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Abstract
The neural network in the brain is not hard-wired. Even in the mature brain, new connections
between neurons are formed and existing ones are deleted, which is called structural plasticity.
The dynamics of the connectome is key to understanding how learning, memory, and healing after
lesions such as stroke work. However, with current experimental techniques even the creation of
an exact static connectivity map, which is required for various brain simulations, is very difficult.

One alternative is to use simulation based on network models to predict the evolution of synapses
between neurons based on their specified activity targets. This is particularly useful as experimen-
tal measurements of the spiking frequency of neurons are more easily accessible and reliable than
biological connectivity data. The Model of Structural Plasticity (MSP) by Butz and van Ooyen is an
example of this approach. In traditional models, connectivity between neurons is fixed while plas-
ticity merely arises from changes in the strength of existing synapses, typically modeled as weight
factors. MSP, in contrast, models a synapse as a connection between an “axonal” plug and a “den-
dritic” socket. These synaptic elements grow and shrink independently on each neuron. When an
axonal element of one neuron connects to the dendritic element of another neuron, a new synapse
is formed. Conversely, when a synaptic element bound in a synapse retracts, the corresponding
synapse is removed. The governing idea of the model is that plasticity in cortical networks is driven
by the need of individual neurons to homeostatically maintain their average electrical activity.

However, to predict which neurons connect to each other, the current MSP model computes prob-
abilities for all pairs of neurons, resulting in a complexity O(n2). To enable large-scale simulations
with millions of neurons and beyond, this quadratic term is prohibitive. Inspired by hierarchi-
cal methods for solving n-body problems in particle physics, this dissertation presents a scalable
approximation algorithm for simulating structural plasticity based on MSP.

To scale MSP to millions of neurons, we adapt the Barnes-Hut algorithm as used in gravitational
particle simulations to a scalable solution for the simulation of structural plasticity in the brain
with a time complexity of O(n log2 n) instead of O(n2). Then, we show through experimental
validation that the approximation underlying the algorithm does not adversely affect the quality of
the results. For this purpose, we compare neural networks created by the original MSP with those
created by our approximation of it using graph metrics.

Finally, we prove that our scalable approximation algorithm can simulate the dynamics of the
connectome with 109 neurons—four orders of magnitude more than the naïve O(n2) version, and
two orders less than the human brain. We present an MPI-based scalable implementation of the
scalable algorithm and our performance extrapolations predict that, given sufficient compute re-
sources, even with today’s technology a full-scale simulation of the human brain with 1011 neurons
is possible in principle.

Until now, the scale of the largest structural plasticity simulations of MSP in terms of the number
of neurons corresponded to that of a fruit fly. Our approximation algorithm goes a significant
step further, reaching a scale similar to that of a galago primate. Additionally, large-scale brain
connectivity maps can now be grown from scratch and their evolution after destructive events
such as stroke can be simulated.
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Zusammenfassung
Das neuronale Netzwerk im Gehirn ist nicht statisch. Selbst im Gehirn eines Erwachsenen wer-
den neue Verbindungen zwischen Neuronen gebildet, und bereits existierende Verbindungen ster-
ben ab. Dieser Prozess wird strukturelle Plastizität genannt. Die Dynamik des Konnektoms, wie
die Verbindung der Neuronen untereinander genannt wird, ist von essenzieller Bedeutung, um
Mechanismen wie Lernen, Erinnerung und die Restrukturierung nach Läsionen, wie zum Beispiel
Schlaganfall, zu verstehen. Leider ist mit aktuellen experimentellen Techniken die exakte Erfassung
neuronaler Verbindungen für die Erstellung von Konnektivitätsatlanten, wie sie für unterschiedli-
che Gehirnsimulationen benötigt werden, sehr schwierig.

