
On the Security of Lattice-Based
Signature Schemes in a
Post-Quantum World

Vom Fachbereich Informatik der

Technischen Universität Darmstadt genehmigte

Dissertation

zur Erlangung des Grades

Doktor rerum naturalium (Dr. rer. nat.)

von

Nina Laura Bindel, M.Sc.

geboren in Friedrichroda.

Referenten: Prof. Dr. Johannes Buchmann
Prof. Dr. Douglas Stebila

Tag der Einreichung: 08.08.2018
Tag der mündlichen Prüfung: 20.09.2018

Hochschulkennziffer: D 17

Darmstadt 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/162020372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


On the Security of Lattice-Based Signature Schemes in a Post-Quantum World
Genehmigte Dissertation von Nina Bindel, M.Sc. aus Friedrichroda
Technische Universität Darmstadt, Darmstadt, Germany

Tag der Einreichung: 08.08.2018
Tag der mündlichen Prüfung: 20.09.2018
Jahr der Veröffentlichung: 2018

Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt.
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-81009
URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/8100

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Attribution – NonCommercial – NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
urn:nbn:de:tuda-tuprints-81009
https://tuprints.ulb.tu-darmstadt.de/id/eprint/8100
http://creativecommons.org/licenses/by-nc-nd/4.0/


List of Publications

[B1] Sedat Akleylek, Nina Bindel, Johannes Buchmann, Juliane Krämer, and
Giorgia Azzurra Marson: An Efficient Lattice-Based Signature Scheme with
Provably Secure Instantiation. Progress in Cryptology – 8th International
Conference on Cryptology in Africa (AFRICACRYPT 2016), pages 44–60,
Springer, 2016. [Part of Chapter 3].

[B2] Erdem Alkim, Nina Bindel, Johannes Buchmann, Özgür Dagdelen, Edward
Eaton, Gus Gutoski, Juliane Krämer, Filip Palewa: Revisiting TESLA
in the quantum random oracle model. Post-Quantum Cryptography – 8th
International Workshop (PQCrypto 2017), pages 143–162, Springer, 2017.
[Part of Chapter 3].

[B3] Nina Bindel: Ein deutsches digitales Signaturverfahren auf dem Weg zum
internationalen kryptographischen Standard. Tagungsband zum 15. Deutscher
IT-Sicherheitskongress, pages 11–21, SecuMedia Verlag, 2017.

[B4] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo Barreto, Johannes Buch-
mann, Edward Eaton, Gus Gutoski, Juliane Krämer, Patrick Longa, Harun
Polat, Jefferson Ricardini, Gustavo Zanon: Submission to NIST’s post-
quantum project: lattice-based digital signature scheme qTESLA. Submission
to the NIST Post-Quantum Cryptography Standardization, Round 1, 2017.
[Part of Chapter 3].

[B5] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Gonzales, Douglas
Stebila: Hybrid Key Encapsulation Mechanisms and Authenticated Key
Exchange. Submitted to Advances in Cryptology – 24th International Confer-
ence on the Theory and Applications of Cryptology and Information Security
(ASIACRYPT 2018). [Part of Chapter 5].

[B6] Nina Bindel, Johannes Buchmann, Florian Göpfert, and Markus Schmidt:
Estimation of the Hardness of the Learning with Errors Problem with a
Restricted Number of Samples. Journal of Mathematical Cryptology, 2018.

iii



[B7] Nina Bindel, Johannes Buchmann, and Juliane Krämer: Lattice-Based Sig-
nature Schemes and their Sensitivity to Fault Attacks. 2016 Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC 2016), pages 63–77,
IEEE Computer Society, 2016. [Part of Chapter 4].

[B8] Nina Bindel, Johannes Buchmann, Juliane Krämer, Heiko Mantel, Johannes
Schickel, and Alexandra Weber: Verification of Lattice-Based Signature
Schemes against Cache Side Channels. Foundations and Practice of Security
- 10th International Symposium (FPS 2017 ), pages 225–241, Springer, 2017.
[Part of Chapter 4].

[B9] Nina Bindel, Johannes Buchmann, and Susanne Rieß: Comparing Apples
with Apples: Performance Analysis of Lattice-Based Authenticated Key
Exchange Protocols. International Journal of Information Security 17(6),
pages 701-718, 2017.

[B10] Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila: Tran-
sitioning to a Quantum-Resistant Public Key Infrastructure. Post-Quantum
Cryptography – 8th International Workshop (PQCrypto 2017), pages 384–405,
Springer, 2017. [Part of Chapter 5].

[B11] Nina Bindel, Juliane Krämer, and Johannes Schreiber: Special Session: Ham-
pering fault attacks against lattice-based signature schemes– countermeasures
and their efficiency. Proceedings of the 12th IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis Companion
(CODES+ISSS 2017) – Special Session, pages 8:1–8:3, ACM, 2017. [Part of
Chapter 4].

[B12] Johannes Buchmann and Nina Bindel: Verschlüsselung und die Grenzen
der Geheimhaltung. Beitrag für den Band zum Jahresthema "Leibniz: Vi-
sion als Aufgabe", pages 147-159, Berlin-Brandenburgische Akademie der
Wissenschaften, 2016.

iv



Life is and will ever remain an equation
incapable of solution, but it contains certain
known factors.

— Nikola Tesla (1856-1943)

v





Acknowlegdement

I would like to first and foremost, express my deep gratitude to my supervisor
Johannes Buchmann. He taught me many life lessons that extended well beyond
research, contributing with his experience and guidance to my academic as well as
personal development. I greatly appreciated the freedom I had to pursue research
that I found important and interesting. At the same time I also knew that Johannes
Buchmann’s door would always be open and I, my research, and any upcoming
issue would be taken seriously by him.
I am also especially grateful to Douglas Stebila. I thank him for agreeing to

co-review my thesis, for being a fantastic host when I visited McMaster University
in Hamilton in June 2016, and lastly for his support and advice since then.
Additionally, I would like to extend my thanks to Reiner Hähnle, Christian

Reuter, and Guido Salvaneschi for joining my defense committee. An additional
thanks to Anshika Suri as well for proofreading my thesis.

Special thanks also to my co-authors. I benefited greatly from exchanging ideas
on varied (research) topics. In particular, I would like to express the deepest
appreciation to the qTESLA team: Thanks for walking this sometimes rocky road
with me and for believing in qTESLA. Above all, I am truly grateful to Sedat
Akleylek and Erdem Alkim for their unwavering support.

I also thank all my colleagues at TU Darmstadt. I really appreciated our
discussions during the hikes in the CROSSING events or while guessing solutions
during pub-quizzes. A special thanks to Thomas Wunderer whose maddening
attention to detail and strong opinions made me reflect deeply on my statements in
my dissertation until the end. In addition, I am thankful to Rachid El Bansarkhani
and Florian Göpfert who I shared my office with and who never seemed to get
annoyed by my questions. I also owe a great debt to Özgür Dagdelen: Although
we worked together for a short while only, these first months have influenced my
work greatly and became the corner stone of this thesis.

Last but not least, I thank my family and friends for their support, encouragement,
patient listening, and never-ceasing interest in my research and well-being.

Nina Bindel
Darmstadt, August 2018

vii





Abstract

Digital signatures are indispensable for security on the Internet, because they
guarantee authenticity, integrity, and non-repudiation, of namely e-mails, software
updates, and in the Transport Layer Security (TLS) protocol which is used for
secure data transfer, for example. Most signature schemes that are currently in
use such as the RSA signature scheme, are considered secure as long as the integer
factorization problem or the discrete logarithm (DL) problem are computationally
hard. At present, no algorithms have yet been found to solve these problems on
conventional computers in polynomial time. However, in 1997, Shor published a
polynomial-time algorithm that uses quantum computation to solve the integer
factorization and the DL problem. In particular, this means that RSA signatures
are considered broken as soon as large-scale quantum computers exist. Due to
significant advances in the area of quantum computing, it is reasonable to assume
that within 20 years, quantum computers that are able to break the RSA scheme,
could exist. In order to maintain authenticity, integrity, and non-repudiation of data,
cryptographic schemes that cannot be broken by quantum attacks are required. In
addition, these so-called post-quantum secure schemes should be sufficiently efficient
to be suitable for all established applications. Furthermore, solutions enabling a
timely and secure transition from classical to post-quantum schemes are needed.
This thesis contributes to the above-mentioned transition. In this thesis, we

present the two lattice-based digital signature schemes TESLA and qTESLA,
whereby lattice-based cryptography is one of five approaches to construct post-
quantum secure schemes. Furthermore, we prove that our signature schemes are
secure as long as the so-called Learning With Errors (LWE) problem is compu-
tationally hard to solve. It is presumed that even quantum computers cannot
solve the LWE problem in polynomial time. The security of our schemes is proven
using security reductions. Since our reductions are tight and explicit, efficient
instantiations are possible that provably guarantee a selected security level, as long
as the corresponding LWE instance provides a certain hardness level. Since both
our reductions (as proven in the quantum random oracle model) and instantia-
tions, take into account quantum attackers, TESLA and qTESLA are considered
post-quantum secure. Concurrently, the run-times for generating and verifying sig-

ix



Abstract

natures of qTESLA are similar (or faster) than those of the RSA scheme. However,
key and signature sizes of RSA are smaller than those of qTESLA.

In order to protect both the theoretical signature schemes and their implementa-
tions against attacks, we analyze possible vulnerabilities against implementation
attacks. In particular, cache-side-channel attacks resulting from observing the cache
behavior and fault attacks, which recover secret information by actively disrupting
the execution of an algorithm are focused. We present effective countermeasures
for each implementation attack we found. Our analyses and countermeasures also
influence the design and implementation of qTESLA.

Although our schemes are considered (post-quantum) secure according to state-of-
the-art LWE attacks, cryptanalysis of lattice-based schemes is still a relatively new
field of research in comparison to RSA schemes. Hence, there is a lack of confidence
in the concrete instantiations and their promised security levels. However, due to
developments within the field of quantum computers, a transition to post-quantum
secure solutions seems to be more urgently required than ever. To solve this
dilemma, we present an approach to combine two schemes, e.g., qTESLA and the
RSA signature scheme, so that the combination is secure as long as one of the two
combined schemes is secure. We present several of such combiners to construct
hybrid signature schemes and hybrid key encapsulation mechanisms to ensure both
authenticity and confidentiality in our Public-Key Infrastructure (PKI). Lastly, we
also demonstrate how to apply the resulting hybrid schemes in standards such as
X.509 or TLS.

To summarize, this work presents post-quantum secure candidates which can,
using our hybrid schemes, add post-quantum security to the current classical
security in our PKI.

x



Contents

Abstract ix

1 Introduction 1

2 Background 7
2.1 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Lattice-Based Security Assumptions . . . . . . . . . . . . . . . . . . 8

2.2.1 The Shortest and Closest Vector Problem . . . . . . . . . . 9
2.2.2 The Learning with Errors Problem . . . . . . . . . . . . . . 9
2.2.3 The Short Integer Solution Problem . . . . . . . . . . . . . . 11

2.3 Quantum Computation and Scenarios . . . . . . . . . . . . . . . . . 12
2.4 Cryptographic Primitives and Their Security Definitions . . . . . . 14

2.4.1 Digital Signature Schemes . . . . . . . . . . . . . . . . . . . 14
2.4.2 Key Encapsulation Mechanisms . . . . . . . . . . . . . . . . 18

2.5 Implementation Attacks . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Side-Channel Attacks . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2 Fault Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 The Signature Schemes TESLA and qTESLA 25
3.1 Description of the Signature Schemes . . . . . . . . . . . . . . . . . 26

3.1.1 The Signature Scheme TESLA . . . . . . . . . . . . . . . . . 27
3.1.2 The Signature Scheme qTESLA . . . . . . . . . . . . . . . . 33
3.1.3 System Parameters . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Security Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 Overview of the Security Reduction for TESLA . . . . . . . 47
3.2.2 Yes-Instances of M-LWE . . . . . . . . . . . . . . . . . . . . 51
3.2.3 No-Instances of M-LWE . . . . . . . . . . . . . . . . . . . . 67
3.2.4 Conclusion of the Security Reduction . . . . . . . . . . . . . 72
3.2.5 Security Reduction for qTESLA . . . . . . . . . . . . . . . . 75

3.3 Bit Security and Parameter Selection . . . . . . . . . . . . . . . . . 77
3.3.1 Hardness Estimation of LWE . . . . . . . . . . . . . . . . . 77

xi



Contents

3.3.2 Correspondence Between Security and Hardness . . . . . . . 79
3.3.3 Instantiations of TESLA and qTESLA . . . . . . . . . . . . 81

3.4 Implementation and Performance . . . . . . . . . . . . . . . . . . . 83
3.4.1 Implementation Security . . . . . . . . . . . . . . . . . . . . 84
3.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 85

3.5 Comparison with Other Signature Schemes . . . . . . . . . . . . . . 89

4 Implementation Security of Lattice-Based Signature Schemes 97
4.1 Vulnerability Against Cache-Side-Channel Attacks . . . . . . . . . . 98

4.1.1 Attacker Models . . . . . . . . . . . . . . . . . . . . . . . . 98
4.1.2 Manual Analysis of the Implementation . . . . . . . . . . . . 99
4.1.3 Mitigation of the Vulnerabilities . . . . . . . . . . . . . . . . 110

4.2 Susceptibility to Fault Attacks . . . . . . . . . . . . . . . . . . . . . 114
4.2.1 Description of the Analyzed Signature Schemes . . . . . . . 114
4.2.2 Reducing the Number of Necessary Faults . . . . . . . . . . 117
4.2.3 Zeroing Faults . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.2.4 Randomizing Faults . . . . . . . . . . . . . . . . . . . . . . . 126
4.2.5 Skipping Faults . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.2.6 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . 138

4.3 Vulnerability Against Other Implementation Attacks . . . . . . . . 147
4.3.1 Timing Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.3.2 Power and Electromagnetic Attacks . . . . . . . . . . . . . . 149

5 Hybrid Signatures and KEMs 153
5.1 The Two-Stage Adversary Model . . . . . . . . . . . . . . . . . . . 154

5.1.1 Security Definitions in the Two-Stage Model . . . . . . . . . 155
5.1.2 Separations and Implications . . . . . . . . . . . . . . . . . . 161

5.2 Hybrid Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . 174
5.2.1 Con: Concatenation Combiner . . . . . . . . . . . . . . . . . 176
5.2.2 sNest: Strong Nesting Combiner . . . . . . . . . . . . . . . . 178
5.2.3 dNest: Dual Message Combiner Using Nesting . . . . . . . . 181

5.3 Hybrid KEMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.3.1 XtM: XOR-then-MAC Combiner . . . . . . . . . . . . . . . 187
5.3.2 dPRF: Dual-PRF Combiner . . . . . . . . . . . . . . . . . . 191
5.3.3 nPRF: Nested Dual-PRF Combiner . . . . . . . . . . . . . . 197

6 Conclusion 201

xii



Glossary

BDD Bounded Distance Decoding (problem).
BKW Blum-Kalai-Wassermann (algorithm).
BKZ Blockwise Korkine-Zolotarev (algorithm).

CA Certificate Authority.
CMS Cryptographic Message Syntax.
CPU Central Processing Unit.
CVP Closest Vector Problem.

DCK Decisional Compact Knapsack (problem).
DL Discrete Logarithm (problem).
DPA Differential Power Analysis.

EUF-CMA Existential Unforgeability under Chosen-Message Attack.

FO Fujisaki-Okamoto (transform).
FPGA Field-Programmable Gate Array.

GapSVP decisional approximate Shortest Vector Problem.
GPG Gnu Privacy Guard.

HKDF (HMAC)-based Key Derivation Function.
HMAC Hashed Message Authentication Code.

IKE Internet Key Exchange Protocol.
IND-CCA INDistinguishability against Chosen-Ciphertext Attacks.
IND-CPA INDistinguishability against Chosen-Plaintext Attacks.

KEM Key Encapsulation Mechanism.

LRU Least Recently Used.
LWE (decisional) Learning With Errors (problem).
LWR Learning With Rounding (problem).
LWT Learning With Truncation (problem).

xiii



Glossary

M-LWE Matrix decisional Learning With Errors (problem).
MAC Message Authentication Code.

NIST National Institute of Standards and Technology (United States).
NTT Number Theoretic Transform.

OT-sEUF One-Time strong Existential Unforgeability.
OW-CCA One-Way security against Chosen-Ciphertext Attacks.
OW-CPA One-Way security against Chosen-Plaintext Attacks.

PKE Public-Key Encryption (scheme).
PKI Public-Key Infrastructure.
PQ Post-Quantum.
PRF Pseudo-Random Function.

QROM Quantum Random Oracle Model.

R-LWE Ring Learning With Errors (problem).
R-SIS Ring Shortest Vector Solution (problem).
RAM Random-Access Memory.
RISC Reduced Instruction Set Computing.
RNG Random Number Generator.
ROM Random Oracle Model.

S/MIME Secure/Multipurpose Internet Mail Extensions.
SEMA Simple Electro-Magnetic Analysis.
sEUF-CMA strong Existential Unforgeability under Chosen-Message Attack.
SIS Shortest Vector Solution (problem).
SIVP approximate Shortest Independent Vector Problem.
SPA Simple Power Analysis.
SVP Shortest Vector Problem.

TLS Transport Layer Security (protocol).

uSVP Unique Shortest Vector Problem.

XOF eXtendable Output Function.

xiv



List of Algorithms

3.1 checkE in TESLA . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 checkS in TESLA . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Key generation of TESLA . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Signature generation of TESLA . . . . . . . . . . . . . . . . . . . . 29
3.5 Verification of TESLA . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Key generation of qTESLA . . . . . . . . . . . . . . . . . . . . . . 34
3.7 checkE in qTESLA . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8 checkS in qTESLA . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.9 Signature generation of qTESLA . . . . . . . . . . . . . . . . . . . 35
3.10 Verification of qTESLA . . . . . . . . . . . . . . . . . . . . . . . . 36
3.11 Key generation of ring-TESLA . . . . . . . . . . . . . . . . . . . . . 39
3.12 Signature generation of ring-TESLA . . . . . . . . . . . . . . . . . 39
3.13 Verification of ring-TESLA . . . . . . . . . . . . . . . . . . . . . . . 40
3.14 KeyGen–Simplified key generation of TESLA . . . . . . . . . . . . 47
3.15 Sign–Simplified signature generation of TESLA . . . . . . . . . . . 48
3.16 Verify–Simplified verification of TESLA . . . . . . . . . . . . . . . . 48
3.17 M-LWE solver S using a TESLA forger F . . . . . . . . . . . . . . 49
3.18 Simulated-sign in the security reduction of TESLA . . . . . . . . . 49
3.19 Mid-sign in the security reduction of TESLA . . . . . . . . . . . . . 53
3.20 Consistent-mid-sign in the security reduction of TESLA . . . . . . . 56

4.1 Key generation of GLP . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.2 Signature generation of GLP . . . . . . . . . . . . . . . . . . . . . . 116
4.3 Verification of GLP . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.4 Key generation of BLISS . . . . . . . . . . . . . . . . . . . . . . . . 117
4.5 Signature generation of BLISS . . . . . . . . . . . . . . . . . . . . . 118
4.6 Verification of BLISS . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.7 Algorithm GeneralBao used in a randomizing attack . . . . . . . . . 130
4.8 Adapted key generation of the GLP scheme against a skipping fault 141
4.9 Adapted verification of the GLP scheme against a skipping fault . . 142
4.10 Pseudo-code of CheckVerify . . . . . . . . . . . . . . . . . . . . . . . 143

xv



List of Algorithms

5.1 KeyGen′ of S ′ which is CcC-EUF-CMA but not CcQ-EUF-CMA secure 165
5.2 Sign′ of S ′ which is CcC-EUF-CMA but not CcQ-EUF-CMA secure . . 165
5.3 Verify′ of S ′ which is CcC-EUF-CMA but not CcQ-EUF-CMA secure . 165
5.4 KeyGen′ of S ′ which is CcQ-EUF-CMA but not QcQ-EUF-CMA secure 166
5.5 Sign′ of S ′ which is CcQ-EUF-CMA but not QcQ-EUF-CMA secure . 166
5.6 Verify′ of S ′ which is CcQ-EUF-CMA but not QcQ-EUF-CMA secure . 166
5.7 KeyGen′ of K′ which is CcQ-IND-CCA but not QcQ-IND-CCA secure . 169
5.8 Encaps′ of K′ which is CcQ-IND-CCA but not QcQ-IND-CCA secure . 169
5.9 Decaps′ of K′ which is CcQ-IND-CCA but not QcQ-IND-CCA secure . 169
5.10 KeyGen′ of K′ which is QcQ-IND-CCA but not QqQ-IND-CCA secure 173
5.11 Encaps′ of K′ which is QcQ-IND-CCA but not QqQ-IND-CCA secure . 173
5.12 Decaps′ of K′ which is QcQ-IND-CCA but not QqQ-IND-CCA secure . 173
5.13 KeyGen′ of K′ which is Q-IND-CPA but not CcC-IND-CCA secure . . 174
5.14 Encaps′ of K′ which is Q-IND-CPA but not CcC-IND-CCA secure . . . 174
5.15 Decaps′ of K′ which is Q-IND-CPA but not CcC-IND-CCA secure . . 174
5.16 Signature generation of Con[S1,S2] . . . . . . . . . . . . . . . . . . 176
5.17 Signature generation of sNest[S1,S2] . . . . . . . . . . . . . . . . . . 179
5.18 Signature generation of dNest[S1,S2] . . . . . . . . . . . . . . . . . 182
5.19 Encapsulation of XtM[K1,K2,M] . . . . . . . . . . . . . . . . . . . 187
5.20 Decapsulation of XtM[K1,K2,M] . . . . . . . . . . . . . . . . . . . 188
5.21 Encapsulation of dPRF[K1,K2,DP ,P ] . . . . . . . . . . . . . . . . . 192
5.22 Decapsulation of dPRF[K1,K2,DP ,P ] . . . . . . . . . . . . . . . . . 192
5.23 Encapsulation of nPRF[K1,K2,DP ,P , EX ] . . . . . . . . . . . . . . . 197
5.24 Decapsulation of nPRF[K1,K2,DP ,P , EX ] . . . . . . . . . . . . . . . 197

xvi



List of Figures

2.1 EUF-CMA security experiment where the adversary returns one
message-signature pair . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Definition of the classical and quantum random oracle . . . . . . . . 16
2.3 EUF-CMA security experiment where the adversary returns qS + 1

message-signature pairs . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 IND-CPA security experiment (for KEMs) . . . . . . . . . . . . . . 19
2.5 IND-CCA security experiment (for KEMs) . . . . . . . . . . . . . . 19
2.6 OW-CPA and OW-CCA security experiment (for KEMs) . . . . . . 20

3.1 History of TESLA and qTESLA . . . . . . . . . . . . . . . . . . . . 26
3.2 Dependencies of the TESLA parameters . . . . . . . . . . . . . . . 45
3.3 Dependencies of the qTESLA parameters . . . . . . . . . . . . . . 45
3.4 PRF security experiment . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 XyZ EUF-CMA security experiment . . . . . . . . . . . . . . . . . . 156
5.2 XyZ IND-CCA security experiment . . . . . . . . . . . . . . . . . . 157
5.3 Z IND-CPA security experiment . . . . . . . . . . . . . . . . . . . . 158
5.4 Z OW-CPA security experiment . . . . . . . . . . . . . . . . . . . . 159
5.5 XyZ OW-CCA security experiment . . . . . . . . . . . . . . . . . . 159
5.6 XyZ OT-sEUF security experiment (for MACs) . . . . . . . . . . . . 161
5.7 XyZ PRF security experiment . . . . . . . . . . . . . . . . . . . . . 162
5.8 Implications and separations between XyZ-EUF-CMA notions . . . . 162
5.9 Implications and separations between XyZ-IND-CCA notions . . . . 163
5.10 Description of S ′ which is CcC-EUF-CMA but not CcQ-EUF-CMA

secure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.11 Description of S ′ which is CcQ-EUF-CMA but not QcQ-EUF-CMA

secure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.12 Description of K′ which is CcQ-IND-CCA but not QcQ-IND-CCA secure169
5.13 Indistinguishability experiment for pseudo-random permutations . . 171
5.14 Description of K′ which is QcQ-IND-CCA but not QqQ-IND-CCA secure173
5.15 Description of oracles for K′ in Figure 5.14 . . . . . . . . . . . . . . 173

xvii



List of Figures

5.16 Description of K′ which is Q-IND-CPA but not CcC-IND-CCA secure 174
5.17 Simplified structure of hybrid X.509v3 certificate . . . . . . . . . . . 184
5.18 Excerpt from altered TLS 1.3 key schedule proposals . . . . . . . . 196

xviii



List of Tables

3.1 Description of the TESLA and qTESLA parameters . . . . . . . . . 41
3.2 Proposed provably secure parameters of TESLA and qTESLA . . . 81
3.3 Proposed heuristic parameters of qTESLA . . . . . . . . . . . . . . 82
3.4 Performance of TESLA on an Intel Core (Skylake) processor . . . . 86
3.5 Performance of qTESLA on an Intel Core (Skylake) processor . . . 87
3.6 Performance of qTESLA on an Intel Core (Haswell) processor . . . 87
3.7 Performance of qTESLA liboqs implementation . . . . . . . . . . . 88
3.8 Performance of qTESLA on an ARM Cortex-M4 microcontroller . . 89
3.9 Performance of qTESLA on VexRiscV . . . . . . . . . . . . . . . . 90
3.10 Overview of state-of-the-art post-quantum signature schemes . . . 94
3.11 Comparison of TESLA and qTESLA with RSA and ECDSA . . . . 95

4.1 Cache leakage of the (un-)mitigated ring-TESLA implementation . 112
4.2 Comparison of GLP, BLISS, and ring-TESLA regarding fault attack

vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.3 Possible combinations for the coefficients of s, s′, and α . . . . . . 128
4.4 Performance of original and adapted ring-TESLA . . . . . . . . . . 147
4.5 Implementation attacks against lattice-based schemes . . . . . . . . 148

5.1 Signature combiners . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.2 KEM combiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

xix





1 Introduction

When the idea of digital signatures was first proposed in 1976 by Diffie and Hellman,
its objective stated that it was to “discover a digital phenomenon with the same
properties as a written signature” [75]. In particular, everyone should be able
to check for themselves the authenticity of a message using its digital signature.
Specifically, the existence of the digital signature should somehow demonstrate
that the person who created the signature of a particular message is the sole author
of the message. As it turns out, digital signatures are much more powerful than
their analog counterpart. They ensure authenticity, integrity, and non-repudiation
of messages or documents in the Internet. This makes them essential, e.g., for
shopping on the Internet, where digital signatures can be used to ensure security in
a multitude of ways: By verifying a digital signature, customers can be convinced
of the authenticity of the online-shop’s server. Moreover, since a signature of
a shopping order ensures non-repudiation, the signed shopping order cannot be
denied by the customer. Finally, the integrity of the financial transaction to pay
for the ordered items can be guaranteed using signatures, e.g., the payment of the
correct amount can be checked using its signature. This is exemplified through the
case of Amazon Prime, who shipped more than five billion items in 2017 alone [175],
showing the significance of online-shopping and hence, the importance of digital
signatures.

As indicated by the examples above, digital signature schemes can be considered
as a stand-alone primitive, e.g., to sign a transaction, or as a building block within
our PKI. Example for the latter are certificates that prove a subject’s ownership of
a public key using digital signatures. This is implemented, e.g., in the Transport
Layer Security (TLS) protocol which is used to securely connect to more than 50%
of the webpages loaded by the popular web browser Firefox [127].
The first construction of a digital signature scheme, called the RSA signature

scheme from now on in this thesis, was presented in 1978 by Rivest, Shamir, and
Adleman [196]. Subsequently, many different signature schemes were proposed,
e.g., by Lamport [149], Merkle [159], Rabin [188], and ElGamal [89]. However,
until today, modern variants of the RSA scheme are still the most widely used
signatures [86]. The RSA signature scheme is secure as long as the so-called RSA

1



1 Introduction

problem [158, Section 3.3] is computationally hard to solve. One approach to solve
the RSA problem is to factor large integers into their prime factors. Since it was
presumed that no algorithm existed which could solve the integer factorization
problem in polynomial time, the RSA scheme was considered secure. This assump-
tion holds true till today, at least for algorithms that run on conventional or also
called classical computers. However, in 1997, Shor presented an algorithm to solve
the integer factorization problem in polynomial time using quantum computation
[206]. Operations of a quantum computer use the principles of quantum physics:
Information is stored, processed, and transmitted in quantum physical states, the
so-called qubits. The existence of Shor’s algorithm implies that all cryptographic
schemes based upon the hardness of the integer factorization (or the discrete loga-
rithm) problem are considered broken as soon as large-scale quantum computers
are invented. In particular, RSA signatures must be regarded insecure.
Small-scale quantum computers already exist [125, 136] and at present, both

research and industry are taking significant efforts to construct large-scale quantum
computers for a good reason: Quantum computers seem to offer huge advantages
compared to conventional computers. To exemplify, some important applications
of quantum computers [128] are molecular modeling, financial modeling, and
weather forecasting with each of them generating a high economic interest. In
the beginning of 2018, the Google Quantum AI lab announced its new–currently
record-breaking–quantum processor which works with 72 qubits [136]. To break for
example RSA-2048, a number of 4096 qubits is necessary [185]1. Some researchers
and government bodies have estimated that quantum computers capable of breaking
currently used cryptographic schemes could exist by the 2030s [71,160].
Therefore, in order to maintain uninterrupted security on the Internet, it is

important to prepare a secure transition from our current, classical PKI to cryp-
tographic solutions that are secure even in the presence of a quantum attacker.
Schemes that are secure against quantum attackers are called post-quantum secure
from now on in this thesis.

A key initial step towards this goal is to provide post-quantum secure and practi-
cal signature schemes. Thus, it is desirable to construct signature schemes that are
provably secure against quantum adversaries and come with secure instantiations
chosen against quantum attacks. To ensure security when theoretically sound
schemes are brought into praxis, it is preferable if the signature scheme’s implemen-
tation additionally resists physical attacks such as fault and side-channel attacks.
In order to maintain almost all the current available applications, signature schemes
should be efficient in run-time and space, e.g., their key and signature sizes. In

1The numbers of qubits to break RSA instances reported in [185, Section 6.3], are the numbers
of logical qubits. To perform computations on large-scale quantum computers, techniques
such as error correction are necessary that increase the number of bits required drastically.

2



particular, since a vast majority of certificates are generated using RSA signatures,
post-quantum signature schemes that are candidates to substitute classical schemes,
must be as efficient as RSA schemes.
However, even if post-quantum schemes are instantiated against state-of-the-

art classical and quantum attacks, researchers, industry, and standardization
bodies might hesitate to deploy them for the following reason. There is not
sufficient confidence yet in the instantiations of most post-quantum schemes actually
providing the promised security levels because the security has not been studied as
long as the security of RSA schemes. For example, Albrecht et al. [8] summarize and
compare different hardness estimations of post-quantum instances and highlight
that depending on the estimation method the differences of bit hardness are up to
several hundred bits. At the same time, the demand to transition to post-quantum
secure schemes has gotten stronger because of the recent progress in quantum
computing. Therefore, solutions that circumvent this dilemma, i.e., solutions that
guarantee at least the classical security and provide post-quantum security in
addition, are in high demand for a secure and smooth transition.
The following branches of cryptography offer to provide post-quantum secure

solutions: multivariate, hash-, code-, isogeny-, and lattice-based cryptography [39,
93]. All five approaches rely on hardness assumptions that are presumed unbreakable
by quantum computers in polynomial time. In addition, lattice-based constructions
allow for versatile applications, simple and fast arithmetic operations leading to
high efficiency, and strong security guarantees. Consequently, they promise to
be a particularly valuable approach to solve the above-mentioned challenge of a
post-quantum transition, which is targeted in this thesis.
This thesis in particular presents two lattice-based signature schemes called

TESLA and qTESLA. Both schemes are proven to be secure against quantum
adversaries as long as the so-called Learning With Errors (LWE) problem is
computationally hard even for quantum algorithms. To show the respective security
guarantees we use so-called security reductions. Moreover, our provided security
reductions are tight in the sense that an attacker A that breaks one of our signature
schemes can be used to construct an algorithm B that solves LWE in about the
same run-time and with the same success probability as A. A tight security
reduction is desirable because when instantiating the scheme according to its
security reductions, tight reductions lead to smaller parameters and hence, to
better performance [60]. The parameters of TESLA and qTESLA are chosen
according to their security reduction and to withstand state-of-the-art quantum
LWE solvers. While TESLA is tailored for high-security applications, qTESLA is
optimized for efficiency, e.g., qTESLA signatures are generated faster than RSA
signatures. The design of TESLA is based on the original signature scheme by Bai
and Galbraith [24], includes the improvements suggested by Dagdelen et al. [69],

3



1 Introduction

and improves upon them further.
qTESLA is based on its predecessor ring-TESLA which we constructed as a

variant of TESLA and which is also described briefly in this thesis. Essentially,
qTESLA assembles the advantages acquired in TESLA and ring-TESLA, resulting
in a submission of a signature scheme to the post-quantum cryptography standard-
ization process initiated by the National Institute of Standards and Technology
(NIST) [164].

Secondly, we analyze the vulnerability of lattice-based signature schemes against
implementation attacks such as fault and side-channel attacks. As implementing
lattice-based signature schemes without cache side channels seems particularly
challenging [110,176,177,199], we analyze ring-TESLA taking cache side channels
in regard and eventually present an implementation free of cache side channels.
Moreover, we present an in-depth analysis of three efficient lattice-based signa-
ture schemes against fault attacks, since these schemes appear to be particularly
vulnerable. The reason for their perceived vulnerability is explained as follows:
The most efficient lattice-based signature schemes, such as BLISS [81], GLP [114],
and ring-TESLA, are based on Fiat-Shamir identification [94] which was targeted
by one of the very first fault attacks found [47]. In our fault attack analysis
we consider zeroing, randomizing, and skipping faults against BLISS, GLP, and
ring-TESLA, and find that all three schemes are vulnerable. We then propose
effective countermeasures to mitigate each found vulnerability. For completeness,
we also analyze the occurrence of power, electromagnetic, and timing side channels
in lattice-based signature schemes as these are (in addition to cache side channels)
the most commonly exploited side channels. Our analyses and countermeasures
can also be applied to qTESLA.

Lastly, we present an approach to transition from the classical to post-quantum
secure PKI using so-called hybrid schemes. We build different general combiners to
securely combine two signature schemes or key encapsulation mechanisms (KEMs)
such that the resulting combined scheme is at least as secure as one of the single
schemes. Signature schemes and KEMs are two of the most important building
blocks in protocols such as TLS. Other important primitives such as Public-Key
Encryption schemes (PKE), passively secure key exchange, or authenticated key
exchanges can be built from signatures, KEMs, and symmetric primitives such
as hash or Pseudo-Random Functions (PRFs) [123,145]. Since a fast and secure
transition is particularly important for currently used standards and protocols, we
also in addition provide examples of how to use our combiners in such protocols.

Contribution and Outline
The following paragraphs will now summarize our contributions and elaborate the
structure of this thesis.

4



Background (Chapter 2). Firstly, we explain the relevant background. This
includes the definition of lattices and relevant lattice-based assumptions. Further-
more, we briefly introduce quantum computation and summarize existing quantum
scenarios. Subsequently, we provide the definition of digital signature schemes,
KEMs, and their security notions in respective quantum models. Finally, we present
a short introduction to side-channel and fault attacks.

The Signature Schemes TESLA and qTESLA (Chapter 3). This chapter
presents the signature schemes TESLA and qTESLA.

We start this chapter by describing the signature schemes TESLA and qTESLA.
In addition, we discuss the advantages and disadvantages of both compared to
each other and briefly explain qTESLA’s predecessor ring-TESLA. Furthermore,
we prove the tight security reductions from LWE to TESLA and Ring-LWE (R-
LWE) to qTESLA in the Quantum Random Oracle Model (QROM) [45]. Since
our security reductions are explicit, i.e., they explicitly relate an instantiation of
one of our signature schemes with an (R-)LWE instance, we are able to select
parameters according to the reductions. In order to describe the parameter selection,
we first explain how to estimate the hardness of the (R-)LWE problem and the
correspondence between the bit security of our signature schemes and the bit
hardness of (R-)LWE. We then present instantiations targeting different (quantum)
security levels. Due to the tightness of the reduction, our parameters are also
efficient as we demonstrate by presenting experimental results. Our benchmarks
are obtained from the C implementations of TESLA and qTESLA compiled for
and run on different platforms such as desktop computers, microcontrollers, and
Field-Programmable Gate Arrays (FPGAs). Lastly, we compare our schemes with
other signature schemes from the literature and discuss the extent of our results.

Implementation Security of Lattice-Based Signature Schemes (Chapter 4).
This chapter is divided into three parts: cache-side-channel analysis in Section 4.1,
fault-attack analysis in Section 4.2, and analysis regarding other side channels in
Section 4.3.

Starting with Section 4.1, we develop an implementation of ring-TESLA that is
resistant to four types of cache-side-channel attacks. As the first step towards this
goal, we inspect the C code of ring-TESLA manually, identify vulnerable subroutines,
and argue for the cache-side-channel resistance of the other subroutines. Finally,
we implement mitigations and argue for their effectiveness. Although our analysis
targets ring-TESLA as an example, our findings can also be transferred to other
lattice-based primitives since the potential vulnerabilities are found in common
building blocks of lattice-based cryptography. In particular, our findings are also
used to secure the implementation of qTESLA.

5



1 Introduction

Moving to Section 4.2, we present a careful analysis of three different signature
schemes and their implementations, and scrutinize whether certain schemes or
instantiations thereof are more vulnerable than others. Before we turn to our
analysis, we present a hybrid approach that combines fault attacks and lattice
analyses to reduce the number of necessary faults. The section then explains our
analyses of vulnerabilities of the signature schemes BLISS, ring-TESLA, and GLP
and their implementations with respect to zeroing, randomizing, and skipping
faults. Our research demonstrates that the examined signature schemes and their
implementations are vulnerable to all the three kinds of considered fault attacks,
based on the effective attacks we present. We then present countermeasures against
all our successful attacks. Furthermore, we demonstrate how to combine and
implement our countermeasures by again using ring-TESLA as an example.

Finally, in Section 4.3, we summarize power-, electromagnetic-, and timing-side-
channel attacks against lattice-based schemes and discuss if and how these attacks
can be applied to lattice-based signature schemes, particularly to qTESLA.

Hybrid Signature and KEMs (Chapter 5). In this chapter, we construct hybrid
signature schemes and KEMs for a secure transition from classical to post-quantum
cryptography.

Accounting for security against quantum adversaries, we first present a family of
security notions for signatures and KEMs that unify and extend existing quantum
security models such as [45,48,49]. To do this, we adapt the traditional security
experiments to enable a fine-grained distinction between the following different
quantum scenarios: fully classical (all computation and oracle interaction is classi-
cal), future-quantum (the adversary is classical today but gains quantum power
later), post-quantum (the adversary has quantum power but still interacts classically
with the decapsulation or sign oracle), and fully quantum (all computation and
interaction can be quantum). Furthermore, we show that these different security
notions form a strict hierarchy. Subsequently, we present three different signature
and three different KEM combiners. Lastly, we present examples to demonstrate
the applicability of our combiners in not just protocols such as TLS but also in
X.509 for certificates [65] and in Cryptographic Message Syntax (CMS) [124], as
part of Secure/Multipurpose Internet Mail Extensions (S/MIME) [189] for secure
e-mail. Through these examples, we discuss the possibility of instantiating the
hybrid signature scheme with qTESLA or TESLA.

Conclusion (Chapter 6). This chapter concludes this thesis with a discussion on
possible directions of future research.

6



2 Background

In this chapter, we provide the foundations of the different topics covered in this
thesis. We start with an introduction to lattices in Section 2.1. Moreover, we define
relevant lattice-based assumptions such as the Short Integer Solution (SIS) problem
and the LWE problem in Section 2.2. In Section 2.3, we give a brief overview
about quantum computation. We define digital signature schemes, KEMs, and
their security notions in Section 2.4. Finally, we give a short introduction to fault
and side-channel attacks in Section 2.5.

2.1 Lattices

In the following paragraphs, we give a short introduction to lattices. We start with
the definition of notations that are used throughout the thesis.
Vectors with entries in R are viewed as column vectors and denoted with bold

lowercase letters, e.g., y, z,w. Moreover, matrices are denoted with bold uppercase
letters, e.g., A,S,E. The transpose of a vector or a matrix is denoted by vT or
MT , respectively. Additionally, we denote the inner product of two column vectors
v,w ∈ Rn by 〈v,w〉 = vT ·w.

After introducing some notations, we now start with the definition of a lattice.
Let m,n, k ∈ Z>0 with m ≥ k. An m-dimensional lattice Λ is a discrete additive
subgroup of Rm containing all integer linear combinations of k linearly independent
vectors {b1, . . . ,bk}. That is Λ = {Bx | x ∈ Zk} with matrix B = (b1, . . . ,bk) ∈
Rm×k. We call B the basis of Λ and k the rank of the lattice. If it holds that
k = m then Λ is called a full-rank lattice. In this thesis, only full-rank latticed
are considered. The basis is not unique for a lattice. The determinant of a lattice,
however, is an invariant of the lattice and defined as follows. The determinant
of a lattice Λ with basis B is defined by det(Λ) =

√
| det{(B>B)}|. If Λ is a

full-ranked lattice then it holds that det(Λ) = | det(B)|. The Hermite factor of
a lattice basis describes the quality of the basis, which, for example, may be the
output of a basis reduction algorithm such as the Blockwise Korkine-Zolotarev

7



2 Background

(BKZ) algorithm [20,64,100]. The Hermite factor of a basis B is given as

δk0 = ‖v‖2

det(Λ)
1
k

,

where v is the shortest non-zero vector in the basis [11]. Throughout this thesis,
‖v‖2 denotes the Euclidean norm of a vector v and ‖v‖∞ denotes its infinity norm.

Additionally, the distance between a lattice Λ and a vector v ∈ Rm is defined as
dist(v,Λ) = min{‖v − x‖2 | x ∈ Λ}. Furthermore, the i-th successive minimum
λi(Λ) of the lattice Λ is defined as the smallest radius r, such that there are i
linearly independent vectors of norm at most r in the lattice.
Throughout this thesis we are mostly concerned with q-ary lattices that we

define next. A lattice Λ is called q-ary if qZm ⊂ Λ ⊂ Zm for some m ∈ Z>0. Let
Zq = Z/qZ and let A be sampled uniformly random over Zm×nq . We define the
corresponding q-ary lattices

Λq(A) = {x ∈ Zm | ∃y ∈ Zn : x = Ay mod q} and
Λ⊥q (A) =

{
x ∈ Zm | ATx = 0 mod q

}
.

If q is prime, the determinant for a matrix A ∈ Zm×nq with m ≥ n is given by
det(Λq(A)) = qm−n and for a matrix with m < n by det

(
Λ⊥q (A)

)
= qm with high

probability [39].

2.2 Lattice-Based Security Assumptions
After explaining the basics about lattices, we now define hardness assumptions
that are related to lattices and used in this thesis. After explaining some further
notations, we first define the shortest and closest vector problem. Afterwards, we
turn to the LWE problem. Finally, we define the SIS problem.

We first introduce some notation that is used throughout this thesis. We define
for an algorithm A that the value y ← A(x) denotes the output of A on input x. If
A uses randomness then A(x) is a random variable. Moreover, for an oracle O we
write AO to indicate that A has access to that oracle. Similarly, for a probability
distribution χ over some set S, Aχ denotes that A can request samples from the
probability distribution χ and x ← χ or x ←χ S means to sample an element x
with probability distribution χ. For convenience we write simply distribution instead
of probability distribution. For a vector x ∈ Sn, we write x ← χn or x ←χ S

n to
denote that every vector entry is sampled with distribution χ. Analogously, we
denote sampling each coefficient of a polynomial x in some ring R with distribution
χ by x←χ R. Lastly, for a finite set S, we denote sampling the element x uniformly
random from S with x← U(S) or simply x←$ S.

8



2.2 Lattice-Based Security Assumptions

2.2.1 The Shortest and Closest Vector Problem
We start by defining the shortest and closest vector problem.

Definition 2.1 (Shortest Vector Problem). Given a lattice Λ, the Shortest Vector
Problem (SVP) is to find a non-zero vector v ∈ Λ with ‖v‖2 = λ1(Λ).

There exist many variants of SVP such as the Unique Shortest Vector Problem
(uSVP), the decisional approximate SVP (GapSVP), or the approximate Shortest
Independent Vector Problem (SIVP). For a formal definition of these variants we
refer to [173,191] or the references therein. Similarly, there exists several variants
of the Closest Vector Problem (CVP) which we define next.

Definition 2.2 (Closest Vector Problem). Given a lattice Λ ⊂ Rm and t ∈ Rm,
the CVP is to find a lattice vector v ∈ Λ such that ‖v− t‖2 ≤ dist(t,Λ).

While the mathematical problems above are well-studied, modern cryptography
bases their security not directly on these problems. Instead the security of lattice-
based primitives relies on the hardness of the LWE or the SIS problem. Part of the
allure of cryptographic schemes based on LWE or SIS is that these assumptions
enjoy worst-case to average-case reductions from fundamental lattice problems such
as SIVP or GapSVP [173]. These reductions suggest that the ability to solve LWE
or SIS on randomly chosen instances implies the ability to solve SIVP or GapSVP
even on the hardest instances. In the following subsections we define LWE and SIS
formally.

2.2.2 The Learning with Errors Problem
Next we recall different variants of the LWE problem that are used in this thesis.

Definition 2.3 (Learning with Errors Problem). Let n,m, q > 0 be integers and
χ be a distribution over Z. For s ←χ Zn define Ds,χ to be the distribution that
samples a←$ Znq and e←χ Z and then returns (a, 〈a, s〉+ e) ∈ Znq × Zq.
• Given n, q ≥ 2, and m independent samples from the distribution Ds,χ, the
search LWE problem is to find s.
• Given n, q ≥ 2, and m independent samples (ai, bi), the decisional LWE
problem is to distinguish for i = 1, ...,m whether (ai, bi) ←$ (Znq × Zq) or
(ai, bi)← Ds,χ.
In particular, we say that the decisional LWE problem LWEn,m,q,χ is (t, ε)-hard
if for any algorithm A, running in time t, it holds that∣∣∣∣Pr

[
ADs,χ(·) = 1

]
− Pr

[
AU(Znq×Zq)(·) = 1

] ∣∣∣∣ ≤ ε .

9



2 Background

Typically, we refer to the vector s as the secret and to the e as the error of the
LWE instance. We can also write m LWE instances to a secret s ∈ Zn–also called
LWE samples–as (A,As + e mod q) with A←$ Zm×nq and e←χ Zm.
Additionally, the matrix version of the decisional LWE is defined as follows.

Definition 2.4 (Matrix-LWE). Let n, n′,m, q > 0 be integers and χ be a dis-
tribution over Z. Define DS,χ to be the distribution that, for S = (s1, ..., sn′)
with s1, ..., sn′ ←χ Zn, samples a ←$ Znq and e1, ..., en′ ←χ Z and then returns(

aT , aTS + (e1, ..., en′)
)
∈ Znq × Zn′q .

Given n, q ≥ 2, and m independent samples (ai,bi), the Matrix decisional LWE
(M-LWE) problem is to distinguish for i = 1, ...,m whether (ai,bi)←$ (Znq × Zn′q )
or (ai,bi)← DS,χ.

In particular, we say that the M-LWEn,n′,m,q,χ problem is (t, ε)-hard if for any
algorithm D, running in time t and making at most m queries to the distribution
DS,χ, it holds that∣∣∣∣∣Pr

[
ADS,χ(·) = 1

]
− Pr

[
A
U
(
Znq×Zn

′
q

)
(·) = 1

]∣∣∣∣∣ ≤ ε .

As before, m M-LWE samples to the secret matrix S = (s1, ..., sn′) ∈ Zn×n′ can
be written as (A,AS + E) ∈ Zm×nq × Zm×n′q with A ←$ Zm×nq and E ←χ Zm×n′ .
We call (A,B) ∈ Zm×nq × Zm×n′q a yes-instance if there exists an S = (s1, ..., sn′)
with s1, ..., sn′ ∈ Znq and (A,B) are m M-LWE samples from the distribution DS,χ.
Otherwise, i.e., when (A,B)←$ Zm×nq × Zm×n′q , we call (A,B) a no-instance.
The following theorem relates M-LWE and LWE.

Theorem 2.5. If LWEn,m,q,χ is (ε/n′, t)-hard then M-LWEn,n′,m,q,χ is (ε, t)-hard.
Intuitively, the reduction loss exists since an adversary that can solve LWE has

n′ possibilities to solve M-LWE (see also [24, 52, 174]). The proof follows similar
arguments as given in [174].

After defining LWE over so-called standard or unstructured lattices, we now
define a variant of LWE over rings, called R-LWE. To state the definition we fix some
notation first. Let R = Z[x]/〈xn + 1〉 and Rq = Zq[x]/〈xn + 1〉 in the remainder of
this thesis if not stated differently. Furthermore, let invertible elements in this ring
be represented by R×. Additionally, we use Rq,[I] = {f ∈ Rq | f = ∑n−1

i=0 fix
i, fi ∈

[−I, I]} throughout the thesis. For any polynomial f = ∑n−1
i=0 fix

i ∈ R we define
the reduction of f modulo q to be (f mod q) = ∑n−1

i=0 (fi mod q)xi ∈ Rq. Via the
coefficient embedding, we identify a polynomial f = f0 + f1x+ ...+ fn−1x

n−1 ∈ Rq

with its coefficient vector f = (f0, . . . , fn−1). Without further mentioning, we
denote the coefficient vector of a polynomial f ∈ Rq by f .
We define the ring-LWE Problem next.

10



2.2 Lattice-Based Security Assumptions

Definition 2.6 (Ring LWE Problem). Let n, q > 0 be integers and χ be a distribu-
tion over R. For s←χ R define Ds,χ to be the distribution that samples a←$ Rq

and e←χ R and then returns (a, as+ e) ∈ Rq ×Rq.
• Given n, q ≥ 2, and k independent samples from the distribution Ds,χ, the
search ring-LWE problem is to find s.
• Given n, q ≥ 2, and k independent tuples (ai, bi) the decisional ring-LWE
problem is to distinguish for all i = 1, ..., k whether (ai, bi)←$ (Rq ×Rq) or
(ai, bi)← Ds,χ. We say that the R-LWEn,k,q,χ problem is (t, ε)-hard if for any
algorithm A, running in time t, it holds that∣∣∣∣Pr

[
ADs,χ(·) = 1

]
− Pr

[
DU(Rq×Rq)(·) = 1

] ∣∣∣∣ ≤ ε.

While we define LWE and R-LWE over an arbitrary distribution χ, the most
important instantiation of χ is the centered discrete Gaussian distribution which
we define in the following paragraph. The centered discrete Gaussian distribution
for x ∈ Z with standard deviation σ is given by its probability density function
Dσ = ρσ(x)/ρσ(Z), where σ > 0, ρσ(x) = exp

(
−x2

2σ2

)
, and ρσ(Z) = 1 + 2∑∞x=1 ρσ(x).

We write c ←σ Z to denote sampling of a value c with distribution Dσ. For a
polynomial c ∈ R, we write c ←σ R to denote sampling each coefficient of c
with distribution Dσ. Moreover, we denote sampling each coordinate of a matrix
A ∈ Zm×n with distribution Dσ by A←σ Zm×n with m,n ∈ Z>0.

To achieve more compact constructions, the security of cryptographic primitives is
sometimes based on sparse variants of the (R-)LWE problem, such as the Decisional
Compact Knapsack (DCK) problem which is used as the hardness assumption of
the signature scheme by Güneysu et al. [114]. The DCK problem is essentially an
R-LWE problem with ternary instantiation.
Definition 2.7 (Decisional Compact Knapsack Problem). Let n, q > 0 be integers
with n = 2k for some k ∈ N>0, let ψ be the uniform distribution over Rq,[1], and let
s←ψ Rq,[1]. We define by Ds,ψ the distribution which outputs (a, as+e) ∈ Rq×Rq,
where a←$ Rq and e←ψ Rq,[1].

Given n, q, and k independent tuples (ai, bi) the DCK problem is to distinguish
for i = 1, ..., k whether (ai, bi)←$ (Rq ×Rq) or (ai, bi)← Ds,ψ.

2.2.3 The Short Integer Solution Problem
After defining variants of the LWE problem, we now define the SIS problem.
Prominent examples of signature schemes whose security is based on (R-)SIS are
BLISS [81] or the Bai-Galbraith signature [24].
Definition 2.8 (Short Integer Solution Problem). Given a modulus q, a matrix
A ∈ Zn×mq with m ≥ n, and a real constant ν ∈ R≥0, the SIS problem is to find a
non-zero vector u ∈ Zm such that Au = 0 mod q and ‖u‖2 ≤ ν.

11



2 Background

As for LWE, there also exists a ring-SIS problem which is defined as follows.

Definition 2.9 (Ring SIS Problem). Let n, q > 0 be integers and n = 2l for some
l ∈ N>0 and χ be a distribution over R. Given a1, ..., ak ←$ Rq, a modulus q, and
a real constant ν ∈ R≥0 then the ring-SIS problem (R-SIS) is to find a polynomial
s ∈ Rq such that a1s+ ...+ aks = 0 mod q and ‖s‖2 ≤ ν ∈ R.

As in the case of LWE, sometimes special instantiations are used to gain more
efficient constructions (in run-time and size). For example, the signature scheme
BLISS is instantiated with an version of SIS defined over so-called NTRU-lattices
as defined next.

Definition 2.10. (NTRU SIS Problem) Let n = 2l, l > 0, q ∈ Z>0. Moreover, let
χf and χg be distributions over Rq. Furthermore, let f ←χf R

×
q and g ←χg Rq.

Given h = gf−1 ∈ Rq, a modulus q, and a real constant ν ∈ R≥0 then the NTRU SIS
problem is to find v1, v2 ∈ Rq such that av1 + v2 = 0 mod q and ‖(v1,v2)T ‖2 ≤ ν.

2.3 Quantum Computation and Scenarios
Next, we introduce quantum computation knowledge and elaborate on our cate-
gorization of quantum scenarios used in this thesis. A standard text for a more
complete explanation has been given for example by Nielsen and Chuang [167].

Quantum States and Quantization of Classical Algorithms. Let H be a com-
plex Hilbert space with inner product 〈y|x〉 of vectors |x〉 , |y〉 ∈ H. A quantum
state is an element in H of norm 1. Let {|x〉}x be an orthonormal basis for H,
then we can represent any (pure) quantum state |y〉 as |y〉 = ∑

x ψx |x〉 where
ψx are complex numbers, also called amplitudes, such that |y〉 has norm 1, i.e.,∑
x |ψx|2 = 1. We say that |y〉 is a quantum superposition of basis states |x〉.
Operations on elements of H, i.e., quantum operations, are represented by

unitary transformations U. Hence, quantum operations (prior to measurement)
are reversible. This impacts the quantization of classical operations as follows.
Let A be a classical algorithm with input x ∈ {0, 1}a and output y ∈ {0, 1}b.
Moreover, let {0, 1}a × {0, 1}b → {0, 1}a × {0, 1}b : (x, t) 7→ (x, t ⊕ A(x)) be a
classical reversible mapping. The corresponding unitary transformation A acting
linearly on quantum states is given by A : ∑x,t ψx,t |x, t〉 7→

∑
x,t ψx,t |x, t⊕ A(x)〉 ,

where we use the usual notation |x, y〉 = |x〉 ⊗ |y〉 with tensor product ⊗. We may
add a workspace register to the input and the output registers to allow for more
generality. Thus, the quantized classical algorithm is given as

A :
∑
x,t,z

ψx,t,z |x, t, z〉 7→
∑
x,t,z

ψx,t,z |x, t⊕ A(x), z〉 .

12



2.3 Quantum Computation and Scenarios

Examples for such a quantization of classical algorithms are quantum oracles such
as the quantum random oracle or the quantum signing oracle defined in Section 2.4.

Mixed States, Channels, Density Matrices, and the Trace Norm. Until now
we only defined pure quantum states. There exists, however, a more general
notation called the density matrix formalism which covers also mixed states which
cannot be represented as pure states. Instead, they are represented by their density
matrix ρ and can be written as a probability distribution over sets of pure states
|x〉, i.e., ρ = ∑

x px |x〉 〈x| with px ∈ R and ∑x |px|2 = 1.
After introducing mixed states, we can now explain unitary and classical channels.

A channel is a physically realizable map on mixed quantum states–the quantum
analogue of a stochastic map applied to a classical probability distribution. Now,
unitary channels preserve purity of input states and act on classical basis states in
superposition, while classical channels measure input states in the standard basis
and output a probabilistic mixture of classical basis states. In this thesis, hash
oracles are often viewed as unitary channels while signing oracles are viewed as
classical channels (except for the signing oracles in Section 5).
Additionally, in this thesis we use the trace norm ‖·‖tr (also known as the

Schatten-1 norm) explained next. It is a matrix norm generalizing the concept of
statistical distance from probability distributions to quantum states. For example,
the quantity ‖ρ− ρ′‖tr captures the physically observable difference between two
quantum states represented by their density matrices ρ, ρ′. Formally, the trace
norm of a matrix ρ is defined as ‖ρ‖tr = tr

(√
ρρ†

)
where ρ† is the adjoint of ρ

and tr () is the trace of ρ, i.e., the sum of the diagonal elements of ρ.

Categorization of Quantum Scenarios. Moving further, we define quantum
scenarios that exist in the literature. The security of lattice-based primitives
is proven against adversaries with different quantum capabilities. For example,
the schemes presented in [26, 69, 81, 105, 222] have been proven secure against
fully classical adversaries that have no access to quantum computers. Other
constructions such as [45, 51, 52, 123, 139] have been proven to be secure against
adversaries that have local quantum computing power, i.e., the adversary can
perform all computations over public information such as the encryption of a
message, the verification of a signature, or the evaluation of a hash function on a
quantum computer. To account for the additional quantum power in case random
oracles are used, the QROM has been introduced [45] where adversaries can query
the (quantum) random oracle in superposition. Additionally, some constructions
such as [48,49,99,220] are proven to be secure against fully quantum adversaries
that are able to make all computations on quantum computers and access all

13



2 Background

oracles in superposition. In this thesis we refer to the different quantum scenarios
as follows.
Fully classical: All parties at all times use only a classical computer, and access
all oracles classically.

Post-quantum: The adversary at all times can use a quantum computer. How-
ever, the honest participants in the system only ever use their secret keys on
classical computers, so oracles such as the signing or decryption oracle are
always accessed classically.

Fully quantum: The adversary at all times can use a quantum computer and
has quantum access to all oracles.

Security Reductions in the QROM. As explicated by Boneh et al. [45], a variety
of techniques used to prove security in the Random Oracle Model (ROM) [34]
are generally not known to be applicable in the QROM. Such techniques are for
example adaptive programmability of the random oracle or rewinding. However,
if a reduction in the ROM is so-called history-free [45], it lifts to the QROM. For
example, Boneh et al. show that the (tight) security reduction of the lattice-based
signature scheme by Gentry, Peikert, and Vaikuntanathan [104], also called the
GPV scheme, that is given in the ROM, also holds in the QROM. Recently, the
framework by Boneh et al. was applied to Fiat-Shamir signature schemes by Kiltz,
Lyubashevsky, and Schaffner [139]. An application of their framework has been, for
example, the security reduction of the lattice-based signature scheme Dilithium [82].
Another framework used to show post-quantum security has been proposed by
Song [208]. Moreover, security reductions of signature schemes or KEMs that are
given in the standard model should also hold in the QROM, since these reductions,
such as [53], do not rely on any assumptions about a random oracle.
After recalling existing quantum scenarios, we define cryptographic primitives

and their respective security notions in the different quantum scenarios next.

2.4 Cryptographic Primitives and Their Security
Definitions

In this section we recall the definition of digital signature schemes and KEMs.
Additionally, we recall their respective security notions.

2.4.1 Digital Signature Schemes
We review the definition of signature schemes and existential unforgeability against
classical and quantum adversaries next.

14



2.4 Cryptographic Primitives and Their Security Definitions

Definition 2.11 (Signature Scheme). A digital signature scheme S defined over
the message space M, the public key space PK, the secret key space SK, and
the signature space S, is a tuple S = (KeyGen, Sign,Verify) of algorithms that are
described as follows.
• KeyGen()→ (sk, pk) is a probabilistic algorithm that returns a secret or signing
key sk ∈ SK and a public or verification key pk ∈ PK.
• Sign(sk,m) → s is a probabilistic algorithm which takes as input a secret
key sk ∈ SK and a message m ∈M, and outputs a signature s ∈ S.
• Verify(pk,m, s)→ 0 or −1 is a deterministic algorithm which takes as input a
public key pk, a message m, and a signature s, and returns a bit b ∈ {0,−1}.
If b = 0, we say that the algorithm accepts, otherwise we say that it rejects the
signature s for message m.

If a proof for S is being given in the ROM, we use H to denote the space of
functions from which the random hash function is randomly sampled.

Moreover, we say S is ε-correct if, for every message m in the message space, we
have that

Pr [Verify(pk,m, s) = 0 : (sk, pk)← KeyGen(), s← Sign(sk,m) for m ∈M] ≥ 1− ε,

where the probability is taken over the randomness of the probabilistic algorithms.
We say that S is correct if ε = 0.

The standard security requirement for signature schemes, namely Existential Un-
forgeability under Chosen-Message Attack (EUF-CMA), dates back to Goldwasser,
Micali, and Rivest [107]: The adversary can obtain qS signatures via signing oracle
queries, and must output one valid signature on a message not queried to the oracle.
The corresponding experiment involving an adversary A against a signature scheme
S is given in Figure 2.1. Our depicted EUF-CMA experiment grants A access to a
random oracle OH , i.e., we consider the security game in the ROM. In the ROM,
a random function H is sampled uniformly from the space of all such functions
H at the start of the experiment. We define the random oracle in Figure 2.2. In
the standard model the adversaries is not allowed to query the random oracle. We
define EUF-CMA security formally in the following definition.

Definition 2.12 (EUF-CMA Security). Given the experiment in Figure 2.1, we
say that a signature scheme S is (t, qS, qH , ε)-EUF-CMA secure (in the fully classical
setting) if for every classical adversary A which runs in time t and poses at most qs
(classical) queries to the signing oracle and qh (classical) queries to the random
oracle the advantage is

AdvEUF-CMA
S (A) = Pr

[
ExptEUF-CMA

S (A) = 0
]
≤ ε.

15



2 Background

ExptEUF-CMA
S (A):

1: H←$H
2: qH ← 0, qS ← 0
3: QS ← {}
4: (sk, pk)← KeyGen()
5: (m∗, s∗)← AOS ,OH (pk)
6: if Verify(pk,m∗, s∗) = 0 ∧ (m∗, ∗) 6∈ QS:
7: return 1
8: else
9: return 0

Classical signing oracle OS(m):
1: qS ← qS + 1
2: s← Sign(sk,m)
3: QS ← QS ∪ (m, s)
4: return s

Figure 2.1: EUF-CMA security experiment in the ROM where the adversary A
returns one valid message-signature pair

Classical random oracle OH(x):
1: qH ← qH + 1
2: return H(x)

Quantum random oracle OH(∑x,t,z ψx,t,z |x, t, z〉):
1: qH ← qH + 1
2: return ∑x,t,z ψx,t,z |x, t⊕H(x), z〉

Figure 2.2: Definition of the classical and quantum random oracle

The security notion of strong Existential Unforgeability under Chosen-Message
Attack (sEUF-CMA) is defined similarly to EUF-CMA security except for the
following difference. The security game against an sEUF-CMA attacker A returns
1 even if A forges a second signature to a message it queried to the signing
oracle. In particular that means instead of line 6 in Figure 2.1 it is enough that
Verify(pk,m∗, s∗) = 0 ∧ (m∗, s∗) 6∈ QS.

We emphasize that the above security definition of EUF-CMA is well-defined in
the fully classical scenario and the post-quantum scenario which allows adversaries
that have local quantum power as defined in Section 2.3. The quantum analogue
to the classical random oracle is called quantum random oracle [45]. We depict
the quantized random oracle in Figure 2.2. Standard formalism for a quantum
oracle for a hash function H : X → T specifies that the user has access to a unitary
channel that applies the linear map |x, t, z〉 7→ |x, t⊕ H(x), z〉 on standard basis
states. It is understood that the range T of H has a ⊕ operation defined on it with
the property that t1 ⊕ t2 ⊕ t2 = t1 for all t1, t2 ∈ T , so that the unitary channel is
its own inverse. Typically, one simply imagines that elements of T are written as
binary strings, and the ⊕ operation is the bitwise exclusive-OR.

In the post-quantum setting, EUF-CMA security is defined as in Definition 2.12

16



2.4 Cryptographic Primitives and Their Security Definitions

except that the above classical adversary A is changed to a quantum adversary
A. Moreover, the adversary is allowed to ask at most qh (quantum) queries to the
quantum random oracle.

In this thesis we are mostly concerned with post-quantum security in the QROM.
In Chapter 5, however, we also allow more powerful quantum adversaries that might
query the signing oracle in superposition as in the fully quantum scenario. There-
fore, we describe a quantized EUF-CMA experiment next. The aforementioned,
traditional definition of the EUF-CMA experiment given in Figure 2.1 cannot be
directly quantized: If the adversary is allowed to query oracles in superposition, we
cannot restrain the adversary’s forgery to be on a new message since the experiment
cannot keep a copy of messages queried to the signing oracle for later checking. An
equivalent formulation of the security experiment in the classical setting demands
that the adversary outputs qS + 1 valid signatures on distinct messages. Boneh
and Zhandry [49] used this formulation to give a quantum analogue of EUF-CMA
which involves a fully quantum adversary. We depict the corresponding security
experiment and the quantized sign oracle in Figure 2.3. The definition of EUF-CMA
in the fully quantum setting follows easily from this.

ExptEUF-CMA
S (A):

1: H←$H
2: qH ← 0, qS ← 0
3: (sk, pk)←$ KeyGen()
4: ((m∗1, s∗1), . . . , (m∗qS+1, s∗qS+1))← AOS ,OH (pk)
5: if ∀ i, j ∈ [1, qS + 1], i 6= j: (Verify(pk,m∗i , s∗i ) = 0) ∧

(
m∗i 6= m∗j

)
:

6: return 1
7: else
8: return 0
Quantum signing oracle OS(∑m,t,z ψm,t,z |m, t, z〉):
1: qS ← qS + 1
2: r←$R
3: return ∑m,t,z ψm,t,z |m, t⊕ Sign(sk,m; r), z〉

Figure 2.3: EUF-CMA security experiment in the (Q)ROM where the adversary A
returns qS + 1 valid signatures

It is important to note that we do not define the security of a scheme in terms
of a security parameter λ. Instead we view λ as a system parameter of the scheme
that defines the targeted security. In particular, we assume that the computation
of 2λ is infeasible and accordingly that a probability of 2−λ is negligible.

