, Florian Menzel, Gerhard 

Gebauer and Michael Heethoff. 2017. Published in PeerJ 6:e5467 (full text in Annex IV). 

Synopsis: The use and partitioning of trophic resources is a central aspect of community 

function. On the ground of tropical forests, dozens of ant species may be found together 

and ecological mechanisms should act to allow such coexistence. One hypothesis states 

that niche specialization is higher in the tropics, compared to temperate regions. However, 

trophic niches of most species are virtually unknown. Several techniques might be 

combined to study trophic niche, such as field observations, fatty acid analysis and stable 

isotope analysis. In this work, we combine these three techniques to unveil partitioning of 

trophic resources in a tropical and a temperate community. We describe patterns of 

resource use, compare them between communities, and test correlation and 

complementarity of methods to unveil both community patterns and species’ niches. 

Resource use was assessed with seven kinds of bait representing natural resources 

available to ants. Neutral lipid fatty acid (NLFA) profiles, and δ15N and δ13C isotope 

signatures of the species were also obtained. Community patterns and comparisons were 

analyzed with clustering, correlations, multivariate analyses and interaction networks. 

Resource use structure was similar in both communities. Niche breadths (H’) and network 

metrics (Q and H2’) indicated similar levels of generalization between communities. Stable 

isotope signatures and NLFA profiles also indicated high generalization, although the 

latter differed between communities, with temperate species having higher amounts of fat 

and proportions of C18:1n9. Bait use and NLFA profile similarities were correlated, as well 

as species’ specialization indices (d’) for the two methods. Similarities in δ15N and bait use, 

and in δ13C and NLFA profiles, were also correlated. Our results agree with the recent 

view that specialization levels do not change with latitude or species richness. Partition of 

trophic resources alone does not explain species coexistence in these communities, and 

might act together with	 behavioral and environmental mechanisms. Temperate species 

presented NLFA patterns distinct from tropical ones, which may be related to 

environmental factors. All methods corresponded in their characterization of species’ 

niches to some extent, and were robust enough to detect differences even in highly 
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generalized communities. However, their combination provided a more comprehensive 

picture of resource use. Method complementarity was particularly important to 

understand individual niches of the most specialized species, such as Wasmannia 

auropunctata and Lasius fuliginosus. Fatty acid analysis was applied here for the first time in 

ant ecology, and proved to be a valuable tool due to its combination of specificity and 

temporal representativeness. We propose that a framework combining field observations 

with chemical analysis is valuable to understand resource use in ant communities.  
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8. Conclusions 

In this work, I and my coauthors described resource use in two ant communities. I 

started from the basics, observing what they do in the field and assessing what was known 

about them (Chapter 5). Then we investigated lipid metabolism of ants, to allow a proper 

application of fatty acid analysis to this group (Chapter 6). Finally, we put together data 

from the three methods applied and described resource use patterns of both communities, 

compared them, and discussed in detail individual niches of some species (Chapter 7). 

“Yes, yes… But what do ants eat, after all?” 

Well, the overall picture we obtained is not much different from the answer of one 

of our friends at the beginning: ants eat everything. By this, I mean that one of our main 

results is the high level of generalism and strong overlap in resource use, observed in both 

communities. This study has a limited geographic scope, and we cannot straightforwardly 

extrapolate our results to other communities. However, the observed patterns of resource 

use, network metrics, niche breaths and stable isotopes signatures were not only 

qualitatively, but quantitatively very similar between these two communities, which 

strongly differed in their species richness, taxonomic composition and habitat structure. 

This is a hint that similar patterns can occur elsewhere. 

It should be no coincidence that five of the six3 largest ant genera are 

predominantly generalists (Camponotus, Pheidole, Polyrhachis, Tetramorium and 

Crematogaster). Generalists are less vulnerable to scarcity or fluctuations in particular 

resources, and can more easily establish colonies in different contexts.  For a species to 

become a specialist, it should have faced strong competitive pressure in the past, and 

adapted to avoid competition with superior generalists or be extinct. Hence, specialization 

per se is not an advantageous trait, but simply consequence of “the ghost of lousiness 

past”. Naturally, we still observed several specialist species in the tropical community, but 

their overall abundance paled in comparison to the core of generalist species. The same is 

true for the temperate community: Lasius fuliginosus is the most specialized species there, 

but only a single colony was found in our study grids. 

																																																													
3 The exception is Strumigenys, the third largest ant genus, with many species considered specialist predators 
of collembolans or other arthropods. However, direct observation of these minute leaf-litter ants in the field 
is barely possible, and few species were studied in laboratory. 
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Another finding that might be general is the differences in fatty acids between 

temperate and tropical ants. The amounts and compositions we observed in temperate 

field samples (Chapter 7) were similar to the ones we observed in colonies of two species 

of the laboratory study (Chapter 6), which were not from of the same location and lived 

under completely different conditions. The generality of such patterns might be easily 

tested with more sampling, as well as the mechanisms we proposed for the strong 

differences from tropical species. 

The temperature-unsaturation hypothesis is particularly intriguing. There is no 

physiological “need” for the observed levels of C18:1n9 during summer. However, do ants 

need to change something, in the first place? Neutral fatty acids are stored in droplets 

inside cells of the fat body (Roma et al. 2010). They share the same properties of membrane 

phospholipids regarding fluidity and temperature effects (Jagdale and Gordon 1997). If 

such droplets are too solid, enzyme access and mobilization may be hindered. Contrary to 

membrane lipids, would an “excessively fluid” fatty body be a problem? If there is also no 

real need to increase saturation during summer, temperate ants might keep high levels of 

C18:1n9 all the time, and avoid the energetic cost of re-synthesize them every year. 

 

8.1. What does allow coexistence between ant species? 

High overlap does not mean that all species have the same niches and preferences, 

as showed in Chapter 5. Some preferences may still play a role in the coexistence of similar 

species. It means, however, that each resource is used by many species, so there is strong 

competition for them. Hence, trophic niche partitioning does not seem to be one of the 

main mechanisms of coexistence between epigeic ants. What might be, then? 

Behavioral coexistence is relatively well-studied in ants. Andersen (1995, 1997) 

applied a behavioral hierarchy to Australian ants, and later compared it to North 

American communities. “Dominant” ants mass-recruit to food sources and aggressively 

defend their territory, excluding weaker colonies of dominant competitors. However, 

“subordinate” ants, which forage individually and/or move fast enough to dodge the 

dominants, are able to access the resources simultaneously, or before it get completely 

occupied by them. Savolainen and Vepsäläinen (1988) described an analogous hierarchy 
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for a boreal community. Something similar happens in “ant mosaics”, which were 

proposed for arboreal ants: dominant ants would exclude each other, creating patches 

were just one species is found, while the subordinate species may still coexist with them 

(Blüthgen and Stork 2007). 

One of the most “popular” mechanisms of coexistence proposed in the last decades 

was the “discovery-dominance tradeoff” (Fellers 1987). Sharing similarities with the 

previous ones, this hypothesis states that dominant species are slower to find and recruit 

to food sources, which gives time to faster species to explore the resource before complete 

domination. The hypothesis has drawn much attention since its proposal (Davidson 1998, 

Adler et al. 2007), but apparently the trade-off is not predominant among communities, 

and domination and discovery abilities are often correlated (Parr and Gibb 2012). 

 In some cases, it was shown that an external factor disrupts competitive hierarchies, 

reducing the competitive pressure caused by dominant species. Lower tolerance of 

dominant species to higher temperature allows coexistence of subordinate, but more 

tolerant, species in Mediterranean communities (Cerdá et al. 1997). Preference of phorid 

parasitoids by dominant ants, which are attacked during foraging and recruitment to the 

resource, was also suggested as lowering competition in some contexts (Feener et al. 2008).  

 Finally, dispersion and recruitment effects still are little explored for ants. In this 

sense, ants share relevant traits with plants, more than with free-living animals. Colonies 

are sessile and restricted to the resources around the nests. However, they have winged 

reproductives and their dispersion is less constrained. Mature colonies have a strong local 

impact, and may easily displace or starve to death younger colonies (Adams 2016). 

Dispersion allows species to find free spots in the habitat and, given enough time to grow, 

an established colony may persist and avoid the establishment of theoretical stronger 

competitors, thus allowing long-term coexistence of all these species in the community. 

Stochastic dispersion combined with equivalent competitive abilities is at the core of 

“neutral” theories of community organization (Rosindell et al. 2011). These models were 

successful in describing patters in some communities, but many other studies failed to 

support them (Scheffer et al. 2018). So far, they have not been empirically tested in ants. 

Studying dispersion and recruitment dynamics of ants brings its own methodological 
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challenges, though: established colonies are relatively long-lived, and newly founded 

nests are difficult to track. 

 In the end, there are so many mechanisms showed to enhance ant coexistence in 

diverse spatial and temporal scales that is hard to generalize them (Andersen 2008). This 

does not constitute a problem per se. Community ecology is, at its core, a science of case 

studies (Simberloff 2004). The background of studies in community organization allows a 

researcher to explore several hypotheses to explain how and why a particular community 

is organized. Trophic niche partitioning plays a relatively small role in organization of the 

two communities in this thesis. New studies may test other hypothesis and, ultimately, 

integrate results to test the relative weights of each mechanism on these specific 

communities. 

 

8.2. Resource use and conservation of ecosystems 

 And for what would we bother with all of this? I took a “basic science” approach in 

this thesis, studying trophic niche of ants for the simple sake of knowing how a few 

elements of the universe work. However, due to the central importance of resource use for 

all aspects of ecosystem functioning, the findings have direct implications to conservation 

and management. High overlap in resource use (and its independence from species 

richness) shows that many species contributes for each processes (predation, scavenging, 

nectar use, etc.) related to flow of matter and energy. From a utilitarian viewpoint, what 

matter are not the species or individuals themselves, but the maintenance of the ecosystem 

processes and the services it provides4 (Rosumek and Martins 2010). Given the similarities 

among the abundant generalists, the loss of some species would not affect these processes. 

The rare species, although often having specialized niches, have a relatively small 

contribution to this. 

A case might be made for Pachycondyla striata and Odontomachus chelifer in Brazil: 

these were the only two species which consistently hunted large prey. Their loss could 

open a functional gap in the system. Wasmannia auropunctata has a unique niche, but, 

																																																													
4 “Services for whom?” The ones asking themselves why conserve and manage to begin with, naturally (in 
this case, humans). 
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although frequently recorded, they seem to have very small colonies in that community5. 

Thirty-one other species used feces, accounting for 91% of the records, so Wa. auropunctata 

is not a key species in this process. 

In Germany, Lasius fuliginosus has a specialized niche and strong local impact, 

although nests are scattered around the community. Resource use was very similar among 

other species, but Lasius niger had a notable presence: it recruited an average of 60 

individuals per bait (and sometimes many hundreds), two times more than the second 

strongest recruiter, Lasius platythorax. I did not analyze recruitment rates in this work, and 

comparisons cannot be made so straightforwardly, but it is a crucial aspect to analyze 

resource use from the ecosystem perspective. 

All these species are quite widespread, abundant and not particularly vulnerable to 

extinction. Exactly because of this, they are fundamental to the conservation of ecosystem 

processes, and might represent a robust buffer against species loss. Logically, one of the 

main problems of discussing species redundancy is the restricted scope in time, space and 

number of functions assessed in ecological studies, including ours (Rosenfeld 2002). Other 

factors should be taken into account before taking managing actions to ignore or enhance 

the survival of any particular species. 

 

8.3. Next steps: resource use and ant morphology 

 After assessing ant’s actions in the field and their body chemistry, our next step will 

be to look at their morphology. The morphology of an organism generally is linked to its 

ecology (Hespenheide 1973). For ants, the mouthparts understandably are the structures 

most directly related to resource use (Paul 2001). However, they must also serve to a 

number of activities, such as carrying the brood and digging nest galleries. Mandibles and 

their associated muscles must combine speed, strength and precision for both demanding 

and delicate tasks. Other morphological traits influence resource use as well: the neck joint 

supports all the load of a food item carried by ant ants often smaller than it (Nguyen et al. 

2014); the previously cited proventriculus determines if an ant can digest solid food or not 

																																																													
5 Few individuals were collected in the baits (mean of 1.9, with maximum of 7), and intensive search during 
the second round of fieldwork failed to reveal any colony. 
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(Eisner 1957); and basic traits such as size and body shape determine what an individual 

can do. 

 Due to the hindrances of obtaining accurate field measurements for natural 

communities, morphology sometimes is advocated as a proxy for understanding 

ecological phenomena (Ricklefs and Travis 1980). This approach has been applied in 

studies of functional ecology of ants (Kaspari and Weiser 1999, Weiser and Kaspari 2006, 

Bihn et al. 2010, Silva and Brandão 2010, 2014). Usually the functionality of morphological 

traits in these studies is inferred, rather than measured. Although convenient and 

informative, a priori grouping based on inferences can lead to artificial assemblages (Blaum 

et al. 2011). Only recently quantitative correlations between ant morphology and niche 

traits started to be explored (Gibb and Parr 2013, Gibb et al. 2015). 

If there is a strong link between morphology and resource use, some traits may then 

serve as "morphological markers", which directly reflect a function, but are easier to 

measure than the function itself (Violle et al. 2007). However, such relationships may be 

not so strong, particularly in ants, where eusociality also affects the types and sizes of food 

items gathered (Traniello 1989). Morphology may influence, but not predict, functionality. 

Regardless of the use of inference or empirical data, almost all works linking 

morphology to function in ants use linear measures, obtained with a stereomicroscope. 

Such measures are rooted in taxonomical studies, with the purpose of having equivalent 

measures to compare and classify species. An important example is the mesosoma length, 

or “Weber’s length” (Weber 1938), used as a proxy for total size of ants (Weiser and 

Kaspari 2006, Silva and Brandão 2010, 2014, Gibb and Parr 2013, Gibb et al. 2015). 

Mesosoma length is easier to measure than total length, and the mesosoma size is 

relatively stable, while the gaster may be expanded in specimens conserved in ethanol 

and/or will full crops. However, although easily comparable and convenient for 

taxonomic purposes, it is seldom tested whether it accurately represents body length or 

volume. In a later work with a single species, Weber (1946) stated that there was a 0.9 

correlation between mesosoma length and total body length, but chose to use the latter. 

Kaspari and Weiser (1999) proposed different measurements as best predictors of body 

mass for each subfamily, but did not test mesosoma length. For functional morphology, 
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measurements should be comparable, but it is also important to know how much they 

reflect actual body size, volume or shape. 

As a part of this thesis, we acquired X-Ray microtomographies using synchrotron 

facilities at ANKA (University of Karlsruhe) and DESY (University of Hamburg). These 

tomographies allow construction of tridimensional models of external body surface and 

internal structures of organisms. We obtained them for most species collected, as well as 

other species from South America, Africa and Southeast Asia, to get a broad taxonomic 

and geographic representation of ant morphology. They will be used to: (i) establish the 

best linear predictors, if any, of tridimensional ant morphology; and (ii) relate 

morphological traits to our observed field and chemical data, focusing in mandibles, head 

muscles and other structures related to resource use. 

 

8.4. Concluding remarks 

 The main contributions of this thesis were: the description of trophic niches of 

several, mostly unknown, tropical species (Chapter 5 and 7); the first description of fatty 

acid assimilation in ants (Chapter 6); the first application of fatty acid analysis in an 

ecological context for ants, and the finding that fatty acid compositions represent 

similarities in trophic niches (Chapter 7); and the observation of similar patterns of 

resource use and generalization in two very distinct ant communities (Chapter 7). 

 Local descriptive works are nowadays somewhat devalued in many scientific 

spheres. However, they constitute the building blocks from where hypotheses may be 

raised, and the first step to understand and organize the universe (Greene 2005). This is 

fully applicable here: the basic knowledge my coauthors and I gathered adds to our basic 

scientific knowledge, but also opens many new research avenues. From now on, we may 

ask more specific questions and tests biological hypothesis related to niche of some species 

(why is the little fire ant so strange in that community after all?), mechanisms behind NLFA 

compositions of temperate ants, and the generality (or not) of the observed patterns. 

Finally, we look forward to improve and expand the application of fatty acid analysis in 

ecology, which can be used to answer many questions not only for ants, but for terrestrial 

organisms in general.  
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Annex I 

	

Figure 1: maps of the study sites. In (a) and (c) the setae indicate location of the sites in 
South America and Europe. In (b) and (d) the circles indicate the study sites within the 
local context in Brazil and Germany, respectively.  

(a) (b) 

(c) (d) 
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Introduction

Ants (Hymenoptera: Formicidae) are among the most 
abundant groups of invertebrates in terrestrial ecosystems, 
presenting a wide variety of feeding habits, nesting sites, and 
interactions with organisms from all trophic levels (Kaspari, 
2000). They are the subject of extensive and diversified 
research, in basic and applied science. Despite this, in all 
tropical regions, the biology of most species is virtually 
unknown, due to a combination of high richness, taxonomic 

Abstract 
Our understanding of the natural history of Neotropical ants is limited, due to lack 
of descriptive efforts and widespread use of morphospecies in literature. Use 
of trophic resources and period of activity are two central niche aspects little 
explored for most species. This work aimed to broadly review the literature and 
provide empirical field data on these aspects for 23 species. The fieldwork was 
carried out in the Atlantic forest of southern Brazil. Trophic and temporal niches 
were assessed with pitfall traps and seven kinds of bait representing natural 
resources. Crushed insects were the preferred resource, whereas bird feces 
and living prey were less exploited. Most species broadly used the resources, 
but pronounced quantitative differences were found. Odontomachus chelifer 
(Latreille, 1802) and Pachycondyla striata Smith, 1858 were relatively well 
studied and field data matched previous accounts. They were the only species 
that consistently used large prey, and avoided oligosaccharides. Wasmannia 
auropunctata (Roger, 1863) differed remarkably from previous studies, using 
feces as its sole trophic resource. The six Pheidole species had no previous 
records and presented quantitative differences in resource use. Most species 
had no strong preference for period of activity. Camponotus zenon Forel, 1912 
was nocturnal and Crematogaster nigropilosa Mayr, 1870, Linepithema iniquum 
(Mayr, 1870) and Linepithema pulex Wild, 2007 were diurnal. Complementary 
methods, context-dependence and descriptive studies have a central role 
in the understanding of ant natural history. Community assessments can 
contribute significantly to this knowledge if researchers also pay attention to 
the individual species involved.
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uncertainty, lack of descriptive studies and widespread use of 
morphospecies in literature (Krell, 2004; Greene, 2005).

Two fundamental aspects that remain elusive for many 
tropical species are trophic and temporal niche. Ants in general 
are regarded as omnivorous, feeding on a combination of 
live prey, dead animals, seeds and plant exudates, with some 
notorious specialized behaviors such as fungus cultivation and 
pollen consumption (Kaspari, 2000; Blüthgen & Feldhaar, 
2010). At genus or species level, they are sometimes classified 
in broad groups or guilds like “generalist predators” or simply 
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“generalists” (Brandão et al., 2012). These generalizations 
have an important role to understand communities, but also 
leave out the remarkable variation among species in nature. 
This specific information can be assessed from indirect sources 
such as body ratios of stable isotopes (Blüthgen et al., 2003) and 
remains found in nests (Lattke, 1990), and direct observation 
such as interaction with plant resources (Byk & Del-Claro, 
2010) and items carried to nests (Medeiros & Oliveira, 2009; 
Raimundo et al., 2009). Every approach has its focus and 
limitations, and adds a piece to the puzzle that is the niche of 
a species.

In turn, studies on temporal niche of ants are common 
in open areas and/or temperate habitats, where the fluctuations 
in abiotic factors could have a stronger effect on ant activity. 
This variation is often linked with temporal niche partitioning 
and coexistence of competing species (Lessard et al., 2009; 
Anjos et al., 2016). Less information is available for tropical 
forests (e.g. Medeiros & Oliveira, 2009; Raimundo et al., 
2009; Feitosa et al., 2016). Inside a forest, less variation would 
be expected, because daily changes in temperature, humidity 
and wind are smaller. However, temporal niche could still be 
affected by the existing fluctuations or by competitive pressure.

In view of the importance of both use of trophic 
resources and period of activity, and considering the lack 
of information available for most Neotropical species, this 
work aims to quantify use of trophic resources and period of 
activity of ground-dwelling ants from a Neotropical forest. 
An extensive literature review was performed to assess how 
much is known about these individual species and compare 
results from the viewpoint of complementarity of methods and 
ecological context-dependence. These case studies highlight 
that descriptive studies are still fundamental for tropical 
faunas. In this sense, broader ecological assessments can give 
a significant contribution, if researchers also pay attention to 
the individual species involved.

Methods

Study area and sample design

Fieldwork was carried out in Desterro Conservation 
Unit, Florianópolis, south Brazil (27o31’38’’ S, 48o30’15’’ 
W, altitude ca. 250 m), between December 2015 and January 
2016. Average annual temperature and precipitation is 20.5 
ºC and 140 mm per month (data from meteorological station of 
EPAGRI/CIRAM). Vegetation consists of secondary Atlantic 
forest sensu stricto (= ombrophilous dense forest) with at 
least 60 years of relatively undisturbed regeneration. This 
work was conducted in accordance with Brazilian laws, under 
authorization SISBIO number 51173-1.