Alternativ kann die Entwicklung von Synapsen zwischen Neuronen basierend auf Modellen des
neuronalen Netzwerks und unter Berücksichtigung neuronaler Aktivität simuliert werden. Dies ist
besonders praktisch, da experimentelle Messungen elektrischer Aktivität von Neuronen zuverlässi-
ger und leichter verfügbar sind als biologische Konnektivitätsdaten. Das Model of Structural Plastici-
ty (MSP) von Butz und van Ooyen ist ein Beispiel für diesen Ansatz. In herkömmlichen Netzwerk-
modellen sind die Verbindungen zwischen Neuronen fixiert, während Plastizität lediglich durch
Veränderungen der Stärke existierender Synapsen—meist in Form von Gewichtungsfaktoren—
erzielt wird. Im Gegensatz dazu modelliert MSP eine Synapse als Verbindung zwischen einem
„axonalen“ Stecker und einer „dendritischen“ Buchse. Die Anzahl synaptischer Elemente wächst
und schrumpft unabhängig voneinander auf jedem Neuron. Wenn sich ein axonales Element von
einem Neuron mit einem dendritischen Element auf einem anderen Neuron verbindet, entsteht
eine neue Synapse. Umgekehrt geht eine Synapse verloren, wenn sich eines der zwei synaptischen
Elemente zurückzieht. Das Modell beruht darauf, dass Neuronen in kortikalen Netzwerken stets
bestrebt sind, ihr individuelles Niveau elektrischer Aktivität homöostatisch zu erhalten.

Um jedoch zu bestimmen, welche Neuronen sich miteinander verbinden, berechnet MSP Wahr-
scheinlichkeiten zwischen allen Neuronenpaaren. Dies führt zu quadratischer Komplexität O(n2)
und verhindert zugleich hochskalierende Simulationen mit Millionen und mehr Neuronen. Inspi-
riert von hierarchischen Verfahren zum Lösen von Vielteilchen-Problemen in der Physik, präsen-
tiert diese Dissertation einen skalierbaren Approximationsalgorithmus zur Simulation struktureller
Plastizität gemäß MSP. Speziell wird eine vom Barnes-Hut Algorithmus abgeleitete Lösung für die
Simulation struktureller Plastizität im Gehirn mit vielen Millionen von Neuronen entwickelt. Die
Zeitkomplexität von MSP sinkt damit von O(n2) auf O(n log2 n). Der Vergleich der vom ursprüng-
lichen MSP erzeugten Netzwerke mit deren Approximationen anhand von Graphmetriken zeigt,
dass die Approximation die Qualität der Ergebnisse nicht negativ beeinflusst.

Ferner wird demonstriert, dass der skalierbare Approximationsalgorithmus die Dynamik des
Konnektoms mit 109 Neuronen simulieren kann—vier Größenordnungen mehr als die naive
O(n2) Version und zwei Ordnungen weniger als Neuronen im menschlichen Gehirn vorhanden
sind. Die Dissertation legt eine MPI-basierte skalierbare Implementierung des skalierbaren Algo-
rithmus vor und zeigt anhand von Performance-Extrapolationen, dass selbst mit heutiger Technolo-
gie, genügend Rechenressourcen vorausgesetzt, Simulationen in der Größenordnung des gesamten
menschlichen Gehirns mit 1011 Neuronen möglich sind.

Bisher entsprachen die Neuronenzahlen der größten Simulationen struktureller Plastizität mit
MSP denjenigen einer Fruchtfliege. Unser Approximationsalgorithmus ermöglicht nun Neuronen-
zahlen vergleichbar mit denen eines Galago-Primaten. Darüber hinaus können jetzt auch hochauf-
lösende Konnektivitätsatlanten entsprechender Größe von Grund auf erstellt und ihre Entwicklung
nach Läsionen wie zum Beispiel Schlaganfall simuliert werden.
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1 Introduction
The brain is one of the most fascinating organs. It simultaneously receives and processes a contin-

ues stream of information on a millisecond timescale, encodes memories, and learns by adapting

itself based on experience. Particularly the human brain has abilities which are unmatched by

any other species. Its functions range from basic control mechanisms, such as the heart rate, over

maintaining balance and coordination of muscle movements, up to high-level tasks such as vision,

language, reasoning and many more. Although the average adult brain represents only about 2%

of the body weight, it consumes 20% of the human body’s energy [1]. Assuming a 2, 400 kcal

per day diet, this amounts to approximately 25 W. However, in comparison to the 100 W power

envelope of a typical general purpose CPU [2], the brain consumes only one fourth of the energy.

Figure 1.1 illustrates the human brain consisting of (i) brain stem, (ii) cerebellum, and (iii) cere-

brum with its prominently convoluted surface. The outer layer of the cerebrum is the cerebral

cortex, which is divided across its surface into different areas responsible for functions such as

voluntary movements (motor cortex), processing of auditory information (auditory cortex), and

vision (visual cortex). In humans and all other mammalian brains, the cerebral cortex forms up to

six horizontal layers [3].