17



2 Background

2.4.2 Key Encapsulation Mechanisms
Moving forward, we now elaborate on the definition of KEMs and their security
notions.

Definition 2.13 (Key Encapsulation Mechanism). A KEM K defined over the
message spaceM, the public key space PK, the secret key space SK, and the key
space K, is a triple of algorithms K = (KeyGen,Encaps, Decaps) defined as follows.
• KeyGen() → (sk, pk) is a probabilistic algorithm that returns a secret key

sk ∈ SK and a public key pk ∈ PK.
• Encaps(pk) → (c, κ) is a probabilistic algorithm that takes as input a public
key pk and outputs a ciphertext c as well as a key κ ∈ K.
• Decaps(sk, c) → κ or ⊥ is a deterministic algorithm that takes as input a
secret key sk ∈ SK and a ciphertext c and returns a key κ ∈ K or ⊥, denoting
failure.

As before, we use H to denote the space of functions from which the random
hash function is randomly sampled if a proof for K is being given in the ROM.

A KEM K is ε-correct if for all (sk, pk)← KeyGen() and (c, κ)← Encaps(pk), it
holds that Pr[Decaps(sk, c) 6= κ] ≤ ε. We say it is correct if ε = 0.
The security of KEMs can be defined in terms of the indistinguishability of

the keys against chosen-plaintext (IND-CPA) and chosen-ciphertext (IND-CCA)
adversaries. In the traditional IND-CPA experiment of KEMs, a challenger gen-
erates keys (sk, pk)← KeyGen(), computes (c∗, κ∗0)← Encaps(pk), and samples κ∗1
uniformly at random from the key space K and a random bit b. The adversary
A is given c∗, κ∗b , and pk, and is asked to output a bit b′, indicating whether it
believes it received the key corresponding to c∗ or a random value. The security
experiment returns 1 if b′ = b. Otherwise, 0 is returned. We depict the security
experiment of IND-CPA in Figure 2.4 and define IND-CPA security formally next.

Definition 2.14 (IND-CPA Security). Given the experiment in Figure 2.4, we
say that a KEM K is (t, qH , ε)-IND-CPA secure in the fully classical (resp., in the
post-quantum or the fully quantum setting) if for every classical (resp., quantum)
adversary A with runtime at most t and asking at most qH queries to the random
oracle (resp., quantum random oracle) the advantage is

AdvIND-CPA
K (A) =

∣∣∣∣Pr
[
ExptIND-CPA

K (A) = 1
]
− 1

2

∣∣∣∣ ≤ ε.

In the traditional IND-CCA experiment the adversary A additionally has access
to a decapsulation oracle, which returns the decapsulation of any ciphertext not
equal to the challenge ciphertext c∗. We depict the security experiment of IND-CCA
in Figure 2.5. The definition of IND-CCA given next, is similar to Definition 2.14.

18



2.4 Cryptographic Primitives and Their Security Definitions

ExptIND-CPA
K (A):

1: H←$H
2: qH ← 0
3: (sk, pk)← KeyGen()
4: (c∗, κ∗0)← Encaps(pk)
5: κ∗1←$ K

6: b←$ {0, 1}
7: b′ ← AOH (pk, c∗, κ∗b)
8: return [b = b′]

Figure 2.4: IND-CPA security experiment in the (Q)ROM

Definition 2.15 (IND-CCA Security). Given the experiment in Figure 2.5, we
say that a KEM K is (t, qH , qD, ε)-IND-CCA secure in the fully classical (resp.,
post-quantum setting) if for every classical (resp., quantum) adversary A, running
in at most time t, asking at most qH queries to the random oracle (resp., quantum
random oracle), and at most qD queries to the decapsulation oracle, the advantage
is

AdvIND-CCA
K (A) =

∣∣∣∣Pr
[
ExptIND-CCA

K (A) = 1
]
− 1

2

∣∣∣∣ ≤ ε.

In the fully quantum setting, the qD queries to the decapsulation oracle can be posed
in superposition.

ExptIND-CCA
K (A):

1: H←$H
2: qD ← 0, qH ← 0
3: (sk, pk)← KeyGen()
4: (c∗, κ∗0)← Encaps(pk)
5: κ∗1←$ K

6: b←$ {0, 1}
7: b′ ← AOH ,OD(pk, c∗, κ∗b)
8: return [b = b′]

Decaps⊥(sk, c, c∗):
1: if c = c∗:
2: return ⊥
3: else
4: return Decaps(sk, c)
OD(c):
1: qD ← qD + 1
2: return Decaps⊥(sk, c, c∗)
OD(∑c,t,z ψc,t,z |c, t, z〉):
1: qD ← qD + 1
2: return∑c,t,z ψc,t,z |c, t⊕ Decaps⊥(sk, c, c∗), z〉

Figure 2.5: IND-CCA security experiment in the (Q)ROM

The security of KEMs can also be defined in the notion of one-way security as

19



2 Background

we explain next. During the one-way security experiment of KEMs, the adversary’s
task is to fully recover the session key, not just distinguish it from random as in the
indistinguishability notions explained above. We can similarly consider the chosen-
plaintext and chosen-ciphertext scenarios. Figure 2.6 shows the corresponding
security experiments for One-Way Chosen-Plaintext Attacks (OW-CPA) and One-
Way Chosen-Ciphertext Attacks (OW-CCA). We formally define OW-CPA first.
Subsequently we give the definition of OW-CCA.

Definition 2.16 (OW-CPA Security). Given the experiment in Figure 2.6, we
say that a KEM K is (t, qH , ε)-OW-CPA secure in the fully classical (resp., in the
post-quantum or the fully quantum setting) if for every classical (resp., quantum)
adversary A with runtime at most t and asking at most qH queries to the random
oracle (resp., quantum random oracle) the advantage is

AdvOW-CPA
K (A) =

∣∣∣∣Pr
[
ExptOW-CPA

K (A) = 1
]
− 1

2

∣∣∣∣ ≤ ε.

ExptOW-CPA
K (A):

1: H ←$HK
2: qH ← 0
3: (sk, pk)← KeyGen()
4: (c∗, κ∗)← Encaps(pk)
5: κ′ ← AOH (pk, c∗)
6: return [κ∗ = κ′]

ExptOW-CCA
K (A):

1: H ←$HK
2: qD ← 0, qH ← 0
3: (sk, pk)← KeyGen()
4: (c∗, κ∗)← Encaps(pk)
5: κ′ ← AOH ,OD (pk, c∗)
6: return [κ∗ = κ′]

Figure 2.6: OW-CPA (left) and OW-CCA (right) security experiment in the
(Q)ROM

Definition 2.17 (OW-CCA Security). Given the experiment in Figure 2.6, we
say that a KEM K is (t, qH , qD, ε)-OW-CCA secure in the fully classical (resp.,
post-quantum setting) if for every classical (resp., quantum) adversary A, running
in at most time t, asking at most qH queries to the random oracle (resp., quantum
random oracle), and at most qD queries to the decapsulation oracle, the advantage
is

AdvOW-CCA
K (A) =

∣∣∣∣Pr
[
ExptOW-CCA

K (A) = 1
]
− 1

2

∣∣∣∣ ≤ ε.

In the fully quantum setting, the qD queries to the decapsulation oracle can be posed
in superposition.

For the corresponding definitions of IND-CPA, IND-CCA, OW-CPA, and OW-
CCA security for PKE we refer to [123].

20



2.5 Implementation Attacks

2.5 Implementation Attacks
The mathematical security of cryptographic algorithms is defined in Section 2.4. In
the described mathematical security models a cryptographic algorithm is regarded
as a black-box where only input, output, and the description of the algorithm are
known. When an algorithm is executed in practice, however, additional information
can be obtained since the algorithm is executed on a physical device. Attacks
that take advantage of this additional information are called physical attacks.
Whether and which information can be obtained depends mostly on the respective
implementation of the cryptographic algorithms. Therefore, physical attacks are
also called implementation attacks. In the following paragraphs we introduce the
most important implementation attacks.
Implementation attacks can be categorized by their order as defined next. The

order of an attack depends on the number of different exploited points of attack
during the execution of the algorithm. First-order attacks exploit only one point
of attack, while higher-order attacks combine several points of attack during the
execution. We refer to, e.g., [77, 153] for more information.
Implementation attacks can also be categorized by the attacker’s power into

active (also known as fault attacks) or passive attacks (also known as side-channel
attacks). We explain the difference between side-channel and fault attacks and
describe known attacks of the respective categories next.

2.5.1 Side-Channel Attacks
Side-channel attacks exploit information that is obtained during the monitoring of
executed algorithms. We describe side-channel attacks that are most relevant [144,
172, 209] for lattice-based signature schemes, namely cache, timing, power, and
electromagnetic side channels. We refrain from describing side channel attacks
such as acoustic, optical, or thermal attacks but refer to [85] for the respective
descriptions. As to the best of our knowledge, no such attacks against lattice-based
scheme have been presented so far. We refer to [209] for a systematic classification
of side channels and for an extensive overview on existing literature.

2.5.1.1 Cache Side Channels

Software implementations that run on systems using memory caches might be
particularly vulnerable to implementation attacks since processor caches are a rich
source of side channels. A cache is a small piece of memory that stores selected
entries from the main memory for quick access by the Central Processing Unit
(CPU). Inside the cache, the memory entries are stored in so-called cache lines.
The sequence of cache lines in a cache is partitioned into cache sets. In a k-way

21



2 Background

set-associative cache, each cache set consists of k cache lines. A cache comes with
a strategy for replacing entries if the cache is full. A popular strategy is to replace
the Least Recently Used (LRU) entry. Variants of the LRU strategy are used, e.g.,
in Intel processors [2].
If the CPU accesses an entry in the memory, a cache hit (if the entry is stored

in the cache) or a cache miss (if the entry is not stored in the cache) occurs. A
cache-side-channel vulnerability exists if the interaction between a program and
the cache depends on secret information, e.g., on a cryptographic key. In this case,
an attacker, observing aspects of this interaction, might learn secret information.
By monitoring the behavior of the cache, an attacker might be able to exploit
run-time [142], memory consumption [129], or power consumption [143].
The idea of cache attacks was first mentioned by Kelsey et al. [138] and later

on exploited to weaken the security of DES [73] by Page [170]. Groot Bruin-
derink et al. [110] presented the first attack against a lattice-based signature scheme
and broke the scheme BLISS [81] using cache side channels of the Gaussian sampling
during the signature generation.

2.5.1.2 Timing Side Channels

During a timing-side-channel attack, the execution time of (subroutines of) the
targeted algorithms depending on different input is observed and analyzed. For
example, if secret-dependent branching occurs in the algorithm and the time to
compute the branches differs, an attacker might detect which branch was taken
depending on the resulting run-time and, thus, recover the secret value.

The first timing side channel was presented by Kocher in 1996 [142]. Silverman
and Whyte [207] presented the first timing-side-channel attack against lattice-based
cryptography, namely against NTRUEncrypt [121].

2.5.1.3 Power Side Channels

During a power-side-channel attack the power consumption of (subroutines of) the
targeted algorithms depending on different input is observed and analyzed. Power
attacks are categorized depending on their analysis: Differential Power Analysis
(DPA) [143] uses statistical analysis tailored specifically to the algorithm and Simple
Power Analysis (SPA) [143] visually examines the graph of the power traces [156].
The first power analysis was presented by Kocher, Jaffe, and Jun in 1999 [143].

In 2010 the first power attack against the lattice-based scheme NTRUEncrypt
was presented [150]. In 2017, two works analyzed lattice-based cryptography with
regard to power side channels [91,184].

22



2.5 Implementation Attacks

2.5.1.4 Electromagnetic Side Channels

During an electromagnetic side-channel attack, the electromagnetic emanation of
devices (or wires within the devices that carry current) during the execution of
targeted algorithms depending on different input is measured and analyzed. As for
power attacks, electromagnetic attacks are categorized in Simple Electromagnetic
Attacks (SEMA) and differential electromagnetic attacks depending on the method
used to analyze the obtained data.
Electromagnetic attacks were already discussed in classified documents, men-

tioned by Kocher et al. [143], and used to reconstruct content shown on a monitor
by van Eck [211] in the last century (see [4,197] for a historical overview). The first
attack presented to the public was by Quisquater [186] during the rump session of
EUROCRYPT 2000 and followed by [101,187] in 2001. The first electromagnetic
attacks against lattice-based cryptography have been given by Espiteau et al. [91]
who have presented an attack against the signature scheme BLISS [81] and by Pri-
mas, Pessl, and Mangard [184] who have analyzed the Number Theoretic Transform
(NTT) used for polynomial multiplication in the majority of ideal-lattice-based
schemes.

2.5.2 Fault Attacks
After explaining passive implementation attacks, we turn to active implementation
attacks that are also called fault attacks. Fault attacks disturb the execution of an
algorithm to extract secret information or to force a behavior. The goal of most
fault attacks is to recover the secret key used during the computation [144]. For
example, recovering the secret signing key enables the attacker to generate valid
signatures of any messages. In other scenarios, however, the attacker’s goal might
be to force the acceptance of a possibly invalid signature, e.g., to install malicious
software updates [204]. To achieve this goal the attacker does not necessarily need
to reveal the secret key but it is enough to force the verification algorithm to accept
the invalid signature by fault injection.
A fault injection can be zeroing or randomizing a value, or skipping operations

as defined by Rauzy and Guilley [190, Definition 1]:
Zeroing is a fault injection that results in setting a value or a part thereof to
zero.

Randomizing is a fault injection that results in setting a value or a part thereof
to a random value.

Skipping is a fault injection that results in skipping any number of consecutive
instructions.

Another injection fault is to flip single bits. Bit flips are one of the first examples of
recorded faults, e.g., May and Woods [157] reported about single-bit errors caused

23



2 Background

by radio-active decay in 1978. However, bit-flipping attacks assume very powerful
adversaries [212] and bit flips can be viewed as randomizing faults.

Fault attacks can be carried out using, e.g, glitching attacks such as clock glitching
or power glitching, light attacks, or magnetic attacks [29].
The first theoretical fault attack was presented by Boneh, DeMillo, and Lip-

ton [46]. The first fault attacks on lattice-based cryptography [12, 130] targeted
NTRUEncrypt and NTRUSign [121]. Espiteau et al. [91] investigated fault attacks
on the signature schemes GLP [114], BLISS [81], PassSign [122], and ring-TESLA.
Concurrently, Bindel, Krämer, and Buchmann presented different fault attacks on
ring-TESLA, GLP and BLISS [B7]. Moreover, in [111] a practical fault attack on
deterministic signature schemes has been performed.

This chapter has thus focused on explaining the necessary background information
for this thesis. We now present our lattice-based signature schemes in the next
chapter.

24



3 The Signature Schemes TESLA
and qTESLA

Digital signatures are essential for cybersecurity. For example, they provide proofs
of authenticity for billions of software downloads daily. In modern cryptography,
the security of signature schemes is guaranteed as long as a particular mathematical
problem is computationally hard [134]. A very convincing approach to ensure this
guarantee is to use security reductions–proofs that an attacker with predefined
power cannot forge a signature as long as the problem is intractable. Such reduc-
tions can be asymptotic or explicit. Explicit reductions allow the relation of the
scheme’s parameters to a concrete problem instance. Another desirable property
of reductions is tightness [60]: If parameters are selected taking into account the
explicit reductions described above, tight reductions lead to smaller parameters
and thus to more efficient instantiations [59, 60].

As progress towards constructing quantum computers capable of executing Shor’s
algorithm [206] continues, it has become desirable to construct an efficient signature
scheme and to prove an explicit security reduction from a quantum-hard problem
to the scheme which also holds in the presence of powerful quantum adversaries.

In this chapter, we present the post-quantum secure signature schemes TESLA
and qTESLA. We prove tight and explicit security reductions from the (R-)LWE
problem to TESLA and qTESLA in the QROM [45]. This allows us to choose
efficient and quantum secure parameters according to our security reductions. We
then report on experimental results to demonstrate the efficiency of our schemes
and their respective instantiations.
The sections are divided as follows: Section 3.1 describes our schemes and all

existing parameters. We then prove our novel quantum security reductions in
Section 3.2. Based on the results, we select parameters of different (quantum)
security levels in Section 3.3. Moving further, Section 3.4.2 presents experimental
results based on implementations targeting different platforms. The last Section 3.5
finally discusses the extent of our solution and compares TESLA and qTESLA
with other signature schemes from the literature.

25



3 The Signature Schemes TESLA and qTESLA

This chapter is based on the publications [B2] (PQCrypto 2017) and [B1]
(AFRICACRYPT 2016), and on the submission of qTESLA [B4] to NIST’s post-
quantum project [164]. The quantum security reduction of TESLA was proven in
collaboration with Edward Eaton and Gus Gutoski. The benchmarks of TESLA
and qTESLA are obtained from implementations by Akleylek, Alkim, Barreto,
Deng, Longa, Paquin, Ricardini, Szefer, Tian, Szefer, Tian, and Zanon.

3.1 Description of the Signature Schemes
The signature schemes described in this section are the result of a long line of
research. The first work in this line has been the signature scheme proposed by
Bai and Galbraith [24] which has been based on the Fiat-Shamir construction of
Lyubashevsky [154]. The scheme by Bai and Galbraith is constructed over standard
lattices and comes with a (non-tight) security reduction from the LWE and the
SIS problems in the ROM. Dagdelen et al. [69] presented improvements and the
first implementation of the Bai-Galbraith scheme. The scheme was subsequently
studied as a deterministic variant under the name TESLA [B2]. A variant of
TESLA over ideal lattices was derived under the name ring-TESLA [B1]. Since
then, there have appeared subsequent works aimed at improving the efficiency of the
scheme [30,113]. Most notably, a scheme called TESLA# [30] by Barreto, Longa,
Naehrig, Ricardini, and Zanon included several implementation improvements. As
a result of this line of research, a deterministic ideal-lattice-based signature scheme
qTESLA was submitted to the NIST post-quantum standardization project [164] in
2017. The probabilistic qTESLA, as presented in this thesis, not only assembles the
advantages acquired in TESLA, ring-TESLA, and TESLA#, but also takes latest
implementation attacks, such as [111] into account. We summarize the history and
relations of the different TESLA variants in Figure 3.1. In the Figure “scheme A
→ scheme B” means that scheme B is based on scheme A, i.e., B is a variant of A
and/or B improves upon scheme A.

Bai-Galbraith
scheme [24]

Dagdelen et al.’s
improvements [69]

TESLA
Section 3.1.1

ring-TESLA
Section 3.1.2.3

TESLA#
[30]

deterministic
qTESLA

qTESLA
Section 3.1.2.1

Figure 3.1: History of TESLA and qTESLA; inspired by [96, Figure 1.1]

26



3.1 Description of the Signature Schemes

In this section we describe the signature scheme TESLA that is defined over
standard lattices and present its more efficient variant qTESLA defined over ideal
latticed. Additionally, we also explain the differences between TESLA and the
Bai-Galbraith signature schemes and the (dis-)advantages of different design choices
made for TESLA and qTESLA.

Notation. We start be introducing notation that is used in the description of
TESLA and qTESLA. If not stated otherwise, q is a prime integer. Moreover,
for any positive integer m the set Zm of integers modulo m is represented by
{−b(m − 1)/2c, . . . , bm/2c} and we define c′ = c mod m as the unique element
−bm/2c < c′ ≤ bm/2c such that c′ = c mod m. Furthermore, for a fixed positive
integer d we define the functions [·]M , [·]L : Z→ Z as follows. For any integer x let
[x]L denote the unique integer in (−2d−1, 2d−1]∩Z , i.e., x = [x]Lmod 2d. Moreover,
let [·]M be the function [·]M : Z→ Z, c 7→ (c mod q − [c]L)/2d. Informally, [x]L is
viewed as the least significant bits of x and [x]M is viewed as the most significant
bits of x. The definitions are easily extended to vectors or polynomials by applying
the operators for each component or coefficient, respectively.
Finally, s-bit strings r ∈ {0, 1}s and r′ ∈ {−1, 0, 1}s are written as vectors over

the sets {0, 1} and {−1, 0, 1}, respectively. Multiple instances of the same set
are represented by appending an additional superscript. For example, {0, 1}s,t
corresponds to t s-bit strings each defined over the set {0, 1}.

3.1.1 The Signature Scheme TESLA
Our signature scheme TESLA is parameterized by the matrix and vector dimensions
n, n′, m, the integer κ, the standard deviation of the Gaussian distribution σ,
the modulus q, and the integers h, d, B, U , LE, and LS. We describe how these
parameters are derived in Section 3.1.3. Moreover, TESLA is parameterized by
the uniformly random sampled matrix A←$ Zm×nq which is publicly known as a
global constant and can be shared among arbitrarily many signers.
Additionally, the description of TESLA includes several functions which are

defined next. In order to obtain smaller signatures (z, c′) ∈ Znq × {0, 1}κ, we break
up the hashing into Enc(H(·)), where the encoding function Enc takes the output
of the hash function H and maps it to a vector with entries in {−1, 0, 1} of length
n′ and weight h, i.e., it has h entries that are either 1 or −1. Let H denote the
set of vectors c ∈ {−1, 0, 1}n′ with exactly h non-zero entries. In particular, let
H : Zmq × {0, 1}∗ → {0, 1}κ be a hash function that takes as input a vector v ∈ Zmq
and computes [v]M . The result is then hashed together with a message m to a κ-bit
string. We adopt SHA-3 [87] for the function H. Furthermore, let Enc : {0, 1}κ → H
be the encoding function which takes the binary output of the hash function

27



3 The Signature Schemes TESLA and qTESLA

and produces a vector in H. Our encoding function has been based on [114].
Furthermore, we employ a PRF PRF1 : {0, 1}κ × {0, 1}∗ → {0, 1}κ which maps the
message to-be-signed and parts of the secret key to a pseudo-random value. The
resulting pseudo-random value is then used to key PRF2 : {0, 1}κ × Z→ [−B,B]n.
Doing so, all randomness in the signature generation is deterministically derived.
We adopt SHA-3 for PRF1 and Chacha20 [38] for PRF2.

Moreover, we define the functions checkE, introduced in [69, Section 3.2], as
follows: For a matrix E, define Ei to be the i-th row of E. The function maxk
returns the k-th largest absolute entry of a vector. The matrix E is rejected if
for any row of E it holds that ∑h

k=1 maxk(Ei) is greater than some bound LE.
Hence, the routine checkE ensures that ‖Eic‖∞ ≤ LE for all rows of E. We apply
a similar check checkS to S: The matrix S is rejected if for any row of S it holds
that ∑h

k=1 maxk(Si) is greater than some bound LS, i.e., the routine checkS ensures
that ‖Sic‖∞ ≤ LS for all rows of S. The pseudo-codes of checkE and checkS are
depicted in Algorithm 3.1 and 3.2, respectively.

Algorithm 3.1 checkE in TESLA
Require: E ∈ Zm×n′q

Ensure: {0, 1} . true, false
1: for j = 1, ...,m do
2: if ∑h

i=1 maxi(Ej) > LE then
3: return 1
4: return 0

Algorithm 3.2 checkS in TESLA
Require: S ∈ Zn×n′q

Ensure: {0, 1} . true, false
1: for j = 1, ..., n do
2: if ∑h

i=1 maxi(Sj) > LS then
3: return 1
4: return 0

Next we describe the scheme TESLA. The key generation, signature genera-
tion, and verification algorithms are summarized in Algorithm 3.3, 3.4, and 3.5,
respectively.
Key Generation. At first the coefficients of the matrices S ∈ Zn×n′ and E ∈
Zm×n′ are sampled from the discrete Gaussian distribution. The matrix E
has to satisfy certain constraints to ensure that the signatures are correct and
short. These constraints are checked by the function checkE. We apply a
similar check checkS to S. If S or E do not fulfill the requirements, they are
resampled. Furthermore, a secret value seedy is sampled uniformly random
from {0, 1}κ. Finally, the secret signing key sk← (S,E, seedy) and the public
verification key pk← B = AS + E mod q are returned.

Signature Generation. During signing a message m, a secret seed rand ←
PRF1(seedy,m) is generated and a counter is initialized with 0 first. Afterwards,
a pseudo-random vector y is obtained by computing y← PRF2(rand, counter) ∈
[−B,B]n and multiplied by A in Zq. Then the higher order bits of v← Ay

28



3.1 Description of the Signature Schemes

Algorithm 3.3 Key generation of TESLA
Require: Publicly available matrix A ∈ Zm×nq

Ensure: Secret key sk = (S,E, seedy) and public key pk = B

1: S←σ Zn×n′q

2: if checkS(S) 6= 0 then
3: Restart in line 1
4: E←σ Zm×n′q

5: if checkE(E) 6= 0 then
6: restart in line 4
7: seedy ←$ {0, 1}κ
8: B← AS + E mod q
9: sk← (S,E, seedy), pk← B
10: return (sk, pk)

mod q and the message m are hashed, yielding the hash value c′. Apply-
ing the encoding function to c′, we obtain the vector c ← Enc(c′). Further
on, we compute z ← Sc + y. Now, rejection sampling is applied to make
sure that the signature does not leak any information about the secret S
and that the signature verifies for the applied compression. That is, if ei-
ther ‖[w]L‖∞ ≥ 2d−1 − LE, ‖w‖∞ ≥ bq/2c − LE, or ‖z‖∞ > B − U , with
w = v − Ec mod q, then the signing algorithm discards (z, c′) and repeats
all steps. Finally, it returns the signature (z, c′) on m.

Algorithm 3.4 Signature generation of TESLA
Require: Message m, secret key sk = (S,E, seedy), and matrix A
Ensure: Signature s = (z, c′)
1: counter← 0
2: rand← PRF1(seedy,m)
3: y← PRF2(rand, counter)
4: v← Ay mod q
5: c′ ← H([v]M ,m)
6: c← Enc(c′)
7: z← y + Sc
8: w← v− Ec mod q
9: if ‖[w]L‖∞ ≥ 2d−1 − LE ∨ ‖w‖∞ ≥ bq/2c − LE ∨ ‖z‖∞ > B − U then
10: counter++
11: restart in line 3
12: return (z, c′)

29



3 The Signature Schemes TESLA and qTESLA

Verification. The algorithm, upon input of a message m and a signature (z, c′),
first computes c← Enc(c′) to then obtain w′ ← Az−Bc mod q, and returns
0 if c = H([w′]M ,m) and ‖z‖∞ ≤ B − U are satisfied; otherwise, it returns
−1.

Algorithm 3.5 Verification of TESLA
Require: Message m, signature s = (c′, z), public key pk = B, and matrix A
Ensure: {0,−1} . accept, reject signature
1: c← Enc(c′)
2: w′ ← Az−Bc mod q
3: if c′ = H([w′]M ,m) ∧ ‖z‖∞ ≤ B − U then
4: return 0
5: return -1

After describing TESLA we now move on to prove its the correctness.

Correctness of TESLA. To establish the correctness of TESLA we need to prove
that the nonce input to the hash function H at signing (line 5 of Algorithm 3.4)
is the same as the nonce input to the hash function H at verification (line 3 of
Algorithm 3.5). That is, we need to prove that, for genuine signatures it holds that

[Ay mod q]M = [w′]M
= [Az−Bc mod q]M
= [A(y + Sc)− (AS + E)c mod q]M
= [Ay + ASc−ASc− Ec mod q]M
= [Ay− Ec mod q]M .

From the definition of [·]M , this means proving that

(Ay mod q− [Ay mod q]L)/2d = (Ay−Ec mod q− [Ay−Ec mod q]L)/2d,

or simply
[Ay mod q]L = Ec + [Ay− Ec mod q]L. (3.1)

Equation (3.1) must hold component-wise, so let us prove the corresponding
property for individual integers. Assume that for integers α and ε it holds that
|[α − ε mod q]L| < 2d−1 − LE, |ε| ≤ LE < bq/2c, |α − ε mod q| < bq/2c − LE,
and −bq/2c < α ≤ bq/2c (i.e., α mod q = α). Then, we need to prove that

[α]L = ε+ [α− ε mod q]L. (3.2)

30



3.1 Description of the Signature Schemes

Proof. To prove Equation (3.2), we start by noticing that |ε| ≤ LE < 2d−1 implies
[ε]L = ε. Thus, from −2d−1 + LE < [α − ε mod q]L < 2d−1 − LE and −LE ≤
[ε]L ≤ LE it follows that

−2d−1 = −2d−1 + LE − LE < [ε]L + [α− ε mod q]L < 2d−1 − LE + LE = 2d−1,

and therefore

[[ε]L + [α− ε mod q]L]L = [ε]L + [α− ε mod q]L = ε+ [α− ε mod q]L. (3.3)

Next we prove that
[[ε]L + [α− ε mod q]L]L = [α]L. (3.4)

It is important to note that since |ε| ≤ LE < bq/2c it holds that [ε]L = [ε mod q]L.
It holds further that

[[ε mod q]L + [α− ε mod q]L]L (3.5)
=

(
(ε mod q) mod 2d + (α− ε mod q) mod 2d

)
mod 2d (3.6)

by the definition of [·]L
= (ε mod q + (α− ε mod q)) mod 2d. (3.7)

Since |ε| ≤ LE and |α − ε mod q| < bq/2c − LE, it holds that |α − ε| + |ε| <
(bq/2c − LE) + LE = bq/2c. Hence, Equation (3.7) is the same as

= (ε+ α− ε mod q) mod 2d = (α mod q) mod 2d = α mod 2d

= [α]L.

Combining Equation (3.3) and (3.4), we deduce that [α]L = ε+ [α− ε mod q]L,
which is the equation we needed to prove.

Now we define α = (Ay)i and ε = (Ec)i. From line 9 of Algorithm 3.4, we
know that ‖[Ay− Ec]L‖∞ < 2d−1−LE and ‖Ay−Ec‖∞ < bq/2c−LE for a valid
signature, and that Algorithm 3.3 (line 5) guarantees ‖Ec‖∞ ≤ LE. Likewise,
by definition it holds that LE < bq/2c; see Section 3.1.3. Finally, v = Ay is
reduced mod q in line 4 of Algorithm 3.4 and, hence, v is in the centered range
−bq/2c < Ay ≤ bq/2c. In conclusion, we get the desired condition vectors,
[Ay]L = Ec + [Ay − Ec]L, which in turn means [Az−Tc]M = [Ay]M as argued
above.
Moving further, we describe the differences between TESLA and the Bai-

Galbraith signature schemes [24,69] next.

31



3 The Signature Schemes TESLA and qTESLA

Deterministic Signatures. We emphasize that signing is deterministic for each
message m since the randomness is determined by the vector y which is determinis-
tically computed by the secret key and the message to-be-signed. In the original
scheme by Bai and Galbraith [24] the vector y was sampled uniformly random
in [−B,B]n. As long as we assume that the PRF advantage of PRF2 ◦ PRF1 is
somewhat “small”, the security of TESLA still holds. We define the PRF advantage
and PRF security in Definition 3.15 and formalize the security of TESLA with
regard to the PRF security in Section 3.2.4. The idea to use a PRF to generate
signatures deterministically has been deployed several times before [41,135,162].
The advantage of this approach is that a different randomness is used for different
messages with very high probability. Hence, attacks that exploit a fixed randomness,
such as in case of Sony’s playstation 3 [56], are prevented. Another advantage is
that there is no need to obtain a good pool of entropy at signing time which is
shown to be difficult in practice [120].

Subroutine checkS During Key Generation. In contrast to earlier proposals [24,
69], we add an additional check in line 2, Algorithm 3.3. It ensures that no coefficient
of the matrix S is too large, which allows for more concrete bounds during the
security reduction. This is also done for qTESLA as explained in Section 3.1.2.

Additional Correctness Requirement. Moreover, in comparison to [24, 69], we
add another condition in line 9, Algorithm 3.4 to ensure correctness of the scheme.
The additional requirement is that the absolute value of each coordinate of Ay−Ec
is less than bq/2c−LE. We give an example why this property is necessary next. In
particular, we construct an example such that all conditions in line 9, Algorithm 3.4
are fulfilled except for ‖Ay − Ec‖∞ < bq/2c − LE and show that our example
would lead to an invalid signature. In the following example, we use the parameters
of TESLA-p-I (see Table 3.2), namely q = 231 − 19, d = 26, and LE = 6703. It is
important to note that values mod q and mod 2d are represented in (−q/2, q/2]
and (−2d−1, 2d−1], respectively. Let

α = (Ay)i = −1 073 741 810 ∈ (−q/2, q/2] = [−1 073 741 814, 1 073 741 815]

for some i ∈ {0, ..., n− 1} and hence,

[α]L = α mod 2d = −33 554 418.

Moreover, let

ε = (Ec)i = 6 700 ∈ [−LE, LE] = [−6 703, 6 703].

Furthermore, we define
ν = α− ε mod q.

32



3.1 Description of the Signature Schemes

Given the above values it follows that

ν = −1 073 741 810− 6 700 = −1 073 748 510 = 1 073 735 119 mod q.

We emphasize that α is a value close to −q/2, while ν is close to q/2. Furthermore,
we compute

[ν]L = ν mod 2d = 33 547 727.

Hence, the property |[ν]L| = |[α − ε]L| =< 2d−1 − LE = 33 547 729 holds. Nev-
ertheless, [ν]L = 33 547 727 6= −33 554 418 = [α]L and hence, a signature with
the i-th coefficient as above would have been rejected. This additional correctness
requirement is also present in qTESLA which we describe next.

3.1.2 The Signature Scheme qTESLA
After describing the signature scheme TESLA, we now turn to its more efficient
variant qTESLA which is constructed over ideal lattices. We first describe the
signature scheme qTESLA in Section 3.1.2.1. Moreover, we explain the differences
between TESLA and qTESLA in Section 3.1.2.2. Lastly, we describe a variant of
qTESLA called ring-TESLA in Section 3.1.2.3.

3.1.2.1 Description of qTESLA

Analogously to TESLA, the description of qTESLA depends on the following
system parameters: κ, n, k, q, σ, LE, LS, B, d, and h. We describe the parameters
and their relations to each other in Section 3.1.3. Moreover, we define the following
functions used in the description of qTESLA:
• The PRF PRF1 : {0, 1}κ → {0, 1}κ,k+3. This function takes as input a seed

pre-seed that is κ bits long and maps it to (k + 3) seeds of κ bits each. We
instantiate the PRF with SHAKE [87].
• The PRF PRF2 : {0, 1}κ × {0, 1}κ × {0, 1}∗ → {0, 1}κ. This function takes as

inputs the seed seedy and the random value r, each κ bits long, and a message
m and maps them to the seed rand of κ bits. This PRF is also instantiated
using SHAKE.
• The generation function of the public polynomials a1, ..., ak GenA : {0, 1}κ →
Rk
q . This function takes as input the seed seeda that is κ bits long and maps

it to k polynomials ai ∈ R×q . The function GenA is realized as an eXtendable
Output Function (XOF) that is instantiated with cSHAKE [137].
• The hash function H : Rk

q × {0, 1}∗ → {0, 1}κ. This function takes as inputs k
polynomials v1, ..., vk ∈ Rq and computes [v1]M , ..., [vk]M . The result is then
hashed together with a message m to a κ-bit string. We adopt cSHAKE for
function H.

33



3 The Signature Schemes TESLA and qTESLA

• The encoding function Enc : {0, 1}κ → {−1, 0, 1}h,2. This function encodes a
κ-bit hash value c′ as a polynomial c ∈ H, where H is the set of polynomials
with n coefficients in {−1, 0, 1} and exactly h non-zero coefficients. We realize
Enc following an algorithm originally proposed in [81, Section 4.4].
• The sampling function of the polynomial y, ySampler : {0, 1}κ × Z → Rq,[B].
This function samples a polynomial y ∈ Rq,[B] taking as inputs a κ-bit seed rand
and a nonce S ∈ Z>0. Its realization is based on a XOF that is instantiated
with cSHAKE.

Next we describe the key generation, signature generation, and verification of
qTESLA. The pseudo-code of the respective algorithms is given in Algorithm 3.6,
3.9, and 3.10.
Key Generation. First, a pre-seed is sampled to generate seeds, seede1 , . . . , seedek ,

seeda, seedy ← PRF1(pre-seed). Afterwards, seeda is expanded to generate
the polynomials a1, ..., ak ← GenA(seeda) which are in R×q . Next the secret
polynomials s, e1, ..., ek are sampled with Gaussian distribution (using seeds,
seede1 , . . . , seedek) until all polynomials fulfill the requirements checked through
checkS and checkE which are depicted in Algorithm 3.7 and 3.8, respectively.
Finally, the secret signing key sk← (s, e1, ..., ek, seeda, seedy) and the public
verification key pk← (seeda, b1, ..., bk) are returned.

Algorithm 3.6 Key generation of qTESLA
Require: -
Ensure: Secret key sk = (s, e1, ..., ek, seeda, seedy) and public key pk = (seeda, b1, ..., bk)
1: pre-seed←$ {0, 1}κ
2: seeds, seede1 , . . . , seedek , seeda, seedy ← PRF1(pre-seed)
3: a1, ..., ak ← GenA(seeda)
4: do
5: s←σ R
6: while checkS(s) 6= 0
7: for i = 1, ..., k do
8: do
9: ei ←σ R
10: while checkE(ei) 6= 0
11: bi ← ais+ ei mod q

12: sk← (s, e1, ..., ek, seeda, seedy)
13: pk← (seeda, b1, ..., bk)
14: return sk, pk

Signature Generation. To sign a message m, first a counter is initialized with
zero and a random seed r ←$ {0, 1}κ is sampled. Afterwards, rand ←
PRF2(seedy, r,m) is computed and a pseudo-random polynomial y is obtained

34



3.1 Description of the Signature Schemes

Algorithm 3.7 checkE in qTESLA
Require: e ∈ R
Ensure: {0, 1} . true, false

1: if ∑h
i=1 maxi(e) > LE then

2: return 1
3: return 0

Algorithm 3.8 checkS in qTESLA
Require: s ∈ R
Ensure: {0, 1} . true, false

1: if ∑h
i=1 maxi(s) > LS then

2: return 1
3: return 0

by computing y ← ySampler(rand, counter) ∈ Rq,[B]. Then the values vi ← aiy
mod q are computed for i = 1, ..., k. The higher order bits of the vi’s and
the message m are hashed, yielding the hash value c′. We obtain the sparse
polynomial c = Enc(c′). Next, z ← sc+ y is computed. Afterwards, rejection
sampling is applied to make sure that the signature does not leak any infor-
mation about the secret s, i.e., if z /∈ Rq,[B−LS ] then the signing algorithm
discards (c′, z) and repeats all steps. Similarly, if ‖[wi]L‖∞ ≥ 2d−1 − LE or
‖wi‖∞ ≥ bq/2c − LE then (c′, z) is discarded and all steps are repeated to
ensure correctness. Finally, it returns the signature (c′, z) on m.

Algorithm 3.9 Signature generation of qTESLA
Require: Message m and secret key sk = (s, e1, ..., ek, seeda, seedy)
Ensure: Signature s = (c′, z)
1: counter← 0
2: r ←$ {0, 1}κ
3: rand← PRF2(seedy, r,m)
4: y ← ySampler(rand, counter)
5: a1, ..., ak ← GenA(seeda)
6: for i = 1, ..., k do
7: vi = aiy mod q

8: c′ ← H([v1]M , ..., [vk]M ,m)
9: c← Enc(c′)
10: z ← y + sc
11: if z /∈ Rq,[B−LS ] then
12: counter++
13: restart at step 4
14: for i = 1, ..., k do
15: wi ← vi − eic mod q
16: if ‖[wi]L‖∞ ≥ 2d−1 − LE ∨ ‖wi‖∞ ≥ bq/2c − LE then
17: counter++
18: restart at step 4
19: return (c′, z)

35



3 The Signature Schemes TESLA and qTESLA

Verification. The algorithm, upon input of a message m and a signature (c′, z),
first computes c← Enc(c′). Afterwards, it expands seeda to generate a1, ..., ak ∈
R×q and computes w′i = aiz − bic mod q for i = 1, ..., k. It returns 0 if
c = H([w1]M , ..., [wk]M ,m) and z ∈ Rq,[B−LS ]; otherwise, it returns −1.

Algorithm 3.10 Verification of qTESLA
Require: Message m, signature s = (c′, z), and public key pk = (seeda, b1, ..., bk)
Ensure: {0,−1} . accept, reject signature
1: c← Enc(c′)
2: a1, ..., ak ← GenA(seeda)
3: for i = 1, ..., k do
4: wi ← aiz − bic mod q

5: if z /∈ Rq,[B−LS ] ∨ c 6= H([w1]M , ..., [wk]M ,m) then
6: return −1
7: return 0

Due to the similarities of TESLA and qTESLA, the correctness of qTESLA follows
easily from the correctness of TESLA described above. Hence, we do not prove the
correctness of qTESLA separately, but move on to elaborate on the differences of
TESLA and qTESLA.

3.1.2.2 Differences Between TESLA and qTESLA

The signature schemes TESLA and qTESLA follow the same construction principle
and can be seen as variants of each other. However, the designs differ in some
points. We discuss the advantages and disadvantages of the respective design
choices in the following paragraphs.

Standard vs. Ideal Lattices. The scheme TESLA is constructed over standard
lattices and its security relies on the hardness of the M-LWE problem, see Defini-
tion 2.4 and Theorem 3.1. In contrast, qTESLA is constructed over ideal lattices
and its security relies on the hardness of the R-LWE problem, see Definition 2.6
and Theorem 3.16. R-LWE was introduced by Lyubashevsky, Peikert, and Regev
in 2012 [155] to enable the construction of more efficient lattice-based schemes that
come with good security guarantees. This can also be seen in our construction as
we explain next. The secret key of TESLA consists of two matrices with small
entries and of dimension n× n′ and m× n, and a seed of size κ; the secret key of
qTESLA consists of two seeds of size κ and k + 1 polynomials with small entries
and of degree n− 1. Since k is much smaller than n′ and m (k ≤ 5 and n′,m ≥ 390
in all our proposed parameter sets), the secret key of qTESLA is much smaller than

36



3.1 Description of the Signature Schemes

the one of TESLA. We refer to Section 3.1.3 and 3.3.3 for a detailed description
and concrete instantiations of the parameters, respectively. Similarly, the public
key of qTESLA is smaller than the public key of TESLA. Namely, the public key
of qTESLA consists of k polynomials in Rq and one seed of size κ, while the public
key of TESLA is an (m× n)-dimensional matrix with entries in Zq. Moreover, the
run-time of qTESLA is generally faster than the run-time of TESLA because fast
arithmetic operations such as fast polynomial multiplication can be implemented
instead of matrix-vector multiplication (we refer to Section 3.4 for benchmarks of
the implementation of TESLA and qTESLA). However, fast polynomial multiplica-
tions such as the NTT also come with a disadvantage, e.g., parameter choices are
less flexible. For example, to enable the NTT it must hold that q mod 2n = 1.
Another possible disadvantage of ideal-lattice-based schemes such as qTESLA

is the additional algebraic structure. Several attacks such as [57,67,90,102] have
exploited the algebraic structure of some ideal lattices and constructions based on
them. However, so far these attacks do not seem to be applicable to instantiations
used in qTESLA.

Deterministic vs. Probabilistic Signature Generation. TESLA is a determin-
istic signature scheme, i.e., for the same message always the same signature is
returned. In contrast, qTESLA signatures are probabilistically generated. One
advantage of deterministic signature schemes is that in many cases attacks that
use fixed randomness, such as the attack against Sony’s playstation 3 [56], are
prevented. This is because the needed randomness is freshly generated by con-
struction, e.g., from the message to-be-signed and a fixed secret seed. For example,
see line 2 of TESLA’s signature generation in Algorithm 3.4. Also, no access to a
source of high-quality randomness is needed for deterministic signature schemes
at signing time. However, some deterministic signatures such as ECDSA [183],
EdDSA [41], or Dilithium [82] but also an early deterministic variant of qTESLA,
are vulnerable to an easy-to-implement fault attack as described in [111,179] and
Section 3.4.1. Our approach used in qTESLA prevents this fault attack as well as
fixed-randomness attacks as explained next. To generate the randomness y, first a
fresh randomness r is sampled (see line 2 in Algorithm 3.9). Afterwards, a PRF
is applied to r, a value seedy that is part of the secret key, and the message m
(see line 3 in Algorithm 3.9). By using seedy and m as part of the input to the
PRF, it is ensured that a different randomness is used when different messages
are signed. Hence, fixed-randomness attacks are prevented. Additionally, the
random value r guarantees that at each signing operation a different y is used (with
high probability). Thus, the above-mentioned fault attack against deterministic
signature schemes is prevented. Interestingly, the purpose of the value r is solely to
ensure the use of different randomness. The quality of the randomness, however, is

37



3 The Signature Schemes TESLA and qTESLA

guaranteed by the PRF. Hence, qTESLA does not rely on high-quality randomness
but only on low-quality randomness in line 2, Algorithm 3.9.

Storage of the Public Key. The signature scheme TESLA is parametrized by
a matrix A that is assumed to be publicly available to all parties. Hence, the
matrix or some representation of it does not need to be included in the secret or
public key, yielding smaller key sizes. In contrast, the key generation, signature
generation, and verification algorithm of qTESLA expand a seed seeda that is given
in the secret and public key to generate the polynomials a1, ..., ak. The use of
fresh a1, ..., ak per key pair makes the introduction of backdoors more difficult and
reduces drastically the scope of all-for-the-price-of-one attacks [15,30]. Moreover,
storing only a seed instead of the full polynomials permits to save bandwidth since
we only need κ bits to store seeda instead of the kndlog2(q)e bits that are required
to represent the full polynomials.

3.1.2.3 Description of ring-TESLA

We now move on to describe the signature scheme ring-TESLA. The signature
scheme qTESLA can be seen as a generalization and optimization of the earlier
scheme ring-TESLA. Hence, we only describe ring-TESLA briefly for later reference
in Chapter 4. We depict the key generation, signing, and verfication algorithm
without further explanation in Algorithm 3.11, 3.12, and 3.13, respectively, and
explain the most important improvements of qTESLA compared to its predecessor
ring-TESLA next.

Correctness. The additional requirement ‖wi‖∞ < bq/2c − LE to ensure cor-
rectness of the signature scheme is missing in line 9 of Algorithm 3.12.

Security reduction. As it is shown in Section 3.2, qTESLA’s security reduction
has been proven in the QROM while ring-TESLA’s reduction has been proven
in the ROM.

Security estimations. The security estimations of qTESLA’s instantiations,
given in Section 3.3.3, are with respect to state-of-the-art quantum attacks
while classical estimations are used for ring-TESLA’s instantiations.

LWE samples. The number of R-LWE samples is more flexible in qTESLA while
it is fixed to two samples (a1, a2, b1, b2) in ring-TESLA.

Implementation security. The implementation of qTESLA is secured against
timing- and cache-side-channel attacks as explained in Section 3.4.1.

38



3.1 Description of the Signature Schemes

Algorithm 3.11 Key generation of ring-TESLA
Require: -
Ensure: Secret key sk = (s, e1, e2, a1, a2) and public key pk = (a1, a2, b1, b2)
1: a1, a2 ←$ Rq

2: s, e1, e2 ←σ Zn
3: if checkE(e1) = 0 ∨ checkE(e2) = 0 then
4: restart in line 2
5: b1 ← a1s+ e1 mod q
6: b2 ← a2s+ e2 mod q
7: sk← (s, e1, e2, a1, a2), pk← (a1, a2, b1, b2)
8: return (sk, pk)

Algorithm 3.12 Signature generation of ring-TESLA
Require: Message m, secret key sk = (s, e1, e2, a1, a2)
Ensure: Signature s = (c′, z)
1: y ←$ Rq,[B]
2: v1 ← a1y mod q
3: v2 ← a2y mod q
4: c′ ← H ([v1]M , [v2]M ,m)
5: c← Enc(c′)
6: z ← y + sc
7: w1 ← v1 − e1c mod q
8: w2 ← v2 − e2c mod q
9: if [w1]L , [w2]L /∈ Rq,[2d−1−LE ] ∨z 6∈ Rq,[B−U ] then
10: restart in line 1
11: return (z, c′)

3.1.3 System Parameters
Having described the design of TESLA and qTESLA, we now turn to explicate
the system parameters and their respective requirements to achieve a correct and
secure signature scheme. As indicated by the descriptions above, most of the
parameters used for TESLA and qTESLA are similar. Therefore, if appropriate,
we describe the respective parameters together and explain the differences, if any,
in the relevant passages. In general, the parameters for qTESLA are optimized
for efficiency while the parameters for TESLA are chosen to be more conservative
from an attackers point of view.

39



3 The Signature Schemes TESLA and qTESLA

Algorithm 3.13 Verification of ring-TESLA
Require: Message m, signature s = (c′, z), public key pk = (a1, a2, b1, b2)
Ensure: {0,−1} . accept, reject signature
1: c← Enc(c′)
2: w′1 ← a1z − b1c mod q
3: w′2 ← a2z − b2c mod q
4: c′′ ← H ([w′1]M , [w′2]M ,m)
5: if c′ = c′′ ∧ z ∈ Rq,[B−U ] then
6: return 0
7: else
8: return -1

Table 3.1 summarizes all system parameters, including the relevant bounds for
TESLA and qTESLA. If a parameter is not used in one of the signature schemes
we write “-”; if no requirement is needed we leave the table entry empty. Concrete
parameter values for each of the proposed parameter sets are compiled in Table 3.2,
Section 3.3.3.

We start with the security parameter and the output length of the hash function.
The security parameter λ is chosen to be the (targeted) bit security of a given
instantiation. The parameter κ defines the output length of the hash function,
determines the inputs and outputs of the used PRFs and the encoding function
Enc. It has to hold that κ ≥ λ. This is consistent with the use of the hash in
a Fiat-Shamir style signature scheme such as TESLA or qTESLA. In the Fiat-
Shamir paradigm for signatures [94], preimage resistance is relevant while collision
resistance is much less, given that we take the hash size to be enough to resist
preimage attacks. In a scenario that excludes Grover’s quantum algorithm [112], a
hash function with an output length of λ is expected to have preimage resistance
of 2λ. For example, this scenario is considered in NIST’s security category with the
highest security requirements (category 5, see [165, Section 4.A.4]). In [165] Grover’s
algorithm is ruled out because “Grover’s algorithm requires a long-running serial
computation, which is difficult to implement in practice”. Hence, it is presumed
that the quantum speed-up by Grover’s algorithm in a practical attack is less
than it is theoretically estimated. When considering the theoretical quadratic
acceleration of Grover’s algorithm, the preimage resistance is only ≈ 2λ/2. In such
a case, the hash output length should be 2λ for an aspired security level of λ.
One of the most important parameters is n ∈ Z>0. For TESLA this is the

number of columns of the matrix A and for qTESLA it is the number of polynomial
coefficients, i.e., the polynomial degree is n− 1. To be able to use the efficient NTT
for polynomial multiplication in the ring Rq for qTESLA, we restrict ourselves to

40



3.1 Description of the Signature Schemes

Table 3.1: Description and bounds of TESLA’s and qTESLA’s system parameters
Param. Description Requirement for TESLA Requirement for qTESLA

λ security parameter
qh, qs number of hash and sign queries 2λ, 2λ/2 2128, 264

n dimension power-of-two
n′ dimension -

σ, ξ standard deviation σ > 2
√
n σ = ξ√

2 ln 2

k #R-LWE samples -
m #LWE samples -
q modulus q > 4B q = 1 mod 2n, q > 4B

qm ≥ |∆S| · |∆L| · |∆H|, qnk ≥ |∆S| · |∆L| · |∆H|,
qm ≥ 2md+4λ+1(qh + qs)2q3

s qnk ≥ 2nkd+4λ+1(qs + qh)2q3
s

h #non-zero entries in output of Enc 2h
(
n′

h

)
≥ 23λ (classically) 2h ·

(
n
h

)
≥ 22λ

2h
(
n′

h

)
≥ 25λ (quantumly)

κ output length hash function H κ ≥ 2λ κ ≥ λ

LE, ηE bound in checkE ηE · h · σ

LS, ηS bound in checkS ηS · h · σ

U influences rej. prob. in sign d14
√
hσe LS

B determines randomness in sign ≥ 14n
√
hσ B ≥

k·n√
M+2LS−1

2(1− k·n√
M)

,
near to power-of-two

d number of rounded bits
(
1− 2·LE+1

2d+1

)m
≥ 0.3

(
1− 2·LE+1

2d+1

)k·n
≥ 0.3,

d > log2(B)

|∆H|
see definition below in the text

∑h
j=0

∑h−j
i=0

(
m
2i

)
22i
(
m−2i
j

)
2j ∑h

j=0
∑h−j
i=0

(
kn
2i

)
22i
(
kn−2i
j

)
2j

|∆S| (4(B − U) + 1)n (4(B − LS) + 1)n
|∆L| (2d + 1)m (2d + 1)nk

|sig| size signature [bit] ndlog2(2(B − U))e+ κ n(dlog2(B − LS)e) + κ

|pk| size public key [bit] mn′dlog2(q)e kn(dlog2(q)e) + κ

|sk| size secret key [bit] (nn′ +mn′)dlog2(tσ)e+ κ n(k + 1)(dlog2(t · σ)e) + 2κ

a polynomial degree of a power-of-two, i.e., n = 2l for l ∈ N.
Compared to [24,69], we introduce the parameter n′ as the column dimension

of the secret matrices S and E for TESLA to get more flexibility in the choice of
parameters. The value of n′ influences the parameters h and the secret key size.
Additionally, the number of R-/M-LWE samples is denoted by k or m. In

particular, k ∈ Z>0 is the number of R-LWE samples for qTESLA and m is the
row dimension of the matrix A. A larger k or m allows to reduce the size of the
modulus q.
It is important to note that no requirement is stated for n, m, or k. However,

implicitly it is required that bit hardness of the corresponding R-/M-LWE instance
(defined through n, m or k, σ, and q) is at least λ bits. We describe the relation

41



3 The Signature Schemes TESLA and qTESLA

between bit hardness of R-/M-LWE and bit security of the signature schemes in
Section 3.3.2.
Furthermore, the standard deviation of the centered discrete Gaussian distri-

bution that is used to sample the secret and error in the LWE problem, i.e., the
entries of the matrices S and E for TESLA and the coefficients of the polyno-
mials s, e1, ..., ek for qTESLA, is denoted by σ. We choose our parameters for
TESLA such that the quantum reduction from the worst-case gapSVP to LWE
holds (see [191, Lemma 4.2] or [24, Theorem 1]), i.e., we choose σ > 2

√
n. For

efficiency reasons, we do not instantiate qTESLA in the same way but rely on the
average hardness of R-LWE as usually done for ideal-lattice-based schemes such as
[13,27,81,82,222]. In the implementation of qTESLA, the fast Gaussian sampler
introduced in [81] is used. For this reason, it is necessary to choose σ = ξ√

2 ln 2 for
some ξ ∈ Z>0.
The parameter h defines the number of non-zero elements in the output of the

encoding function Enc. To ensure security of the encoding function we require
2h ·

(
n′

h

)
≥ 2λ for TESLA (resp., 2h ·

(
n
h

)
≥ 2λ for qTESLA). In order to reach

small additional terms in Equations (3.41) (quantum) and (3.42) (classical) of
our security reduction we require an even larger value for h. Namely, we choose
2h ·

(
n
h

)
≥ 22λ. Choosing h according to this bounds implies to be left with the

summand qh/2λ in Equation (3.41) (resp., qh/22λ in Equation (3.42)). The ratio
qh/2λ also corresponds to an an adversary’s ability to break the preimage resistance
of a hash function and thus, we find it an acceptable bound for an efficient scheme
like qTESLA. For TESLA, however, we go one step further and aim at even smaller
additionally terms in the corresponding equations, namely we choose h such that
the additional terms are less or equal 2−λ.
Moreover, the values LE and LS denote the bounds used in the evaluation

functions checkE and checkS, respectively. Bounding the size of the secret and error,
restricts the size of the key space. To compensate the resulting potential security
loss, we choose a larger bit hardness as explained in Section 3.3.2. Additionally,
LE impacts the rejection probability during the signature generation as follows. If
one increases the value of LE, the acceptance probability during key generation
increases while the acceptance probability during signature generation decreases.
The same holds true for TESLA with the parameter U which occurs in line 9 of
Algorithm 3.4. For qTESLA, however, we simplified the parameters and choose
U = LS at the expense of loosing more security bits because of the increased
rejection probability in the key generation. We determine the best trade-off (in
terms of run-time) between the acceptance probability in the key generation and
the signature generation experimentally.

Besides LE, LS (in qTESLA), and U (in TESLA), also the parameter B, d, and
M determine the rejection probability during the signature generation (see line 9 in

42



3.1 Description of the Signature Schemes

Algorithm 3.4 or line 11 of Algorithm 3.9). Let M be a value of our choosing. The
parameter B defines the interval of the randomness during signature generation.
The probability that z ∈ [−B + U,B − U ]n (resp., z ∈ Rq,[B−LS ]) is given by(2B − 2U + 1

2B + 1

)m
≥M (resp.,

(2B − 2LS + 1
2B + 1

)k·n
≥M).

Hence, we determine B for TESLA by

B ≥
m
√
M + 2LS − 1

2(1− m
√
M)

(resp., B ≥
k·n
√
M + 2LS − 1

2(1− k·n
√
M)

for qTESLA),

depending on the value of M . We select the rounding value d to be larger than
log2(B) and such that the acceptance probability of the check ‖[w]L‖∞ ≥ 2d−1−LE
is upper bounded by 0.7.
In order the give a concrete instantiation, the number of hash and sign queries

qh and qs have to be chosen as well. For the conservative parameters of TESLA
we choose qh ≤ 2λ and qs ≤ 2λ/2, since a hash query is merely the evaluation of a
publicly available function and hence the adversary can use all its computational
power to pose hash queries. The number of sign queries is somewhat limited since it
involves more complicated operations. We refer to [141, Section 7] for a discussion.
For qTESLA we use another approach and follow NIST’s proposals [165, Section
4.A.4], i.e., we choose the number of classical queries to the sign oracle to be
qs = 264 for all our parameter sets. Moreover, we choose the number of queries of a
hash function to be qh = 2128.
Finally, the modulus of the LWE problem q, which depends on all other pa-

rameters, can be determined. The value of q is chosen to fulfill several bounds
and assumptions that are required by the security reduction or to implement the
schemes more efficiently. To achieve a sensible description of the signature schemes
q is chosen larger than 4B. Furthermore, to be able to use fast polynomial multi-
plication for qTESLA we choose q to be a prime integer such that q mod 2n = 1.
Moreover, to choose parameter sets according to the security reduction, it is conve-
nient to enable a simplification of our security statement given in Section 3.2. To
do so, we ensure that

qm ≥ |∆S| · |∆L| · |∆H| and qnk ≥ |∆S| · |∆L| · |∆H|

for TESLA and qTESLA, respectively, with the following definition of sets:
• S is the set of vectors z ∈ Znq such that z ∈ [−B + U,B − U ]n (resp., the set

of polynomials z ∈ Rq,[B−LS ]),
• ∆S is the set {z− z′ : z, z′ ∈ S} (resp., {z − z′ : z, z′ ∈ S}),
• H is the set of vectors c ∈ {−1, 0, 1}n′ with exactly h non-zero entries (resp.,

the set of polynomials c ∈ Rq,[1] with exactly h non-zero coefficients),

43



3 The Signature Schemes TESLA and qTESLA

• ∆H is the set {c− c′ : c, c′ ∈ H} (resp., ∆H = {c− c′ : c, c′ ∈ H}),
• ∆L is the set

{
x− x′ : x,x′ ∈ Zmq and [x]M = [x′]M

}
(resp., {x− x′ : x, x′ ∈

R and [x]M = [x′]M}).
The sizes of the respective sets are summarized in Table 3.1 and derived in Sec-
tion 3.2. According to Theorem 3.16, Section 3.2, the following equation has to
hold for qTESLA:

23λ+nkd+1q3
s(qs + qh)2

qnk
≤ 2−λ ⇔ q ≥

(
24λ+nkd+1q3

s(qs + qh)2
)1/nk

.

For TESLA it has to hold correspondingly q ≥
(
24λ+md+1q3

s(qh + qs)2
)1/m

.

We are now in a position to determine the key and signature sizes. The theoretical
sizes of the signatures and public keys are given in Table 3.1. In the following we
explain the secret key size. To determine the size of the secret key we note that for
t > 0 it holds that [154]

Prx←σZ [|x| > tσ] ≤ 2e−t2/2.

We choose t such that this probability is less or equal 2−λ. For example, if t = 13.4
then the probability Prx←σZ [|x| > tσ] is less or equal to 2−128. Therefore, the
theoretical size of the secret key for TESLA is given by

(nn′ +mn′)dlog2(tσ)e+ κ bits

and the size of qTESLA’s secret key is

n · (dlog2(tσ)e) + k · n · (dlog2(t · σ)e) + 2κ bits,

with t chosen appropriately for the respective value of λ.
We summarize the dependencies of the TESLA and qTESLA parameters in

Figure 3.2 and Figure 3.3, respectively, where parameters are sorted by the respective
number of parameters they depend on. For example, the parameter λ does not
depend on other parameters and hence, λ is a 1st level parameter. In contrast,
the parameter U depends on 1st and 2nd level parameters and hence, it is a 3rd
level parameter. Interestingly, the secret key is a 3rd level parameter, whereas the
public key is at the 8th level, which is the highest level there is.

44



3.1 Description of the Signature Schemes

1st level

2nd level

3rd level

4th level

5th level

6th level

7th level

8th level

λ n n′ m

κ

∆H

qs qh σh

LELS

B

U

d∆S

∆L

q

|sig.|

|pk|

|sk|

Figure 3.2: Dependencies of the TESLA parameters, inspired by [108, Figure 7.2]

1st level

2nd level

3rd level

4th level

5th level

6th level

7th level

8th level

9th level

10th level

λ nk

κ

∆H

qs qhσ

h

LE LS

B

d∆S

∆L

q

|sig.|

|pk|

|sk|

Figure 3.3: Dependencies of the qTESLA parameters, inspired by [108, Figure 7.2]

45



3 The Signature Schemes TESLA and qTESLA

3.2 Security Reductions
In this section, we provide the security reductions from M-LWE or R-LWE to
TESLA or qTESLA, respectively. We start with explaining the idea of the security
reduction of TESLA. Afterwards, we present the technical details of the reduction
in Section 3.2.1, 3.2.2, 3.2.3, and 3.2.4. Lastly, we give the security reduction of
qTESLA which follows the reduction of TESLA closely except that we need to
introduce one conjecture.
Our main theorem on the security of TESLA informally states that as long

as M-LWE can not be solved in time t and with success probability ε then no
adversary A exists that can forge signatures of TESLA in time t′ and with success
probability ε′, if A is allowed to make at most qh hash and qs sign queries. The
security reduction is proven in the QROM. The main theorem is as follows.

Theorem 3.1 (Security of TESLA). Let q, m, n, n′, h, d, B, LE, LS, U , σ, λ, and
κ be the parameters of TESLA that are convenient2 (according to Definition 3.14
in Section 3.2.4) and that satisfy the bounds in Table 3.1. If M-LWE is (t, ε)-hard
then TESLA is (t′, qh, qs, ε′)-EUF-CMA with t′ ≈ t in
(i) the QROM with

ε′ < ε+ 3
2λ + 2md+3λ+1

qm
(qh + qs)2q3

s + 2(qh + 1)
√√√√ 1

2h
(
n′

h

) , (3.8)

and in (ii) the ROM with

ε′ < ε+ 3
2λ + 2md+3λ+1

qm
(qh + qs)2q3

s + qh
1

2h
(
n′

h

) . (3.9)

We proof this theorem in the following subsections but explain the overall idea
first. The security reduction presented by Bai and Galbraith for their signature
scheme employs the Forking Lemma [180]. As such, it is non-tight and it involves
re-programming, so it holds in the ROM but is not known to hold in the QROM.
In order to avoid the non-tightness inherent in the use of the Forking Lemma, we
take an approach that was introduced by Katz and Wang to obtain tightly-secure
signatures from the decisional Diffie-Hellman problem [135].
The idea is to use the underlying hardness assumption to show that “real”,

properly-formed public keys for the signature scheme are indistinguishable from
“lossy”, malformed public keys. The task of forging a signature for a lossy key

2It is not necessary that the parameters of TESLA are convenient in order to derive negligibly
small upper bounds on ε′; the definition of convenience merely facilitates a simplified statement
of those bounds.

46



3.2 Security Reductions

is then somehow proven to be intractable. Any attacker must therefore fail to
forge when given a lossy public key. Thus, any attacker who succeeds in forging a
signature when given a real public key can be used to distinguish real keys from
lossy keys, contradicting the underlying hardness assumption.
A similar approach has been proposed by Abdalla, Fouque, Lyubashevsky, and

Tibouchi [1]. However, security reductions obtained by applying Abdalla et al.’s
framework are guaranteed to hold only in the ROM. In order to fully recover our
security reduction from this framework, one must first re-prove Abdalla et al.’s
framework in the QROM. Recently, this has been done by Kiltz, Lyubashevsky,
and Schaffner [139]. We take a different approach and give a security reduction
that is tailored to TESLA and hence, yields tighter bounds.

3.2.1 Overview of the Security Reduction for TESLA
We start by explaining the structure of our proof. For simplicity, we consider a
simplified scheme of TESLA given in Algorithm 3.14, 3.15, and 3.16. In particular,
we assume that the hash function H has range H, i.e., we ignore the encoding
function Enc and we assume that the randomness y←$ [−B,B]n instead of using
PRF1 and PRF2 to compute y ∈ [−B,B]n. As long as we assume that PRF1 and
PRF2 are secure PRFs and that Enc is instantiated such that it preserves a bit
security of λ, the security reduction of the simplified TESLA transfers to TESLA
as defined in Section 3.1.1. We formalize this in Section 3.2.4.

In the remainder of the proof we say that an integer vector y is B-short if each
entry is at most B in absolute value. We call an integer vector w well-rounded if
w is (bq/2c − LE)-short and [w]M is (2d−1 − LE)-short.