The sampling was based on the recent design of 
Houadria et al. (2015) to assess community patterns on 
resource use and daily activity, but here its suitability to 
understand individual species is explored. Four plots with 4 x 
4 sample points (16 per plot) were set up, with distances from 

30 to 50 m between plots. Distance between sample points 
was 10 m. The baits were set up in transparent plastic boxes 
with diameter of 10 cm and ground-level slits that allowed 
the entrance of ants, and retrieved after 90 minutes. All 
individuals were collected from the baits in laboratory and 
stored in ethanol 70% for subsequent sorting.

Seven baits were offered as proxies for common resources 
available to ants (Table 1; see Supplementary Material for 
details on bait display and rationale for their choice). In each 
round, only one bait was offered per sample point, and bait 
types were mixed among points, with a similar number of 
points receiving each type (8-9 per round). Fourteen baiting 
rounds were performed, with only one period sampled each 
day, at daytime (around 13:00-15:30) or nighttime (around 
21:00 – 23:30). In total, 896 baits were applied in the 64 sample 
points, with all seven baits being offered in each sample point 
two times (one at day and one at night). This design is suitable 
to assess multidimensional trophic niches, which are inferred 
from how often ants use each resource. Hence, “preferences” 
means simply relative high use of certain resources. Distance 
between each colony and the bait does not change from one 
resource to another, and the use of one resource does not affect 
the other. Thus, it differs from a typical cafeteria experiment, 
which is designed to assess preferences through choices among 
different resources offered at the same time (Krebs, 1999).

An independent community assessment was performed 
with three rounds of pitfall trapping, alternated with bait 
rounds. The plastic cups were 6 cm wide and contained 
propylene glycol 50% and a small amount of neutral detergent. 
Cups were buried previously and replaced after each round 
to avoid the digging-in effect. Pitfalls stayed opened for 10 
hours during the day and 9 hours during the night (due to 
short summer nights), then an extra 3-hour nocturnal round 
was performed. One nocturnal and one diurnal pitfall round 
were performed in sequence, separated by intervals to avoid 
dusk and dawn times.

	
Specimen processing and identification

For each sample point, at least one individual per 
morphospecies was mounted. They were identified to genus 
level with Baccaro et al. (2015) and to species level with 
taxonomic revisions, and comparison to identified specimens 
in collections and Antweb images (AntWeb, 2016). The 
taxonomic sources used were: Crematogaster – Longino 
(2003); Cyphomyrmex – Kempf (1965) and Snealling and 
Longino (1992); Gnamptogenys – Lattke (1995); Hylomyrma 
– Kempf (1973); Linepithema – Wild (2007); Odontomachus 
and Pachycondyla – Fernández (2008); Pheidole – Wilson 
(2003); Wasmannia – Longino and Fernández (2007). 
Camponotus and Strumigenys were identified just by 
comparison with collections. The identifications were 
partially confirmed by taxonomists of the Laboratory of 
Ant Systematics and Biology, Federal University of Paraná, 
Brazil (see Acknowledgements). Vouchers were deposited at 

http://periodicos.uefs.br/index.php/sociobiology/rt/suppFiles/1623/0


FB Rosumek – Natural history of Neotropical ants246

the Laboratory of Ant Biology, Federal University of Santa 
Catarina, Brazil, and at the Ecological Networks research 
group, Technical University of Darmstadt, Germany.

Analysis

For analysis and literature review of trophic niche, 
all species with at least 10 bait records were included, and 
for daily activity all species with at least 6 records on baits 
and pitfalls. The systematic literature review included the 
following sources: search for species names in Google Scholar; 
original descriptions; taxonomic revisions and references therein; 
references found in AntWiki (AntWiki, 2016). In case of 
species subject to name changes, older versions were also 
considered. Taxonomic history and current nomenclature of 
species were checked with AntCat (Bolton, 2016). Distribution 
records were retrieved from AntMaps (Janicki et al., 2016). A 
representative, species-specific, literature on trophic and temporal 
niche for these species was gathered. Artificial breeding diets 
for laboratory colonies were not included, and use of generic 
baits (e.g. tuna, cookies) was considered just when relevant to 
discuss trophic niche.

Data is shown as proportions of records in each bait 
type/period relative to the total records for that species. For 
bait use, day and night records were not pooled. Records for 
the pitfall replicas of each period were pooled for every point. 
Differences were tested with two-tailed exact multinomial 
and binomial goodness-to-fit tests against a hypothesis of no 
preference, that is, equal proportions expected for each bait 
(1/7 or 0.14) or period (1/2 or 0.5). Tests were run in R 3.3.0 
(R Core Team, 2016). Exact tests are the most appropriate for 
nominal variables with small sample sizes (McDonald, 2014), 
but are limited nonetheless. A non-significant result could 
mean either low sample size or very generalist diet/activity. 
Species with low number of records and non-significant 
results are discussed more briefly, since their results may not 
quantitatively represent their trophic niche.

Results

Seventy-six morphospecies were collected. It was 
possible to name 46 species, of which 23 had at least 6 records 
and 15 at least 10 (Table 2; see Supplementary Material for 
records of the remaining identified species).

A similar number of species was recorded in most 
bait types, but they differed greatly in the number of records 
and individuals attracted (Table 1). Crushed insects not 
only attracted ants more often, but also triggered larger 
recruitments. Seeds were extensively used by many species, 
but no specialized granivory was detected. Crickets attracted 
less species and were the resource less exploited overall. 
Feces and termites also presented a lower number of records 
and small recruitments compared to other resources.

Almost all common species (= frequent in pitfalls and/
or in sample points) were well represented in baits (Table 2, 

Supplementary Material). The only species conspicuously 
absent was Pachycondyla harpax (Fabricius, 1804) and, to 
a lesser extent, Cyphomyrmex rimosus (Spinola, 1851) and 
Hylomyrma reitteri (Mayr, 1887).

The use of trophic resources is discussed in the 
following sections (Fig 1). Literature review, results and 
discussion are presented for every individual species or 
genus. Period of activity is presented afterwards, for all 
species combined (Fig 2). General aspects are explored in a 
final Discussion section.

Gnamptogenys striatula Mayr, 1884 (Ectatomminae)

This species (or species complex – Arias, 2008; G. P. 
Camacho, UFPR, personal communication) is a rare example 
of a Neotropical ant extensively studied in the laboratory, 
covering many aspects of its biology (e.g. Giraud et al., 
2000; Kaptein et al., 2005). However, the only information 
available about its trophic niche in the wild comes from Lattke 
(1990), who reports remnants of several insect orders inside 
nests, and posteriorly called it “a generalist epigeic forager 
of humid forests” (Lattke, 1995). A recent account recorded 
it rarely on experimental vertebrate carcasses left to rot in a 
forest, predating the larvae and pupae of necrophagous insects 
(Paula et al., 2016).

In accordance with this short background, the species 
was observed using termites frequently, but crushed insects, 
feces and sucrose were important as well (Fig 1). Hence, 
the species will scavenge and consume sugar when given 
the opportunity (but notice the lower use of melezitose, 
discussed in the next section). The relatively high use of 
feces, a less preferred resource overall, is a noteworthy feature 
that differentiates G. striatula from most other species of this 
study, particularly the two “generalist predators” discussed next.

Odontomachus chelifer (Latreille, 1802) and Pachycondyla 
striata Smith, 1858 (Ponerinae)

These two widespread species radically differ in 
morphology, but are similar in many aspects, therefore is 
appropriate to discuss both together. They are one of the 
most conspicuous elements of the southern Atlantic forest 
ground fauna, due to their abundance, solitary foraging mode 
and large size. Also, they are two of the most well-known 
species included in this study, and several account showed 
a multitude of functional roles and a broad trophic niche for 
them. Observation of nest entrances showed that 80-90% of 
the items carried by Pa. striata were arthropod parts, mostly 
termites and other ants, the remaining consisting of plant 
material (Giannotti & Machado, 1991; Medeiros & Oliveira, 
2009). Through direct observation, Medeiros and Oliveira 
(2009) also showed that scavenging accounts for more than 
80% of its foraging behavior. On the other hand, Fowler (1980) 
reported O. chelifer preferences for certain termite species 
in laboratory, and qualitatively stated that in the field prey 
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consisted almost entirely of termites. In the Atlantic forest, all 
items carried to nests were arthropods, mainly termites, but 
other animal groups accounted for 60% of them (Raimundo et 
al., 2009). Scavenging was also cited in this study, although 
not quantified. Both O. chelifer and Pa. striata were recorded 
on experimental carcasses predating the larvae and pupae of 
necrophagous insects (Paula et al., 2016).

Other important items used by the two species are 
seeds with elaiosomes and other fallen diaspores rich in 
proteins and lipids, frequently collected from the ground in 
the Atlantic forest (Pizo & Oliveira, 2000; Passos & Oliveira, 
2002, 2004). Field records on use of liquid sugars are scant 
and qualitative. Odontomachus chelifer was not observed 
using extra-floral nectaries (EFNs) by Raimundo et al. (2009), 
while there is one record for Pa. striata (in Cerrado, the 
Brazilian savannah – Byk & Del-Claro, 2010).

The results presented here are mostly consistent with this 
broader picture (Fig 1). Both species used more frequently 
dead insects, sucrose and large prey. In fact, they were the 
only two species consistently recorded on crickets. The low 
frequency in termite baits is unexpected and probably represents 
a methodological artifact. These large solitary foragers were 
observed quickly collecting termites (even glued ones) 
and leaving the baits in a few minutes, contrary to ants of 
smaller species that were recruited to them. In cricket baits, 
however, the two species spent more time, trying to carry out 
the tied cricket or dismembering it.  Smaller ants frequently 
took advantage of this to grab the remains or lick spilled 
hemolymph. This largely contributed to the richness found 
in this bait (Table 1) and could happen in nature, whenever 
predators kill prey too large to carry them out at once.

Besides predation, scavenging was a common behavior, 
and P. striata in particular would prioritize it whenever 
possible, in accordance with what was observed by Medeiros 
and Oliveira (2009). This could be result of their morphology, 
because the triangular mandibles may be more suited to chop 
large carcasses than the trap-jaws of O. chelifer. In addition, 
it could be an effect of competition. The two species were 
never found at the same bait, and co-occurred in just 10 of 
the 62 points where they were recorded (Table 2). The two 
were previously reported to avoid each other, but, when 

agonistic interactions occur, Pa. striata usually is the winner, 
and can steal the food or kill (and eat) O. chelifer (Medeiros 
& Oliveira, 2009; Raimundo et al., 2009). Thus, Pa. striata 
could displace O. chelifer and maintain control of a valuable 
resource such as dead arthropods through tandem recruitment 
(Medeiros & Oliveira, 2009; Silva-Melo & Giannotti, 2012), 
while cooperative foraging behavior was not observed in O. 
chelifer (Raimundo et al., 2009).  Effectively, the average 
numbers of workers per bait was smaller for the latter species 
(O. chelifer = 1.4 ± 0.9; Pa. striata = 2.5 ± 2; Mann-Whitney, 
z = -2.27, p = 0.02).

Both species used sucrose frequently. They were never 
observed foraging on trees or low vegetation in this study, 
which fits previous accounts (Fowler, 1980; Medeiros & 
Oliveira 2009), so it is unlikely that they commonly use nectar 
as food source. This behavior also should limit honeydew use 
by them. Effectively, the difference between use of sucrose 
and melezitose is remarkable here. Ants differ in their sugar 
preferences/tolerances, and melezitose is highly attractive 
to some species, and less so for others (Völkl et al., 1999; 
Blüthgen & Fiedler, 2004). In some insects, weak or negative 
effect of melezitose on fitness was observed (Zoebelein, 
1956; Chen & Fadamiro, 2006), and some evidence points out 
to reduced suitability of aphid oligosaccharides for predators 
(Wäckers, 2000). The low number of records for these ant 
species, even when melezitose was readily available, suggests 
a physiological constraint to the use of complex sugars. While 
some congeneric species are known to visit EFNs or tend 
hemipterans (e.g. O. troglodytes – Lachaud & Dejean, 1991), 
the main source of sugars for these ground foragers in the 
Atlantic forest is more likely to be fallen fruits rich on mono- 
and disaccharides.

Wasmannia auropunctata (Roger, 1863) (Myrmicinae)

This tiny species is native to the Neotropics, but 
infamous as an unpleasant guest worldwide. It is an exotic 
invader on many continents and islands, and also an indoor 
exotic species in colder places (Wetterer & Porter, 2003). 
A large body of knowledge describes how W. auropunctata 
dominate habitats and displace other ants, which often happens 

Table 1 – Baits used to represent natural resources in this work, with total number of species (S), records (BA) and average number of 
individuals ± S.D. (IN) recorded.

Bait Resource represented S BA IN

Living crickets Larger and highly mobile prey 26 107 4 ± 8

Living termites Smaller and slower prey 31 203 4 ± 15

Crushed insects Dead arthropods 33 422 14 ± 38

Chicken feces Bird droppings 32 215 3 ± 5

Seeds mixture Seeds of diverse sizes and shapes, without elaiosomes 32 344 7 ± 10

Melezitose Oligossacharides produced by sap-sucking insects 34 327 6 ± 9

Sucrose Dissacharides present in extra-floral nectar and fleshy fruits 34 366 7 ± 15
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when the species is introduced or, within its native range, in 
crops and other open/disturbed areas. The species is portrayed 
feeding virtually on everything: scavenging; preying on small 
and large arthropods; collecting diversified plant parts; visiting 
extra-floral nectaries and tending honeydew-producing insects 
(Creighton, 1950; Kusnezov, 1952; Smith, 1954; Smith, 1965; 
Fabres & Brown, 1978; Clark et al., 1982; Deyrup et al., 2000; 
Wetterer & Porter, 2003; Longino & Fernández, 2007). Some 
of these authors suggest that honeydew is their main resource, 
such as Clark et al. (1982).

A comparatively small amount of information suggests 
that, inside forests within its native range, the species is not 
nearly as dominant (Majer & Delabie, 1999; Longino & 
Fernández, 2007). Very little is known about W. auropunctata 
habits in this context. Using generic baits, Orivel et al. (2009) 
showed a steep decline in bait use and nest density within 
a gradient from open areas to undisturbed forest. In Atlantic 
forest, ca. 1400 km north of the present study site, Santana et 
al. (2013) qualitatively showed it interacting with seven non-
myrmecophorous diaspores on the ground.

In light of this literature record, it was really surprising 
to find the species to be a strict specialist in feces (Fig 1). In fact, 
it was the only species in this study that used a single resource. 
It was a comparatively frequent species (Table 2), but appeared 

always in low numbers and was not collected in pitfalls. This 
result differs from the widespread use of fleshy diaspores 
found in Santana et al. (2013), and also from the use of baits in 
Orivel et al. (2009). The latter authors suggested that abiotic 
factors play a role in the ecological shift of W. auropunctata 
from open to forest areas. A physiological constraint related 
to environmental conditions (e.g. temperature) could explain 
why the species has a limited role inside forests, and why, in 
a higher latitude, it shifts to a resource less preferred by other 
species. This intriguing behavior will be explored further and 
shows that there are open questions related to this important 
species, particularly outside the invasive context.

Wasmannia affinis Santschi, 1929 (Myrmicinae)

As a small genus (11 species) with one outstandingly 
famous representative, it is not unexpected to find very little 
information on the other Wasmannia (Longino & Fernández, 
2007). That is the case for W. affinis, which has a geographic 
distribution apparently restricted to Atlantic forests of south 
and southwest Brazil. The single record about its feeding 
habits comes from Bieber et al. (2013), who reported it as the 
ant species most frequently interacting with fallen fruits of 
Psychotria suterella (Rubiaceae).

The results for this species were very distinct from 
W. auropunctata (Fig 1). Wasmannia affinis had a smaller 
incidence in the community, but used a broader range of 
resources. Feces were not particularly important, and having 
more records on termites, seeds and melezitose would make 
it unique among species of this work, although it was not 
possible to statistically confirm this pattern.

Pheidole (Myrmicinae)

With over a thousand species described (Bolton, 2016), 
Pheidole usually is the most rich, frequent and abundant genus 
on the ground of tropical and subtropical forests. This was also 
the case here, with 17 species, eight of them fitting previously 
described species. After the literature review, all the previous 
knowledge on these species can be summarized in Wilson’s 
(2003) words: “Biology: unknown”. Not surprising at all, 
taking into account its complicated taxonomic history that 
only recently began to be solved (Wilson, 2003; Longino 
2009). However, identification is a time-consuming task, 
depends on the infrequently collected major workers, and it is 
still common to find new species, which could be the case for 
five morphospecies in the present work (A. C. Ferreira, UFPR, 
personal communication; see Supplementary Material).

Even if often labeled as “generalists”, the little we 
know about Pheidole species shows a diversity of habits 
and functional roles (Wilson, 2003), which is expected for 
such a large genus. In accordance with this, differences were 
found among the six species with at least 10 records (Fig 1). 
Pheidole lucretii Santschi, 1923, Pheidole nesiota Wilson, 
2003, and Pheidole sigillata (Wilson, 2003) had similar 

Species BA PF PT
Camponotus lespesii Forel, 1886 9 1 4
Camponotus zenon Forel, 1912 14 0 10
Crematogaster nigropilosa Mayr, 1870 5 1 5
Cyphomyrmex rimosus (Spinola, 1851) 6 10 15
Gnamptogenys striatula Mayr, 1884 47 26 26
Hylomyrma reitteri (Mayr, 1887) 8 10 13
Linepithema iniquum (Mayr, 1870) 10 0 7
Linepithema micans (Forel, 1908) 16 1 6
Linepithema pulex Wild, 2007 14 1 5
Odontomachus chelifer (Latreille, 1802) 42 12 25
Pachycondyla harpax (Fabricius, 1804) 1 11 10
Pachycondyla striata Smith, 1858 88 58 47
Pheidole angusta Forel, 1908 6 1 4
Pheidole aper Forel, 1912 27 10 10
Pheidole avia Forel, 1908 9 2 5
Pheidole lucretii Santschi, 1923 50 10 13
Pheidole nesiota Wilson, 2003 89 14 19
Pheidole risii Forel, 1892 21 4 5
Pheidole sarcina Forel, 1912 51 13 12
Pheidole sigillata Wilson, 2003 91 25 35
Strumigenys denticulata Mayr, 1887 0 6 6
Wasmannia auropunctata (Roger, 1863) 19 0 16
Wasmannia affinis Santschi, 1929 20 3 6

Table 2 – Species analyzed in this work. BA = total records in baits. 
PF = total records in pitfalls. PT = total records in sample points, 
considering both methods.
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patterns and broadly used the most attractive resources. 
Pheidole sarcina Forel, 1912 included more seeds and feces 
than the others. Pheidole aper Forel, 1912 occupies a distinct 
niche, being the only species in this study that distinctively 
used more melezitose over other resources. Since honeydew 
is the only reliable source of this sugar in nature, interaction 
with sap-sucking insects should be important for this species. 
Finally, there is Pheidole risii Forel, 1892, the very definition 
of a generalist, which used all resources indiscriminately. 
The higher occurrence on living baits set it apart from its 
congeneric species.

Several mechanisms are proposed to explain the 
coexistence of dozens of ant species in a community, 
through a complex interplay of habitat structure, interspecific 
interactions and species traits (Cerdá et al., 2013). Behavioral 

adaptations might be the main factor allowing coexistence 
among Ph. lucretii, Ph. nesiota and Ph. sigillata. But overall, 
the results also suggest that species-specific multidimensional 
trophic niches, presenting quantitative rather than qualitative 
differences, could play a role in coexistence, even among 
related species of the same “generalist” group.

Linepithema (Dolichoderinae)

The case of Linepithema is similar to Wasmannia. 
Besides the invasive and extensively studied Linepithema 
humile (Mayr, 1868), little is known about most species of 
the genus (Wild, 2007). Linepithema micans (Forel, 1908) 
is common in south Brazilian vineyards, strongly associated 
with sap-sucking insects (Morandi Filho et al., 2015). This 

Fig 1 – Use of trophic resources by ant species in southern Brazil. Values above bars are numbers of records. The expected proportions in case 
of no preference for baits (= 0.14). Asterisks indicate statistical significant differences.
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species certainly suffers from a misdiagnosed past, and 
Nondillo et al. (2013) suggest that many previous records 
of L. humile in infested vineyards should be L. micans 
instead. More is known about Linepithema iniquum (Mayr, 
1870), mainly because it also appears as an exotic indoor 
species in North America and Europe. A few instances of 
honeydew and extra-floral nectaries use exist in the literature 
(Wheeler, 1929; Wild, 2007; Schmid et al., 2010) and Smith 
(1929) described it collecting arthropods, although without 
specifying if that meant scavenging or predation. Wild (2007) 
describes it as a primary arboreal ant, but clearly it also forages 
on the ground (Table 2). Finally, Linepithema pulex Wild, 
2007 is one of the smallest and less-known representatives 
of the genus. It was recorded occasionally on experimental 
carcasses, predating the larvae and pupae of necrophagous 
insects (Paula et al., 2016).

None of these species showed statistically significant 
preferences, due to low number of records and use of several 
resources (Fig 1). L. micans and L. pulex seem to use resources 
more broadly than L. iniquum, which might descend to the 
ground mostly to scavenge animal resources. The small 
L. pulex may have stronger carnivorous tendencies and, in 
fact, twice they were able to recruit a few dozens of workers 
and predate crickets just by themselves, a remarkable feat 
considering its size.