Despite its complex and versatile functionality, the basic architecture of the brain is rather simple.

The primary components are nerve cells (neurons) which connect to other nerve cells through

synapses. Every neuron receives, processes, and transmits information through electrical signals

to its directly connected neighbors. One can distinguish between excitatory and inhibitory neuron

populations. While signals from excitatory neurons increase the electrical activity of their receivers,

electrical impulses from inhibitory neurons reduce the activity of the target neurons. The ensemble

of neurons with their synaptic connections is called neural network, or connectome. However,

the brain is not as hard-wired as traditionally thought. Even in the mature brain, new synapses

between neurons are continuously created and existing ones are deleted, which can be described as

structural plasticity. Different estimations of the number of neurons in the adult human brain exist.

In the literature, the number of 100 billion (1011) is often quoted, however, latest approximations

amount to about 86 billion neurons [4]. In this dissertation, we use 1011 as upper bound for the

number of neurons.

In addition to its functions, the brain also employs mechanisms to recover from damages. For

example, neurons die after a few minutes when the blood flow is blocked and they do not receive

enough oxygen anymore, which is called stroke. When a neuron dies, the synapses to its neigh-

bors are removed as well. In response, the neural network rewires to account for the loss [5].

Unfortunately, oftentimes the brain is not able to recover from severe damages completely and an

impairment of the functionality can persist. Another cause of brain damage are diseases. For exam-

ple, Alzheimer’s disease is the most common form of dementia and may account for up to 60 - 70%

of the cases [6]. Dementia causes difficulties in memory, deteriorates thinking, and impairs every-
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Figure 1.1: The human brain.

day activities [7]. In 2015, the annual global cost including medical cost, social care, and informal

care (unpaid care provided by family, friends, and others) was estimated to be US$ 818 billion [6].

Understanding the underlying mechanisms in the brain would provide a rich set of opportu-

nities for the whole society. For example, deciphering how healing works could help to develop

new or improve therapies for treatment. Moreover, inspired by the information processing capa-

bilities of the brain, it might be possible to develop more energy-efficient computer hardware and

sophisticated algorithms to implement “brain functionality” on demand.

In addition to theory and experiment, computer simulation is a promising tool in brain research

to contribute to those goals. The Model of Structural Plasticity (MSP) by Butz and van Ooyen [8]

is a network model which strives to address challenges in brain simulation and to provide more

insight into the functioning of the brain by predicting its structural dynamics. Unfortunately, MSP

has scalability limitations which prevent it from simulating more than 105 neurons. Similar scala-

bility issues arise in n-body problems from particle physics. To overcome the scalability bottleneck,

advanced particle methods have been developed. Based on the underlying idea of those methods,

this thesis presents a scalable algorithm for MSP.

This chapter is organized as follows. In the next section, we introduce the term simulation and

relate it to the traditional research tools theory and experiment. Additionally, we motivate the use

and identify challenges of computer simulation in brain research. After that, Section 1.2 outlines

the MSP network model. In Section 1.3, we discuss the n-body problem and selected methods for

solving it efficiently. Then, we motivate the use of supercomputers for brain research in general

and simulating structural plasticity with our algorithm in particular in Section 1.4. Finally, the

contributions of this dissertation are presented in Section 1.5, followed by the structure of the

thesis in Section 1.6.

2 1 Introduction



1.1 Brain Simulation

To obtain more insight into the functioning of the brain, neuroscientists use three complementary

approaches: (i) theory, (ii) experiment, and (iii) simulation. These three tools are common in

many natural sciences as well as in engineering. While theory and experiment are well-established

conventional methods, computer simulation is a relatively young area which receives growing

attention. Let us first discuss the three research approaches before we focus on the simulation of

the brain.

Theory. A hypothesis is often the starting point for research. Before a hypothesis is phrased in a

theory, it is in many cases supported with repeated testing. Experimentation and simulation can

provide evidence and thus support or refute a hypothesis. In brain research, for example, a theory

may describe the driving forces behind synapse creation.

Experiment. Experiments are vital in hypothesis testing and may confirm, refute, or require

refinement of a theory. On the other hand, some experiments are conducted without theoretical

guidance and the discovered phenomena are subsequently framed in theories [9]. However, there

are cases when performing a certain experiment might even be impossible. For example, in climate

research, increasing the temperature of the earth’s atmosphere to investigate the rise of the sea

level depending on temperature is not practical.