Algorithm 3.14 KeyGen–Simplified key generation of TESLA
Require: -
Ensure: Public key (A,B) and secret key (S,E,A)
1: A←$ Zm×nq

2: S←σ Zn×n′q and E←σ Zm×n′q

3: if E has a row whose h largest entries sum to LE or more then
4: restart in line 2
5: if S has a row whose h largest entries sum to LS or more then
6: restart in line 2
7: B← AS + E mod q
8: return public key (A,B) and secret key (S,E,A)

The proof is by a simulation argument, which we briefly sketch next. Let F be a
forger that forges signatures of the TESLA scheme with probability Pr [forge(A,B)],

47



3 The Signature Schemes TESLA and qTESLA

Algorithm 3.15 Sign–Simplified signature generation of TESLA
Require: Message m and secret key (S,E,A)
Ensure: Signature (z, c)
1: y←$ [−B,B]n
2: c← H([Ay]M ,m)
3: z← y + Sc
4: if z is not (B − U)-short then
5: restart in line 1
6: if Ay− Ec is not well-rounded then
7: restart in line 1
8: return signature (z, c)

Algorithm 3.16 Verify–Simplified verification of TESLA
Require: Message m, public key (A,B), and signature (z, c)
Ensure: “Accept” or “reject”
1: if z is not (B − U)-short then
2: return “reject”
3: if H([Az−Bc]M ,m) 6= c then
4: return “reject”
5: return “accept”

where forge(A,B) denotes the event that F forges a signature on input (A,B),
which is a yes- or a no-instance of M-LWE. As we describe in Section 2.2.2, we
call (A,B) ∈ Zm×nq × Zm×n′q a yes-instance if there exists an S = (s1, ..., sn′) with
s1, ..., sn′ ∈ Znq and (A,B) are m M-LWE samples from the distribution DS,χ, see
Definition 2.4. Otherwise, i.e., when (A,B) ←$ Zm×nq × Zm×n′q , we call (A,B) a
no-instance.
We build an M-LWE solver S whose run-time is close to that of F and who

solves M-LWE with success bias close to Pr [forge(A,B)]. It then follows from the
presumed hardness of M-LWE that Pr [forge(A,B)] must be small.
The M-LWE solver S acts as follows. Given an M-LWE input (A,B), the

M-LWE solver S treats (A,B) as a TESLA public key; S runs F on input (A,B)
and outputs “yes” if and only if F succeeds in forging a TESLA signature. In
order to run F , S must respond to F ’s queries to the hash and sign oracles by
simulating these oracles without knowledge of a secret key (S,E,A) corresponding
to (A,B). (Indeed, a secret key might not even exist if (A,B) is a no-instance of
M-LWE.) In order to run F , the M-LWE solver S must respond in some way to
F ’s quantum queries to the hash oracle and to F ’s classical queries to the sign

48



3.2 Security Reductions

oracle. Our description of S includes a procedure for responding to these queries
as described in Algorithm 3.17.

Algorithm 3.17 M-LWE solver S using a TESLA forger F
Require: An M-LWE instance (A,B)
Ensure: “Yes” or “no”
1: Invoke the forger F with public key (A,B).

Whenever F makes a hash or sign query, simulate that query as follows:
Classical sign queries. Execute Simulated-sign (Algorithm 3.18).
Quantum hash queries. Apply a quantum circuit that implements a ran-

dom but fixed 2qh-wise independent function, except on inputs that have
been re-programmed by Simulated-sign.

2: Eventually, F produces a purported forgery.
If that forgery is legit then output “yes”, otherwise output “no”.

Classical queries made by F to the signing oracle are simulated by S as specified
in “Simulated-sign” depicted in Algorithm 3.18. Quantum queries made by F to
the hash oracle are simulated by S according to the construction of Zhandry based
on 2qh-wise independent functions [221]. (Alternately, if the performance of the
simulator is a concern then one could instead use a quantum-resistant PRF [45].)

Algorithm 3.18 Simulated-sign
Require: Message m and public key (A,B)
Ensure: Signature s = (z, c)
1: z←$ [−B + U,B − U ]n
2: c←$ H
3: if Az−Bc is not well-rounded then
4: restart in line 1
5: re-program the hash oracle H so that H([Az−Bc]M ,m) = c
6: return (z, c)

Figure 2.2 in Section 2.4 depicts the definition of the quantum random oracle as a
unitary channel that applies the linear map |x, t, z〉 7→ |x, t⊕ H(x), z〉 on standard
basis states. In the following proof it is, however, sufficient to assume that for a
hash function H : X → Y the user has access to a unitary channel that applies
the linear map |x, y〉 7→ |x, y + H(x)〉 on standard basis states, where x ∈ X and
y ∈ Y . Hence, we omit the workspace register.
S solves M-LWE with a success bias close to Pr [forge(A,B)] as a consequence of

the following facts, which are proven in subsequent sections and brought together
in Section 3.2.4:

49



3 The Signature Schemes TESLA and qTESLA

Section 3.2.2: For yes-instances of M-LWE, the probability with which S out-
puts “yes” is close to Pr [forge(A,B)].

Section 3.2.3: For no-instances of M-LWE, F successfully forges (and hence, S
outputs “yes”) with only negligible probability.

3.2.1.1 Notation and Sizes for Various Sets of Vectors

We now elaborate on notations and sets that are used throughout the security
reduction. We define/recall the following sets of integer vectors:

Y: The set of vectors y ∈ Znq such that y is B-short.
∆Y: {y− y′ : y,y′ ∈ Y}.
S: The set of vectors z ∈ Znq such that z is (B − U)-short.

∆S: {z− z′ : z, z′ ∈ S}.
H: The set of vectors c ∈ {−1, 0, 1}n′ with exactly h non-zero entries.

∆H: {c− c′ : c, c′ ∈ H}.
W: The set {[w]M : w ∈ Zmq } obtained from the most significant bits of the

vector coefficients.
∆L:

{
x− x′ : x,x′ ∈ Zmq and [x]M = [x′]M

}
.

The sizes of some of these sets are listed below:
#Y = (2B + 1)n, #∆Y = (4B + 1)n, (3.10)
#S = (2(B − U) + 1)n, #∆S = (4(B − U) + 1)n, (3.11)

#H =
(
n′

h

)
2h, and (3.12)

#∆L = (2d + 1)m. (3.13)
The size of ∆H is computed as follows.
Lemma 3.2 (Size of ∆H).

#∆H =
h∑
k=0

h−k∑
i=0

(
n′

2i

)
22i
(
n′ − 2i
k

)
2k.

Proof. For each k = 0, . . . , h let ∆Hk ⊂ ∆H denote the set of vectors in ∆H with
exactly k entries in {−2, 2} and exactly n′−k entries in {−1, 0, 1}. We can observe
that #∆H = ∑h

k=0 #∆Hk.
We fix k. Then for each i = 0, . . . , h − k let ∆Hk,i ⊂ ∆Hk we denote the set

of vectors in ∆Hk with exactly 2i entries in {−1, 1}. Observe that #∆Hk =∑h−k
i=0 #∆Hk,i. Finally, one can count the number of elements in each ∆Hk,i as

#∆Hk,i =
(
n′

2i

)
22i
(
n′ − 2i
k

)
2k,

from which the lemma follows.

50



3.2 Security Reductions

3.2.2 Yes-Instances of M-LWE
In this section we establish a lower bound on the probability

Pr [S outputs “yes” | (A,B) yes-instance of M-LWE] (3.14)

in terms of Pr [forge(A,B)]. This is accomplished by proving that the simulated
oracles are indistinguishable from the real oracles.

To prove the indistinguishability, we consider an arbitrary distinguisher D who,
like the forger F , makes at most qh quantum queries to the hash oracle and at most
qs classical queries to the signing oracle. Unlike F , however, D’s goal is merely to
distinguish the real oracles from the simulated oracles.

3.2.2.1 Adaptively Chosen Queries

An arbitrary distinguisher could adaptively and arbitrarily interleave its hash and
sign queries. To facilitate our analysis we wish to model the distinguisher in such a
way that sign queries occur at fixed, predictable points throughout the protocol.
This goal is accomplished by a continuous accounting method for hash queries that
we describe as follows.

Standard formalism specifies that a quantum oracle for H : X → Y is implemented
by a unitary channel |x, y〉 7→ |x, y + H(x)〉. We modify this formalism so that the
unitary channel for H is a controlled unitary channel. Specifically, the channel acts
on an additional qubit which dictates whether the unitary channel is applied or
not:

|off, x, y〉 7→ |off, x, y〉 ,
|on, x, y〉 7→ |on, x, y + H(x)〉 .

Consider a new type of distinguisher with the following properties:
1. The distinguisher makes qhqs hash queries instead of qh hash queries.
2. Exactly one sign query occurs after every qh hash queries.
3. For each choice of hash oracle H, the distinguisher’s total query magnitude, as

defined in Section 3.2.2.6, on query states with the control qubit set to |on〉
over all qhqs hash queries does not exceed qh.

A distinguisher of this form is called a live-switch distinguisher. For later conve-
nience, we refer to the query magnitude on states with the control qubit set to |on〉
as the query magnitude on the live-switch.
Intuitively this corresponds to a live-switch distinguisher that can make partial

queries to the hash oracle. If it’s query state has only α amplitude on the live-switch
then the distinguisher is charged for only an |α|2-fraction of a query.

51



3 The Signature Schemes TESLA and qTESLA

It is clear that any ordinary distinguisher who makes qh hash queries and qs sign
queries, adaptively chosen and interleaved, could be simulated by a live-switch
distinguisher. Thus, live-switch distinguishers are at least as powerful as ordinary
distinguishers, and possibly more powerful. We will prove indistinguishability
against a live-switch distinguisher, which proves a stronger statement than strictly
necessary.
The benefit of the live-switch distinguisher is that sign queries occur at fixed

points throughout the protocol, namely one sign query after every qh hash queries.
This property allows us to partition the interaction into qs blocks. Each block
consists of qh quantum queries to the hash oracle, followed by a single classical
query to the sign oracle. We prove security of each block and then claim security
of the entire interaction inductively.

3.2.2.2 The Distinguisher’s State–a First Look

To begin, we consider the state of D’s system immediately prior to the signing
oracle query in the first block. At this point in the interaction the real and
simulated oracles are perfectly identical–both respond to the first qh hash queries
in accordance with some fixed choice of hash oracle H. Let ρH denote the state of
D’s system at this point in the interaction, conditioned on H. The signing oracle
(both real and simulated) acts as follows on D’s system:
1. Measure the message register, resulting in outcome m.
2. Select a signature (z, c) for message m.
3. Prepare an output register in the classical basis state |m, (z, c)〉.

These actions can be viewed as a quantum channel. If the signing oracle is the
original (or real) signing oracle then the signature (z, c) is a function of private
randomness and the hash oracle H. In this case, the channel is denoted Ψreal,H.
If the signing oracle is a simulated signing oracle then the signature (z, c) is a
function only of private randomness. In this case, the channel is denoted Ψsim.
Thus, the state of D’s system at the end of the first block, conditioned on the

choice of H, is either Ψsim(ρH) or Ψreal,H(ρH). We will argue that the state Ψsim(ρH)
is δ-close to a probabilistic mixture over re-programmed hash oracles H′ of states
of the form Ψreal,H′(ρH′).
This δ-closeness is preserved by the hash queries in the second block of the

interaction, since both the real and simulated hash oracles remain consistent with
H′ in this block. Let ρ2,H′ denote the state of D’s system immediately prior to the
signing oracle query in the second block. As above, we have that Ψsim(ρ2,H′) is
δ-close to a mixture of states of the form Ψreal,H′′(ρ2,H′′).
Continuing inductively, we see that the state of D’s system at the end of an

interaction with simulated oracles is qsδ-close to a probabilistic mixture over hash
oracles of states of D’s system at the end of an interaction with real oracles.

52



3.2 Security Reductions

Averaging over the choice of initial hash oracle H, we then see that the simulated
oracles are indistinguishable from the real oracles. We formalize these arguments
in subsequent sections.

3.2.2.3 Mid-Sign

Consider the signing oracle Mid-sign of Algorithm 3.19. Mid-sign should be viewed
as a hybrid of Simulated-sign (Algorithm 3.18) and the real signing oracle depicted
in Algorithm 3.15.

Algorithm 3.19 Mid-sign
Require: Message m, public key (A,B), and secret key (S,E,A)
Ensure: Signature (z, c)
1: (y, c)←$ Y×H uniformly at random
2: z← y + Sc
3: if z 6∈ S then
4: restart in line 1
5: if Ay− Ec is not well-rounded then
6: restart in line 1
7: re-program the hash oracle H so that H([Ay]M ,m) = c
8: return (z, c)

In this section, we prove that Mid-sign (Algorithm 3.19) and Simulated-sign
(Algorithm 3.18) are identical. This fact can be stated in terms of quantum channels
as follows. Let Ψmid denote the channel described by Algorithm 3.19. The claim
of this section is that Ψmid = Ψsim. To prove this statement, we first define the
following sets for each choice of c ∈ H:

goodsim(c) = {z ∈ S : Az−Bc is well-rounded} ,
goodmid(c) = {y ∈ Y : y + Sc ∈ S and A(y + Sc)−Bc is well-rounded} .

We begin with a simple observation on these sets.

Lemma 3.3. The mapping f : y 7→ y + Sc is a bijection from goodmid(c) to
goodsim(c) with inverse f−1 : z 7→ z− Sc.

Proof. It is clear that f−1f is the identity function on goodmid(c). It remains to
prove the following:
1. For each y ∈ goodmid(c) it holds that f(y) ∈ goodsim(c).
2. For each z ∈ goodsim(c) it holds that f−1(z) ∈ goodmid(c).

53



3 The Signature Schemes TESLA and qTESLA

To prove item 1 we show (i) f(y) ∈ S, and (ii) Af(y)−Bc is well-rounded. Both
items are immediate from the definitions of goodmid(c) and f .

To prove item 2 we show (i) f−1(z) ∈ Y, and (ii) Af−1(z)− Ec is well-rounded.
Item (i) follows from the fact that z is (B − U)-short and Sc is U -short. Item (ii)
is immediate from the definitions of goodsim(c) and f−1.

We now prove this section’s claim.

Proposition 3.4 (Equivalence of Mid-sign and Simulated-sign). The observable
behavior of Mid-sign (Algorithm 3.19) is statistically identical to that of Simulated-
sign (Algorithm 3.18). In terms of quantum channels, we have Ψmid = Ψsim.

Proof. The observable effects of both the Simulated-sign and Mid-sign algorithms
can be summarized as follows. Given a message m as input, the algorithm selects (i)
a signature (zm, cm) as output, and (ii) a vector wm inducing a hash input (wm,m)
upon which the hash oracle is re-programmed. Thus, to establish statistical
equivalence between Simulated-sign and Mid-sign it suffices to prove that, for each
choice of message m, the joint distribution over (zm, cm,wm) induced by the two
algorithms Mid-sign and Simulated-sign is identical.

Fix an arbitrary message m and let (Zsim, Csim,Wsim), (Zmid, Cmid,Wmid) denote
the joint random variables representing the observable behavior of Simulated-sign
and Mid-sign, respectively, on input message m. We argue that the joint random
variables (Zsim, Csim), (Zmid, Cmid) are identical. The proposition will then follow
from the observation that the hash input w to be re-programmed is specified
in both algorithms by the same deterministic function of (z, c). Specifically, in
Simulated-sign we have w = [Az−Bc]M , whereas in Mid-sign we have w = [Ay]M .
Since Ay− Ec is well-rounded, we have

w = [Ay]M = [Ay− Ec]M = [A(y + Sc)−Bc]M = [Az−Bc]M

as desired. Moreover, we argue that

Pr [Zmid = z | Cmid = c] = Pr [Zsim = z | Csim = c]

for each choice of c ∈ H. In Simulated-sign, conditioned on a choice of c, the vector
z is chosen uniformly among those z ∈ goodsim(c). In Mid-sign, conditioned on a
choice of c, the vector y is chosen uniformly among those y ∈ goodmid(c) and the
vector z is computed as z← y + Sc. It follows from Lemma 3.3 that z is uniform
on goodsim(c), as desired.
Next, we argue that

Pr [Cmid = c] = Pr [Csim = c]

54



3.2 Security Reductions

for each choice of c ∈ H, from which it follows that the joint random vari-
ables (Zsim, Csim), (Zmid, Cmid) are identical. It follows from Lemma 3.3 that
# goodmid(c) = # goodsim(c) for each c ∈ H. Thus,

Pr [Cmid = c] = # goodmid(c)∑
c′ # goodmid(c′) = # goodsim(c)∑

c′ # goodsim(c′) = Pr [Csim = c]

as desired.

3.2.2.4 Consistent-Mid-Sign

Broadly speaking, Mid-sign (Algorithm 3.19) behaves like the real signature gen-
eration (Algorithm 3.15) except that c is selected freshly at random instead of
according to some hash oracle H. It is tempting to claim that the only difference
between Mid-sign and Sign is that repeated invocations of Sign always use the
same hash oracle H, whereas each invocation of Mid-sign switches to another hash
oracle H′ that differs from H on a small number of randomly selected inputs.

However, there is a small probability that the random choices in a given execution
of Mid-sign are not consistent with any hash oracle. To understand how such
an inconsistency can occur, observe that each candidate (y, c) selected by Mid-
sign induces an associated claim about the underlying hash oracle, namely that
H([Ay]M ,m) = c. Suppose Mid-sign rejects one candidate pair (y, c) because
Ay−Ec is not well-rounded before finally accepting another candidate pair (y′, c′).
If [Ay]M = [Ay′]M but c 6= c′ then these two candidates represent conflicting
claims about the underlying hash oracle.

To address this problem we present a new signing oracle Consistent-mid-sign in
Algorithm 3.20 and argue that its observable behavior is close to that of Mid-sign
(Algorithm 3.19). This fact can be stated in terms of quantum channels as follows.
Let Ψc-mid denote the channel described by Algorithm 3.20. The claim of this
section is that Ψc-mid ≈ Ψmid, meaning that Ψc-mid(ρ) ≈ Ψmid(ρ) for input states ρ.
The only difference between Consistent-mid-sign and Mid-sign is that each

invocation of Consistent-mid-sign remembers the random candidate pairs it selected
throughout the invocation and alters them as needed so as to maintain consistency
with a hash oracle. Thus, in order to prove Ψc-mid ≈ Ψmid it suffices to prove that
only a negligibly small fraction of the random choices made by Mid-sign leads to
an inconsistency that is corrected in Consistent-mid-sign.
A sequence r = {(yi, ci)}∞i=1 of random choices made by Mid-sign leads to an

inconsistently derived signature only if there exists k ≥ 2 such that the following
conditions hold:
1. Ay1 − Ec1, . . . ,Ayk−1 − Eck−1 are not well-rounded,
2. Ayk − Eck is well-rounded, and
3. [Ayk]M ∈ {[Ay1]M , . . . , [Ayk−1]M}.

55



3 The Signature Schemes TESLA and qTESLA

Algorithm 3.20 Consistent-mid-sign
Require: Message m, public key (A,B), and secret key (S,E,A)
Ensure: Signature (z, c)
1: initialize the dictionary A ⊂ (W 7→ H) to the empty dictionary A = ∅
2: y←$ Y
3: if [Ay]M ∈ A then
4: c← A[[Ay]M ]
5: else
6: c←$ H
7: add A[[Ay]M ]← c to the dictionary A
8: z← y + Sc
9: if z 6∈ S then
10: restart in line 2
11: if Ay− Ec is not well-rounded then
12: restart in line 2
13: re-program the hash oracle H so that H([Ay]M ,m) = c
14: return (z, c)

Consider the event that a random sequence r meets conditions 1–3 for some choice
of k ≥ 2, and let inconsistent(r) denote the infinite disjunction of these events over
all k ≥ 2.3 Then it holds that

1
2 ‖Ψc-mid(ρ)−Ψmid(ρ)‖tr < Pr

r
[inconsistent(r)] . (3.15)

Hence, we seek an upper bound on the probability of event inconsistent(r) over the
choice of r. To determine the upper bound, we define the following quantities for
each choice of TESLA keys (A,B), (S,E,A):

nwr(A,E): The probability over (y, c) ∈ Y × H that Ay − Ec is not well-
rounded,

coll(A,E): The maximum over all w ∈W of the probability over (y, c) ∈ Y×H
that [Ay− Ec]M = w.

3In item 3 it suffices to look for a collision only between [Ayk]M and any previous [Ayi]M ; we
do not need to look for a collision among arbitrary [Ayi]M = [Ayj ]M . This is because such a
collision among the bad entries is statistically identical to as if ci = cj . Namely, [Ayi]M is
rejected regardless of whether ci = cj . If however, cj changes [Ayi]M from bad to good then
that difference will be detected at k = j. Thus, there’s no need to check for this when k > j.

56



3.2 Security Reductions

In symbols, these quantities are written as
nwr(A,E) = Pr

(y,c)∈Y×H
[Ay− Ec not well-rounded] ,

coll(A,E) = max
w∈W

{
Pr

(y,c)∈Y×H
[[Ay− Ec]M = w]

}
.

In Section 3.2.2.8 and 3.2.2.9, we prove bounds on these quantities that hold with
high probability over the choice of TESLA keys (A,B), (S,E,A).
Broadly speaking, nwr(A,E) should be viewed as a constant that is noticeably

smaller than 1. For example, nwr(A,E) = 1/2. By contrast coll(A,E) is negligibly
small. We prove the following.
Proposition 3.5 (Probability of Inconsistency). For each choice of TESLA keys
(A,B), (S,E,A) it holds that

Pr
r

[inconsistent(r)] ≤ coll(A,E) nwr(A,E)
(1− nwr(A,E))2

over sequences r = {(yi, ci)}∞i=1 of random choices made by Mid-sign.
Proof. For each k ≥ 2 the probability with which events 1 and 2 hold is

nwr(A,E)k−1(1− nwr(A,E)).
In the remainder of this proof we use the notation (y, c) ∈WR(A,E) to mean that
Ay− Ec is well-rounded. Then, conditioned on events 1 and 2, the probability of
event 3 is

Pr
(y1,c1),...,(yk,ck)6∈WR(A,E)

(yk,ck)∈WR(A,E)

[
k−1∨
i=1

[Ayk]M = [Ayi]M

]
(3.16)

≤ (k − 1) max
w∈W

{
Pr

(y,c)∈WR(A,E)
[[Ay]M = w]

}
(3.17)

≤ (k − 1)
max
w∈W

{
Pr

(y,c)∈Y×H
[[Ay− Ec]M = w]

}
Pr

(y,c)∈Y×H
[Ay− Ec is well-rounded] (3.18)

= (k − 1) coll(A,E)
1− nwr(A,E) . (3.19)

Thus,

Pr
r

[inconsistent(r)] ≤
∞∑
k=2

nwr(A,E)k−1(1− nwr(A,E))(k − 1) coll(A,E)
1− nwr(A,E)

= coll(A,E)
∞∑
k=2

(k − 1) nwr(A,E)k−1.

57



3 The Signature Schemes TESLA and qTESLA

The proposition then follows from the formula for the derivative of a geometric
progression.

An immediate corollary of Proposition 3.5 and Equation (3.15) is that for all
states ρ

‖Ψc-mid(ρ)−Ψmid(ρ)‖tr < 2 Pr
r

[inconsistent(r)] ≤ 2 coll(A,E) nwr(A,E)
(1− nwr(A,E))2 .

3.2.2.5 Consistent-Mid-Sign is a Mixture of Real Sign Oracles

In the previous section we introduced the signing oracle Consistent-mid-sign (Algo-
rithm 3.20) and claimed that it behaves exactly like Sign (Algorithm 3.15) with
the following exception: Repeated invocations of Sign always use the same hash
oracle H, whereas each invocation of Consistent-mid-sign switches to another hash
oracle H′ that differs from H on a small fraction of randomly selected inputs.

We formalize this claim in the following paragraph. Therefore, we must introduce
some notation. For each message m define the symbols

ym: A sequence {ym,i}∞i=1 of elements drawn randomly from Y.
cm(ym): A sequence {cm,i}∞i=1 of elements drawn randomly from H subject to

the constraint that if [Aym,i]M = [Aym,j]M then cm,i = cm,j.

The output of Consistent-mid-sign on input m is a deterministic function of the
random data ym, cm(ym). Specifically, let k(m) denote the minimum index for
which Aym,k(m) − Ecm,k(m) is well-rounded. Then Consistent-mid-sign outputs the
signature (ym,k(m) + Scm,k(m), cm,k(m)). For shorthand, write τm = (ym, cm(ym)).
Moreover, let y = {ym}m and c(y) = {cm(ym)}m denote selections of random
data for each possible message m. For shorthand, write τ = (y, c(y)) so that the
behavior of Consistent-mid-sign on all inputs is completely specified by τ .

For each choice of hash oracle H and random data τ , we consider the hash oracle
Hτ that agrees with H everywhere except that Hτ ([Aym,i]M ,m) = cm,i for each
message m and each i = 1, . . . , k(m). In other words,

Hτ (w,m) =
{

cm,i if w = [Aym,i]M for some i ∈ {1, . . . , k(m)} ,
H(w,m) otherwise.

The behavior of Sign (Algorithm 3.15) with hash oracle Hτ on all inputs is completely
specified by y and Hτ . Moreover, the behavior of Sign with hash oracle Hτ and
random data y is identical to the behavior of Consistent-mid-sign with random
data τ . Furthermore, for each choice of random data τ we define the following
quantum channels:

58



3.2 Security Reductions

Ψc-mid,τ : The quantum channel representing the actions of Consistent-mid-sign
(Algorithm 3.20) with randomness τ .

Ψreal,Hτ ,y: The quantum channel representing the actions of Sign (Algorithm
3.15) with hash oracle Hτ and randomness y.

The previous observations establish

Ψc-mid,τ = Ψreal,Hτ ,y

for each choice of τ . Because Ψc-mid is simply a uniform mixture of channels Ψc-mid,τ ,
it follows that4

Ψc-mid =
∑
τ

Pr [τ ] Ψreal,Hτ ,y.

3.2.2.6 Re-Programming of Hash Oracles is Hard to Detect

Thus far we have proved that Consistent-mid-sign behaves like a mixture of real
sign oracles when viewed in isolation. That is, for all states ρ we have

Ψc-mid(ρ) =
∑
τ

Pr [τ ] Ψreal,Hτ ,y(ρ).

But we must extend this proof so that it holds even in the presence of independent
information on the underlying hash oracle. In particular, for any hash oracle H
and any state ρH prepared using only a tractable number of queries to H, we must
show that

Ψc-mid(ρH) ≈
∑
τ

Pr [τ ] Ψreal,Hτ ,y(ρHτ ).

To establish this claim it suffices to show that ρH ≈ ρHτ with high probability over
the choice of τ .
This claim is proven by an application of [36, Theorem 3.3], called the BBBV

Theorem. To do so, we first introduce the formalism necessary to state this theorem.
Suppose ρH was prepared by some party R using t queries to some hash oracle
H : X → Y . For each i = 1, . . . , t let ρi denote the state of R’s system immediately
prior to the ith query to H. For each hash input x ∈ X let

QR(H)(x) =
t∑
i=1

tr (|x〉 〈x| ρi)

denote the query magnitude on input x for R’s interaction with hash oracle H,
where tr is the trace of the matrices |x〉 〈x| and ρi. For a definition of the trace,
we refer to Section 2.3. The BBBV Theorem (or rather, a consequence of it) is as
follows.

4Strictly speaking, Pr [τ ] is zero because it represents the uniform distribution over a countably
infinite set. To be correct, we should switch to a probability measure on τ and use an integral
instead of a summation over τ .

59



3 The Signature Schemes TESLA and qTESLA

Theorem 3.6 ([36, Theorem 3.3]). The following holds for each ε > 0. Suppose
ρH was prepared by some party R using t queries to some hash oracle H : X → Y .
Let H′ be a hash oracle that agrees with H except on a subset X ′ ⊂ X of inputs
with the property that ∑

x∈X′
QR(H)(x) ≤ ε2

t
.

Furthermore, let ρH′ be the state prepared when R uses hash oracle H′ instead of H.
It holds that ‖ρH′ − ρH‖tr ≤ ε.

We are now ready to prove the claim of this section.

Proposition 3.7 (Re-Programming in TESLA). The following holds for each
choice of TESLA keys (A,B), (S,E,A) and each δ > 0. Suppose ρH was prepared
by some party D using t queries to the hash oracle H. Let τ be random data
and let Hτ be a hash oracle derived from H and τ as described in Section 3.2.2.5.
Let ρH′ be the state prepared when D uses the hash oracle H′ instead of H. Then
‖ρHτ − ρH′‖tr < δ except with probability at most

t2

δ2
coll(A,E)

1− nwr(A,E)

over the choice of τ .

Proof. By Theorem 3.6 it suffices to prove that the quantity

∑
m

k(m)∑
i=1
QD(H)

(
[Aym,i]M ,m

)
(3.20)

is at most δ2/t with high probability over the choice of τ . To prove this statement,
for each message m let

Xm = {([Ay]M ,m) : y ∈ Y}

denote the set of hash inputs for message m that are candidates for re-programming.
Furthermore, let

tm =
∑
x∈Xm

QD(H)(x)

denote the total query magnitude for message m. Observe that t = ∑
m tm. The

quantity (3.20) is maximized if for each message m all the query magnitude tm
alloted to message m is placed on the element w ∈W most likely to collide with
[Ay]M when y ∈ Y is chosen uniformly at random. In this case, the quantity (3.20)
is at most ∑

m
k(m)tm coll(A,E).

60



3.2 Security Reductions

By Markov’s inequality we have

Pr
τ

[∑
m
k(m)tm coll(A,E) ≥ δ2

t

]
≤ t

δ2 Ex
τ

[∑
m
k(m)tm coll(A,E)

]
(3.21)

= t

δ2 coll(A,E)
∑
m
tm Ex

τm
[k(m)] . (3.22)

Thus, it suffices to bound the expected number k(m) of entries one must view
from a given list τm before encountering an entry (y, c) for which Ay − Ec is
well-rounded. We have

Ex
τm

[k(m)] =
∞∑
k=1

k nwr(A,E)k−1(1− nwr(A,E)) = 1
1− nwr(A,E)

where the final equality follows from the formula for the derivative of a geometric
progression. The proposition follows from ∑

m tm = t.

3.2.2.7 The Distinguisher’s State–Revisited

Recall from Section 3.2.2.2 the state ρH, which is the state of D’s system immediately
prior to the sign query in the first block. Let κ1 ≤ qh denote the query magnitude
on the live-switch for the hash oracle in the first block. We proved the following
statements in the previous sections:

Ψsim(ρH) = Ψmid(ρH),

‖Ψmid(ρH)−Ψc-mid(ρH)‖tr < 2 coll(A,E) nwr(A,E)
(1− nwr(A,E))2 ,

Ψc-mid(ρH) =
∑
τ

Pr [τ ] Ψreal,Hτ ,y(ρH),

Pr
τ

[‖ρHτ − ρH‖tr > ε] < κ2
1
ε2

coll(A,E)
1− nwr(A,E) .

We conclude that∥∥∥∥∥Ψsim(ρH)−
∑
τ

Pr [τ ] Ψreal,Hτ ,y(ρHτ )
∥∥∥∥∥

tr
< δ(κ1)

where

δ(κ1) = 2 coll(A,E) nwr(A,E)
(1− nwr(A,E))2 + ε+ κ2

1
ε2

coll(A,E)
1− nwr(A,E) . (3.23)

The final two terms of (3.23) are due to the fact that a κ2

ε2
nwr(A,E)

(1−nwr(A,E))2 -fraction of
τ lead to a hash oracle Hτ for which ‖ρH − ρHτ ‖tr > ε, in which case we assume

61



3 The Signature Schemes TESLA and qTESLA

that ρH, ρHτ are perfectly distinguishable. For all other τ it holds that ρH and ρHτ
are ε-close.

Equation (3.23) means that the state of D’s system at the end of the first block
of an interaction with simulated oracles is δ(κ1)-close to a probabilistic mixture over
states of D’s system, each of which could have been obtained from an interaction
with real hash oracles.

As suggested in Section 3.2.2.2, we continue inductively throughout the qs blocks.
As with κ1, let κ2, . . . , κqs denote the query magnitude on the live-switch for blocks
two through qs. Define

δyes =
qs∑
i=1

δ(κi)

and observe that the state of D’s system at the end of an interaction with simulated
oracles is δyes-close to a probabilistic mixture over states obtained from an interaction
with real hash oracles.

We compute an upper bound on δyes next. Moreover, because each block includes
information from hash queries in previous blocks plus one additional hash query
learned from the signing oracle, we have

κi+1 ≥ κi + 1.

Because D is permitted at most qh total query magnitude on the live-switch for its
hash queries, we have

κi ≤ qh + i− 1.
It is clear that δyes is maximized when κ1 = qh, which corresponds to a distinguisher
who makes all qh hash queries before making any of the qs sign queries. Taking a
loose bound qh + qs for each κi, we obtain

δyes < qs

(
2 coll(A,E) nwr(A,E)

(1− nwr(A,E))2 + ε+ (qh + qs)2

ε2
coll(A,E)

1− nwr(A,E)

)
. (3.24)

Finally, because the real and simulated oracles are δyes-close, as desired, it follows
that

Pr [S output “yes” | (A,B) yes-instance of M-LWE] > Pr [forge(A,B)]− δyes.

3.2.2.8 Probability of Well-Roundedness

We now turn to prove the intermediate result about well-roundedness used in
Proposition 3.5. Let φ denote the probability that a random vector in Zmq is not
well-rounded:

φ = Pr
x∈Zmq

[x not well-rounded] ≤ m

(
2LE
2d + 2LE

q

)
. (3.25)

62



3.2 Security Reductions

The quantity φ is a function of the TESLA parameters q,m, d, LE. It is a constant
that is noticeably smaller than 1.
Recall the definition of nwr(A,E). For TESLA keys (A,B), (S,E,A) define

nwr(A,E) as the probability over (y, c) ∈ Y×H that Ay−Ec is not well-rounded:

nwr(A,E) = Pr
(y,c)∈Y×H

[Ay− Ec not well-rounded] .

We prove the following.

Lemma 3.8 (Probability of Well-Roundedness). The following holds for all K > 0.
With probability 1− 1/K over the choice of TESLA keys (A,B), (S,E,A) it holds
that

nwr(A,E) ≤ φ+
√
K(q + 1)

#Y
.

Proof. Our strategy is to bound the variance of nwr(A,E) over the choice of TESLA
keys (A,B), (S,E,A) and use Chebyshev’s inequality. By definition it holds that

Var
(A,E)

[nwr(A,E)] = Ex
(A,E)

[
nwr(A,E)2

]
− Ex

(A,E)
[nwr(A,E)]2 .

So it suffices to compute the expectation of nwr(A,E) and an upper bound on the
expectation of nwr(A,E)2. We begin by computing the expectation of nwr(A,E).
We have

Ex
(A,E)

[nwr(A,E)]

=
∑

(A,E)
Pr[(A,E)] 1

#Y#H
∑
(y,c)

bool [Ay− Ec not well-rounded]

= 1
#Y#H

∑
(y,c)

∑
(A,E)

Pr[(A,E)] bool [Ay− Ec not well-rounded]

= 1
#Y#H

∑
(y,c)

Pr
(A,E)

[Ay− Ec not well-rounded] .

(Here we have used the notation bool [s] for any statement s that can be either
true or false to mean that bool [s] = 1 if the statement is true and bool [s] = 0
otherwise.) We aim to bound the probability

Pr
(A,E)

[Ay− Ec not well-rounded] (3.26)

for each fixed choice of (y, c) ∈ Y×H. There are two cases:

63



3 The Signature Schemes TESLA and qTESLA

1. If y 6= 0 then Ay is a uniformly random vector in Zmq . So too is Ay − Ec,
since c is fixed and E is independent of A. In this case, the probability (3.26)
equals φ.

2. If y = 0 then the probability (3.26) equals 0, since −Ec is well-rounded for
all E, c.

Case 2 occurs with probability 1/#Y, from which it follows that

Ex
(A,E)

[nwr(A,E)] =
(

1− 1
#Y

)
φ. (3.27)

Next, we compute an upper bound on the expectation of nwr(A,E)2. Similar to
the above, we have

Ex
(A,E)

[
nwr(A,E)2

]
= 1

(#Y#H)2
∑

(y,c),(y′,c′)
Pr

(A,E)
[Ay− Ec,Ay′ − Ec′ not well-rounded]

and so we aim at bounding the probability

Pr
(A,E)

[Ay− Ec,Ay′ − Ec′ not well-rounded] (3.28)

for each fixed choice of (y, c), (y′, c′) ∈ Y×H. There are again two cases:
1. If y,y′ are non-zero and linearly independent then Ay,Ay′ are uniformly

random vectors in Zmq ; so too are Ay − Ec,Ay′ − Ec′. In this case, the
probability (3.28) equals φ2.

2. If y,y′ are linearly dependent then the probability (3.28) is at most 1.
Case 2 occurs with probability at most (q + 1)/#Y, from which it follows that

Ex
(A,E)

[
nwr(A,E)2

]
≤
(

1− q + 1
#Y

)
φ2 + q + 1

#Y
.

Combining these bounds on the expectation of nwr(A,E) and nwr(A,E)2 (and
employing the inequality 1− (q+ 1)/#Y < (1− 1/#Y)2), we obtain the inequality

Var
(A,E)

[nwr(A,E)] ≤ q + 1
#Y

.

By Chebyshev’s inequality it then holds that

Pr
(A,E)

∣∣∣∣∣nwr(A,E)− Ex
(A,E)

[nwr(A,E)]
∣∣∣∣∣ ≥

√
K(q + 1)

#Y

 ≤ 1
K
.

The lemma follows from the expression (3.27) for the expectation of nwr(A,E).

64



3.2 Security Reductions

3.2.2.9 Probability of Repetition

Now we move on to prove another intermediate result, namely about the bound of
coll(A,E). Let ψ denote the probability that a random vector x ∈ Zmq is in ∆L:

ψ = Pr
x∈Zmq

[x ∈ ∆L] ≤
(

2d
q

)m
. (3.29)

The quantity ψ is a function of the TESLA parameters q,m, d. It is negligibly small
for our concrete choices of parameters. Moving further, we recall the definition of
coll(A,E). For TESLA keys (A,B), (S,E,A) define coll(A,E) as the maximum
over all w ∈W of the probability over (y, c) ∈ Y×H that [Ay− Ec]M = w:

coll(A,E) = max
w∈W

{
Pr

(y,c)∈Y×H
[[Ay− Ec]M = w]

}
.

Next we prove the following lemma.

Lemma 3.9 (Probability of Repetition). The following holds for all K > 0. With
probability 1− 1/K over the choice of TESLA keys (A,B), (S,E,A) it holds that

coll(A,E) ≤ Kψ.

Before proving Lemma 3.9, we define the set

G(A,E) = {(y, c) ∈ ∆Y×∆H : Ay− Ec ∈ ∆L} .

Some basic facts about the set G(A,E) are listed below in Lemma 3.10.

Proof of Lemma 3.9. Let coll′(A,E) denote the probability over (y, c) ∈ ∆Y×∆H
that (y, c) ∈ G(A,E):

coll′(A,E) = Pr
(y,c)∈∆Y×∆H

[(y, c) ∈ G(A,E)] .

It follows from Lemma 3.10 that coll′(A,E) ≥ coll(A,E). Thus, it suffices to
prove the lemma with coll′(A,E) in place of coll(A,E). Moreover, it follows
from Lemma 3.10 that #G(A,E) ≥ #∆H. Hence, it holds that coll′(A,E) ≥
1/#∆Y. Our strategy is to bound the expectation of the positive random variable
coll′(A,E) − 1/#∆Y over the choice of TESLA keys (A,B), (S,E,A) and use
Markov’s inequality. In order to do so, we first compute the expectation of

65



3 The Signature Schemes TESLA and qTESLA

coll′(A,E):

Ex
(A,E)

[
coll′(A,E)

]
=

∑
(A,E)

Pr [(A,E)] 1
#∆S#∆H

∑
(y,c)

bool [(y, c) ∈ G(A,E)]

= 1
#∆S#∆H

∑
(y,c)

∑
(A,E)

Pr [(A,E)] bool [(y, c) ∈ G(A,E)]

= 1
#∆S#∆H

∑
(y,c)

Pr
(A,E)

[(y, c) ∈ G(A,E)] .

So we aim at bounding the probability

Pr
(A,E)

[(y, c) ∈ G(A,E)] (3.30)

for each fixed choice of (y, c) ∈ ∆Y×∆H. There are again two cases:
1. If y 6= 0 then Ay is a uniformly random vector in Zmq . So too is Ay − Ec,

since c is fixed and E is independent of A. In this case, the probability (3.30)
is exactly ψ.

2. If y = 0 then the probability (3.30) is exactly 1.
Case 2 occurs with probability exactly 1/#∆Y over the choice of (y, c). It follows
that

Ex
(A,E)

[
coll′(A,E)

]
=
(

1− 1
#∆Y

)
ψ + 1

#∆Y
.

Then by Markov’s inequality we have

Pr
(A,E)

[
coll′(A,E) ≥ K

(
1− 1

#∆Y

)
ψ

]
≤ 1
K
.

That is, with probability at least 1− 1/K over the choice of TESLA keys (A,B),
(S,E,A) it holds that

coll′(A,E) ≤ K

(
1− 1

#∆Y

)
ψ

from which the lemma follows.

Lemma 3.10. For all TESLA keys (A,B), (S,E,A) and all w ∈W it holds that

#G(A,E) ≥ #∆H, and (3.31)
#G(A,E) ≥ # {(y, c) ∈ Y×H : [Ay− Ec]M = w} . (3.32)

66



3.2 Security Reductions

Proof. The Inequality (3.31) is straightforward: For each c, c′ ∈ H we have [Ec]M =
[Ec′]M = [0]M , from which it follows that (0, c− c′) ∈ G(A,E).
It remains to prove the Inequality (3.32). Let (y, c), (y′, c′) be elements of

Y × H with [Ay− Ec]M = [Ay′ − Ec′]M = w. We claim that (y − y′, c − c′) is
in G(A,E). It is clear that y − y′ ∈ ∆Y and c − c′ ∈ ∆H. It remains to verify
A(y− y′)− E(c− c′) ∈ ∆L. We have

A(y− y′)− E(c− c′) = Ay− Ec− (Ay′ − Ec′).

Since Ay−Ec and Ay′−Ec′ have the same high bits, it must be that A(y−y′)−
E(c− c′) is the difference of two vectors from [−(2d−1 − 1), 2d−1]m, from which it
follows that A(y− y′)− E(c− c′) ∈ ∆L.
If (y1, c1), . . . , (yk, ck) are distinct elements of Y × H with [Ayi − Eci]M = w

for each i = 1, . . . , k then (0, 0), (y1 − y2, c1 − c2), . . . , (y1 − yk, c1 − ck) must be
distinct elements of G(A,E)5. We have thus listed k distinct elements of G(A,E),
from which the lemma follows.

3.2.3 No-Instances of M-LWE
In this section, we prove that the probability

Pr [S output “yes” | (A,B) no-instance of M-LWE] (3.33)

is small. Our strategy is to identify a correspondence between valid message-
signature pairs and “good” inputs to the hash oracle. We then argue that, with
high probability over the choice of M-LWE no-instances (A,B) and hash oracle H,
the number of good inputs is a very small fraction of the total number of inputs.

Moreover, whether a given input is good is determined solely by its corresponding
output from the hash oracle, implying that the only way to discover good inputs is
to perform a search through an unstructured space.
Thus, a computationally bounded forger cannot expect to find a good input

(and hence, a valid forgery), even with quantum access to the random oracle. This
argument establishes the claim that the M-LWE solver S outputs “yes” only with
small probability, as desired.

3.2.3.1 Correspondence Between Valid Signatures and Good Hash Inputs

Let w ∈W, and let m be an arbitrary message. For any fixed choice of random
oracle H and M-LWE no-instance (A,B) the hash input (w,m) is called good for
H,A,B if there exists z ∈ S with

[Az−B H(w,m)]M = w.
5 By contrast with no-instances, we cannot guarantee that the negations are distinct.

67



3 The Signature Schemes TESLA and qTESLA

Proposition 3.11 (Correspondence Between Valid Signatures and Good Hash
Inputs). If (m, (z, c)) is a valid message-signature pair for public key (A,B) and
hash oracle H then ([Az−Bc]M ,m) is good for H,A,B.

Proof. We write w = [Az−Bc]M . Because (z, c) is a valid signature for m we
have

H(w,m) = H ([Az−Bc]M ,m) = c.

Then it holds that

[Az−B H(w,m)]M = [Az−Bc]M = w

as desired.

A corollary of Proposition 3.11 is that the ability to find a message-signature
pair (m, (z, c)) that is valid for public key (A,B) using qh classical or quantum
queries to H implies the ability to find a hash input (w,m) that is good for H,A,B
using the same number of classical or quantum queries to H.

3.2.3.2 The Fraction of Good Hash Inputs

We wish to bound the probability over hash oracles H and M-LWE no-instances
(A,B) that a non-negligible fraction of hash inputs (w,m) are good. In order to
do this, define the sets

M = {(w,m) : w ∈W,m is a message} , and
M(H,A,B) = {(w,m) ∈M : (w,m) is good for H,A,B} .

For ease of exposition we presume a fixed, large upper bound such as 22λ on the
size of M although strictly speaking M and M(H,A,B) are infinite sets. After all,
no computationally bounded forger could possibly query the hash oracle on inputs
whose bit length exceeds 2λ. Under this presumption, M is a finite set and so #M
is a positive integer. The ratio

#M(H,A,B)
#M

(3.34)

is the fraction of inputs that are good.
Our goal is to show that the ratio given in Equation (3.34) is negligibly small

with high probability over the choice of H,A,B. In order to prove this, we define
for each message (w,m) ∈M the boolean random variable

X(w,m) =
{

1 if (w,m) is good for H,A,B,
0 otherwise,

68



3.2 Security Reductions

and observe
#M(H,A,B)

#M
= 1

#M
∑

(w,m)∈M
X(w,m),

which is an average over boolean random variables. Moreover, the random variables
X(w,m) are independent and so we may apply Hoeffding’s bounds to obtain

Pr
H,(A,B)

[
#M(H,A,B)

#M
− Ex

H,(A,B)

[
#M(H,A,B)

#M

]
≥ δ

]
≤ e−2#Mδ2

. (3.35)

Because #M is very large relative to other TESLA parameters, we may choose δ
so small that it can safely be assumed to equal zero. For example, if #M = 22λ

then the probability (3.35) is negligibly small even if δ is as small as 2−2λ−2 . Thus,
the ratio (3.34) is almost certain to be very close to its expectation

Ex
H,(A,B)

[
#M(H,A,B)

#M

]
. (3.36)

This expectation equals

1
#M

∑
(w,m)∈M

Ex
H,(A,B)

[
X(w,m)

]
,

and by definition it holds that

Ex
H,(A,B)

[
X(w,m)

]
= Pr

H,(A,B)
[(w,m) is good for H,A,T] .

It remains to bound this probability for each hash input (w,m).

3.2.3.3 Good Hash Inputs are Rare

For each choice of w ∈ W and M-LWE no-instance (A,B), we define the set
H(w,A,B) ⊂ H as

H(w,A,B) = {c ∈ H | ∃z ∈ S : [Az−Bc]M = w} .

Observe that a hash input (w,m) is good for H,A,B if and only if H(w,m) ∈
H(w,A,B). Thus,

Pr
H,(A,B)

[(w,m) is good for H,A,B] = Ex
(A,B)

[
#H(w,A,B)

#H

]
.

We prove the following.

69



3 The Signature Schemes TESLA and qTESLA

Proposition 3.12 (Good Hash Inputs are Rare). For all w ∈W it holds that

Ex
(A,B)

[
max
w∈W

{
#H(w,A,B)

#H

}]
≤ 1

2#H

(
1 + #∆H#∆S#∆L

qm

)
.

Proof. Define the set

D(A,B) = {b ∈ ∆H : ∃y ∈ ∆S with Ay−Bb ∈ ∆L} . (3.37)

In Lemma 3.13 below we prove

#H(w,A,B) ≤ #D(A,B) + 1
2

for all w ∈W. Thus, it suffices to bound the expectation

Ex
(A,B)

[
#D(A,B) + 1

2#H

]
= 1

2#H

(
1 + Ex

(A,B)
[#D(A,B)]

)
.

It holds that

Ex
(A,B)

[#D(A,B)] = 1
#(A,B)

∑
(A,B)

# {b ∈ ∆H : ∃y ∈ ∆S with Ay−Bb ∈ ∆L}

= 1
#(A,B)

∑
(A,B)

∑
b∈∆H

bool [∃y ∈ ∆S with Ay−Bb ∈ ∆L]

≤ 1
#(A,B)

∑
(A,B)

∑
b∈∆H

∑
y∈∆S

bool [Ay−Bb ∈ ∆L]

=
∑

b∈∆H

∑
y∈∆S

1
#(A,B)

∑
(A,B)

bool [Ay−Bb ∈ ∆L]

=
∑

b∈∆H

∑
y∈∆S

Pr
(A,B)

[Ay−Bb ∈ ∆L] .

For each fixed choice of y ∈ ∆S, b ∈ ∆H6, if A,B are uniformly random matrices
then Ay − Bb is a uniformly random vector from Zmq . Thus, the probability
Pr(A,B) [Ay−Bb ∈ ∆L] is simply the probability that a random vector lands in
∆L. That is,

Pr
(A,B)

[Ay−Bb ∈ ∆L] = #∆L
qm

.

Thus, the expectation becomes

Ex
(A,B)

[#D(A,B)] ≤
∑

b∈∆H

∑
y∈∆S

#∆L
qm

= #∆H#∆S#∆L
qm

(3.38)

as desired.
6Except for the choice that y = 0 and b = 0. However, the probability that b = 0 is negligible.

70



3.2 Security Reductions

Lemma 3.13. Let D(A,B) be as defined in (3.37). For all M-LWE no-instances
(A,B) and all w ∈W it holds that

#H(w,A,B) ≤ #D(A,B) + 1
2 .

Proof. Let c, c′ ∈ H(w,A,B) as witnessed by z, z′ ∈ S, respectively. We claim
that c− c′ is in D(A,B). It is clear that c− c′ ∈ ∆H and z− z′ ∈ ∆S. It remains
to verify A(z− z′)−B(c− c′) ∈ ∆L. We have

A(z− z′)−B(c− c′) = Az−Bc− (Az′ −Bc′).

Since Az−Bc and Az′−Bc′ have the same high bits, it must be that A(z− z′)−
B(c − c′) is the difference of two vectors from [−(2d−1 − 1), 2d−1]m, from which
it follows that A(z− z′)−B(c− c′) ∈ ∆L. A similar argument proves that the
negation c′ − c ∈ D(A,B).

If c1, . . . , ck are distinct elements of H(w,A,B) then 0, c1− c2, . . . , c1− ck must
be distinct elements of D(A,B). Similarly, the negations c2 − c1, . . . , ck − c1 are
also distinct elements of D(A,B). To see that c1 − c2, . . . , c1 − ck are all distinct
from their negations, observe that

c1 − ci = −(c1 − cj) =⇒ 2c1 = ci + cj =⇒ ci = cj

where the final implication follows from the fact that the entries of c1, ci, cj are all
in {−1, 0, 1}. We have thus listed 2k − 1 distinct elements of D(A,B), from which
the lemma follows.

3.2.3.4 Forgers Cannot Forge on M-LWE No-Instances

Proposition 3.12 provides a bound on the fraction δno of hash inputs that are good.
Moreover, since the goodness of a hash input (w,m) depends solely on whether
H(w,m) is in H(w,A,B), the set of all good hash inputs is a randomly selected set.
Thus, the only way to find a good hash input is via search through an unstructured
space.
It then follows from lower bounds for quantum search [54] that any algorithm

making no more than qh quantum queries to H finds a good hash input—and thus
a valid TESLA forgery—with probability no larger than

2(qh + 1)
√
δno.

We therefore obtain

Pr [S output “yes” | (A,B) no-instance of M-LWE] ≤ 2(qh + 1)
√
δno.

71



3 The Signature Schemes TESLA and qTESLA

3.2.4 Conclusion of the Security Reduction
Assuming that no algorithm with run-time comparable to that of S can solve
M-LWE with success bias exceeding ε, we have:

ε ≥ Pr [S output “yes” | (A,B) yes-instance of M-LWE]
− Pr [S output “yes” | (A,B) no-instance of M-LWE] .

We know that

Pr [S output “yes” | (A,B) yes-instance of M-LWE] ≥ Pr [forge (A,B)]− δyes.

Moreover, against a quantum forger, we showed that

Pr [S output “yes” | (A,B) no-instance of M-LWE] ≤ 2(qh + 1)
√
δno,

implying that

Pr [forge(A,B)] ≤ Pr [S output “yes” | (A,B) yes-instance of M-LWE] + δyes

≤ ε+ Pr [S output “yes” | (A,B) no-instance of M-LWE] + δyes

≤ ε+ 2(qh + 1)
√
δno + δyes.

Against a classical forger, we can remove the quadratic speedup on the lower bound
query complexity, and the probability becomes

Pr [forge(A,B)] ≤ ε+ qh · δno + δyes.

We make some simplifying assumptions on the choice of TESLA parameters.
These assumptions are not necessary in order to derive a negligibly small up-
per bound on the forger’s success probability; they merely facilitate a simplified
statement of the upper bound.

Definition 3.14 (Convenient TESLA Parameters). TESLA parameters are con-
venient if the following bounds hold:

φ+
√

2λ(q + 1)
#Y

≤ 1/2 (3.39)

#∆H#∆S#∆L ≤ qm, (3.40)

with φ denoting the probability that a random vector in Zmq is not well-rounded (see
Section 3.2.2.8).

72



3.2 Security Reductions

We now incorporate our bounds on δyes and δno in order to derive an explicit
upper bound on the forger’s success probability.

By applying Lemma 3.8 withK = 2λ, as well as Equation (3.39) in Definition 3.14,
we observe that with probability 1−2−λ over the choice of (A,E), nwr(A,E) ≤ 1/2.
Incorporating this into Equation (3.24), we see that

δyes ≤ qsγ + 4qs coll(A,E)
(

1 + (qh + qs)2

2γ2

)
for some probability γ. From Lemma 3.9, we have a bound on coll(A,E) that
holds with probability 1− 1/Kcoll, implying

δyes ≤ qsγ + 4qs
(

2d
q

)m
Kcoll

(
1 + (qh + qs)2

2γ2

)
.

At this point, we note that our result on this bound holds for whatever γ we may
choose. As we want the first term to be exponentially small, we will select γ = 1

2λqs .
Then, using the simplification that 1 + (qh+qs)2

2γ2 ≈ (qh+qs)2

2γ2 we get

δyes ≤
1
2λ + 2md+2λ+1

qm
(qh + qs)2q3

sKcoll.

From Proposition 3.12 we have

δno ≤
1

2#H

(
1 + #∆H#∆S#∆L

qm

)
.

Using Equation (3.40) of Definition 3.14 we can simplify this bound on δno to

δno ≤
1

#H
.

Finally, we substitute this and our bound for δyes into Equation (3.39). We also
note that #H = 2h

(
n′

h

)
. Additionally, we also must consider the probability with

which our bounds do not hold. Doing this, we get that Pr [forge(A,B)] is at most

ε+ 1
2λ + 2md+2λ+1

qm
(qh + qs)2q3

sKcoll + 2(qh + 1)
√√√√ 1

2h
(
n′

h

) + 1
Knwr

+ 1
Kcoll

.

Then by choosing each K-value to be 2λ, we get that this is equal to

ε+ 3
2λ + 2md+3λ+1

qm
(qh + qs)2q3

s + 2(qh + 1)
√√√√ 1

2h
(
n′

h

) . (3.41)

Classically, we can similarly derive that the adversary’s success is bounded by

ε+ 3
2λ + 2md+3λ+1

qm
(qh + qs)2q3

s + qh
1

2h
(
n′

h

) . (3.42)

73



3 The Signature Schemes TESLA and qTESLA

From Simplified TESLA to TESLA. We now move on to explicate the difference
between the simplified (Algorithm 3.15) and the original signature generation in
TESLA (Algorithm 3.4). To do so, we first define the PRF security and PRF
advantage.

Definition 3.15 (PRF Security). Let F : Keys × In → Out be a PRF. Define
Func[In,Out] to be the set of all functions f : In→ Out. Furthermore, let A be a
quantum adversary interacting with F in the Game ExptPRF-SEC

F given in Figure 3.4.
We say that F is a (tPRF, εPRF)-secure PRF (PRF-SEC) if for all quantum adver-

saries A running in time tPRF, the advantage

AdvPRF-SEC
F (A) = Pr

[
ExptPRF-SEC

F (A) = 1
]
≤ εPRF.

ExptPRF-SEC
F (A):

1: k ←$ KeysF
2: b←$ {0, 1}
3: f ←$ Func[In,Out]
4: b′ ← AOF ()
5: return [b = b′]

Classical OF (x):
1: if b = 1:
2: return f(x)
3: else
4: return F (k, x)

Quantum OF (
∑
x,t,z ψx,t,z |x, t, z〉):

1: return state
∑
x,t,z ψx,t,z |x, t⊕OF (x), z〉

Figure 3.4: PRF security experiment against an adversary A

Define the signature scheme S = (KeyGen′, Sign′,Verify′). KeyGen′ and Verify′ are
given in Algorithm 3.14, and 3.16. They are the same as the original TESLA algo-
rithms given in Algorithm 3.3 and 3.5, respectively. Sign′ is given in Algorithm 3.15
and differs from the original TESLA signature generation (Algorithm 3.4) as it
chooses y←$ [−B,B]n instead of computing it by PRF1 and PRF2. Let εEUF-CMA
be the success probability to break the EUF-CMA security of S.
The success probability ε′′ against TESLA is upper bounded by the sum of

the success probability where the adversary distinguishes PRF2 ◦ PRF1 from a
truly random function and the success probability where the adversary does not
distinguish the two functions but breaks the unforgeability of S. In addition, the
success probability against TESLA is depending on the acceptance probability of
checkE and checkS, since these functions reduce the key space. Hence it finally
holds that

ε′′ ≤ (εPRF + εEUF-CMA(1− εPRF)) δKeyGen,

where δKeyGen is the probability that checkE and checkS accept a secret key (E,S).
Moving on from the security reduction of TESLA, we turn to the security

reduction of qTESLA next.

74



3.2 Security Reductions

3.2.5 Security Reduction for qTESLA
In the following paragraphs we prove the security of qTESLA. Similar to the case
of TESLA, our reduction gives a tight and explicit reduction in the QROM from
the hardness R-LWE to the EUF-CMA security of qTESLA. In contrast to TESLA,
however, Theorem 3.16 holds assuming a conjecture, as explained below.

Theorem 3.16 (Security of qTESLA). Let the parameters be as in Table 3.1.
Furthermore, assume that Conjecture 3.17 holds. If there exists an adversary A
that forges a signature of the signature scheme qTESLA described in Section 3.1.2
in time tΣ and with success probability εΣ, then there exists a reduction R that
solves the R-LWEn,k,q,χ problem in time tLWE ≈ tΣ with

εΣ ≤
23λ+nkd+1 q3

s(qs + qh)2

qnk
+ 2qh + 5

2λ + εLWE

with parameters as in Table 3.1.

Except for a few differences, the proof of Theorem 3.16 follows the idea of
TESLA’s security reduction. Hence, we do not repeat the entire proof here but only
explain the differences, namely the computation of the two probabilities coll(a, e)
and nwr(a, e) .
For simplicity we assume that the randomness is sampled uniformly random in
Rq,[B] as before in case of TESLA. For our discussion we define/recall the following
sets:

Y: The set of polynomials y ∈ Rq,[B].
S: The set of polynomials z ∈ Rq,[B−LS ].
H: The set of polynomials c ∈ Rq,[1] with exactly h non-zero coefficients.
W: The set {[w]M : w ∈ Rq}.

∆L: The set {x− x′ : x, x′ ∈ R and [x]M = [x′]M}.

Furthermore, we call a polynomial w well-rounded if w is inRq,[bq/2c−LE ] and [w]M ∈
Rq,[(2d−1−LE)]. We define the following quantities for keys (a1, ..., ak, t1, ..., tk),
(s, e1, ..., ek), where we denote −→a = (a1, ..., ak) and −→e = (e1, ..., ek):

nwr(−→a ,−→e ) = Pr
(y,c)∈Y×H

[aiy − eic not well-rounded for at least one i ∈ {1, ..., k}]

coll(−→a ,−→e ) = max
(w1,...,wk)∈Wk

{
Pr

(y,c)∈Y×H
[[a1y − e1c]M = w1, ..., [aky − ekc]M = wk]

}
.

Informally speaking nwr(−→a ,−→e ) refers to the probability over random (y, c) that
aiy − eic is not well-rounded for some i. This quantity varies as a function of

75



3 The Signature Schemes TESLA and qTESLA

a1, ..., ak, e1, ..., ek. In contrast to the case of TESLA, we cannot upper bound
this in general in the ring setting. Hence, we first assume that nwr(−→a ,−→e ) < 3/4
and afterwards check experimentally that this holds true. Indeed, our acceptance
probability δSign is at least 1/4 for our parameter sets qTESLA-p-I and qTESLA-p-
III as we determine experimentally (see Table 3.2 for the concrete probabilities).
Hence, the bound nwr(−→a ,−→e ) < 3/4 holds.
Secondly, we need to bound the probability coll(−→a ,−→e ). In Lemma 3.8 of

Section 3.2.2.8, the corresponding probability coll(A,E) for standard lattices is
upper bounded. Unfortunately, we were not able to transfer the proof to the ring
setting for the following reason. In the proof of Lemma 3.8, it is used that if the
randomness y is not equal to 0, the vector Ay is uniformly random distributed over
Zq and hence, also Ay− Ec is uniformly random distributed over Zmq . This does
not necessarily holds if the polynomial y is chosen uniformly in Rq,[B]. Moreover,
in Equation (3.29), Section 3.2.2.9, ψ denotes the probability that a random vector
x ∈ Zmq is in ∆L:

ψ = Pr
x∈Zmq

[x ∈ ∆L] ≤
(

2d
q

)m
. (3.43)

The quantity ψ is a function of the TESLA parameters q,m, d, and it is negligibly
small for the chosen parameters. However, we cannot prove a similar statement
for the signature scheme qTESLA over ideals. Instead, we need to conjecture the
following.

Conjecture 3.17. Let I be a non-zero ideal in Rq and let r ∈ Rq be a fixed choice
of ring elements. Then, it holds that the probability that x+ r ∈ ∆L for a uniformly
distributed element x←$ I is negligibly small.

The intuition behind our conjecture is as follows. Let ψI denote the probability
that a random element from the ideal I lands in ∆L. We know that ψI is small
when the ideal I = Rq, i.e., a negligibly small fraction of elements from Rq are
in ∆L. Furthermore, the set ∆L appears to have no relationship with the ideal
structure of the ring, so it seems reasonable to view each ideal as a random subset
of Rq in the following sense: No larger or smaller portion of elements in the ideal I
is in ∆L than that portion of elements of Rq that is in ∆L.
Hence, the corresponding statement described above and needed in Lemma 3.8

translates for qTESLA to the following. If y 6= 0 then aiy is a uniformly random
element of some non-zero ideal I for all i. The polynomial c is fixed and the
polynomials e1, ..., ek are independent of the polynomials a1, ..., ak, and y. Hence,
by our conjecture (with x = aiy and r = eic) it holds that the probability of
Equation (3.30) in Section 3.2.2.9 is negligibly small. Thus, assuming that our
conjecture holds true, Lemma 3.8 and hence, the security reduction for TESLA
holds for qTESLA as well.

76



3.3 Bit Security and Parameter Selection

3.3 Bit Security and Parameter Selection
In this section, we determine concrete instantiations of TESLA and qTESLA. As
shown in Section 3.2, the security of our signature schemes relies on the hardness
of the M-/R-LWE problem. Therefore, we start this section by explaining how to
estimate the bit hardness of LWE instances. Afterwards, we move on to describe
how to derive secure instantiations of the signature schemes, when given concrete
LWE instances of a certain hardness. Finally, we present instances of TESLA and
qTESLA.

3.3.1 Hardness Estimation of LWE
We start by explaining why we estimate R-LWE using the same attacks as for
LWE. Afterwards, we explain current state-of-the-art classical and quantum attacks
against LWE and finally, we describe the software tool LWE-Estimator [11] which
we use for our estimations.

Estimation of the R-LWE Hardness. Recent results exploit the algebraic struc-
ture of some ideal lattices [42,57,67,68,88,90,102]. However, so far they do not
seem to weaken the hardness of R-LWE instances that are used for qTESLA. As
a consequence, we estimate the hardness of R-LWE using state-of-the-art LWE
solvers described next.

Classical Algorithms. Currently, the following basic attacks on (decisional) LWE
are known: the embedding approach, the decoding attack, the distinguishing attack,
the algorithm by Blum, Kalai, and Wassermann (BKW) [44], and the Arora-Ge-
Algorithm [21] described briefly in the following paragraphs. We refer to [8, 11] for
a deeper contemplation of the state-of-the-art hardness estimations.

The embedding approach is to solve an LWE instance by reducing it to an instance
of uSVP. In particular, during the attack a lattice is defined such that the error
term of an LWE instance is embedded in that lattice (see for example [9, 24, 39]
for a description of such lattices). In the end, the short error term is found as a
short vector of the constructed lattice via basis reduction such as BKZ [20,64,100].
During the BKZ algorithm, an SVP-oracle is queried that returns solutions of SVP
instances of dimension β. The dimension β is also called the block size. To answer
the queries to the SVP-oracle, algorithms such sieving [147] or enumeration [64]
are used.

During the decoding attack, an LWE instance (A,As + e) is seen as an instance
of the Bounded Distance Decoding (BDD) problem [151]. The idea of the attack
is to first use lattice reduction algorithms such as BKZ, and to find the closest

77



3 The Signature Schemes TESLA and qTESLA

lattice vector to a target vector via the nearest plane algorithm by Babai [23] (or
improved variants such as [151,152]) afterwards.

The distinguishing attack’s goal is to solve an instance (A,b) of decisional LWE.
In order to do, basis reduction such as BKZ is applied to find a short vector v in
Λ⊥q (A). Depending on whether 〈b,v〉 is small or large, the decisional LWE problem
can be solved.

The BKW algorithm and the algorithm by Arora and Ge require a large number
of LWE samples to be applied efficiently. Although the number of required samples
was crucially reduced, for both BKW [79,116,140] and the Arora-Ge algorithm [6],
our proposed instances give far less LWE samples than required for the two attacks.
Hence, we do not consider them further.

After describing the classical algorithms to solve LWE, we explain recent quantum
LWE solvers next.

Quantum Algorithms. State-of-the-art quantum attacks on LWE make (black-
box) use of Grover’s quantum search algorithm [112] to speed up classical LWE
solvers. Laarhoven et al. [148] investigate and compare the impact of Grover’s
quantum search algorithm on different SVP solvers and propose a new quantum
SVP solver with a run-time (in the dimension β) of 20.268β+o(1). Furthermore, Aono
and Nguyen [19] recently published a quantum enumeration algorithm to be used
as an SVP solver.
Another recent quantum attack, called quantum hybrid attack, was presented

by Göpfert, van Vredendaal, and Wunderer [109] in 2017. This hybrid attack is
most efficient on LWE with very small secret and error, e.g., binary or ternary
coefficients. Since the coefficients of the secret and error of TESLA or qTESLA
are chosen Gaussian distributed, the attack is not efficient for our instances.