Camponotus (Formicinae)

Camponotus is the only ant genus that currently 
rivals Pheidole in richness (Bolton, 2016), but still lacks 
comprehensive revisions at genus level. Accordingly, the 
biology of most tropical species remains unknown, such 
as the two recorded here. Camponotus lespesii Forel, 1886 
is widespread in the Neotropics. Byk and Del-Claro (2010) 
recorded it qualitatively visiting extra-floral nectaries and 
Paula et al. (2016) observed it on experimental carcasses, 

predating the larvae and pupae of necrophagous insects 
and feeding on the carcass itself. Conversely, Camponotus 
zenon Forel, 1912 has its distribution apparently restricted to 
southernmost Brazil and nothing is known about its biology.

The number of records was low for both species, 
precluding clear statistical results, even if their resource use 
was restricted (Fig 1; Ca. lespesii is included only 9 records 
due to its marginally significant result). The few records for 
both species were quite similar, both concentrated on crushed 
insects and sucrose.

Daily activity

In this work, most species have not displayed strong 
tendencies to be active at a particular time (Fig 2). In south 
Brazil, summer is both the warmest and wettest season, and 
any temporal preference that is linked to abiotic factors should 
be at its lowest. Still, some species showed preferences. 
Three species were exclusively, or almost exclusively, diurnal 
(Crematogaster nigropilosa Mayr, 1870, L. iniquum and L. 
pulex) and one nocturnal (Ca. zenon). Gnamptogenys striatula 
showed a moderate, statistically significant, preference for 
the night, and Ph. nesiota for the day. Not much previous 
information on daily activity for individual species was found. 
The ones with information available are discussed below.

A single account of “mainly diurnal activity” exists for 
Ca. lespesii (Byk & Del-Claro, 2010). In this work, performed 
in the Brazilian savannah, most Camponotus species were 
qualitatively classified as diurnals. This is rather distinct from 
the Atlantic forest, where Ca. lespesii had more records at 
night (and Ca. zenon displayed a truly nocturnal behavior). For 
Cr. nigropilosa in Costa Rica, Longino (2003) says “foragers 
may be found day or night”. However, in south Brazil the 
species seems to be a diurnal specialist. For W. auropunctata, 
the lack of preference was the same as previously observed in 
the invasive context (Clark et al., 1982).

Fig 2 – Daily activity of ant species in southern Brazil. The dashed line shows expected proportions in case of no preference 
for period (= 0.5). Asterisks indicate statistical significant differences.
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The studies in the Atlantic forest with O. chelifer and 
Pa. striata also assessed their period of activity (Medeiros & 
Oliveira, 2009; Raimundo et al., 2009). In these studies, O. 
chelifer showed a strong preference for nocturnal activity, 
and the inverse was found for Pa. striata. However, this clear 
pattern was not repeated in the present study. There was a 
slight inclination towards the same trends, but far lower than 
compared to the equivalent season in these studies. A response 
to variable weather conditions, community context or distinct 
behavioral adaptations to coexistence could generate such 
discrepancies. The interaction between these species inside 
and across communities is still an interesting and open topic 
for a detailed study.

Discussion

The life history of a species involves many aspects 
and is the result of a complex set of external variables and 
species traits. To fully understand one single history is not 
a trivial task. Methodology plays a key role on this, and 
results must be interpreted in the light of the advantages and 
caveats associated to every approach (Birkhofer et al., 2017). 
Since the bait method used in this study relies on proxies 
to broadly access resource use, the possibility of artificial, 
non-representative results must be considered. However, the 
results were consistent with previous accounts for two well-
studied species (O. chelifer and Pa. striata), excluding the 
use of termites explained before. The unusual result for 
W. auropunctata is unlikely to be an artifact. The species 
proved to be relatively frequent in the community and, if it 
maintained its generalist habits, at least some records on other 
baits would have been expected. Also, this method does not 
evaluate extensively the natural variations for each resource, 
therefore is less suitable for detecting specialized behaviors, but 
focuses instead on the oft-neglected generalist species, which 
represent most of the community. The ants rarely recorded in 
baits were also uncommon in pitfalls, and many present known 
specialized behaviors or forage mainly on vegetation or inside 
leaf-litter (Table 2 and Supplementary Material). Pachycondyla 
harpax is the most notorious absence, and this could be due to 
a preference for specific termite species (García-Pérez et al., 
1997), or also an artifact, as for the other two large Ponerinae. 
Finally, ants may be driven to more limited resources, instead 
of the ones they used more frequently. This may be particularly 
true for nitrogen-deprived arboreal ants (Kaspari & Yanoviak, 
2001), and could be the reason behind the lack of melezitose 
use by L. iniquum. However, the two Camponotus species, 
which forage both on vegetation and ground, used sucrose and 
crushed insects similarly. Therefore, this deviation might be 
less relevant for ground-dwelling ants. In short, although with 
potential bias that must be considered, this bait method seems 
to appropriately assess the trophic niche of most species in the 
site and season in question, and the data it yields is useful to 
understand individual species.

Many methods to assess resource use cannot 
discriminate well between hunting and scavenging (e.g. 
nest excavation, observation of foragers on a nest entrance, 
barcoding of gut content, stable isotopes). On the other hand, 
this bait method assesses what species prefer to use, but 
not what they have available in the community. Carcasses 
are a rich and easy to gather resource, but in their absence 
ants have to fight their prey. Even taking this into account, 
and in light of the previous accounts (Medeiros & Oliveira, 
2009; Raimundo et al., 2009), it is likely that resource use 
plays a role in the coexistence of the more scavenger Pa. 
striata and the more predator O. chelifer. This reduces niche 
overlap and may lead to distinct functional roles. On the other 
hand, species frequent on crushed insects, but not in living 
baits, probably are restricted to scavenging, independent of 
resource availability. That was the case for most Linepithema, 
Pheidole and Camponotus.

Sugar consumption is more frequently studied through 
observation of interactions with EFNs or hemipterans in plants, 
due to their role as main attractors in ant-plant interactions 
(Rosumek et al., 2009). Interactions of ground foragers with 
plant diaspores are assumed to be more associated with lipid-
rich elaiosomes that mimic animal prey (Hughes et al., 1994; 
Giladi, 2006). However, the use of fallen fruits simply as sugar 
sources might be overlooked. This could partially explain 
the pronounced lack of use of carbohydrate resources by the 
“poneroid” clade observed by Lanan (2014). Few species in 
the present work were not attracted by sucrose, and some 
of them probably climb vegetation in search for EFNs (e.g. 
Camponotus). However, fallen fruits might be an occasional 
but disputed resource for species restricted to the ground. 
Preference for melezitose was less common, and it was 
conspicuously avoided by some species. Among physiological 
constrains that could reduce suitability of certain sugars to a 
species, particularly insect-synthesized oligosaccharides, are 
low gustatory perception, digestibility and nutritional value 
(Boevé & Wäckers, 2003). These constraints could be another 
source of niche partitioning among ant species.

Other fundamental aspect underlying the results of 
this work is the context-dependence of the patterns and 
processes studied in ecology, including the interaction between 
organisms and resources (Agrawal et al., 2007). The few 
well-studied species told different stories in a distinct context, 
like the trophic niche of W. auropunctata and daily activity 
of Pa. striata and O. chelifer. It is likely that the other, less-
known species would exhibit such variation in different 
contexts, influenced by biotic interactions, abiotic factors and 
evolutionary history of the community.

Taking into account the lack of knowledge about 
most species, the complementary results given by different 
methodologies, and the variation under distinct contexts, it is 
clear that descriptive studies are still very much needed for 
tropical species, even if these studies are often relegated to 
second plane in modern science practice and funding (Greene, 
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2005). In this way, studies at community or larger scales could 
bring a considerable amount of information for individual 
species, above all when they are virtually unknown. This 
could be achieved first by spending time and effort on the 
taxonomic stage, and avoid use of morphospecies whenever 
possible. Second, researches should learn about their species 
to point out relevant findings, and prevent these to end up 
buried in a datasheet cell or the supplementary material. The 
large scale, pattern-driven enterprise is clearly important for the 
advancement of knowledge, but such basic aspects of natural 
sciences still are important. Claims for this “old-fashioned” 
natural history are not new (Jordan, 1916).  A century later they 
remain valid, because we still have a lot to describe.

Supplementary Material

http://periodicos.uefs.br/index.php/sociobiology/rt/
suppFiles/1623/0
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I. Bait composition and display 

(1) Living crickets: one individual of Achaeta domesticus (Linnaeus, 1758) with 1-2 cm body 

size was tied between the first and second pair of legs with a 4 cm thread glued to the box’s 

bottom. The cricket could not escape, but was still able to jump and move inside the trap. 

Represents larger, mobile prey with harder integument. 

SUPPLEMENTARY MATERIAL 



(2) Living termites: 15 individuals were left free on a piece of mound. Previous testing showed 

that termites do not leave the mound piece after 90 minutes. Another 10 individuals were glued 

to a small wood stick, to increase the time spent by ants on the bait. Individuals from the 

subfamily Nasutitermitinae were used, which have specialized workers with chemical defenses 

that can affect ants (Prestwich, 1984), and both specialized and regular workers were placed in 

the trap. Thus, it represents prey smaller, slower and softer, but not defenseless. 

(3) Crushed insects (2-3 g): crickets and mealworms (Tenebrio molitor Linnaeus, 1758). 

Represents dead arthropods. 

(4) Chicken feces (2-3 g): from organic breeding. Represents nitrogen-rich bird feces, which 

could be directly used by ants, or contain animal and vegetal remains collected by them (Leal & 

Oliveira, 1998; Jaffe et al., 2001; Sainz-Borgo, 2015). 

(5) Seeds (2-3 g): a mix of soy, millet, sunflower, canary, barley, linseed, grass seeds and ground 

corn, representing different sizes and shapes of seeds. No seeds with elaiosomes were used, 

because these mimic animal prey and attract predacious species, not only granivorous ones 

(Hughes et al., 1994; Giladi, 2006). 

(6) Sucrose solution (2-3 ml): at 20% concentration. Sucrose and its components, fructose and 

glucose, are the main nutritional sugars in plant exudates and fleshy fruits (Percival, 1961; Baker 

et al., 1998; Blüthgen et al., 2004). 

(7) Melezitose solution (2-3 ml): at 20% concentration. Represents insect-synthesized 

oligosaccharides present on honeydew (Kiss, 1981; Wäckers, 2000). Although melezitose and 

other oligosaccharides occur naturally almost only on honeydew, some insects secrete honeydew 

with little modification, similar to plant exudates (Völkl et al., 1999; Blüthgen et al., 2004). 



Therefore, preference for melezitose indicates use of honeydew, and avoidance suggests limited 

use, although not definitely excluding interaction with sap-sucking insects. 

 

II. List of species with few records 

 The following table reports data on the identified species that had few records (less than 

10 for resource use and/or 6 for daily activity) and were not discussed on the main text. The five 

undescribed Pheidole species are included, thus the data could be useful in case they are formally 

recognized and described. Although some of them are morphologically similar to described 

species, this does not necessarily mean that they share the same habits. 

 

Table S1 – List of species with few records and not analyzed in the main text. Total records for 

day, night and sample points include records from pitfalls. 
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Acromyrmex aspersus (Smith, 1858) 0 0 0 1 0 0 0 0 1 1 

Acromyrmex subterraneus (Forel, 1893) 0 0 0 0 0 0 0 2 1 2 

Apterostigma acre Lattke, 1997 0 0 0 1 0 0 0 1 2 2 

Crematogaster nigropilosa Mayr, 1870 0 1 0 1 1 2 0 6 0 5 

Cyphomyrmex rimosus (Spinola, 1851) 0 3 0 2 1 0 0 8 8 15 

Heteroponera dentinodis (Mayr, 1887) 0 1 0 0 0 0 0 1 1 2 

Heteroponera dolo (Roger, 1860) 0 0 0 0 0 0 0 1 0 1 

Hylomyrma reitteri (Mayr, 1887) 1 0 1 1 2 3 0 10 8 13 

Linepithema leucomelas (Emery, 1894) 0 0 0 0 0 0 0 1 1 2 



Neoponera crenata (Roger, 1861) 0 0 0 0 0 0 0 1 0 1 

Neoponera villosa (Fabricius, 1804) 0 0 0 0 0 0 0 0 1 1 

Nylanderia docilis (Forel, 1908) 1 0 0 0 0 0 0 0 1 1 

Octostruma petiolata (Mayr, 1887) 0 0 0 0 2 0 0 1 3 3 

Octostruma stenognatha Brown & Kempf, 1960 0 0 0 0 0 0 0 0 1 1 

Odontomachus meinerti Forel, 1905 0 0 0 0 0 0 1 2 0 2 

Oxyepoecus plaumanni Kempf, 1974 0 0 0 0 0 0 0 0 1 1 

Pachycondyla harpax (Fabricius, 1804) 0 0 0 0 1 0 0 7 5 10 

Pheidole schmalzi Emery, 1894 0 0 0 0 0 0 0 1 0 1 

Pheidole aff. pubiventris 3 10 17 18 21 19 13 68 53 21 

Pheidole complex bilimeki 18 45 63 67 48 46 35 200 174 57 

Pheidole aff. subarmata 4 15 11 11 16 16 5 37 69 23 

Pheidole aff. alpinensis 1 0 1 1 1 1 0 5 2 2 

Pheidole sp. 1 0 4 2 2 3 2 11 6 4 

Pseudomyrmex flavidulus (Smith, 1858) 0 0 0 0 0 0 0 1 0 1 

Solenopsis subterranea MacKay & Vinson, 1989 0 0 0 0 0 0 0 1 0 1 

Fulakora elongata (Santschi, 1912) 0 0 0 0 0 0 1 1 0 1 

Strumigenys cosmostela Kempf, 1975 0 0 0 0 0 0 0 1 0 1 

Strumigenys denticulata Mayr, 1887 0 0 0 0 0 0 0 4 2 6 

Strumigenys elongata Roger, 1863 0 0 0 0 0 0 0 0 1 1 

Strumigenys splendens (Borgmeyer, 1954) 0 0 0 0 0 0 0 0 1 1 

Tapinoma atriceps Emery, 1888 0 0 0 0 0 0 0 1 0 1 

Wasmannia lutzi Forel, 1908 0 0 0 0 0 0 0 1 0 1 
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Abstract

Background: Trophic interactions are a fundamental aspect of ecosystem functioning, but often difficult to observe
directly. Several indirect techniques, such as fatty acid analysis, were developed to assess these interactions. Fatty
acid profiles may indicate dietary differences, while individual fatty acids can be used as biomarkers. Ants
are among the most important terrestrial animal groups, but little is known about their lipid metabolism,
and no study so far used fatty acids to study their trophic ecology. We set up a feeding experiment with
high- and low-fat food to elucidate patterns and dynamics of neutral lipid fatty acids (NLFAs) assimilation
in ants. We asked whether dietary fatty acids are assimilated through direct trophic transfer, how diet
influences NLFA total amounts and patterns over time, and whether these assimilation processes are similar
across species and life stages.

Results: Ants fed with high-fat food quickly accumulated specific dietary fatty acids (C18:2n6, C18:3n3 and
C18:3n6), compared to ants fed with low-fat food. Dietary fat content did not affect total body fat of workers or amounts
of fatty acids extensively biosynthesized by animals (C16:0, C18:0, C18:1n9). Larval development had a strong effect on the
composition and amounts of C16:0, C18:0 and C18:1n9. NLFA compositions reflected dietary differences, which became
more pronounced over time. Assimilation of specific dietary NLFAs was similar regardless of species or life stage, but
these factors affected dynamics of other NLFAs, composition and total fat.

Conclusions: We showed that ants accumulated certain dietary fatty acids via direct trophic transfer. Fat content of the
diet had no effect on lipids stored by ants, which were able to synthesize high amounts of NLFAs from a sugar-based
diet. Nevertheless, dietary NLFAs had a strong effect on metabolic dynamics and profiles. Fatty acids are a useful tool to
study trophic biology of ants, and could be applied in an ecological context, although factors that affect NLFA patterns
should be taken into account. Further studies should address which NLFAs can be used as biomarkers in natural ant
communities, and how factors other than diet affect fatty acid dynamics and composition of species with
distinct life histories.
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Background
Trophic interactions play a central role in ecosystem
processes, shaping complex food webs with multiple
paths and levels [1]. The complexity of interactions
within communities, however, makes it difficult to assess
their nature and long-term outcome solely by field ob-
servations. Several complementary approaches were de-
veloped to address this issue, such as fatty acid analysis
[2]. Fatty acids have been used to study trophic ecology
of organisms in aquatic and terrestrial ecosystems [3, 4].
Variation in fatty acid profiles can answer basic ques-
tions about spatial and temporal variation in diets, as
well as niche partitioning among species [3, 5, 6]. Also,
fatty acids could be used as biomarkers, indicating quali-
tative and quantitative trophic relationships between or-
ganisms [7, 8]. Many recent studies using fatty acid
analysis in terrestrial organisms focused on detritivores,
such as Collembola and Nematoda [7, 9–14], which
established the technique as a useful tool to analyze their
feeding interactions in soil food webs [5, 15–17]. How-
ever, fatty acid patterns and dynamics depend on an or-
ganism’s physiology and composition of its natural diet,
which are variable among taxonomic groups. Therefore,
basic information on lipid metabolism is needed before
the application of fatty acid analyses to study trophic re-
lations of a given animal group.
Ants (Hymenoptera: Formicidae) are among the most

abundant groups of invertebrates in terrestrial ecosys-
tems, with a wide variety of feeding habits, nesting sites,
and interactions with organisms from all trophic levels
[18]. Many ant species have a cryptic behavior, which is
difficult to study directly (e.g., living underground, inside
the leaf-litter or in tree canopies). Moreover, in diverse
ecosystems, dozens of species can coexist simultaneously
in a given stratum [19]. Thus, complementary tech-
niques are needed to study their trophic ecology. Stable
isotopes, for instance, have been extensively used to ad-
dress many questions in ant ecology [20–22]. The appli-
cation of DNA barcoding, another modern technique, is
still incipient for ants [23–25]. Surprisingly, no study so
far tested the applicability of fatty acids to understand
trophic ecology of ants.
Ants in general are regarded as omnivorous, feeding

on a combination of living prey, dead arthropods, seeds
and plant exudates. Less common are specialized feeding
habits such as fungus cultivation and predation exclu-
sively upon certain arthropod groups, as well as use of
unusual resources such as pollen, animal excrements or
mushrooms [18, 26–29]. Fatty acids from the diet could
be incorporated without modification (i.e. through direct
trophic transfer), or actively modified in response to en-
vironmental factors and physiological needs [4, 30, 31].
Many ant species primarily feed on sugars usually ob-
tained from floral and extra-floral nectar or honeydew

[32]. Like all higher organisms, they can synthesize a set
of fatty acids from carbohydrates via a decarboxylative
Claisen condensation [33]. Fatty acids are mainly stored
as neutral lipid fatty acids (NLFAs), which mostly consist
of triglycerides, the principal component of the insect fat
body [30, 34]. The biosynthesis of saturated palmitic
(C16:0) and stearic acids (C18:0) and monounsaturated
oleic acid (C18:1n9) seems to be widespread among in-
sects, and correspondingly these fatty acids are the most
abundant in their bodies [30]. On the other hand, the
ability to synthesize polyunsaturated fatty acids, such as
linoleic acid (C18:2n6), is highly variable among species
[35, 36]. However, the details of these physiological pro-
cesses in ants are poorly understood, and there are no
studies specifically addressing dynamics of dietary fatty
acids assimilation in this important insect group. Know-
ing which fatty acids can be unambiguously related to
food sources, and how well the overall fat composition
of ants reflects their diet after any metabolic modifica-
tion, are crucial steps to apply fatty acid analysis in an
ecological context.
Considering the potential use of fatty acids to under-

stand trophic relations, and the lack of information
about lipid metabolism in ants, we aim to elucidate pat-
terns and dynamics of neutral lipid fatty acids in ants.
We provided ants with high- and low-fat food in a no-
choice feeding experiment, and compared the fatty acid
profiles of ant workers and larvae over a period of 8
weeks. We specifically ask: (1) whether NLFA amounts
and compositions are affected by a high- and a low-fat
diet; (2) whether dietary fatty acids are accumulated in
the ants’ body via direct trophic transfer; (3) how dietary
fatty acids shape NLFA patterns over time; (4) whether
these patterns and dynamics are the same in different
species and life stages.

Methods
Studied species
The experiment was performed with colonies reared in
the laboratory, during November and December 2016. We
chose two species, common and widespread in the North-
ern hemisphere, which represent the largest Formicidae
subfamilies: Formica fusca Linnaeus 1758 (Formicinae)
and Myrmica rubra Linnaeus 1758 (Myrmicinae). Both
have in nature a similar and generalized diet of living and
dead arthropods, nectar and honeydew [37, 38], and can
thus be reared in the laboratory with a single artificial diet.
Six colonies of each species were purchased from Antstore
(Berlin, Germany) where ants were fed on an unstandard-
ized diet of honey and dead flies. All colonies had one
queen and between 9 and 12 (F. fusca) and 15–20 (M.
rubra) workers. Colonies of M. rubra were reproductive
during the whole experiment, with lower numbers of eggs
and larvae towards the end. For F. fusca, larvae were only
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observed in two colonies in the last week of the experi-
ment. Colonies were kept at a constant temperature of
25 °C and provided three times per week with water and
food ad libitum.