Simulation. According to the Stanford Encyclopedia of Philosophy [10], the origins of computer

simulation as a scientific tool can be found in meteorology and nuclear physics during the time

directly after World War II. A computer simulation is a computer program which approximates

the behavior of a system using a mathematical model. The model can describe a real-world or

hypothetical system. Simulation is used when the corresponding experiment would be too costly,

too dangerous, or simply impossible. For example, in vivo experiments on the living human brain

which jeopardize the subject’s health would raise severe ethical issues. Instead, computer simu-

lations in in-silico studies do not require a living organism. However, the prerequisite for every

computer simulation is an appropriate model of the system under consideration. A simulation

has usually either the purpose to make predictions or to understand the reasons for the behavior

of a system. Examples for predictions are weather forecast or the spread of epidemics. Factors

which make it difficult to investigate a system’s behavior experimentally are for example the high

speed of a phenomenon or the complex interaction of several mechanisms. A simulation allows to

“slow down” the behavior and to decouple mechanisms from each other by considering them in

isolation through adjustments to the underlying model. Simulating only selected aspects and elim-

inating other presumably unnecessary details may help to identify the main mechanisms which are

responsible for the behavior of a system as observed in experiments.

Studying the dynamics of connectivity in the brain is fundamental to understanding how learn-

ing, memory, and healing after lesions in the brain such as stroke work. Unfortunately, accurately

observing the connectome and its evolution empirically is very hard. Limiting factors are, for ex-

ample, the resolution of sensors and restricted access to the brain areas of interest [11]. Thus,
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even creating an exact connectivity map of a small region of the brain is extremely challenging.

However, it is exactly such a connectivity map that is needed as the basis of state-of-the-art brain

simulations [12, 13].

An alternative to acquiring biological connectivity data is to determine the connections between

neurons using a network model. For example, when the spiking frequency of a neuron is too low, it

starts to form more synapses, with the aim of increasing its electrical activity. Conversely, synapses

are deleted when the electrical activity of a participating neuron is too high. One big advantage

of the spiking frequency is that it is easier to observe experimentally than the connectome itself.

In addition to generating static connectivity maps, such a network model can also help investigate

the dynamics of connectivity, such as (i) structural plasticity in a cell-type-dependent manner [14],

(ii) the creation of structures due to external stimuli [15], and (iii) functional reorganization and

restructuring after a lesion [16, 17].

1.2 The MSP Model of Structural Plasticity

The Model of Structural Plasticity (MSP) by Butz and van Ooyen [8] is a network model with

activity-dependent dynamic creation and deletion of synapses. In traditional models, connectivity

is fixed while plasticity merely arises from changes in the strength of existing synapses, typically

modeled as weight factors. MSP, in contrast, is suitable for simulating the reorganization of the

connectome. Instead of representing a synapse by a weight factor, MSP models a synapse as a

connection between an axonal “plug” and a dendritic “socket”. These synaptic elements grow

and shrink independently on each neuron. When an axonal element of one neuron connects to

the dendritic element of another neuron, a new synapse is formed. Conversely, when a synap-

tic element bound in a synapse retracts, the corresponding synapse is removed. The governing

idea of the model is that plasticity in cortical networks is driven by the need of individual neu-

rons to homeostatically maintain their average electrical activity. Consequently, neurons form

new synaptic elements if their activity is below a desired threshold, and remove elements if it

exceeds the threshold. As empirical observation shows, MSP lets networks of neurons robustly

grow towards a stable homeostatic equilibrium of activity and connectivity. It was shown that

this structural-plasticity rule can account for network rewiring after a partial loss of external input

(deafferentation) [8]. The simulation results exhibited strong similarities with biological data from

network rewiring in the primary visual cortex after focal retinal lesions [16, 17]. To make MSP

available to a larger community and combine its capabilities with the features of a state-of-the-

art brain simulator, a simplified version of the model was recently integrated [11] into the NEST

neural network simulator [12].

In contrast to the original MSP, this simplified version does not consider the different distances

between neurons for synapse creation, which makes it less computationally demanding at the

expense of accuracy. The largest published structural plasticity simulations of the simplified MSP

in NEST contained 105 neurons [11]. However, the computational complexity of the original MSP

in terms of the number of neurons prevents it from scaling to larger neuron counts. To decide

which pairs of axonal and dendritic elements will form a synapse, MSP follows a probabilistic

approach. It considers all pairs of neurons with a vacant axonal element on one side of the pair
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and a vacant dendritic element on the other, and calculates the probability of them establishing a

connection between them. The shorter their distance, the higher this probability becomes. Given

that every neuron creates a certain amount of both axonal and dendritic elements (limited by

a constant due to biological restrictions), ultimately all pairs of neurons have to be considered.