The LWE-Estimator. Albrecht, Player, and Scott presented the LWE-Estimator
which is a software to estimate the hardness of LWE given the matrix dimension
n, the modulus q, the relative error rate α =

√
2πσ
q

, and the number m of LWE
samples. The LWE-Estimator then estimates the bit hardness regarding the fastest
LWE solvers currently known, i.e., it outputs a lower bound on the number of
operations an attack needs to break a given LWE instance. In particular, the
following attacks are considered in the LWE-Estimator: the meet-in-the-middle
exhaustive search, the BKW algorithm [7, 44, 116, 140], the dual lattice attacks
recently published in [5], the enumeration approach by Linder and Peikert [151],
the distinguishing attack described in [9,25], and the Arora-Ge algorithm [21] using
Gröbner bases [6]. Furthermore, it uses the latest analysis to compute the block
sizes used in the lattice basis reduction BKZ [10]. Moreover, the aforementioned
quantum speed-ups for the sieving algorithm used in BKZ [147] are considered as

78



3.3 Bit Security and Parameter Selection

well. In particular, they estimate the run-time as 20.268β+16.40.
The LWE-Estimator is the result of many different contributions and contributors.

It is open source and hence easily checked and maintained by the community. Hence,
we find the LWE-Estimator to be a suitable tool to estimate the hardness of our
chosen LWE instances. For our estimations, we use the LWE-Estimator with
commit-id 9302d42. It allows to choose different cost models to estimate the
run-time of the BKZ algorithm. Since for our TESLA and qTESLA instances,
the above-mentioned embedding approach is the most efficient attack and BKZ
is used as a subroutine in this attack, the choice of the cost model impacts the
overall run-time of the attack greatly. In fact, Albrecht et al. show that depending
on the BKZ cost model, the bit hardness of the same problem instance can differ
by several hundred bits [8]. Essentially, the BKZ cost model is defined by the
run-time of one call to the SVP oracle and the number of so-called BKZ rounds.
For our instances, we choose a conservative approach that is supported by practical
experiments. In particular, we assume that the number of needed BKZ rounds
is 8d with lattice dimension d since experimentally lattice bases are sufficiently
reduced after 8d BKZ rounds [11]. Furthermore, we choose the BKZ run-time
estimation of [147] since the resulting run-time is the smallest on our instances when
taking quantum algorithms into account. In particular, let n, m (resp., n · k for
qTESLA), α, and q be given. Then we estimate the hardness using the command
estimate_lwe(n,alpha,q,m,reduction_cost_model=BKZ.qsieve).

Next we explain how to determine the bit security of our signature schemes given
the bit hardness of R-/M-LWE instances.

3.3.2 Correspondence Between Security and Hardness
After we described how to estimate the bit hardness of a given LWE instance, we
now go on describing the relation between hardness and security in case of TESLA
and qTESLA.

The reductionist approach to prove security of a cryptographic scheme essentially
consists in building an efficient reduction that turns any successful adversary against
the scheme into one that solves some computationally hard problem. The hardness
of breaking the scheme and of solving the underlying problem are often expressed
asymptotically. When a scheme is to be deployed in the real world, however, for a
security analysis to be realistic it is essential that run-times and success probabilities
are estimated in a more explicit way. Given an explicit security reduction, the
scheme can be instantiated according to the security reduction. This implies the
following: By virtue of our security reduction, these parameters strictly correspond
to an instance of the problem. That is, the reduction provably guarantees that
our scheme has the selected security level as long as the corresponding problem
instance provides a certain hardness level. In other words, hardness statements for

79



3 The Signature Schemes TESLA and qTESLA

instances of the LWE problem have a provable consequence for the security levels
of TESLA and qTESLA.

The security reduction given in Section 3.2 provides a reduction from the hardness
of M-LWE (resp., R-LWE) and bounds explicitly the forging probability with the
success probability of the reduction. More formally, let εF and tF denote the
success probability and the run-time of a forger F against our signature scheme
and let εS and tS denote analogous quantities for the reduction S presented in
Section 3.2. We say that LWE is η-bit hard if tS/εS ≥ 2η; and we say that the
signature scheme is λ-bit secure if tF/εF ≥ 2λ.
We aim at choosing parameters such that εS ≈ εF and tS ≈ tF , i.e., we choose

parameters according to our tight security reduction. Hence, the bit hardness of the
(R-)LWE instance is about the same as the bit security of our signature scheme.

For TESLA, however, we lose dlog2(n′)e bits of security since TESLA is actually
based on M-LWE instead of LWE and the reduction from M-LWE to LWE looses
this number of bits as explained in Section 2.2.

Additionally, depending on the instantiation the size of the key space is decreased
by d| log2(δKeyGen)|e bit. For example, if the acceptance probability of the key
generation is 0.2, i.e., the key space is decreased by 80%, then we lose at most 3
bits, since 2−3 ≤ 0.2 ≤ 2−2.
In summary, for TESLA we choose an LWE instances of λ + dlog2(n′)e +
d| log2(δKeyGen)|e bit hardness to achieve concrete instances of λ bit security. For
qTESLA, the corresponding (R-)LWE instances give at least λ+ d| log2(δKeyGen)|e
bit of hardness against currently known attacks.

Instantiations According to the Reductions from SVP to LWE. As observed
by Chatterjee et al. [59], existing worst-case to average-case reductions from SIVP
or GapSVP to LWE are highly non-tight. We are not aware of a proposal for a
concrete instantiation of a cryptosystem based on LWE with the property that the
proposed parameters were selected according to such a reduction. Instead, it is
common to instantiate schemes based on the best known algorithms for solving
LWE as described above.
For TESLA and qTESLA, we take care to instantiate the scheme according

to their security reductions from R-/M-LWE. However, we do not instantiate
them according to reductions from underlying lattice problems, since due to the
non-tightness of these reductions, corresponding parameters would yield much less
efficient schemes. To instantiate a scheme according to the given worst-to-average-
case reductions is an interesting research direction.

80



3.3 Bit Security and Parameter Selection

Table 3.2: Parameters of TESLA and qTESLA; key and signature sizes are reported
in bytes (B); κ = 256 for all parameter sets
Param. TESLA qTESLA

TESLA-p-I TESLA-p-II TESLA-p-III qTESLA-p-I qTESLA-p-III
λ 96 96 128 95 160

qh, qs 296, 248 296, 248 2128, 264 2128, 264

n 804 800 1 300 1 024 2 048
n′ 600 700 1036 - -
σ 57 60 73 8.5 8.5
k - - - 4 5
m 4972 4000 4788 - -
q 231 − 19 9 608 718 773 40 582 171 961 485 978 113 1 129 725 953

≈ 233.16 ≈ 235.24 ≈ 229 ≈ 230

h 42 69 88 25 40
LE 6 703 11 592 17 987 554 901
LS 33 516 57 960 89 936 554 901
U 5 172 6 978 9 588 - -
B 222 − 1 223 − 1 224 − 1 221 − 1 223 − 1
d 26 27 27 22 24

δKeyGen 1 - - 0.59 0.44
δSign 0.154 - - 0.26 0.28

sig. size [B] 2 343 2 432 4 095 2 848 6 176
pk size [B] 11 559 900 11 900 000 22 321 656 14 880 39 712
sk size [B] 4 332 000 4 200 000 7 883 920 4 544 10 816
with t 11.6 11.6 13.4 11.6 15

quant. LWE hardness [bit] - 109 154 123 247
class. LWE hardness [bit] 116 117 167 132 270

3.3.3 Instantiations of TESLA and qTESLA
In this section, we present different instantiations of TESLA and qTESLA. Overall,
we propose three parameter sets for TESLA and five sets for qTESLA. In particular,
we present the set TESLA-p-I that is chosen to give a classical bit security of
96. This set is merely chosen to enable a comparison with the GPV signature
scheme [104] in Section 3.5. The other two sets TESLA-p-II and TESLA-p-III
are chosen with a targeted quantum security level of 96 and 128 bit, respectively.
All three TESLA parameter sets are chosen according to the respective security
reductions and as explained in Section 3.1.3 and summarized in Table 3.2. To
be able to compare not only the key and signature size but also the run-time of
TESLA with, e.g., the GPV signature scheme, we report the cycle counts of Alkim’s
implementation of TESLA-p-I in Section 3.4.2. However, no implementation
exists for TESLA-p-II and TESLA-p-III. This also implies that we cannot state

81



3 The Signature Schemes TESLA and qTESLA

the acceptance probabilities δKeyGen and δSign of the key generation and signature
generation algorithms of TESLA-p-II and TESLA-p-III, since these probabilities
would have to be determined experimentally. As mentioned before, the parameters
of TESLA are chosen to be conservative (from an attacker’s point of view).
In contrast, qTESLA’s instantiations have been optimized for efficiency. We

propose the qTESLA parameter set qTESLA-p-I and qTESLA-p-III7 of quantum
security levels 96 and 160. Both sets are chosen according to the respective security
reductions and as explained in Section 3.1.3. The qTESLA set qTESLA-h-I,
qTESLA-h-III-speed, and qTESLA-h-III-size depicted in Table 3.3, however, are
chosen heuristically as explained next.

Table 3.3: Heuristic parameters of qTESLA; key and signature sizes are reported
in B; qh = 2128, qs = 264, κ = 256 for all parameter sets

Param. qTESLA-h-I qTESLA-h-III-speed qTESLA-h-III-size
λ 95 160 160
n 512 1 024 1 024
k 1 1 1
σ 23.78 10.2 8.49
q 4 205 569 ≈ 222 8 404 993 ≈ 223 4 206 593 ≈ 222

h 30 48 48
LE 1 586 1 147 910
LS 1 586 1 233 910
B 220 − 1 221 − 1 220 − 1
d 21 22 21

δSign 0.14 0.21 0.09
δKeyGen 0.45 0.60 0.39

sig size[B] 1 376 2 848 2 720
pk size [B] 1 504 3 104 2 976

sk size (with t) [B] 1 216 (t = 11.6) 2 112 (t = 15) 1 856 (t = 15)

quant. LWE hardness [bit] 97 164 169
class. LWE hardness [bit] 104 178 188

Heuristic Parameters. Choosing parameters according to the security statements,
as described above, implies to follow specific security requirements and to take a
reduction loss into account. This affects the performance and sizes of the scheme.
As a consequence, instantiations from the literature are sometimes chosen under
the assumption that the bit security of the scheme is the same as the bit hardness
of the underlying computational problem, e.g., [24, 69,81,82].

7The names of qTESLA’s parameter sets indicate the targeted security categories of NIST [164].

82



3.4 Implementation and Performance

In order to indicate how the performance of qTESLA performs to other efficient
ideal-lattice-based schemes that do not take existing security reductions into account,
we propose three additional parameter sets, namely qTESLA-h-I, qTESLA-h-III-
speed, and qTESLA-h-III-size, which are chosen heuristically. In this case, we
assume that the security level of an instantiation of the scheme by a certain
parameter set directly corresponds to the hardness level of the instance of the
underlying lattice problem that corresponds to these parameters, without taking
into account the security reduction. In this case we assume that Theorem 3.2.5 still
holds for these concrete parameter sets. We present our heuristic parameter sets
for qTESLA in Table 3.3. The parameter sets qTESLA-h-III-speed and qTESLA-h-
III-size target the same security level but they are optimized for different purposes:
qTESLA-h-III-speed is optimized to give very fast run-times whereas qTESLA-h-
III-size is optimized for small key and signature sizes. We exemplify how to optimize
parameters for the two different purposes next. The parameters LS and LE are
the most important parameters to tweak the size of the signature and keys, or the
run-time of the algorithms: The larger LS and LE are, the larger the acceptance
probability during key and signature generation and hence, the faster the signing
of a message will be. However, it also holds that the larger the parameter LS is,
the larger the signature size will be. This can also be seen in the parameter sets
qTESLA-h-III-speed and qTESLA-h-III-size. Namely, LS of qTESLA-h-III-size is
smaller than LS of qTESLA-h-III-speed. Hence, the acceptance probability δSign
and the signature size of qTESLA-h-III-size are smaller than those of qTESLA-
h-III-speed. Moreover, a smaller LS yields a smaller B. Similarly, a smaller LE
gives a smaller value for d. Both, B and d impact the size of q and hence, the
size of the public key. Again this can be seen in the case of qTESLA-h-III-speed
and qTESLA-h-III-size: As mentioned above, LS and LE of qTESLA-h-III-size are
smaller than those of qTESLA-h-III-speed. Consequently, B, d, and the public key
of qTESLA-h-III-size are smaller than those of qTESLA-h-III-speed. Lastly, for
the same values of σ and n, a smaller value for q gives a larger bit hardness of the
corresponding LWE instance in general. This means, that for the same value of
n and λ, and the smaller q, the value of σ for qTESLA-h-III-size can be chosen
smaller than for qTESLA-h-III-speed to give the same level of bit hardness. This
in turn, decreases the size of the secret key as can be seen in Table 3.3.

3.4 Implementation and Performance

After describing the schemes and presenting parameter sets, we turn to the im-
plementation security of TESLA and qTESLA and report on different existing
implementations.

83



3 The Signature Schemes TESLA and qTESLA

3.4.1 Implementation Security
Besides the theoretical security against computational attacks, such as lattice reduc-
tion, it is important for a cryptographic scheme to be secure against implementation
attacks. These attacks come in two flavors: side-channel and fault analysis attacks.

In this section we discuss the resistance of TESLA and qTESLA against certain
implementation attacks. Due to its fast run-times and smaller key sizes, qTESLA is
much more suitable for a variety of applications. As a consequence, qTESLA might
be exposed to different physical attacks. Hence, the implementation of qTESLA is
carefully protected against prominent implementation attacks as explained in the
following paragraphs.

In both, TESLA and qTESLA, the Gaussian sampler, arguably the most complex
part of the scheme, is restricted to key generation. This reduces drastically
the attack surface to carry out recent timing, cache, and power attacks, such
as [91, 110], against our implementations of TESLA and qTESLA. Additionally,
qTESLA’s Gaussian sampler is relatively simple and it is implemented in a constant-
time manner. In practice, this means that the implementation avoids the use of
secret address accesses and conditional branches based on secret information.
Other functions of qTESLA, such as polynomial arithmetic operations, are also
implemented in constant-time. Additionally, the qTESLA implementation of the
rejection sampling in the signature generation (line 11 of Algorithm 3.9) protects
the sign of each coefficient of z by doing a masked conversion to obtain its absolute
value before checking against a unique positive bound.

It is interesting to note that qTESLA has implicitly an additional line of defense,
thanks to its non-deterministic nature. To generate the polynomial y, a PRF is
applied to fresh randomness r, a value seedy, and the message m. The use of seedy
makes qTESLA resilient to a catastrophic failure of the Random Number Generator
(RNG) during generation of the fresh randomness (e.g., a similar failure of ECDSA
signatures was demonstrated in [56]). The randomness guarantees the use of a
fresh y at each signing operation, which makes a timing attack (or even more
generally, any side-channel attack) more difficult to carry out. More importantly,
this implicitly protects against some powerful and easy-to-carry out fault attacks,
as explained next.

Recently, some studies have exposed the vulnerability of lattice-based schemes to
fault attacks. We describe a simple yet powerful attack that falls in this category
of attacks [111]. Assume that line 3 of Algorithm 3.9 is computed without the
random value r, i.e., as rand← PRF2(seedy,m). Assume that a signature (z, c) is
generated for a given message m. Afterwards, a signature is requested again for
the same message m, but this time, a fault is injected on the computation of the
hash value c yielding the value cfaulted. The corresponding faulted signature is then
(zfaulted, cfaulted). Computing z − zfaulted = sc− scfaulted = s(c− cfaulted), reveals the

84



3.4 Implementation and Performance

secret s since c− cfaulted is known to the attacker. As stated in [179], this attack has
broad implications since it is generically applicable to deterministic Schnorr-like
signatures [203].
It is easy to see that, to prevent this (and other similar) fault attacks, every

signing operation should use fresh randomness, as precisely specified in line 3 of
Algorithm 3.9. This makes qTESLA implicitly resilient to this line of attacks.

In an earlier description of qTESLA, the scheme was specified as a deterministic
signature scheme and, hence, was susceptible to the fault attacks described in [111].
Also the scheme TESLA might be vulnerable to this attack since it is deterministic.

In summary, qTESLA is protected against most commonly exploited side-channel
and easy-to-carry-out fault attacks. As a future research direction, the counter-
measures against more advanced cache-, power-, and electromagnetic-side-channel
and fault attacks, described in Chapter 4 should be implemented.

3.4.2 Experimental Results
To evaluate the performance of our schemes and the respective proposed parameter
sets, we present the experimental results of existing implementations of TESLA
and qTESLA.

3.4.2.1 Experimental Results of TESLA

We first report on the experimental results of the TESLA software implementation
by Alkim that targets the Intel Haswell microarchitecture. The software makes use
of fast AVX2 instructions on vectors of 4 double-precision floating-point numbers.

Table 3.4 reports on the benchmarking results for TESLA-p-I. The benchmarks
are obtained on an 2.40 GHz Intel Core i5-6300U (Skylake) processor while disabling
Intel Turbo Boost and hyper-threading. Benchmarks of TESLA for signing are
computed over 100 000 signatures; benchmarks of TESLA for verification are
computed over 100 verifications, and the key generation reports the median/average
of two runs.
We give a comparison of TESLA with other standard-lattice-based signature

schemes in Section 3.5. Moreover, we compare the obtained benchmarks of TESLA
with those of qTESLA next.

3.4.2.2 Experimental Results of qTESLA

We now move on to report on the experimental results of the qTESLA imple-
mentation by Akleylek, Alkim, Barreto, Longa, Ricardini, and Zanon that is a
simple yet efficient reference implementation written exclusively in C. It is pro-
tected against several implementation attacks such as timing and cache attacks as

85



3 The Signature Schemes TESLA and qTESLA

Instantiation Key Generation Sign Verify

TESLA-p-I 165 168 022 79 486 7 308
(165 168 022) (87 970) (7 553)

Table 3.4: Performance (in thousands of cycles) of the software implementation of
TESLA on a 2.40 GHz Intel Core i5-6300U (Skylake) processor; results
are stated as the median and average (in parenthesis)

previously described in Section 3.4.1. This implementation is publicly available
on https://github.com/qtesla/qTesla. We present benchmarks that have been
obtained on different platforms or/and from different libraries in the following
paragraphs. Namely, we first state cycle counts that are obtained from the original
qTESLA reference implementation on two different CPUs. Afterwards, we report
on the benchmarks obtained from the qTESLA implementation integrated in the
library liboqs on an Intel Core i7-4500U (Haswell) and from the integration in the
library pqm4 on a microcontroller. Lastly, we present benchmarks obtained from
qTESLA on the VexRiscV processor on an FPGA.

Performance of the Original Reference Implementation. The following bench-
marks are obtained on two different desktop computers: a 3.40 GHz Intel Core
i7-6700 (Skylake) processor and a 3.40 GHz Intel Core i7-4770 (Haswell) processor.
See Table 3.5 and 3.6 for the results of the software implementation. As usual
Intel Turbo Boost and hyper-threading were disabled. The results in the two tables
correspond to a relatively simple implementation of qTESLA. Nevertheless, they
demonstrate that the scheme is practical for most applications. In particular, the
signature generation of the reference implementation of qTESLA-p-I is about 70
times faster than TESLA-p-I which makes use of the fast AVX instructions. Verifi-
cation of qTESLA-p-I is about 13 times faster than the corresponding TESLA-p-I
algorithm. From the reported results it can be seen that the heuristic parameter
sets of qTESLA are even more efficient: Signing with qTESLA-h-I is about 2.7
times faster than signing with qTESLA-p-I. Likewise, signature generation with
qTESLA-p-III is about 7.5 times slower than qTESLA-h-III-speed (and about 4
times slower than qTESLA-h-III-size). We give a comparison of qTESLA with
other ideal-lattice-based signature schemes in Section 3.5.

Performance of the qTESLA Implementation in liboqs. Furthermore, qTESLA
has been integrated in the library liboqs [16] of the Open Quantum Safe (OQS)
project [161]. The open source library liboqs provides a testing and benchmarking
framework for C implementations of post-quantum secure KEMs and signature

86

https://github.com/qtesla/qTesla


3.4 Implementation and Performance

Instantiation Security [bit] Key Generation Sign Verify

qTESLA-p-I 95 6 678 1 259 505
(6 880) (1 590) (505)

qTESLA-p-III 160 30 597 5 057 2 556
(32 573) (6 242) (2 556)

qTESLA-h-I 95 1, 583 467 99
(1, 727) (626) (99)

qTESLA-h-III-speed 160 3 576 663 202
(3 873) (866) (202)

qTESLA-h-III-size 160 6 057 1 236 204
(6 284) (1 714) (205)

Table 3.5: Performance (in thousands of cycles) of the reference implementation of
qTESLA on a 3.40 GHz Intel Core i7-6700 (Skylake) processor; results
are stated as the median and average (in parenthesis)

Instantiation Security [bit] Key Generation Sign Verify

qTESLA-p-I 95 6 857 1 348 544
(7 194) (1 705) (545)

qTESLA-p-III 160 31 904 5 488 2 715
(34 488) (7 127) (2 784)

qTESLA-h-I 95 1, 657 513 106
(1, 851) (714) (107)

qTESLA-h-III-speed 160 3 707 804 238
(4 120) (1 110) (241)

qTESLA-h-III-size 160 6 162 1 402 221
(6 554) (1 993) (227)

Table 3.6: Performance (in thousands of cycles) of the reference implementation of
qTESLA on a 3.40 GHz Intel Core i7-4770 (Haswell) processor; results
are stated as the median and average (in parenthesis)

schemes. In Table 3.7 we state the benchmarks that are obtained from the qTESLA
liboqs implementation on an Intel Core i7-4500U (Haswell) at 1.8GHz processor
while disabling Intel Turbo Boost and hyper-threading. Benchmarks of liboqs
and hence, the cycle counts in Table 3.7, are derived as follows. First as many
iterations of one algorithm as possible are computed for three seconds, e.g., the key

87



3 The Signature Schemes TESLA and qTESLA

generation of qTESLA-p-III is run 157 times, the signature generation is run 607
times, and the verification is run 1616 times. Then the mean of the measured cycle
counts is returned (along with other information that we do not report here). A
comparison of Table 3.7 and Table 3.5 reveals that the key generation of the liboqs
implementation of qTESLA is 1.29 to 1.33 times slower, the signing algorithm is
1.30 to 1.66 times slower, and verification is 1.31 to 1.60 times slower that the
original qTESLA implementation.

Instantiation Security [bit] Key Generation Sign Verify
qTESLA-p-I 95 9 318 2 728 848
qTESLA-p-III 160 45 886 11 834 4 445
qTESLA-h-I 95 2 435 1 056 157
qTESLA-h-III-speed 160 5 322 1 442 316
qTESLA-h-III-size 160 8 700 3 039 317

Table 3.7: Performance (in thousands of cycles) of the liboqs implementations of
qTESLA on a Intel Core i7-4500U (Haswell) at 1.8GHz processor; results
are stated as the median

Performance of the qTESLA Implementation in pqm4. Additionally, Alkim
ported the reference implementation of qTESLA-h-I, qTESLA-h-III-speed, and
qTESLA-h-III-size to the post-quantum cryptographic library targeting the ARM
Cortex-M4 family of microcontrollers, called pqm4 [132]. The benchmarks in
Table 3.8 are generated with the benchmarking and testing framework provided by
pqm4. The benchmarks are obtained from 100 executions. The results show that
qTESLA running on a microcontroller is about 12 to 16 times slower than running
on an Intel processor. Nevertheless, these results show that qTESLA is suitable for
running on microcontrollers.

Performance of the qTESLA Implementation on FPGA-Based VexRiscV. To
further show the practicability of qTESLA, we report on the cycle counts of a
qTESLA implementation running on the CPU VexRiscV [50]. VexRiscV is an open
source FPGA implementation of the RISC-V CPU architecture. This architecture
was designed to use the Reduced Instruction Set Computing (RISC) principles. To
run qTESLA on the VexRiscV platform, Deng, Szefer, Tian, and Wang compiled the
reference implementation of the signature generation and verification for qTESLA-
h-I using the VexRiscV compiler to receive a list of instructions that is executable
on the VexRiscV CPU. The execution of qTESLA on an FPGA-based CPU is
one of the first steps towards a dedicated qTESLA module in modern CPUs (or

88



3.5 Comparison with Other Signature Schemes

Instantiation Key Generation Sign Verify
qTESLA-h-I AVG: 16 894 AVG: 8 233 AVG: 1 281
(of bit security 95) MIN: 8 109 MIN: 1 720 MIN: 1 277

MAX: 48 319 MAX: 49 637 MAX: 1 306
qTESLA-h-III-size AVG: 56 075 AVG: 24 229 AVG: 2 531
(of bit security 160) MIN: 22 907 MIN: 3 709 MIN: 2 515

MAX: 153 716 MAX: 122 874 MAX: 2 566
qTESLA-h-III-speed AVG: 36 689 AVG: 13 203 AVG: 2 582
(of bit security 160) MIN: 20 936 MIN: 3 682 MIN: 2 576

MAX: 109 099 MAX: 43 998 MAX: 2 607

Table 3.8: Performance (in thousands of cycles) of the reference implementation
of qTESLA compiled and run on an ARM Cortex-M4; results for the
minimum, maximum, and average are stated

smaller but more frequently used modules such as a module for NTT computations).
Table 3.9 reports the benchmarking results for qTESLA-h-I. Running qTESLA-h-I
on VexRiscV used about 46% of the available memory, while the stack size was
set to 28 KB and the total memory region size is set as 320KB. This corresponds
to the size of the available on-chip Random-Access Memory (RAM) on a Cyclone
V DE1-SoC FPGA that was used for the experiments. Comparing the results
depicted in Table 3.9 and 3.5 shows that the implementation of qTESLA-h-I is 32
times slower than the corresponding implementation benchmarked on an Intel Core
i7-6700 processor. Verification is about 106 times slower than on the Intel processor.
The implementation of qTESLA-h-I is the only qTESLA parameter set that has
been executed on VexRiscV so far. The reason why the other sets have not yet been
compiled for VexRiscV is that the available on-chip RAM size is too small to be
able to fit the qTESLA design with larger parameters. Hence, some variables would
be overwritten during the execution, disrupting the results. Possible approaches to
solve this issue in the future could be to switch to an FPGA with larger on-chip
RAM size or to optimize the reference implementation of qTESLA with respect to
memory usage to make the implementation of qTESLA more friendly to embedded
system use cases. Currently, the C reference implementation optimized for speed.

3.5 Comparison with Other Signature Schemes
In this section, we compare TESLA and qTESLA with other signature schemes from
the literature. Table 3.10, hence, provides an overview of selected lattice-based and

89



3 The Signature Schemes TESLA and qTESLA

Instantiation Sign Verify
qTESLA-h-I 15 343 10 522

Table 3.9: Performance of the reference implementation on VexRiscV; cycle counts
are rounded to the nearest 103 cycles

other post-quantum signature schemes, along with their properties. Additionally, a
similar comparison of TESLA, qTESLA, and the classical signature schemes RSA
and ECDSA is presented in Table 3.11. In both the tables, the following properties
of signature schemes have been considered: the underlying hardness assumption,
the existence of a security reduction in the ROM or QROM, the existence of a
tight reduction in the (Q)ROM, the estimated bit security (regarding classical or
quantum attacks), the key and signature size in bytes, and the cycle counts (in
thousands of cycles) of signature generation and verification.

We state in the table the theoretical key and signature size independently of the
compression used by the corresponding software. Within our table, we report the
cycle counts from the software analysis obtained from the project SafeCrypto [200]
whenever possible to get a fair and reasonable comparison. In particular, the cycle
counts of pqNTRUSign, FALCON, Dilithium, SPHINCS+, and MQDSS are taken
from [200]. We report the average for signing and the median for verify. The reason
for not reporting the median for the signing performance is that often the median
is overly optimistic for signing. This holds in particular for lattice-based signatures
that use rejection sampling. However, the cycle counts of GPV, GPV-poly, GLP,
and BLISS are stated as in the respective literature since they do not appear in
[200]. The benchmarks for RSA and ECDSA are obtained from OpenSSL 1.1.0h on
a desktop computer (Intel Core i7-4500U, Haswell at 1.8GHz) while disabling Intel
Turbo Boost and hyper-threading. In both the tables, we denote if parameters have
been chosen according to the security reduction, such as for TESLA and qTESLA,
and if the bit security was estimated against classical and quantum attacks. In the
following paragraphs we present a comparison of qTESLA and TESLA with the
schemes listed in Tables 3.10 and 3.11.

Comparison with Unstructured-Lattice-Based Schemes. In Table 3.10, we list
two signature schemes constructed over unstructured lattices: TESLA and the
GPV scheme. These two schemes are the only unstructured-lattice-based schemes
that haven been proven secure in the QROM and are instantiated according to
their security reductions. As can be seen in the table, TESLA outperforms GPV
in run-time and size, as exemplified in the table through the signature size of
GPV, that is about 12 times larger. While TESLA’s key sizes are still several
magnitudes larger than the corresponding key sizes of ideal-lattice-based schemes,

90



3.5 Comparison with Other Signature Schemes

the signatures are of about the same size. In particular, the signature sizes are
even smaller than qTESLA’s signatures. One reason for this is the more flexible,
and in this case smaller, choice of n. We now discuss the comparison of qTESLA
to other (ideal-)lattice-based signatures next.

Comparison with Ideal-Lattice-Based Schemes. GPV-poly is a variant of GPV
over ideal lattices. Similarly to the case of TESLA explained above, qTESLA is
much more efficient in run-time and size than GPV-poly.

The signature schemes BLISS and GLP are two of the most efficient schemes in
Table 3.10. However, the two schemes are not instantiated against state-of-the-art
attacks, e.g., they do not consider recent quantum speed-ups such as [148], and they
are more vulnerable to implementation attacks such as [91,110,177]. This raises an
interesting question on how would updated and protected implementations compare
with recent schemes such as FALCON, Dilithium, or pqNTRUSign. The three latter
schemes are arguably the most interesting schemes for a comparison with qTESLA,
since they are, along with qTESLA, submitted to the post-quantum cryptography
standardization process initiated by NIST [164]8. To enable a fair comparison of
parameter sets with similar bit securities, we do not report the bit securities stated
in the literature. Instead we report the estimations presented in [8] under the
same cost model as used for the security estimations of TESLA and qTESLA. In
particular, we state the bit security of TESLA, qTESLA, Dilithium, FALCON,
and pqNTRUprime assuming a BKZ cost model of 0.265β + 16.4 + log2(8d) with β
being the BKZ blocksize and d being the lattice dimension.
Comparing qTESLA-h-III-size or qTESLA-h-III-speed with pqNTRUprime,

shows that qTESLA is faster, while public key and signature sizes of pqNTRUPrime
are slightly smaller.

In comparison with FALCON, qTESLA-p-III’s keys and signature are between 3
to 33 times larger. Moreover, qTESLA’s verification is about 4 times slower than
FALCON’s verify. However, qTESLA’s signature generation is about 1.3 times
faster than FALCON’s algorithms. The most important advantage of qTESLA
compared to FALCON, however, is qTESLA’s very simple design. Along side with
this, qTESLA is more easily protected against timing and cache side channels.
Conversely, an analysis of FALCON’s vulnerabilities to implementation attacks
has yet to be conducted. In particular, FALCON makes heavily use of Gaussian
sampling–a building block that has been targeted by power and cache-side-channel
attacks before [110,177].
A comparison with Dilithium shows that, in regards to its design, Dilithium

8The lattice-based signature scheme DRS [178] was also submitted to NIST. However, Ducas
and Yu already presented a statistical attack against DRS [219]. To our knowledge, no update
has been given so far.

91



3 The Signature Schemes TESLA and qTESLA

is closest to qTESLA since it is also a Fiat-Shamir signature scheme based on
a variant of LWE. According to Table 3.10, qTESLA-h-III-speed outperforms
Dilithium-recommended. In particular, qTESLA’s signature generation is about
three times faster while verification is about twice as fast as Dilithium’s algorithms.
Moreover, the size of qTESLA’s secret key is only 2/3 of Dilithium’s secret. Lastly,
although a simple yet powerful attack can be used to recover Dilithum’s secret
key [111], in case of qTESLA this is not possible since qTESLA is it is not vunerable
to this attack. However, qTESLA’s keys are about twice as large as Dilithium’s
keys.

Comparison with Selected Other Post-Quantum Schemes. For our compari-
son with other post-quantum signature schemes we picked two well-known schemes
which were also submitted to NIST in 2017, namely SPHINCS+–a stateless hash-
bashed scheme–and MQDSS–a multivariate scheme. Comparing qTESLA with
SPHINCS+ and MQDSS, draws a well-known picture for post-quantum cryptogra-
phy: While the key sizes of SPHINCS+ and MQDSS are much smaller than those of
qTESLA (they are about the same size as ECDSA keys), the run-time to generate
qTESLA-p-III’s signatures is much smaller (about 140 times faster compared to
SPHINCS+). Furthermore, SPHINCS+ and MQDSS signatures are larger than the
signatures of respective instantiations of qTESLA.
Hence, to sum up, in the realm of post-quantum signatures, qTESLA seems to

be a fine candidate that offers a good trade-off between run-time, signature size,
and key sizes. However, the choice of a concrete scheme depends very much on the
application scenario.

Comparison with Selected Classical Schemes. Moving on to Table 3.11, we
summarize the benchmarks and sizes for different RSA and ECDSA instantiations
in comparison to qTESLA and TESLA. Comparing qTESLA-p-III and RSA-3072
shows that the run-times of qTESLA’s signing are faster than the run-times of
RSA. This becomes clearer when comparing the heuristic parameter set qTESLA-h-
III-speed with the run-times of RSA-3072. In this case, the verification algorithm is
also as fast as the RSA verification. Nevertheless, qTESLA has larger signature and
key sizes, e.g., RSA-2048’s signatures are about 5 times smaller than qTESLA-h-I’s
signatures.
However, overall the larger key and signature sizes of qTESLA when compared

to RSA do not seem to lead to irresolvable problems when substituting RSA in
the current PKI. To exemplify, Kampanakis et al. [131] investigated the viability
of post-quantum signatures submitted to NIST [164] in X.509 certificates and
its applications such as the TLS protocol or Internet Key Exchange (IKEv2)
protocols. Based on their experimental findings they concluded, that the protocol

92



3.5 Comparison with Other Signature Schemes

transmission overhead introduced by the certificate size of post-quantum signatures
were acceptable. In addition, Herath and Stebila [B10] tested the compatibility of
different browsers and software libraries with hybrid signatures as we desxribe in
Chapter 5. They found that most TLS connections and S/MIME applications that
use hybrid certificates accept extensions/attributes of the size of qTESLA’s keys.
Nevertheless, software and libraries would likely have to be adapted to the larger
key sizes as the Gnu Privacy Guard (GPG) software and the library libgcrypt
only support keys up to a key size of four to 15 kilo bits by default. Hence, the
implementations in GPG and libgcrypt have to be changed accordingly to support
larger key sizes as used in qTESLA-p-I and qTESLA-p-III, e.g., a larger secure
memory has to be used in GPG and libgcrypt.

However, some applications require key and signature sizes that are even smaller
than RSA sizes and hence, qTESLA sizes. Some examples are signatures with
advanced functionality that are implemented on low-end embedded devices. Am-
brosin et al [17], for example, constructed an aggregate network attestation protocol.
To be able to implement such an attestation protocol for tiny sensor devices, their
construction is based on pairings, leading to overall communication cost of 100-200 B.
This is well below the qTESLA sizes.

In this chapter, we explained our signature schemes TESLA and qTESLA and
discussed their advantages and limitations. In the next chapter, we analyze the
vulnerabilities of lattice-based signature schemes regarding implementation attacks.

93



3 The Signature Schemes TESLA and qTESLA

Table
3.10:O

verview
ofstate-of-the-art

post-quantum
signature

schem
es

Schem
e/

C
om

p.
R
O
M
?

Q
R
O
M
?

Security
K
ey

Size
Sig.Size

C
ycle

counts
Softw

are
A
ssum

.
T
ight?

T
ight?

[bit]
[B
]

[B
]

[k-cycles]

Selected lattice-based signatures

G
PV

a
SIS

3
3

96
pk:

28
508

160
30

106
sign:

287
500

[27,69,104]
3

3
sk:

12
353

536
verify:

48
300

T
ESLA

-p-I
a

3
3

pk:
11

559
900

sign:
79

486
(this

thesis)
LW

E
3

3
108

sk:
4

332
000

2
343

verify:
7
553

G
PV

-poly
a

R
-SIS

3
3

96
pk:

48
435

30
822

sign:
71

300
[27,69,104]

3
3

sk:
24

474
verify:

9
200

G
LP

D
C
K

3
7

75–80
vk:

1
475

1
119

sign:
452

[69,114]
7

7
sk:

203
verify:

34
B
liss-bI

R
-SIS,

3
7

128
pk:

896
717

sign:
≈
358

[80,81]
N
T
R
U

7
7

sk:
256

verify:
102

pqN
T
R
U
Sign

(U
niform

)
N
T
R
U

3
7

183
b

pk:
2

048
2

048
sign:

202
185

[61,200]
LW

T
/LW

R
c

3
7

sk:
2

604
verify:

2
533

FA
LC

O
N
-512

a
N
T
R
U

3
3

158
b

pk:
897

617
sign:

8
360

[96,200]
3

3
sk:

4
097

verify:
640

D
ilithium

-m
edium

m
odule

SIS,
3

3
122

b
pk:

1
184

2
044

sign:
1

185
[82,200]

m
odule

LW
E

3
3

sk:
2

800
verify:

291
D
ilithium

-recom
m
ended

m
odule

SIS,
3

3
160

b
pk:

1
472

2
701

sign:
2

754
[82,200]

m
odule

LW
E

3
3

sk:
3

504
verify:

466
qT

ESLA
-p-I

a
3

3
pk:

14
880

2
848

sign:
1

590
(this

thesis)
R
-LW

E
3

3
95

b
sk:

4
544

verify:
505

qT
ESLA

-p-III
a

3
3

pk:
39

712
6

176
sign:

6
242

(this
thesis)

R
-LW

E
3

3
160

b
sk:

10
816

verify:
2

556
qT

ESLA
-h-I

3
3

pk:
1

504
1

376
sign:

626
(this

thesis)
R
-LW

E
3

3
95

b
sk:

1
216

verify:
99

qT
ESLA

-h-III-size
3

3
pk:

2
976

2
720

sign:
1

714
(this

thesis)
R
-LW

E
3

3
160

b
sk:

1
856

verify:
204

qT
ESLA

-h-III-speed
3

3
pk:

3
104

2
848

sign:
866

(this
thesis)

R
-LW

E
3

3
160

b
sk:

2
112

verify:
202

Selected
PQ

signatures

SPH
IN

C
S

+-128f a
H
ash

collisions
3

3
128

d
pk:

32
8
080

sign:
872

790
(H

araka)
[40,200]

2nd
preim

age
3

3
sk:

64
verify:

32
632

M
Q
D
SS-31-64

M
ultivariate

3
7

128
d

pk:
88

67
800

sign:
266

840
[62,200]

Q
uadratic

system
7

7
sk:

48
verify:

554
688

a
P

aram
eters

are
chosen

according
to

given
security

reduction
in

the
R

O
M

/Q
R

O
M

.
b

B
it

security
analyzed

against
classicaland

quantum
adversaries

w
ith

B
K

Z
cost

m
odel0

.265
β

+
16
.4

+
log

2 (8
d)

[8].
d

Learning
W

ith
Truncation

(LW
T

)
and

Learning
w

ith
R

ounding
(LW

R
)

problem
[61]

d
B

it
security

analyzed
against

classicaland
quantum

adversaries.

94



3.5 Comparison with Other Signature Schemes

Ta
bl
e
3.
11
:C

om
pa

ris
on

of
T
ES

LA
an

d
qT

ES
LA

w
ith

R
SA

an
d
EC

D
SA

Sc
he
m
e/

C
om

p.
Se
cu
rit

y
K
ey

Si
ze

Si
g.

Si
ze

C
yc
le

co
un

ts
So

ftw
ar
e

A
ss
um

.
[b
it]

[B
]

[B
]

[k
-c
yc
le
s]

T
ES

LA
-p
-I

pk
:

11
55

9
90

0
sig

n:
79

48
6

(t
hi
s
th
es
is)

LW
E

10
8

sk
:

4
33

2
00

0
2

34
3

ve
rif
y:

7
55
3

qT
ES

LA
-p
-I

pk
:

14
88

0
2

84
8

sig
n:

1
59

0
(t
hi
s
th
es
is)

R
-L
W

E
95

a
sk
:

4
54

4
ve
rif
y:

50
5

qT
ES

LA
-p
-I
II

pk
:

39
71

2
6

17
6

sig
n:

6
24

2
(t
hi
s
th
es
is)

R
-L
W

E
16
0a

sk
:

10
81

6
ve
rif
y:

2
55

6
qT

ES
LA

-h
-I

pk
:

1
50

4
1

37
6

sig
n:

62
6

(t
hi
s
th
es
is)

R
-L
W

E
95

a
sk
:

1
21

6
ve
rif
y:

99
qT

ES
LA

-h
-I
II
-s
iz
e

pk
:

2
97

6
2

72
0

sig
n:

1
71

4
(t
hi
s
th
es
is)

R
-L
W

E
16
0a

sk
:

1
85

6
ve
rif
y:

20
4

qT
ES

LA
-h
-I
II
-s
pe

ed
pk

:
3

10
4

2
84

8
sig

n:
86

6
(t
hi
s
th
es
is)

R
-L
W

E
16
0a

sk
:

2
11

2
ve
rif
y:

20
2

R
SA

-2
04
8

In
te
ge
r

11
2b

pk
:

25
6

25
6

sig
n:

2
09

5
Fa

ct
or
iz
at
io
n

sk
:

25
6

ve
rif
y:

92
R
SA

-3
07
2

In
te
ge
r

12
8b

pk
:

38
4

38
4

sig
n:

9
89

5
Fa

ct
or
iz
at
io
n

sk
:

38
4

ve
rif
y:

19
4

R
SA

-7
68
0

In
te
ge
r

19
2b

pk
:

96
0

96
0

sig
n:

18
5

93
8

Fa
ct
or
iz
at
io
n

sk
:

96
0

ve
rif
y:

1
16

1
EC

D
SA

(P
-1
92
)

El
lip

tic
C
ur
ve

96
b

pk
:

48
48

sig
n:

18
0

D
L

sk
:

48
ve
rif
y:

72
0

EC
D
SA

(P
-2
56
)

El
lip

tic
C
ur
ve

12
8b

pk
:

64
64

sig
n:

18
0

D
L

sk
:

64
ve
rif
y:

36
0

EC
D
SA

(P
-3
84
)

El
lip

tic
C
ur
ve

19
2b

pk
:

96
96

sig
n:

54
0

D
L

sk
:

96
ve
rif
y:

2
52

0
a

B
it

se
cu

ri
ty

an
al

yz
ed

ag
ai

ns
t

cl
as

si
ca

la
nd

qu
an

tu
m

ad
ve

rs
ar

ie
s.

b
B

ro
ke

n
ag

ai
ns

t
qu

an
tu

m
co

m
pu

te
rs

(b
it

se
cu

ri
ty

an
al

yz
ed

ag
ai

ns
t

cl
as

si
ca

la
dv

er
sa

ri
es

).

95





4 Implementation Security of Lattice-
Based Signature Schemes

When introducing new cryptographic schemes in practice, care must be taken to
ensure that they are secure against mathematical cryptanalysis. Cryptographic
implementations must additionally be protected against implementation attacks,
considering that the secret key is stored on physical devices [172]. They can be
categorized into side-channel or fault attacks [156] and are further exemplified
through power, time, electromagnetic, and cache side channels [144] or zeroing,
randomizing, and skipping fault attacks [190]. Moreover, lattice-based signature
schemes appear to be particularly vulnerable to cache-side-channel and fault attacks.
Recent investigations [110, 176, 177, 199] highlight the difficulty in implementing
lattice-based signatures without cache side channels. In addition, the most efficient
lattice-based signature schemes are based on Fiat-Shamir identification [94] which
were targeted in one of the first fault attacks presented by Boneh et al. [47].

In this chapter we develop a cache-side-channel resistant implementation of ring-
TESLA. Furthermore, we analyze the signature schemes GLP [114], BLISS [81],
and ring-TESLA with respect to fault attacks.

We start this chapter with Section 4.1 on cache side channels. First, we explain
the attacker models that we consider for our analysis. We then identify potential
vulnerabilities through manual code inspection in Section 4.1.2. Lastly, we im-
plement effective countermeasures in Section 4.1.3. Moving forward, Section 4.2
on fault attacks starts with a description of the analyzed signature schemes and
an approach to reduce the number of faults. Subsequently, we analyze BLISS,
ring-TESLA, and GLP with respect to zeroing, randomizing, and skipping faults
in Section 4.2.3, 4.2.4, and 4.2.5, respectively. In the final part of this section, we
present countermeasures for each of the found attacks and explain their realization
using ring-TESLA as an example. Finally, Section 4.3 briefly discusses the vulnera-
bility of lattice-based signatures against other side channels.

This chapter is based on the publications [B7] (FDTS 2016) and [B8] (FPS 2017),
and [B11] (CODES+ISSS 2017). Section 4.3 is original in this thesis.

97



4 Implementation Security of Lattice-Based Signature Schemes

4.1 Vulnerability Against Cache-Side-Channel
Attacks

In this section, we analyze potential cache side channels of lattice-based imple-
mentations at the example of the signature generation in ring-TESLA for the four
attacker models that are described in Section 4.1.1.
Mantel, Schickel, and Weber used an extension of the software tool CacheAu-

dit [78] to compute upper leakage bounds of 2.6 bit to 51.6 bit depending on the
attacker model. Informally, bit leakage quantifies how much the uncertainty of an
attacker is removed when observing the execution of algorithms (with respect to
certain attacker models). For a formal definition of bit leakage we refer to [78]. The
computed leakage bounds are sound, i.e., conservative with respect to the attacker
models, but they might not be tight. Hence, we first inspect the C implementation
of ring-TESLA manually to investigate if the determined bit leakage corresponds
to an actual concern and, if so, to detect possible cache side channels. Afterwards,
we augment the ring-TESLA implementation by countermeasures and argue for
the effectiveness of the countermeasures. Experimental results by Mantel, Schickel,
and Weber using CacheAudit show indeed a decreased number of bits leaked.
The detection and mitigation of cache side channels not only hardens the ring-

TESLA implementation. Other lattice-based constructions, use techniques that
are similar to the ones that have been analyzed in ring-TESLA.

4.1.1 Attacker Models
In the following paragraphs, we introduce the four attack models that we consider
in our analysis.
As explained in Section 2.5, a cache-side-channel vulnerability might occur

if the behavior of the cache depends on secret data. Attacks on cryptographic
implementations have exploited secret-dependence in the trace of cache hits and
misses [3,103], the time taken for cache hits and misses [37], and the final cache state
of an execution [169]. According to these different attacks, cache side channels are
categorized as time-driven, trace-driven, or access-driven in the literature [3, 103].
We consider the following four attacker models, following Doychev et al. [78] who
distinguish between two different access-driven attacker models:
accd This attacker model captures attackers who can observe the number of mem-
ory blocks in each cache set in the final cache state after a program execution. It
is a generalization of techniques like Evict+Time and Prime+Probe [169].

acc This attacker model captures attackers who can observe the position of
each memory block in the final cache state. It captures techniques like
Flush+Reload [218].

98



4.1 Vulnerability Against Cache-Side-Channel Attacks

trace This attacker model captures trace-based attackers who can observe the
trace of cache hits and misses that occur during one program execution. It
corresponds to the trace-based attacks in [3,103] where such traces of hits and
misses have been exploited.

time This attacker model captures time-based attackers who can observe the
run-time of one program execution. For instance, the attack described in [37]
models the amount of cache hits and cache misses that occur based on the
run-time.

Possible sources for cache side channels are, for example, branchings that depend
on secret values or early termination of while- or for-loops.

4.1.2 Manual Analysis of the Implementation
We now move on to analyze the C implementation of the ring-TESLA signature
generation to check if the potential leakage detected by Mantel, Schickel, and
Weber corresponds to an actual concern.

The signature scheme ring-TESLA is described in Section 3.1.2.3; Listing 4.1
shows the parts of the signature generation function crypto_sign that are most
important for our analysis, leaving out variable declarations. To detect potential
cache side channels, we analyze all subroutines in crypto_sign that get secret
values as input or return secret values as their output, e.g., the subroutine random_y
does not depend on secret information but nevertheless the output has to be kept
secret. The following variables have to be kept secret during the execution of
crypto_sign:
• the secret key sk: the secret key consists of three secret polynomials s, e1, e2,
which are sometimes extracted from sk, e.g., Listing 4.12, line 3.
• the randomness vec_y: learning information about the randomness might give

information about secret data, e.g., in Listing 4.1, line 22 the input vec_y of
poly_add(vec_y, vec_y, Sc) corresponds to the randomness y used during
signature generation (see Algorithm 3.12), Sc corresponds to sc, and the
output value vec_y corresponds to z. Hence, information about y might reveal
information about sc since z = y + sc is returned as part of the signature.
• the polynomials vec_v1 and vec_v2 to compute the hash value: vec_v1
corresponds to the product of vec_y and poly_a1 (similarly for vec_v2).
Hence, learning information about vec_v1 or vec_v2 might reveal information
about vec_y, which is also secret as explained above. The polynomials poly_a1
and poly_a2, however, are publicly known.
• the hash value c and the coefficient vector of the corresponding encoded
polynomial pos_list: the two values have to be kept secret until line 24 in
Listing 4.1. In line 24 it is decided whether the potential signature (computed

99



4 Implementation Security of Lattice-Based Signature Schemes

in line 22) is returned together with the value c (and hence c and pos_list
become public information) or if all computed values are discarded. An
attacker should not learn the values of the discarded polynomials, e.g., c or
pos_list. If the attacker learns values of many discarded pos_list or c
there exists a potential attack as described in the analysis of the subroutines
test_rejection and test_w.
• the polynomials E1c, E2c, and Sc: these values correspond to the polynomials
e1c, e2c, and sc, respectively, in pseudo-code notation (see Algorithm 3.12).
Hence, information about these values might yield information about the secret
polynomials e1, e2, or s.

The parameters PARAM_N, PARAM_SIGMA, PARAM_Q, PARAM_B, PARAM_W, PARAM_D,
and PARAM_U are constants and publicly known.

1 [...]
2 while (1){
3 sample_y(vec_y);
4 poly_mul_fixed(vec_v1 , vec_y , poly_a1);
5 poly_mul_fixed(vec_v2 , vec_y , poly_a2);
6 random_oracle(c, vec_v1 , vec_v2 , m, mlen);
7 generate_c(pos_list , c);
8
9 computeEc(E1c , sk+sizeof(int)*PARAM_N , pos_list);

10 poly_sub(vec_v1 ,vec_v1 , E1c);
11 if (test_w(vec_v1) != 0){
12 continue;
13 }
14
15 computeEc(E2c , sk+sizeof(int)*PARAM_N*2, pos_list);
16 poly_sub(vec_v2 ,vec_v2 , E2c);
17 if (test_w(vec_v2) != 0){
18 continue;
19 }
20
21 computeEc(Sc, sk, pos_list);
22 poly_add(vec_y , vec_y , Sc);
23 if (test_rejection(vec_y) != 0){
24 continue;
25 }
26
27 for(i=0; i<mlen; i++){
28 sm[i]=m[i];
29 }
30 *smlen = CRYPTO_BYTES + mlen;
31 compress_sig(sm+mlen , c, vec_y);
32 return 0;
33 }

Listing 4.1: Code of signature generation of ring-TESLA in crypto_sign

In what follows, we first present the subroutines that are not vulnerable to
cache-side-channel attacks according to our manual analysis and give our reason-
ing. Afterwards, we describe potential cache side channels in the subroutines

100



4.1 Vulnerability Against Cache-Side-Channel Attacks

generate_c, test_w, test_rejection, and compute_Ec. Based on the analysis
of the subroutines we discuss the vulnerability of the entire routine crypto_sign.

4.1.2.1 Analysis of the Subroutine sample_y

The implementation of the subroutine sample_y is given in Listing 4.2. The function
is called once in the sign algorithm in line 3 in Algorithm 4.1 via sample_y(vec_y).
The result poly mat_y in Listing 4.2 of the subroutine has to be kept secret.

The cache behavior during the execution of this subroutine does not depend on
the values of mat_y for the following reason. The only values loaded in the cache
are pos, buf, val, and potentially the elements of mat_y that are changed during
the routine. However, each of these values is loaded into the cache only once during
the run of the subroutine and is not overwritten by any other value since these
elements are small enough to fit in the cache at the same time. Hence it stays
in the cache during the execution of the subroutine. The number of accesses to
the individual values is not constant due to the branchings in line 8 and line 14.
However, it depends only on the number of tries it takes to obtain valid values for
pos and val, and the number of tries is not secret.

1 void sample_y(poly mat_y){
2 int32_t val;
3 unsigned char buf[3* PARAM_N +68];
4 int pos=0, i=0;
5
6 fastrandombytes(buf ,3* PARAM_N +68);
7 do{
8 if(pos == 3* PARAM_N +66){
9 fastrandombytes(buf ,3* PARAM_N +68);

10 pos = 0;
11 }
12 val = (*( int32_t *)(buf+pos)) & 0x7fffff;
13
14 if(val < 0x7fffff){
15 mat_y[i++] = val -PARAM_B;
16 }
17 pos +=3;
18 }
19 while(i< PARAM_N);
20 }

Listing 4.2: Code of the subroutine sample_y

Two more subroutines are called during sample_y, namely fastrandombytes
and randombytes. Both do not reveal information about mat_y as explained next.
The subroutine fastrandombytes is given in Listing 4.3. There are no branchings,
loops, or memory accesses that depend on secret values and hence, all cache hits
and misses are independent of the computed/sampled values. Furthermore, the call
to crypto_stream does not pass any secret information to crypto_stream since

101



4 Implementation Security of Lattice-Based Signature Schemes

rlen is a public parameter and key is random. Hence, there should be no cache
side channels in the subroutine fastrandombytes.

1 void fastrandombytes(unsigned char *r, unsigned long long rlen){
2 unsigned long long n=0;
3 int i;
4 if(!init){
5 randombytes(key , crypto_stream_KEYBYTES);
6 init = 1;
7 }
8 crypto_stream(r,rlen ,nonce ,key);
9

10 for(i=0;i<8;i++){
11 n ^= (( unsigned long long)nonce[i]) << 8*i;
12 }
13 n++;
14 for(i=0;i<8;i++){
15 nonce[i] = (n >> 8*i) & 0xff;
16 }
17 }

Listing 4.3: Code of the subroutine fastrandombytes

The subroutine randombytes is given in Listing 4.4. There are also no cache
side channels in this subroutines since the only branchings in line 2 until line 6 do
not depend on secret (but on random) information.

1 void randombytes(unsigned char *x,unsigned long long xlen){
2 while (xlen > 0){
3 if (! outleft){
4 if (!++in[0]){
5 if (!++in[1]){
6 if (!++in[2]){
7 ++in[3];
8 }
9 }

10 }
11 surf();
12 outleft = 8;
13 }
14 *x = out[--outleft ];
15 ++x;
16 --xlen;
17 }
18 }

Listing 4.4: Code of the subroutine randombytes

4.1.2.2 Analysis of the Subroutine poly_mul_fixed

The implementation of the subroutine poly_mul_fixed is given in Listing 4.5. The
function is called twice during signing in Listing 4.1, namely in line 4 and 5 via

102



4.1 Vulnerability Against Cache-Side-Channel Attacks

poly_mul_fixed(vec_v1,vec_y, poly_a1) and poly_mul_fixed(vec_v2,vec_y,
poly_a2), respectively. The input value that has to be kept secret is x (correspond-
ing to vec_y in both calls) in Listing 4.5. Later on in the subroutine also the value
result has to be kept secret.

The only conditional branching depending on x is in line 4, Listing 4.5. However,
this does not lead to a cache side channel since the used values in the then-branch
only depend on result and x–the two values the if-condition depends on. Hence,
by a cache hit the attacker just learns that results != x which does not give any
additional information about the secret values.

1 void poly_mul_fixed(poly result , const poly x, const poly a){
2 unsigned int i;
3
4 if (result != x){
5 for(i = 0; i < PARAM_N; i++){
6 result[i] = x[i];
7 }
8 }
9 mul_coefficients(result , psis);

10 bitrev_vector(result);
11 ntt(result , omegas);
12
13 for(i=0; i<PARAM_N; i++){
14 result[i] = fmodq(result[i] * a[i]);
15 }
16
17 bitrev_vector(result);
18 ntt(result , omegas_inv);
19 mul_coefficients(result , psis_inv);
20 }

Listing 4.5: Code of the subroutine poly_mul_fixed

There are no further loops, conditions, or access indices depending on x or result.
They only depend on publicly known constants. However, there are four more
calls of subroutines with (secret) input value result, namely ntt, bitrev_vector,
mul_coefficients, and fmodq. The three subroutines ntt, bitrev_vector, and
mul_coefficients are implementations of (pre-)computations during the NTT
which we do not display here. The subroutine of fmodq is given in Listing 4.6. All
four subroutines have control flow and memory accesses that are independent of
secret values. The computed operations do not depend on the values of result
but only on constants or public parameters such as PARAM_N or PARAM_Q. Hence,
the subroutine poly_mul_fixed is not vulnerable to cache-side-channel attacks.

4.1.2.3 Analysis of the Subroutine random_oracle

The implementation of the subroutine random_oracle is given in Listing 4.7. It is
called once in crypto_sign in line 6 via random_oracle(c,vec_v1,vec_v2,m,mlen).

103



4 Implementation Security of Lattice-Based Signature Schemes

1 static int32_t fmodq(int64_t x){
2 int64_t u = (x * 206175203327);
3 u &= ((( int64_t)1<<39) -1);
4 u *= PARAM_Q;
5 u += x;
6 return u>>39;
7 }

Listing 4.6: Code of the subroutine fmodq

The input values that have to be kept secret are v1 and v2 in Listing 4.7.
Due to the following reasons no information about the two values is obtained by

a cache side channel. The control flow and memory accesses are independent of the
value of the secrets. Furthermore, the subroutine compress_v has control flow and
memory accesses independent of secret information as can be seen in Listing 4.8. For
example, every coefficient of v1 is computed modulo PARAM_Q (corresponding to the
modulus q in pseudo-code notation) independently of whether the value is already
in the interval (−q/2, q/2] or not. Also, the subroutine crypto_hash_sha512 does
not contain secret-dependent branches, loops, or access indices. We do not display
the (very long) source code here. Overall, there should be no cache side channels
present in the subroutine random_oracle.

1 void random_oracle(unsigned char *c_bin , poly v1 , poly v2, const unsigned char *m,
unsigned long long mlen){

2 int32_t t1[PARAM_N],t2[PARAM_N ];
3 unsigned long long i;
4 unsigned char buf[2* PARAM_N+mlen];
5 compress_v(t1, v1);
6 compress_v(t2, v2);
7 for(i=0; i<PARAM_N; i++){
8 buf[i] = t1[i];
9 }

10 for(i=0; i<PARAM_N; i++){
11 buf[i+PARAM_N] = t2[i];
12 }
13 for(i=0; i<mlen; i++){
14 buf[i+2* PARAM_N] = m[i];
15 }
16 crypto_hash_sha512(c_bin , buf , mlen +2* PARAM_N);
17 }

Listing 4.7: Code of the subroutine random_oracle

4.1.2.4 Analysis of the Subroutines poly_sub and poly_add

The implementations of the subroutines poly_sub and poly_add are given in
Listing 4.9 and Listing 4.10, respectively. They are called three times during signing:
poly_sub(vec_v1,vec_v1, E1c) in line 10, poly_sub(vec_v2,vec_v2,E2c) in

104



4.1 Vulnerability Against Cache-Side-Channel Attacks

1 static void compress_v(int32_t t[PARAM_N], poly v){
2 int i;
3 for(i=0;i<PARAM_N;i++){
4 int32_t c = v[i] % PARAM_Q;
5 t[i] = (( int64_t)(v[i]-c))>>PARAM_D;
6 }
7 }

Listing 4.8: Code of the subroutine compress_v

line 16, and poly_add(vec_y,vec_y,Sc) in line 22 in Algorithm 4.1. The two
subroutines are exactly the same except for one summand in line 4 in both of
the listings. Hence, we analyze them together next. The values result and y in
Listing 4.9 and 4.10 have to be kept secret.
The two subroutines consist of a for-loop depending on the publicly known

value PARAM_N and calls to the subroutine fmodq. No branchings, loops, or access
indices depend on secret values (in the routines poly_sub and poly_add, and the
subroutine fmodq, given in Listing 4.6). Hence, there are no cache side channels in
these two subroutines.

1 void poly_sub(poly result , const poly x, const poly y){
2 unsigned int i;
3 for(i = 0; i < PARAM_N; i++){
4 result[i] = fmodq (( int64_t)(x[i] + (PARAM_Q -y[i])) <<39);}
5 }

Listing 4.9: Code of the subroutine poly_sub

1 void poly_add(poly result , const poly x, const poly y){
2 unsigned int i;
3 for(i = 0; i < PARAM_N; i++){
4 result[i] = fmodq (( int64_t)(x[i] + y[i]) <<39);}
5 }

Listing 4.10: Code of the subroutine poly_add

4.1.2.5 Analysis of the Subroutine compress_sig

The implementation of the routine compress_sig is given in Listing 4.11. It is called
once in crypto_sign, namely in line 31 via compress_sig(sm+mlen,c,vec_y). In
this subroutine the values c and vec_y have to be kept secret.

There are no branchings, loops, or access indices depending on these secret values
since all operations are computed exactly the same way for different secret values.
Hence, there are no cache side channels in compress_sig.

105



4 Implementation Security of Lattice-Based Signature Schemes

1 static void compress_sig(unsigned char *sm, unsigned char *c, poly vec_z){
2 int i,k;
3 int ptr =0;
4 int32_t t=0;
5
6 for (i=0; i<32; i++){
7 sm[ptr++] =c[i];
8 }
9 for(i=0; i<PARAM_N; i++){

10 t = (int32_t)vec_z[i];
11 for(k=0;k<3;k++){
12 sm[ptr++] = ((t>>(8*(k))) & 0xff);
13 }
14 }

Listing 4.11: Code of the subroutine compress_sig

4.1.2.6 Analysis of the Subroutine compute_Ec

The implementation of the subroutine compute_Ec is given in Listing 4.12. It is
called three times during sign, namely computeEc(E1c, sk+sizeof(int)*PARAM_N,
pos_list) in line 9, computeEc(E2c, sk+sizeof(int)*PARAM_N*2, pos_list)
in line 15, and computeEc(Sc, sk, pos_list) in line 21. In Listing 4.12, the
following values have to be kept secret: Ec, sk, e, pos_list, and pos.

Most loops and branchings do not depend on any of the secret values. However,
there might be a possible side channels that reveals information of pos (and hence,
of the values in pos_list) because of the cache hits/misses depending on e. In
both loop bodies values are read from e (namely, either e[j+PARAM_N-pos] or
e[j-pos]) such that in both loops together all entries of e are read. However,
information might be gathered from the chronological order of cache hits and
misses. We illustrate this using an example: The array e consists of PARAM_N many
entries of type int, i.e., each entry of e is represented in 32 bit. We assume that
one cache line is 64 byte as it is used in the first level cache of the Intel Skylake
architecture [126] that is also used to benchmark qTESLA in Section 3.4.2. Then
about 16 entries (depending on the alignment in the memory) of e fit into one
cache line. Assume furthermore, pos=14. Then, under the trace-driven attacker
model trace, an attacker sees one cache miss (on element e[PARAM_N-14]) and
13 cache hits (on elements e[PARAM_N-13],..., e[PARAM_N-1]) during the loop in
line 10.9 However, two more entries of e are also already loaded in the cache,
namely e[PARAM_N-16] and e[PARAM_N-15]. Thus, in the second loop in line 13,
the attacker sees cache hits on these two elements. He might, hence, be able to
determine the value of pos from the distribution of cache hits for the considered
cache line over the loops.

9To simplify our explanation we assume that the corresponding cache line starts with
e[PARAM_N-16] and ends with e[PARAM_N-1].

106



4.1 Vulnerability Against Cache-Side-Channel Attacks

1 static void computeEc(poly Ec, const unsigned char *sk, const uint32_t pos_list[
PARAM_W ]){

2 int i,j, pos , * e;
3 e = (int*)sk;
4 for(i=0;i<PARAM_N;i++){
5 Ec[i] = 0;
6 }
7
8 for(i=0;i<PARAM_W;i++){
9 pos = pos_list[i];

10 for(j=0;j<pos;j++){
11 Ec[j] += e[j+PARAM_N - pos];
12 }
13 for(j=pos;j<PARAM_N;j++){
14 Ec[j] -= e[j-pos];
15 }
16 }
17 }

Listing 4.12: Code of the subroutine computeEc

4.1.2.7 Analysis of the Subroutine test_rejection

The implementation of the subroutine test_rejection is given in Listing 4.13. It is
called once in the sign algorithm in line 23 via if (test_rejection(vec_y) != 0).
The variable poly_z in Listing 4.13 has to be kept secret.

The subroutine test_rejection consists of a for-loop that loops independently
of the secret over i=0,...,PARAM_N. Within the for-loop, there is a secret-
dependent if-condition which leads to a potential cache-side-channel vulnerability
as explained next.

We assume a strong trace-driven attacker model, i.e., the attacker has a sequence
of occurred cache hits and misses. Furthermore, we assume that poly_z is already
loaded in the cache before the if-condition is evaluated.10 We first consider the
case if the if-condition in line 4, Listing 4.13, holds never true. Then the value 0 is
returned and the attacker gets a sequence of PARAM_N (or 2·PARAM_N–depending on
the compilation) hits. This essentially means that all coefficients of poly_z are in
the interval [−B+U,B−U ] and, hence, the corresponding signature is compressed
and returned (see Listing 4.1). Next, we consider the other case, i.e., the absolute
value of at least one of the coefficients of poly_z is larger than B − U . That
means that the if-condition in Listing 4.13 holds true for some i∈ {0, ...,PARAM_N}.
Hence, 1 is returned in the i-th iteration and the attacker gets a sequence of
only PARAM_N−i hits. Consequently, the attacker knows the exact index of the
coefficient that violated the if-condition. Now we assume that the attacker also
knows the values in the array pos_list (which corresponds to the polynomial

10Our arguments hold also true if we assume that poly_z is not loaded in the cache. In the
ring-TESLA implementation, however, it is loaded in the cache, see line 22 in Listing 4.1.