Low- and high-fat treatments
Three colonies of each species received a low-fat treat-
ment, whereas the remaining three received a high-fat
treatment. As low-fat food we used a standardized re-
cipe, suitable for breeding several ant species [39]. It
contained 5 g agar, 1 g table salt (NaCl), 1 g vitamin-
mineral mix powder (Altapharma, Burgwedel, Germany),
62 ml honey and 1 chicken egg homogenized in 500 ml
hot water. The high-fat food followed the same recipe,
with addition of 60 ml linseed oil (organic quality, Alna-
tura, Bickenbach, Germany). The mixture was stirred
until it was cool and solid, to avoid separation of the
aqueous and fatty phases. Both food mixtures were
stored in a freezer at −20 °C until use, and food samples
were taken for chemical analysis.

Experimental design
Before beginning the feeding experiment, we collected
one worker per colony for fatty acid analysis (= week 0).
Workers were chosen randomly from inside and outside
the nest (a glass vial kept inside a plastic box). In
addition, one larva of M. rubra was collected per colony.
After starting to apply the treatments, we sampled one
worker and one larva in the same way, every week for 8
weeks. Larva sample sizes were smaller from week 5 on-
wards, because some colonies were not reproductive
anymore. In the last week, we also collected the queens
for analysis (6 F. fusca and 5 M. rubra, since one queen
died at the beginning of the experiment). All samples
were immediately frozen at −20 °C until extraction.

Fatty acid analysis
Total lipids were extracted from the ants using 1 ml of a
chloroform:methanol mixture, 2:1 (v/v) over a period of
24 h [40, 41]. Ants were directly refrozen after extraction
and subsequently dried for 48 h at 50 °C and weighed
with a microbalance (Mettler Toledo, XS3DU, Colum-
bus, USA). The extracts were purified and separated ac-
cording to the method described by Frostegård et al.
[42]. SiOH-columns (Chromabond®) were washed and
conditioned with 6 ml hexane. Subsequently, samples
were applied on the column and elution of NLFAs (=
mono-, di-, and triglycerides) was accomplished with
4 ml chloroform.
The chloroform fractions were evaporated to dryness

under gentle nitrogen gas flow and residuals were redis-
solved in different concentrations of dichloromethane:-
methanol 2:1 (v/v) to adjust the samples to comparable
concentration ranges: 1 ml for F. fusca queens and food

samples, 350 μl for workers of both species and M.
rubra queens, and 50 μl for larvae. 50 μl aliquots (10 μl
for high-fat food) were transferred to new glass vials
with a conical inlet (150 μl) and 20 μl of internal stand-
ard (C19:0 in methanol; ρi = 220 ng/μl) were added.
Samples were evaporated to dryness again, and finally
derivatized to fatty acid methyl esters (FAMEs) with
20 μl TMSH (trimethylsulfonium hydroxide; 0.25 M in
MeOH from Fluka, Sigma-Aldrich, St. Louis, USA).
FAME samples of NLFAs were analyzed with a

QP2010 Ultra GC/MS (Shimadzu, Duisburg, Germany).
The gas chromatograph (GC) was equipped with a ZB-
5MS fused silica capillary column (30 m × 0.25 mm ID,
df = 0.25 μm) from Phenomenex (Aschaffenburg,
Germany). Sample aliquots of 1 μl were injected by
using an AOC-20i autosampler-system from Shimadzu
into a PTV-split/splitless-injector (Optic 4, ATAS GL,
Eindhoven, Netherlands), which operated in splitless-
mode. Injection-temperature was programmed from ini-
tial 70 °C up to 300 °C and then an isothermal hold for
59 min, sampling-time was set to 3 min and hydrogen
was used as carrier-gas with a constant flow rate of
1.3 ml/min. The temperature of the GC oven was raised
from initial 60 °C for 1 min, to 150 °C with a heating-
rate of 15 °C/min, to 260 °C with a heating-rate of 3 °C/
min, to 320 °C with a heating-rate of 10 °C/min and then
an isothermal hold at 320 °C for 10 min. Electron
ionization mass spectra were recorded at 70 eV from
m/z 40 to 650. The transfer line and ion source were
kept at 250 °C.
Methyl esters of the NLFAs were identified by compar-

ing gas chromatographic retention times and m/z frag-
mentation patterns with those of the Supelco® 37
Component FAME Mix standard and the Bacterial Acid
Methyl Ester (BAME) Mix standards as commercially
available fatty acids (all Sigma-Aldrich) and published
literature data [31, 43, 44]. The identity of γ-linolenic
acid was additionally confirmed by an iodine catalyzed
dimethyl disulfide derivatization [45].
A technical problem during analysis resulted in the

loss of a batch of samples. Therefore, we have no data of
week 3 for M. rubra larvae, week 4 for M. rubra workers
and week 5 for F. fusca.

Data analysis
In general we used two approaches to analyse our
data: (1) linear mixed-effect models (LMM) to assess
the trophic transfer of certain fatty acids; and (2)
multivariate compositional data analysis to describe
total NLFA patterns. Only fatty acids with >1% com-
position were included in our analyses. Queens were
not statistically analyzed, since they were sampled
just at the end of the experiment.

Rosumek et al. Frontiers in Zoology  (2017) 14:36 Page 3 of 14



We used the absolute amount of NLFAs [μg] standard-
ized by dry weight for ants or fresh weight for food [mg],
thus reflecting the relative amounts of NLFAs in compari-
son to non-lipid components [μg/mg]. We additionally
ran the analyses with absolute amounts and dry weight as
a cofactor, and results were identical for workers, but dif-
ferent for larvae, due to their distinct dynamics (see S1 in
Additional file 1, and results for larvae).
At first, we correlated the relative amounts of all

NLFAs combined (= total NLFAs) with dry weights of
larvae and workers of both species using Spearman’s
rank correlation. For adults, body weight reflects size
polymorphism among workers. For larvae, body weight
is a better indicator of larval development than the week
of sampling, because queens lay eggs continuously dur-
ing the reproductive time. Dry weights for workers did
not differ between treatments and over time, while larval
dry weight increased over time (see S2 in Additional
file 1). Since time and size were correlated for larvae
(ρS = 0.63, p < 0.001), we ran separated LMMs for
each factor, with dry weight normalized by square-
root transformation.
We statistically tested relative amounts of total NLFAs

and of the three most abundant fatty acids (C16:0,
C18:0, C18:1n9). We also tested a specific dietary NLFA
(C18:2n6), which occurred in higher concentration in
the high-fat diet, and was not conspicuously synthesized
by the ants. We did not test the amounts of the other
two specific dietary NLFAs (C18:3n3 and C18:3n6) and
show their results only in plots, because both were al-
ways zero in the low-fat treatment and non-zero in the
high-fat treatment. Remaining NLFAs that occurred only
in very small amounts in ants and food and were not
tested either.
Effects on relative amounts were tested with linear

mixed-effect models (command lme) as implemented in
the R package “nlme” [46] with feeding treatment and
time as fixed factors and colony ID as random factor for
each species separately. We checked for the normal dis-
tribution of the residuals and the homogeneity of vari-
ance prior to the analyses and transformed the data if
necessary (see S3 in Additional file 1 for data transform-
ation). We further investigated the total NLFA amount
in M. rubra workers and larvae using a LMM with the
same structure as before, but including life stage as a
further fixed factor. The difference between workers and
larvae was analyzed with a simultaneous test for general
linear hypothesis using Tukey pairwise contrasts (pack-
age “multcomp”; [47]) of the previous LMM.
We furthermore analyzed whether the overall NLFA

composition (i.e. percentages of all fatty acids) of F. fusca,
M. rubra workers and M. rubra larvae changed in the
different treatments over time. We tested Bray-Curtis
similarities (BCS) based on compositional data using

permutational multivariate analysis of variance (PERMA-
NOVA; [48]) for each species separately. Overall 10,000
permutations were performed with feeding treatment and
time as fixed factors and colony ID as random factor. We
checked the multivariate homogeneity of group disper-
sions before with a multivariate Levene’s test (PERMDISP;
all p values >0.1; [49]). These analyses were performed
with PRIMER 7.0.12 [50].
Finally, NLFA compositional data were ordinated using

principal component analyses (PCA) and according PCA
biplots. We compared the differences of the overall
NLFA composition in F. fusca and M. rubra who re-
ceived the high-fat diet during the experimental time.
We used the centered log-ratio transformation after re-
placing zero values to deal with the constant sum con-
straint of compositional data and make it suitable for
PCA (R packages “zCompositions” and “compositions”
[51, 52]). PCA biplots were constructed by plotting fac-
tor loadings of compounds that significantly contributed
(p < 0.01) to the group separation onto the PCA scatter
plots using the R package “vegan” [53]. For a detailed R
script of this analysis, see [54]. LMMs and PCAs were
performed with R version 3.3.1 [55].

Results
Fatty acid profiles of food and ants
The neutral lipid fatty acid (NLFA) profiles of ants and
their food are summarized in Table 1 (for full dataset
and value ranges, see Additional file 2). The high-fat
food had about 40 times more total concentration of
NLFAs than the low-fat food. The main component of
the high-fat food was C18:3n3, but it also had notably
higher amounts of C16:0, 18:0 and C18:2n6. Besides, it
contained C:18:3n6, which was entirely absent from the
low-fat food.
C16:0, C18:0 and C18:1n9 were the main fatty acids in

ants (Table 1). C18:1n9 was the main component in all ex-
perimental workers and queens. On the other hand, larvae
had comparatively high levels of C16:0 and C18:0. Ants
from the high-fat treatment exhibited higher amounts of
C18:2n6, and were the only ones with detectable levels of
C18:3n3 and C18:3n6. Queens had less total NLFAs than
workers. Samples were variable, thus the profiles in
Table 1 do not exactly reflect temporal and treatment
differences (particularly for the highly variable larvae);
these effects are analyzed below.

Dynamics of total and individual NLFA amounts
For F. fusca, there was no difference between treatments
in the total amount of NLFAs (Fig. 1a, Table 2). C16:0,
C18:0, C18:1n9 and total NLFAs increased over time,
but with no treatment effect (Fig. 1b-c, Table 2). On the
other hand, we observed an increasingly higher amount
of C18:2n6 in the high-fat treatment, while it remained
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small in the low-fat treatment (Fig. 1d, Table 2). Simi-
larly, C18:3n3 and C18:3n6 increased remarkably in
the high-fat treatment, but were never recorded in
the low-fat treatment (Figs. 1e-f ). Formica fusca pre-
sented considerable polymorphism (coefficient of vari-
ation [= CV] of dry weights = 41%), but there was no
correlation between body size and total NLFA amount
(ρS = −0.06, p = 0.66).
For M. rubra, the amounts of C18:2n6, C18:3n3 and

C18:3n6 also increased in the high-fat treatment, and
the last two NLFAs were completely absent in the low-
fat treatment (Fig. 2d-f, Table 2). No time effect was ob-
served for C18:2n6 in this species. There was no treat-
ment effect in C16:0, C18:0, C18:1n9 and total NLFAs,
but, opposite to F. fusca, we observed an overall de-
crease over time (Figs. 2a-b, Table 2). Myrmica rubra
workers varied less in size (CV of dry weights = 17%)
and, again, no correlation was found between body size
and total NLFA amount (ρS = 0.19, p = 0.19).
Myrmica rubra larvae presented more complex dynam-

ics, because they were influenced both by experimental
time effect and their developmental stage. Nevertheless,
since these variables were correlated, LMM results were
similar, except for C18:1n9 (Table 2). The increasing
trends for C18:2n6, C18:3n3 and C18:3n6 were the same

as in workers (Fig. 3d-f, Table 2). Total NLFAs also de-
creased with time (Fig. 3b, Table 2), but in a higher rate
than in workers (Tukey pairwise contrasts, z = 4.70,
p < 0.001, for full model see S4 in Additional file 1). Lar-
vae from the high-fat treatment had more total NLFAs
and C18:1n9 overall during the experiment (Figs. 3a-c,
Table 2 [A]). However, as larvae increased in dry weight,
C18:1n9 actually was higher in the low-fat treatment com-
pared to the high-fat treatment (Table 2 [B]). There was a
strong negative correlation between larval dry weight and
relative NLFA amount (Fig. 4; Table 2 [B], ρS = −0.72,
p < 0.001). The absolute amount of fat slightly increased
with body size, but did not follow the growth in other
body components, which resulted in lower concentration
of NLFAs in larger and older larvae (Fig. 4). This decrease
was mostly due to a decline on saturated fatty acids
(C16:0 and C18:0, Table 2, see S5 in Additional file 1).
Therefore, young larvae had relatively large fat storages
and high ratios of saturated:unsaturated fatty acids, which
both decreased during development.

Dynamics of overall fatty acid composition
The overall NLFA composition of the ants changed
over time (Table 3). Treatment and time affected the
composition of F. fusca and M. rubra larvae. For M.

Table 1 – Fatty acid profiles of food and ants at the beginning and end of the experiment

Formica fusca Myrmica rubra Myrmica rubra larvae Food

NLFA Week 0 Week 8 Queens Week 0 Week 8 Queens Week 0 Week 8

+ - + - + - + - + - + - + - + - + -

C12:0
lauric

0.1
(t)

0.1
(t)

0.1
(t)

0.1
(t)

0.1
(t)

0.1
(t)

0.6
(t)

0.4
(t)

0.2
(t)

0.3
(t)

0.1
(1)

0.2
(t)

3.9
(t)

2.4
(t)

0.4
(t)

1.0
(t)

t
(t)

t
(t)

C14:0
mystric

0.5
(t)

0.3
(t)

0.3
(t)

0.6
(t)

0.1
(t)

0.3
(t)

1.9
(1)

1.6
(t)

0.6
(1)

0.5
(1)

0.1
(1)

0.4
(1)

8.8
(1)

5.0
(1)

1.2
(1)

2.7
(1)

t
(t)

t
(t)

C16:0
palmitic

59.0
(25)

40.6
(25)

95.2
(12)

129.8
(18)

25.5
(11)

30.5
(18)

55.7
(18)

54.0
(18)

23.1
(32)

31.3
(30)

3.0
(26)

10.3
(17)

532.7
(54)

397.1
(59)

48.9
(33)

50.1
(25)

9.2
(8)

0.8
(32)

C16:1n9
palmitotelic

4.1
(1)

0.9
(t)

2.6
(t)

4.6
(1)

0.9
(t)

2.4
(1)

6.7
(2)

2.6
(1)

1.1
(1)

1.8
(1)

0.1
(1)

1.6
(3)

11.3
(1)

2.7
(t)

1.2
(1)

8.1
(4)

0.1
(t)

t
(1)

C18:0
stearic

11.6
(10)

11.4
(12)

26.5
(3)

22.3
(3)

7.2
(3)

5.3
(3)

13.1
(5)

17.4
(6)

7.6
(15)

7.7
(13)

1.7
(15)

1.3
(3)

242.2
(25)

209.2
(31)

29.8
(20)

23.4
(12)

6.6
(6)

0.1
(4)

C18:1n9
oleic

284.7
(64)

224.6
(62)

523.7
(67)

570.3
(78)

151.4
(66)

135.4
(77)

273.5
(74)

251.7
(74)

80.0
(48)

129.2
(55)

4.4
(26)

46.1
(76)

202.6
(19)

51.5
(8)

39.4
(27)

112.2
(56)

1.8
(2)

1.5
(59)

C18:2n6
linoleic

0.4
(t)

0.4
(t)

4.2
(1)

0.2
(t)

3.0
(1)

0.5
(t)

1.3
(1)

1.6
(1)

2.4
(2)

0.3
(t)

1.1
(7)

0.4
(1)

3.2
(t)

2.1
(t)

3.4
(2)

1.3
(1)

5.3
(4)

0.1
(2)

C18:3n3
α-linolenic

0
(0)

0
(0)

138.8
(17)

0
(0)

30.8
(14)

0
(0)

0
(0)

0
(0)

3.9
(2)

0
(0)

3.1
(18)

0
(0)

0
(0)

0
(0)

20
(14)

0
(0)

80.9
(72)

t
(1)

C18:3n6
γ-linolenic

0
(0)

0
(0)

22.5
(3)

0
(0)

9.1
(4)

0
(0)

0
(0)

0
(0)

1.3
(1)

0
(0)

0.9
(5)

0
(0)

0
(0)

0
(0)

1.7
(1)

0
(0)

8.9
(8)

0
(0)

C20:0
arachidic

0.1
(t)

0.1
(t)

0.1
(t)

0.1
(t)

0.1
(t)

0
(t)

0.2
(t)

0.2
(t)

0.1
(t)

0.1
(t)

0.1
(t)

0.1
(t)

0.7
(t)

0.6
(t)

0.2
(t)

0.1
(t)

t
(t)

t
(t)

Total 360.3 278.4 813.9 728.0 228.0 174.5 353.1 329.7 120.3 171.2 14.5 60.3 1005.5 670.6 146.3 198.9 112.8 2.6

Sample size 3 3 3 3 3 3 3 3 3 3 2 3 3 3 1 1 3 2

Average amounts are given in μg of NLFA/mg of dry weight (fresh weight for food). Values in brackets are average percentages of the total composition of NLFAs
per sample. +: high-fat treatment; −: low-fat treatment; t: detected in trace amount (less than 0.1 μg/mg or 1% of composition)
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rubra workers, no effect was found. However, this
could be understood when the profile change of the
high-fat colonies was analyzed with PCA (Fig. 5). For
both species, we noticed a shift in composition over
time, mainly driven by the dietary fatty acids. For F.
fusca, C18:2n6, C18:3n3 and C18:3n6 altogether had a
statistically significant effect on this shift. For M.
rubra, only C18:3n3 (the main dietary fatty acid) had a

significant effect. The samples from week 8 were par-
ticularly odd, showing small proportions of C18:3n3
and C18:1n9 and relatively high proportions of C16:0
and C18:0. One individual from each treatment had
unusually low amounts of total fat and oleic acid
(below 20 μg/mg and 10% of composition, respectively;
see Additional file 2), which added significant varia-
tion to the results. When week 8 was removed from

a b

c d

e f

Fig. 1 Dynamics of NLFA total amount and individual fatty acids in Formica fusca workers. Symbols indicate distinct colonies. In (a) samples from
all weeks and colonies are pooled, (b) total NLFA, (c) C18:1n9, (d) C18:2n6, (e) C18:3n3, (f) C18:3n6
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the PERMANOVA, the treatment effect was notice-
able (Table 3).

Discussion
Fatty acid profiles of ants
Several factors influence the fatty acid composition of
insects, such as flying activity, life stage, growth, re-
productive status, environmental temperature, and diet
[4, 30, 56]. Due to this complexity, Stanley-Samuelson
et al. [30] argued against a “typical” insect profile, and

indeed a high variation is found among orders, families,
and species [56, 57]. Just a few ant profiles are available
in literature: Myrmica incompleta Provancher, 1881
(worker and pupae; [58]), Lasius claviger (Roger, 1862)
(only pupae; [59]), Myrmica rubra (only the free fatty
acid fraction from head extracts; [60, 61]) and Polyrha-
chis dives Smith, 1857 (sun-dried workers cultivated as
food; [62]). These fatty acid profiles are not entirely
comparable due to the multitude of goals and methods,
but, together with our results, they indicate C18:1n9 as

a b

c d

e f

Fig. 2 Dynamics of NLFA total amount and individual fatty acids in Myrmica rubra workers. Symbols indicate distinct colonies. In (a) samples from
all weeks and colonies are pooled, (b) total NLFA, (c) C18:1n9, (d) C18:2n6, (e) C18:3n3, (f) C18:3n6

Rosumek et al. Frontiers in Zoology  (2017) 14:36 Page 8 of 14



the predominant NLFA in ant bodies, followed by
C16:0 and C18:0. High levels of C18:1n9 are standard
for Hymenoptera, but the abundance of other fatty
acids varies within the order [56].