Thus, the computational cost grows quadratically with the number of neurons O(n2). However,

as soon as we start investigating the connectivity across individual brain regions and the number

of neurons involved rises above a hundred thousand, this cost becomes prohibitive. Note that the

human brain has about 1011 neurons. For this reason, we urgently need a scalable algorithm for

MSP.

1.3 The n -body Problem

A challenge similar to the one in MSP arises in n-body problems, where pairs of bodies have to be

considered for force calculations. Many phenomena are modeled as systems of interacting bodies

or particles. In astrophysical simulations at macroscopic scale, particles are large-scale stellar

structures such as stars, galaxies, or dark matter, which interact through long-range gravitational

forces. At the other end of the spectrum at microscopic scale, individual particles correspond

to molecules in molecular dynamics simulations or even atoms when investigating properties of

materials.

Until today, no efficient analytical solutions exist for the n-body problem. Instead, numerical iter-

ative methods have been developed which calculate the forces exerted on each particle at discrete

points in time and correspondingly update particle velocities and positions. A naïve n-body method

calculates all pairwise interactions of n particles resulting in O(n2) complexity. To improve the scal-

ability of the force calculations, powerful approximation methods have been developed [18, 19].

They are based on the observation that particles sufficiently far away from a target particle do not

need to be considered individually. It is our goal to leverage their underlying ideas and adapt them

to the problem of structural brain plasticity. The most influential algorithms are Barnes-Hut [18]

and the Fast Multipole Method [19] (FMM). Figure 1.2 illustrates the ideas of both algorithms.

However, they cannot be applied to our problem directly. They calculate the force exerted on

(Barnes-Hut) or the potential of (FMM) each body, whereas we need to select pairs of neurons

(bodies) for synapse creation. Moreover, n-body simulations continuously subject each particle

to force calculations. In the brain, after an initial network creation phase, only a small subset of

neurons exhibits vacant axonal elements. Thus, vacant dendrites only have to be found for this

smaller subset.

1.4 High-Performance Computing

While experiments are usually conducted in a laboratory, computer simulations are mostly per-

formed on supercomputers. Supercomputers are the most powerful computing devices available.

The fastest system in the latest edition of the TOP500 [20] ranking (November 2017) is able to

perform about 93 Pflop/s while solving a dense system of linear equations. That is, the system ex-

ecutes 93 ·1015 operations per second in 64 bit floating point arithmetic. Of course, not all simula-
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(a) Naïve approach (b) Barnes-Hut: source

particles are grouped

(c) FMM: source and target

particles are grouped

Figure 1.2: Approaches of different n -body methods. Two clusters of particles are depicted. Ev-
ery line denotes a force calculation for the two connected particles. (a) The naïve direct method
calculates all interactions. (b) Barnes-Hut groups source particles and thus reduces the amount of
computations for every target particle. (c) FMM groups source and target particles which further
reduces the number of direct particle interactions.

tions have such a high computational demand or are even able to efficiently use that many compute

resources. On the other hand, some applications already exploit petaflop systems and the demand

for greater performance is clearly pronounced in the scientific community of high-performance

computing. The next leap in performance should provide the next generation of supercomputers,

exascale systems. They will reach at least 1018 flop/s, which corresponds to one exaflop/s, and

should enable the solution of larger problems and more accurate results. Neuroscience is one of

those disciplines which already exploit supercomputers of the largest scale [13, 21]. However,

the goal of simulating neuron counts as found in the human brain still remains an unattained

challenge. We show in this dissertation that our scalable algorithm is able to handle numbers of

neurons of the same order as the largest brain simulations today. That is, our method could extend

large-scale brain simulators with the ability to account for the dynamics of the connectome. How-

ever, as our performance results will show, reaching the full scale of the human brain still requires

more computational power. The first exascale machine in the United States of America is sched-

uled to be deployed in 2021, about three years from now. After this time, using our algorithm,

full-scale structural plasticity simulations of the human brain seem to be a feasible goal.