107



4 Implementation Security of Lattice-Based Signature Schemes

c = Enc(H ([v1]M , [v2]M , µ)), see Figure 3.12) from another cache side channel.
Then it is possible that the attacker finds out which coefficients of the secret s
contributed to the i-th, large coefficient of poly_z. If an attacker learns the exact
position i and the corresponding pos_list for many different values to the same
secret key s then the attacker might receive enough information about the size of
the entries in s to successfully break the scheme via a learning-the-parallelepiped-
attack [84, 166]. At least, this information might decrease the secret key space
considerably.

1 static int test_rejection(poly poly_z){
2 int i;
3 for(i=0; i<PARAM_N; i++){
4 if(poly_z[i]<-(PARAM_B -PARAM_U)|| poly_z[i]>(PARAM_B -PARAM_U)){
5 return 1;
6 }
7 }
8 return 0;
9 }

Listing 4.13: Code of the subroutine test_rejection

4.1.2.8 Analysis of the Subroutine test_w

The implementation of the routine test_w is given in Listing 4.14. It is called twice
in the sign algorithm: in line 11 via if (test_w(vec_v1) != 0) and in line 17 via
if (test_w(vec_v2) != 0). The values poly_w, val, and left in Listing 4.14
have to be kept secret.
There exists a potential vulnerability in the subroutine test_w that is similar

to the cache side channel described for test_rejection in Section 4.1.2.7. In
the subroutine test_w, the cache-side-channel vulnerability comes from the early
abortion depending on left in line 15 of Listing 4.14. Namely, when the if-
condition in line 15 holds for some i and the corresponding abs(left), -1 is
immediately returned, a trace-driven attacker might learn the exact index i.

4.1.2.9 Analysis of the Subroutine generate_c

The implementation of the subroutine generate_c is given in Listing 4.15. It is
called once in the signature generation in line 7 via generate_c(pos_list, c).
The values pos_list, c, and pos in Listing 4.15 have to be kept secret.

There are no branchings or loops depending on secret values, except for one if-
condition on c[pos] in line 15 of Listing 4.15 which leads to a possible side channel.
To explain the side channel, we first explain the cache policy no-write-allocate
first. In case of using no-write-allocate policy, data is only loaded in the cache if
the data is read. In contrast, if data should only be written–without reading it

108



4.1 Vulnerability Against Cache-Side-Channel Attacks

1 static int test_w(poly poly_w){
2 int i;
3 int64_t left , right , val;
4 for(i=0; i<PARAM_N; i++){
5 val = (int64_t) poly_w[i];
6 val = val % PARAM_Q;
7 if (val < 0){
8 val = val + PARAM_Q;
9 }

10 left = val;
11 left = left % (1<<(PARAM_D));
12 left -= (1<<PARAM_D)/2;
13 left ++;
14 right = (1<<(PARAM_D -1))-PARAM_REJECTION;
15 if (abs(left) > right){
16 return -1;
17 }
18 }
19 return 0;
20 }

Listing 4.14: Code of the subroutine test_w

first–the respective data is not loaded in the cache. Now in case of ring-TESLA,
if a cache with no-write-allocate policy is used, the values c[i] are not cached in
line 7. Consequently, an attacker might be able to find out which elements c[i] are
cached in line 15 and hence, to learn information about the values of pos. Together
with the (potential) vulnerability in test_rejection, an attacker might be able
to successfully break the scheme via a learning-the-parallelepiped-attack [84,166].

4.1.2.10 Combined Analysis of the Overall Signature Generation

The most important parts of the implementation of crypto_sign are depicted in
Listing 4.1. In the signature generation, most operations, branchings, or loops are
independent of secret values. Exceptions are the branchings in line 11, 17, and 23
in Listing 4.1: They depend on secret values and hence, the length of the observed
trace of cache hits and misses depends on the branches that were taken.
What does this mean from a cryptographic viewpoint? If we assume that the

subroutine test_w does not have cache side channels then the attacker does not
learn more information about the secret if he knows whether or not the condition
in line 11 holds. The attacker would only learn that vec_v1 does not fulfill the
conditions needed for a valid signature. However, the attacker does not learn
why exactly the condition was not fulfilled, i.e., the attacker does not learn the
corresponding index on which the if-condition failed. Furthermore, since the value
vec_v1 depends on vec_y and the value vec_y is discarded if the if-condition in
line 11 does not hold, the attacker does not gain any additional information about
the secret. The same explanation also holds for the branchings in line 17 and line

109



4 Implementation Security of Lattice-Based Signature Schemes

1 void generate_c(uint32_t *pos_list , unsigned char *c_bin){
2 int32_t c[PARAM_N ]; int cnt =0; int pos;
3 [...]
4 crypto_stream(r, R_LENGTH , nonce , c_bin);
5
6 for(i=0; i<PARAM_N; i++){
7 c[i] = 0;
8 }
9 i=0;

10 while(i<PARAM_W){
11 pos = 0;
12 pos = (r[cnt]<<8) | (r[cnt +1]);
13 pos &= PARAM_N -1;
14 cnt += 2;
15 if (c[pos] == 0){
16 pos_list[i] = pos;
17 c[pos ]=1;
18 i++;
19 cnt ++;
20 }
21 }
22 }

Listing 4.15: Code of the subroutine generate_c

23.
In summary, this means that there exists a potential cache side channel that

we probably cannot mitigate, but it does not affect the security of the signature
scheme as long as the subroutines test_w and test_rejection or generate_c do
not reveal secret information.

4.1.3 Mitigation of the Vulnerabilities
In this section we propose and implement countermeasures to mitigate the side
channels identified in Section 4.1.2.

4.1.3.1 Adaptation of Vulnerable Routines

We identified possible cache side channels in the routines test_w, test_rejection,
computeEc, and generate_c. As explained in Section 4.1.2.10, revealing informa-
tion in the routine generate_c is only a concern if corresponding information is
gathered in test_w or test_rejection. Hence, it is sufficient to mitigate potential
cache side channels in test_w, test_rejection, and computeEc.

Our proposed adaption of the subroutine test_rejection is given in Listing 4.16
and described as follows. The routine test_rejection returns 0 or 1 depending
on whether all coefficients of the potential signature are of the correct size. In
our adapted code, we introduce an auxiliary variable res and collect the result,
i.e., 0 or 1, in res. Then, instead of returning early in case of a failed test as in

110



4.1 Vulnerability Against Cache-Side-Channel Attacks

the original implementation, we return res after PARAM_N iterations. Using this
adaption, the cache behavior does not depend on the index of the coefficient that
revokes the rejection of poly_z anymore.

1 int test_rejection(poly poly_z){
2 int i; int res;
3 res = 0;
4 for(i=0; i<PARAM_N; i++){
5 res |= (poly_z[i] < -(PARAM_B-PARAM_U));

6 res |= (poly_z[i] > (PARAM_B-PARAM_U));
7 }
8 return res;
9 }

Listing 4.16: Adaption of the subroutine test_rejection

Next we turn to the adaption of the subroutine test_w that is shown in List-
ing 4.17. Our adaption follows the same idea as used in Listing 4.16. In particular,
we also save the result, i.e., whether 0 or -1 is returned, in the auxiliary variable
res, instead of returning -1 as soon as a coefficient causes rejection.

1 int test_w(poly poly_w){
2 [...]
3 for(i=0; i<PARAM_N; i++) {
4 val = poly_w[i]; val = val % PARAM_Q;

5 val += (((unsigned int)val & 0x80000000) » 31)*PARAM_Q;
6 left = val;
7 left = left % (1<<(PARAM_D));
8 left -= (1<<PARAM_D)/2; left ++;
9 right = (1<<(PARAM_D -1))-PARAM_REJECTION;

10 res |= (abs(left) - right > 0);
11 }
12 return -res;
13 }

Listing 4.17: Adaption of the subroutine test_w

Finally, we propose to adapt the subroutine computeEc as depicted in Listing 4.18
and described as follows. In the subroutine computeEc, we add preloading of the
variable e. This ensures that the sequence of cache hits and misses does not depend
on the secret-dependent order of accesses, since all coefficients are loaded in the
cache (under the assumption that no process interferes with the cache during the
ring-TESLA execution). This implies for instance that a trace-driven attacker can
observe PARAM_W many cache hits independent of the actual coefficient index.
By code inspection, our proposed modifications should remove the cache side

channels in the three subroutines.

111



4 Implementation Security of Lattice-Based Signature Schemes

1 void computeEc ([...]){
2 [...]
3 for(i=0;i<PARAM_N;i++){
4 Ec[i] = 0;
5 }
6 for(i=0;i<PARAM_N;i++){

7 tmp = e[i];

8 }
9 for(i=0;i<PARAM_W;i++){

10 pos = pos_list[i];
11 for(j=0;j<pos;j++){
12 Ec[j] += e[j+PARAM_N - pos];
13 }
14 for(j=pos;j<PARAM_N;j++){
15 Ec[j] -= e[j-pos];
16 }
17 }
18 }

Listing 4.18: Adaption of the subroutine computeEc

4.1.3.2 Analysis of the Effectiveness of the Mitigations

The effectiveness of most of our countermeasures is also supported by another
round of program analysis with CacheAudit by Mantel, Schickel, and Weber.
The individual leakage bounds computed with CacheAudit on the unmitigated
and the adapted implementations of test_w, test_rejection, computeEc, and
crypto_sign with respect to the four considered attacker models are listed in
Table 4.1.

Table 4.1: Leakage bounds [bit]
Unmitigated routines Mitigated routines

acc accd trace time acc accd trace time
test_w 31 31 49152 19.3 0 0 0 0
test_rejection 31 31 10.1 10.1 0 0 0 0
computeEc 0 0 20 5.9 0 0 19 4.4
crypto_sign 12.9 2.6 51.6 9.5 8.1 1.6 48.6 9.0

For test_w and test_rejection, CacheAudit returned an upper bound on the
bit leakage of 0 bit for all four attacker models. Hence, the potential cache side
channels are effectively removed. For computeEc the picutre is different: Regarding
the attacker models acc and accd, the potential vulnerability is removed as well,
since 0 bit of leakage are obtained. However, upper bounds of 19 bit and 4.4 bit
leakage for the attacker models trace and time, respectively, are reported. The
bounds determined by Mantel, Schickel, and Weber are upper bounds, but they are

112



4.1 Vulnerability Against Cache-Side-Channel Attacks

not necessarily tight. According to our manual analysis, the preloading of e should
mitigate the cache side channel in computeEc, because it makes the caching of e
independent of secrets. Hence, it is possible that a refinement of CacheAudit is
needed to prove that no cache side channels occurs in computeEc. This is, however,
out of the scope of this thesis.
Based on our manual inspection of the individual subroutines, there might be

two possible sources for the remaining potential leakage reported by CacheAudit.
One of the sources is the routine generate_c, where, as discussed before, the
remaining leakage is harmless because we mitigated the cache side channels in
test_w and test_rejection. The second source is the rejection sampling in
crypto_sign which should not pose a vulnerability since only the number of
sign iterations might be revealed but no information about the secret values.
Currently, no approach to avoid rejection sampling for signature schemes that use
the Fiat-Shamir approach, such as ring-TESLA, qTESLA, TESLA, and others
such as [24,30,81,82]. Moreover, the results of computeEc are propagated further
through the implementation because of the rejection sampling.
Finally, it is important to note that the leakage bounds refer to the decrease

of the uncertainty about the secret key, i.e., about the three polynomials that all
together are saved in more than one kilo-byte (KB). By construction of the R-LWE
problem, the potential leakage of at most 49 bit of the secret key, reported by
Mantel, Schickel, and Weber, does not immediately translate to the bit hardness of
LWE (resp., the bit security of ring-TESLA).
This section focused on analyzing and mitigating cache side channels. Moving

on to the next section, we turn to another implementation attack, namely fault
attacks against lattice-based signature schemes.

113



4 Implementation Security of Lattice-Based Signature Schemes

4.2 Susceptibility to Fault Attacks
This section provides a thorough analysis of the lattice-based signature schemes
GLP by Güneysu et al. [114], BLISS by Ducas et al. [81], and ring-TESLA described
in Section 3.1.2.3 with respect to fault attacks. We consider first-order fault attacks
regarding randomizing11, skipping, and zeroing faults. We explore the reasons for
the vulnerability and resistance of the key generation, signature generation, and
verification algorithms. Furthermore, we propose countermeasures for each of the
developed attacks and realize the countermeasures for ring-TESLA as an example.

For our analysis, we use the pseudo-code descriptions and the publicly available
software of the three signature schemes, i.e., the implementation of BLISS [81] in
C++, the implementation of the GLP scheme [115] in C, and the implementation of
ring-TESLA in C. Since the implementation of ring-TESLA and the GLP scheme
use the benefits of the AVX instructions, the X86 disassembled code of the respective
code lines is also considered occasionally.

A summary of the analyzed attacks and the respective vulnerabilities of the three
signature schemes is depicted in Table 4.2. In the table, we enumerate the number
of needed faults if the scheme is vulnerable and we write “(m)” if it is vulnerable but
only with a huge number of needed faults. Furthermore, we write “m” if a scheme
is not vulnerable to the respective attack and “-” if the attack is not applicable
to the respective scheme. The table shows the algorithms targeted by the fault
attacks, i.e., key generation (KG), signature generation (S), or verification (V).
Moreover, the column “Referred to as” summarizes the abbreviation used in later
sections. It must be noted that certain effects can be achieved with different kinds
of fault attacks, e.g., a value of a variable can be set to zero during the execution
with a zeroing fault or a skipping fault. While such fault attacks are only listed
once in Table 4.2, they are mentioned and explained in all relevant paragraphs
throughout this section. Moving further, we present the analyzed schemes BLISS
and GLP next.

4.2.1 Description of the Analyzed Signature Schemes
In this subsection, we describe the signature schemes, namely the GLP scheme
and BLISS, which are then analyzed further within this section. The scheme
ring-TESLA is stated in Algorithm 3.11, 3.12, and 3.13 in Section 3.1.2.3. For
later reference, we use the instantiation ring-TESLA-I [B1], i.e., n = 512, σ = 30,
q = 8399873, B = 221 − 1, h = 11, d = 21, and U = 993 and ring-TESLA-II [B1],
i.e., n = 512, σ = 48, q = 33550337, B = 222 − 1, h = 19, d = 23, and U = 2848.
11We do not analyze bit flips separately since they are either covered by randomizing faults or

considered unrealistic [106] in practice.

114



4.2 Susceptibility to Fault Attacks

Table 4.2: Comparison of the GLP scheme, BLISS, and ring-TESLA with respect
to their vulnerability to the attacks described in this section

Fault Attack Algorithm Referred GLP BLISS ring- Section
to as TESLA

Rand. of secret[a] S R-S-Sec 24 354 m 4.2.4.1
Rand. of error S R-S-Err m m m 4.2.4.2
Rand. of modulus S R-S-Mod m m m 4.2.4.3Rand. of randomness S R-S-Rand m m m

Skip of mod-reduction KG S-KG-Mod m - m 4.2.5.1Skip of addition KG S-KG-Add 1 1 1
Skip of rejection S S-S-Rej (m) (m) (m)

4.2.5.2Skip of addition S S-S-Add 1 m m

Skip of mod-reduction S S-S-Mod m - m

Skip of correctness check V S-V-Cor 1 1 1 4.2.5.3Skip of size check V S-V-Size 1 1 m

Zero. of secret KG Z-KG-Sec 1 - 1 4.2.3.1
Zero. of randomness[b] S Z-KG-Ran 1 2 1 4.2.3.2
Zero. of hash value S Z-S-HVal m m m 4.2.3.3
Zero. of hash polynomial V Z-S-HPoly 1 1 1 4.2.3.4

[a] Number of needed faults computed with r = 4.
[b] Number of needed faults computed with r = 1.

4.2.1.1 GLP

The GLP scheme is depicted in Algorithm 4.1, 4.2, and 4.3. The secret key consists
of two polynomials s, e ←$ Rq,[1] with ternary coefficients, i.e., with coefficients
in {−1, 0, 1}; the public key is a tuple of a ←$ Rq and b = as + e mod q. On
input message m, the sign algorithm first samples y1, y2 ←$ Rq,[k]. Afterwards, the
most significant bits of ay1 + y2 and m are hashed with the hash function H. Then
the signature polynomials z1 and z2 are computed. To hide the secret, rejection
sampling is applied, i.e., z2 is compressed to z?2 and the signature is returned
only with some probability. The verification algorithm checks the size of z1 and
z?2 , and the equality of c and H([az1 + z?2 − bc]M ,m). The compression algorithm
compress is constructed with the following property [114, Lemma 3.1]. For any
q, n, k with 2nk

q
> 1, z ∈ Rq,[k], and y ←$ Rq, the algorithm compress(y, z, q, k)

outputs z′ ∈ Rq,[k] such that [y + z]M = [y + z′]M . For detailed information about
the parameters and compress, we refer to the original work.

The security of GLP is based on the DCK problem that is defined in Section 2.2.
In the remainder of the section, we use the instantiation GLP-Set-I with n = 512
and q = 8383489, which gives a bit security of at least 71 bit [217].

115



4 Implementation Security of Lattice-Based Signature Schemes

Algorithm 4.1 Key generation of the GLP scheme
Require: -
Ensure: Secret key sk = (s, e) and public key pk = (a, b)
1: s, e←$ Rq,[1]
2: a←$ Rq

3: b← as+ e mod q
4: sk← (s, e), pk← (a, b)
5: return (sk, pk)

Algorithm 4.2 Signature generation of the GLP scheme
Require: Message m, secret key sk = (s, e), and polynomial a
Ensure: Signature (z1, z

?
2 , c)

1: y1, y2 ←$ Rq,[k]
2: c← H ([ay1 + y2]M ,m)
3: z1 ← y1 + sc
4: z2 ← y2 + ec
5: if z1, z2 /∈ Rk−32 then
6: restart in line 1
7: else
8: z?2 ← compress(az1 − bc, z2, p, k − 32)
9: return (z1, z

?
2 , c)

Algorithm 4.3 Verification of the GLP scheme
Require: Message m, public key pk = (a, b), and signature (z1, z

?
2 , c)

Ensure: {0,−1} . accept, reject signature
1: c′ ← H ([az1 + z?2 − bc]M ,m)
2: if c = c′ ∧ z1, z

?
2 ∈ Rk−32 then

3: return 0
4: else
5: return -1

4.2.1.2 BLISS

Moving further, we depict the scheme BLISS in Algorithm 4.4, 4.5, and 4.6. The key
pair is chosen NTRU-like, i.e., the public key is pk = (a1, a2) =

(
22g+1

f
mod q, q − 2

)
,

where g ←$ Fd1,d2 = {∑n−1
i=0 hix

i|hi ∈ {−2,−1, 0, 1, 2}, |{hi = ±1}| = d1, |{hi =
±2}| = d2} and f ←$ F×d1,d2 . The secret key sk consists of sk = (s1, s2)T =
(f, 2g + 1)T . Furthermore, the vectors (a1, a2), (s1, s2)T , and ξ ∈ Z are chosen

116



4.2 Susceptibility to Fault Attacks

such that (a1, a2)(s1, s2)T = q = −q mod 2q, ξ(q − 2) = 1 mod 2q, and hence,
ξ(a1, a2) = (ξa1, 1) mod 2q. To sign a message m, random polynomials y1 and
y2 are sampled with Gaussian distribution. Then, a hash value c is computed
from the randomness, the public key, ξ, and the message m with the hash func-
tion H. The rounding function b·eM rounds elements mod 2q instead of mod q
as for GLP and ring-TESLA. After computing the hash, the value b ←$ {0, 1}
is chosen, the polynomials z1 = y1 + (−1)bs1c and z2 = y2 + (−1)bs2c are com-
puted, rejection sampling is applied, and z2 is compressed to z?2 . During verifica-
tion of the signature (z1, z

?
2 , c), the sizes of z1 and z?2 , and the equality of c and

H (bξa1z1 + ξqcmod 2qeM + z?2mod q,m) are checked.
The security of BLISS is based on (NTRU-like instantiations of) the R-SIS

problem, defined in Section 2.2. Ducas et al. [81] provide two parameter sets that
are estimated to give 124 bit of security, namely BLISS-I with n = 512, σ = 215,
q = 12289 and BLISS-II with n = 512, σ = 107, and q = 12289. Furthermore, we
emphasize that in the instantiations BLISS-I and BLISS-II, d2 = 0. Hence, it holds
for the secret polynomials s1 = ∑n

i=0 s1,ix
i and s2 = ∑n

i=0 s2,ix
i that

sj,i ∈


{−1, 0, 1} if j = 1,
{−1, 1, 3} if j = 2, i = 0,
{−2, 0, 2} if j = 2, i ∈ {1, ..., n− 1}.

Algorithm 4.4 Key generation of BLISS
Require: -
Ensure: Secret key sk = (s1, s2)T and public key pk = (a1, a2)
1: f, g ←$ Fd1,d2

2: if Nλ(S) ≥ 5C2(dδ1ne+ 4d4δ2ne)κ then
3: restart in line 1
4: aq = (2g + 1)/f mod q
5: if f not invertible then
6: restart in line 1
7: (s1, s2)T ← (f, 2g + 1)T
8: (a1, a2) = (2aq, q − 2) mod 2q
9: sk← (s1, s2)T , pk← (a1, a2)
10: return (sk, pk)

4.2.2 Reducing the Number of Necessary Faults
After the description of the signature schemes in the previous section, we now
elaborate on how to combine fault attacks and algorithms that solve lattice problems

117



4 Implementation Security of Lattice-Based Signature Schemes

Algorithm 4.5 Signature generation of BLISS; define the value ν =
(M exp (−‖Sc‖2

2/(2σ2)cosh(〈z, Sc〉/σ2)))
Require: Message m, secret key S = (s1, s2)T , and A = (a1, q − 2)
Ensure: Signature (z1, z

?
2 , c)

1: y1, y2 ←σ R
2: u = ξa1y1 + y2 mod 2q
3: c← H (bueM ,m)
4: b←$ {0, 1}
5: z1 ← y1 + (−1)bs1c
6: z2 ← y2 + (−1)bs2c
7: Continue with probability 1/ν
8: z?2 ← (bueM − bu− z2eM mod p)
9: return (z1, z

?
2 , c)

Algorithm 4.6 Verification of BLISS
Require: Message m, public key A = (a1, q − 2), and signature (z1, z

?
2 , c)

Ensure: {0,−1} . accept, reject signature
1: c′ ← H (bξa1z1 + ξqc mod 2qeM + z?2 mod p,m)
2: if c = c′ ∧ ‖(z1|2dz?2)‖2 ≤ B2 ∧ ‖(z1|2dz?2)‖∞ ≤ B∞ then
3: return 0
4: else
5: return -1

such as LWE or SIS to reduce the number of faults that are necessary to recover
the secret. Revealing all coefficients of the secret of a lattice problem with high
dimension sometimes requires, depending on the fault attack, a very large amount
of injected faults. Instead, it is sufficient to reveal just enough coefficients using
fault attacks such that LWE and SIS solvers can be applied to recover the rest of
the secret coefficients. We move on to describe our hybrid approach for the LWE
problem next.
Let As + e = b mod q be an LWE instance, with A ∈ Zm×nq , s ∈ Znq , and

e ∈ Zmq . Assume that k coefficients of the secret s are known. Without losing
generality, we can assume that the first k coefficients of s are known, since the
samples of an LWE instance can be reordered. Rewriting yields

(A1|A2)
(
s1|s2

)T
+ e = A1s1 + A2s2 + e = b,

with A1 ∈ Zm×kq , A2 ∈ Zm×(n−k)
q , and s1 ∈ Zkq , s2 ∈ Zn−kq where s1 is known. Let

b′ = b−A1s1. Thus, A2s2 + e = b′ mod q defines an LWE instance where the
dimension of the secret vector is n− k.

118



4.2 Susceptibility to Fault Attacks

The following paragraphs now focus on explaining how to find a lower bound
on the value of k. First, we choose the number of operations T the LWE solver
should compute. For example, we assume that the LWE solver computes T = 250

operations to solve the remaining LWE instance.
To estimate the hardness of LWE, we first compute the BKZ blocksize β such

that the run-time of BKZ TBKZ(β) is equal to T as follows. As in Section 3.3.1,
we estimate TBKZ(β) = 20.27β+16.40 which corresponds to the quantum-sieving
algorithm by Laarhoven [148]. Hence, β can be computed as

β =
⌊

log2(T )− 16.40
0.27

⌋
=
⌊50− 16.40

0.27

⌋
= b124.4c = 124.

Under the Gaussian heuristic [64] and the geometric series assumption [202], the
following correspondence between the block size β and the Hermite-delta δ0 can be
given [63]:

δ0 ≈
(
β

2πe(πβ)
1
β

) 1
2(β−1)

.

Given β = 124, δ0 = 1.0083 (rounded to the fourth decimal place).
In the embedding approach, the LWE instance is reduced to an instance of the

uSVP [9,24]. To do so, an embedding lattice Λ of dimension d is defined so that
the error vector e is embedded in Λ. A short vector can be found if [10, 15]√

β

d
‖e | 1‖2 ≤ δ2β−d

0 · det(Λ)
1
d . (4.1)

Two different ways to define Λ were proposed, namely the standard and dual
embedding approach that are described as follows.
In the standard embedding approach, the uSVP solver is applied on the lattice

Λ = Λq (Ast) with Ast =
(

A2 b′
0 1

)
∈ Z(m+1)×(n−k+1)

q .

The definition of the q-ary lattice Λq (Ast) is given in Section 2.1. Hence, dim(Λq(Ast)) =
d = m+ 1 and det(Λq(Ast)) = qm−n+k. Thus, Equation (4.1) gives the following
inequality √

β

m+ 1‖e | 1‖2 ≤ δ2β−m−1
0 · q

m−n+k
m+1 . (4.2)

During the dual embedding approach, we apply a uSVP solver on the lattice

Λ = Λ⊥q (AD) with AD =
(
A2|Im|b′

)
∈ Zm×(n−k+m+1)

q .

119



4 Implementation Security of Lattice-Based Signature Schemes

Hence, dim(Λ⊥q (AD)) = d = n− k +m+ 1 and det
(
Λ⊥q (AD)

)
= qm. Thus,

√
β

n− k +m+ 1‖e | 1‖2 ≤ δ2β−n+k−m−1
0 · q

m
n−k+m+1 . (4.3)

Finally, given n, m, ‖e‖2, β = 124, and δ0 = 1.0083, we can compute small
values for k such that Equation (4.2) or Equation (4.3) is fulfilled. We emphasize
that we are aware that the embedding approach is not always the fastest attack to
solve LWE. Nevertheless, it yields an upper bound on the number of fault attacks
needed.
Therefore, applying the hybrid approach to BLISS, ring-TESLA, and the GLP

scheme shows that it is sufficient to reveal k = 184, k = 217, and k = 21,
respectively. We explain the derivation of the values for k for each of the three
schemes in the following subsections.

Hybrid Approach Applied to the GLP Scheme. As described in Section 4.2.1.1,
the error used in the GLP scheme is ternary. Hence, the expected norm of the error
is ‖e‖2 =

√
2/3 · n. Furthermore, only a single LWE tuple is given, i.e., m = n.

Substituting this in Equation (4.2) for the standard embedding approach, we get
the inequality √

β

n+ 1
√

2/3 · n+ 1 ≤ δ2β−n−1
0 · q

k
n+1 . (4.4)

Moreover, Equation (4.3) for the dual embedding approach corresponds to√
β

2n− k + 1
√

2/3 · n+ 1 ≤ δ2β−2n+k−1
0 · q

n
2n−k+1 . (4.5)

Finally, the minimal value for k to ensure that the inequality for the standard
embedding approach above is fulfilled, is 142. Additionally, the minimal value to
ensure that the equation holds for the dual embedding, is 21.

Hybrid Approach Applied to the Signature Scheme ring-TESLA. The hybrid-
approach applied to the scheme ring-TESLA is similar to the case of GLP. The only
difference is the distribution of the error and the number of given LWE samples.
The coefficients of the polynomial e are sampled with Gaussian distribution with
standard deviation σ. Hence, the expected length of the corresponding coefficient
vector e of dimension n is given by ‖e‖2 = Γ(n+1

2 )
Γ(n2 )

√
2σ [58]. If z is a positive integer,

the Gamma function is defined as Γ(z) = (n−1)!; if z is a real number, the Gamma

120



4.2 Susceptibility to Fault Attacks

functions is defined as Γ(z) =
∫∞

0 tz−1e−tdt. The number of given LWE samples is
two, i.e., m = 2n. Thus, Equation (4.2) for the standard embedding approach gives√

β

2n+ 1
Γ(n+1

2 )
Γ(n2 )

√
2σ ≤ δ2β−2n−1

0 · q
n+k
2n+1 . (4.6)

Similarly, Equation (4.3) for the dual embedding approach corresponds to√
β

3n− k + 1
Γ(n+1

2 )
Γ(n2 )

√
2σ ≤ δ2β−3n+k−1

0 · q
2n

3n−k+1 . (4.7)

Hence, k = 217 and k = 280 for the standard and the dual embedding approach,
respectively.

Hybrid Approach Applied to the Signature Scheme BLISS. The signature
scheme BLISS is based on the hardness of SIS. Hence, the hybrid approach ap-
plied to BLISS is slightly different than to GLP and ring-TESLA as explained
next. First we define the rotation matrix of a vector a = (a0, ..., an−1): rot(a) =
(−an−1, a0, . . . , an−2) and Rot(a) = (a, rot(a), rot2(a), . . . , rotn−1(a)) ∈ Zn×nq . Since
we identify a polynomial a with its coefficient vector a, we define rot(a) = rot(a).
Following the notation in Section 4.2.1.2, let A ∈ Zn×2n

q be the matrix defined
by the rotation matrices of 2aq and a2 = q − 2, i.e., A = (Rot(2aq),Rot(a2)).
Furthermore, let s ∈ Z2n

q be the coefficient vector of the secret polynomials f and
2g+ 1, i.e., s0 = f0, ..., sn−1 = fn−1, sn = 2g0 + 1, sn+1 = 2g1, ..., s2n−1 = 2gn−1. Due
to the sparse structure of the secret, the expected norm of s can be approximated
by ‖s‖2 =

√
5d1.

In the following paragraph, we assume that we revealed k coefficients of s by
fault attacks. We write the equation As = 0 mod q as A1s1 + A2s2 = 0 mod q
with A1 ∈ Zn×kq , A2 ∈ Zn×2n−k

q , s1 ∈ Zkq , and s2 ∈ Z2n−k
q . This can be written as

A2s2 = −b, where −b = −A1s1. Define the set L = {w ∈ Z2n−k | A2w = −b
mod q} = Λ⊥q (A2) + u, where u ∈ Z2n−k such that A2u = −b. Finding s2 ∈ L
is equivalent to solving CVP: CVP(Λ⊥q (A2),u)) = v ∈ Λ⊥q (A2), since the vector
u− v corresponds to s2. Instead of solving CVP in the kernel lattice Λ⊥q (A2), we
can equivalently solve CVP in the image lattice Λq

(
A2
)
, with A2 ∈ Z2n−k×n−k

q

such that 〈Ker(A2)〉 = 〈Im(A2)〉. Hence, Λ⊥q (A2) = Λq

(
A2
)
. We solve the CVP

by embedding the vector u in the standard embedding lattice. As before, we define

Λ = Λq(Ast) = {w ∈ Z2n−k+1
q | Astx = w mod q for some x ∈ Zn−k+1

q },

with
Ast =

(
A2 u
0 1

)
∈ Z2n−k+1×n−k+1

q .

121



4 Implementation Security of Lattice-Based Signature Schemes

Hence, dim(Λq(Ast)) = d = 2n− k + 1, and det(Λq(Ast)) = qn. The secret vector
s2 is a short vector in this lattice. We can compute the norm as ‖s2‖2 ≤

√
5d1 − 4k

and d1 = 154. Substituting these values in Equation (4.1), yields√
β

2n− k + 1
√

770− 4k ≤ δ2β−2n+k−1
0 · q

n
2n−k+1 . (4.8)

The minimal value for k such that the inequality holds true is k = 184. The dual
embedding approach, however, is not efficiently applicable to BLISS.

4.2.3 Zeroing Faults
This section elaborates on zeroing fault attacks where it is assumed that the attacker
can set the entire variable or a part thereof to zero. Although it has often been
questioned if this is a realistic attack scenario, zeroing faults have been realized
in practice [163]. In certain cases, zeroing attacks can be realized with skipping
attacks as explained in Section 4.2.5.

4.2.3.1 Zeroing the Secret or Error Polynomial During Key Generation

In the following description, we assume that during the key generation of GLP the
secret s is set to zero by a zeroing fault. Hence, the value b = e mod q (instead
of b = as+ e mod q) is returned and the attacker knows the error polynomial e.
In case of the GLP scheme, knowledge of e is enough to forge signatures, which is
described as follows.
First, an attacker chooses y1, y2 ←$ Rq,[k] and a message m. Afterwards, the

attacker computes c ← H([ay1 + y2]M ,m), z2 = y2 + ec, and z?2 as usual. Next,
the attacker defines z1 = y1 (instead of z1 = y1 + sc) and returns the signature
s = (z1, z

?
2 , c). Easy computation shows that the signature would be accepted by

the verify algorithm. Similarly, ring-TESLA signatures can also be forged.
The key generation and the sign algorithms in the publicly available software

implementation of GLP and ring-TESLA do not test whether the keys are of the
correct form, thereby leaving the attacks undetected. The described attack is,
however, not applicable to BLISS since the public value aq = 0 if one of the secret
polynomials f, g is set to zero. Hence, the attacker gains no additional information.

Zeroing the error polynomial can be implemented as a skipping fault during key
generation as explained in Section 4.2.5.1.

4.2.3.2 Zeroing the Randomness During Signature Generation

We describe a zeroing attack against ring-TESLA next. Moving further, we then
describe similar attacks on BLISS and the GLP scheme. Since ideal-lattice-based

122



4.2 Susceptibility to Fault Attacks

schemes have been observed to be particularly vulnerable to this attack, we also
discuss its applicability to schemes over standard lattices.

Description of the Attack Against ring-TESLA. Let the secret polynomial
be s = ∑n−1

j=0 sjx
j. Moreover, let (z1, c1), ..., (zm, cm) be m faulty signatures for

m messages m1, ...,mm with zi = ∑n−1
j=0 zi,jx

j and ci = ∑n−1
j=0 ci,jx

j where ci,j ∈
{−1, 0, 1} and ‖ci‖2

2 = h for i = 1, ...,m. Furthermore, let y1, ..., ym be the faulty
randomnesses with yi = ∑n−1

j=0 yi,jx
j. Lastly, let r ∈ {1, ..., n} be the number of

coefficients of yi that are changed to zero via a zeroing fault. We assume that the
coefficients are changed block wise, i.e., for some randomness yi its coefficients
yi,j, ..., yi,j+r are changed for some j ∈ {0, ..., n − r − 1}. However, the attacker
cannot control which block of r coefficients is set to zero.
The idea of the attack is as follows: First, the attacker induces a zeroing fault

on the randomness and checks which of the coefficients have been changed to zero
(we explain later in this section how this is done). The attacker collects equations
with yi,j = 0, i.e., (sj, ..., s0,−sn−1, ...,−sj+1)(ci,0, ..., ci,n−1)T = zi,j. The attacker
repeats these steps until every coefficient of s0, ..., sn−1 is at least once multiplied
with a non-zero cik,jk in one of the collected equations. Let η ≥ n be the number of
collected equations. Hence, the attacker receives the following system of equations,
which can be solved uniquely:

C · (s0, ..., sn−1)T = (zi1,j1 , ..., ziη ,jη)T , (4.9)

with C =

ci1,j1 ... ci1,0 −ci1,n−1 ... −ci1,j1+1
... ...

ciη ,jη ... ciη ,0 −ciη ,n−1 ... −ciη ,jη+1

 .
Next, we describe how an attacker can find out which coefficients of the ran-

domness were changed to zero during the i-th fault attack. To simplify the
explanation, we assume without loss of generality that ci,0 = ... = ci,h−1 = 1 and
ci,h = ... = ci,n−1 = 0. Each coefficient of zi = sci + yi can be written as

zi,0 =s0 − sn−1 + ...− sn−h + yi,0 (4.10)
zi,1 =s1 + s0 − sn−2 + ...− sn−h+1 + yi,1

...
zi,n−1 =sn−1 + sn−2 + ...+ sn−h−1 + yi,n−1.

We define zi,j = ςi,j + yi,j for j = 0, ..., n− 1. Since sj ←σ Z, the expectation value
of |sj| is given by

Ex[|sj|] = σ

√
2
π

for j = 0, ..., n− 1.

123



4 Implementation Security of Lattice-Based Signature Schemes

Furthermore, since ‖c‖2
2 = h, ςi,j is Gaussian distributed with standard deviation√

hσ and

Ex[|ςi,j|] =
√

2h
π
σ.

Since the coefficients of y1, ..., ym are chosen uniformly random in [−B,B], via the
triangle inequality it holds that

B −
√

2h
π
σ ≤ Ex[|ςi,j + yi,j|] ≤

√
2h
π
σ +B.

For the parameter set ring-TESLA-II, i.e., with B = 222 − 1, h = 19, and σ = 52,
E[|zi,j|] is given by

Ex[|zi,j|] ≈

102, if yi,j = 0,
222, if yi,j 6= 0.

Since the difference between the expectation values is large, it is reasonable to
assume that the attacker can determine whether yi,j has been changed to zero.

Due to the rejection conditions in line 9 in Algorithm 3.12, the efficiency of the
attack depends on when the fault was inserted. If y has been set to zero before
v1 = a1y and v2 = a2y (cf. line 2 and 3, Algorithm 3.12) have been computed then
the rejection sampling is disabled since the coefficients z, w1, w2 are then very small
and will pass the if-condition in line 9 in Algorithm 3.12. Now we assume that the
zeroing attack is induced after the computation of v1 and v2 in line 9 but before
the computation of z in line 6. The rejection condition on z is thus, disabled but
the condition on w1 and w2 is the same as in the case without zeroing. For the
instantiation ring-TESLA-II with n = 512, d = 23, and LE = 2766, the fault has
to be repeated (expectedly) with a probability of about (1− 2LE/2d)2n = 1

2 .
The number of needed zeroing faults strongly depends on the number of zeroed

coefficients r as explained next. Let f be the number of necessary successful fault
inductions to reveal the secret and let S be the set of equations which are part
of Equation (4.9). We assume that every successful fault induction adds r new
equations to the set S, since the hash value c changes for every sign query. Hence,
solving the following equation for f gives the number of necessary faults:

1
3 ·

f∑
k=1

r − 1
2n (k − 1)− 1

2r ≥ n, (4.11)

where the factor 3 corresponds to the rejection probability of 0.34 for the instanti-
ation ring-TESLA-II. Now we assume that the attacker can set 12 bytes to zero.
This corresponds to r = 4 since each coefficient of y can be saved in three bytes.
Then f = 384. If r = 1 then f = 1536. If r = n, i.e., y = 0, only a single successful
fault is necessary, since then the linear system of equations in Equation (4.10) can
be solved uniquely with high probability.

124



4.2 Susceptibility to Fault Attacks

Application to BLISS and GLP. The attack described above can also be applied
to BLISS and the GLP scheme. We assume that the zeroing fault was induced on
y1 of the GLP scheme. As explained above, we can recover s. Afterwards, we can
compute e by e = b− as. Because of the compression function the attack would
not be effective if y2 is faulty.
Similarly, we can assume that the zeroing fault was induced on y1 during the

sign algorithm of BLISS. As explained above, we can then recover s1 and s2 by
since s2 = a1s1. For similar reasons as in case of GLP, the attack does not work
effectively if y2 instead of y1 is faulty.

Application to Signature Schemes over Standard Lattices. The attack, when
applied to schemes defined over standard lattices instead of ideal lattices, is far less
efficient and only applicable for r = n. Let r = n, i.e., the randomness is equal to
the zero vector. Moving further, let the notation and assumptions be as described
above. The following system of equations then gives n ·m equations (with m > n)
and n2 unknowns, and can be solved uniquely:

(z1, ...., zm)T = S (c1, ..., cm)T ,

where S is the secret matrix. Still it is less efficient than in the ring setting, since
the attacker needs to induce at least 3n zeroing faults (again the factor 3 comes
from the rejection probability). In the ring setting with the same assumption r = n,
the attacker would have to induce (on average) three zeroing faults successfully.

In case r < n, the attack becomes in general not applicable to signature schemes
over standard lattices, since the multiplication of matrices is not commutative–a
condition that is needed in Equation (4.9).

We now move on to describe yet another zeroing attack that targets the signature
generation.

4.2.3.3 Zeroing the Hash Value During the Signature Generation

Zeroing the hash value c during the sign algorithm does not lead to more information
about the secret key since only the product sc occurs in the final signature. Hence,
the attacker only gets access to the randomness, which changes for every run of
the sign algorithm in BLISS, ring-TESLA, and the GLP scheme.
However, TESLA (as previously described in Section 3), is defined to be de-

terministic. Zeroing the hash value reveals secret information as described for
TESLA in the following. Let sm = (zm = Scm + ym, cm) be the TESLA signature
of m. Querying a signature for m again while inducing a zeroing fault on cm
yields the faulty signature s0 = (z0 = ym,0). Thus, the attacker can compute
zm − z0 = Scm. To determine S uniquely, n zeroing faults of this kind have to be

125



4 Implementation Security of Lattice-Based Signature Schemes

performed. The attack would work in a similar way on a deterministic variant of
qTESLA or ring-TESLA using only one faulty and one correct signature. A similar
but slightly more general attack was proposed in [179] against ECDSA [183] and
EdDSA [41] signatures. It was applied to the signature schemes Dilithium [82]
and a deterministic variant of qTESLA by Groot Bruinderink and Pessl [111] who
further provide experimental verification of their attack on an ARM Cortex-M4
microcontroller. We discuss the attack on the deterministic variant of qTESLA
and our implemented countermeasures in Section 3.4.1.

4.2.3.4 Zeroing Fault During the Verification Algorithm

After describing zeroing attacks targeting the signature generation, we now turn
to zeroing attacks on the polynomial computed from the hash value c during
verification. We use the pseudo-code description of ring-TESLA as an example.
This attack works similarly on GLP and BLISS since it is the same mechanism
as used in ring-TESLA, although this is not made explicit in their pseudo-code
descriptions.
The goal of the attacker in our attack scenario is to force the verify algorithm

to accept a (invalid) signature for a message m. To achieve this, the attacker
chooses z ←$ Rq,[B−U ], computes c′ ← H([a1z]M , [a2z]M ,m), and returns (c′, z)
as the signature of m. During the verify algorithm, first the value c ← F (c′) is
computed (see Algorithm 3.13). Assume c was set to zero via a fault attack during
the verification. Hence, w1 = a1z and w2 = a2z (instead of wi = aiz − bic), and
c′′ ← H([a1z]M , [a2z]M ,m). Thus, c′ = c′′ and the signature is accepted.

4.2.4 Randomizing Faults
In this section we elaborate on randomizing faults. A randomizing fault randomly
changes the value of a variable that is processed in the attacked algorithm. This
means that the attacker does not know the value of the variable after the attack
but might benefit from knowing that it has been changed within a certain range.
Depending on the attacker’s abilities, the fault targets the entire variable or some
parts of it [212]. We now analyze the effects of a randomizing fault targeting the
secret polynomial, the error polynomial, the modulus, and the randomness during
the signature generation.

4.2.4.1 Randomizing the Secret Polynomial

In 1996, Bao et al. [28] introduced a method to attack signature schemes with binary
secret keys. In particular, they have shown how to attack RSA [196], the ElGamal
scheme [89], and Schnorr signature schemes [203]. In this section, we describe how

126



4.2 Susceptibility to Fault Attacks

to adjust the attack by Bao et al. to lattice-based Schnorr-like signature schemes.
First, we explain our adapted attack against LWE-based schemes instantiated with
binary secret over standard lattices. In addition, we also describe more evolved
attacks on GLP and BLISS.

Let b = As + e mod q with s ∈ {0, 1}n, e← χ with χ being some distribution
over Zm, and A ∈ Zm×nq . The public key is (A,b) and the secret key consists of
(s, e). The signature of a message m is computed as follows. Choose a random
vector y, compute the hash value c = H([Ay]M ,m), compute z = sc + y, and
return the signature s = (z, c).
Assume one coefficient of s is changed via a fault attack, i.e., the secret s′ =

(s0, ..., si−1, s
′
i, si+1, ..., sn−1)T is used to generate the faulty signature s′ = (z′, c) =

(s′c + y, c) of m. Now, the attacker tries different values α ∈ {−1, 0, 1} until
H
(
[Az′ − bc−Avi,αc]M ,m

)
= c holds, where vi,α is the zero vector except that

the i-th entry is equal to α. Depending on the value of α and the index i, the
attacker can determine the value of si:

If α =


1 then si = 1,
−1 then si = 0,

0 then si = s′i and the attack needs to be repeated.

Hence, in case of a successful fault attack, i.e., si 6= s′i, an attacker finds out one
coefficient of the secret for each injected fault. To our knowledge, there is no
lattice-based signature scheme instantiated over binary-LWE. However, there exists
a lattice-based encryption scheme with binary secret [55]. Therefore, through the
description stated above we find ourselves standing in agreement with those being
cautious about instantiations of schemes with binary-LWE.

Applying the Attack to the GLP Scheme. After describing the attack idea
using a simplified signature scheme, we now describe a generalization of the attack
by Bao et al. [28] to ternary secret keys, i.e., to secret keys with coefficients in
{−1, 0, 1}. We explain our attack using GLP as an example since its secret key
is ternary. Furthermore, we assume that the attack changes up to r consecutive
coefficients instead of only a single coefficient of the secret. This is generally
considered to be a more realistic scenario [106]. Let the faulty secret s′ be written
as s′ = s + ε with ε = ∑j+r

i=j εix
i, 0 ≤ j < n where all εi, s′i ∈ {−1, 0, 1}. The

attack consists of three steps, namely inducing a randomizing fault, querying a
signature on some message, i.e., s′ = (z′1, z?2 , c) = (s′c+ y, z?2 , c) with s′ being the
faulty secret, and analyzing the output by running a software implementation of
the algorithm GeneralBao that is depicted in Figure 4.7. The attacker repeats these
three steps until sufficiently many secret coefficients are determined, so that the
hybrid approach described in Section 4.2.2 can be applied.

127



4 Implementation Security of Lattice-Based Signature Schemes

Next we describe the algorithm GeneralBao. It gets as input the public key pk, a
signature s of a message m, the list LSecret where the determined coefficients of
the secret are saved, and the list LDetermined where the information whether or
not a coefficient is already determined is saved. The algorithm GeneralBao then
returns updated lists LSecret and LDetermined.
Let α be the difference between the secret s and the faulty secret s′, i.e.,

α = ∑n−1
i=0 αix

i is a polynomial with αi ∈ {−2,−1, 0, 1, 2}. The attacker checks
whether H([az1 + z?2 − bc− aαc]M ,m) = c with αi, ..., αi+r ∈ {−2,−1, 0, 1, 2} for
i ∈ {0, ..., n− 1− r}. Thereby, the attacker gains information about the value and
index of si. The possible values for si, s′i, and αi are shown in Table 4.3.

Table 4.3: Possible combinations for the coefficients of s, s′, and α
s′i 0 0 0 1 1 1 -1 -1 -1
si 0 1 -1 0 1 -1 0 1 -1

αi = s′i − si 0 -1 1 1 0 2 -1 -2 0

As indicated by Figure 4.7, the procedure GeneralBao distinguishes between five
different cases for each coefficient of α once the correct values of α0, ..., αn−1 are
found, namely

if αi =



2 then si = −1,
−2 then si = 1,

1 then si = 1 or si = 0,
−1 then si = −1 or si = 0,

0 then si = s′i.

Put differently, if α = ±1 or α = 0, the attacker cannot determine si uniquely. Let
sj be a coefficient which was changed during a fault attack such that αj,1 = αj = ±1.
We assume that sj is changed again by another fault attack with difference αj,2.
Then the attacker can determine sj uniquely if αj,1 6= αj,2 and αj,2 6= 0. The list
LDetermined is used for exactly this purpose, namely to remember which coefficients
were changed but could not be determined uniquely.

As elaborated earlier in Section 4.2.2, at most k = 21 coefficients of s have to
be determined using fault attacks to recover the entire secret polynomial via the
hybrid approach. We analyze the expected number of faults that are necessary
to determine k = 21 coefficients of s next. We assume that the index of the first
of the r changed coefficients is chosen uniformly random in {0, ..., n− 1}. Since r
is much smaller than n, we assume furthermore that the changed (and hence the
determined) coefficients are uniformly distributed over all coefficients s0, ..., sn−1.
We assume that the j-th fault attack is induced after ij coefficients have already

128



4.2 Susceptibility to Fault Attacks

been determined uniquely. Following Table 4.3, the probability that a coefficient
is changed such that it can be determined uniquely is 2/9. Then the number of
newly determined coefficients after the j-th fault attack is given by 2

9r
n−ij−1

n
where

n is the number of secret coefficients. Moreover, we assume that the fault attack
targets one byte. Since each coefficient can be saved in two bits, changing one
byte corresponds to changing four coefficients, i.e., r = 4. Let f be the number of
(expected) needed faults to determine k = 21 coefficients of the secret s. Solving
the following equation for f gives f = 24 (expected) needed faults:

f∑
j=1

2r
9 ·

512− ij−1

512 ≥ k,

with i0 = 0 and n = 512. If r = 1 then f = 96 faults are necessary to recover the
secret. A larger value for r is often more realistic and results in a smaller number
of necessary faults. On the other hand the time to find the correct polynomial α
takes much longer, since the hash function has to be queried 512 · 5r times for every
fault.

Application to BLISS. As described earlier in Section 4.2.1.2, the secret keys
of the instantiations BLISS-I and BLISS-II consist of two polynomials s1, s2 with
sparse instantiation. Therefore, the attack on these instantiations of BLISS can
be applied similarly to the attack on GLP. For the higher-security instantiations
BLISS-III and BLISS-IV, d2 ∈ {0.03, 0.06}, i.e., some coefficients are not in the
set {−1, 0, 1}. Hence, extending our attack to these instantiations is possible but
increases the run-time of the attack.
As in the description above, we assume r coefficients are changed during a

successful fault. We also assume that the coefficients of the faulty secret polyno-
mial(s) are in the set {−3, ..., 3}, since it can be assumed that each coefficient is
saved in three bits. Let α = ∑n−1

i=0 αix
i. Given a faulty signature s′ = (z1, z

?
2 , c)

of the message m, the attacker runs an algorithm similar to GeneralBao. The
only difference is that the values of α lie in different intervals. If the fault has
been induced on s1 then the attacker checks H(bξa1z1 + ξqc− ξαceM + z?2 ,m) = c
for αi1 , ..., αir ∈ {−4, ..., 4} for i1, ..., ir ∈ {0, ..., n− 1}. If the fault has been in-
duced on s2 then the attacker checks H (bξa1z1 + ξqc− αceM + z?2 ,m) = c for
αi1 , ..., αir ∈ {−5, ..., 5} for i1, ..., ir ∈ {0, ..., n − 1}12. As in the GLP attack de-
scribed above, in some cases the secret coefficients can be determined uniquely.
The probability that a coefficient of s1 (resp., s2) is determined uniquely is 2/21
(resp., 4/21).
12To be exact, if the fault was induced on s2 then the attacker checks the hash values for

α0 ∈ {−4, ..., 6} and α1, ..., αn−1 ∈ {−5, ..., 5}.

129



4 Implementation Security of Lattice-Based Signature Schemes

Algorithm 4.7 Algorithm GeneralBao to compute coefficients of the secret poly-
nomial given a GLP signature computed with a faulty secret where at most r
coefficients are changed by a randomizing fault
Require: s = (z1, z

?
2 , c),m, pk = (a, b), list LDetermined, list LSecret; signature s

is computed with a faulty secret
Ensure: LDetermined, LSecret
1: for i ∈ {0, ..., n− 1} do
2: for αi ∈ {0,−2,−1, 1, 2} do
3: for αi+1 ∈ {0,−2,−1, 1, 2} do
4: ...
5: for For αi+r ∈ {0,−2,−1, 1, 2} do
6: αi+r+1, ..., αn−1 = 0
7: α = ∑n−1

i=0 αix
i

8: if (H([az1 + z?2 − bc− aαc]M ,m) = c) then
9: for j ∈ {i, ..., i+ r} do
10: if (αj = 2) then
11: LSecret[j] = −1, LDetermined[j] = 2
12: if (αj = −2) then
13: LSecret[j] = 1, LDetermined[j] = 2
14: if (αj = −1) then
15: if (LDetermined[j] = 1) then
16: LSecret[j] = 0, LDetermined[j] = 2
17: else
18: LDetermined[j] = −1
19: if (αj = 1) then
20: if (LDetermined[j] = −1) then
21: LSecret[j] = 0, LDetermined[j] = 2
22: else
23: LDetermined[j] = 1
24: return LDetermined, LSecret

To compute the number of successful faults needed, we make the same assump-
tions as before, i.e., we assume that the first index i1 of the changed coefficients
is distributed uniformly random over {0, ..., n − 1}. Hence, we approximate the
expected number of needed faults f by

f∑
j=1

r

7 ·
n− ij−1

n
≥ k,

130



4.2 Susceptibility to Fault Attacks

with i0 = 0 and n = 1024. Hence, for r = 1 the expected number of faults to
determine k = 184 coefficients of the secret (and hence, the entire secret using the
hybrid approach described in Section 4.2.2) is f = 1419. For r = 4, f = 354 faults
are necessary. We thus conclude, that the attack is less efficient on BLISS than on
the GLP scheme, but it is still applicable.

Application to ring-TESLA. The coefficients of the secret s = ∑n−1
i=0 six

i of ring-
TESLA are chosen Gaussian distributed with standard deviation σ (with σ = 52
for instantiation ring-TESLA-I). Hence, the possible values of α are in a large range.
Even if we assume that |si| ≤ σ with high probability, the number of successful
faults needed would be very large. Hence, this attack does not seem to be a threat
for ring-TESLA in particular and for instantiations with Gaussian distribution in
general.

4.2.4.2 Randomizing the Error Polynomial

An attack similar to the one described in Section 4.2.4.1, can be used to compute
the (secret) error polynomial e. If e is recovered and the public key (a, b = as+ e
mod q) is known, s can be recovered as well. However, GLP is not vulnerable
to this variant because of its compression and rounding functions. If the error
is randomized, the equation H([az1 + z?2 − bc− aαxic]M ,m) = c holds for several
values of α. Hence, α cannot be determined uniquely. Additionally, the BLISS
scheme is also not vulnerable to this attack since it is not based on LWE and hence,
no error polynomial occurs.

Nevertheless, we would like to mention this attack to raise awareness during the
construction and instantiation of schemes. To exemplify, instantiating ring-TESLA
(which does not come with such a compression function) over ternary-LWE should
be implemented very carefully.

4.2.4.3 Randomizing the Modulus

The randomizing the modulus does not seem to reveal any information that would
lead to a forgery because the value of the faulty modulus would remain unknown.
Furthermore, key and signature generation of lattice-based signature schemes
are randomized at several points by construction. Hence, tools like the Chinese
remainder theorem do not give access to the secret.

4.2.4.4 Randomizing the Randomness

As expected, also randomizing random values, e.g., the product ay or the hash
output c, does not reveal information that lead to signature forgeries since such

131



4 Implementation Security of Lattice-Based Signature Schemes

values look (or are) random by default. An exception are randomizing faults on the
hash output c for deterministic signatures which are described in Section 4.2.3.3.

4.2.5 Skipping Faults
In this section, we turn to skipping faults that aim at skipping selected lines of
the program code. This can for example, be achieved via CPU clock glitching [43].
Next, we analyze different ways to exploit skipping faults during the key generation,
the signature generation, and the verification algorithm.

4.2.5.1 Skipping During the Key Generation

In the following paragraphs, we elaborate on two skipping attacks targeting the
key generation.

Skipping the Modulus Reduction. Let A←$ Zn×mq , and let s, e be chosen with
some distribution over Zn and Zm, respectively. Afterwards compute b = As + e
without reducing modulo q. Solving SVP or CVP in the lattice Λ = {v ∈
Zn | ATw = v for some w ∈ Zm} is often computationally easier than solving
the same instance in Λq(A) = {v ∈ Zn | ATw = v mod q for some w ∈ Zm},
since det(Λ) ≥ det(Λq(A)). Hence, skipping the modulo operation during the key
generation could potentially introduce a vulnerability. However, this fault attack is
already prevented in the three considered signature schemes. We explain how the
implementations are protected, using GLP as an example, next.
As indicated by Listing 4.19, the value t (corresponding to b in our notation)

is computed without the reduction step. The modulo operation is performed in
the subroutine poly_pack. Skipping line 11 of Listing 4.19 thwarts the modulo
reduction. Afterwards, only the least significant 32 bits of (the faulty) t are saved
in r. Hence, skipping line 11 leads to a randomizing fault on b which does not
reveal secret information.

Skipping the Addition. In this attack we skip additions to compute a malformed
public key. We first explain the attack using examples from the C implementation
of the GLP scheme. However, the attack can also be successfully applied to
ring-TESLA and BLISS as explained afterwards.
In the implementation of GLP, the public key is computed as follows (see

Listing 4.19): First a and s1 (corresponding to s in our notation) are multiplied
and saved in the value t (corresponding to b in our notation). Afterwards, the
error s2 (corresponding to e in our notation) is added to t. Hence, skipping the
second operation yields b = as and an attacker can easily recover s by Gaussian
reduction. It is important to note here that skipping line 1 in Listing 4.19 results in

132



4.2 Susceptibility to Fault Attacks

1 poly_mul_a(t, s1);
2 poly_add_nored(t, t, s2);
3 poly_pack(pk, t);
4 [...]
5
6 void poly_pack(unsigned char r[3* POLY_DEG], const poly f){
7 int i;
8 signed long long t;
9 for(i=0;i<POLY_DEG;i++){

10 t = (unsigned long long)f[i];
11 t = ((t % PARAM_P) + PARAM_P) % PARAM_P;
12 r[3*i+0] = t & 0xff;
13 r[3*i+1] = (t >> 8) & 0xff;
14 r[3*i+2] = (t >> 16) & 0xff;
15 }
16 }

Listing 4.19: Code of the GLP scheme for the computation of the public value
b = as + e mod q in the subroutine crypto_sign_keypair and
compression in the subroutine poly_pack in C; the value t corresponds
to the value b, the value s1 corresponds to s, and s2 corresponds to e
in our notation

an unallocated variable t, triggering a segmentation fault. Thus, no (predictable)
information which could potentially be used by an attacker, is returned.
As indicated by the disassembled code of the addition in Listing 4.20, the com-

mand poly_add_nored@PLT is called in line 5. Hence, skipping this line results in
b = as as described above. This implies that although the attacker can compute s,

1 .loc 1 49 0
2 1254 4C89E2 movq %r12 , %rdx
3 1257 4C89F6 movq %r14 , %rsi
4 125a 4C89F7 movq %r14 , %rdi
5 25d E8000000 call poly_add_noredPLT00

Listing 4.20: Assembly code corresponding to line 2 in Listing 4.19 of the GLP
implementation

the error vector e remains unknown. However, in the signature generation of GLP,
e is used to compute z2. We illustrate now how an attacker can forge signatures
anyway: The attacker chooses random polynomials y1, y2 and computes the hash
value c for a message m, z1 = y1 + sc, and z2 = y2 (instead of z2 = y2 + ec).
The attacker applies rejection sampling, compresses z2 to z?2 , and returns the
signature s = (z1, z

?
2 , c). The verify algorithm accepts this signature s as explained

next. Due to the rejection sampling, z1, z
?
2 ∈ Rq,[k−32]. Furthermore, it holds

that [az1 + z?2 − bc]M = [az1 + z2 − bc]M = [asc+ ay1 + y2 − asc]M = [ay1 + y2]M .
Thus, by skipping a single line an attacker can reveal s and also forge a signature

133



4 Implementation Security of Lattice-Based Signature Schemes

for any message m.

Listing 4.21 shows the implementation of ring-TESLA’s public key computation
b1, b2. Similar to the description of the GLP scheme, skipping line 2 or 4 yields
bi = ais. Hence, we can easily compute s. By definition of the signature generation
of ring-TESLA, this is enough to forge signatures. The error polynomials e1 and e2
are not necessary during the sign algorithms since line 5 and 6 in Algorithm 3.12
can be substituted by testing whether the equation [aiz − bic]M = [aiy]M holds for
i = 1, 2.

1 poly_mul_fixed(poly_T1 ,poly_S ,poly_a1);
2 poly_add(poly_T1 ,poly_T1 ,poly_E1);
3 poly_mul_fixed(poly_T2 ,poly_S ,poly_a2);
4 poly_add(poly_T2 ,poly_T2 ,poly_E2);

Listing 4.21: Code of the signature scheme ring-TESLA for the computation of
the public values b1 and b2 in C; the values poly_T1 and poly_T2
correspond to b1 and b2, respectively

The public key of BLISS consists of a polynomial a1 = 2aq = 2(2g + 1)/f , where
f, g are polynomials with small coefficients. In the implementation of BLISS the
public key is computed via the operations depicted in Listing 4.22. Skipping line 7
in Listing 4.22 yields aq = 1/f . Since a1 = 2aq is part of the public key, f can be
recovered easily. Similarly to GLP, skipping an operation in the key generation
does not reveal the polynomial g or 2g+ 1. Given f , however, an attacker can forge
signatures for any message m as explained next. A general secret-public-key pair of
BLISS fulfills the equation a1s1 + (q− 1)s2 = q mod 2q for s1 = f and s2 = 2g+ 1.
This can be written as 2s2s1

s1
+ (q− 1)s2 = q mod 2q. Hence, s2 = q

q+1 mod 2q. As
long as it is not checked whether s2 is of the correct form during signing, signatures
computed with the secret key (f, q/(q− 1) mod 2q) will be verified with the public
key (2/f, q − 2).

1 conv(pX , sk.s1);} \\ pX=f
2 NTL::conv(aq, pX);} \\ aq=f
3 NTL::inv(aq , aq);} \\ aq=1/f
4 NTL::ZZ\_pE tmp;}
5 conv(pX , -(sk.s2));} \\ pX=-(2g+1)
6 NTL::conv(tmp , pX);} \\ tmp=-(2g+1)
7 NTL::mul(aq , aq , tmp);} \\ aq=-(2g+1)/f

Listing 4.22: Code of the signature scheme BLISS for the computation of the public
value a1 in C++

134



4.2 Susceptibility to Fault Attacks

4.2.5.2 Skipping During the Signature Generation

The signature generation of BLISS, GLP, and ring-TESLA can be implemented
as a short and simple sequence of (polynomial) additions and multiplications.
Furthermore, signing is randomized in several different operations. Hence, the
number of vulnerabilities introduced by skipping faults is low. We describe two
skipping attacks during the sign algorithm in the following paragraphs.

Skipping the Rejection Condition. Lyubashevsky first applied rejection sampling
(introduced by von Neumann [214]) to lattice-based signature schemes to assure
the statistical independence of the secret key and the signatures generated with
this secret. As a result, learning-the-parallelepiped-attacks introduced by Nguyen
and Regev [166] and improved by Ducas and Nguyen [84] further, are prevented.
Ducas and Nguyen have needed about 8000 signatures to reveal the secret in their
attack on NTRUSign [121]. In case of BLISS, ring-TESLA, and the GLP scheme,
the rejection sampling is implemented as an if-condition, which would have to be
skipped in order to circumvent the rejection sampling. Skipping this condition for
executions of the signature generation might introduce the same security flaw as
used by the attacks described in [84,166]. Since these attacks exploit the special
structure of NTRU-lattices, BLISS might be especially vulnerable because its keys
are chosen in an NTRU-like manner. However, to find out the exact number of
needed faults, the mentioned attacks have to be adapted to BLISS, ring-TESLA,
and the GLP scheme which we leave for future inquisition.

Skipping the Addition of the Randomness. In the implementation of the GLP
scheme, the values z1 and z2 are computed in two steps (see Algorithm 4.2): First
s (resp., e) and c are multiplied. Afterwards, sc and y1 (resp., ec and y2) are
added, as can be seen in Listing 4.23. Hence, skipping line 5 (resp., line 9) in
Listing 4.23 yields z1 = sc (resp., z2 = ec). As previously stated, the assembly code

1 poly_setrandom_maxk(y1);
2 poly_setrandom_maxk(y2);
3 [...]
4 poly_mul(z1,c,s1);
5 poly_add_nored(z1,z1,y1);
6 poly_coeffreduce(z1);
7 [...]
8 poly_mul(z2,c,s2);
9 poly_add_nored(z2,z2,y2);

10 poly_coeffreduce(z2);

Listing 4.23: Code of the GLP implementation for the computation of the signature
values z1 and z2 in C

135



4 Implementation Security of Lattice-Based Signature Schemes

of the respective code lines corresponds to jumping to another operation. Hence,
this attack gives the same result as zeroing the entire randomness as described in
Section 4.2.3.2. This means that an attacker can recover the secret key by skipping
a single line.
A similar attack is not possible in case of the implementations of ring-TESLA

and BLISS as we explain next. In the implementation of ring-TESLA the value
sc is added to the value y as can be seen in Listing 4.24. Hence, skipping the
line in Listing 4.24 yields z = y (the value vec_y is the output value in the
implementation). Since the randomness changes for every run of the sign algorithm,
the attacker does not learn additional information about the secret.

1 poly_add(vec_y , vec_y , Sc);

Listing 4.24: Code of ring-TESLA for the addition of sc and y in C

Similarly the attack does not recover additional secret information when applied
to BLISS. As Listing 4.25 indicates, the values of y1 and y2 are written in z1 and
z2, respectively. Hence, skipping the addition in lines 11 until 19 of Listing 4.25
yields z1 = y1 and z2 = y2. Since the randomness y1, y2 changes for every run of
the sign algorithm, this does not reveal additional secret information. Skipping
lines 2 until 4 yields z1, z2 with unknown values to the attacker.

1 for (i=0; i<N; i++){
2 signOutput.z1[i] = sampler ->SamplerGaussian ();
3 ay[i] = signOutput.z1[i]*W[i];
4 signOutput.z2[i] = sampler ->SamplerGaussian ();
5 }
6 [...]
7 mult_by_c(sc1 , sk.ls1 , false , sk.offset , signOutput.indicesC);
8 mult_by_c(sc2 , sk.ls2 , true , sk.offset , signOutput.indicesC);
9 [...]

10 if (random ->getRandomBit ()){
11 for (i=0; i<N; i++){
12 signOutput.z1[i]-=sc1[i];
13 signOutput.z2[i]-=sc2[i];
14 }
15 } else{
16 for (i=0; i<N; i++){
17 signOutput.z1[i]+= sc1[i];
18 signOutput.z2[i]+= sc2[i];
19 }
20 }

Listing 4.25: Code of BLISS for the computation of the signature values z1 and z2
(without compression) in C++

136



4.2 Susceptibility to Fault Attacks

Skipping the Modulus Reduction. Skipping the reduction modulo q during the
signature generation does not reveal information about the secret key since during
the computation of z = y + sc (the only value that is returned and depending
on the secret) no modulo reduction is computed in all of the signature schemes.
Moreover, the modulo operation is computed very often during the sign algorithm.
As a consequence, it is rather difficult to skip all the modulo operations during the
computation using fault attacks.