Dynamics of individual NLFAs and overall composition
Some fatty acids are extensively synthesized de novo by
animals, while others are produced in small amounts,

or only by certain taxa [30, 36]. In our experiment, the
food enrichment with linseed oil allowed us to observe
the influence of diet on NLFAs found a priori in high,
low and null amounts in ants’ bodies. C18:3n3 and
C18:3n6 were absent in week 0, and solely recorded in
the high-fat treatment during the experiment. This
suggests that ants are not able to synthesize them, or
only in small doses which are directly incorporated in

a b

c d

e f

Fig. 3 Dynamics of NLFA total amount and individual fatty acids in Myrmica rubra larvae. Symbols indicate distinct colonies. In (a) samples from
all weeks and colonies are pooled
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the polar lipid fractions (i.e. phospholipids, glycolipids,
free fatty acids). The amounts of C18:3n3 and C18:3n6
increased with the time ants fed on the diet, thus their
concentration reflects how much/how often the ants
consumed a resource. If these NLFAs are neither highly

mobilized nor modified, they should mainly be stored
in the fat body when acquired in considerable amounts
from the diet, and thus detectable with neutral lipid
fatty acid analysis.
C18:2n6 was found in smaller amounts in all sam-

ples of the low-fat treatment, but it is not clear
whether this fatty acid was synthesized by ants de
novo, was obtained from the small amounts in the
food, or from the pre-experimental diet. About one third
of reported insect species, from five different orders, are
able to synthesis C18:2n6, but high interspecific variation
was observed within orders [35, 36]. Regarding the Hy-
menoptera, C18:2n6 biosynthesis was not observed in the
mason bee Osmia lignaria Say, 1837 (Megachilidae) [35],
but it is known from the parasitoid Nasonia vitripennis
(Walker, 1836) (Pteromalidae) [63]. Regardless of the actual
ability of ants to synthesize C18:2n6, its amounts also in-
creased with the diet and, in F. fusca, over time as well. In
M. rubra and its larvae the time effect was not clear.
On the other hand, C16:0, C18:0 and C18:1n9 behaved

similarly in both treatments. No treatment effect in
C16:0 and C18:0 was noticed, even if they occurred in
the high-fat food in levels higher than C18:3n6 and
C18:2n6, respectively. Hence, it seems most likely that
C16:0, C18:0 and C18:1n9 are synthesized de novo in
large amounts from carbohydrates and constantly
modified depending on physiological requirements. For
example, the physiologically ideal fluidity of the fat
body, which changes accordingly with environmental
temperature, is achieved through a balanced ratio be-
tween saturated and unsaturated fatty acids [4]. Hence,
the interplay between β-oxidation and Claisen conden-
sation of these abundant NLFAs should be essential for
this mechanism. The lack of a treatment effect on total
NLFAs also suggests that, at least under ad libitum
feeding conditions, ants have no significant energetic
loss due to de novo fatty acid biosynthesis. Thus, ants
with a sugar-based diet should not have a disadvantage
compared to species that acquire most lipids from the
diet. However, this may not be true under conditions
with limited resources, and detectable differences in ra-
tios could occur between ants that feed directly on
lipids and ants that only synthesize them.
Our multivariate analyses showed that a shift in diet

results in an equivalent shift in profile, and this diffe-
rence was more pronounced when the ants fed longer
on that resource (Table 3, Fig. 5). The main drivers of
this compositional change were specific dietary NLFAs.
Therefore, these profiles represent another way to assess
dynamics of resource use or detect differences among
species [3, 5, 6]. They could be particularly useful when
the exact lipid composition of the food is not known,
such as in samples collected from the field.

Table 3 Effects of time and treatment on overall NLFA
composition

df pseudoF p

F. fusca

Treatment 1 8.87 < 0.001

Time 7 2.60 0.015

Treatment x time 7 0.91 0.543

Residuals 32

M. rubra (week 8)

Treatment 1 2.98 0.089

Time 7 1.44 0.197

Treatment x time 7 0.53 0.832

Residuals 32

M. rubra (week 7)

Treatment 1 4.70 0.025

Time 6 1.46 0.193

Treatment x time 6 0.87 0.871

Residuals 28

M. rubra larvae

Treatment 1 22.46 < 0.001

Time 7 12.45 < 0.001

Treatment x time 7 1.76 0.090

Residuals 23

PERMANOVA results for overall composition (%) based on Bray-Curtis Similarities.
Significant results (p < 0.05) are in bold
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amounts of Myrmica rubra larvae
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Factors affecting NLFA dynamics
Our results point out to several factors that affect lipid
metabolism in ants, and could be important from bio-
logical and methodological points of view. First of all,
one possible caveat of analytical methods that use ants’
full body is that the undigested food stored in their
crops could bias the results [20]. If this were the case in
our experiment, we would expect higher total amount of
lipids in ants of the high-fat treatment, and a conspicu-
ous increase during the first week. Also, higher variance
should occur in the high-fat treatment, due to the col-
lection of workers with variable crop filling. However,
(1) the amount of NLFAs did not differ between treat-
ments, with the exception of larvae (which do not pos-
sess a crop; [64]); (2) we observed linear patterns for
total fat and several NLFAs, consistent with lipid storage
in the fat body; and (3) variances did not differ between
treatments, in all cases (F test; F. fusca – F = 1.01,
p = 0.97, M. rubra – F = 1.58, p = 0.28, larvae –
F = 1.67, p = 0.28). Even if ants had undigested food in
their crops, its contribution would have been relatively
small. Thus, as far as the dietary component of interest
does not occur in very high amounts in the food (e.g. ca.
10% NLFAs in our high-fat diet), full body extraction
can be used to investigate the effect of diet in ants. In
certain research contexts, however, it might be import-
ant to fully eliminate this factor, using a methodological
alternative such as dissection of the fat body.

The reproductive status of the colonies influenced
fatty acid dynamics. Feeding the brood can negatively
affect the amount of fat stored by the workers, as ob-
served in Camponotus festinatus (Buckley, 1866) [65],
potentially explaining the decrease of NLFAs in M.
rubra. On the contrary, F. fusca colonies were getting
closer to reproduction mode during the experiment, and
effectively we observed larvae in two colonies at the last
week (this reproductive timing was also observed in
non-experimental colonies kept in the same conditions).
These colonies needed to accumulate reserves to fuel
upcoming larval feeding and egg laying. Considering
this, it is intriguing that queens of both species displayed
a very low amount of fat at the end of the experiment.
We also observed an effect of development in compo-

sitions and dynamics of M. rubra larvae. The young lar-
vae had large fat storages and amounts of saturated fatty
acids. Earlier in their growth process, they quickly de-
velop other tissues to build more complex organs [66],
resulting in a proportionally smaller amount of NLFAs.
The increase in C18:1n9 in the low-fat treatment with
development may appear counterintuitive, but this was
the only unsaturated NLFA ants were able to synthesize
in large amounts. In turn, larvae from the high-fat treat-
ment already received several polyunsaturated NLFAs
from the diet. The shift to a more balanced composition
between saturated and unsaturated NLFAs might en-
hance metabolic processes in a more complex body. In
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contrat to workers, larvae seem to benefit from a high-
fat diet from which they accumulate slightly more
NLFAs. For Solenopsis invicta Buren, 1972 it has been
demonstrated that sugars, lipids and proteins are differ-
ently allocated among worker subcastes, larvae and
queens [67].
The distinct distribution of nutrients among individ-

uals of a colony is not restricted to different life stages,
but also among worker subcastes. Several studies ob-
served higher fat storage in workers that stay inside the
nest and take care of the brood (= nurses), and less in
workers that spend more time in activities outside the
nest (= foragers) [67, 68]. However, this pattern may not
occur in a few species, and no difference was previously
found in field samples of F. fusca [69]. In M. rubra,
nurse and forager subcastes were identified in laboratory
colonies smaller than ours, and their role was related to
individual age and size [70]. Differences in worker size
were unrelated to total amount of fat for both species in
our data. Individual variation in fat storages could indi-
cate behavioral subcastes, but it was the same in the re-
productive M. rubra and the non-reproductive F. fusca
(CV of NLFA total amounts for all samples = 72% in
both species). Thus, we found no evidence for consider-
able differences in lipid storage across behavioral or
morphological subcastes within these species, under our
experimental conditions, although these effects may
be minute in small colonies and need a specific setup
to be detected.
Regardless of the variation across species and life

stages in profiles and dynamics, the assimilation of spe-
cific dietary NLFAs (C18:2n6, C18:3n3 and C18:3n6)
followed the same pattern. Thus, the physiological pro-
cesses involved in NLFA metabolism should be con-
served at least between the subfamilies Formicinae and
Myrmicinae, which comprise about three quarters of all
valid ant species [71]. It is likely that all ants behave
similarly, but this needs to be tested with experiments
using species with more diversified feeding behaviors
and from more distant branches of the ant tree of life,
such as the Ponerinae or Dorylinae [72].

Implications to the study of ant trophic ecology
In trophic ecology, fatty acids can basically be used in
two ways: as overall profiles, whose variation indicates
differences in diet; and as biomarkers, which indicate
specific interactions between organisms [3, 4]. Our re-
sults suggest that both applications are suitable for ants.
Profiles and individual NLFAs observed in ants changed
in response to diet, and these shifts became more pro-
nounced over time. Fatty acid analysis can provide a
better resource resolution than stable isotopes, in a
more quantitative way and representative timeframe

than barcoding of gut DNA [2]. However, these methods
are complementary, rather than opposing, and could be
coupled with field observations to provide a comprehen-
sive perspective on ant trophic ecology.
The factors affecting NLFA amounts and composition

that we observed should also be considered in an ecological
context. A representative sample of castes and life stages is
recommended if one is interested in detailed trophic eco-
logy of a particular species. For a study at community level,
profiles of forager workers sampled at a similar time may
be enough to provide comparative information on resource
partitioning, although distinct reproduction times could in-
fluence amounts and compositions.
In this study, we did not aim to survey prospective bio-

markers for natural resources used by ants. However, the
three specific dietary NLFAs (C18:2n6, C18:3n3 and
C18:3n6) presented chemical properties of suitable bio-
markers, as they were not produced by ants (or only in
small amounts) and assimilated through direct trophic
transfer, with little or no metabolic modification [4]. They
can be found in natural diets of ants, such as in elaio-
somes, seeds and other insects, in variable patterns that
may allow detection of specific interactions [56, 73, 74].
Thus, they are good candidates for trophic markers. Since
their assimilation was not affected by species identity,
reproductive status or life stage, the biomarker ap-
proach seems to be quite promising for ants. Naturally,
the actual relevance of these NLFAs would depend on
context and occurrence within a community. On the
other hand, since C16:0, C18:0 and C18:1n9 are synthe-
sized from carbohydrates in large amounts, and highly
modified to attend physiological needs, it would be dif-
ficult to relate their amounts to a particular resource or
feeding behavior. Further research can provide more
fatty acids useful as biomarkers, related to other re-
sources used by ants, which would likely be distinct
from the ones suggested for other groups (e.g. C18:1n9
as an indicator of herbivory in Collembola [5]).

Conclusions
We showed that ants accumulated fatty acids from their
diet via direct trophic transfer, and that both, individual
NLFAs and overall profiles reflect their diets. The fat con-
tent of the diet had no effect in lipids stored by ants,
which shows that they are able to synthesize large
amounts of NLFAs from sugars. Other factors such as re-
productive status and life stage also affected total amounts
and profiles of NLFAs. Specific dietary fatty acids were as-
similated independent of species or life stage. Fatty acid
analysis is a suitable technique to study feeding behavior
of ants, and can become a valuable tool to study ant
trophic ecology in the field. To this end, central points to
be addressed by future research are which biomarkers are
most informative of ant diets in natural communities, and
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how factors other than diet affect fatty acid dynamics and
composition of ant species with distinct life histories.
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S1 – Linear mixed-effect models with absolute amounts of NLFAs 

 The absolute amounts of NLFAs increased with dry weight for all ants (Table 1). For 

workers, significant results and trend directions were the same for LMMs with absolute 

amounts and dry weight as a cofactor, and with relative amounts of NLFAs (main text). For 

larvae, again LMMs with time and dry weight yielded similar results, with the exception of 

absolute total NLFAs and C18:2n6, which did not changed with time, but increased with dry 

weight. As explained in the main text, this increase was small compared to growth of other body 

components, thus the relative total amount decreased. Since time and dry weight were 

correlated, but each factor influenced individual NLFAs in a different manner, some other 

relationships changed. The models with relative amounts in the main text are better to 

understand larvae dynamics overall, because they account for both factors in the same analysis 

(experimental time as a factor and variables standardized by dry weight). 
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S2 – Dry weight of ants during the experiment 

 Overall, dry weight of ants did not differ between treatments (Table 2). It did not 

change also for workers, which do not grow in dimensions after emerging from pupae (although 

their total weight may change by accumulating or spending fat reserves). Larvae in general grew 

over time during the experiment (Fig. 1). 

Table 2 – Effects of treatment and time on dry weight of ants during the experiment time 

        dry weight [mg] 

  df F trend p 

F. fusca (n=48)      

Treatment  1 1.08  0.31 

Time  1 0.26  0.61 

Treatment x time  1 0.22  0.64 

Residuals  44    

      

M. rubra (n=48)      

Treatment  1 0.01  0.97 

Time  1 1.30  0.26 

Treatment x time  1 3.90  0.055 

Residuals  44    

      

M. rubra larvae (n=38)     

Treatment  1 1.77  0.25 

Time  1 19.30 ↑ < 0.001 

Treatment x time  1 2.90  0.099 

Residuals  33    

      

Results of linear mixed-effect models. Trends indicate 

the direction of significant effects (p < 0.05, in bold). 

 

Fig. 1 – Increase in dry weight of Myrmica rubra larvae during the experiment. 

 



S3 – Data transformations for linear mixed-effect models 

Table 3 – Data transformations for linear mixed-effect models. For larvae, dry weight was also 

normalized by a square-root transformation (workers’ weight had normal distributions and was 

not transformed). 

 Total NLFAs C16:0 C18:0 C18:1n9 C18:2n6 

F. fusca sqrt log - log log 

M. rubra sqrt log sqrt sqrt sqrt 

M. rubra larvae sqrt sqrt sqrt log log 

sqrt = square-root transformation; log = logarithmic transformation; - = no transformation 

 

 

S4 – Linear mixed model with M. rubra workers and larvae 

 df F p 

Treatment 1 2.30 0.148 

Time 1 21.87 < 0.001 

Life stage 1 22.14 < 0.001 

Residuals 83   

 

 

 

 

 



S5 – Effect of larval growth in saturated NLFAs 

 

Fig. 2 – Decrease of relative amounts of saturated NLFAs with increasing body size in M. rubra 

larvae. Red = high-fat treatment. Blue = low-fat treatment. 

 

 

 

 

 

 

 

 

 

 

 



S6 – Factor loadings for Principal Components Analyses 

Formica fusca – main text, Fig. 5A 

 

 

PC1 PC2 

C12:0 -1.1145 -0.2729 

C14:0 -0.9414 -0.2072 

C16:0 -0.1976 0.2512 

C18:0 -0.2350 -0.1158 

C20:0 -0.1617 -0.6004 

C16:1n9 -0.7114 0.7445 

C18:1n9 0.1906 0.7266 

C18:2n6 0.5230 -0.7533 

C18:3n3 1.4822 -0.1699 

C18:3n6 1.1656 0.3972 

 

Myrmica rubra – main text, Fig. 5B 

 

 

PC1 PC2 

C12:0 -0.5150 -0.0592 

C14:0 -0.6791 -0.0155 

C16:0 -0.3305 -0.0970 

C18:0 -0.5435 -0.3657 

C20:0 -0.0761 -0.6645 

C16:1n9 -0.8402 0.4124 

C18:1n9 0.4310 1.0472 

C18:2n6 0.4074 -0.0984 

C18:3n3 1.6567 -0.2649 

C18:3n6 0.4893 0.1057 
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Unveiling community patterns and trophic
niches of tropical and temperate ants
using an integrative framework of field
data, stable isotopes and fatty acids
Felix B. Rosumek1,2, Nico Blüthgen1, Adrian Brückner1,3,
Florian Menzel4, Gerhard Gebauer5 and Michael Heethoff1

1 Ecological Networks, Technische Universität Darmstadt, Darmstadt, Germany
2Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Brazil
3 Division of Biology and Biological Engineering, California Institute of Technology,
Pasadena, CA, USA

4 Institute of Organismic and Molecular Evolution, Johannes-Gutenberg Universität
Mainz, Mainz, Germany

5 BayCEER – IBG, Universität Bayreuth, Bayreuth, Germany

ABSTRACT
Background: The use and partitioning of trophic resources is a central aspect of
community function. On the ground of tropical forests, dozens of ant species may be
found together and ecological mechanisms should act to allow such coexistence. One
hypothesis states that niche specialization is higher in the tropics, compared to
temperate regions. However, trophic niches of most species are virtually unknown.
Several techniques might be combined to study trophic niche, such as field
observations, fatty acid analysis (FAA) and stable isotope analysis (SIA). In this work,
we combine these three techniques to unveil partitioning of trophic resources in a
tropical and a temperate community. We describe patterns of resource use, compare
them between communities, and test correlation and complementarity of methods
to unveil both community patterns and species’ niches.
Methods: Resource use was assessed with seven kinds of bait representing natural
resources available to ants. Neutral lipid fatty acid (NLFA) profiles, and d15N and
d13C isotope signatures of the species were also obtained. Community patterns
and comparisons were analyzed with clustering, correlations, multivariate analyses
and interaction networks.
Results: Resource use structure was similar in both communities. Niche breadths
(H′) and network metrics (Q and H2′) indicated similar levels of generalization
between communities. A few species presented more specialized niches, such as
Wasmannia auropunctata and Lasius fuliginosus. Stable isotope signatures and
NLFA profiles also indicated high generalization, although the latter differed
between communities, with temperate species having higher amounts of fat and
proportions of C18:1n9. Bait use and NLFA profile similarities were correlated, as
well as species’ specialization indices (d′) for the two methods. Similarities in d15N
and bait use, and in d13C and NLFA profiles, were also correlated.
Discussion: Our results agree with the recent view that specialization levels do not
change with latitude or species richness. Partition of trophic resources alone does not
explain species coexistence in these communities, and might act together with

How to cite this article Rosumek et al. (2018), Unveiling community patterns and trophic niches of tropical and temperate ants using an
integrative framework of field data, stable isotopes and fatty acids. PeerJ 6:e5467; DOI 10.7717/peerj.5467

Submitted 11 June 2018
Accepted 27 July 2018
Published 22 August 2018

Corresponding authors
Felix B. Rosumek,
rosumek@hotmail.com
Michael Heethoff,
heethoff@bio.tu-darmstadt.de

Academic editor
Marcio Pie

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj.5467

Copyright
2018 Rosumek et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.5467
mailto:rosumek@�hotmail.�com
mailto:heethoff@�bio.�tu-darmstadt.�de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.5467
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


behavioral and environmental mechanisms. Temperate species presented NLFA
patterns distinct from tropical ones, which may be related to environmental factors.
All methods corresponded in their characterization of species’ niches to some extent,
and were robust enough to detect differences even in highly generalized
communities. However, their combination provides a more comprehensive picture of
resource use, and it is particularly important to understand individual niches of
species. FAA was applied here for the first time in ant ecology, and proved to be a
valuable tool due to its combination of specificity and temporal representativeness.
We propose that a framework combining field observations with chemical analysis is
valuable to understand resource use in ant communities.

Subjects Biodiversity, Ecology, Entomology
Keywords Formicidae, Trophic niche, Baits, Fatty acids, Stable isotopes, Atlantic forest,
Temperate forest, Trophic ecology, Methodology, Food resources

INTRODUCTION
The use and partitioning of trophic resources is a central aspect of community functioning.
Trophic interactions govern the flux of matter and energy in food webs, and lead to
other fundamental interactions such as competition and mutualism (Polis & Strong, 1996;
Reitz & Trumble, 2002). Trophic niche partitioning is one of the most important
mechanisms allowing species coexistence, and may ultimately link to evolutionary
processes of adaptation and character displacement (Schluter, 2000).

Ants (Hymenoptera: Formicidae) are among the most abundant groups of
invertebrates in terrestrial ecosystems, presenting a wide range of feeding habits,
nesting sites and interactions with organisms from all trophic levels. In general they
are regarded as omnivorous, feeding on a combination of living prey, dead arthropods,
seeds and plant exudates (Blüthgen & Feldhaar, 2010; Lanan, 2014). On the ground of
tropical forests, dozens of species may coexist at the same spot, which raises the
question: how ecologically different are these species? Although the role of interspecific
competition in ant communities has recently been hotly debated (Cerdá, Arnan & Retana,
2013), the combination of high species richness with high biomass may lead to
evolutionary pressure for more diversified niches. MacArthur (1972) suggested that
specialization increases in tropical communities and, as a result, more species can
coexist. However, this idea was put in question by recent studies (Schleuning et al., 2012;
Morris et al., 2014; Frank et al., 2018). For ants, behavioral and environmental
mechanisms of coexistence have been proposed (Cerdá, Retana & Cros, 1997;
Andersen, 2000; Parr & Gibb, 2012). The use of food resources itself is surprisingly
understudied, and trophic niches of most species remain poorly known. This is
particularly evident in rich tropical communities (Rosumek, 2017), but also true for some
temperate species (Lanan, 2014).

Field observations are the most straightforward way of gathering information, but
there are trade-offs between the number of species studied (e.g., single species natural
history vs. community patterns; Medeiros & Oliveira, 2009; Houadria et al., 2015),
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the number of resources assessed (e.g., protein/sugar comparisons vs. all resources
collected by workers; Kaspari & Yanoviak, 2001; Lopes, 2007) and the sampling intensity
(e.g., seasonal studies vs. temporal “snapshots”; Albrecht & Gotelli, 2001; Rosumek, 2017).
Moreover, many species present cryptic habits, and the sheer complexity of interactions
makes the assessment of trophic niches a laborious task. Baiting is a method widely
used in ant ecology to assess communities and infer resource use (Bestelmeyer et al., 2000),
but it is affected by the aforementioned drawbacks.

Several techniques have been applied in ecology to deal with these issues, among
them stable isotope analysis (SIA) and fatty acid analysis (FAA). Indirect techniques
could be faster and reduce fieldwork effort, but also rely on several assumptions to
interpret their results. Since every method has its assets and caveats, the choice depends
on the nature of the questions being asked (Birkhofer et al., 2017). However, this also
works the other way around: complementary methods can be combined to provide a
detailed and integrative perspective on the community being studied.