1.5 Contributions

The contribution of this work can be summarized as a scalable approximation method for simu-

lating structural plasticity in the brain based on MSP. Our algorithm, an adaptation of Barnes-Hut,

reduces the complexity of MSP from O(n2) to O(n log2 n) [22]. We further show that the ap-

proximations of our method are still precise enough to resemble neural networks created by the

original MSP. An MPI-based parallel implementation of our scalable algorithm is the first to enable
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the model-based creation of neural networks consisting of up to 109 neurons [23]. Finally, we

use performance models to extrapolate the execution times to the full scale of the human brain

(1011 neurons), showing that simulating structural plasticity at this size is a realistic mid-term

target. Each contribution is briefly described below:

Adaptation of an n-body method for brain simulation. The first contribution of this thesis is

the insight that a hierarchical n-body method can be adapted to solve large-scale brain plasticity

problems in neuroscience. To the best of our knowledge, this is the first time that approaches

from particle simulation are adopted for simulating the dynamics of the connectome. Thus, we

discovered a new application area for particle methods.

Scalable algorithm for simulating structural plasticity in the brain. Our second contribution is

the actual formulation of the approximation algorithm for MSP, which provides a scalable solution

for the simulation of structural plasticity in the brain with a time complexity of O(n log2 n) instead

of O(n2). We determine the sequential asymptotic complexity analytically based on real-world

simulation parameters of the largest expected problem, the human brain.

Accuracy validation of the scalable algorithm. The third contribution is the validation of the

accuracy of the results of the scalable algorithm. We use different combinations of the parameters

(i) number of neurons, (ii) precision of the approximation algorithm, (iii) sequence of random

numbers, and quantify the difference between neural networks generated by the original MSP

and our approximation algorithm. To analyze the structure of the networks, we evaluate six dif-

ferent graph topology metrics for every network. Our results provide strong evidence that the

approximation underlying the algorithm does not adversely affect the quality of the results.

Demonstration of the scalability of the scalable algorithm. Finally, our fourth contribution

demonstrates the scalability of our scalable algorithm. We parallelize the algorithm based on a dis-

tributed tree, perform a complexity analysis of our parallel implementation, and derive asymptotic

upper bounds for space and time. Moreover, we run large-scale performance measurements and

show the scalability of our solution on 256k compute cores with more than 109 neurons. Based

on these results we create empirical performance models and extrapolate execution times of our

implementation for 1011 neurons as found in the human brain. Our results indicate that even with

today’s technology, a computing system with sufficient resources could in principle simulate the

dynamics of the connectome of the full-scale human brain.

In addition to publications in the domain of parallel computing in computer science [22, 23], our

contributions also received recognition from the computational neuroscience community and were

published in a chapter in the book The Rewiring Brain: A Computational Approach to Structural
Plasticity in the Adult Brain [24]. Below is the full bibliographic information of the publications of

our contributions:

• Sebastian Rinke, Markus Butz-Ostendorf, Marc-André Hermanns, Mikaël Naveau, and Felix

Wolf. A scalable algorithm for simulating the structural plasticity of the brain. In Proc. of
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the 28th International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), Los Angeles, CA, USA, pages 1–8, October 2016

• Sebastian Rinke, Mikaël Naveau, Felix Wolf, and Markus Butz-Ostendorf. Critical Periods

Emerge from Homeostatic Structural Plasticity in a Full-Scale Model of the Developing Cor-

tical Column. In Arjen van Ooyen and Markus Butz-Ostendorf, editors, The Rewiring Brain,

pages 177–201. Academic Press, San Diego, 1st edition, 2017

• Sebastian Rinke, Markus Butz-Ostendorf, Marc-André Hermanns, Mikaël Naveau, and Felix

Wolf. A scalable algorithm for simulating the structural plasticity of the brain. Journal of
Parallel and Distributed Computing, 120:251–266, 2018

1.6 Structure of this Thesis

The remainder of this document is structured as follows. We start by discussing foundations of par-

allel computing in Chapter 2. After reviewing related work in Chapter 3, we present the Model of

Structural Plasticity and outline its biological significance in Chapter 4. Then, Chapter 5 describes

our scalable approximation algorithm for simulating structural plasticity in the brain based on MSP.