4.2.5.3 Skipping During the Verification

To prevent the installation of malicious malware, cryptographic signatures of
software updates are used. In addition, it is also necessary to ensure that the
verification of these signatures is computed correctly [204]. As a result of this
observation, we also analyze skipping attacks during the verification algorithm. In
what follows, we identify two possibilities to force acceptance of invalid signatures
for messages m via skipping attacks.
In the signature schemes BLISS, GLP, and ring-TESLA, the verify algorithm

consists essentially of computing a hash value c′, checking whether c′ is the same
as the input value c (called the correctness check), and checking whether z (resp.,
z1 and z?2) is small enough (called the size check). It is important to note here
that we do not consider skipping the computation of the encoding function of the
hash value c, since this would lead to an unallocated value. However, we already
consider zeroing c in Section 4.2.3.4.

Skipping the Correctness Check. We first describe how to force acceptance of
an invalid signature via skipping the correctness check. An adversary chooses c
uniformly at random and chooses z (reps., z1 and z?2) small enough and of the
expected form (e.g., correct number of zero-coefficients), such that the size check
of the verification accepts. Afterwards, the attacker computes the hash value c′.
Hence, skipping the correctness check yields an acceptance of the (invalid) signature
of any message.
In the software of ring-TESLA, the correctness check is realized as a simple

if-condition shown in Listing 4.26, where c_sig corresponds to c′ in our notation
and returning -1 corresponds to the rejection of a signature.

1 if(memcmp(c,c_sig ,32)) return -1;

Listing 4.26: Code of ring-TESLA of the correctness check during verify in C

In case of BLISS and the GLP scheme, the correctness checks are realized as
if-conditions for each entry of c. We depict the respective lines of the GLP
implementation in Listing 4.27 as an example. Therefore, the skipping fault could
be realized as an early loop-abort during the for-loop after the first iteration.

137



4 Implementation Security of Lattice-Based Signature Schemes

Hence, the invalid signature is accepted as long as c, z1, and z?2 are chosen such
that c[0] = c′[0].

1 for(i=0;i<20;i++){
2 if(sm[i] != h[i]){
3 goto fail;
4 }
5 }

Listing 4.27: Code of the correctness check in the GLP scheme in C;
sm[0],...,sm[19] corresponds to c and h corresponds to c′ in our
notation; goto fail corresponds to rejecting a signature

Skipping the Size Check. First, we explain the attack against GLP. Moving
further, we then explain the attack against BLISS and discuss why it cannot be
applied to ring-TESLA.

Against GLP, the attack works as follows. The attacker chooses y1, y2 ←$ Rq,[k]
and computes the hash value c for a chosen message. Afterwards, the attacker
computes z1 = a−1(ay1 + bc) (recall that the polynomial a is invertible) and
z2 = y2. Easy computation shows that as long as the size check is skipped, the
signature s = (z1, z

?
2 , c) is accepted. In case of GLP, the size check is realized as

a simple if-condition. This is also the case for BLISS, but by construction of
the verify algorithm, two if-conditions have to be checked for z1 as indicated by
Algorithm 4.6.

The attack, however, does not work for ring-TESLA for the following reason: To
accept the signature (z, c) the equation c = H ([w′1]M , [w′2]M ,m) has to hold true.
Therefore [w′i]M = [aiz − bic]M = [aiy]M has to hold for i = 1, 2, i.e., the signature
value z has to fulfill two equations during verification. As described for GLP, the
value z would be uniquely determined by either a1 or a2. Hence, the probability
that z would fulfill both equations is very small.

After describing all our found attacks, we now turn to propose countermeasures.

4.2.6 Countermeasures
In what follows, we describe countermeasures to prevent fault attacks for each of the
successful attacks described earlier in Section 4.2.3, 4.2.4, and 4.2.5 against BLISS,
ring-TESLA, and the GLP scheme. We give an overview about the success of the
analyzed attacks and their respective abbreviations in Table 4.2. It is crucial that
a countermeasure cannot be easily circumvented by another fault attack. Hence,
implementations of countermeasures should always consider preventions against

138



4.2 Susceptibility to Fault Attacks

all three kinds of attacks. Towards the end of the section, we demonstrate how to
implement countermeasures for ring-TESLA as an example.

4.2.6.1 Countermeasures Against Randomizing Faults

In the following paragraphs, we propose countermeasures against randomizing the
secret polynomial during the signature generation, called R-S-Sec and described in
Section 4.2.4.1.
A simple countermeasure is to check the correctness of the secret key during

signing, e.g., by simple correctness checks or comparisons. However, depending
on the fault attack and the implementation of the countermeasure this might not
mitigate the fault attack. For example, if the randomizing fault is implemented as
a skipping attack, a naive implementation of a comparison might be skipped as
well.

Our approach is somewhat different: Let a−1 be the inverse polynomial of a
in Rq, s′ be the faulty secret, s be the original secret, b′ = as′ + e mod q, and
b = as + e mod q. In line 3 of Algorithm 4.2 of the GLP signature generation,
z1 ← y1 + s′c is computed if the randomizing attack was successful. We thus,
propose to change line 3 to z1 = a−1(b′ − b)c+ s′c+ y1. Since it holds that

z1 = a−1(b′ − b)c+ s′c+ y1

= a−1(as′ + e− as− e)c+ s′c+ y1

= sc+ y1,

we always return a signature generated with the correct secret key even if the
randomizing attack R-S-Sec successfully changed the secret. As long as our adaption
is implemented with respect to the guidelines mentioned below, the countermeasure
should not induce vulnerabilities against other described skipping or zeroing attacks.
Conversely, a disadvantage of our countermeasure is that the public key b has

to be given as input to the sign algorithm. Hence, the input sizes are increased.
Furthermore, the inverse of a has to be computed during signing or has to be given
as an additional input or constant.
Our analysis in Section 4.2.4.1 indicates that instantiations such as DCK or

NTRU are more vulnerable to this randomizing attack. Hence, instantiating BLISS
or the GLP scheme over R-LWE or R-SIS would strengthen the security of these
schemes against the randomizing attacks as well. It is highly probable that this
would greatly decrease the efficiency.

The error term can be protected against the corresponding randomizing attack
R-S-Err, described in Section 4.2.4.2, using a similar approach, if necessary.

139



4 Implementation Security of Lattice-Based Signature Schemes

4.2.6.2 Countermeasures Against Skipping Faults

We now illustrate the countermeasures to prevent the skipping attacks presented
in Section 4.2.5.

Skipping the Addition of Secret Polynomials During Key Generation. We
start with a countermeasure to prevent skipping additions, called S-KG-Add, to
compute malformed public keys.

One possible countermeasure is to define a new variable that is used to store the
resulting sum. Listing 4.2.1a shows the original addition of the GLP key generation,
our adaption to mitigate the attack is given in Listing 4.2.1b. Skipping line 2 in
Listing 4.2.1b does not lead to a successful attack since the value b2 would not
be allocated, a segmentation fault would be triggered, and hence, no additional
information about the secret is revealed in case of first-order attacks. If an even
stronger attacker model is considered where the attacker can skip instructions and
is able to read the memory after execution, the value b1 should be discarded or
overwritten as a precaution.

1 poly_mul_a(b,s);
2 poly_add_nored(b,b,e);

a: Original code

1 poly_mul_a(b1,s);
2 poly_add_nored(b2,b1,e);

b: Adapted code
Listing 4.2.1: Code of the addition during the key generation of GLP in C

Besides the countermeasure mentioned above, it should be ensured that only
correctly formed or random-looking keys are returned. Moving further, we now
describe a more general but slower method to prevent returning a malformed public
key b such as b = as mod q, b = e mod q, or b = 0 for GLP as an example
in Figure 4.8. The implementations of BLISS and ring-TESLA can be adapted
similarly.
If b is not faulty then ν = 1 and the correct elements s and e are returned. If

b is faulty the secret and the public key do not correspond to each other. Hence,
signed messages cannot be verified with the corresponding faulty b, but at least no
signatures can be forged either.

Skipping the Addition of Randomness During Signature Generation. We now
propose a countermeasure to prevent skipping additions during the signature
generation to compute malformed signatures, called S-S-Add. One approach to
prevent such skipping attacks is to add secret information to random information
and not the other way around. Listing 4.2.2 shows the implementation of GLP as
an example. Skipping line 4 in Listing 4.2.2a (original code) results in z1 = as and
gives access to s. Skipping line 4 in Listing 4.2.2b (adapted code), however, results

140



4.2 Susceptibility to Fault Attacks

Algorithm 4.8 Adapted key generation of the GLP scheme
Require: -
Ensure: Secret key sk = (s, e) and public key pk = (a, b)
1: s, e←$ Rq,[1]
2: a←$ Rq

3: b← as+ e mod q
4: u←$ Zq
5: ν ← ‖b−as‖2+u

‖e‖2+u
6: if s = νs ∧ e = νe then
7: return sk = (νs, νe)
8: else
9: restart in line 1

in z1 = y1. Since y1 changes for every signature generation, the attacker does
not gain additional information about the secret. This is already realized in the
implementations of BLISS and ring-TESLA. A similar countermeasure is proposed
above against a skipping attack during key generation. As above, it is important to
note that our proposed countermeasure should prevent first-order skipping attacks.
If an even stronger attacker model is considered, however, the value v1 should be
discarded or overwritten as a precaution. Otherwise the attacker might be able to
read the secret value v1 from the memory after execution.

1 poly_setrandom_maxk(y1);
2 [...]
3 poly_mul(z1,c,s1);
4 poly_add_nored(z1,z1,y1);
5 poly_coeffreduce(z1);

a: Original code

1 poly_setrandom_maxk(z1);
2 [...]
3 poly_mul(v1,c,s1);
4 poly_add_nored(z1,z1,v1);
5 poly_coeffreduce(z1);

b: Adapted code
Listing 4.2.2: Code of the addition of randomness and secret during the signature

generation of GLP in C

Skipping the Rejection Sampling During Signature Generation. Due to the
large number of successful faults needed, skipping the rejection sampling for each
signature generation does not seem to be a realistic attack scenario (see the
attack description of S-S-Rej). Nevertheless, we now discuss a countermeasure that
increases the number of successful faults needed further in case of BLISS.
The rejection sampling is realized as an if-condition in ring-TESLA and GLP.

The signature is returned if the if-condition holds true. In the disassembled code
this corresponds to returning the signature if the zero flag is equal to 1. This means

141



4 Implementation Security of Lattice-Based Signature Schemes

that when the if-condition is skipped by fault, a signature is returned if and only if
the zero flag was set equal to 1 in an earlier computation. It is reasonable to assume
that this happens with probability 0.5. Hence, a realization of the if-condition
such as in ring-TESLA and the GLP scheme does not prevent the skipping attack
in all cases, but it increases the (expected) number of necessary fault injections by
the number of two. In case of the BLISS implementation, the rejection sampling
is realized as if-condition(s) such that a signature is rejected if the if-condition
holds true. Hence, skipping this if-condition means to skip the rejection sampling.
Reformulating the if-condition as it is done for ring-TESLA and the GLP scheme
makes this skipping attack more complicated in case of BLISS.

Skipping the Correctness or the Size Check During Verification. To prevent
against attacks that skip the correctness or the size check during verification such
as S-V-Cor or S-V-Size described in Section 4.2.5.3, we combine several countermea-
sures. The adapted pseudo-code of the verification is displayed for the GLP scheme
in Figure 4.9 as an example. The implementations of BLISS and ring-TESLA can
be adapted in a similar way.

The idea of the countermeasure is to return the result of the size and correctness
check directly without depending on if-conditions. For this, we introduce the
subroutine CheckVerify that returns 0 if the signature values have the correct
size and the computed hash value is the same as the input value (see line 2 in
Algorithm 4.3). Otherwise CheckVerify returns 1.

To hamper that our countermeasures are circumvented by using higher-order
skipping faults, we shuffle the order of the coefficients of z1, z

?
2 , c using the routine

shuffle().

Algorithm 4.9 Adapted verification of the GLP scheme
Require: Message m, public key (a, b), and signature (z1, z

?
2 , c)

Ensure: {0,−1} . accept, reject signature
1: c′ ← H ([az1 + z?2 − bc]M ,m)
2: c′sh ← shuffle(c′)
3: z′1,sh ← shuffle(z1)
4: z′2,sh ← shuffle(z?2)
5: return −CheckVerify(z′1,sh, z′2,sh, c′sh)

We also use randomization in the routine CheckVerify() displayed in Algo-
rithm 4.10. Namely, we randomize the order in which the size and correctness are
checked for each of the coefficients. Moreover, we introduce two lists resultz and
resultc with n entries equal to 1. The lists are then used to save the respective
results of the size and the correctness checks for each coefficient. For example,

142



4.2 Susceptibility to Fault Attacks

Algorithm 4.10 Pseudo-code of CheckVerify()
Require: Polynomials z1, z2, and c
Ensure: {0, 1}
1: r ←$ {0, 1}n
2: resultz = [1]n
3: resultc = [1]n
4: for i = 0, ..., n− 1 do
5: if r=0 then
6: resultz[i] = (CheckSize(z1[i]) ∧ CheckSize(z2[i]))
7: resultc[i] = CheckCorrectness(c[i])
8: else
9: resultc[i] = CheckCorrectness(c[i])
10: resultz[i] = (CheckSize(z1[i]) ∧ CheckSize(z2[i]))
11: result = resultc + resultz
12: return 1− [[0]n = result]

CheckSize() returns 0 if the absolute value of zj[i] is small enough. Otherwise it
returns 1. CheckCorrectness() is defined similarly for the correctness check. The
results are added in line 11 in Algorithm 4.10. If the signature is valid, the resulting
list result equals the list [0, ..., 0] and the value 0 is returned. If the signature is
invalid, at least one entry of the resulting list result is non-zero and 1 is returned.
Thus, due to the different lists corresponding to the check results and randomization,
skipping attacks and even loop-aborts as described in [92] are prevented.

4.2.6.3 Countermeasures Against Zeroing Faults

Zeroing faults can often be categorized as randomizing or skipping faults. This
means that often the countermeasures described in Section 4.2.6.1 and Section 4.2.6.2
are sufficient to mitigate the zeroing attacks. If a zeroing fault is not caused by
higher-order skipping or randomizing faults, we can prevent it by simply checking
whether the values of the secret or error polynomial (Section 4.2.3.1), the ran-
domness during signing (Section 4.2.3.2), the hash value (Section 4.2.3.3), or the
encoding polynomial (Section 4.2.3.4) are zero.

4.2.6.4 Implementation of Countermeasures for ring-TESLA

In the following paragraphs, we illustrate how to adapt the implementation of
ring-TESLA to mitigate the attacks described in Section 4.2.3, 4.2.4, and 4.2.5.
Moreover, we discuss the efficiency of our implemented countermeasures. The

143



4 Implementation Security of Lattice-Based Signature Schemes

original implementation of ring-TESLA is vulnerable to the following attacks:
S-KG-Add, Z-KG-Sec, Z-KG-Ran, S-S-Rej, S-V-Cor, and Z-S-HPoly.

Mitigation Against S-KG-Add and Z-KG-Sec. We implement a countermeasure
to prevent skipping the addition of the error during the key generation described
earlier in Section 4.2.5.1. The countermeasure also mitigates the zeroing attack
described in Section 4.2.3.1. We show the original, vulnerable key generation
algorithm of ring-TESLA alongside of our adaption in Listing 4.2.3. If line 1 (resp,
line 3) in Listing 4.2.3b is skipped, poly_T1 (resp., poly_T2) is uninitialized and
the private and public key do not correspond to each other. Hence, signatures
might not be verified correctly, but at least the attacker would not learn additional
information about the secret.

1 poly_mul_fixed(poly_T1 ,poly_S ,poly_a1);
2 poly_add(poly_T1 ,poly_T1 ,poly_E1);
3 poly_mul_fixed(poly_T2 ,poly_S ,poly_a2);
4 poly_add(poly_T2 ,poly_T2 ,poly_E2);

a: Original code

poly_mul_fixed(poly_A1S,poly_S ,poly_a1);
poly_add(poly_T1 ,poly_A1S,poly_E1);
poly_mul_fixed(poly_A2S,poly_S ,poly_a2);
poly_add(poly_T2 ,poly_A2S,poly_E2);

b: Adapted code
Listing 4.2.3: Original and adapted key generation of ring-TESLA

Mitigation Against Z-KG-Ran. To mitigate zeroing attacks against the random-
ness poly vec_y in the signature generation of ring-TESLA, we implement the
countermeasure shown in Listing 4.2.4. The randomness is sampled by calling
sample_y(vec_y). To implement our countermeasure, we introduce the function
count_zeroes(), shown in Listing 4.2.4b. In our adaption the randomness is
resampled if too many coefficients are equal to zero. Hence, zeroing of many
coefficients is prevented.

For the instantiation ring-TESLA-II, we check that no more than eight coefficients
are set to zero for the following reason. The polynomial vec_y consists of 512
integer coefficients that are sampled uniformly random over [−2097151, 2097151].
Hence, the probability that more than eight coefficients of a sampled polynomial
are equal to zero is less than 2−128. Since the security parameter of ring-TESLA-II
is λ = 128, we consider our change in the probability distribution to be negligible.
For other parameter sets, the bound in line 3 in Listing 4.2.4a has to be adapted.

Mitigation Against S-S-Rej. We implement the following countermeasure against
skipping the rejection sampling within the signature compression function. The
function compress_sig() copies the hash value and the polynomial vec_y, coeffi-
cient by coefficient into an array of bytes. Thus, we propose adding the function

144



4.2 Susceptibility to Fault Attacks

1 poly vec_y;
2 sample_y(vec_y);
3 if (count_zeroes(vec_y) > 8){
4 // restart in line 2
5 }
6 }

a: Adapted Code

1 int count_zeroes(poly p){
2 int zeroes = 0;
3 for (int i = 0; i < PARAM_N; i++){
4 if (p[i] == 0.0){
5 zeroes ++;
6 }
7 }
8 return zeroes;
9 }

b: Implementation of count_zeros()

Listing 4.2.4: Adapted code of sampling the randomness during the signature
generation of ring-TESLA and implementation of count_zeros()

fmodb_u() to the original code. The corresponding adaption of compress_sig()
and our implementation of fmodb_u() are illustrated in Listing 4.2.5.
In case no fault has been introduced, fmodb_u() does not alter any coefficient

because due to the original rejection sampling all coefficients (in absolute value)
are smaller than B − U . Assuming that the rejection sampling has been skipped
and some coefficients are (in absolute value) larger than B − U , the function
fmodb_u() changes the coefficients that are too large and, hence, prevents revealing
secret information. In particular, it computes each coefficient modulo B − U . Our
countermeasure thus, results in an invalid signature.

To circumvent this countermeasure, the call to the function fmodb_u() could be
skipped in every iteration of the loop, which is executed hundreds of times. (If
the entire loop is skipped, the signature will be empty.) Hence, circumventing our
countermeasure is very difficult.

1 static void compress_sig(unsigned char *sm,
unsigned char *c,double vec_z[PARAM_N

]){
2 int i,k;
3 int ptr =0;
4 int32_t t=0;
5
6 //store the hash value
7 for (i=0; i<32; i++){
8 sm[ptr++] =c[i];
9 }

10 for(i=0; i < PARAM_N; i++){
11 t = (int32_t) fmodb_u(vec_z[i]);
12 }
13 for(k=0;k<4;k++){
14 sm[ptr++] = ((t>>(8*(k))) & 0xff);
15 }
16 }

a: Adapted compress_sig()

1 static double fmodb_u(double x){
2 int modulus=PARAM_B - PARAM_U;
3 if(x < -modulus){
4 return x + modulus;
5 } else{
6 if(x > modulus){
7 return x - modulus;
8 } else{
9 return x;

10 }
11 }

b: Implementation of fmodb_u

Listing 4.2.5: Adapted compress_sig() and implementation of fmodb_u()

145



4 Implementation Security of Lattice-Based Signature Schemes

Mitigation Against S-V-Cor. During the verification algorithm of ring-TESLA,
the input value c_sig and the computed hash polynomial c are compared. If
they are equal, the function memcmp()13 returns 0 which results in accepting the
signature (see Listing 4.26), otherwise it returns a positive integer which results
in rejecting the signature. An attacker who wants his victim to accept an invalid
signature must force the verification algorithm to return 0. This can be achieved
by a skipping attack. Upon considering only first-order attacks, we can prevent the
skipping attack by adapting the implementation as in Listing 4.2.6a. The function
still returns 0 if the signature is valid and, by definition of memcmp(), a non-zero
value otherwise (albeit not -1). The disassembled code in Listing 4.2.6b shows that
failing to call memcmp() returns the content of %rax, which is modified in line 2
and hence, which is very unlikely to be 0.

1 [...]
2 *mlen = smlen -CRYPTO_BYTES;
3 memcpy(m, sm , *mlen);
4 return memcmp(c,c_sig ,32);
5

a: Adapted code

1 [...]
2 leaq -112(% rbp), %rcx
3 leaq -48(%rbp), %rax
4 movl $32 , %edx
5 movq %rcx , %rsi
6 movq %rax , %rdi
7 call _memcmp
8 testl %eax , %eax
9 je L139

10 movl $-1, %eax
11 jmp L140
12 L139:
13 [...]
14 movl $0, %eax
15 L140:
16 [...]
17 ret

b: Assembly code
Listing 4.2.6: Adapted verification and corresponding assembly code

Efficiency of the Countermeasures. Moving along to investigate the efficiency of
our proposed countermeasures we implemented them and compared the execution
times with the original ring-TESLA implementation. The benchmarks of the
original and the adapted ring-TESLA implementation were recorded on a 4.0 GHz
Intel Core i7-6700k. To compile our code, we used GCC 7.1.0. The benchmarks are
given in clock cycles and are averaged over 2,000 runs for the key generation and
20,000 runs for signature generation and verification. Since compiler optimizations
might remove some of the countermeasures, we report two benchmarks in Table 4.4,
namely with and without the optimization -Ofast.
13We refer to http://www.cplusplus.com/reference/cstring/memcmp/ for a description of

memcmp().

146

http://www.cplusplus.com/reference/cstring/memcmp/


4.3 Vulnerability Against Other Implementation Attacks

As shown in Table 4.4, the difference in the execution times of the original and
adapted implementation is small. The largest time overhead is introduced by the
countermeasure optimization S-KG-Add during key generation where the adapted
implementation is 1.05 slower than the original implementation.

Table 4.4: Performance (in cycles) of the original and adapted ring-TESLA code
Algorithm Key generation Sign Verify
Mitigated attack S-KG-Add, Z-KG-Sec Z-KG-Ran S-S-Rej S-V-Cor

w
/o

co
m
pi
le
r

op
t.

Original 55 308 534 1 735 398 1 735 398 467 321
Adapted 58 345 806 1 768 674 1 743 670 467 762
Factor∗ 1.0549 1.0192 1.0048 1.0009

w
/

co
m
pi
le
r

op
t.

Original 33 429 812 69 843 69 843 71 299
Adapted 35 247 385 71 354 71 075 73 739
Factor∗ 1.0544 1.0216 1.0176 1.0342

∗ Rounded to four decimal positions

In this section, we explain different fault attacks on lattice-based signature
schemes, propose possible countermeasures, and provide an example implementation
of these countermeasures. In the next section section, we elaborate on timing,
power, and electromagnetic attacks.

4.3 Vulnerability Against Other Implementation
Attacks

After analyzing the vulnerability of lattice-based signature schemes against cache-
side-channel and fault attacks, we now discuss other important implementation
attacks. In particular, we summarize the existing results from the literature about
power, electromagnetic (EM), and timing attacks and discuss their applicability to
our signature schemes. An introduction to these three kinds of attack is presented in
Section 2.5. An overview of published implementation attacks against lattice-based
signature schemes, PKE, and key exchange protocols is given in Table 4.5.

4.3.1 Timing Attacks
We start with a discussion on timing side channels. As indicted by Table 4.5,
the only attacks that exploit timing side channels target the encryption scheme
NTRUEncrypt. One of the reasons for this is that lattice-based schemes are
often easily protected against timing side channels; their arithmetic operations are

147



4 Implementation Security of Lattice-Based Signature Schemes

Algorithm
Attack Power/EM Timing Cache Fault

NTRUEnc./Sign [121] [150,215,224] [207,213] [12,130]
NTT [184]
LWEEncrypt [155] [171,192,193]
Frodo [52], [22] [92]Newhope [15]
BLISS [81] [91] [110,176,177,199] [92], Sect. 4.2
GLP [114] [92], Sect. 4.2
Dilithium [82] [111]
TESLA/qTESLA/ Sec. 4.1 [92],Sect. 4.2
ring-TESLA [111]

Table 4.5: State-of-the-art implementation attacks against lattice-based schemes

rather simple and branchings seldom depend on secret information as stated by
Pöppelmann and Güneysu [181]:

Our implementation of Ring-LWEEncrypt is fully pipelined and has
no data-dependent operations. The processor core does not support
any branches and Gaussian sampling based on the inverse transform
operates in constant time. Summarizing, all cryptographic operations
of our core are timing-invariant.

Moreover, there exist several implementations of the LWEEncrypt scheme [155]
that claim to provide resistance against timing attacks, such as [181,182], or that
prevent most prominent points of attack such as secret-dependent branches, table
lookups, polynomial multiplication, or modular reductions, such as [14,51]. Another
example is the cryptographic lattice library by Microsoft14 that is “fully protected
against timing and cache attacks” [66]. In [18] the lattice-based open-source
cryptographic libraries FHEW [83] and HElib [117, 118] are analyzed regarding
timing side channels. The authors concluded that they did not find significant
differences in the execution time depending on the secret values.

Furthermore, several works propose constant-time implementations of two build-
ing blocks that are present in almost all lattice-based schemes, namely the NTT
for polynomial multiplication [205] or discrete Gaussian sampling [133,198].

Most of the results summarized above can be transfered to lattice-based signature
schemes. For example, the execution time of all subroutines in the signature gener-
ation of Dilithium [82] and qTESLA are independent of the secret key. However,
14The library [66] currently consists of an implementation of a lattice-based key exchange [15].

148



4.3 Vulnerability Against Other Implementation Attacks

a major difference between lattice-based signature schemes and, e.g., encryption
schemes is the usage of rejection sampling during the signature generation in
many efficient lattice-based signatures schemes such as [24, 30, 81, 82], TESLA,
and qTESLA. For example, in line 11 of the signature generation of qTESLA in
Algorithm 3.9, the potential signature s = (c′, z) is rejected if z /∈ Rq,[B−LS ]. Since,
the rejection probability depends on random values, the signature generation does
not run in constant time. However, this branching should not lead to a timing
attack since it does not depend on secret information as explained as follows. If the
potential signature is rejected, all random values are discarded and no additional
information about the final signature oder the secret is revealed; if the potential
signature is returned (approximations of) the values wi become public.
In summary, lattice-based signature schemes are easy to be implemented to

be resistant against timing attacks. However, to guarantee timing-side-channel
resistance, program analysis tools such as [74] (similarly to the tool CacheAudit [78]
used in Section 4.1) should be considered.

4.3.2 Power and Electromagnetic Attacks
In the following paragraphs we elaborate on power and electromagnetic attacks.
Power attacks, such as DPA, are very powerful since they can be implemented
with rather low-end techniques [193]. As indicated by Table 4.5, analyzing and
mitigating power attacks that target lattice-based encryption, signatures, and key
exchange protocols is a very active field of research.
The sources for electromagnetic side channels often resemble those for power

side channels, as electromagnetic fields are generated by current flowing through
respective wires. However, the experimental setup and the results to be expected
differ since “the design of special probes and the development of advanced mea-
surement methods that focus very accurately selected points of the chip” enable to
measure local electromagnetic emanation [101]. Gandolfi, Mourtel, and Olivier [101]
show that electromagnetic attacks are practical in many cases even when power
analysis is too inaccurate to obtain definite conclusions. This observation is also
supported by [91,184]: The theoretical descriptions of the attacks against lattice-
based primitives use power (or sometimes electromagnetic) side channels. However,
the practical attacks are carried out using electromagnetic side channels, e.g.,
[91, Section 3.3] and [184, Section 4.2].
In the following paragraphs, we discuss if and how power attacks and electro-

magnetic attacks presented for lattice-based encryption schemes might be adapted
to signature schemes such as qTESLA.
Primas, Pessl, and Mangard [184] explain that masking countermeasures such

as [192,193] seem to protect lattice-based encryption schemes against differential
analysis since en- and decryption consists mainly of linear operations. The same

149



4 Implementation Security of Lattice-Based Signature Schemes

holds for most lattice-based signature schemes and hence, similar masking methods
should be implemented as a precaution against differential analysis. However,
masking might not be a sufficient countermeasure to prevent simple analysis or
correlation analysis as described in the following.

Primas et al. [184] presented an attack against naive implementations of the NTT
that is used in the majority of ideal-lattice-based signature schemes. Their attack
exploits a secret-dependent difference of the execution time during the modular
reduction. Implementing the NTT such that it runs in constant time, such as
proposed by Oder et al. [168] or realized for qTESLA, might hamper the attack.
However, due to sophisticated versions of the attack it might still be possible and,
hence, make the implementation of additional countermeasures such as blinding or
shuffling necessary [184, Section 7.3]. To ensure resistance against such attacks,
a careful analysis of the implementations and corresponding countermeasures is
necessary.
Additionally, the attacks presented by Espiteau et al. [91] target the Gaussian

sampling, the realization of the rejection sampling, and sparse multiplication, i.e.,
the multiplication of a polynomial in Rq and a sparse polynomial with only a
small and fixed number of non-zero coefficients, during signature generation of
BLISS [81]. In qTESLA as well as in [24,69,82,114], the Gaussian sampling has
been replaced by uniform sampling. This implies that the rejection sampling in
these schemes can be implemented much easier than in BLISS. In particular, the
first two attacks by Espiteau et al. are not applicable to our scheme. However,
qTESLA and [69,114] also use sparse polynomial multiplication which is targeted
by Espiteau et al.’s third attack as explained next. Sparse multiplication is used,
e.g., in line 10 and 16 in Algorithm 3.9 of qTESLA. The attack by Espiteau et al.
has two steps: First the ordering of the coefficients of c is exploited using a power
analysis of one if-condition or some additional computation; secondly, the actual
multiplication is attacked. Since our implementation of sparse multiplication runs
in constant time and without secret-dependent branchings, the ordering of the
coefficients is not available to the attacker. Hence, this attack (at least not in a
straightforward way) is not applicable to qTESLA.

Moreover, Aysu et al. [22] also attack schoolbook polynomial and matrix imple-
mentation used in the key exchange protocols Frodo [52] and Newhope [15]. During
the attack the ephemeral secret key is recovered from the ephemeral public key
computed using classical polynomial/matrix multiplication and sent to the other
party. Since schoolbook multiplication is used, e.g., in the sparse multiplication
during qTESLA’s signature generation, a careful analysis to investigate qTESLA’s
vulnerability to this attack is necessary.

Furthermore, the attack by Park and Han [171] exploits naive modular reductions
that only reduces a value if its absolute value is larger than the modulus. Since

150



4.3 Vulnerability Against Other Implementation Attacks

our realizations of the modular reduction does not branch depending on the size of
the value to be reduced, this attack should not be applicable to qTESLA.
We conclude this chapter after elaborating on the security of lattice-based

signature schemes and their implementations. In the next chapter, we present
hybrid combiners whose security is based on both classical and post-quantum
schemes in the next chapter.

151





5 Hybrid Signatures and KEMs

At present, researchers, industry, and standardization bodies find themselves in a
predicament: On the one hand, demand to protect today’s communication from
the quantum threat and the expected lengthy time frame to complete widespread
deployment of new algorithms call for beginning the transition from classical to
post-quantum cryptography as soon as possible [160]; on the other hand, there
is a lack of confidence in the concrete security of efficient post-quantum schemes
because the security has not been studied as long as RSA’s security, for example.
Due to their wide deployment, standards and protocols such as X.509 for certificates
or the TLS protocol for secure channels, are of particular interest for a fast and
secure transition to post-quantum cryptography.

One approach to solve the above-mentioned dilemma are so-called hybrid schemes.
They combine two or more schemes of the same kind, e.g., signatures, such that
the combined scheme is secure as long as one of the components is secure.
In this chapter we construct secure hybrid signature schemes and hybrid KEM

since signature schemes and KEMs are extremely important building blocks in
standards and protocols. We give security reductions for all constructions in a
novel adversary model which is a unification and extension of current quantum
security models.
We start this chapter by introducing our family of novel security notions for

signatures and KEMs in Section 5.1. In the same section, we also show impli-
cations and separations to justify our new model. Moving further, we present
our combiners to construct hybrid signatures and KEMs, and prove the security
reductions in Section 5.2 and 5.3, respectively. In the respective sections, we
also discuss the applicability of our combiners. Our constructions can be used in
the following protocols: X.509, CMS as part of S/MIME for secure e-mail, and TLS.

This chapter is based on the publications [B10] (PQCrypto 2017) and [B5]
(submitted to ASIACRYPT 2018). This chapter also contains examples to identify
how hybrid signatures might be used in PKI standards by Herath and Stebila.

153



5 Hybrid Signatures and KEMs

5.1 The Two-Stage Adversary Model
In this section, we introduce a novel security model that allows to distinguish
between adversaries with evolving quantum capabilities over time. Our model
captures the security models introduced in Section 2.3 and adds a security notion for
the following scenario. One may believe that no adversary today has a sufficiently
powerful quantum computer to break any cryptographic assumption, and that it
may still be some decades before a full-fledged quantum computer is built. In that
scenario, one would want to protect today’s communications against attacks in
which the (currently classical) attacker records encrypted communications today
and, once a quantum computer is available, attempts to extract the secret keys from
the corresponding collected data such as key exchange transcripts or certificates.
In the remainder of this chapter, we call oracles that compute their responses

using public information public oracles and oracles that use secret information
secret oracles. Public oracles are for example encapsulation or verification oracles;
secret oracles are for example decryption, decapsulation, or sign oracles.
To model quantum adversaries for our different quantum security notions, we

distinguish between classical and quantum power in four different ways:
(i) The adversary could locally be running a classical or quantum computer during

the stage in which the adversary can interact with secret oracles.
(ii) The adversary’s interaction with secret oracles could be classical or quantum.
(iii) The adversary could locally be running a classical or quantum computer after

the interaction with secret oracles has finished.
(iv) The adversary’s interaction with the random oracle (if any) could be classical

or quantum.
Adversaries in the QROM can be modeled to have classical or quantum access
to the random oracle [45]. While both options lead to valid definitions, giving
the adversary quantum access to the random oracle is clearly the stronger option.
Moreover, it seems sensible to allow the adversary quantum access to the random
oracle since it is meant to capture idealized public hash functions that can be
implemented by an adversary in practice. Depending on the adversary’s power this
implementation can be classical or quantum. Hence, we assume that the adversary
has quantum random oracle access whenever it is quantum, eliminating the fourth
option above. Likewise the responses of public oracles can always be computed
locally. Hence, we assume that the adversary has quantum public oracle assess
whenever it is quantum.

To model the three above-mentioned distinctions (i), (ii), and (iii), we consider a
two-stage adversary A = (A1,A2), in which A1 runs having access to the secret
oracle, then terminates and passes a state st to A2, which does not have access
to the secret oracle. Both adversaries have access to public oracles at all times.

154



5.1 The Two-Stage Adversary Model

Let X,Z ∈ {C,Q} and y ∈ {c, q}. We will use the terminology “XyZ adversary” to
denote that A1 is either classical (X = C) or quantum (X = Q), that A1’s access
to its secret oracles is either classical (y = c) or quantum (y = q), and that A2
is either classical (Z = C) or quantum (Z = Q). In the (Q)ROM, A1 and A2 can
query the random oracle in superposition, if they are quantum; this is independent
of y but depends on X and Z.

The following combinations of classical and quantum adversaries in the two-stage
setting are meaningful in a real world context. The notions fully classical, post-
quantum, and fully quantum cover the notions existing in the literature and are
explained in Section 2.3 where we also give examples for constructions that are
proven secure with respect to these notions. The notion future quantum is novel.

CcC corresponds to the quantum scenario fully classical.
CcQ is called future quantum since it models the scenario with a currently

classical but potentially future quantum adversary. For example, it models the
scenario of a system which is in use today where parties eventually stop signing
new documents. However, the signed documents need to remain unforgeable
for a long time, even after quantum computers become available. In this
scenario, the adversary uses only a classical computer during the period of
time it is interacting with the secret (and public) oracles. At a later point in
time, the adversary may use a quantum computer, but no longer has access to
its secret (but only to its public) oracles.

QcQ corresponds to the quantum scenario post-quantum.
QqQ corresponds to the quantum scenario fully quantum.
Our family of notions CcC,CcQ,QcQ,QqQ form a natural hierarchy as we show

in Section 5.1.2. In the next section, we define the security notions of signature
schemes and KEMs in our two-stage adversary model.

5.1.1 Security Definitions in the Two-Stage Model
We consider our two-stage adversary model in the context of security notions for
signature schemes and KEMs since we prove the security of our hybrid signature
schemes and KEM in the two-stage model. Moreover, we also adapt traditional
security definitions that are needed to construct our combiners in Section 5.2 and
5.3 to our two-stage model. In particular, we adapt the unforgeability of Message
Authentication Codes (MACs), the security of PRFs, and the security of dual PRFs.

5.1.1.1 Security of Signature Schemes Against Quantum Adversaries

Our definition of EUF-CMA follows the formulation of Boneh and Zhandry [49] (see
Section 2.4 for a formal definition) but separates out the adversary to be a two-stage
adversary (A1,A2), where A1 (of type X) interacts with either a signing oracle (of

155



5 Hybrid Signatures and KEMs

type y) and outputs an intermediate state st (of type X), which A2 (of type Z) then
processes. The input to A1 and the output of A2 are always classical. As mentioned
above, in the (Q)ROM, A1 and A2 can query the random oracle in superposition, if
the respective adversaries are quantum. Figure 5.1 shows our unified definition for
EUF-CMA parameterized for any of the four types of adversaries in the standard
model, i.e., without access to a random (or hash) oracle, and in the (Q)ROM for a
signature scheme S = (KeyGen, Sign,Verify). For a definition of (quantum) random
and signing oracles we refer to Section 2.4. We define the advantage as

AdvXyZ-EUF-CMA
S (A) = Pr

[
ExptXyZ-EUF-CMA

S (A) = 0
]
.

Given the advantage, the security definition of XyZ-EUF-CMA follows easily from
the EUF-CMA definition in Section 2.4.1.
Additionally, the strongly unforgeable variant XyZ-sEUF-CMA can be obtained

by adapting line 5 of Figure 5.1 in an analogous way to the discussion in Section 2.4.

ExptXyZ-EUF-CMA
S (A):

0:
1: qS ← 0
2: (sk, pk)← KeyGen()
3: st← AO

y
S

1 (pk)
4: ((m∗1, s∗1), . . . , (m∗qS+1, s∗qS+1))← A2(st)
5: if ∀ i, j ∈ [1, qS + 1], i 6= j:

(Verify(pk,m∗i , s∗i ) = 0 ) ∧
(
m∗i 6= m∗j

)
:

6: return 1
7: else
8: return 0

ExptXyZ-EUF-CMA
S (A1,A2):

0: H ←$HS
1: qH ← 0, qS ← 0
2: (sk, pk)← KeyGen()
3: st← AO

y
S
,OX

H

1 (pk)
4: ((m∗1, s∗1), . . . , (m∗qS+1, s∗qS+1)) ← AO

Z
H

2 (st)
5: if ∀ i, j ∈ [1, qS + 1], i 6= j:

(Verify(pk,m∗i , s∗i ) = 0 ) ∧
(
m∗i 6= m∗j

)
:

6: return 1
7: else
8: return 0

Figure 5.1: Unified security experiment for XyZ-EUF-CMA in the standard model
(left) and (Q)ROM (right) against a two-stage XyZ adversary A =
(A1,A2)

5.1.1.2 Security of KEMs Against Quantum Adversaries

First, we adapt the traditional definitions of IND-CCA and IND-CPA security of
KEMs against quantum adversaries. Subsequently, we also define OW-CCA and
OW-CPA of KEMs against quantum adversaries.

IND-CCA Security Against Quantum Adversaries. Our definition of IND-CCA
follows the traditional IND-CCA formulation given in Definition 2.15 but separates
out the adversary to be a two-stage adversary (A1,A2), in which A1 (of type X)

156



5.1 The Two-Stage Adversary Model

runs having access to the decapsulation oracle (of type y), then terminates and
passes a state st (of type X) to A2 (of type Z), which does not have access to the
decapsulation oracle. The input to A1 and the output of A2 are always classical. As
before, in the (Q)ROM, A1 and A2 can query the random oracle in superposition,
if the respective adversaries are quantum.

Figure 5.2 shows the security experiment for indistinguishability of keys of a KEM
K = (KeyGen,Encaps,Decaps) under chosen-ciphertext attacks for a two-stage XyZ
adversary A = (A1,A2) in the standard model and in the (Q)ROM. For a definition
of (quantum) random and decapsulation oracles we refer to Section 2.4. For every
notion XyZ-IND-CCA, we define the corresponding advantage

AdvXyZ-IND-CCA
K (A) =

∣∣∣∣Pr
[
ExptXyZ-IND-CCA

K (A)⇒ 1
]
− 1

2

∣∣∣∣ .
Given the advantage, the security definition of XyZ-IND-CCA follows easily from
the IND-CCA definition given in Definition 2.15.

ExptXyZ-IND-CCA
K (A):

0:
1: qD ← 0
2: (sk, pk)← KeyGen()
3: (c∗, κ∗0)← Encaps(pk)
4: κ∗1←$ K

5: b←$ {0, 1}
6: st← AO

y
D

1 (pk, c∗, κ∗b)
7: b′ ← A2(st)
8: return [b = b′]

ExptXyZ-IND-CCA
K (A):

0: H←$HK
1: qD ← 0, qH ← 0
2: (sk, pk)← KeyGen()
3: (c∗, κ∗0)← Encaps(pk)
4: κ∗1←$ K

5: b←$ {0, 1}
6: st← AO

X
H ,O

y
D

1 (pk, c∗, κ∗b)
7: b′ ← AO

Z
H

2 (st)
8: return [b = b′]

Figure 5.2: Unified security experiment for XyZ-IND-CCA in the standard model
(left) and in the (Q)ROM (right) against a two-stage adversary XyZ
adversary A = (A1,A2)

IND-CPA Security Against Quantum Adversaries. In the standard model, the
IND-CPA adversary A is simply treated as a quantum algorithm. For IND-CPA in
the (Q)ROM, we assume that the adversary has quantum random oracle access
whenever it is quantum, as before. In Figure 5.3, we give a unified definition of
classical and quantum IND-CPA, denoted Z-IND-CPA, where Z is either C (for
classical) or Q (for quantum). We define the corresponding advantage

AdvZ-IND-CPA
K (A) =

∣∣∣∣Pr
[
ExptZ-IND-CPA

K (A) = 1
]
− 1

2

∣∣∣∣ .

157



5 Hybrid Signatures and KEMs

Given the advantage, the security definition of XyZ-IND-CPA follows easily from
the IND-CPA definition given in Definition 2.14.

For consistency with our IND-CCA notion, we occasionally also use the notation
XyZ-IND-CPA instead of Z-IND-CPA for IND-CPA security. In such cases we
sometimes refer to both as XyZ-IND-ATK with atk ∈ {cpa, cca}. We stress, however,
that X and y are irrelevant in case of IND-CPA, and that they are there solely for
notational uniformity.

ExptZ-IND-CPA
K (A):

0:
1: qH ← 0
2: (sk, pk)← KeyGen()
3: (c∗, κ∗0)← Encaps(pk)
4: κ∗1 ←$ K

5: b←$ {0, 1}
6: b′ ← A(pk, c∗, κ∗b)
7: return [b = b′]

ExptZ-IND-CPA
K (A):

0: H←$HK
1: qH ← 0
2: (sk, pk)← KeyGen()
3: (c∗, κ∗0)← Encaps(pk)
4: κ∗1 ←$ K

5: b←$ {0, 1}
6: b′ ← AOZ

H (pk, c∗, κ∗b)
7: return [b = b′]

Figure 5.3: Security experiment for Z-IND-CPA in the standard model (left) and in
the (Q)ROM (right) against a Z adversary A

One-Way Security of KEMs Against Quantum Adversaries. During the one-
way security experiment of KEMs, the adversary’s task is to fully recover the session
key, not just to distinguish it from random as in the indistinguishability notions
described earlier. As before, we adapt the experiment against quantum adversaries
in both the chosen-plaintext and chosen-ciphertext scenarios. Figure 5.4 shows the
security experiments for quantum OW-CPA (Z-OW-CPA) and Figure 5.5 shows
the security experiments for quantum OW-CCA (XyZ-OW-CCA) in the standard
model and (Q)ROM. As before, we assume that the adversary has quantum random
oracle access whenever it is quantum as before in the (Q)ROM. We define the
corresponding advantages

AdvZ-OW-CPA
K (A) = Pr

[
ExptZ-OW-CPA

K (A) = 1
]
, and

AdvXyZ-OW-CCA
K (A) = Pr

[
ExptXyZ-OW-CCA

K (A) = 1
]
.

Given the advantages, the security definitions of XyZ-OW-CPA and XyZ-OW-CCA
follow easily from the respective definitions in Section 2.4, namely Definition 2.16
and Definition 2.17.

158



5.1 The Two-Stage Adversary Model

ExptZ-OW-CPA
K (A):

0:
1: qH ← 0
2: (sk, pk)← KeyGen()
3: (c∗, κ∗)← Encaps(pk)
4: κ′ ← A(pk, c∗)
5: return [κ∗ = κ′]

ExptZ-OW-CPA
K (A):

0: H←$HK
1: qH ← 0
2: (sk, pk)← KeyGen()
3: (c∗, κ∗)← Encaps(pk)
4: κ′ ← AOZ

H (pk, c∗)
5: return [κ∗ = κ′]

Figure 5.4: Security experiment for Z-OW-CPA in the standard model (left) and in
the (Q)ROM (right) against a Z adversary A

ExptXyZ-OW-CCA
K (A):

0:
1: qD ← 0, qH ← 0
2: (sk, pk)← KeyGen()
3: (c∗, κ∗)← Encaps(pk)
4: st← AO

y
D

1 (pk, c∗)
5: κ′ ← A2(st)
6: return [κ∗ = κ′]

ExptXyZ-OW-CCA
K (A):

0: H←$HK
1: qD ← 0, qH ← 0
2: (sk, pk)← KeyGen()
3: (c∗, κ∗)← Encaps(pk)
4: st← AO

X
H ,O

y
D

1 (pk, c∗)
5: κ′ ← AO

Z
H

2 (st)
6: return [κ∗ = κ′]

Figure 5.5: Unified security experiment for XyZ-OW-CCA in the standard model
(left) and in the (Q)ROM (right) against a two-stage adversary XyZ
adversary A = (A1,A2)

The Fujisaki–Okamoto Transform. The Fujisaki–Okamoto (FO) transform [72,
97, 98] constructs an IND-CCA secure PKE or KEM from an IND-CPA secure (or
OW-CPA secure) PKE in the ROM; analogues that are secure in the QROM have
been given by Targhi and Unruh [210] and in a modular framework by Hofheinz,
Hövelmanns, and Kiltz [123]. This can also be applied in our two-stage adversary
model. The FO transform converts a C-OW-CPA secure PKE into a CcC-IND-CCA
secure KEM (or PKE), in the ROM. The transforms presented in [123,210] convert
a Q-OW-CPA secure PKE into a QcQ-IND-CCA secure KEM (or PKE). It remains
an open question how to transform a Q-IND-CPA secure PKE into a QqQ-IND-CCA
secure KEM (or PKE).

159



5 Hybrid Signatures and KEMs

5.1.1.3 Unforgeability of MACs Against Quantum Adversaries

Formally, a MAC is a tuple of algorithmsM = (MKG,MAC,MVf) for key generation,
MAC tag generation, and MAC tag verification. For our combiners, it suffices to use
one-time MACs with multiple verification queries. This means that the adversary
can initially choose a message, receives the MAC, and can then make multiple
verification attempts for other messages. For our combiners, strong unforgeability
is required, i.e., the adversary wins if it creates any new valid message-tag pair,
even for the same initial message.
Analogous to before, the two-stage version of One-Time strong Existential

Unforgeability (OT-sEUF) with multiple verifications uses an XyZ adversary which
is of type X while it has access to its verification oracle (of type y) and receives the
challenge ciphertext. The adversary is of type Z after it no longer has access to
its verification oracle. To capture the strong combiner property of MACs, where
the adversary may try to win for a key kmac = (kmac,1, kmac,2) where either kmac,1 or
kmac,2 is chosen by the adversary, we allow the adversary to specify one of the two
keys for computing the challenge and for each verification query and in the forgery
attempt. We define the unforgeability of MACs formally next.

Definition 5.1 (Two-Stage MAC Unforgeability). Let M = (MKG,MAC,MVf)
be a MAC. We say that M is a (t, ε)-XyZ-OT-sEUF secure MAC if for all XyZ
adversaries A interacting withM in the security experiment given in Figure 5.6
and running in time t the advantage is

AdvXyZ-OT-sEUF
M (A) = Pr

[
ExptXyZ-OT-sEUF

M (A) = 1
]
≤ ε.

5.1.1.4 PRF Security Against Quantum Adversaries

Two of our combiners, namely the dual-PRF combiner dPRF in Section 5.3.2 and
the nested dual-PRF combiner nPRF in Section 5.3.3 are based on the security of
PRFs and dual PRFs.

As before, the two-stage versions of the security of PRFs and dual PRFs uses an
XyZ adversary which is of type X while it has y access to its pseudo-random oracle
Oy
F . The adversary is of type Z after it no longer has access to its oracle. We give

formal definitions of the respective security notions in Definition 5.2 and 5.3.

Definition 5.2 (Two-Stage PRF Security). Let F : Keys × In → Out be a PRF.
Define Func[In,Out] to be the set of all functions f : In → Out. Furthermore,
let A = (A1,A2) be a two-stage XyZ adversary interacting with F in the Game
ExptPRF-SEC

F given in Figure 5.7.

160



5.1 The Two-Stage Adversary Model

ExptXyZ-OT-sEUF
M (A):

1: qV ← 0
2: k = (k1, k2)← MKG()
3: (m∗, b, k∗b , st)← A1()
4: if b = 1 then k′ ← (k∗1, k2) else k∗ ← (k1, k

∗
2)

5: τ ∗ ← MACk∗(m∗)
6: st← AO

y
V

1 (τ ∗)
7: (m′, τ ′, k′b)← A2(st)
8: if b = 1 then k′ ← (k′1, k2) else k′ ← (k1, k

′
2)

9: if [MVfk′(m′, τ ′) = 1] ∧ [(m′, τ ′) 6= (m∗, τ ∗)] then return 1 else return 0
Oc
V (m, τ, k′b):

1: qV ← qV + 1
2: if b = 1 then k′ ← (k′1, k2) else k′ ← (k1, k

′
2)

3: return MVfk′(m, τ)
Oq
V (∑m,τ,b,k′

b
,t,z ψm,τ,b,k′b,t,z |m, τ, b, k

′
b, t, z〉):

1: qV ← qV + 1
2: if b = 1 then k′ ← (k′1, k2) else k′ ← (k1, k

′
2)

3: return ∑m,τ,b,k′
b
,t,z ψm,τ,b,k′b,t,z |m, τ, b, k

′
b, t⊕MVfk′(m, τ), z〉

Figure 5.6: Unified security experiment for XyZ-OT-sEUF against an XyZ adversary
A = (A1,A2)

We say that F is a XyZ (t, ε)-secure PRF (XyZ-PRF-SEC) if for all quantum XyZ
adversaries A running in time t the advantage is

AdvXyZ-PRF-SEC
F (A) = Pr

[
ExptXyZ-PRF-SEC

F (A) = 1
]
≤ ε.

Definition 5.3 (Two-Stage Dual PRF Security). Let F : Keys × In → Out be a
PRF. Furthermore, define F swap : In× Keys→ Out. We say that F is a dual PRF
if both F and F swap are PRFs.

We say that F is a XyZ (t, ε)-secure dual PRF (XyZ-dPRF-SEC) if for all XyZ
adversaries A running in time t the advantage is

AdvXyZ-dPRF-SEC
F (A) = max{AdvXyZ-PRF-SEC

F (A),AdvXyZ-PRF-SEC
F swap (A)} ≤ ε.

5.1.2 Separations and Implications
After defining our security model and the security notions for signature schemes
and KEM, we now prove the natural hierarchy of our notions CcC,CcQ,QcQ,QqQ
introduced in the beginning of this section.

161



5 Hybrid Signatures and KEMs

ExptXyZ-PRF-SEC
F (A):

1: k ←$ KeysF
2: b←$ {0, 1}
3: f ←$ Func[In,Out]
4: st← AO

y
F

1 ()
5: b′ ← A2(st)
6: return [b = b′]

Classical Oy
F (x):

1: if b = 1:
2: return f(x)
3: else
4: return F (k, x)
Quantum Oy

F (∑x,t,z ψx,t,z |x, t, z〉):
1: return ∑x,t,z ψx,t,z |x, t⊕Oy

F (x), z〉

Figure 5.7: Unified security experiment for XyZ-PRF-SEC against a two-stage ad-
versary A = (A1,A2)

It is notation-wise convenient to define an order for the notions, with Q ≥ C
and q ≥ c, consequently implying a partial order XyZ ≥ UvW if X ≥ U, y ≥ v, and
Z ≥ W, i.e., QqQ ≥ QcQ ≥ CcQ ≥ CcC. Let max S (resp., minS) denote the set of
maximal (resp., minimal) elements of a set S ⊆ {CcC,CcQ,QcQ,QqQ} according to
this partial order. Since we usually have a total order on S, we often simply speak
of the maximal element. For example, it holds that CcQ = max{CcC,CcQ}. It holds
that the stronger the security notion the smaller the advantage of an adversary A
breaking a scheme of corresponding security. For example, let a signature scheme
S be CcQ-EUF-CMA secure. CcQ is stronger than CcC, i.e., CcQ ≥ CcC. Hence,
AdvCcQ-EUF-CMA

S (A) ≤ AdvCcC-EUF-CMA
S (A).

Figure 5.8 shows the implications and separations between these notions for
the unforgeability notions of signatures. Figure 5.9 shows the implications and
separations between these notions for indistinguishability notions of KEMs. In the
figures, “B =⇒ A” denotes an implication, i.e., every B secure scheme is also A
secure, and “A 6=⇒ B” denotes a separation, i.e., there exist a scheme that is A
secure but that is not B secure.

CcC-EUF-CMA CcQ-EUF-CMA QcQ-EUF-CMA QqQ-EUF-CMA
Prop. 5.4

Prop. 5.5

Prop. 5.4

Prop. 5.6

Prop. 5.4

Prop. 5.7

Figure 5.8: Implications and separations between unforgeability notions
(XyZ-EUF-CMA) for signature schemes.

The implications in Figure 5.8 and 5.9 are straightforward. Moreover, each of
the separations A 6=⇒ B follows from a common technique: From an A secure
scheme S, construct a (degenerate) A secure scheme S ′ that is not B secure. Then
the additional power available to a B adversary allows the adversary to recover

162



5.1 The Two-Stage Adversary Model

C-IND-CPA Q-IND-CPA

CcC-IND-CCA CcQ-IND-CCA QcQ-IND-CCA QqQ-IND-CCA

Prop. 5.8

Prop. 5.8 Prop. 5.8 Prop. 5.8

Prop. 5.8 Prop. 5.8Prop. 5.16

Prop. 5.9

Prop. 5.9

Prop. 5.10 Prop. 5.11

Figure 5.9: Implications and separations between Z-IND-CPA and XyZ-IND-CCA
notions; missing arrows can be inferred by transitivity

the secret key of S that was embedded somewhere in S ′. In what follows, we state
and prove the above statements formally. We start with the security notions of
signature schemes. Afterwards, we turn to KEMs.

5.1.2.1 Implications and Separations for Signature Schemes

First, we prove the implications shown in Figure 5.8.

Proposition 5.4 (QqQ-⇒ QcQ-⇒ CcQ-⇒ CcC-EUF-CMA). If S is a QqQ-EUF-CMA
secure signature scheme, then S is also QcQ-EUF-CMA secure. If S is a QcQ-EUF-CMA
secure signature scheme, then S is also CcQ-EUF-CMA secure. If S is a CcQ-EUF-CMA
secure signature scheme, then S is also CcC-EUF-CMA secure.

The proof of Proposition 5.4 is straightforward since every classical adversary
can be seen as a quantum adversary that forgoes its additional quantum power.

Proof. Suppose A = (A1,A2) is an adversary against CcC-EUF-CMA, i.e., both A1
andA2 are classical. Every CcC-EUF-CMA adversary can be seen as a CcQ-EUF-CMA
adversary that does not use its quantum power in the second stage during the
CcC-EUF-CMA experiment. Thus, (A1,A2) wins the CcQ-EUF-CMA experiment
with at least the same probability as the adversary wins the CcC-EUF-CMA experi-
ment, i.e.,

AdvCcQ-EUF-CMA
S (A) ≥ AdvCcC-EUF-CMA

S (A).
Similarly,

AdvQcQ-EUF-CMA
S (A) ≥ AdvCcQ-EUF-CMA

S (A).
Finally, an adversary A = (A1,A2) against QcQ-EUF-CMA can be seen as an
adversary against QqQ-EUF-CMA that simply does not query its signing oracle in
superposition and thus,

AdvQqQ-EUF-CMA
S (A) ≥ AdvQcQ-EUF-CMA

S (A).

163



5 Hybrid Signatures and KEMs

In the following paragraphs, we show that the implications shown in Figure 5.8
are in fact strict by showing separations between the different notions. We start
with Proposition 5.5 which states essentially that there exist signature schemes that
are classically secure (CcC-EUF-CMA) but that become insecure once adversaries
gain quantum power at a later point in time (CcQ-EUF-CMA).

Proposition 5.5 (CcC-EUF-CMA 6=⇒ CcQ-EUF-CMA). In the classical ROM,
assuming RSA is a one-way function (for classical algorithms), there exists a
CcC-EUF-CMA secure signature scheme that is not CcQ-EUF-CMA secure.

The idea of the proof is as follows. From a CcC-EUF-CMA secure signature scheme
S, we construct a degenerate signature scheme S ′ which is still CcC-EUF-CMA secure,
but not CcQ-EUF-CMA secure. In particular, in the public key for S ′, we include a
copy of the signing secret key encrypted using an RSA-based PKE, i.e., a PKE
that is secure as long as the RSA problem is computationally hard. The RSA
problem and its relation to the security of RSA schemes and the integer factorization
problem is described, e.g., in [158, Section 8.2.2]. If breaking RSA is classically
hard then the encrypted signing key of S ′ is useless to a CcC-EUF-CMA adversary.
A CcQ-EUF-CMA adversary, however, is able to use Shor’s quantum algorithm [206]
to break the PKE, recover the signing key, and forge signatures.

Proof. Let E = (KeyGenE ,EncE ,DecE) be a PKE that is IND-CPA secure against
classical adversaries and whose security relies on the hardness of the RSA problem.
Such PKEs are for example [95] or RSA-OAEP [35]. However, a quantum adversary
could use Shor’s algorithm to factor the modulus and decrypt ciphertexts encrypted
using E . We construct a scheme S ′ = (KeyGen′, Sign′,Verify′) that is based on
S = (KeyGen, Sign,Verify), but where the public key of S ′ includes a E-encrypted
copy of the secret key of S. The scheme S ′ is depicted in Figure 5.10.
Next we show that S ′ is CcC-EUF-CMA secure. Since E is IND-CPA secure, no

passive adversary can distinguish E-encryptions of sk from encryptions of 0|sk| with
significant advantage. So we can replace c in pk′ with an encryption of zeros, while
still successfully simulating answers to the signing oracle in the CcC-EUF-CMA
experiment. A S ′ forgery is immediately a S forgery. Hence, this reduction shows
that S ′ is CcC-EUF-CMA secure.

Finally, we prove that S ′ is not CcQ-EUF-CMA secure. Given the verification key
pk′ = (pk, ek, c) of S ′, run the quantum adversary A2 on ek and c to recover sk.
We can now forge signatures in S ′ by using the signing algorithm with sk.

Next, we show that there exist signature schemes that are secure in the future
quantum setting (CcQ-EUF-CMA) but that become insecure in the post-quantum
setting (QcQ-EUF-CMA).

164



5.1 The Two-Stage Adversary Model

Algorithm 5.1 KeyGen′

Require: -
Ensure: (sk′, pk′)
1: (sk, pk)← KeyGen()
2: (dk, ek)← KeyGenE()
3: c← EncE(ek, sk)
4: pk′ ← (pk, ek, c)
5: return (sk, pk′)

Algorithm 5.2 Sign′

Require: sk,m
Ensure: s
1: return Sign(sk,m)

Algorithm 5.3 Verify′

Require: (pk, ek, c),m, s
Ensure: {0,−1}
1: return Verify(pk,m, s)

Figure 5.10: Description of the separating signature scheme S ′ which is
CcC-EUF-CMA secure but not CcQ-EUF-CMA secure

Proposition 5.6 (CcQ-EUF-CMA 6=⇒ QcQ-EUF-CMA). In the ROM, assuming
RSA is a one-way function (for classical algorithms), there exists a CcQ-EUF-CMA
secure signature scheme that is not QcQ-EUF-CMA secure.

The idea of the proof is as follows. As before we construct a degenerate
signature scheme S ′. This time the public key of the signature scheme S ′ =
(KeyGen′, Sign′,Verify′) includes an RSA encrypted random challenge string. Fur-
thermore, we define Sign′ so that, if the adversary queries the signing oracle on the
random challenge string, the signing key is returned. If breaking the RSA problem
is computationally hard for classical algorithms, a CcQ-EUF-CMA adversary will not
be able to recover the challenge while it has access to the signing oracle, and thus
cannot make use of the degeneracy to recover the signing key. A QcQ-EUF-CMA
adversary, however, is able to recover the secret key.

Proof. Let E = (KeyGenE ,EncE ,DecE) be a PKE that is IND-CPA secure against
classical adversaries and whose security relies on the hardness of the RSA problem
as in the proof of Proposition 5.5. However, a quantum adversary can use Shor’s
algorithm to factor the modulus and decrypt ciphertexts encrypted using E . Our
signature scheme S ′ = (KeyGen′, Sign′,Verify′) is designed such that the signing
oracle can be used by a quantum adversary that has access to the signing oracle to
learn the signing key. A quantum adversary without access to the signing oracle,
however, cannot learn the signing key. The construction idea of the separating
signature scheme is as follows. We put an encrypted random challenge in the
public verification key, and if the adversary asks for that challenge to be signed, we
have the signing oracle return the signing key. Intuitively, only an adversary that
can break the challenge while it has access to the signing oracle (i.e., a quantum
first-stage adversary) can solve the challenge. The signature scheme S ′ is depicted
in Figure 5.11.

165



5 Hybrid Signatures and KEMs

Let λ be the security parameter of the signature scheme S ′. By construction of
S ′ it holds that if S is ε-correct, then S ′ is (ε+ 1

22λ )-correct since s∗ ∈ {0, 1}2λ.
We start by showing the CcQ-EUF-CMA security of S ′. Since E is IND-CPA secure,

no passive, classical adversary can distinguish E-encryptions of s∗ from encryptions
of 02λ with significant advantage. An adversary could guess s∗ with a probability
of qS

22λ , where qS is the number of queries to the signing oracle. Therefore, we can
replace ch in pk′ with an encryption of zeros, while still successfully simulating
answers to the (classical) signing oracle in the CcQ-EUF-CMA experiment. An
S ′ forgery is immediately an S forgery. Hence, this reduction shows that S ′ is
CcQ-EUF-CMA secure.
Next we show that S ′ is not QcQ-EUF-CMA secure. Suppose A breaks the

message recovery of E , i.e., decrypts ciphertexts encrypted using E . Consider an
algorithm B1 which uses A to decrypt ch and recovers the correct solution s∗.
Afterwards, B1 queries s∗ to its signing oracle to obtain the signing key sk. B1 will
return a valid forgery. Taking B2 as the identity function, (B1,B2) is a forger for
S ′ if A can decrypt ciphertexts of E . As mentioned at the beginning of the proof,
A could be an adversary using Shor’s quantum algorithm to factor the modulus
and decrypt ciphertexts encrypted using E , for example.

Algorithm 5.4 KeyGen′

Require: -
Ensure: (sk′, pk′)
1: (sk, pk)← KeyGen()
2: (dk, ek)← KeyGenE()
3: s∗←$ {0, 1}2λ

4: ch← EncE(ek, s∗)
5: pk′ ← (pk, ek, ch)
6: return (sk, pk′)

Algorithm 5.5 Sign′

Require: (sk, s∗),m
Ensure: s
1: if m = s∗ then
2: return sk
3: else
4: return Sign(sk,m)

Algorithm 5.6 Verify′

Require: (pk, ek, ch),m, s
Ensure: {0,−1}
1: return Verify(pk,m, s)

Figure 5.11: Description of the separating signature scheme S ′ which is
CcQ-EUF-CMA secure but not QcQ-EUF-CMA secure

We now state that post-quantum secure signature schemes (QcQ-EUF-CMA)
are not necessarily secure in the fully quantum setting where the adversary has
quantum access to the signing oracle (QqQ-EUF-CMA).
Proposition 5.7 (QcQ 6=⇒ QqQ). Assuming there exists a quantum secure
pseudo-random family of permutations and let S be a signature scheme that is
QcQ-EUF-CMA secure, then there exists a signature scheme S ′ that is QcQ-EUF-CMA
secure but not QqQ-EUF-CMA secure.

166



5.1 The Two-Stage Adversary Model

The formal proof by McKague can be found in [B10]. The idea of the proof
is as follows. The secret is hidden using a query-complexity problem that can
be solved with just a few queries in superposition by a quantum algorithm, but
takes exponential many queries when asking classical queries. The specific problem
we use is a variant of the hidden linear structure problem [70]. The proof of the
corresponding statement for IND-CCA security of KEMs is similar (see the proof
of Proposition 5.11).

5.1.2.2 Implications and Separations for KEMs

Similarly to Section 5.1.2.1, and as described in Figure 5.9, the various indis-
tinguishability notions for KEMs are related to each other through a series of
implications and separations as we show next. As before, we prove the implications
shown in Figure 5.9 first.