Stable isotopes have been widely applied to address several questions in ant biology
(Feldhaar, Gebauer & Blüthgen, 2010). Most commonly used are the relative abundance
of heavy nitrogen (d15N) and carbon (d13C) (Hyodo, 2015). d15N increases predictably
when one organism consumes another, thus indicating whether species are at the top or
bottom of the food web (Heethoff & Scheu, 2016). d13C could be used to distinguish
between main carbon sources at the bottom of the food web because C3, C4 and CAM
plants have different signatures (O’Leary, 1988; Gannes, Del Rio & Koch, 1998). SIA
provides time-representative clues about trophic position, but limited information on
specific food sources or feeding behaviors. For instance, if two species feed exclusively on
primary consumers, they will have similar d15N, regardless of what prey items they actually
consume, or whether the food is obtained through predation or scavenging. As such, stable
isotope signatures are not suitable to calculate niche breadth or overlap, or to be analyzed
as species-resources interaction networks.

Fatty acids obtained from the diet are mainly stored as neutral lipid fatty acids (NLFAs)
in the fat body of insects. Some fatty acids can be synthesized de novo by organisms,
from carbohydrates or other fatty acids. Synthesis of C16:0, C18:0 and C18:1n9 (palmitic,
stearic and oleic acids) is widespread, and they are the most abundant NLFAs in insects
(Stanley-Samuelson et al., 1988; but see Thompson, 1973). Ability to synthesize other
NLFAs is highly variable among taxonomic groups, such as C18:2n6 (linoleic acid;
Malcicka, Visser & Ellers, 2018). When fatty acids are reliably assigned to specific food
sources, they may act as biomarkers (Ruess & Chamberlain, 2010). Even when such
biomarkers are not identified, all fatty acids assimilated without modification (i.e., through
direct trophic transfer) influence the composition of the fat reserves, including the relative
amounts of de novo-synthesized NLFAs. Hence, the stored fat preserves information on
ingested carbon sources, and NLFA profiles can be compared to infer niche differences
(Budge, Iverson & Koopman, 2006). However, the application of FAA in field studies of
terrestrial organisms still is limited. Most studies focused on soil detritivores, such as
collembolans and nematodes (Ruess et al., 2007; Haubert et al., 2009; Ngosong et al., 2009).
So far, FAA was not used to study trophic ecology of ants.
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In this work, we combine field observations with SIA and FAA to unveil the use and
partitioning of trophic resources in a tropical and a temperate epigeic ant community.
Our main goal is to describe patterns for each community and test differences between
communities and methods. Specifically, we aim to: (1) assess use of multiple resources,
stable isotope signatures and NLFA profiles of the most abundant species in both
communities; (2) compare patterns between communities using descriptive and statistical
approaches; (3) test whether different methods provide convergent or complementary
information on patterns of resource use.

MATERIALS AND METHODS

Baiting
Fieldwork in Brazil was carried out in Florianópolis (Desterro Conservation Unit,
27�31′38″S, 48�30′15″W, altitude ca. 250 m), in December 2015 and January 2016, under
sampling permit SISBIO 51173-1 (ICMBio), and export permits 15BR019038/DF and
17BR025207/DF (IBAMA). The vegetation consists of a secondary Atlantic forest with at
least 60 years of regeneration. High rainfall rate along the coast results in high productivity,
ant species richness and a tropical aspect for the Atlantic forest even at higher latitudes
such as in our work (Silva & Brandão, 2014). In Germany, it was carried out in Darmstadt
(Prinzenberg, 49�50′14″N, 08�40′01″E, altitude ca. 250 m), in July 2015 (no permits
needed there). The vegetation consists of patches of mixed forest, beech forest and
orchards, which were all covered by the sample grids.

Sampling design followed similar protocols in both sites (Table 1). Seven bait types
were offered as proxies for resources that are widely used by ants in general (Kaspari, 2000;
Blüthgen & Feldhaar, 2010; Lanan, 2014; for a full description of baits, see Supplemental
Document S1). Sample points were distributed in grids and separated by 10 m. In each
sampling session, only a single bait was offered per point, and bait types were randomized
among points. Baits were set up in transparent plastic boxes and retrieved after 90 min.
This procedure was repeated in different days until all bait types had been offered at
each point (twice in Brazil). The design was based on Houadria et al. (2015) and evaluates
use of multiple resources, differing from a typical cafeteria experiment, which is designed
to assess preferred resources (Krebs, 1999).

Pitfall sampling
We performed a concomitant pitfall assessment to verify whether bait records represented
well the epigeic community (Table 1). One vial per sample point was previously buried to
avoid the digging-in effect (Greenslade, 1973), and replaced after collection for the next
round. Pitfall and bait sampling were not performed simultaneously at the same point.
Vials were buried at ground level, had six cm diameter and 150 ml volume, and contained
40 ml propylene glycol 50%.

Fatty acid analysis
In Brazil, samples were obtained from baits and complemented by colony sampling in
November 2017. We only used ants from melezitose, sucrose and seed baits, to avoid
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interference of bait lipids. In Germany, they were obtained by colony sampling
between July and August 2017. Samples were frozen at -18 �C directly from the field.
Total lipids were extracted from the ants whole body using one ml chloroform:methanol
solution, 2:1 (v/v). The solution was applied to SiOH-columns and the neutral parcel
(= mono-, di- and triglycerides) eluted with four ml chloroform. Samples were analyzed
with gas chromatography–mass spectrometry, following the same procedures described
in Rosumek et al. (2017). NLFA amounts were obtained comparing their proportions to
an internal standard (C19:0 in methanol; ρi = 220 ng/ml). Ants were subsequently dried
to obtain their lean dry weight (= without lipids).

Stable isotope analysis
Ants collected in baits and conserved in ethanol 70% were used to analyze d15N and d13C.
C and N isotope abundances were measured in a dual element analysis mode with an
elemental analyzer coupled to a continuous flow isotope ratio mass spectrometer as
described in Bidartondo et al. (2004). Relative abundances were calculated following the
equation: dx = (Rsample/Rstandard - 1) � 1,000 [‰], where R denotes the ratio between
heavy and light isotopes of samples and international standards (N2 in the air and CO2 in
PeeDee belemnite). Gasters were removed prior to analysis to avoid interference of gut
content (Blüthgen, Gebauer & Fiedler, 2003).

Taxonomic identification
Ants were identified with taxonomic revisions, and comparison to identified specimens in
collections and AntWeb images (AntWeb, 2016). Updated names were checked with

Table 1 Details of the sampling design applied in this study.

Brazil Germany

Sampling effort

Sampling points 64 80

Period of the day Day and night Day

Baits 64 per resource per period (= 896 baits) 80 per resource (= 560 baits)

Pitfall sampling Three 10-h rounds per period (= 60 h) Three 12-h rounds (= 36 h)

Resource represented

Larger, faster and harder prey Living crickets
(Achaeta domesticus Linnaeus, 1758)

Smaller, slower and softer prey Living termites
(Nasutitermitinae)

Living maggots
(Lucilia sericata
Meigen, 1826)

Dead arthropods Crushed crickets and maggots/mealworms
(Tenebrio molitor Linnaeus, 1758)

Bird droppings Chicken feces from organic
breeding

Seeds Seed mixture of diverse sizes and
shapes, without elaiosomes

Seeds of Chelidonium majus
(L.), with elaiosomes

Oligosaccharides in honeydew Melezitose 20%

Disaccharides in nectar and fruits Sucrose 20%

Rosumek et al. (2018), PeerJ, DOI 10.7717/peerj.5467 5/31

http://dx.doi.org/10.7717/peerj.5467
https://peerj.com/


Antcat (Bolton, 2018). Identifications were partially confirmed by taxonomists (see
Acknowledgements).

In Brazil, ants were identified to genus level with Baccaro et al. (2015) and to species
level with: Acanthognathus—Galvis & Fernández (2009); Acromyrmex—Gonçalves (1961);
Cephalotes—De Andrade & Baroni Urbani (1999); Crematogaster—Longino (2003);
Cyphomyrmex—Kempf (1965) and Snealling & Longino (1992); Gnamptogenys—Lattke
(1995); Hylomyrma—Kempf (1973); Linepithema—Wild (2007); Octostruma—Longino
(2013); Odontomachus and Pachycondyla—Fernández (2008); Pheidole—Wilson (2003);
Wasmannia—Longino & Fernández (2007). Camponotus and Strumigenys were identified
solely by comparison with collections.

In Germany, ants were identified to genus and species with Seifert (2007), Seifert &
Schultz (2009) and Radchenko & Elmes (2010).

All material is stored in the collections of the Ecological Networks research group,
Technische Universität Darmstadt, Darmstadt, Germany and Department of Ecology and
Zoology, Federal University of Santa Catarina, Florianópolis, Brazil.

Data analysis
As a first step, we compared species’ incidences in baits and pitfalls (i.e., number of
sampling points where it was recorded with each method). We assumed incidence in
pitfalls to represent abundance in the community, and qualitatively compared it to
incidence in baits to check whether common species were underrepresented in baits.
To account for different efficiencies between methods, expected incidences were indicated
by a line of slope m = Ibaits/Ipitfalls, where I is the sum of all incidences for each method
(Houadria et al., 2015).

Number of species, replicates and individuals per sample differed between methods,
based on sample availability and ant size. In Brazil, we analyzed 24 species for baits,
41 for FAA and 31 for SIA. Method comparisons were performed only with 22 species
considered in all three datasets. In Germany, seven species were analyzed with all methods.
For a full list of recorded species and respective labels used in plots, see Table S1.

Unless noted otherwise, similarity matrices were based on unweighted Bray–Curtis
dissimilarities, andMantel tests and correlations used Spearman’s coefficient (rho). Analyses
were run in R 3.4.3 (R Core Team, 2017) and PAST 3.14 (Hammer, Harper & Ryan, 2001).

For all bait analyses, we used proportion of occurrence on each bait type, relative to
total records for each species. Only species with at least 10 records from five or more
sample points were considered. In Brazil, day and night records were considered as
independent to calculate proportions. For FAA, we calculated proportions of each
NLFA relative to total composition, and used average proportions for each species. All
NLFAs with average proportion >0.01% were considered. For SIA, we also used species’
averages and analyzed d15N and d13C separately, using Euclidean distances to build
similarity matrices. A special case was Lasius fuliginosus in Germany, which was
represented by a single colony that foraged over a large area. Bait records from different
sample points were considered independent, and chemical results represent the average of
different samples from that colony.
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To analyze resource use, we used clustering and network analysis. UPGMA clustering
was used for species, to show functional groups based on similar use of resources, and
for baits, to show the structure of resource use in each community. Statistical significance
of clusters was tested with SIMPROF (Clarke, Somerfield & Gorley, 2008) using the package
“clustsig” (Whitaker & Christman, 2015). A Mantel test was used to compare similarity
matrices of Brazil and Germany.

For network analysis, we used quantitative modularity (Q) (Dormann & Strauss, 2014)
and specialization indices for species/resources (d′) and whole networks (H2′) (Blüthgen,
Menzel & Blüthgen, 2006), using the package “bipartite” (Dormann, Fruend & Gruber,
2017). Modularity shows how compartmentalized is a community, that is, if there are
groups of species that strongly interact with groups of resources. In turn, d′ indicates
whether individual species are specialized in certain resources, or resources that are used
by a specialized group of species. H2′ is an extension of d′ and shows how specialized the
network is overall. H2′ = 0 would mean that all species used resources in the same
proportions, and H2′ = 1 that each species has its exclusive pattern of resource use.

Specialization indices were also used to analyze species � fatty acids contingency
tables. In this case, they indicate how exclusively NLFAs are distributed across species
(Brückner & Heethoff, 2017). H2′ = 0 would mean that all compounds occur in the same
proportion in all species, and H2′ = 1 that each species has its exclusive compounds.
Correspondingly, relatively high d′ represents NLFAs that occur more exclusively in
certain species, or species with more exclusive proportions of certain NLFAs. Low d′means
a compound that is widespread among species, or species with similarly generalized
profiles. Additionally, we tested whether the two communities differed in their overall
NLFA composition with PERMANOVA, using site as a fixed factor (Anderson, 2001).
Homogeneity of multivariate dispersion was tested a priori with PERMDISP (Anderson &
Walsh, 2013). To detect which NLFAs contributed to differences, we used SIMPER
(Clarke, 1993). These tests were performed using package “vegan” (Oksanen et al., 2017).

To test whether niche breadths and NLFA profile diversity were different between
communities at species level, we calculated Shannon diversity indices for each ant species
as H′ = Spilnpi, where pi is the proportion of each resource i used by the species, or
NLFA found in its profile, and compared them with Mann–Whitney tests.

To test whether particular NLFAs were related to use of certain resources, we
performed principal component analyses (PCA) using baits � species contingency tables,
replacing zeros by small values (0.000001) and using centered log-ratio transformation to
deal with the constant-sum constraint (Brückner & Heethoff, 2017). PC axes were
correlated with NLFAs using function “envfit” from package “vegan.” We also compared
proportions, amounts (in mg/mg; the amount of fat divided by lean dry weight) and
unsaturation indices (UI; the sum of percentages of each unsaturated NLFA multiplied
by its number of double bounds) between Brazil and Germany with Mann–Whitney tests.
We did this for total fat and the three most abundant NLFAs (C16:0, C18:0 and C18:1n9).
To test whether there was a direct relationship between total fat amount and C18:1n9,
or total amount and UI, we correlated values for all individual samples of each community
(166 in Brazil, 32 in Germany).
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Finally, to test whether the results yielded by the three methods were correlated,
we performed Mantel tests between similarity matrices of species for each method.
We also correlated species’ d′ values for baits and NLFAs, to test whether specialization
levels were related.

RESULTS
Use of resources
Most common species were recorded in baits in proportions similar to the expected, given
their frequency in the community (Fig. S1 and Table S1). A few species were
underrepresented in baits (e.g., Pachycondyla harpax, Myrmica scabrinodis, Stenamma
debile), but, in general, species with few bait records were also rare in pitfalls. Thus, we
consider that a representative part of the epigeic communities was properly sampled.
Despite strong variation in total number of records, the number of species recorded in each
bait was similar, with exception of large prey (Table 2).

Similarities in resource use were correlated between Brazil and Germany (Fig. 1,
Mantel test, rho = 0.63, p = 0.03). In both communities, large prey was set apart from the
other resources, being used less frequently and by fewer species. Seeds and melezitose
changed positions between communities. In Germany, all ants used both sugars
indiscriminately, while in Brazil several species used more sucrose (e.g., Camponotus
zenon, Gnamptogenys striatula, Pachycondyla striata, Odontomachus chelifer, Solenopsis
sp.6) and others used more melezitose (e.g., Pheidole aper, Solenopsis sp.8, Wasmannia
affinis) (Table 2). Both modularity (QBR = 0.16, QGE = 0.14) and network specialization
(H2′BR = 0.13, H2′GE = 0.12) were relatively low and similar between sites. Species used
resources in different ways and a few were more specialized (see below), but there were no
clear links between particular resources and species or groups of species.

In Brazil, W. auropunctata occupied a highly specialized niche, using only feces baits,
which lead to the highest d′ values for any species and resource. Linepithema iniquum also
showed a relatively higher specialization level due to its preference for dead arthropods and
low use of sugars. P. striata and O. chelifer used more large prey, dead arthropods and
sucrose. C. zenon grouped with them based on use of dead arthropods and sucrose,
but avoided large prey. P. aper was the only species to have melezitose as its preferred
resource. Other species showed higher redundancy and clustered together, including all
Solenopsis and most Pheidole (Fig. 1; Table 2).

In Germany, only L. fuliginosus showed a relatively high specialization level and
clustered separately, due to its almost exclusive use of animal resources (living prey and
dead arthropods). Other species showed low specialization and dissimilarity (Fig. 1;
Table 2).

Niche breadths were similar between communities (Mann–Whitney, p = 0.44). Average
Shannon index was 1.6 ± 0.4 SD in Brazil and 1.7 ± 0.1 SD in Germany (Table 2).

Fatty acids
Temperate species contained much higher amounts of total fat than tropical ones (Fig. 2).
Fatty acid compositions changed between communities (PERMANOVA, r2 = 0.35,
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Table 2 Resource use of ant species in Brazil and Germany. Values for the seven baits are given in % of the total records for each species. Only
species with at least 10 records from five sample points are listed.

Species Large prey Small prey
Dead
arthropods

Feces Seeds Melezitose Sucrose d′
Shannon
index

Records

Brazil

Camponotus zenon – 14 36 7 7 7 29 0.06 1.6 14

Gnamptogenys striatula 2 23 21 19 11 6 17 0.04 1.8 47

Linepithema iniquum 10 10 50 20 – 10 – 0.16 1.4 10

Linepithema micans – 6 31 6 19 19 19 0.03 1.7 16

Nylanderia sp.1 7 10 25 6 9 23 21 0.03 1.8 267

Odontomachus chelifer 26 5 19 5 5 10 31 0.12 1.7 42

Pachycondyla striata 14 3 42 – 1 6 34 0.16 1.3 88

Pheidole aper 4 – 15 19 7 37 19 0.08 1.6 27

Pheidole lucretii 4 4 26 8 14 20 24 0.02 1.8 50

Pheidole nesiota 4 9 20 4 16 25 21 0.02 1.8 89

Pheidole sarcina 4 8 16 14 20 18 22 0.01 1.9 51

Pheidole sigillata 4 10 24 10 16 13 22 0.00 1.8 91

Pheidole sp.1 3 13 19 10 18 17 21 0.01 1.9 101

Pheidole sp.2 6 11 14 14 21 20 15 0.01 1.9 322

Pheidole sp.4 5 6 21 19 14 14 21 0.01 1.9 78

Pheidole sp.7 6 6 6 6 41 18 18 0.08 1.6 17

Solenopsis sp.1 4 14 18 13 26 12 13 0.01 1.8 141

Solenopsis sp.2 2 14 24 7 28 13 13 0.03 1.8 180

Solenopsis sp.3* – 4 16 8 32 20 20 0.05 1.6 25

Solenopsis sp.4 1 5 21 10 31 14 18 0.03 1.7 96

Solenopsis sp.6 2 10 29 7 17 10 26 0.02 1.7 42

Solenopsis sp.8 7 11 29 7 25 14 7 0.03 1.8 28

Wasmannia affinis – 25 10 10 30 20 5 0.09 1.6 20

Wasmannia auropunctata* – – – 100 – – – 0.62 0 19

d′ 0.17 0.09 0.09 0.24 0.14 0.07 0.09 H2′ = 0.13

Total richness† 26 31 33 32 32 34 34

Total records† 107 203 422 215 344 327 366

Germany

Formica fusca 4 5 21 2 12 26 30 0.06 1.6 57

Lasius fuliginosus 20 27 33 13 – – 7 0.31 1.5 15

Lasius niger 7 14 19 11 9 19 20 0.01 1.9 118

Lasius platythorax – – 17 17 4 30 30 0.11 1.5 23

Myrmica rubra 3 13 15 13 3 25 30 0.03 1.7 40

Myrmica ruginodis – 10 27 14 6 18 24 0.03 1.7 49

Temnothorax nylanderi – 4 21 14 18 21 22 0.06 1.7 165

d′ 0.29 0.14 0.02 0.05 0.13 0.11 0.05 H2′ = 0.12

Total richness† 4 8 8 8 7 9 11

Total records† 14 42 99 56 54 102 116

Notes:
* Species not considered in comparisons between methods.
† Including species with less than 10 records.
–, Species not recorded in this bait.
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p < 0.01). Multivariate dispersion was heterogeneous, being higher in Brazil than in
Germany (PERMDISP, F = 11.32, p < 0.01). This does not change the previous
result because, in this case, PERMANOVA becomes overly conservative (Anderson &
Walsh, 2013).

The main reason for this difference was the predominant role of C18:1n9 in temperate
species (SIMPER, dissimilarity contribution = 47%, p < 0.01, Figs. 2 and 3; Table 3). In
Brazil, composition was more balanced, which led to higher proportions of C18:0
(contribution = 21%, p < 0.01), although amounts were similar. C16:0 was proportionally
the most abundant NLFA in Brazil and the difference from Germany was marginally
significant (contribution = 20%, p = 0.06), although amounts again were higher in
temperate species. A few other NLFAs had statistically significant, but very small
contributions to the difference (Table S2).

Fatty acid compositions were generalized overall, but more homogeneous in Germany
because of the predominance of C18:1n9 (H2′BR = 0.09, H2′GE = 0.03). Accordingly, NLFA
profile diversity was higher in tropical species (average Shannon index = 1.5 ± 0.2 SD) than
temperate ones (0.9 ± 0.2 SD) (Mann–Whitney, p < 0.01) (Fig. 3; Table 3).

In samples from Germany, there was no correlation between total amount of fat
and percentage of C18:1n9 (rho = 0.19, p = 0.30) or unsaturation index (rho = 0.24,
p = 0.89). In samples from Brazil, there was weak negative correlation between total fat
and both C18:1n9 (rho = -0.16, p = 0.04) and unsaturation index (rho = -0.22, p > 0.01).