Proposition 5.8 (QqQ- ⇒ QcQ- ⇒ CcQ- ⇒ CcC-IND-CCA, Q- ⇒ C-IND-CPA).
Let K be a KEM. If K is QqQ-IND-CCA secure, then K is also QcQ-IND-CCA
secure. If K is QcQ-IND-CCA secure, then K is also CcQ-IND-CCA secure. If K is
CcQ-IND-CCA secure, then K is also CcC-IND-CCA secure and Q-IND-CPA secure.
If K is Q-IND-CPA secure or CcC-IND-CCA secure, then K is also C-IND-CPA
secure.

The proof of Proposition 5.8 is straightforward since every classical adversary
can be seen as a quantum adversary that forgoes its additional quantum power.

Proof. Suppose A = (A1,A2) is an adversary against CcC-IND-CCA, i.e., both A1
and A2 are classical. Every CcC-IND-CCA adversary can be seen as a CcQ-IND-CCA
adversary that does not use its quantum power in the second stage during the
CcC-IND-CCA experiment. Thus, it wins the CcQ-IND-CCA experiment with at
least the same probability as it wins the CcC-IND-CCA experiment, i.e.,

AdvCcQ-IND-CCA
K (A) ≥ AdvCcC-IND-CCA

K (A).

Similarly,
AdvQcQ-IND-CCA

K (A) ≥ AdvCcQ-IND-CCA
K (A).

Finally, an adversary A = (A1,A2) against QcQ-IND-CCA can be seen as an
adversary against QqQ-IND-CCA that does not query its decryption oracle in
superposition. Thus,

AdvQqQ-IND-CCA
K (A) ≥ AdvQcQ-IND-CCA

K (A).

Using similar arguments, for a C-IND-CPA adversary A it holds that

AdvQ-IND-CPA
K (A) ≥ AdvC-IND-CPA

K (A).

167



5 Hybrid Signatures and KEMs

Moreover, it trivially holds for a C-IND-CPA adversary A = (A1,A2) that

AdvCcC-IND-CCA
K (A) ≥ AdvCcC-IND-CPA

K (A) = AdvC-IND-CPA
K (A2).

Moving forward, we now show that these implications are in fact strict by showing
separations between the different notions. We start with Proposition 5.9 which
states essentially that there exist KEMs that are classically secure (CcC-IND-CCA),
but that become insecure once adversaries gain quantum power at a later point in
time (CcQ-IND-CCA).

Proposition 5.9 (CcC-IND-CCA 6=⇒ Q-IND-CPA,CcQ-IND-CCA). In the ROM,
assuming RSA is a one-way function (for classical algorithms), there exists a
CcC-IND-CCA secure KEM in the ROM that is neither Q-IND-CPA secure nor
CcQ-IND-CCA secure.

The proof follows easily from the existence of the RSA-OAEP encryption [35].

Proof. The proposition follows immediately from the following facts: It is known
that the KEM based on RSA-OAEP is CcC-IND-CCA secure in the ROM [35].
However, an adversary with local access to quantum computing power in the second
stage can run Shor’s quantum algorithm to factor the RSA modulus. Hence, the
adversary can recover the decapsulation key to win the Q-IND-CPA or CcQ-IND-CCA
experiments. This implies that RSA-OAEP is not Q-IND-CPA or CcQ-IND-CCA
secure.

Next, we show that there exist KEMs that are secure as long as only classical
adversaries interact with the decapsulation oracle (CcQ-IND-CCA) but that become
insecure in the post-quantum setting (QcQ-IND-CCA).

Proposition 5.10 (CcQ-IND-CCA 6=⇒ QcQ-IND-CCA). Let K be a CcQ-IND-CCA
secure KEM and KBD be a C-IND-CPA secure KEM that is not Q-OW-CPA. Then
there exists a KEM K′ that is CcQ-IND-CCA secure but not QcQ-IND-CCA secure.

The idea of this separation is to include a backdoor in a KEM which is only
available if the first-stage adversary has access to local quantum computing power.
In particular, we encapsulate a secret value in a ciphertext attached to the public
key and modify the decapsulation oracle to return the secret key if queried on the
secret value. A quantum adversary can easily recover the secret, while it is hidden
to classical adversaries due to the OW-CPA security of the extra ciphertext. If the
adversary becomes quantum only in the second stage, it can not recover the secret,
since the decapsulation oracle is no longer available.

168



5.1 The Two-Stage Adversary Model

Proof. Similarly to the proofs in Section 5.1.2.1, we construct a degenerated
KEM K′ = (KeyGen′,Encaps′,Decaps′), which is CcQ-IND-CCA secure, but not
QcQ-IND-CCA secure. K′ is described in Figure 5.12. Moreover, we define KBD =
(KeyGenBD, EncapsBD,DecapsBD) to be a C-OW-CPA secure KEM which can be
broken with local quantum power. An example is again the RSA-OAEP based
KEM.

We start by showing that K′ is CcQ-IND-CCA secure. Assume it is not, i.e., there
exists an efficient CcQ-IND-CCA adversary A that can break the CcQ-IND-CCA
security of K′. Then there exist an adversary B that can break the CcQ-IND-CCA-
security ofK as we show next. The adversary B receives its challenge, say, (pk, c∗, κ∗b).
It runs steps 2-3 of KeyGen′ by itself, and sends ((pk, pkBD, cBD), c∗, κ∗b) as input
to A = (A1,A2). Whenever A (in its first stage A1) queries the decapsulation
oracle OD′ on some ciphertext c 6= kBD, algorithm B forwards the query to its own
decapsulation oracle OD. If the adversary queries the oracle on kB, then B returns
⊥. Since the KEM KBD is OW-CPA and we are still in the first phase, any query of
A about kBD would immediately refute the one-wayness via a black-box reduction.
Hence, B’s simulation is correct, except if A breaks the one-wayness of KBD. This
implies that K′ is CcQ-IND-CCA secure.

Algorithm 5.7 KeyGen′

Require: -
Ensure: (sk′, pk′)
1: (pk, sk)← KeyGen()
2: (pkBD, skBD)← KeyGenBD()
3: (cBD, kBD)← EncapsBD(pkBD)
4: pk′ ← (pk, pkBD, cBD)
5: sk′ ← (sk, kBD)
6: return (sk′, pk′)

Algorithm 5.8 Encaps′

Require: (pk, pkBD, cBD)
Ensure: (c, k)
1: return Encaps(pk)

Algorithm 5.9 Decaps′

Require: (sk, kBD), c
Ensure: k
1: if c = kBD then
2: return sk
3: else
4: return Decaps(sk, c)

Figure 5.12: Description of the separating KEM K′ which is CcQ-IND-CCA secure
but not QcQ-IND-CCA secure

Finally, we show that K′ is not QcQ-IND-CCA secure. The first-stage adversary
has access to local quantum computing power. With this it can break the classically
secure KEMKBD to obtain kBD from cBD attached to the public key. By construction
ofK′, the decapsulation oracle queried on kBD returns the secret key sk ofK, allowing

169



5 Hybrid Signatures and KEMs

it to recover the encapsulated key.

Moving forward, we show that post-quantum secure KEMs (QcQ-IND-CCA) are
not necessarily secure in the fully quantum setting where the adversary has quantum
access to its decapsulation oracle (QqQ-IND-CCA).

Proposition 5.11 (QcQ-IND-CCA 6=⇒ QqQ-IND-CCA). Assume that there exists
a quantum secure family of pseudo-random permutations. Furthermore, assume
there exists a QcQ-IND-CCA secure KEM K whose ciphertexts are at least 3λ bits
long where λ is the security parameter of the KEM K. Then there exists a KEM
K′ that is QcQ-IND-CCA secure but not QqQ-IND-CCA secure.

Similar to the proof of Proposition 5.10, we construct a KEM where the secret
key is hidden behind a problem that is hard for adversaries with classical query
access and easy with quantum query access. To do so, we build a trapdoor
involving the quantum-safe hidden linear structure problem that was first defined
by McKague in [B10] and is based on the hidden linear structure problem [70].
This problem has constant query complexity with quantum oracle access, and
exponential query complexity with classical oracle access. During our proof we
split the bit representation of ciphertexts up into three parts each of size at least λ
bits to hide and access the secret. Hence, ciphertexts of the QcQ-IND-CCA secure
KEM K have to be at least 3λ bits long.
We introduce the (quantum-safe) hidden linear structure problem and recall

statements necessary for the proof of Proposition 5.11 next.

Definition 5.12 ([70]). Let Perm(S) denote the set of all permutations on a set
S. Given oracle access to Bs,π(x, y) = (x, π(y ⊕ sx)), where x, y, s are elements in
the Galois field with 2n elements, i.e., x, y, s ∈ GF (2n), and π ∈ Perm({0, 1}n)
with s and π chosen uniformly at random. The hidden linear structure problem is
to determine s.

The hidden linear structure problem has constant query complexity with quantum
oracle access for a QqQ adversary but it is hard for a QcQ adversary as it is required
for our proof.

Theorem 5.13 ([70],[B10]). The hidden linear structure problem has query com-
plexity Ω(2n/2) for classical queries, and 1 for quantum queries. More specifically,
there exists a quantum algorithm which solves the hidden linear structure problem
with 1 query and probability 1, while any algorithm which queries the oracle classi-
cally and uses 2b queries with 2b ≤ n− 2 outputs the correct s with probability at
most 22b−n+1.

170



5.1 The Two-Stage Adversary Model

Following the idea by McKague, we use a restricted version of the hidden linear
structure problem which replaces π with a pseudo-random permutation: The
quantum-safe hidden linear structure problem is a hidden linear structure problem
(see Definition 5.14). It is indistinguishable from the hidden linear structure
problem in time d with advantage greater than δ if there exists a (d, δ)-quantum
indistinguishable family of secure pseudo-random permutations as defined next. Let
P = {πt : t ∈ {0, 1}k} be a family of pseudo-random permutations on {0, 1}|sk|. We
say a set P = {πt : t ∈ {0, 1}k} of pseudo-random permutations on the set {0, 1}l
is (tP , εP)-quantum-indistinguishable (PRP-IND) if no quantum algorithm with
run-time less than tP can win the indistinguishability game depicted in Figure 5.13
with advantage more than εP when using tP quantum oracle queries.

ExptPRP-IND
P (A):

1: a←$ {0, 1}
2: if a = 0:
3: π←$ P
4: else
5: π←$ Perm({0, 1}l)
6: a′←$Aπ
7: return [a′ = a]

Figure 5.13: Quantum indistinguishability experiment for a family pseudo-random
permutations P against adversary A

Definition 5.14. The quantum-safe hidden linear structure problem is a hidden
linear structure problem where π is drawn from a set P of quantum-indistinguishable
pseudo-random permutations.

Finally, we can prove the separation of QqQ-IND-CCA and QcQ-IND-CCA.

Proof of Proposition 5.11. Suppose that there exists a quantum secure pseudo-
random family of permutations. Furthermore, assume there exists a QcQ-IND-CCA
secure KEM K = (KeyGen,Encaps,Decaps) whose ciphertext c is at least 3λ bits
long. We define c.x to be the first λ bit, c.y to be the second λ bit, and c.z to
be the remaining bits of c’s bit representation. As mentioned before, we assume
that the computation of 2λ is infeasible and hence, that a probability of 2−λ is
negligible.

Let Bs,t be an oracle for the quantum safe hidden linear structure problem that is
trying to guess s. Moreover, let Bs,t : GF (2k)×GF (2k)→ GF (2k)×GF (2k) be a
family of functions such that, given oracle access to Bs,t, at least tB classical queries
are required to determine s with probability greater than εB, whereas a single query

171



5 Hybrid Signatures and KEMs

suffices when given access to Bs,t via a quantum oracle. In our construction, s is a
secret which unlocks access to the decapsulation key sk′. The second parameter,
t, needs to be secret but is otherwise not important for our application. Now we
construct a degenerate KEM K′ = (KeyGen′,Encaps′,Decaps′) that is QcQ-IND-CCA
but not QqQ-IND-CCA secure. The KEM K′ is defined in Figure 5.14.
First, we show the QcQ-IND-CCA security of K′. Suppose that it takes at least

qB queries to Bs,t to determine s with probability εB, and that it takes at least tK
time for an adversary A to break the QcQ-IND-CCA security of K with probability
pK . It is important to note that K and s are unrelated. Hence, knowledge of
the public key pk and access to the decapsulation oracle OcD does not reduce the
complexity of guessing s. Likewise, access to an oracle for Bs,t does not increase
the advantage of an adversary during the QcQ-IND-CCA experiment of K as we
explain next. Assume the contrary, i.e., the advantage of an adversary A against
K would increase when having access to an oracle for Bs,t. Then A could choose
s, t uniformly at random, simulate Bs,t, and increase the advantage against the
QcQ-IND-CCA security of K. This, however, would contradict our assumption on
K.
The above arguments imply, that the only relation between s and sk is the

element w = sk · δs,c.z during the decapsulation of K′, where δs,c.z is the Kronecker
delta over s and the least bits of the cipher c. However, A only learns information
from w, if w 6= 0 and thus, w = sk. By definition of δs,c.z this happens if and only
if the input c to OD′ is such that c.z = s. But this is only possible if A solves the
quantum safe hidden linear structure problem or guesses s directly. By Lemma 5.15,
the following equation holds

AdvQcQ-IND-CCA
K′ (A1,A2) ≤ AdvQcQ-IND-CCA

K (A1,A2) + εB +min{qB, tK} · 2−λ.

Assuming the QcQ-IND-CCA security of K, the advantage AdvQcQ-IND-CCA
K (A1,A2)

is small. Furthermore, since A only has classical access εB and because of Theo-
rem 5.13, εB is small as well. Hence, K′ is QcQ-IND-CCA secure.

We move on to show that K′ is not QqQ-IND-CCA secure. By Theorem 5.13, the
quantum safe hidden linear structure problem is in fact solvable in one quantum
query to a Bs,t oracle. We construct a suitable quantum oracle that gives access to
Bs,t using one call to the decapsulation oracle. For convenience we call this oracle
Bs,t(|c, 0, 0, 0, 0, θ, η, z〉) on input of the form c′ = |c, 0, 0, 0, 0, θ, η〉. It is given in
Figure 5.15. The oracle returns |c, 0, 0, 0, 0, θ ⊕ u, η ⊕ v〉, where by construction of
Oq
D′ , it holds that (u, v) = Bs,t(c.x, c.y). Hence, the decapsulation oracle can be

turned into a Bs,t oracle. Thus, an adversary with quantum access can determine the
secret s by solving the quantum safe hidden linear structure problem. Afterwards the
adversary asks its decapsulation on a ciphertext c with c.z = s and hence, recovers
the decapsulation key sk. Thus, the adversary can then win the QqQ-IND-CCA
game, i.e., K′ is not QqQ-IND-CCA secure.

172



5.1 The Two-Stage Adversary Model

Algorithm 5.10 KeyGen′

Require: -
Ensure: pk′, sk′

1: (pk, sk)← KeyGen()
2: s←$ {0, 1}2λ

3: t←$ {0, 1}2λ

4: sk′ ← (sk, s, t)
5: return (pk, sk′)

Algorithm 5.11 Encaps′

Require: pk
Ensure: (c, k)
1: (c, k)← Encaps(pk)
2: return (c, k)

Algorithm 5.12 Decaps′

Require: (sk, s, t), c
Ensure: (k, (u, v), w)

1: k ← Decaps(sk, c)
2: (u, v)← Bs,t(c.x, c.y)
3: w ← sk · δs,c.z
4: return (k, (u, v), w)

Figure 5.14: Description of the separating KEM K′ which is QcQ-IND-CCA secure
but not QqQ-IND-CCA secure

Quantum oracle for Bs,t(|c, 0, 0, 0, 0, θ, η, z〉):
1: |c, k, u, v, w, z〉 ← Oq

D′(|c, 0, 0, 0, 0〉)
2: return |c, 0, 0, 0, 0, θ ⊕ u, η ⊕ v, z〉

Decaps′⊥(sk, c, c∗):
1: if c = c∗: return ⊥
2: else: return (k, (u, v), w)← Decaps′(sk, c)

Oq
D′(|c, α, β, γ, ε〉):

1: qD ← qD + 1
2: return

∑
c,t,z ψc,t,z |c, t⊕ Decaps′⊥(sk, c, c∗), z〉

Oc
D′(c):

1: qD ← qD + 1
2: return Decaps′⊥(sk, c, c∗)

Figure 5.15: Description of classical and quantum oracles for the separating KEM
K′ that is QcQ-IND-CCA secure, but not QqQ-IND-CCA secure

Lemma 5.15. Suppose that it takes at least qB queries to Bs,t to determine s with
probability εB, and that it takes at least tK time for an adversary A to break the
QcQ-IND-CCA security of K with probability εK. If A has access to a classical
oracle Oq

D′(c), knows pk′, and runs for time t < min{qB, tK}, then A breaks the
QcQ-IND-CCA security of K′ with probability at most ε ≤ εB + εK + 2−λt.

Proof. Suppose that it takes at least qB queries to Bs,t to determine s with probabil-
ity εB. Assume furthermore that it takes at least tK time to break the QcQ-IND-CCA
security of K with probability εK . Moreover, assume an adversary A has access
to a classical oracle Oc

D′(c), knows pk′, and runs for time t < min{qB, tK}. Since
t < qB, A has to have made fewer than qB queries. Hence, A learns s with prob-
ability at most εB by assumption. The probability of learning s by guessing is
at most 2−λt. So the decapsulation oracle Oc

D′(c) returns an answer of the form
(·, ·, ·, sk) (and hence A breaks K) with no more than εB + 2−λt. Since t < tK ,
the probability that A distinguishes between a real and random key to win the
QcQ-IND-CCA game for K is at most εK, unless one of the above cases applies.
Distinguishing a real or random key for K′ implies distinguishing a real or random

173



5 Hybrid Signatures and KEMs

key for K. Thus the probability that A wins the QcQ-IND-CCA game for K′ is at
most ε ≤ εB + εK + 2−λt.

Lastly, we show that IND-CPA security in the quantum setting is not necessarily
enough to show IND-CCA security in the fully classical setting.

Proposition 5.16 (Q-IND-CPA 6=⇒ CcC-IND-CCA). Assume there exists a Q-IND-CPA
secure KEM K. Then there exists a KEM K′ that is Q-IND-CPA secure but not
CcC-IND-CCA secure.

Proposition 5.16 is proven by constructing a degenerated KEM K′ from a
Q-IND-CPA secure KEM K where the decapsulation of K′ returns the secret key
when given the public key as input. This is clearly still secure in the Q-IND-CPA
setting but not CcC-IND-CCA secure.

Proof. Let K = (KeyGen,Encaps,Decaps) be a Q-IND-CPA secure KEM, then we
can construct a KEM K′ that is Q-IND-CPA but not CcC-IND-CCA secure. Let the
KEM K′ = (KeyGen′,Encaps′,Decaps′) be defined as in Figure 5.16.
Clearly K′ is not CcC-IND-CCA secure since it is broken as soon as the public

key is asked as a ciphertext to the decapsulation oracle of K′. However, as long as
no queries are allowed to the decapsulation oracle, an adversary cannot distinguish
K and K′. Hence, K′ is Q-IND-CPA secure.

Algorithm 5.13 KeyGen′

Require: -
Ensure: pk, sk
1: (pk, sk)← KeyGen()
2: return (pk, sk)

Algorithm 5.14 Encaps′

Require: pk
Ensure: c, k
1: (c, k)← Encaps(pk)
2: return (c, k)

Algorithm 5.15 Decaps′

Require: sk, c
Ensure: k
1: if c = pk then
2: return sk
3: else
4: return Decaps(sk, c)

Figure 5.16: Description of the separating KEM K′ which is Q-IND-CPA secure but
not CcC-IND-CCA secure

5.2 Hybrid Signature Schemes
We now discuss the use of robust combiners to construct hybrid signature schemes.
Informally, we call a signature combiner robust if the resulting signature scheme is
(XyZ-EUF-CMA) secure if at least one of the candidate signature schemes is (XyZ-
EUF-CMA) secure. In 2005, Harnik et al. [119] introduced so-called (k, n)-robust

174



5.2 Hybrid Signature Schemes

combiners, that, for an arbitrary primitive P combine n input candidate schemes in
such a manner that the combined scheme C is a secure and efficient implementation
of P as long as k out of the n schemes are secure implementations.

In this section, we present three different signature combiners. The first combiner
is a fairly natural construction; the second and third combiner are motivated
by practical applications of hybrid signatures. The first combiner, Con, simply
concatenates the two signatures generated by each of the two combined signature
schemes. The second combiner, sNest, concatenates again two signatures were the
second one signs the message and the first signature. It is motivated to be used as
a backwards compatible hybrid certificate in S/MIME. The third combiner, dNest,
concatenates nested signatures of two different messages. It is motivated to be
used as backwards compatible hybrid certificate in X.509v3. We summarize all
combiners and their security properties depending on the security of the combined
schemes in Table 5.1. It is important to recall that max{XyZ,UvW} denotes the
stronger unforgeability notion with respect to the natural hierarchy of security
notions shown in Figure 5.8.

Combiner Hybrid signature s = (s1||s2) Unforgeability Application
Single-message combiners
Con s1 ← Sign1(sk1,m); max{XyZ,UvW} X.509v3, TLS 1.3,

s2 ← Sign2(sk2,m) S/MIME
sNest s1 ← Sign1(sk1,m); max{XcZ,UcW} S/MIMEs2 ← Sign2(sk2, (m, s1))
Dual-message combiners
dNest s1 ← Sign1(sk1,m1); max{XcZ,UcW} X.509v3s2 ← Sign2(sk2, (m1, s1,m2))

Unforgeability: If S1 is XyZ-EUF-CMA and S2 is UvW-EUF-CMA, then C[S1,S2] is . . . -EUF-CMA.

Table 5.1: Signature combiners using signature schemes S1 and S2

Throughout this section we let S1 = (KeyGen1, Sign1,Verify1) and S2 = (KeyGen2,
Sign2,Verify2) be two signature schemes. Furthermore, we denote signature schemes
that are constructed by one of our three proposals C ∈ {Con, sNest, dNest} as
C[S1,S2] = (KeyGenC, SignC,VerifyC). In all our schemes, KeyGenC simply returns
the concatenation of the two public keys (pk← (pk1, pk2)) and the two secret keys
(sk← (sk1, sk2)). The verification in each case is defined in the natural way. That
is, the hybrid signature s is accepted if both s1 and s2 are accepted. Otherwise, s is
rejected.

175



5 Hybrid Signatures and KEMs

5.2.1 Con: Concatenation Combiner
We start with the concatenation combiner.

5.2.1.1 Description and Security of Con

The combiner Con is the trivial combiner which just places independent signatures
from the two schemes side-by-side as depicted in Algorithm 5.16.

Algorithm 5.16 Signature generation of Con[S1,S2]
Require: Message m and secret key sk = (sk1, sk2)
Ensure: Signature s
1: s1 ← Sign1(sk1,m)
2: s2 ← Sign2(sk2,m)
3: return s← (s1‖s2)

We can now show that the concatenation combiner is a robust signature combiner,
in the sense that the resulting signature is as secure as the strongest of the two
input signature schemes. In particular, we show in Theorem 5.17 that Con[S1,S2]
is EUF-CMA secure in the fully quantum setting (QqQ) if at least one of the two
signature schemes is secure against fully quantum adversaries.

Theorem 5.17 (Unforgeability of Con). Let S1 be XyZ-EUF-CMA secure, S2 be
UvW-EUF-CMA secure, and RsT = max{XyZ,UvW}. Then Con[S1,S2] is RsT-
EUF-CMA secure. More precisely, for any EUF-CMA adversary A of type RsT
against the combiner Con[S1,S2], we derive efficient adversaries B1 and B2 such
that

AdvRsT-EUF-CMA
Con[S1,S2] (A) ≤ min

{
AdvRsT-EUF-CMA

S1 (B1),AdvRsT-EUF-CMA
S2 (B2)

}
,

while the run-times of B1 and B2 are approximately the same as the run-time of A.

Proof. Suppose A is an RsT-EUF-CMA adversary that finds a forgery in Con[S1,S2]–
in other words, it outputs qS + 1 valid signatures under Con[S1,S2] on distinct
messages. We can construct an RsT-EUF-CMA algorithm B1 that finds a forgery in
S1. B1 interacts with an RsT-EUF-CMA challenger for S1 which provides a public
key pk1. B1 generates a key pair (sk2, pk2) ← KeyGen2() and sets the public key
for Con[S1,S2] to be (pk1, pk2). When A asks for ∑m,t,z ψm,t,z |m, t, z〉 to be signed
using Con[S1,S2], we treat t as consisting of two registers t1‖t2. B1 proceeds by
passing the m, t1, and z registers to its signing oracle for S1. Moreover, B1 runs the
quantum signing operation from Figure 2.3 for Sign2 on the m, t2, and z registers.

176



5.2 Hybrid Signature Schemes

There is a one-to-one correspondence between A’s queries to its signing oracle and
B1’s queries to its signing oracle.

If S1 is proven to be secure in the (Q)ROM (rather than the standard), then this
proof of Con[S1,S2] also proceeds in the (Q)ROM: B1 relays A’s hash oracle queries
directly to its oracle, giving a one-to-one correspondence between A’s queries to its
hash oracle and B1’s queries to its hash oracle. This holds in either the ROM or
QROM.

If A wins the RsT-EUF-CMA game, then it has returned qS + 1 valid signatures
si = (si,1, si,2) on distinct messages mi such that Verify1(pk1,mi, si,1) = 0 and
Verify2(pk2,mi, si,2) = 0. B1 can extract from this qS + 1 valid signatures under S1
on distinct messages. Thus,

AdvRsT-EUF-CMA
Con[S1,S2] (A) ≤ AdvRsT-EUF-CMA

S1 (B1).

Similarly it holds for S2 that

AdvRsT-EUF-CMA
Con[S1,S2] (A) ≤ AdvRsT-EUF-CMA

S2 (B2).

It, hence, follows that

AdvRsT-EUF-CMA
Con[S1,S2] (A) ≤ min{AdvRsT-EUF-CMA

S1 (B1),AdvRsT-EUF-CMA
S2 (B2)}.

Thus, if either AdvRsT-EUF-CMA
S1 (B1) or AdvRsT-EUF-CMA

S2 (B2) is small, then so too is
AdvRsT-EUF-CMA

Con[S1,S2] (A).

5.2.1.2 Application of Con

After describing the combiner Con and proving its unforgeability, we elaborate on
possible applications next. According to Herath and Stebila, it can be applied in
the standard X.509 standard version 3, TLS 1.3, and S/MIME.

Dual X.509v3 Certificates. The concatenation signature combiner provides the
simplest approach to use hybrid X.509v3 certificates by creating separate certificates,
e.g., one for the traditional algorithm and the other for the post-quantum algorithms.
This approach leaves the task of conveying the “hybrid” certificate (actually, two
certificates) to the application, which will suffice in some settings (e.g., in S/MIME
and some TLS settings that we explain below), but is unsatisfactory in others.
Hence, it is not backwards compatible in general.

Hybrid Certificates in TLS. The concatenation signature combiner could be
used in a straightforward way in the post-handshake authentication mode of TLS
1.3 [194] described briefly next. In the current draft of TLS 1.3, a post-handshake

177



5 Hybrid Signatures and KEMs

authentication mode for clients [194, Section 4.5.2], where clients can be requested
to (further) authenticate using a certificate for a given algorithm, is proposed. This
would allow client authentication using two (or more) signature schemes, e.g., a
classical and a post-quantum signature. Each client signature in this draft is over
the same handshake context data structure. Hence, this approach is not backwards
compatible but relies on the proposal for TLS 1.3.

Parallel SignerInfos in S/MIME. CMS [124] is the main cryptographic compo-
nent of S/MIME [189], which enables PKEs and digital signatures for e-mail. An
S/MIME signed e-mail consists of a header and the body. The header is used to
specify the algorithms used. The body of the e-mail is divided into the body to be
signed and an encoding of a CMS SignedData object. The SignedData object in
turn contains several fields, including a set of certificates and a set of SignerInfo
objects. To construct a hybrid signature in S/MIME with the Con combiner,
the certificate for each algorithm can be added in the SignedData object’s set of
certificates (with no need for hybrid certificates), and then include SignerInfo
objects for the signature from each algorithm. As before, this approach including
the Con combiner is not backwards compatible with software that is not able to
process post-quantum signatures.

5.2.2 sNest: Strong Nesting Combiner
After explaining the concatenation combiner, we now elaborate on the so-called
strong nesting combiner.

5.2.2.1 Description and Security of sNest

For this combiner, the second signature scheme signs both the message and the
signature from the first signature scheme as depicted in Algorithm 5.17.
It is important to note that in order to construct a robust combiner in the

sense that the resulting signature is as secure as the strongest of the two input
signature schemes, the second signature should be computed over the message
(m, s1). We explain why this is necessary next. In the following explanation,
we consider the case where S1 is broken. Let (s1, s2) be a signature for m with
s1 ← Sign1(sk1,m) and s2 ← Sign2(sk2, s1). Then, an adversary might be able to
exchange m for another different message m′ such that s1 = Sign1(sk1,m′), since S1
is broken. However, (s1, s2) would be accepted as a hybrid signature for m′ 6= m by
the verification algorithm. This scenario is not possible if s2 ← Sign2(sk2, (m, s1))
as in Algorithm 5.17.

We can now show that the strong nesting combiner is a robust signature combiner.
In particular, we show in Theorem 5.18 that sNest[S1,S2] is EUF-CMA secure in

178



5.2 Hybrid Signature Schemes

Algorithm 5.17 Signature generation of sNest[S1,S2]
Require: Message m and secret key sk = (sk1, sk2)
Ensure: Signature s
1: s1 ← Sign1(sk1,m)
2: s2 ← Sign2(sk2, (m, s1))
3: return s← (s1‖s2)

the post-quantum setting (QcQ) if at least one of the two signature schemes is
secure against post-quantum adversaries.

Theorem 5.18 (Unforgeability of sNest). Let S1 be XcZ-EUF-CMA secure, S2 be
UcW-EUF-CMA secure, and RcT = max{XcZ,UcW}. Then sNest[S1,S2] is RcT-
EUF-CMA secure. More precisely, for any EUF-CMA adversary A of type RcT
against sNest[S1,S2], we derive efficient adversaries B1 and B2 such that

AdvRcT-EUF-CMA
sNest[S1,S2] (A) ≤ min

{
AdvRcT-EUF-CMA

S1 (B1),AdvRcT-EUF-CMA
S2 (B2)

}
,

while the run-times of B1 and B2 are approximately the same as the run-time of A.

The proof follows the same approach as the proof of Theorem 5.17: An RcT-EUF-CMA
adversary that finds a forgery in sNest[S1,S2] is also an RcT-EUF-CMA forger for
S1 and S2.

Proof. SupposeA is an RcT-EUF-CMA adversary that finds a forgery in sNest[S1,S2]–
in other words, it outputs qS + 1 valid signatures under sNest[S1,S2] on distinct
messages. We can construct an RcT-EUF-CMA algorithm B1 that finds a forgery in
S1 and an RcT algorithm B2 that finds a forgery in S2. We prove the case for B1
next, the case for B2 follows the same approach.
B1 interacts with an RcT-EUF-CMA challenger for S1 which provides a public

key pk1. B1 generates a key pair (sk2, pk2)← KeyGen2() and sets the public key for
sNest[S1,S2] to be (pk1, pk2). When A asks for m to be signed using sNest[S1,S2],
B1 proceeds by passing m to its signing oracle for S1 which returns a signature s1
for m1. Afterwards, B1 runs the signing operation for Sign2 on the message (m, s1).
There is a one-to-one correspondence between A’s queries to its signing oracle and
B1’s queries to its signing oracle.

As before in the proof of Theorem 5.17, if S1 is proven to be secure in the (Q)ROM,
then this proof of sNest[S1,S2] also proceeds in the (Q)ROM: B1 relays A’s hash
oracle queries directly to its random oracle, giving a one-to-one correspondence
between A’s queries to its hash oracle and B1’s queries to its hash oracle.

If A wins the RcT-EUF-CMA game, then it has returned qS + 1 valid signatures
si = (si,1, si,2) on distinct messages mi such that Verify1(pk1,mi, si,1) = 0 and

179



5 Hybrid Signatures and KEMs

Verify2(pk2, (mi, si,1), si,2) = 0. B1 can extract from this qS + 1 valid signatures
under S1 on distinct messages. Thus,

AdvRcT-EUF-CMA
sNest[S1,S2] (A) ≤ AdvRcT-EUF-CMA

S1 (B1).

All steps described above can similarly be done by B2. Only the simulation of
A’s signing queries is slightly different: When A asks for m to be signed using
sNest[S1,S2], B2 first runs the signing operation for Sign1 on the message m using
its secret key sk1. Afterwards, B2 passes (m, s1) to its signing oracle for S2 which
returns a signature s2. As previously for B1, B2 can extract q+ 1 signature-message
pairs with distinct messages (mi, si,1). Hence, it holds for S2:

AdvRcT-EUF-CMA
sNest[S1,S2] (A) ≤ AdvRcT-EUF-CMA

S2 (B2).

It follows that

AdvRcT-EUF-CMA
sNest[S1,S2] (A) ≤ min

{
AdvRcT-EUF-CMA

S1 (B1),AdvRcT-EUF-CMA
S2 (B2)

}
.

Thus, if at least one of AdvRcT-EUF-CMA
S1 (B1) and AdvRcT-EUF-CMA

S2 (B2) is small, so too
is AdvRcT-EUF-CMA

sNest[S1,S2] (A).

5.2.2.2 Application of sNest in S/MIME

We now move on to explain Herath and Stebila’s approach to apply the combiner
sNest in S/MIME. The goal of the approach is to include a hybrid signature such
that the implementation is backwards compatible.

As explained in Section 5.2.1.2, the SignedData object of an e-mail signed with
S/MIME contains a set of SignerInfo objects. Each SignerInfo object contains
a signer identifier, algorithm identifier, signature, and optional signed and unsigned
attributes. To utilize the nested signature combiner, these optional attributes in
the SignerInfo object are used to embed a second signature. There exists three
different approaches based on the description of the standard:
2.a) Put a second certificate in the set of certificates, and put a second SignerInfo

in an attribute of the first SignerInfo.
2.b) Put a hybrid certificate in the set of certificates, and put a second SignerInfo

in an attribute of the first SignerInfo.
2.c) Put a second SignedData in an attribute of the first SignerInfo.

These approaches require defining a new attribute type, but this is easily done.
If the extra data is put in the signed attribute of the first SignerInfo then the
strong nesting combiner is used (if the extra data is put in the unsigned attribute
of the first SignerInfo, then the concatenation combiner Con is used).

180



5.2 Hybrid Signature Schemes

For honest parties that can recognize the optional attributes, the security relies
on the classical and post-quantum security. Another advantage lies in its backwards
compatibility: The CMS standard indicates that verifiers can accept signatures
with unrecognized attributes, so this approach results in backwards-compatible
signatures that should be accepted by existing software. Herath and Stebila tested
five S/MIME libraries/applications for acceptance of S/MIME messages from the
three approaches above. The tested libraries were Apple Mail 10.2, BouncyCastle
1.56 with Java SE 1.8.0_131, Microsoft Outlook 2016, Mozilla Thunderbird 45.7.1,
and OpenSSL 1.0.2k.
They conclude that approach 1 is not fully backwards-compatible since only

Apple Mail accepted e-mails in this case. Moreover, they observed that all the
tested libraries support approaches 2.a–2.c. However, Thunderbird struggled with
very large attributes. This implies that qTESLA might be a candidate to be used
in hybrid certificates. TESLA, in contrast, might not be suitable due to its large
public keys.

5.2.3 dNest: Dual Message Combiner Using Nesting

Moving forward, we now introduce the dual message combiner using nesting.

5.2.3.1 Description and Security of dNest

Some applications require a combiner for two (possibly related) messages signed
with two signature schemes. For example, in an application of X.509 certificates
one certificate is signed with S1 and then embedded as an extension inside a
second certificate signed with S2. We depict the signature generation of our nesting
combiner dNest using two messages m1,m2 in Algorithm 5.18.
Similarly to the case of our strong nesting combiner sNest described in Sec-

tion 5.2.2, it is important to note that in order to construct a robust combiner, the
second signature should be computed over the message (m1, s1,m2). In particular,
is is important that m1 is part of the message-to-be signed by S2 as explained next.
As before, we consider the case where S1 is broken. Let (s1, s2) be a signature
for (m1,m2) with s1 ← Sign1(sk1,m1) and s2 ← Sign2(sk2, (s1,m2)). Then, an ad-
versary might be able to exchange m1 for another different message m′1 such that
s1 = Sign1(sk1,m′1), since S1 is broken. However, (s1, s2) would be accepted as a
hybrid signature for (m′1,m2) 6= (m1,m2) by the verification algorithm. This is not
possible if s2 ← Sign2(sk2, (m1, s1,m2)) as stated in Algorithm 5.18.

181



5 Hybrid Signatures and KEMs

Algorithm 5.18 Signature generation of dNest[S1,S2]
Require: Messages m1 and m2, and secret key sk = (sk1, sk2)
Ensure: Signature s
1: s1 ← Sign1(sk1,m1)
2: s2 ← Sign2(sk2, (m1, s1,m2))
3: return s← (s1‖s2)

We can now show that the nesting combiner of dual messages is a robust signature
combiner in the sense that the resulting signature is as secure as the strongest of
the two input signature schemes. In particular, we show in Theorem 5.19 that
dNest[S1,S2] is EUF-CMA secure in the post-quantum setting (QcQ) if at least one
of the two signature schemes is secure against post-quantum adversaries.

Theorem 5.19 (Unforgeability of dNest). Let S1 be XcZ-EUF-CMA secure, S2
be UcW-EUF-CMA secure, and RcT = max{XcZ,UcW}, then dNest[S1,S2] is RcT-
EUF-CMA secure. More precisely, for any EUF-CMA adversary A of type RcT
against dNest[S1,S2], we derive efficient adversaries B1 and B2 such that

AdvRcT-EUF-CMA
dNest[S1,S2] (A) ≤ min

{
AdvRcT-EUF-CMA

S1 (B1),AdvRcT-EUF-CMA
S2 (B2)

}
,

while B1’s and B2’s run-times are approximately the same as A’s run-time.

The proof follows the same approach as the proof of Theorem 5.17: An RcT-EUF-CMA
adversary that finds a forgery in dNest[S1,S2] is also an RcT-EUF-CMA forger for
S1 and S2.

Proof. To prove the statement, we construct adversaries B1 and B2 that break
the unforgeability of S1 and S2, respectively, using an adversary A against the
unforgeability of dNest[S1,S2].
We start with the construction of B1. Suppose A is a RcT-EUF-CMA algo-

rithm that outputs a forgery for dNest[S1,S2]–in other words, it outputs qS + 1
valid signatures under dNest[S1,S2] on distinct messages. We can construct an
RcT-EUF-CMA algorithm B1 that finds a forgery in S1. B1 interacts with an
RcT-EUF-CMA challenger for S1 which provides a public key pk1. B1 generates
a key pair (sk2, pk2) ← KeyGen2() and sets the public key for dNest[S1,S2] to be
(pk1, pk2). When A asks classically for (m1,m2) to be signed using dNest[S1,S2],
B1 proceeds by passing the m1 to its signing oracle for S1, receiving the signature
s1 of m1. Then B1 runs Sign2 on the message (m1, s1,m2) using its secret key sk2.
There is a one-to-one correspondence between A’s queries to its signing oracle for
dNest[S1,S2] and B1’s queries to its signing oracle for S1.

182



5.2 Hybrid Signature Schemes

As before in the proof of Theorem 5.17, if S1 is proven to be secure in the (Q)ROM,
then this proof of dNest[S1,S2] also proceeds in the (Q)ROM: B1 relays A’s random
oracle queries directly to its random oracle, giving a one-to-one correspondence
between A’s queries to its hash oracle and B1’s queries to its hash oracle.
If A wins the RcT-EUF-CMA game, then it has returned qS + 1 distinct tuples

(m1,i,m2,i, s1,i, s2,i) such that the following holds true Verify1(pk1,m1,i, s1,i) = 0 and
Verify2(pk2, (m1,i, s1,i,m2,i), s2,i) = 0. Hence, B1 can extract qS + 1 valid signatures
under S1 with distinct messages m1,i and thus, it holds that

AdvRcT-EUF-CMA
dNest[S1,S2] (A) ≤ AdvRcT-EUF-CMA

S1 (B1).

Now we construct the adversary B2 against the unforgeability of S2. As before,
suppose A is an RcT-EUF-CMA algorithm that outputs a forgery for dNest[S1,S2]–
in other words, it outputs qS + 1 valid signatures under dNest[S1,S2] on distinct
messages. We can construct an RcT-EUF-CMA algorithm B2 that finds a forgery in
S2. B2 interacts with an RcT-EUF-CMA challenger for S2 which provides a public
key pk2. B2 generates a key pair (sk1, pk1)← KeyGen1() and sets the public key for
dNest[S1,S2] to be (pk1, pk2). When A asks for the message (m1,m2) to be signed
using dNest[S1,S2], B2 proceeds computing the signature s1 of m1 with Sign1 and
the secret key sk1. Then B2 queries the message (m1, s1,m2) to its signing oracle
for S2. There is a one-to-one correspondence between A’s queries to its signing
oracle for dNest[S1,S2] and B2’s queries to its oracle for S2.
As before, if S2 is proven to be secure in the (Q)ROM, then this proof of

dNest[S1,S2] also proceeds in the (Q)ROM: B2 relays A’s random oracle queries
directly to its random oracle, giving a one-to-one correspondence between A’s
queries to its hash oracle and B2’s queries to its hash oracle.
If A wins the RcT-EUF-CMA game, then it has returned qS + 1 distinct tuples

(m1,i,m2,i, s1,i, s2,i) such that the following holds true Verify1(pk1,m1,i, s1,i) = 0 and
Verify2(pk2, (m1,i, s1,i,m2,i), s2,i) = 0. Hence, B2 can extract qS + 1 valid signatures
under S2 with distinct messages (m1,i, s1,i,m2,i) and thus, it holds that

AdvRcT-EUF-CMA
dNest[S1,S2] (A) ≤ AdvRcT-EUF-CMA

S2 (B2).

This implies finally that

AdvRcT-EUF-CMA
dNest[S1,S2] (A) ≤ min{AdvRcT-EUF-CMA

S1 (B1),AdvRcT-EUF-CMA
S2 (B2)}.

Thus, if at least one of AdvRcT-EUF-CMA
S1 (B1) and AdvRcT-EUF-CMA

S2 (B2) is small, so too
is AdvRcT-EUF-CMA

dNest[S1,S2] (A).

5.2.3.2 Application of dNest in X.509

This application follows that same idea as in the case of the combiner sNest and the
optional attributes of S/MIME. In case of the combiner dNest and X.509, Stebila

183



5 Hybrid Signatures and KEMs

and Herath use the standard’s extension mechanism as explained next. Let c1 be
the certificate obtained by the Certificate Authority (CA) signing tbsCertificate
m1 (containing subject public key pkSub

PQ ) using signature scheme S1. Construct
certificate c2 by the CA signing tbsCertificate m2, which contains the subject’s
public key pkSub

RSA as well as (an encoding of) c1 as an extension in m2, using signature
scheme S2. We depict a simplified structure of the hybrid X.509 certificate in
Figure 5.17. The extension containing c1 would use a distinct extension identifier
saying “this is an additional certificate”. The extension is marked as non-critical
and hence, existing software (not aware of the hybrid structure) should ignore
the unrecognized extension, continue validating the certificate, and using it in
applications without change. However, software that recognizes the extension
correctly must process it [65, Section 4.2]. Hence, this approach adds post-quantum
security using the dNest combiner for honest users and is backwards compatible as
long as the size of the additional certificate is not too large as explained next.

Certificate c2 (RSA-2048)

tbsCertificate m2:
CA, subject, pkSub

RSA
c2 = SignRSA

(
skCA

RSA,
(

m2, pkSub
RSA, c1,m1

))
Extension:

Extension id.: non-critical

Certificate c1 (PQ)

tbsCertificate m1:
CA, subject, pkSub

PQ

c1 = SignPQ

(
skCA

PQ,
(

m1, pkSub
PQ

))

Figure 5.17: Simplified structure of the hybrid X.509v3 certificate using the nested
signature combiner dNest with the classical RSA-2048 and a Post-
Quantum (PQ) signature scheme

The backwards compatibility of this approach depends on whether the size of the
extension is accepted by the respective libraries. Herath and Stebila evaluated the
backwards compatibility of this approach using command-line certificate verification
programs in various libraries, namely GnuTLS 3.5.11, Java SE 1.8.0_131, mbedTLS
2.4.2, NSS 3.29.1, and OpenSSL 1.0.2k. They concluded that all tested libraries
were able to parse and verify X.509v3 certificates containing unrecognized extensions
of all extension sizes that range from 1.5KB until 1333.0KB. In particular that
means that all parameter sets of qTESLA can be used as an instantiation of the

184



5.3 Hybrid KEMs

post-quantum certificate; sizes that are as large as the public keys of TESLA are
most likely not compatible with current software. We refer to Section 3.3.3 for the
concrete instantiations of qTESLA and TESLA.
In addition to the command-line certificate verification programs, Herath and

Stebila also tested the compatibility of various TLS implementations using the
above-described hybrid X.509 certificate. In particular, they tested whether the
libraries GnuTLS 3.5.11, Java SE 1.8.0_131, mbedTLS 2.4.2, NSS 3.29.1, and
OpenSSL 1.0.2k can be used to establish a TLS 1.2 connection using the hybrid
certificate with an extension of a certain size. They concluded that only Java
completes connections with extensions the size of 1333.0KB and mbedTLS cannot
even handle certificates with extensions of the size of 43 KB. Moreover, they also
investigated whether popular web browsers such Apple Safari 10.1, Google Chrome,
Microsoft Edge, Microsoft IE, Mozilla Firefox, or Opera can be used to establish a
TLS 1.2 connection to a TLS server using a hybrid certificate with an extension of
a certain size. Their results have shown that the Microsoft browsers on Windows 10
cannot handle hybrid certificates with extensions the size of 43 KB. Furthermore, no
browser except Safari could handle extensions of size 1333.0KB. Hence, according to
these experiments it is reasonable to expect that all heuristic qTESLA parameters
(namely, qTESLA-h-I, qTESLA-h-III-size, qTESLA-h-III-speed) can be used to
instantiate the hybrid certificate. Moreover, also the provable secure parameter
set qTESLA-p-I can be used in hybrid certificates depending on the application.
However, the public key and signature sizes of qTESLA-p-III and all TESLA
parameters seem too large to be used in a hybrid certificate.

5.3 Hybrid KEMs
Now we turn to discuss the use of robust combiners to construct hybrid KEMs.
We propose three combiners motivated by practical applications of hybrid KEMs.
Informally, we call a KEM combiner robust if the resulting KEM is (XyZ-IND-ATK)
secure if at least one of the candidate signature schemes is (XyZ-IND-ATK) secure
with IND-ATK ∈ {IND-CCA, IND-CPA}.

The study of such hybrid KEMs dates back to work by Zhang et al. [223] and
Dodis and Katz [76] who examined the security of using multiple IND-CCA secure
public key encryption schemes. Recently, Giacon et al. [105] presented various
KEM combiners. While their work is an important first step towards constructing
hybrid KEMs, their solutions focus solely on classical adversaries. Since most of
the constructions of [105] use idealized assumptions such as random oracles, the
security reductions might not immediately transfer to the quantum setting [45].
Overall this section presents three combiners. The first combiner, called the

XOR-then-MAC combiner XtM, uses a simple exclusive-or of the two keys k1, k2

185



5 Hybrid Signatures and KEMs

of the single KEMs but adds a message authentication over the ciphertexts (with
a key derived as part of the exclusive-or of the keys). Hence, this solution relies
solely on the additional assumption of a secure one-time MACM which, in turn,
can be instantiated unconditionally. The second combiner, dPRF, relies on the
existence of PRFs P and dual PRFs DP [31–33] which provide security if either
the key material or the input carries entropy. The Hashed Message Authentication
Code (HMAC)-based Key Derivation Function (HKDF) is, for example, based on
this dual principle [146]. The third combiner, nPRF, is a nested variant of the
dual-PRF combiner inspired by the key derivation procedure in TLS 1.3 and the
proposal how to augment it for hybrid schemes in [201]. Its security relies on an
additional second PRF. We summarize our three combiners with their respective
building blocks and applications in Table 5.2.
Throughout this section we let K1 = (KeyGen1,Encaps1,Decaps1) and K2 =

(KeyGen2,Encaps2,Decaps2) be two KEMs. Furthermore, we write C[K1,K2] =
(KeyGenC,EncapsC,DecapsC) for the hybrid KEM constructed by one of the three
proposals C ∈ {XtM, dPRF, nPRF}. In all our schemes, KeyGenC simply returns the
concatenation of the two public keys (pk ← (pk1, pk2)) and the two secret keys
(sk← (sk1, sk2)).

Combiner Building blocks Indistinguishability Application
XtM K1,K2,M max{XcZ,UcW} –
dPRF K1,K2,DP ,P max{XcZ,UcW} TLS 1.3 [216]
nPRF K1,K2,DP ,P1,P2 max{XcZ,UcW} TLS 1.3 [201]

Indistinguishability: If K1 is XcZ-IND-CCA and K2 is UcW-IND-CCA, then C[K1,K2] is . . . -IND-CCA.

Table 5.2: KEM combiners using KEMS K1 and K2

Hybrid KEMs are designed to secure the transitional phase until quantum
computers become available. The eventually following widespread deployment of
quantum computers and cryptography, and thus security against QqQ adversaries,
is outside the scope of the post-quantum setting. Hence, we focus on proving
security against CcC, CcQ, and QcQ adversaries and omit QqQ-IND-CCA security
in what follows.

186



5.3 Hybrid KEMs

5.3.1 XtM: XOR-then-MAC Combiner

We first elaborate on the XOR-then-MAC combiner.

5.3.1.1 Description of the XOR-then-MAC Combiner

Giacon et al. [105] show that the plain XOR-combiner, which concatenates the
ciphertexts and XORs the individual keys, preserves IND-CPA security. Moreover,
they show that it does not preserve IND-CCA security in general, e.g., the combiner
may become insecure if one of the KEMs is insecure. We note that it is easy to
see that this is even true if both KEMs are IND-CCA secure: Given a challenge
ciphertext (c∗1, c∗2), the adversary can make two decapsulation requests for (c∗1, c2) and
(c1, c

∗
2) with fresh ciphertexts c1 6= c∗1, c2 6= c∗2 for which it knows the encapsulated

keys. This allows the adversary to easily recover the challenge key from the answers.
Our approach is to prevent the adversary from mix-and-match attacks by comput-

ing a MAC over the ciphertexts and attaching it to the encapsulation. For this we
require a strongly robust MAC combiner which takes two keys kmac,1, kmac,2 as input
and provides one-time unforgeability, even if one of the keys is chosen adversarially.
The combined KEM key is derived as an exclusive or of the leading parts of the two
encapsulated keys, k ← k1 ⊕ k2, and the MAC key kmac = (kmac,1, kmac,2) consisting
of the remaining parts of both encapsulated keys. If necessary, the encapsulated
keys can be stretched pseudorandomly by the underlying encapsulation schemes first
to achieve the desired output length. We depict encapsulation and decapsulation
of the resulting hybrid KEM in Algorithm 5.19 and 5.20, respectively. In both the
algorithms letM = (MKG,MAC,MVf) be a MAC for some key kmac.

Algorithm 5.19 Encapsulation of XtM[K1,K2,M]
Require: Public key pk = (pk1, pk2)
Ensure: Ciphertext (c, τ) and key k
1: (c1, k1||kmac,1)← Encaps1(pk1)
2: (c2, k2||kmac,2)← Encaps2(pk2)
3: kkem ← k1 ⊕ k2
4: kmac ← (kmac,1, kmac,2)
5: c← (c1, c2)
6: τ ← MACkmac(c)
7: return ((c, τ), kkem)

187



5 Hybrid Signatures and KEMs

Algorithm 5.20 Decapsulation of XtM[K1,K2,M]
Require: Secret key sk = (sk1, sk2), ciphertext ((c1, c2), τ)
Ensure: Key k
1: k′1||k′mac,1 ← Decaps1(sk1, c1)
2: k′2||k′mac,2 ← Decaps2(sk2, c2)
3: k′kem||k′mac ← k′1 ⊕ k′2
4: k′mac ← (k′mac,1, k

′
mac,2)

5: if MVfk′mac((c1, c2), τ) = 0 then
6: return ⊥
7: else
8: return k′kem

5.3.1.2 Security of the XOR-then-MAC Combiner

We can now show that the XOR-then-MAC combiner is a robust KEM combiner,
in the sense that the resulting KEM is as secure as the strongest of the two
input KEMs (assuming the MAC is also equally secure). In particular, we show
in Theorem 5.20 that XtM[K1,K2,M] is IND-CCA secure in the post-quantum
setting (QcQ) if the MACM is XyZ-OT-sEUF and at least one of the two KEMs
is post-quantum IND-CCA secure. In fact, the security offered by the MAC is
only required in case of IND-CCA attacks, yielding an even better bound for the
IND-CPA case. We recall that XcZ-IND-ATK ∈ {XcZ-IND-CCA,XcZ-IND-CPA}.
The security experiment for XyZ-OT-sEUF ofM is given in Figure 5.6.

Theorem 5.20 (Indistinguishability of XtM). Let K1 be a XcZ-IND-ATK secure
KEM, K2 a UcW-IND-ATK secure KEM, andM be an RcT-OT-sEUF secure MAC,
where RcT = max{XcZ,UcW}. Then XtM[K1,K2,M] is also RcT-IND-ATK secure.

More precisely, for any efficient adversary RcT-IND-ATK A against XtM[K1,K2,M],
there exist efficient algorithms B1, B2, and B3 such that

AdvRcT-IND-ATK
XtM[K1,K2,M](A) ≤ 2 ·min

{
AdvRcT-IND-ATK

K1 (B1),AdvRcT-IND-ATK
K2 (B2)

}
+ AdvRcT-OT-sEUF

M (B3).

Moreover, the run-times of B1, B2, and B3 are approximately the same as that of
A, and B3 makes at most as many verification queries as A makes decapsulation
queries.

Proof. Assume there exists an adversaryA that breaks the RcT-IND-ATK security of
XtM[K1,K2,M]. We show that this yields an adversary that then breaks either the
RcT-IND-ATK security of K1 or K2, or the RcT-OT-sEUF security ofM. Because
of symmetry it suffices to consider the case of K1. The following proof holds

188



5.3 Hybrid KEMs

analogously for K2 being RcT-IND-ATK secure. We focus on the IND-CCA case in
the following proof; the IND-CPA case follows easily from this.
We prove the theorem by applying the common technique of game hopping,

bounding the adversary’s advantage introduced with each game hop until the
adversary cannot win beyond the guessing probability.

Game 0. This is the original RcT-IND-ATK game against XtM[K1,K2,M].

Game 1. We now replace the key k∗1||k∗mac,1 of K1 returned with the challenge
ciphertext part c∗1 with a uniformly random and independent value r∗1Conr∗mac,1
from the same keyspace K. This means that we first create (c∗1, k∗1||k∗mac,1) and
then use (c∗1, r∗1||r∗mac,1) immediately from then on. This is done consistently in the
challenge value for deriving the challenge key portion and the MAC, as well as in
all decapsulation requests involving the ciphertext portion c∗1. More precisely, we
replace the step “k1||kmac,1←$ Decaps1(sk1, c1)” in the decapsulation procedure with
the step “if c1 = c∗1 then k1||kmac,1 ← r∗1||r∗mac,1 else k1||kmac,1 ← Decaps1(sk1, c1)”.
We show that if A can efficiently distinguish Game 1 from Game 0, then there

exists an adversary B1 against the RcT-IND-ATK security of K1. Algorithm B1
receives as input a public key pk1 and a challenge ciphertext c∗1 of K1, as well as
the challenge key k∗1||k∗mac,1. This challenge key is either the actual key or random.
Algorithm B1 simulates the environment for A as follows.

First, B1 generates the key pair (pk2, sk2) forK2Conkmac,2 and sets pk← (pk1, pk2).
Furthermore, B1 chooses the second challenge ciphertext portion c∗2 and key share
k∗2||k∗mac,2 itself. It computes k∗kem ← k∗1 ⊕ k∗2 and k∗mac ← (k∗mac,1, k

∗
mac,2), and

assembles the challenge ciphertext (c∗1, c∗2, τ ∗) where τ ∗ ← MACk∗mac((c∗1, c∗2)). It also
picks a challenge bit and replaces k∗kem by a random value if this bit is 1. Adversary
B1 then runs A on input (pk, (c∗1, c∗2, τ ∗), k∗kem).

If A is an active adversary, mounting an IND-CCA attack, decapsulation queries
for ciphertexts c = (c1, c2) with c1 6= c∗1 and some MAC tag τ are answered as
follows: c1 is decapsulated using B1’s decapsulation oracle for K1, c2 is decapsulated
using sk2, and the response kkem is then computed as the appropriately truncated
XOR of these decapsulations after verifying the MAC tag. If c = (c∗1, c2) then B1
uses k∗1||k∗mac,1 as the decapsulation of c∗1, and then continues as in the previous case.
For passive IND-CPA adversaries A, algorithm B1 does not need to provide any
simulation of decapsulation queries. At some point, the distinguisher A terminates
and outputs a guess bit b′. Adversary B1 outputs the same bit b′.

Clearly, B1 perfectly simulates the environments for A corresponding to Game 0
if the challenge key k∗1||k∗mac,1 is the actual key, and perfectly simulates Game 1 if
k∗1||k∗mac,1 is random. Furthermore, B1 is of the same type as A. Hence, it holds

189



5 Hybrid Signatures and KEMs

that

AdvG0
XtM[K1,K2,M](A) ≤ AdvG1

XtM[K1,K2,M](A) + 2 · AdvRcT-IND-ATK
K1 (B1),

where the factor 2 is owned to the transition from the prediction-based RcT-IND-ATK
attack with a random challenge bit b to an indistinguishability-based comparison
between fixed games here.

Game 2. In a syntactical change we replace the now random value r∗1 by r∗1 ⊕ k∗2
where k∗2 is the encapsulated key in K2 in the challenge ciphertext. This is done
consistently in the challenge value and MAC, as well as in all decapsulation requests
involving the ciphertext portion c∗1. We leave r∗mac,1 unaltered.
Effectively, the modification means that the encapsulated key in the challenge

ciphertext is now r∗1 = (r∗1 ⊕ k∗2) ⊕ k∗2. Since r∗1 and k∗2 are independent, the
distributions of r∗1 and r∗1 ⊕ k∗2 are identical, so the adversary’s advantage does not
change, i.e.,

AdvG1
XtM[K1,K2,M](A) = AdvG2

XtM[K1,K2,M](A).
In Game 2, the adversary now receives a random value as the challenge key and

the MAC is also computed over a random key part r∗mac,1, independently of the
challenge bit b. To complete the argument we only need to show that the adversary
in an RcT-IND-CCA attack does not gain any advantage via the decapsulation oracle
(in which r∗1 ⊕ k∗2 from the challenge key is used for inputs of the form (c∗1, ∗, ∗)).
We next argue that the difference is negligible, though, because in the actual attack
this can only happen if the adversary forges a MAC.

Game 3. In this game we change the decapsulation oracle in that we let it
immediately reject with output ⊥ if it is queried on a ciphertext of the form
(c∗1, ∗, ∗) for the challenge ciphertext c∗1.

An adversary is only able to notice the difference between Games 2 and 3 if it
queries about a fresh ciphertext (c∗1, c2, τ) 6= (c∗1, c∗2, τ ∗) with c2 being a K2 ciphertext
of the adversary’s choice, and τ being a valid MAC tag. If τ is not a valid MAC tag
or the adversary queries exactly the challenge ciphertext, then our decapsulation
oracle would also return ⊥.

We show that if an adversary A distinguishes between the games, we can build
an adversary B3 against the MAC. Adversary B3 runs A according to Game 2,
choosing all components (sk1, pk1) and (sk2, pk2) and c∗1, c∗2 of K1 and K2 itself. To
create the challenge ciphertext, adversary B3 makes its one-time MAC request with
message (c∗1, c∗2) and receives τ ∗. It runs A on (c∗1, c∗2, τ ∗) and a random string k∗kem.
For an RcT-IND-CCA attack, if A makes a decapsulation query about (c1, c2, τ)
for c1 6= c∗1, then B3 uses its knowledge of its decapsulation keys to compute the
answer.

190



5.3 Hybrid KEMs

For c1 = c∗1, adversary B3 calls its verification oracle with (c1, c2, τ, 2, k2), where
k2||kmac,2 ← Decaps1(sk2, c2), and returns ⊥ to A to continue the simulation.
For the analysis it is important to note that Game 2 uses as the challenge key

either an independent random string r∗1 (if b = 0) or a random key (if b = 1). In
both cases, the KEM part of the key is a uniform key independent of bit b–as is B3’s
choice k∗kem–and the MAC key part is also independent and uniform. The latter
holds in B3’s simulation as well, since the OT-sEUF game chooses a random MAC
key. In other words, the simulation is perfect up to the step where, potentially, A
makes a query for a fresh ciphertext with a valid MAC which would yield a reply
different from ⊥. But then B3 would find a forgery against the MAC in one of its
multiple verification attempts. Since B3 is of the same type RcT as A, it, thus,
holds that

AdvG2
XtM[K1,K2,M](A) ≤ AdvG3

XtM[K1,K2,M](A) + AdvRcT-OT-sEUF
M (B3).

The claim now follows, noting that in the final game the secret bit b is perfectly
hidden from A. The challenge key is an independent string in either case b = 0 or
b = 1, and the decapsulation queries are now also independent of the bit b, since
the change in the oracle’s answers only depends on the public value c∗1. Hence, A’s
output is independent of the secret bit, and thus

AdvG3
XtM[K1,K2,M](A) = 0.

5.3.1.3 Using the XOR-then-MAC Combiner in Protocols

It may seem that it would be preferable to protect against the above-mentioned
mix-and-match attacks by protecting the derived key directly (by making key
derivation depend on both keys and both ciphertexts), as opposed to the approach
in the XOR-then-MAC combiner, which appends a MAC to the ciphertext to
protect the ciphertext from modification. However, in many practical protocols, the
parties compute a MAC over the transcript to provide integrity and authenticity.
For example, this is done in the Finished message in the TLS protocol. The key
for the MAC is usually derived from the session key, and the transcript includes
the data for establishing the key, such as the KEM ciphertexts. In these cases,
it may be possible to apply the XOR-then-MAC approach without an additional
MAC over the ciphertext, instead relying on the MAC that is already present.

5.3.2 dPRF: Dual-PRF Combiner
Our second combiner is based on dual PRFs [31–33]. The definitions of (dual) PRF
security in our two-stage model can be found in Section 5.1.1.4. Informally, a dual

191



5 Hybrid Signatures and KEMs

PRF DP(k, x) is a PRF when either the key material k is random (i.e., DP(k, ·)
is a PRF), or alternatively when the input x is random (i.e., DP(·, x) is a PRF).
HMAC has been shown to be a secure MAC under the assumption that it is a dual
PRF. Moreover, Bellare and Lysyanskaya have given a generic validation of the
dual PRF assumption for HMAC [33] and therefore HKDF.

5.3.2.1 Description of the Dual-PRF Combiner

To construct a hybrid KEM from a dual PRF, the naive approach of directly using
a dual PRF to compute the session key of the combined KEM as DP(k1, k2) is not
sufficient. For example, if K1 is secure but K2 is broken then an adversary might
be able to transform the challenge ciphertext (c∗1, c∗2) into (c∗1, c2), where c2 6= c∗2
but c2 encapsulates the same key k2 as c∗2. With a single decapsulation query
the adversary would be able to recover the key DP(k1, k2) and distinguish it from
random. Our approach, shown in Algorithm 5.21 and 5.22, is to apply another
PRF with the output of the dual PRF as the PRF key and the ciphertexts as the
input label: P(DP(k1, k2), (c1, c2)).

Algorithm 5.21 Encapsulation of dPRF[K1,K2,DP ,P ]
Require: Public key pk = (pk1, pk2)
Ensure: Ciphertext c and key k
1: (c1, k1)← Encaps1(pk1)
2: (c2, k2)← Encaps2(pk2)
3: c← (c1, c2)
4: kd ← DP(k1, k2)
5: k ← P(kd, c)
6: return (c, k)

Algorithm 5.22 Decapsulation of dPRF[K1,K2,DP ,P ]
Require: Secret key sk = (sk1, sk2), ciphertext (c1, c2)
Ensure: Key k
1: k′1 ← Decaps1(sk1, c1)
2: k′2 ← Decaps2(sk2, c2)
3: k′d ← DP(k′1, k′2)
4: return P(k′d, (c1, c2))

192



5.3 Hybrid KEMs

5.3.2.2 Security of the Dual-PRF Combiner

In the following we show that the dual-PRF combiner is a robust KEM combiner, in
the sense that the resulting KEM has the security of the strongest of the two input
KEMs (assuming the PRF and dual PRF are also sufficiently secure). In particular,
we show that dPRF[K1,K2,DP ,P ] is IND-CCA secure in the post-quantum setting
(QcQ) if DP is a post-quantum secure dual PRF, P is a post-quantum secure PRF,
and at least one of the two KEMs is post-quantum IND-CCA secure.

Theorem 5.21 (Indistinguishability of dPRF). Let K1 be an XcZ-IND-ATK secure
KEM, K2 be a UcW-IND-ATK secure KEM, and RcT = max{XcZ,UcW}. Moreover,
let DP : K1 ×K2 → K ′ be an RcT secure dual PRF, and P : K ′ × {0, 1}∗ → KdPRF
be an RcT secure PRF. Then dPRF[K1,K2,DP ,P ] is RcT-IND-ATK secure.

More precisely, for any IND-ATK adversary A of type RcT against the combiner
dPRF[K1,K2,DP ,P ], we derive efficient adversaries B1, B2, B3, and B4 with

AdvRcT-IND-ATK
dPRF[K1,K2,DP,P](A) ≤ min

{
AdvRcT-IND-ATK

K1 (B1),AdvRcT-IND-ATK
K2 (B2)

}
+2 · AdvRcT-dPRF-SEC

DP (B3) + 2 · AdvRcT-PRF-SEC
P (B4),

while the run-times of B1, B2, B3, and B4 are approximately the same as that of A.

Proof. As before, we prove the theorem by considering a sequence of game hops.
We focus on the case that K1 is secure, and mention the necessary modifications in
the proof for K2 being secure as we progress through the games.

Game 0. This is the original RcT-IND-ATK game for dPRF[K1,K2,DP ,P ].

Game 1. We replace the value k∗1 computed in the challenge ciphertext by a
uniformly random value r∗1 of equal length and compute the final key in the
challenge value as P(DP(r∗1, k∗2), (c∗1, c∗2)); it is important to note that for b = 1
this value is eventually replaced with a random value. Decapsulation requests
(c1, c2) are also answered by using r∗1 instead of k∗1 in case c∗1 = c1. That is, instead
of computing k1 ← Decaps1(sk1, c1) we compute “if c1 = c∗1 then k1 ← r∗1 else
k1 ← Decaps1(sk1, c1)”.
An adversary distinguishing Game 0 from Game 1 would immediately yield

an efficient adversary B1 against the indistinguishability of K1 as explained next.
Adversary B1 receives as input pk1 and a challenge (c∗1, k∗1), and simulates the
environment for A as follows: First, B1 generates the key pair (pk2, sk2) for K2 and
sets pk ← (pk1, pk2). Furthermore, B1 generates the second challenge ciphertext
portion c∗2 and key share k∗2 itself. It assembles the challenge ciphertext as (c∗1, c∗2)
and computes k∗ = P(DP(k∗1, k∗2), (c∗1, c∗2)). It also picks a challenge bit and

193



5 Hybrid Signatures and KEMs

replaces k∗ by a random value if this bit is 1. Adversary B1 then runs A on
input (pk, (c∗1, c∗2), k∗).
If A is an active adversary in the IND-CCA case, decapsulation queries for

ciphertexts c = (c1, c2) with c1 6= c∗1 are answered by relaying c1 to the corresponding
decapsulation oracle for K1 and decapsulating c2 with the help of sk2. The final
response is computed according to the protocol description. If c = (c∗1, c2) then B1
simply substitutes the evaluation and response of K1’s decapsulation oracle with k∗1
and computes the answer accordingly. For passive adversaries A in an IND-CPA
attack, algorithm B1 does not need to provide any simulation of decapsulation
queries. At some point, the distinguisher A terminates and outputs a guess bit b′.
Adversary B1 outputs the same bit b′.

For the analysis note that the difference between the two games lies exactly in
the distinction between the actual key k∗1 and a random value. Hence, we have

AdvG0
dPRF[K1,K2,DP,P](A) ≤ AdvG1

dPRF[K1,K2,DP,P] + 2 · AdvXcZ-IND-ATK
K1 (B1),

where the factor 2 is owned to the transition from the prediction-based RcT-IND-ATK
attack with a random challenge bit b to an indistinguishability-based comparison
between fixed games here. For K2 being secure the proof applies analogously,
yielding an adversary B2.

Game 2. Next, we replace the value DP(r∗1, k∗2) by a uniformly random value r∗
in the computation of the challenge ciphertext. We make the following additional
modification to the current decapsulation procedure: We use r∗ in decapsulation
requests (instead of DP(r∗1, k∗2)) for any request of the form (c∗1, c2) for which
Decaps2(sk2, c2) = k∗2. It is important to note that we still use r∗1 and DP(r∗1, k2)
for queries of the form c1 = c∗1 but k2 = Decaps2(sk2, c2) 6= k∗2.
Distinguishing Game 1 from Game 2 would immediately yield an efficient ad-

versary B3 against the PRF-security of DP. The reduction is straightforward.
Algorithm B3, in its first query, can ask about some input value and either receives
the PRF value or a random reply, and from then on B3 can ask about other inputs
to learn further PRF values.

Algorithm B3 creates keys (pk1, sk1), (pk2, sk2), as well as c∗1, c∗2 (with encapsulated
keys k∗1, k∗2). It then queries its PRF oracle about (r∗1, k∗2) to receive a value r∗. It
starts a simulation of A on input (pk, (c∗1, c∗2),P(r∗, (c∗1, c∗2)). Each decapsulation
query for (c1, c2) with c1 6= c∗1 is answered with the help of sk1, sk2. Each query
with c1 = c∗1 is answered by decapsulating k2 from c2 with sk2. If now k2 = k∗2 then
we use r∗ to compute the final answer, else we query the PRF oracle about k2 and
use the reply to complete the computation. It is important to note that this is
admissible since k2 is different from the input k∗2 in B3’s first query. Finally, B3
outputs the final answer of adversary A.

194



5.3 Hybrid KEMs

If B3 receives a pseudo-random value r∗ then we perfectly simulate Game 1. If,
on the other hand, r∗ is random, then we perfectly simulate Game 2. Thus,

AdvG1
dPRF[K1,K2,DP,P](A) ≤ AdvG2

dPRF[K1,K2,DP,P](A) + 2 · AdvRcT-dPRF-SEC
DP (B3).

Here the factor 2 in the distinguishing advantage againstDP comes from the fact that
we use the variant of having a real-or-random challenge and then communicating
with the actual function on different inputs.

For K2 being secure the same line of reasoning applies, because DP is a dual
PRF and hence, DP(·, r∗2) is also pseudo-random.

Game 3. Finally, we replace the value P(r∗, (c∗1, c∗2)) by a uniformly random value
R∗ in the computation of the challenge ciphertext. The decapsulation procedure
remains unchanged.

We show security by a reduction to the security of the PRF. Algorithm B4 again
creates keys (pk1, sk1), (pk2, sk2) and the challenge ciphertext (c∗1, c∗2). It queries the
PRF oracle about (r∗, (c∗1, c∗2)) to obtain a value R∗ and runs A on (pk, (c∗1, c∗2), R∗).
Each decapsulation query (c1, c2) is answered as follows: If c1 6= c∗1 we answer with
the help of the decapsulation keys sk1, sk2, computing the same reply as the original
decapsulation oracle. In case c1 = c∗1 (and consequently c2 6= c∗2) and where k2 = k∗2
we call the external oracle about (c∗1, c2) to derive the answer. For c1 = c∗1 but
k2 6= k∗2 we use DP(r∗1, k2) to compute the answer.
We again have that if B4 receives a pseudo-random value R∗ then we perfectly

simulate Game 2. If R∗ is random, then we perfectly simulate Game 3. Hence,

AdvG2
dPRF[K1,K2,DP,P](A) ≤ AdvG3

dPRF[K1,K2,DP,P](A) + 2 · AdvRcT-PRF-SEC
P (B4).

The analogous applies when K2 is secure.
In the final game neither the challenge ciphertext nor the decapsulation oracle

carries any information about the secret challenge bit b. That is, the oracle does
not depend on R∗ in case b = 0, so this case is indistinguishable from the b = 1
case. We thus arrive at the final bound:

AdvG3
dPRF[K1,K2,DP,P](A) = 0

This concludes the proof that dPRF[K1,K2,DP ,P] is a hybrid KEM with
RcT-IND-ATK security.

5.3.2.3 Application of the Dual-PRF Combiner

After proving the security of the combiner dPRF, we now move on to explain a
possible application of the dual-PRF KEM combiner.

195



5 Hybrid Signatures and KEMs

Our dPRF combiner is inspired by the key derivation in the current draft of
TLS 1.3 [195] and models Whyte et al.’s proposal for supporting hybrid key exchange
in TLS 1.3 [216]. In TLS 1.3, HKDF’s extract function is applied to the raw ECDH
shared secret; the result is then fed through HKDF’s expand function with the
(hash of the) transcript as (part of) the label. In Whyte et al.’s hybrid proposal,
the session keys from multiple KEMs are concatenated as a single shared secret
input to HKDF extract. The dPRF combiner models this by taking DP as HKDF
extract and P as HKDF expand, as depicted in Figure 5.18a.

0

Ext

Exp

Pre-shared keys PSK

Ext k1||k2 (e.g., k1 (EC)DHE and k2 PQ)

Exp

Ext 0

MasterSecret

Exp handshake messages

(a) Following [216] using dPRF

0

Ext

Exp

PSK

Ext k1 (e.g., (EC)DHE)

Exp

Ext k2 (e.g., PQ)

Exp

Ext 0

MasterSecret

Exp handshake messages

(b) Following [201] using nPRF

Figure 5.18: Excerpt from altered TLS 1.3 key schedule as proposed in [216] (left)
and [201] (right) to incorporate an additional PQ secret k2

196



5.3 Hybrid KEMs

5.3.3 nPRF: Nested Dual-PRF Combiner
After explaining the dual-PRF combiner, we now turn to explain the nested
dual-PRF combiner.

5.3.3.1 Description of the Nested Dual-PRF combiner

We augment the dPRF combiner in the Section 5.3.2 by an extra preprocessing
step for the key k1: ke ← EX (0, k1), where EX is another PRF. This is the nested
dual-PRF combiner nPRF shown in Algorithm 5.23 and 5.24.

Algorithm 5.23 Encapsulation of nPRF[K1,K2,DP ,P , EX ]
Require: Public key pk = (pk1, pk2)
Ensure: Ciphertext c and key k
1: (c1, k1)← Encaps1(pk1)
2: (c2, k2)← Encaps2(pk2)
3: c = (c1, c2)
4: ke = EX (0, k1)
5: kd = DP(ke, k2)
6: k = P(kd, c)
7: return (c, k)

Algorithm 5.24 Decapsulation of nPRF[K1,K2,DP ,P , EX ]
Require: Secret key sk = (sk1, sk2), ciphertext (c1, c2)
Ensure: Key k
1: k′1 ← Decaps1(sk1, c1)
2: k′2 ← Decaps2(sk2, c2)
3: k′e = EX (0, k1)
4: k′d = DP(k′e, k2)
5: return P(k′d, (c1, c2))

5.3.3.2 Security of the Nested Dual-PRF Combiner

The nested dual-PRF combiner nPRF is a robust KEM combiner, in the sense
that the resulting KEM has the security of the strongest of the two input KEMs
(assuming the PRFs are sufficiently secure). Informally, the theorem shows that
nPRF[K1,K2,DP ,P , EX ] is IND-CCA secure in the post-quantum setting if DP is
a post-quantum secure dual PRF, P and EX are post-quantum secure PRFs, and
at least one of the two KEMs is post-quantum IND-CCA secure.

197



5 Hybrid Signatures and KEMs

Theorem 5.22 (Indistinguishability of nPRF). Let K1 be an XcZ-IND-ATK secure
KEM, K2 be a UcW-IND-ATK secure KEM, DP : K ′ × K2 → K ′′ be an RcT =
max{XcZ,UcW} secure dual PRF, P : K ′′ × {0, 1}∗ → KnPRF be an RcT secure
PRF, and EX : {0, 1}∗ × K1 → K ′ be an RcT secure PRF. Then the combiner
nPRF[K1,K2,DP ,P , EX ] is RcT-IND-ATK secure.
More precisely, for any IND-ATK adversary A of type RcT against the combined

KEM nPRF[K1,K2,DP ,P , EX ], we derive efficient adversaries B1, B2, B3, B4, and
B5 such that

AdvRcT-IND-ATK
nPRF[K1,K2,DP,P,EX ](A) ≤ min

{
AdvRcT-IND-ATK

K1 (B1),AdvRcT-IND-ATK
K2 (B2)

}
+2 · AdvRcT-dPRF-SEC

DP (B3) + 2 · AdvRcT-PRF-SEC
P (B4)

+2 · AdvRcT-PRF-SEC
EX (B5),

while the run-times of B1, B2, B3, B4, and B5 are approximately the same as that
of A.

The proof follows easily from the proof of the dPRF combiner. In particular, the
proof of Theorem 5.22 would also consist of the sequence of game hops Game 1,
Game 2, and Game 3 in the proof of Theorem 5.21. Additionally, one more
intermediate step in which we use the pseudo-randomness of EX to argue that the
output of EX (0, k1) is pseudo-random, would be made. Namely, the first game
hop would be to exchange k1 with a uniformly random r1 from the same key
space. With the same arguments as given in the proof of Theorem 5.21, it would
follow that an adversary that is able to detect this change, would also be able to
break the RcT-PRF-SEC security of EX . The following game hop would then be to
substitute ke by a random value which corresponds exactly to Game 1 in the proof
of Theorem 5.21.

5.3.3.3 Application of the Nested Dual-PRF Combiner

Lastly, we explain an application of the nested dual-PRF KEM combiner. Our
combiner nPRF models Schanck and Stebila’s proposal [201] for hybrid key exchange
in TLS 1.3. In their proposal, as depicted in Figure 5.18b, one stage of the TLS
1.3 key schedule is applied for each of the constituent KEMs in the hybrid KEM
construction: Each stage in the key schedule applies the HKDF extract function
with one input being the output from the previous stage of the key schedule and
the other input being the shared secret from this stage’s KEM. Finally, HKDF
expand incorporates the (hash of the) transcript, including all KEMs’ ciphertexts.
Modeling the extraction function EX as a PRF, our nested combiner nPRF captures
this scenario. This approach is not backwards compatible with non-aware TLS 1.3

198



5.3 Hybrid KEMs

implementations. The advantage of this is that the combiner is robust in the sense
that it is secure as long as one of the candidate KEMs is secure.
In this chapter we elaborated on hybrid combiners that offer a secure way to

combine classical and post-quantum secure signature schemes and KEMs. The
next chapter presents a summary of the results of this thesis.

199





6 Conclusion

We, in this thesis, have presented post-quantum secure signature schemes that
can be offered as an alternative for classical schemes. Additionally, we have also
presented an approach on how to integrate post-quantum schemes to our current
PKI to guarantee security within the Internet, in spite the potential presence of
large-scale quantum computers. In particular, on the one hand, we constructed and
analyzed lattice-based digital signature schemes. On the other hand, we constructed
hybrid signature and KEM schemes that base their security on the security of
the classical as well as, e.g., the lattice-based schemes. Based on these, we now
summarize our results and provide directions for future research.
Our presented signature schemes TESLA and qTESLA have been proven to

be secure against post-quantum adversaries as long as the LWE problem remains
computationally hard. The tightness of our security reductions enabled choosing
efficient quantum-resistant instantiations that are provably secure. The experimen-
tal results obtained from the software implementations of TESLA and qTESLA
demonstrated their practicability. For instance, TESLA’s run-time is 3 to 7 times
faster and its signature size is about 12 times smaller than the corresponding values
of GPV, which is the only other standard-lattice-based signature scheme with pa-
rameters chosen according to its quantum security reduction. Our findings indicate
that qTESLA is much more efficient than TESLA. In particular, qTESLA’s signing
algorithm is faster than that of the other three lattice-based signature schemes
submitted to NIST [164] for the same security level, while qTESLA’s verification is
faster than that of two of the other NIST submissions. Additionally, qTESLA’s
secret key is smallest among these four signature schemes. Furthermore, run-times
of the provably secure instantiation qTESLA-p-III for signing are a factor 1.7 faster
than RSA-3072. Moreover, the heuristic instantiation qTESLA-h-III-speed is 12
times faster for signing than and verification is as fast as RSA-3072. However, the
key and signature sizes of qTESLA are larger than of those of RSA. For example,
the sizes of qTESLA-h-III-size are 5 to 8 times larger than those of RSA-3072. For
most applications, however, the larger key sizes of qTESLA do not seem to cause
irreconcilable problems as exemplified next. The experiments by Herath and Stebila
(see Section 5.2) or by Kampanakis et al. [131] indicate that standards such as X.509

201



6 Conclusion

and most implementations of the TLS or the IKEv2 protocols are able to handle key
and signature sizes as they occur in qTESLA. Additionally, authentication of e-mails
or software updates do not depend on small key or signature sizes and hence, the
sizes of qTESLA should not pose an obstacle in such applications. Furthermore, as
shown by Deng, Szefer, Tian, and Wang, it is possible to compile and run qTESLA
on the VexRiscV platform, demonstrating its suitability for FPGAs. Nevertheless,
some application rely on key and signature sizes that are smaller than RSA sizes
and hence, qTESLA sizes. For examples, signature schemes used to instantiate
aggregate network attestation [17] are required to be very small since the memory
of some low-end embedded devices is only in the order of kilo-bytes. This is well
below the overall qTESLA communication cost of public key and signatures.

Moving forwards, we also showed the vulnerability of lattice-based signatures
against implementation attacks, which are summarized as follows. We first de-
tected possible vulnerabilities against cache side channels in four subroutines of
ring-TESLA–the predecessor of qTESLA. The potential vulnerabilities detected
are during the rejection sampling, a signature validity check, and the sparse poly-
nomial multiplication. We then proposed mitigations for all the vulnerabilities that
we found in the ring-TESLA implementation. Our analyses demonstrated that
rejection sampling and sparse multiplication should be implemented with particular
carefulness. While these techniques are not very common in classical cryptography
like RSA, they are common building blocks in lattice-based cryptographic schemes.
To exemplify, rejection sampling occurs in most of the efficient lattice-based sig-
nature schemes such as [24, 81, 82] and in authenticated key exchange protocols
such as [222]. Moreover, sparse multiplication also occurs in many lattice-based
schemes [55, 81, 82]. Afterwards, we turned to fault attacks and presented a careful
analysis of the signature schemes BLISS, ring-TESLA, and GLP with respect to
randomizing, skipping, and zeroing faults. Our analysis showed that for 9 out
of 15 considered attacks, at least one of the three schemes was vulnerable. All
three schemes were vulnerable against zeroing faults during the sign algorithm,
against zeroing faults during the verification, against skipping faults during the
key generation, and against a skipping fault during the verification algorithm.
Particularly interesting was that not only different ways of implementing led to
different vulnerabilities, but also the different instantiations. As exemplified, BLISS
and GLP were more vulnerable to the randomizing attack R-S-Sec during the key
generation because of their sparse secrets than ring-TESLA which is instantiated
with Gaussian distributed secrets. Due to the similarities of ring-TESLA and
qTESLA, our implementation attack analysis and countermeasures can be applied
to qTESLA as well.

Lastly in this thesis, we also showed how to build hybrid signature schemes and
KEMs offering post-quantum security while preserving today’s classical security

202



guarantees. As a result we presented three signature and three KEM combiners.
Our analysis has shown that all of our combiners are robust in the sense that the
resulting signature or KEM is as secure as the strongest of the two input signature
schemes or KEMs. Hence, no matter if the classical scheme (e.g., because of existing
large-scale quantum computers) or the post-quantum scheme (e.g., because of a
sudden cryptanalytic break) becomes insecure, a hybrid scheme constructed using
one of our combiners is still secure as long as at least one of the schemes is secure.
Additionally, the applicability of our proposed combiners was demonstrated. For
example, two of our KEM and one signature combiners, namely dPRF, nPRF, and
Con, can be used in proposals for TLS 1.3. Other applications of our signature
combiners are in X.509v3 or CMS of S/MIME. All our hybrid schemes have been
proven to be secure in our novel two-stage adversary model that accounts for a
fine-grained distinction of the adversary’s quantum power. This family of security
notions is thus, a unification and extension of existing quantum security models
and it is easily transferable to other cryptographic primitives.

Future Work. Besides the potential improvements mentioned in the previous
chapters, we consider the following research directions interesting and important.

The research area of protecting implementations of lattice-based schemes against
physical attacks offers several important open questions. For instance, general
power and electromagnetic attacks on lattice-based signatures have not yet been
presented15. Moreover, this work is a starting point for fault analysis of lattice-
based cryptographic schemes. As this work is not comprehensive, further detailed
analyses can be carried out. For example, we did not analyze fault attacks targeting
underlying computations such as the NTT. Additionally, the effects of zeroing
attacks on the most (or least) significant bits of polynomial coefficients or the
modulus is still an open question. In addition to these ideas for deeper side-
channel and fault analysis, we also recommend investigating the effectiveness of
proposed measures by software simulations for future research. This holds particular
interest if countermeasures against several vulnerabilities are implemented. As
a consequence of these future findings, the qTESLA implementation should be
adapted. The current implementation of qTESLA is optimized for speed while
it is also protected against the most common side-channels and a very powerful
fault attack. To prevent more advanced (cache-, power-, and electromagnetic-)
side-channel and fault attacks, the countermeasures discussed in this thesis and
mitigations of potential future attacks should be implemented as a next step.

While it is important to guarantee the security of post-quantum secure schemes
and their implementations, an interesting direction is to take one step further as
15The attack presented in [91] targets subroutines of the signature scheme BLISS that are rarely

used in other lattice-based signature schemes.

203



6 Conclusion

explained next. This thesis mostly focused on constructions and analyses in the
post-quantum world (QcQ) where only the adversary accesses quantum computers.
However, an interesting direction is to consider schemes and their security in a fully
quantum world (QqQ) where all parties access quantum computers. This scenario
has already been considered in our two-stage adversary model. Moreover, there
exists an approach to construct QqQ-EUF-CMA secure signatures in the literature:
Boneh and Zhandry [49] proposed a QqQ-EUF-CMA secure construction based on
a CcC-EUF-CMA secure signature scheme. However, so far this approach does not
seem to yield practical lattice-based QqQ-EUF-CMA secure signature schemes. To
ensure authenticity, integrity, and non-repudiation of data in the Internet also in
the future when quantum computers are widely deployed, it is important to provide
practical QqQ-EUF-CMA secure signature schemes.

204



Bibliography

[1] M. Abdalla, P.-A. Fouque, V. Lyubashevsky, and M. Tibouchi. Tightly-secure
signatures from lossy identification schemes. In EUROCRYPT 2012, volume
7237 of LNCS, pages 572–590. Springer, 2012.

[2] A. Abel and J. Reineke. Reverse engineering of cache replacement policies in
Intel microprocessors and their evaluation. In ISPASS, pages 141–142. IEEE
Computer Society, 2014.

[3] O. Aciiçmez and Çetin Kaya. Koç. Trace-driven cache attacks on AES
(short paper). In ICICS 06, volume 4307 of LNCS, pages 112–121. Springer,
Heidelberg, 2006.

[4] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM Side-
Channel(s). In CHES 2002, volume 2523 of LNCS, pages 29–45. Springer,
2003.

[5] M. R. Albrecht. On dual lattice attacks against small-secret LWE and
parameter choices in HElib and SEAL. In EUROCRYPT 2017, Part II,
volume 10211 of LNCS, pages 103–129. Springer, Heidelberg, 2017.

[6] M. R. Albrecht, C. Cid, J. Faugère, R. Fitzpatrick, and L. Perret. Algebraic
algorithms for LWE problems. ACM Comm. Computer Algebra, 49(2):62,
2015.

[7] M. R. Albrecht, C. Cid, J.-C. Faugère, R. Fitzpatrick, and L. Perret.
On the complexity of the BKW algorithm on LWE. Designs, Codes and
Cryptography, 74(2):325–354, 2015.

[8] M. R. Albrecht, B. R. Curtis, A. Deo, A. Davidson, R. Player, E. W. Postleth-
waite, F. Virdia, and T. Wunderer. Estimate all the LWE, NTRU schemes!
In SCN 2018, LNCS. Springer, 2018.



Bibliography

[9] M. R. Albrecht, R. Fitzpatrick, and F. Göpfert. On the efficacy of solving
LWE by reduction to unique-SVP. In ICISC 13, volume 8565 of LNCS, pages
293–310. Springer, Heidelberg, 2014.

[10] M. R. Albrecht, F. Göpfert, F. Virdia, and T. Wunderer. Revisiting the ex-
pected cost of solving uSVP and applications to LWE. In ASIACRYPT 2017,
Part I, volume 10624 of LNCS, pages 297–322. Springer, Heidelberg, 2017.

[11] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning
with errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

[12] A. Alim Kamal and A. M. Youssef. Strengthening hardware implementations
of NTRUEncrypt against fault analysis attacks. Journal of Cryptographic
Engineering, 3(4):227–240, 2013.

[13] E. Alkim, R. Avanzi, J. Bos, L. D. Ducas, A. de la Piedra, T. Pöppelmann,
P. Schwabe, and D. Stebila. NewHope. NIST Post-Quantum Standardization
[164], 2017. https://newhopecrypto.org/. Accessed: 2018-07-23.

[14] E. Alkim, J. W. Bos, L. Ducas, P. Longa, I. Mironov, M. Naehrig, V. Niko-
laenko, C. Peikert, A. Raghunathan, D. Stebila, K. Easterbrook, and
B. LaMacchia. FrodoKEM–Learning With Errors Key Encapsulation. NIST
Post-Quantum Standardization [164], 2017. https://frodokem.org/. Ac-
cessed: 2018-07-23.

[15] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key
exchange - A new hope. In USENIX Security 16, pages 327–343. USENIX
Association, 2016.

[16] N. Allen, M. Anvari, E. Crockett, N. Drucker, V. Gheorghiu, S. Gueron,
C. Paquin, T. Lepoint, S. Mishra, and D. Stebila. liboqs – nist-branch: C
library for quantum-resistant cryptographic algorithms, 2018. GitHub at
https://github.com/open-quantum-safe/liboqs, commit-id: 86c6ab1.

[17] M. Ambrosin, M. Conti, A. Ibrahim, G. Neven, A.-R. Sadeghi, and
M. Schunter. SANA: Secure and scalable aggregate network attestation.
In ACM CCS 16, pages 731–742. ACM Press, 2016.

[18] H. An, S. Kim, J. Lee, R. Choi, and K. Kim. Timing and Fault Attacks
on Lattice-based Cryptographic Libraries. In SCIS 2017. The Institute of
Electronics, Information and Communication Engineers, 2017.

[19] Y. Aono, P. Q. Nguyen, and Y. Shen. Quantum Lattice Enumeration and
Tweaking Discrete Pruning. Cryptology ePrint Archive, Report 2018/546,
2018.

https://newhopecrypto.org/
https://frodokem.org/
https://github.com/open-quantum-safe/liboqs


Bibliography

[20] Y. Aono, Y. Wang, T. Hayashi, and T. Takagi. Improved progressive
BKZ algorithms and their precise cost estimation by sharp simulator. In
EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 789–819. Springer,
Heidelberg, 2016.

[21] S. Arora and R. Ge. New algorithms for learning in presence of errors.
In ICALP 2011, Part I, volume 6755 of LNCS, pages 403–415. Springer,
Heidelberg, 2011.

[22] A. Aysu, Y. Tobah, M. Tiwari, A. Gerstlauer, , and M. Orshansky. Horizontal
Side-Channel Vulnerabilities of Post-Quantum Key Exchange Protocols. In
HOST, pages 81–88. IEEE Computer Society, 2018.

[23] L. Babai. A las vegas-NC algorithm for isomorphism of graphs with bounded
multiplicity of eigenvalues. In 27th FOCS, pages 303–312. IEEE Computer
Society Press, 1986.

[24] S. Bai and S. D. Galbraith. An improved compression technique for signatures
based on learning with errors. In CT-RSA 2014, volume 8366 of LNCS, pages
28–47. Springer, Heidelberg, 2014.

[25] S. Bai and S. D. Galbraith. Lattice decoding attacks on binary LWE. In
ACISP 14, volume 8544 of LNCS, pages 322–337. Springer, Heidelberg, 2014.

[26] R. E. Bansarkhani. LARA - A Design Concept for Lattice-based Encryption.
Cryptology ePrint Archive, Report 2017/049, 2017.

[27] R. E. Bansarkhani and J. Buchmann. Improvement and efficient implementa-
tion of a lattice-based signature scheme. In SAC 2013, volume 8282 of LNCS,
pages 48–67. Springer, Heidelberg, 2014.

[28] F. Bao, R. H. Deng, Y. Han, A. Jeng, A. D. Narasimhalu, and T. Ngair.
Breaking public key cryptosystems on tamper resistant devices in the presence
of transient faults. In Security Protocols: 5th International Workshop Paris,
pages 115–124. Springer, 1998.

[29] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The sor-
cerer’s apprentice guide to fault attacks. Proceedings of the IEEE, 94(2):370–
382, 2006.

[30] P. S. L. M. Barreto, P. Longa, M. Naehrig, J. E. Ricardini, and G. Zanon.
Sharper ring-LWE signatures. Cryptology ePrint Archive, Report 2016/1026,
2016.



Bibliography

[31] M. Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. In CRYPTO 2006, volume 4117 of LNCS, pages 602–619. Springer,
Heidelberg, 2006.

[32] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In CRYPTO’96, volume 1109 of LNCS, pages 1–15. Springer,
Heidelberg, 1996.

[33] M. Bellare and A. Lysyanskaya. Symmetric and dual PRFs from standard
assumptions: A generic validation of an HMAC assumption. Cryptology
ePrint Archive, Report 2015/1198, 2015.

[34] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In ACM CCS 93, pages 62–73. ACM Press,
1993.

[35] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In
EUROCRYPT’94, volume 950 of LNCS, pages 92–111. Springer, Heidelberg,
1995.

[36] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and
Weaknesses of Quantum Computing. SIAM Journal on Computing, 26(5),
1997.

[37] D. J. Bernstein. Cache-timing attacks on AES. Technical report, University
of Illinois at Chicago, 2005.

[38] D. J. Bernstein. ChaCha, a variant of Salsa20. In SASC 2008, 2008.

[39] D. J. Bernstein, J. Buchmann, and E. Dahmen, editors. Post-quantum
cryptography. Mathematics and Statistics Springer-11649; ZDB-2-SMA.
Springer, 2009.

[40] D. J. Bernstein, C. Dobraunig, M. Eichlseder, S. Fluhrer, S.-L. Gazdag,
A. Hülsing, P. Kampanakis, S. Kölbl, T. Lange, M. M. Lauridsen, F. Mendel,
R. Niederhagen, C. Rechberger, J. Rijneveld, and P. Schwabe. SPHINCS+.
NIST Post-Quantum Standardization [164], 2017. https://sphincs.org.
Accessed: 2018-07-23.

[41] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-
speed high-security signatures. In CHES 2011, volume 6917 of LNCS, pages
124–142. Springer, Heidelberg, 2011.

https://sphincs.org


Bibliography

[42] J.-F. Biasse and F. Song. Efficient quantum algorithms for computing class
groups and solving the principal ideal problem in arbitrary degree number
fields. In 27th SODA, pages 893–902. ACM-SIAM, 2016.

[43] J. Blömer, R. G. da Silva, P. Günther, J. Krämer, and J. Seifert. A Practical
Second-Order Fault Attack against a Real-World Pairing Implementation.
In FDTC 2014, pages 123–136. IEEE Computer Society, 2014.

[44] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. In 32nd ACM STOC, pages 435–440.
ACM Press, 2000.

[45] D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and
M. Zhandry. Random oracles in a quantum world. In ASIACRYPT 2011,
volume 7073 of LNCS, pages 41–69. Springer, Heidelberg, 2011.

[46] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of checking
cryptographic protocols for faults (extended abstract). In EUROCRYPT’97,
volume 1233 of LNCS, pages 37–51. Springer, Heidelberg, 1997.

[47] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of eliminating
errors in cryptographic computations. Journal of Cryptology, 14(2):101–119,
2001.

[48] D. Boneh and M. Zhandry. Quantum-secure message authentication codes.
In EUROCRYPT 2013, volume 7881 of LNCS, pages 592–608. Springer,
Heidelberg, 2013.

[49] D. Boneh and M. Zhandry. Secure signatures and chosen ciphertext security
in a quantum computing world. In CRYPTO 2013, Part II, volume 8043 of
LNCS, pages 361–379. Springer, Heidelberg, 2013.

[50] J. Bornecrantz, Dolu1990, T. Kao, and T. Verbeure. VexRISCV–A FPGA
friendly 32 bit RISC-V CPU implementation, 2017. GitHub at https:
//github.com/SpinalHDL/VexRiscv, commit-id: 7ab04a1.

[51] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, and D. Stehlé. CRYSTALS–Kyber: a CCA-secure module-lattice-
based KEM. NIST Post-Quantum Standardization [164], 2017. https://pq-
crystals.org/kyber/index.shtml. Accessed: 2018-07-23.

[52] J. W. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko,
A. Raghunathan, and D. Stebila. Frodo: Take off the Ring! Practical,
Quantum-Secure Key Exchange from LWE. In CCS 2016. ACM, 2016.

https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv
https://pq-crystals.org/kyber/index.shtml
https://pq-crystals.org/kyber/index.shtml


Bibliography

[53] X. Boyen and Q. Li. Towards tightly secure lattice short signature and
id-based encryption. In ASIACRYPT 2016, Part II, volume 2501, pages
404–434. Springer, 2016.

[54] M. Boyer, G. Brassard, P. Hoeyer, and A. Tapp. Tight bounds on quantum
searching, 1996. https://arxiv.org/abs/quant-ph/9605034.

[55] J. Buchmann, F. Göpfert, T. Güneysu, T. Oder, and T. Pöppelmann. High-
Performance and Lightweight Lattice-Based Public-Key Encryption. In
IoTPTS@AsiaCCS, pages 2–9. ACM, 2016.

[56] bushing, marcan, and sven. Console hacking 2010 – ps3 epic fail. 27th Chaos
Communication Congress, 2010. https://events.ccc.de/congress/2010/
Fahrplan/events/4087.en.html. Accessed: 2018-07-23.

[57] P. Campbell, M. Groves, and D. Shepherd. SOLILOQUY: A cautionary tale.
In ETSI 2nd Quantum-Safe Crypto Workshop. 2014.

[58] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky. The Con-
vex Geometry of Linear Inverse Problems. Foundations of Computational
Mathematics, 12(6):805–849, 2012.

[59] S. Chatterjee, N. Koblitz, A. Menezes, and P. Sarkar. Another Look at
Tightness II: Practical Issues in Cryptography. In Mycrypt, volume 10311 of
LNCS, pages 21–55. Springer, 2016.

[60] S. Chatterjee, A. Menezes, and P. Sarkar. Another Look at Tightness. In
SAC 2011, volume 7118 of LNCS, pages 293–319. Springer, Heidelberg, 2012.

[61] C. Chen, J. Hoffstein, and W. W. Z. Zhang. pqNTRUSign–A modu-
lar lattice signature scheme. NIST Post-Quantum Standardization [164],
2017. https://www.onboardsecurity.com/nist-post-quantum-crypto-
submission . Accessed: 2018-07-23.

[62] M.-S. Chen, A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe. From 5-
pass MQ-based identification to MQ-based signatures. In ASIACRYPT 2016,
Part II, volume 10032 of LNCS, pages 135–165. Springer, Heidelberg, 2016.

[63] Y. Chen. Réduction de réseau et sécurité concréte du chiffrement
complétement homomorphe. PhD thesis, École normale supérieure, Paris,
2013.

[64] Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In
ASIACRYPT 2011, volume 7073 of LNCS, pages 1–20. Springer, Heidelberg,
2011.

https://arxiv.org/abs/quant-ph/9605034
https://events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
https://events.ccc.de/congress/2010/Fahrplan/events/4087.en.html
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission
https://www.onboardsecurity.com/nist-post-quantum-crypto-submission


Bibliography

[65] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. In-
ternet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile. RFC 5280 (Proposed Standard), 2008.

[66] C. Costello, K. Easterbrook, B. LaMacchia, P. Longa, and M. Naehrig.
Lattice Cryptography Library, 2016. https://www.microsoft.com/en-us/
research/project/lattice-cryptography-library/. Accessed: 2018-07-
23.

[67] R. Cramer, L. Ducas, C. Peikert, and O. Regev. Recovering short generators
of principal ideals in cyclotomic rings. In EUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 559–585. Springer, Heidelberg, 2016.

[68] R. Cramer, L. Ducas, and B. Wesolowski. Short stickelberger class relations
and application to ideal-SVP. In EUROCRYPT 2017, Part I, volume 10210
of LNCS, pages 324–348. Springer, Heidelberg, 2017.

[69] Ö. Dagdelen, R. E. Bansarkhani, F. Göpfert, T. Güneysu, T. Oder, T. Pöp-
pelmann, A. H. Sánchez, and P. Schwabe. High-speed signatures from
standard lattices. In LATINCRYPT 2014, volume 8895 of LNCS, pages
84–103. Springer, 2015.

[70] N. de Beaudrap, R. Cleve, and J. Watrous. Sharp Quantum versus Classical
Query Complexity Separations. Algorithmica, 34(4):449–461, 2002.

[71] A. de Touzalin, C. Marcus, F. Heijman, I. Cirac, R. Murray, and T. Calarco.
Quantum Manifesto–A New Era of Technology. http://qurope.eu/
manifesto, 2016. Accessed: 2018-07-23.

[72] A. W. Dent. A designer’s guide to KEMs. In 9th IMA International
Conference on Cryptography and Coding, volume 2898 of LNCS, pages 133–
151. Springer, Heidelberg, 2003.

[73] Des. Data Encryption Standard. In In FIPS PUB 46-3, Federal Information
Processing Standards Publication, 1977.

[74] F. Dewald, H. Mantel, and A. Weber. AVR processors as a platform for
language-based security. In ESORICS 2017, Part I, volume 10492 of LNCS,
pages 427–445. Springer, Heidelberg, 2017.

[75] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

https://www.microsoft.com/en-us/research/project/lattice-cryptography-library/
https://www.microsoft.com/en-us/research/project/lattice-cryptography-library/
http://qurope.eu/manifesto
http://qurope.eu/manifesto


Bibliography

[76] Y. Dodis and J. Katz. Chosen-ciphertext security of multiple encryption.
In TCC 2005, volume 3378 of LNCS, pages 188–209. Springer, Heidelberg,
2005.

[77] E. Dottax, C. Giraud, M. Rivain, and Y. Sierra. On second-order fault
analysis resistance for CRT-RSA implementations. In WISTP 2009, volume
5746 of LNCS, pages 68–83. Springer, 2009.

[78] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke. CacheAudit: A Tool for
the Static Analysis of Cache Side Channels. ACM TISSEC, 18(1):4:1–4:32,
2015.

[79] A. Duc, F. Tramèr, and S. Vaudenay. Better algorithms for LWE and LWR.
In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, volume 9056 of
LNCS, pages 173–202. Springer, 2015.

[80] L. Ducas. Accelerating bliss: the geometry of ternary polynomials. Cryptology
ePrint Archive, Report 2014/874, 2014.

[81] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice signatures
and bimodal Gaussians. In CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 40–56. Springer, Heidelberg, 2013.

[82] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé.
CRYSTALS – Dilithium: Digital Signatures fromModule Lattices. Cryptology
ePrint Archive, Report 2017/633, 2017.

[83] L. Ducas and D. Micciancio. FHEW–a fully homomorphic encryption li-
brary, May 2017. GitHub at https://github.com/lducas/FHEW, commit-id:
f53cd4b.

[84] L. Ducas and P. Q. Nguyen. Learning a zonotope and more: Cryptanalysis of
NTRUSign countermeasures. In ASIACRYPT 2012, volume 7658 of LNCS,
pages 433–450. Springer, Heidelberg, 2012.

[85] M. Dürmuth. Novel classes of side channels and covert channels. PhD thesis,
Saarland University, 2009.

[86] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman. Analysis of
the HTTPS certificate ecosystem. In Proceedings of the 13th Internet
Measurement Conference, 2013.

[87] M. J. Dworkin. SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions. NIST, 2015.

https://github.com/lducas/FHEW


Bibliography

[88] K. Eisenträger, S. Hallgren, A. Kitaev, and F. Song. A quantum algorithm
for computing the unit group of an arbitrary degree number field. In 46th
ACM STOC, pages 293–302. ACM Press, 2014.

[89] T. ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. In CRYPTO’84, volume 196 of LNCS, pages 10–18.
Springer, Heidelberg, 1984.

[90] Y. Elias, K. E. Lauter, E. Ozman, and K. E. Stange. Provably weak instances
of ring-LWE. In CRYPTO 2015, Part I, volume 9215 of LNCS, pages 63–92.
Springer, Heidelberg, 2015.

[91] T. Espitau, P. Fouque, B. Gérard, and M. Tibouchi. Side-channel attacks on
BLISS lattice-based signatures: Exploiting branch tracing against strongswan
and electromagnetic emanations in microcontrollers. In CCS 2017, pages
1857–1874. ACM, 2017.

[92] T. Espitau, P.-A. Fouque, B. Gérard, and M. Tibouchi. Loop-abort faults
on lattice-based Fiat-Shamir and hash-and-sign signatures. In SAC 2016,
volume 10532 of LNCS, pages 140–158. Springer, Heidelberg, 2016.

[93] L. D. Feo, D. Jao, and J. Plût. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. Journal of Mathematical Cryptology,
8(3):209–247, 2014.

[94] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO’86, volume 263 of LNCS,
pages 186–194. Springer, Heidelberg, 1987.

[95] R. Fischlin and C.-P. Schnorr. Stronger security proofs for RSA and Rabin
bits. Journal of Cryptology, 13(2):221–244, 2000.

[96] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. Falcon: Fast-Fourier Lattice-
Based Compact Signatures over NTRU. NIST Post-Quantum Standardization
[164], 2017. https://falcon-sign.info/. Accessed: 2018-07-23.

[97] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In CRYPTO’99, volume 1666 of LNCS, pages 537–554,
1999.

[98] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. Journal of Cryptology, 26(1):80–101, Jan. 2013.

https://falcon-sign.info/


Bibliography

[99] T. Gagliardoni. Quantum Security of Cryptographic Primitives. PhD thesis,
Technische Universität Darmstadt, 2017.

[100] N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme
pruning. In EUROCRYPT 2010, volume 6110 of LNCS, pages 257–278.
Springer, Heidelberg, 2010.

[101] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete
results. In CHES 2001, volume 2162 of LNCS, pages 251–261. Springer,
Heidelberg, 2001.

[102] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT 2013, volume 7881 of LNCS, pages 1–17. Springer,
Heidelberg, 2013.

[103] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware. Journal of
Cryptographic Engineering, 8(1):1–27, 2018.

[104] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In 40th ACM STOC, pages 197–206.
ACM Press, 2008.

[105] F. Giacon, F. Heuer, and B. Poettering. KEM combiners. In PKC 2018,
Part I, volume 10769 of LNCS, pages 190–218. Springer, Heidelberg, 2018.

[106] C. Giraud and E. W. Knudsen. Fault attacks on signature schemes. In ACISP
04, volume 3108 of LNCS, pages 478–491. Springer, Heidelberg, 2004.

[107] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

[108] F. Göpfert. Securely Instantiating Cryptographic Schemes Based on the
Learning with Errors Assumption. PhD thesis, Technische Universität Darm-
stadt, Germany, 2016.

[109] F. Göpfert, C. van Vredendaal, and T. Wunderer. A hybrid lattice basis
reduction and quantum search attack on LWE. In PQCrypto 2017, volume
10346 of LNCS, pages 184–202. Springer, 2017.

[110] L. Groot Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. Flush, Gauss,
and Reload - A Cache Attack on the BLISS Lattice-Based Signature Scheme.
In CHES 2016, volume 9813 of LNCS, pages 323–345. Springer, Heidelberg,
2016.



Bibliography

[111] L. Groot Bruinderink and P. Pessl. Differential Fault Attacks on Determinis-
tic Lattice Signatures. IACR Transaction on Cryptographic Hardware and
Embedded Systems, 2018(3), 2018.

[112] L. K. Grover. A fast quantum mechanical algorithm for database search. In
28th ACM STOC, pages 212–219. ACM Press, 1996.

[113] S. Gueron and F. Schlieker. Optimized implementation of ring-TESLA.
GitHub at https://github.com/fschlieker/ring-TESLA, commit-id:
b09d812, 2016.

[114] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical lattice-based
cryptography: A signature scheme for embedded systems. In CHES 2012,
volume 7428 of LNCS, pages 530–547. Springer, Heidelberg, 2012.

[115] T. Güneysu, T. Oder, T. Pöppelmann, and P. Schwabe. Software speed
records for lattice-based signatures. In PQCrypto 2013, volume 7932 of
LNCS, pages 67–82. Springer, 2013.

[116] Q. Guo, T. Johansson, and P. Stankovski. Coded-BKW: Solving LWE using
lattice codes. In CRYPTO 2015, Part I, volume 9215 of LNCS, pages 23–42.
Springer, Heidelberg, 2015.

[117] S. Halevi and V. Shoup. Algorithms in HElib. In CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 554–571. Springer, Heidelberg, 2014.

[118] S. Halevi and V. Shoup. HElib, 2014. GitHub at https://github.com/
shaih/HElib, commit-id: f905e95.

[119] D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen. On robust
combiners for oblivious transfer and other primitives. In EUROCRYPT 2005,
volume 3494 of LNCS, pages 96–113. Springer, Heidelberg, 2005.

[120] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining Your
Ps and Qs: Detection of Widespread Weak Keys in Network Devices. In
USENIX Security, pages 205–220. USENIX Association, 2012.

[121] J. Hoffstein, N. Howgrave-Graham, J. Pipher, and W. Whyte. Practical
lattice-based cryptography: NTRUEncrypt and NTRUSign. ISC, pages
349–390. Springer, Heidelberg, 2010.

[122] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and W. Whyte.
Practical signatures from the partial fourier recovery problem. In ACNS 14,
volume 8479 of LNCS, pages 476–493. Springer, Heidelberg, 2014.

https://github.com/fschlieker/ring-TESLA
https://github.com/shaih/HElib
https://github.com/shaih/HElib


Bibliography

[123] D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In TCC 2017, Part I, volume 10677 of LNCS, pages
341–371. Springer, Heidelberg, 2017.

[124] R. Housley. Cryptographic Message Syntax (CMS). RFC 5652 (Internet
standard), 2009.

[125] IBM Press Release. IBM Announces Advances to IBM Quantum Systems
& Ecosystem. https://www-03.ibm.com/press/us/en/pressrelease/
53374.wss, 2017. Accessed: 2018-05-21.

[126] Intel Corporation. Intel R© 64 and IA-32 Architectures Optimization Reference
Manual. Order Number: 248966-032, 2016.

[127] Internet Security Research Group. Let’s encrypt stats. https://
letsencrypt.org/stats/, 2018. Accessed: 2018-06-06.

[128] M. Jackson. 6 Things Quantum Computers Will Be Incredibly Use-
ful For. https://singularityhub.com/2017/06/25/6-things-quantum-
computers-will-be-incredibly-useful-for/, 2017. Accessed: 2018-07-
23.

[129] S. Jana and V. Shmatikov. Memento: Learning secrets from process footprints.
In 2012 IEEE Symposium on Security and Privacy, pages 143–157. IEEE
Computer Society Press, 2012.

[130] A. A. Kamal and A. Youssef. Fault Analysis of the NTRUEncrypt Cryp-
tosystem. IEICE Transactions, E94.A(4):1156–1158, 2011.

[131] P. Kampanakis, P. Panburana, E. Daw, and D. V. Geest. The Viability
of Post-quantum X.509 Certificates. Cryptology ePrint Archive, Report
2018/063, 2018.

[132] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen. pqm4–
Post-quantum crypto library for the ARM Cortex-M4, 2018. GitHub at
https://github.com/mupq/pqm4, commit-id: 133c0e8.

[133] A. Karmakar, S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede.
Constant-time Discrete Gaussian Sampling. IEEE Trans. Computers, 2018.
To be published.

[134] J. Katz and Y. Lindell. Introduction to Modern Cryptography (Chapman
& Hall/Crc Cryptography and Network Security Series). Chapman & Hal-
l/CRC, 2007.

https://www-03.ibm.com/press/us/en/pressrelease/53374.wss
https://www-03.ibm.com/press/us/en/pressrelease/53374.wss
https://letsencrypt.org/stats/
https://letsencrypt.org/stats/
https://singularityhub.com/2017/06/25/6-things-quantum-computers-will-be-incredibly-useful-for/
https://singularityhub.com/2017/06/25/6-things-quantum-computers-will-be-incredibly-useful-for/
https://github.com/mupq/pqm4


Bibliography

[135] J. Katz and N. Wang. Efficiency improvements for signature schemes with
tight security reductions. In ACM CCS 03, pages 155–164. ACM Press, 2003.

[136] J. Kelly. A Preview of Bristlecone, Google’s New Quantum Proces-
sor. https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-
googles-new.html, 2018. Accessed: 2018-07-23.

[137] J. Kelsey. SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and
ParallelHash. NIST Special Publication, 800:185, 2016.

[138] J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel cryptanalysis
of product ciphers. In ESORICS’98, volume 1485 of LNCS, pages 97–110.
Springer, Heidelberg, 1998.

[139] E. Kiltz, V. Lyubashevsky, and C. Schaffner. A Concrete Treatment of Fiat-
Shamir Signatures in the Quantum Random-Oracle Model. In EUROCRYPT
2018, Part III, volume 10822 of LNCS, pages 552–586. Springer, 2018.

[140] P. Kirchner and P.-A. Fouque. An improved BKW algorithm for LWE with
applications to cryptography and lattices. In CRYPTO 2015, Part I, volume
9215 of LNCS, pages 43–62. Springer, Heidelberg, 2015.

[141] N. Koblitz and A. Menezes. Another Look at “Provable Security” II. In
INDOCRYPT 2006, volume 4329 of LNCS. Springer, 2006.

[142] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In CRYPTO’96, volume 1109 of LNCS, pages
104–113. Springer, Heidelberg, 1996.

[143] P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In CRYPTO’99,
volume 1666 of LNCS, pages 388–397. Springer, Heidelberg, 1999.

[144] J. Krämer. Why cryptography should not rely on physical attack complexity.
PhD thesis, Berlin Institute of Technology, 2015.

[145] H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated
Diffie-Hellman and its use in the IKE protocols. In CRYPTO 2003, volume
2729 of LNCS, pages 400–425. Springer, Heidelberg, 2003.

[146] H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand Key Deriva-
tion Function (HKDF). RFC 5869 (Informational), 2010.

[147] T. Laarhoven. Search problems in cryptography. PhD thesis, Eindhoven
University of Technology, 2016.

https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html


Bibliography

[148] T. Laarhoven, M. Mosca, and J. Pol. Solving the Shortest Vector Problem in
Lattices Faster Using Quantum Search. In PQCrypto 2013, volume 7932 of
LNCS, pages 83–101. Springer, 2013.

[149] L. Lamport. Constructing digital signatures from a one-way function. Tech-
nical Report SRI-CSL-98, SRI International Computer Science Laboratory,
1979.

[150] M. Lee, J. E. Song, D. Choi, and D. Han. Countermeasures against power
analysis attacks for the NTRU public key cryptosystem. IEICE Transactions,
93-A(1):153–163, 2010.

[151] R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based
encryption. In CT-RSA 2011, volume 6558 of LNCS, pages 319–339. Springer,
Heidelberg, 2011.

[152] M. Liu and P. Q. Nguyen. Solving BDD by enumeration: An update. In
CT-RSA 2013, volume 7779 of LNCS, pages 293–309. Springer, Heidelberg,
2013.

[153] V. Lomné, E. Prouff, M. Rivain, T. Roche, and A. Thillard. How to estimate
the success rate of higher-order side-channel attacks. In CHES 2014, volume
8731 of LNCS, pages 35–54. Springer, 2014.

[154] V. Lyubashevsky. Lattice signatures without trapdoors. In
EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer, Heidel-
berg, 2012.

[155] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT 2010, volume 6110 of LNCS, pages
1–23. Springer, Heidelberg, 2010.

[156] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing
the Secrets of Smart Cards (Advances in Information Security). Springer,
2007.

[157] T. C. May and M. H. Woods. A new physical mechanism for soft errors
in dynamic memories. In 16th International Reliability Physics Symposium,
pages 33–40, 1978.

[158] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

[159] R. C. Merkle. A certified digital signature. In CRYPTO’89, volume 435 of
LNCS, pages 218–238. Springer, Heidelberg, 1990.



Bibliography

[160] M. Mosca. Cybersecurity in an era with quantum computers: Will we be
ready? Cryptology ePrint Archive, Report 2015/1075, 2015.

[161] M. Mosca and D. Stebila. Open quantum safe – software for prototyping
quantum-resistant cryptography, 2018. https://openquantumsafe.org/.
Accessed: 2018-07-26.

[162] D. M’Raïhi, D. Naccache, D. Pointcheval, and S. Vaudenay. Computational
alternatives to random number generators. In SAC 1998, volume 1556 of
LNCS, pages 72–80. Springer, Heidelberg, 1999.

[163] D. Naccache, P. Q. Nguyen, M. Tunstall, and C. Whelan. Experimenting
with faults, lattices and the DSA. In PKC 2005, volume 3386 of LNCS, pages
16–28. Springer, Heidelberg, 2005.

[164] National Institute of Standards and Technology (NIST). Post-Quantum
Cryptography Standardization. https://csrc.nist.gov/projects/post-
quantum-cryptography, 2017. Accessed: 2018-07-23.

[165] National Institute of Standards and Technology (NIST). Post-
Quantum Cryptography: Submission Requirements and Evaluation
Criteria for the Post-Quantum Cryptography Standardization Pro-
cess. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/call-for-proposals-final-dec-2016.pdf,
2017. Accessed: 2018-07-23.

[166] P. Q. Nguyen and O. Regev. Learning a parallelepiped: Cryptanalysis of
GGH and NTRU signatures. In EUROCRYPT 2006, volume 4004 of LNCS,
pages 271–288. Springer, Heidelberg, 2006.

[167] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[168] T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu. Practical CCA2-
secure and masked ring-LWE implementation. Cryptology ePrint Archive,
Report 2016/1109, 2016.

[169] D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Countermeasures:
The Case of AES. In CT-RSA, pages 1–20, 2006.

[170] D. Page. Theoretical use of cache memory as a cryptanalytic side-channel.
Cryptology ePrint Archive, Report 2002/169, 2002.

https://openquantumsafe.org/
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf


Bibliography

[171] A. Park and D. Han. Chosen ciphertext Simple Power Analysis on software
8-bit implementation of ring-LWE encryption. In AsianHOST 2016, pages
1–6. IEEE Computer Society, 2016.

[172] E. Peeters. Side-channel cryptanalysis: A brief survey. In Advanced DPA
Theory and Practice: Towards the Security Limits of Secure Embedded
Circuits, chapter 2, pages 11–19. Springer Science+Business Media, 2013.

[173] C. Peikert. A decade of lattice cryptography. Foundations and Trends in
Theoretical Computer Science, 10(4):283–424, 2016.

[174] C. Peikert and B. Waters. Lossy trapdoor functions and their applications.
In 40th ACM STOC, pages 187–196. ACM Press, 2008.

[175] S. Perez. Amazon shipped over 5 billion items with prime in
2017. https://techcrunch.com/2018/01/02/amazon-shipped-over-5-
billion-items-with-prime-in-2017/, 2018. Accessed: 2018-06-05.

[176] P. Pessl. Analyzing the shuffling side-channel countermeasure for lattice-based
signatures. In INDOCRYPT 2016, pages 153–170. Springer, 2016.

[177] P. Pessl, L. G. Bruinderink, and Y. Yarom. To BLISS-B or not to be –
Attacking strongSwan’s Implementation of Post-Quantum Signatures. In
CCS 2017, pages 1843–1855. ACM, 2017.

[178] T. Plantard, A. Sipasseuth, C. Dumondelle, and W. Susilo. DRS: Diagonal
dominant Reduction for lattice-based Signature. NIST Post-Quantum Stan-
dardization [164], 2017. https://csrc.nist.gov/Projects/Post-Quantum-
Cryptography/Round-1-Submissions . Accessed: 2018-07-23.

[179] D. Poddebniak, J. Somorovsky, S. Schinzel, M. Lochter, and P. Rösler.
Attacking Deterministic Signature Schemes Using Fault Attacks. In EuroS&P
2018, pages 338–352, 2018.

[180] D. Pointcheval and J. Stern. Security proofs for signature schemes. In
EUROCRYPT’96, volume 1070 of LNCS, pages 387–398. Springer, Heidel-
berg, 1996.

[181] T. Pöppelmann and T. Güneysu. Towards practical lattice-based public-key
encryption on reconfigurable hardware. In SAC 2013, volume 8282 of LNCS,
pages 68–85. Springer, Heidelberg, 2014.

[182] T. Pöppelmann, T. Oder, and T. Güneysu. High-performance ideal
lattice-based cryptography on 8-bit ATxmega microcontrollers. In

https://techcrunch.com/2018/01/02/amazon-shipped-over-5-billion-items-with-prime-in-2017/
https://techcrunch.com/2018/01/02/amazon-shipped-over-5-billion-items-with-prime-in-2017/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions


Bibliography

LATINCRYPT 2015, volume 9230 of LNCS, pages 346–365. Springer, Hei-
delberg, 2015.

[183] T. Pornin. Deterministic Usage of the Digital Signature Algorithm (DSA)
and Elliptic Curve Digital Signature Algorithm (ECDSA). RFC 6979 (Infor-
mational), 2013.

[184] R. Primas, P. Pessl, and S. Mangard. Single-trace side-channel attacks on
masked lattice-based encryption. In CHES 2017, volume 10529 of LNCS,
pages 513–533. Springer, 2017.

[185] J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm for
elliptic curves. Quantum Information & Computation, 3(4):317–344, 2003.

[186] J.-J. Quisquater. A new tool for non-intrusive analysis of smart cards based
on electro-magnetic emissions: the SEMA and DEMA methods. Rump session
EUROCRYPT 2000, 2000.

[187] J.-J. Quisquater and D. Samyde. ElectroMagnetic Analysis (EMA): Measures
and Counter-measures for Smart Cards. In Smart Card Programming and
Security, pages 200–210. Springer, 2001.

[188] M. O. Rabin. Digital signatures and public key functions as intractable as
factorization. Technical Report MIT/LCS/TR-212, Massachusetts Institute
of Technology, 1979.

[189] B. Ramsdell and S. Turner. Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.2 Message Specification. RFC 5751 (Proposed Standard),
2010.

[190] P. Rauzy and S. Guilley. Countermeasures against High-Order Fault-Injection
Attacks on CRT-RSA. In FDTC 2014, pages 68–82. IEEE Computer Society,
2014.

[191] O. Regev. On lattices, learning with errors, random linear codes, and
cryptography. In 37th ACM STOC, pages 84–93. ACM Press, 2005.

[192] O. Reparaz, R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede.
Additively Homomorphic Ring-LWE Masking. In PQCrypto 2016, volume
9606 of LNCS, pages 233–244. Springer, 2016.

[193] O. Reparaz, S. S. Roy, F. Vercauteren, and I. Verbauwhede. A masked
ring-LWE implementation. In CHES 2015, volume 9293 of LNCS, pages
683–702. Springer, Heidelberg, 2015.



Bibliography

[194] E. Rescorla. The Transport Layer Security (TLS) protocol version 1.3, draft
19, 2017. https://tools.ietf.org/html/draft-ietf-tls-tls13-19.

[195] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-
ietf-tls-tls13-23. https://tools.ietf.org/html/draft-ietf-tls-tls13-
23, 2018.

[196] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signature and public-key cryptosystems. Communications of the Association
for Computing Machinery, 21(2):120–126, 1978.

[197] P. Rohatgi. Electromagnetic attacks and countermeasures. In Cryptographic
Engineering, pages 407–430. Springer, 2009.

[198] S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede. Compact and
side channel secure discrete Gaussian sampling. Cryptology ePrint Archive,
Report 2014/591, 2014.

[199] M.-J. O. Saarinen. Arithmetic coding and blinding countermeasures for
lattice signatures. Journal of Cryptographic Engineering, 2017.

[200] SafeCrypto. NIST Software Analysis–Signatures. https://www.safecrypto.
eu/pqclounge/software-analysis-signatures/. Accessed: 2018-07-05.

[201] J. Schank and D. Stebila. A Transport Layer Security (TLS) Ex-
tension For Establishing An Additional Shared Secret draft-schanck-tls-
additional-keyshare-00. https://tools.ietf.org/html/draft-schanck-
tls-additional-keyshare-00, 2017.

[202] C. Schnorr. Lattice reduction by random sampling and birthday methods.
In STACS 2003, volume 2607 of LNCS, pages 145–156. Springer, 2003.

[203] C.-P. Schnorr. Efficient identification and signatures for smart cards. In
CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg,
1990.

[204] J.-P. Seifert. On authenticated computing and RSA-based authentication. In
ACM CCS 05, pages 122–127. ACM Press, 2005.

[205] H. Seo, Z. Liu, T. Park, H. Kwon, S. Lee, and H. Kim. Secure Number Theo-
retic Transform and Speed Record for Ring-LWE Encryption on Embedded
Processors. In ICISC 2017–Revised Selected Papers, volume 10779 of LNCS,
pages 175–188. Springer, 2017.

https://tools.ietf.org/html/draft-ietf-tls-tls13-19
https://tools.ietf.org/html/draft-ietf-tls-tls13-23
https://tools.ietf.org/html/draft-ietf-tls-tls13-23
https://www.safecrypto.eu/pqclounge/software-analysis-signatures/
https://www.safecrypto.eu/pqclounge/software-analysis-signatures/
https://tools.ietf.org/html/draft-schanck-tls-additional-keyshare-00
https://tools.ietf.org/html/draft-schanck-tls-additional-keyshare-00


Bibliography

[206] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26:1484–
1509, 1997.

[207] J. H. Silverman and W. Whyte. Timing attacks on NTRUEncrypt via
variation in the number of hash calls. In CT-RSA 2007, volume 4377 of
LNCS, pages 208–224. Springer, Heidelberg, 2007.

[208] F. Song. A Note on Quantum Security for Post-Quantum Cryptography,
volume 8772 of LNCS, pages 246–265. Springer, 2014.

[209] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard. Sok: Systematic clas-
sification of side-channel attacks on mobile devices. CoRR, abs/1611.03748,
2016.

[210] E. E. Targhi and D. Unruh. Post-quantum security of the Fujisaki-Okamoto
and OAEP transforms. In TCC 2016-B, Part II, volume 9986 of LNCS, pages
192–216. Springer, Heidelberg, 2016.

[211] W. van Eck. Electromagnetic radiation from video display units: An eaves-
dropping risk? Comput. Secur., 4(4):269–286, 1985.

[212] I. Verbauwhede, D. Karaklajic, and J. Schmidt. The Fault Attack Jungle - A
Classification Model to Guide You. In FDTC 2011, pages 3–8, 2011.

[213] N. V. Vizev. Side Channel Attacks on NTRUEncrypt. Bachelor thesis,
Technische Universität Darmstadt, 2007.

[214] J. von Neumann. Various techniques used in connection with random digits.
In Monte Carlo Method, volume 12 of National Bureau of Standards Applied
Mathematics Series, pages 36–38. 1951.

[215] A. Wang, X. Zheng, and Z. Wang. Power Analysis Attacks
and Countermeasures on NTRU-Based Wireless Body Area Networks.
Transactions on Internet and Information Systems, 7(5):1094–1107, 2013.

[216] W. Whyte, S. Fluhrer, Z. Zhang, and O. Garcia-Morchon. Quantum-
Safe Hybrid (QSH) Key Exchange for Transport Layer Security (TLS) ver-
sion 1.3 draft-whyte-qsh-tls13-06. https://tools.ietf.org/html/draft-
whyte-qsh-tls13-06, 2017.

[217] T. Wunderer. Revisiting the hybrid attack: Improved analysis and refined
security estimates. Cryptology ePrint Archive, Report 2016/733, 2016.

https://tools.ietf.org/html/draft-whyte-qsh-tls13-06
https://tools.ietf.org/html/draft-whyte-qsh-tls13-06


Bibliography

[218] Y. Yarom and K. Falkner. FLUSH+RELOAD: A High Resolution, Low
Noise, L3 Cache Side-Channel Attack. In USENIX Security, pages 719–732,
2014.

[219] Y. Yu and L. Ducas. Learning strikes again: the case of the DRS signature
scheme. Cryptology ePrint Archive, Report 2018/294, 2018.

[220] M. Zhandry. How to construct quantum random functions. In 53rd FOCS,
pages 679–687. IEEE Computer Society Press, 2012.

[221] M. Zhandry. Secure identity-based encryption in the quantum random oracle
model. In CRYPTO 2012, volume 7417 of LNCS, pages 758–775. Springer,
Heidelberg, 2012.

[222] J. Zhang, Z. Zhang, J. Ding, M. Snook, and Ö. Dagdelen. Authenticated key
exchange from ideal lattices. In EUROCRYPT 2015, Part II, volume 9057
of LNCS, pages 719–751. Springer, Heidelberg, 2015.

[223] R. Zhang, G. Hanaoka, J. Shikata, and H. Imai. On the security of multiple
encryption or CCA-security+CCA-security=CCA-security? In PKC 2004,
volume 2947 of LNCS, pages 360–374. Springer, Heidelberg, 2004.

[224] X. Zheng, A. Wang, and W. Wei. First-order collision attack on pro-
tected NTRU cryptosystem. Microprocessors and Microsystems - Embedded
Hardware Design, 37(6-7):601–609, 2013.



Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit – abgesehen von den in ihr
ausdrücklich genannten Hilfen – selbständig verfasst habe.

Darmstadt, August 2018

Wissenschaftlicher Werdegang

Juni 2014 - heute
Wissenschaftliche Mitarbeiterin in der Arbeitsgruppe von Prof. Dr. Johannes
Buchmann, Fachbereich Informatik, Fachgebiet Theoretische Informatik – Kryp-
tographie und Computeralgebra an der Technischen Universität Darmstadt

Oktober 2011 - April 2014
Studium im Studiengang „Mathematics International“(Master of Science) an der
Technischen Universität Kaiserslautern

Oktober 2008 - September 2011
Studium im Studiengang „Mathematik mit Nebenfach Informatik“(Bachelor of
Science) an der Technischen Universität Kaiserslautern




	List of Publications
	Abstract
	Contents
	Introduction
	Background
	Lattices
	Lattice-Based Security Assumptions
	The Shortest and Closest Vector Problem
	The Learning with Errors Problem
	The Short Integer Solution Problem

	Quantum Computation and Scenarios
	Cryptographic Primitives and Their Security Definitions
	Digital Signature Schemes
	Key Encapsulation Mechanisms

	Implementation Attacks
	Side-Channel Attacks
	Fault Attacks


	The Signature Schemes TESLA and qTESLA
	Description of the Signature Schemes
	The Signature Scheme TESLA
	The Signature Scheme qTESLA
	System Parameters

	Security Reductions
	Overview of the Security Reduction for TESLA
	Yes-Instances of M-LWE
	No-Instances of M-LWE
	Conclusion of the Security Reduction
	Security Reduction for qTESLA

	Bit Security and Parameter Selection
	Hardness Estimation of LWE
	Correspondence Between Security and Hardness
	Instantiations of TESLA and qTESLA

	Implementation and Performance
	Implementation Security
	Experimental Results

	Comparison with Other Signature Schemes

	Implementation Security of Lattice-Based Signature Schemes
	Vulnerability Against Cache-Side-Channel Attacks
	Attacker Models
	Manual Analysis of the Implementation
	Mitigation of the Vulnerabilities

	Susceptibility to Fault Attacks
	Description of the Analyzed Signature Schemes
	Reducing the Number of Necessary Faults
	Zeroing Faults
	Randomizing Faults
	Skipping Faults
	Countermeasures

	Vulnerability Against Other Implementation Attacks
	Timing Attacks
	Power and Electromagnetic Attacks


	Hybrid Signatures and KEMs
	The Two-Stage Adversary Model
	Security Definitions in the Two-Stage Model
	Separations and Implications

	Hybrid Signature Schemes
	Con: Concatenation Combiner
	sNest: Strong Nesting Combiner
	dNest: Dual Message Combiner Using Nesting

	Hybrid KEMs
	XtM: XOR-then-MAC Combiner
	dPRF: Dual-PRF Combiner
	nPRF: Nested Dual-PRF Combiner


	Conclusion
	Bibliography