In Brazil, several fatty acids were related to resource use (Fig. 4; see Table S3 for PCA
eigenvalues and full Envfit results). Species with higher C18:1n9 also used more dead
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Figure 1 UPGMA clustering of resources and species in Brazil (A, C) and Germany (B, D), based on
Bray–Curtis dissimilarities. Red lines link elements from the same statistically significant cluster
(SIMPROF, p < 0.05). Full-size DOI: 10.7717/peerj.5467/fig-1
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arthropods (Envfit, r2 of the NLFA with PC axes = 0.32, p = 0.02), while C18:2unk1
(an unidentified NLFA) was related to use of sucrose and large prey (r2 = 0.31, p = 0.03).
C14:0 (mystric acid) tended to be higher in species that used more seeds, feces and
small prey (r2 = 0.39, p = 0.01). Notice that the first two Principal Components explained
only 60% of the variance and linear regressions were not strong. In Germany, most
variation was along the sugar-protein axis. C18:0 and C17:0 (margaric acid) were
strongly correlated with PC axes (r2 = 0.84, p = 0.05 and r2 = 0.78, p = 0.04, respectively).
Both were higher in species that used more sugars, and C17:0 also was related to use of
feces, although its relative abundance was very low in all species (<0.5%, Table 3).

Stable isotopes
In Brazil, W. auropunctata presented distinctive signatures for both isotopes. It was the
species with highest d15N, while most species ranged from 5.8 to 8.2, and six showed
conspicuously lower signatures. Besides W. auropunctata, d13C varied less, ranging from
-24.1 to -27 (Fig. 5; Table 4).

In Germany, d15N was lower overall, ranging from 3.6 (Lasius niger) to -1.1 (Lasius
fuliginosus). Species varied little in d13C (from -25.4 to -26.3), with values within the range
of Brazilian species (Fig. 5; Table 4).
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Figure 2 Comparison of the three most abundant NLFAs, total amounts and unsaturation indices
between tropical and temperate species. (a) Amounts; (b) percentages. Green = tropical species; red
= temperate species. Significant differences are in bold (Mann–Whitney test).

Full-size DOI: 10.7717/peerj.5467/fig-2
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Isotope signatures were correlated for tropical species (rho = 0.43, p = 0.02).
For temperate species, the correlation lacked statistical significance (rho = -0.46,
p = 0.3), but their inclusion slightly strengthened the correlation for all species together
(rho = 0.47, p < 0.01).
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Dataset comparisons
In Brazil, similarities in bait use and NLFA profiles were correlated (Table 5). While d15N
similarities were correlated with similarities in bait use, but not with NLFAs, the
opposite was found for d13C. That is, similar use of resources among species was reflected
in similar body fat composition, and both were related to their long-term trophic position,
albeit in different ways. In Germany, no such correlations were found between datasets
(although it was marginally significant for NLFAs and d15N).
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but are scaled independently for each plot. Only species analyzed with all three methods are included.

Full-size DOI: 10.7717/peerj.5467/fig-4
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Table 4 Stable isotope signatures of ant species in Brazil and Germany. Average d15N and d13C are
given in ‰, following the equation described in the methods.

Species d15N d13C Samples

Brazil

Acromyrmex aspersus* 3.42 -25.76 1

Camponotus lespesii* 2.44 -26.99 3

Camponotus zenon 3.50 -25.06 4

Crematogaster nigropilosa* 3.63 -26.97 2

Gnamptogenys striatula 8.18 -25.00 5

Linepithema iniquum 4.50 -26.71 5

Linepithema micans 7.71 -24.62 4

Linepithema pulex* 7.63 -26.48 4

Nylanderia sp.1 5.94 -25.12 5

Odontomachus chelifer 7.69 -25.28 5

Pachycondyla striata 7.69 -25.52 5

Pheidole aper 6.71 -25.26 5

Pheidole avia* 5.84 -25.46 3

Pheidole lucretii 7.89 -25.79 3

Pheidole nesiota 6.13 -25.55 5

Pheidole sarcina 7.77 -25.02 4

Pheidole sigillata 7.35 -24.67 5

Pheidole sp.1 6.40 -25.18 5

Pheidole sp.2 6.35 -24.88 5

Pheidole sp.4 8.23 -25.98 5

Pheidole sp.5* 6.63 -25.79 1

Pheidole sp.7 8.42 -24.10 5

Solenopsis sp.1 6.14 -25.12 5

Solenopsis sp.2 6.61 -25.10 5

Solenopsis sp.3* 5.82 -24.80 3

Solenopsis sp.4 6.81 -25.47 5

Solenopsis sp.6 7.30 -25.58 5

Solenopsis sp.8 6.91 -24.97 3

Trachymyrmex sp.1* 2.29 -26.77 1

Wasmannia affinis 6.28 -26.28 4

Wasmannia auropunctata* 11.20 -17.79 4

Germany

Formica fusca 3.15 -25.72 5

Lasius fuliginosus -1.09 -25.81 5

Lasius niger 3.63 -26.31 5

Lasius platythorax 0.80 -25.40 5

Myrmica rubra 1.78 -26.03 5

Myrmica ruginodis 1.66 -25.56 5

Temnothorax nylanderi 0.53 -25.65 5

Notes:
* Species not considered in comparisons between methods.
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Table 5 Correlations between methods in Brazil and Germany. Results are for Mantel tests using
Spearman’s rho, based on similarities matrices (Bray–Curtis for baits and NLFAs, Euclidean distances for
isotopes). Asterisks indicate significant correlations.

Method
Baits NLFAs

rho p rho p

Brazil

NLFAs 0.43 <0.01*

d13C 0.23 0.07 0.23 0.02*

d15N 0.25 0.04* 0.14 0.08

Germany

NLFAs -0.23 0.77

d13C -0.24 0.76 0.29 0.19

d15N 0.37 0.12 0.46 0.06
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Figure 6 Relationship between specialization indices (d′) for bait use and NLFAs. Green = tropical
species, the dashed line indicates significant correlation; red = temperate species, no correlation
observed. Only species analyzed with all three methods are included.
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Exclusiveness (d′) of bait choices and NLFAs profiles were also correlated in Brazil
(rho = 0.51, p = 0.02), suggesting that specialization in resources was reflected in more
specific compositions of fatty acids. No correlation was observed in Germany (rho = -0.07,
p = 0.86) (Fig. 6).

DISCUSSION
Our main findings in this work are: (1) patterns of resource use are similar in both
communities, although the role of oligosaccharides is distinct; (2) both communities
are similarly generalized in resource use, regardless of species richness; (3) temperate
ants present higher amounts of fat and more homogeneous NLFA compositions;
(4) composition and specialization in resource use and NLFAs are correlated, and are also
related to species’ trophic position; (5) some species show specialized behaviors that can be
better understood by method complementarity.

The hypothesis proposed by MacArthur (1972) suggested that specialization is higher
in tropical communities because the environmental stability allows species to adapt to
more specialized niches without increasing extinction risk, thus allowing more species
to coexist. However, this idea was put in question by recent studies, where the
latitude-richness-specialization link was not confirmed, or an inverse trend was found
(Schleuning et al., 2012; Morris et al., 2014; Frank et al., 2018). Our work is not an
explicit test of this hypothesis, but several results agree with the view that specialization
does not necessarily increase with higher richness toward the tropics: despite the different
number of species, network metrics of resource use and niche breadths were similarly
generalized in both communities; fatty acid compositions were also highly generalized,
although in this case in different level, possibly due to other factors (see discussion on fatty
acids below); cluster analysis of resource use showed similar patterns between
communities and both species clusters and stable isotopes indicated strong overlap inside
each community.

The bait protocol we applied is efficient to assess niches of generalists, and
specialized species were seldom recorded. Nevertheless, these generalists represent the
majority of the communities (as highlighted by our pitfall data), and one might expect more
diversified niches to allow coexistence, but that was not the case. The differences
we observed might still play a role in coexistence of some species, particularly when they
share other traits, such as O. chelifer and Pachycondyla striata. Both are large, solitary
foraging Ponerinae species, very common on the ground of the Atlantic forest, but
O. chelifer is more predatory and Pachycondyla striata is more scavenging (Rosumek, 2017).
Coexistence is result of a complex interplay of habitat structure, interspecific interactions
and species traits and no single factor governs ant community organization (Cerdá,
Arnan & Retana, 2013). Trophic niche alone does not explain coexistence of the common
species in these two communities, but likely is one of the many factors structuring them.

Use of resources
Resource use in Brazil was discussed in detail in Rosumek (2017), as well as the literature
review on trophic niche of our identified tropical species. Large prey was the less used
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resource, because size and mobility of the prey limits which species are able to
overcome them. Small prey and feces were also relatively less used, the first because also is
relatively challenging to acquire, and the second probably due to smaller nutritional value.
On the other hand, the other resources are nutritive and relatively easy to gather,
particularly dead arthropods, which was by far the most used resource. Considering
the similarity in resource use patterns, most general remarks in that work apply to
Germany as well. The two main differences we found are discussed below.

The role of insect-synthesized oligosaccharides seems to be distinct between temperate
and tropical communities. In Brazil, the aversion to melezitose showed by some species
could represent a physiological constraint, since tolerance to oligosaccharides differs
among ant species (Rosumek, 2017). For ants without physiological constraints, melezitose
use might be opportunistic and does not necessarily mean that they interact with
sap-sucking insects. However, honeydew is the only reliable source of oligosaccharides in
nature, so the few species that preferred this sugar may engage in such interactions
(particularly Pheidole aper). In Germany, on the other hand, all species used both sugars
similarly. The two Myrmica, Lasius and Formica fusca are known to interact with
sap-sucking insects, and Temnothorax nylanderi uses honeydew opportunistically when
droplets fall on the ground (Seifert, 2007).

Seeds were other resource used differently, but this probably is consequence of our
methodological choice of seeds with elaiosomes in Germany. Elaiosomes are thought to
mimic animal prey and attract predators and scavengers (Hughes, Westoby & Jurado,
1994), not only granivores. Effectively, elaiosomes of Chelidonium majus are attractive to a
wide range of ants (Reifenrath, Becker & Poethke, 2012). However, seeds were more
extensively used in Brazil. A higher diversity of shape and sizes of seeds was offered there,
which allowed more ants to use them.

Fatty acids
Fatty acid compositions were generalized, but differed between communities. In Germany,
C18:1n9 plays a prominent role, making up for more than 70% of the NLFAs stored by
ants. The amounts of fat also differed remarkably: in average, temperate ants stored
over five times more fat. Similarly high amounts of total fat and percentages of C18:1n9
were observed in laboratory colonies of F. fusca and M. rubra (Rosumek et al., 2017),
which suggest that it might be a general trend for temperate species. In Brazil, NLFA
abundance at community level was more balanced between C16:0, C18:0 and C18:1n9.
Both amounts and proportions of C18:1n9 were variable among species.

Organisms can actively change their fatty acid composition in response to
environmental factors and physiological needs (Stanley-Samuelson et al., 1988).
Temperature and balance between saturated and unsaturated NLFAs are important,
because the fat body should present a certain fluidity that allows enzymes to access stored
nutrients (Ruess & Chamberlain, 2010). C18:1n9 seems to be the only unsaturated fatty
acid that ants are able to synthesize by themselves in large amounts (Rosumek et al., 2017).
However, there was no positive correlation between amount of fat and C18:1n9 or
unsaturation index of samples, which would be expected if C18:1n9 synthesis was a direct
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mechanism of individuals to balance saturation:unsaturation ratios (the weak negative
correlation in Brazil also does not fit this hypothesis).

Therefore, we suggest that differences in C18:1n9 percentages and total amounts could
be consequence of two distinct environmental factors. Under lower temperatures, higher
proportion of unsaturated fatty acids is needed to maintain lipid fluidity (Jagdale &
Gordon, 1997). Thus, temperate species might be adapted to synthesize and store more
C18:1n9 to withstand the cold seasons. If this hypothesis were correct, the ants would
maintain this high proportion throughout the year, since we collected in summer. In turn,
high amount of fat could be a direct consequence of the marked seasonality in
temperate regions. These species might be adapted to quickly acquire and accumulate
energy reserves during the short warm season, while there is less pressure for this in
regions where resources are available throughout the year.

We observed relationships between certain NLFAs and resources, although overall
they were not strong and not necessarily result of direct trophic transfer. C18:1n9
was related to use of dead arthropods in Brazil. This NLFA is considered a
“necromone,” a chemical clue for recognition of corpses by ants and other insects
(Sun & Zhou, 2013), so it presumably increases in dead arthropods. However, only
polyunsaturated fatty acids can be degraded to form C18:1n9 during decomposition,
and C18:1n9 itself turns into C18:0 (Dent, Forbes & Stuart, 2004). Thus, for high C18:1n9
to be a direct result of scavenging, prey items should previously possess high levels of
unsaturation. This might be an indirect effect as well: scavenger ants might be better
at tracking and retrieving food items that are naturally rich in C18:1n9. No correlation
was found in Germany, which could also be related to the special role of this NLFA
in temperate species: its predominance due to environmental factors may override its
dietary signal.

C18:2n6 occurs independently of diet only in very small amounts, and it is a potential
biomarker (Rosumek et al., 2017). The differences we observed among species are direct
result of diet. Its occurrence was more widespread in Brazil, but we observed no clear
correlation with specific resources. C18:2n6 is found in elaiosomes, seeds and other
arthropods in different amounts (Thompson, 1973; Hughes, Westoby & Jurado, 1994).
Since it can come from different sources, C18:2n6 cannot be straightforwardly used as a
biomarker for specific diets, but depends on a deeper analysis of the resources actually
available in the habitat.

The biological significance of the correlations of NLFAs and resources in Germany is
difficult to grasp. C18:0 does not appear to be preferably synthesized from carbohydrates,
compared to C16:0 and C18:1n9 (Rosumek et al., 2017). Adding to the fact that such
correlation was not found in Brazil, this might not represent a physiological link between
sugar consumption and C18:0 synthesis. With low number of species in Germany, even
strong correlations might be result of species-specific factors other than diet. The same
might be said for C17:0, a fatty acid that occurs in very low amounts in several vegetable
oils (Beare-Rogers, Dieffenbacher & Holm, 2001).

Interestingly, we did not observe any 18:3n3 or 18:3n6 (a- and �-linolenic acids).
Ants are not able to synthesize them, and they are assimilated through direct trophic
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transfer (Rosumek et al., 2017). In the studied communities, these fatty acids seem to be
completely absent from food sources used by ants. This is an unexpected result, since
their occurrence is well documented in elaiosomes and a wide range of insect groups that
might serve as prey (Thompson, 1973; Hughes, Westoby & Jurado, 1994).

The use of fatty acids as biomarkers to track food sources is one of the greatest potentials
of this method. However, it might be more suitable to detritivore systems, where the
biomarkers are distinctive membrane phospholipids from microorganisms that
decompose specific resources, and that end up stored in the fat reserves of the consumers
(Ruess & Chamberlain, 2010). The NLFA profiles we observed are generalized, and the
most relevant fatty acids could represent distinct sources and/or be synthesized de novo in
large amounts. The biomarker approach might not be suitable at community level for
ground ants, contrary to NLFA profiles (see Method Comparison below). However, it
still might be useful to unveil species-specific interactions, or in contexts with less potential
sources that can be better tracked (e.g., leaf-litter or subterranean species).

Stable isotopes
Trophic shift (i.e., the degree of change in isotopic ratios from one trophic level to
another) varies among taxonomic groups and according to other physiological factors
(McCutchan et al., 2003). “Typical” values of ca. 3‰ for d15N and 1‰ for d13C were
experimentally observed in one ant species (Feldhaar, Gebauer & Blüthgen, 2010).
Establishing discrete trophic levels is unrealistic in most food webs, particularly for
omnivores such as ants (Polis & Strong, 1996), but species within the range of one
trophic shift are more likely to use resources in a similar way. d15N ranges of ca. 9‰
were observed for ant communities in other tropical forests, representing three trophic
shifts (Davidson et al., 2003; Bihn, Gebauer & Brandl, 2010). This is similar to our
range of 8.9‰ but, discounting W. auropunctata, the remaining range of 6.1‰ is
more similar to what was observed in an Australian forest (7.1‰; Blüthgen, Gebauer &
Fiedler, 2003). In Germany, only Lasius fuliginosus presented a distinct signature. In both
communities, most species fell within the range of one trophic shift.

d13C showed smaller, but meaningful, variations that were correlated to d15N. d13C
is less applied to infer trophic levels, as it is more sensitive to sample preservation
method and diet composition (Tillberg et al., 2006; Heethoff & Scheu, 2016). An average
change of 0.61‰ was observed in samples stored in ethanol by Tillberg et al. (2006).
However, we observed correlations (including with NLFAs—see below) despite this
eventual change, and it would not affect the similarity among species and between
communities. Primary consumers using distinct plant sources may present differences
of up to 20‰, and this will influence the signature of secondary consumers (O’Leary, 1988;
Gannes, Del Rio & Koch, 1998). However, in our case, only W. auropunctata presented
such distinct value.

Again, both isotopes suggest that the core of these communities is composed by
generalists that broadly use the same resources. Since we did not establish baselines, lower
values in Germany do not necessarily mean lower trophic levels in this community.
Isotope signatures for the same species are highly variable among sites in Europe
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(Fiedler et al., 2007), and this variation can be the result of either different isotope baselines
or actual changes in species’ ecological roles.

Low d15N suggest that a species obtain most of their nitrogen from basal trophic
levels, mainly plant sources (Blüthgen, Gebauer & Fiedler, 2003; Davidson et al., 2003).
This fits the six species with lowest d15N in Brazil. Two were fungus-growing ants
(Acromyrmex aspersus, Trachymyrmex sp.1), which use mostly plant material to grow its
fungus. The others were species that forage frequently on vegetation, besides the ground
(Camponotus lespesii, Camponotus zenon, Crematogaster nigropilosa, Linepithema
iniquum). Arboreal species that heavily rely on nectar or honeydew usually present low
d15N, which may be the case for these species. Linepithema represents well this trend:
the two mainly ground-nesting species, Linepithema micans and Linepithema pulex,
presented higher signatures than the plant-nesting Linepithema iniquum (Wild, 2007).

Community patterns and method comparison
The correlations we observed between methods are interesting from both the
methodological and the biological perspective. From a methodological viewpoint, for
terrestrial animals, this is the first time an empirical relationship is shown between
patterns of resource use and composition of stored fat in natural conditions, and that both
relate to their long-term trophic position. Although differences between species were
small, these relationships were robust enough to be detected by different methods. From a
biological viewpoint, it highlights several physiological mechanisms involved in such
relationships. We will discuss in the following some of these mechanisms, as well as caveats
that are often cited for these methods. They probably still influence our results and
correlations, but did not completely override the patterns.

A commonly cited caveat for using baits is that ants could be attracted to the most
limited resources, instead of the ones they use more often. Evidence for this comes mainly
from nitrogen-deprived arboreal ants (Kaspari & Yanoviak, 2001), and some cases are
discussed below (see method complementarity). However, this effect might be less
pronounced in epigeic species, and our results suggest that there is convergence between
bait attendance, and medium- and long-term use of resources.

Diet may significantly change NLFA composition in a few weeks (Rosumek et al., 2017)
and persist for a similar time (Haubert, Pollierer & Scheu, 2011). Therefore, the
“snapshot” of resource use we observed with baits should represent at least the seasonal
preferences of the species. A seasonal study on NLFA compositions can bring valuable
information on resource use changes, or if they are stable throughout the year.

Adult ants are thought to feed mostly on liquid foods, due to the morphology of the
proventriculus, which prevents solid particles to pass from the crop to the midgut
(Eisner & Happ, 1962). Larvae are able to process solids and possess a more diversified suit
of enzymes, and are sometimes called the “digestive caste” of the colony (Hölldobler &
Wilson, 1990; Erthal, Peres Silva & Ian Samuels, 2007). Trophallaxis is an important
mechanism of food sharing between workers and larvae. Our results suggest that the
trophic signal of NLFAs is not lost in this processes, and that might be true even for solid
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items such as arthropods or seeds. However, the similarities could be as well the result of
direct digestion and assimilation of liquid sources (sugars, hemolymph).

We also found correlations with stable isotopes. They were weaker than between
baits and NLFAs, and different for each isotope. For d15N, it shows that patterns of
resource use are more correlated with trophic level. Protein amino acids must be obtained
from diet or synthesized from other nitrogenated compounds, so the signal relative to
nitrogen sources should be more preserved. This also fits to the idea that d15N reflects
larval diet, because it is in this stage that ants grow and build most of their biomass
(Blüthgen & Feldhaar, 2010). On the other hand, it makes sense that the signal relative to
carbon sources is related to NLFA composition. We should note that we removed the
gaster of the ants used in SIA, so we observed only the signal of carbon incorporated in
the other body parts. This is related to dietary carbon, but a stronger signal could be
expected if the fat body is included.

The low source-specificity of stable isotope signatures might also lead to relatively
weak correlations. Pachycondyla striata and O. chelifer had the same d15N despite their
different preferences. Other species that appear to be mostly scavengers had similar or
higher d15N than those two “predators,” such as Linepithema micans, Pheidole sarcina,
Pheidole lucretii and Pheidole sp.4.

In Germany, no correlation was observed between methods. This is probably a
consequence of the low number of species available in the community. The relationships
found in Brazil might be valid for other communities, although ecological context and
physiology might change their significance or strength.

Species niches and method complementarity
Niche differences were correlated at community level, but the use of different techniques
allows better understanding of species’ niches. Method complementarity is particularly
important if one is interested in the functional role of individual species, not only in overall
patterns. Some cases are described below.

In Brazil, W. auropunctata was distinct from the remaining community, both in
resource use and isotopic signature (unfortunately, no NLFA samples were obtained for
this species). Strong preference for feces is a novel behavior for this species, known to
invade and dominate disturbed habitats, but less dominant inside forests (Rosumek, 2017).
Its isotopic signature confirms that they have a highly differentiated diet, and could be
direct result of a feces-rich diet. In herbivorous mammals, feces are usually enriched
in d15N relative to diet (Sponheimer et al., 2003; Hwang, Millar & Longstaffe, 2007).
The proposed mechanism of 15N enrichment along trophic levels states that this happens
due to preferential excretion of 14N, and it is assumed that most nitrogen is excreted in the
urine, which is depleted in 15N (Peterson & Fry, 1987; Gannes, Del Rio & Koch, 1998; but
see Sponheimer et al., 2003). However, 15N-enriched feces were also observed in uricotelic
organisms, such as birds and locusts (Webb, Hedges & Simpson, 1998; Bird et al., 2008).
Thus, high d15N is consistent with a diet based on 15N-enriched feces from other
consumers. The relationship with the d13C signature is less clear, but it also suggests
high specialization.
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This behavior might be a local adaptation, but also could indicate thatW. auropunctata
shifts to less disputed resources inside native forests (although the exact resources
used may be context-dependent). In Davidson (2005), Wasmannia species (including
W. auropunctata) presented relatively high d15N and were considered highly carnivorous.
However, our result shows that high d15N should not be taken from granted to
represent high-level consumers. It might be a solid generalization for communities, but
other trophic pathways may lead to such signatures. Due to their lack of specificity,
isotope signatures should be combined with field observations to provide reliable
information at species level. As another example, the second highest d15N in our work
was observed in Pheidole sp.7, a species that used mainly seeds and was seldom recorded in
animal (or feces) baits.

Another example where results seem to be contradictory is L. fuliginosus, which showed
strong preference for animal baits, but low d15N. In this case, the natural history of the
species is well known, and it strongly interacts with aphids, particularly the giant oak aphid
Stomaphis quercus (Seifert, 2007). This suggests that this aphid’s honeydew is not enriched
in 15N and has a composition similar to the plants on which they feed. The honeydew
supply should be abundant, since ants basically ignored sugar baits, but also relatively poor
in nitrogen, which makes L. fuliginosus use animal sources whenever possible. A similar
pattern may apply to Linepithema iniquum in Brazil, which also combined low d15N with
preference for animal baits. This species is also known to use extra-floral nectaries and
honeydew (Rosumek, 2017), but does not have such strong and specific interactions as its
temperate counterpart.

CONCLUSIONS
In this work, we investigated two communities with three distinct methods, and provided
information on community patterns of resource use and species’ trophic niches. Our
results agree with the view that ant communities are mostly composed by generalist
species that share similar resources, and suggest that such patterns do not differ
between tropical and temperate communities. Although high richness may lead to more
specialists in the tropics, the generalist core of the community should be maintained by a
combination of several factors.

Overall, we observed that the three methods corresponded in their characterization of
the communities, but their combination provided a more comprehensive picture of
resource use. However, the time and costs demanded should limit the broad application of
this framework, and some techniques are more suitable to answer particular questions.
We gave special focus on FAA in this work because it was the first time this method was
applied to study ant ecology in the field. Considering that NLFA profiles provide a more
time-representative snapshot than baits, and are more specific than stable isotopes, we
suggest FAA as a powerful tool to study trophic niche relationships in species-rich ant
communities. It allows the researcher to obtain quantitative data related to diet with
relatively short fieldwork time, or from systems where direct observation is limited, and
then use it to infer niche breadths, similarities and overlap. However, their use as
biomarkers has yet to be developed, and seems to be limited for epigeic ant communities.
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Combining NLFA compositions with field observations is strongly recommended if the
researcher is interested in source-specificity. Finally, stable isotopes (particularly d15N)
might be added as a long-term representation of trophic position, which can corroborate
or complement other results.
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Supplementary document S1: Bait composition and display (based on Houadria et al. 2015 

and Rosumek 2017) 

 

(1) Large prey: one individual of Achaeta domesticus (Linnaeus, 1758) with 1-2 cm body size, 

was tied between the first and second pair of legs to prevent it from escaping, but still be able to 

jump and move inside the trap. Represents larger, mobile prey with harder integument. 

(2) Small prey: in Brazil, 15 termites were left free on a piece of mound, divided between 

workers and soldiers. Previous testing showed that termites do not leave the mound piece after 

90 minutes. Another 10 individuals were glued to a small wood stick, to increase the time spent 

by ants on the bait. Individuals from the subfamily Nasutitermitinae were used, which have 

specialized workers with chemical defenses that can affect ants (Prestwich, 1984). In Germany, 

termites are rare, thus we used larvae of Lucilia sericata Meigen, 1826. Two maggots were 

pinned at the rear end, still able to move the body but not leave the bait. Previous testing showed 



that they stayed alive for several hours under this condition. Both baits represent prey smaller, 

slower and softer, but not defenseless. 

(3) Dead arthropods (2-3 g): crushed crickets and mealworms (Tenebrio molitor Linnaeus, 1758 

– in Brazil) or maggots (Lucilia sericata Meigen, 1826 – in Germany). 

(4) Bird feces (2-3 g): chicken feces from organic breeding. Represents nitrogen-rich bird feces, 

which could be directly collected by ants, or contain animal and vegetal remains used by them 

(Leal & Oliveira, 1998; Jaffe et al., 2001; Sainz-Borgo, 2015). 

(5) Seeds (2-3 g): in Brazil, a mix of soy, millet, sunflower, canary, barley, linseed, grass seeds 

and ground corn, representing different sizes and shapes of seeds. We avoided seeds with 

elaiosomes because these mimic animal prey and attract predacious species, not only granivorous 

ones (Hughes et al., 1994; Giladi, 2006). However, in Germany, granivory is restricted to Messor 

ants, absent in our study site (Seifert, 2007). Thus, we used elaiosome seeds of Chelidonium 

majus (L.), known to be attractive to ants (Reifenrath, Becker & Poethke, 2012). 

(6) Sucrose solution (2-3 ml): at 20% concentration. Sucrose and its components, fructose and 

glucose, are the main nutritional sugars in plant exudates and fleshy fruits (Percival, 1961; Baker 

et al., 1998; Blüthgen et al., 2004). 

(7) Melezitose solution (2-3 ml): at 20% concentration. Represents insect-synthesized 

oligosaccharides present on honeydew (Kiss, 1981; Wäckers, 2000). Although melezitose and 

other oligosaccharides occur naturally almost only on honeydew, some insects secrete honeydew 

with little modification, similar to plant exudates (Völkl et al., 1999; Blüthgen et al., 2004). 

Therefore, preference for melezitose indicates use of honeydew, and avoidance suggests limited 

use, although not definitive lack of interaction with sap-sucking insects. 



References 

Blüthgen N, Gottsberger, G, Fiedler K. 2004. Sugar and amino acid composition of ant-attended 

nectar and honeydew sources from an Australian rainforest. Austral Ecology 29:418–429 DOI 

10.1111/j.1442-9993.2004.01380.x. 

Giladi I. 2006. Choosing benefits or partners: a review of the evidence for the evolution of 

myrmecochory. Oikos 112:481–492 DOI 10.1111/j.0030-1299.2006.14258.x. 

Houadria M, Salas-Lopez A, Orivel J, Blüthgen N, Menzel F. 2015. Dietary and temporal niche 

differentiation in tropical ants—can they explain local ant coexistence? Biotropica 47:208–217 

DOI 10.1111/btp.12184. 

Hughes L, Westoby M, Jurado E. 1994. Convergence of elaiosomes and insect prey: evidence 

from ant foraging behaviour and fatty acid composition. Functional Ecology 8:358–365. 

Jaffe K, Caetano FH, Sánchez P, Hernández JV, Caraballo L, Vitelli-Flores J, Monsalve W, 

Dorta B, Lemoine VR. 2001. Sensitivity of ant (Cephalotes) colonies and individuals to 

antibiotics implies feeding symbiosis with gut microorganisms. Canadian Journal of Zoology 

79:1120–1124 DOI 10.1139/z01-079. 

Kiss A. 1981. Melezitose, aphids and ants. Oikos 37:382–382. 

Leal IR, Oliveira PS. 1998. Interactions between fungus-growing ants (Attini), fruits and seeds in 

Cerrado vegetation in Southeast Brazil. Biotropica 30:170–178 DOI 10.1111/j.1744-

7429.1998.tb00052.x. 



Prestwich GD. 1984. Defense mechanisms of termites. Annual Review of Entomology 29:201–

232. 

Reifenrath K, Becker C, Poethke HJ. 2012. Diaspore trait preferences of dispersing ants. Journal 

of Chemical Ecology 38:1093–1104 DOI 10.1007/s10886-012-0174-y. 

Rosumek FB. 2017. Natural history of ants: what we (do not) know about trophic and temporal 

niches of neotropical species. Sociobiology 66:244–255 DOI 10.13102/sociobiology.v64i3.1623. 

Sainz-Borgo C. 2015. Bird feces consumption by fire ant Solenopsis geminata (Hymenoptera: 

Formicidae). Entomological News 124:295–299 DOI 10.3157/021.124.0408. 

Seifert B. 2007. Die Ameisen Mittel- und Nordeuropas. Tauer: Lutra. 

Völkl W, Woodring J, Fischer M, Lorenz MW, Hoffmann KH. 1999. Ant-aphid mutualisms: the 

impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 

118:483–491 DOI 10.1007/s004420050751. 

Wäckers FL. 2000. Do oligosaccharides reduce the suitability of honeydew for predators and 

parasitoids? A further facet to the function of insect-synthesized honeydew sugars. Oikos 

90:197–201 DOI 10.1034/j.1600-0706.2000.900124.x.	



 
Fig. S1: Incidence of ant species in baits and pitfalls in Brazil (a) and Germany (b). 
Incidence means the number of sample points where a species was recorded using each method. 
The dashed lines indicate similar expected incidences, taking into account the total number of 
incidences for each method (mBR = 1.4, mGE = 0.8). 
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Table S1: Incidence of species recorded in this work and labels used in plots. 
Species IB IP Label  Species IB IP Labels 

Brazil         

Acanthognathus brevicornis Smith, 1944 - - acanbr  Pheidole schmalzi Emery, 1894 - 1 pheisc 

Acanthognathus ocellatus Mayr, 1887 - - acanoc  Pheidole sigillata Wilson, 2003 33 18 pheisi 

Acromyrmex aspersus (Smith, 1858) 1 - acroas  Pheidole sp.1 18 13 phei01 

Acromyrmex laticeps (Emery, 1905) - - acrola  Pheidole sp.2 57 38 phei02 

Acromyrmex lundii (Guérin-Méneville, 1838) - - acrolu  Pheidole sp.4 17 23 phei04 

Acromyrmex subterraneus (Forel, 1893) - - acrosu  Pheidole sp.5 1 2 phei05 

Apterostygma acre Lattke 1997 1 - apteac  Pheidole sp.6 4 2 phei06 

Azteca sp.1 - 1 azte01  Pheidole sp.7 5 6 phei07 

Azteca sp.2 - - azte02  Pheidole sp.8 - 1 phei08 

Brachymyrmex sp.1 2 1 brac01  Pheidole sp.9 - 1 phei09 

Brachymyrmex sp.2 - 1 brac02  Pheidole sp.10 1 - phei10 

Camponotus lespesii Forel, 1886 4 1 cample  Pseudomyrmex flavidulus (Smith, 1858) - 1 pseufl 

Camponotus zenon Forel, 1912 10 - campze  Solenopsis subterranea MacKay & Vinson, 1989 - 1 solesu 

Cephalotes pallidicephalus (Smith, 1876) - - cephpa  Solenopsis sp.1 41 20 sole01 

Cephalotes pusillus (Klug, 1824) - - cephpu  Solenopsis sp.2 43 28 sole02 

Crematogaster nigropilosa Mayr, 1870 4 1 cremni  Solenopsis sp.3 12 8 sole03 

Cyphomyrmex rimosus (Spinola, 1851) 6 10 cyphri  Solenopsis sp.4 40 24 sole04 

Gnamptogenys striatula Mayr, 1884 21 21 gnamst  Solenopsis sp.5 1 1 sole05 

Fulakora elongata (Santschi, 1912) 1 - fulael  Solenopsis sp.6 12 7 sole06 

Heteroponera dentinodis (Mayr, 1887) 1 1 hetede  Solenopsis sp.7 - 1 sole07 

Heteroponera dolo (Roger, 1860) - 1 hetedo  Solenopsis sp.8 7 2 sole08 

Hypoponera sp.1 - 2 hypo01  Strumigenys cosmostela Kempf, 1975 - 1 struco 

Hypoponera sp.2 - 1 hypo02  Strumigenys denticulata Mayr, 1887 - 6 strude 

Hypoponera sp.3 - 1 hypo03  Strumigenys elongata Roger, 1863 - 1 struel 

Hypoponera sp.4 1 - hypo04  Strumigenys splendens (Borgmeyer, 1954) - 1 strusp 

Hylomyrma reitteri (Mayr, 1887) 7 9 hylore  Tapinoma atriceps Emery, 1888 - 1 tapiat 

Linepithema iniquum (Mayr, 1870) 7 - linein  Trachymyrmex sp.1 1 1 trac01 

Linepithema leucomelas (Emery, 1894) - 2 linele  Wasmannia affinis Santschi, 1929 6 2 wasmaf 

Linepithema micans (Forel, 1908) 6 1 linemi  Wasmannia auropunctata (Roger, 1863) 16 - wasmau 

Linepithema pulex Wild, 2007 4 1 linepu  Wasmannia lutzi Forel, 1908 - 1 wasmlu 

Neoponera crenata (Roger, 1861) - 1 neopcr  Germany    

Neoponera villosa (Fabricius, 1804) - 1 neopvi  Formica cunicularia (Latreille, 1798) 2 5 formcu 

Nylanderia docilis (Forel, 1908) 1 - nylado  Formica fusca Linnaeus, 1758 35 41 formfu 

Nylanderia sp.1 54 23 nyla01  Formica rufibarbis Fabricius, 1793 - 1 formru 

Octostruma petiolata (Mayr, 1887) 2 2 octope  Lasius brunneus (Latreille, 1798) 4 2 lasibr 

Octostruma stenognatha Brown & Kempf, 1960 - 1 octost  Lasius flavus (Fabricius, 1782) - 12 lasifl 

Octostruma sp.1 1 1 octo01  Lasius fuliginosus (Latreille, 1798) 5 5 lasifu 

Odontomachus chelifer (Latreille, 1802) 20 11 odonch  Lasius niger (Linnaeus, 1758) 25 26 lasini 

Odontomachus meinerti Forel, 1905 1 1 odonme  Lasius platythorax Seifert, 1991 10 10 lasipl 

Oxyepoecus plaumanni Kempf, 1974 - 1 oxyepl  Myrmica lobicornis Nylander, 1846 1 5 myrmlo 

Pachycondyla harpax (Fabricius, 1804) 1 10 pachha  Myrmica rubra (Linnaeus, 1758) 15 22 myrmrb 

Pachycondyla striata Smith, 1858 43 40 pachst  Myrmica ruginodis Nylander, 1846 25 16 myrmrg 

Pheidole angusta Forel, 1908 3 1 pheian  Myrmica rugulosa Nylander, 1849 1 2 myrmrl 

Pheidole aper Forel, 1912 9 7 pheiap  Myrmica scabrinodis Nylander, 1846 6 17 myrmsc 

Pheidole avia Forel, 1908 5 2 pheiav  Stenamma debile (Foerster, 1850) - 16 stende 

Pheidole lucretii Santschi, 1923 13 8 pheilu  Temnothorax affinis (Mayr, 1855) - 2 temnaf 

Pheidole nesiota Wilson, 2003 19 11 pheine  Temnothorax nylanderi (Foerster, 1850) 53 52 temnny 

Pheidole risii Forel, 1892 4 3 pheiri  Tetramorium caespitum (Linnaeus, 1758) - 1 tetrca 

Pheidole sarcina Forel, 1912 11 9 pheisa      

IB = incidence in baits (i.e. number of sample points where the species was recorded with this method); IP = incidence in pitfall traps; - = species 

was not recorded with this method (double “-“ means that the species was only recorded by colony sampling). 



Table S2: SIMPER analysis for ant fatty acids in Brazil and Germany. 

NLFAs are ordered by decreasing contribution towards dissimilarity between sites (Bray-Curtis). 

Asterisks indicate statistically significant differences. 

NLFA 
Average 

dissimilarity 
SD 

Average/SD 

ratio 

Average % 

Brazil 

Average % 

Germany 

Cumulative 

contribution 
p 

C18:1n9 0.210 0.087 2.409 30.311 72.257 0.473 0.000* 

C18:0 0.091 0.040 2.312 23.231 5.039 0.679 0.000* 

C16:0 0.083 0.053 1.558 33.075 17.810 0.866 0.056 

C18:2n6 0.026 0.022 1.185 5.919 0.808 0.924 0.222 

C16:1n9 0.009 0.007 1.346 1.182 2.047 0.944 0.250 

C18:2unk1 0.006 0.006 1.001 1.634 0.500 0.958 0.665 

C18:2unk2 0.005 0.005 0.930 1.187 0.222 0.970 0.590 

C18:1n11 0.004 0.004 1.060 1.032 0.245 0.979 0.211 

C14:0 0.003 0.002 1.556 0.875 0.474 0.985 0.024 

C12:0 0.002 0.001 1.229 0.451 0.087 0.990 0.154 

C20:0 0.001 0.001 1.045 0.310 0.099 0.992 0.746 

C17:0 0.001 0.001 1.316 0.373 0.256 0.995 0.325 

C16:1n7 0.001 0.002 0.393 0.194 0.091 0.997 0.624 

C15:0 0.001 0.000 1.454 0.158 0.016 0.999 0.040* 

C22:0 0.000 0.000 1.384 0.000 0.039 0.999 0.000* 

iC15:0 0.000 0.000 0.453 0.033 0.000 0.999 1.000 

iC17:0 0.000 0.000 0.360 0.016 0.000 1.000 1.000 

C24:0 0.000 0.000 1.182 0.000 0.011 1.000 0.000* 

aiC17:0 0.000 0.000 0.430 0.010 0.000 1.000 1.000 

aiC15:0 0.000 0.000 0.488 0.010 0.000 1.000 1.000 

 



Table S3: 

 

Principal component analysis of ant species × baits in Brazil and Germany. 

 PC1 PC2 PC3 PC4 PC5 PC6 

Brazil       

Inertia/variance = 4.435       

Eigenvalue 1.61 1.05 0.85 0.46 0.29 0.17 

% of variance explained 36.4 23.8 19.2 10.4 6.5 4 

Germany        

Inertia/variance = 3.238       

Eigenvalue 1.676 0.804 0.519 0.151 0.084 0.004 

% of variance explained 51.8 24.8 16 4.7 2.6 0.1 

 

 

Regression values of NLFAs with the two first Principal Components in Brazil 

and Germany. 

Asterisks indicate statistically significant differences. 

NLFA PC 1 PC 2 r2 p  NLFA PC 1 PC 2 r2 p 

Brazil      Germany     

C12:0 -0.96 0.29 0.11 0.33  C12:0 -0.73 -0.68 0.01 0.99 

C14:0 -0.98 -0.18 0.39 0.01*  C14:0 0.35 -0.94 0.20 0.68 

iC15:0 0.30 -0.96 0.12 0.29  C15:0 -0.94 -0.33 0.20 0.65 

aiC15:0 0.99 -0.13 0.12 0.29  C16:1n7 -0.96 -0.27 0.52 0.18 

C15:0 -0.07 -1.00 0.11 0.34  C16:1n9 -0.27 -0.96 0.49 0.28 

C16:1n7 0.18 -0.98 0.19 0.15  C16:0 0.18 -0.98 0.18 0.74 

C16:1n9 -0.73 -0.68 0.14 0.23  C17:0 0.74 -0.67 0.84 0.04* 

C16:0 -0.41 0.91 0.26 0.06  C18:2n6 0.88 -0.48 0.08 0.79 

iC17:0 0.45 -0.89 0.13 0.26  C18:1n9 -0.56 0.83 0.33 0.46 

aiC17:0 0.90 -0.45 0.16 0.23  C18:1n11 0.89 -0.46 0.42 0.35 

C17:0 0.79 -0.62 0.09 0.42  C18:0 1.00 0.07 0.78 0.05* 

C18:2n6 0.68 0.73 0.13 0.29  C18:2unk1 -0.31 -0.95 0.08 0.84 

C18:1n9 0.25 -0.97 0.32 0.02*  C18:2unk2 0.99 -0.15 0.08 0.85 

C18:1n11 -0.15 -0.99 0.09 0.39  C20:0 0.99 -0.12 0.23 0.60 

C18:0 -0.23 0.97 0.23 0.09  C22:0 0.91 0.42 0.33 0.43 

C18:2unk1 0.98 0.21 0.31 0.03*  C24:0 1.00 0.04 0.60 0.19 

C18:2unk2 0.97 0.25 0.22 0.09       

C20:0 0.58 -0.81 0.14 0.23       
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