In Chapter 6, we present a scalable implementation of our scalable algorithm. After describing the

graph topology metrics and our framework for analyzing the structure of neural networks, Chap-

ter 7 establishes the accuracy of our algorithm. In Chapter 8, we provide and discuss performance

results for more than 109 neurons and extrapolate the execution time of our algorithm to full-scale

simulations of the human brain with 1011 neurons. Finally, Chapter 9 concludes this document,

highlighting the potential our work offers to future research.
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2 Foundations of Parallel Computing
This chapter builds the foundation for understanding all performance discussions. We start with

focusing on the complexity of algorithms and introduce asymptotic notations. Then, we define the

term scalability and the metric speedup, which is used to quantify the scalability of an algorithm.

To be able to predict the maximum speedup of an algorithm, we review two speedup models,

Amdahl’s law and the law of Gustafson. Moreover, we present another metric which is called

incremental improvement and accounts for the efficient use of additional processors. Finally, we

introduce the message-passing programming model and give an overview of the Message-Passing

Interface (MPI), which we use for parallelization.

2.1 Complexity

The efficiency of an algorithm is usually characterized by its execution time and memory con-

sumption (i.e., time and space). However, in practice, an algorithm’s exact running time depends

on many factors such as the performance of CPU and memory, and the extent of competition with

other activities for resources on the same computing system. Similarly, the exact memory consump-

tion during execution of an algorithm is affected, for example, by the representation of data types

in the programming language and thus their size in memory. Although it is possible to determine

execution times and memory requirements of an algorithm on a particular platform empirically, it

is often not needed and even undesirable when the goal is to analyze the efficiency of an algorithm

independently of a particular computing system.

For example, a common question is: How does the execution time and the memory consump-

tion of the algorithm grow with increasing input size? In other words: How do the functions

T (n) for time and S(n) for space grow with input size n? By continuously increasing the input

size, multiplicative constants and lower-order terms in those functions have less effect than the

largest term, the leading-order term, which dominates the growth. The asymptotic complexity

analysis studies the requirements of algorithms as the input size increases without bound. Let us

assume that the exact execution time of an algorithm is given by T (n) = an2 + bn + c with the

constants a, b, and c. The corresponding asymptotic complexity contains only the leading-order

term n2 and is denoted by T (n) = Θ(n2). This asymptotic notation concisely represents the run-

ning time behavior of the algorithm for increasing input size n. Moreover, it enables us to compare

different algorithms regardless of the specifics of an underlying computing system. For example,

an algorithm with asymptotic time complexity Θ(n2) is more efficient than another algorithm with

complexity Θ(n3) for solving the same problem. Except for very small inputs, an algorithm which

is asymptotically more efficient is usually the better choice. In the following, we discuss the three

most commonly used asymptotic notations (i) O-notation, (ii) Ω-notation, and (iii) Θ-notation

based on the book Introduction to Algorithms [26]. These notations use functions whose domains

are the set of natural numbers N. That is, the input size n is a natural number.
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O -notation. We use the O-notation to provide an upper bound on a function. Intuitively, for two

functions f (n) and g(n), f (n) = O(g(n)) means that f (n) grows at most as fast as g(n). More

formally, O(g(n)) denotes a set of functions where f (n) is one of them. In particular,

O(g(n)) = { f (n) | there exist positive constants c and n0 such that

0≤ f (n)≤ c · g(n) for all n≥ n0}.
(2.1)

Figure 2.1a illustrates an example. To better account for the set O(g(n)), a more precise nota-

tion would be f (n) ∈ O(g(n)). However, using the equality sign in asymptotic notations is more

common in the literature and also applies to the Ω-notation and the Θ-notation below. Since the

O-notation describes an upper bound, we can use it to define the worst-case running time of an

algorithm which holds for every input of every possible size. For example, when the complexity

of an algorithm is denoted by O(log n), the algorithm’s running time T (n) satisfies T (n)≤ c · log n
with a constant c. To ensure that this upper bound holds for all possible inputs for each value of n,

the factor c needs to be chosen large enough.

Ω-notation. Similarly to the upper bound O-notation, the Ω-notation denotes an asymptotic

lower bound. Intuitively, for two functions f (n) and g(n), f (n) = Ω(g(n)) means that f (n) grows
at least as fast as g(n). Here, f (n) is a function in the set

Ω(g(n)) = { f (n) | there exist positive constants c and n0 such that

0≤ c · g(n)≤ f (n) for all n≥ n0}.
(2.2)

An example is depicted in Figure 2.1b. The Ω-notation can be used to describe the best-case running

time of an algorithm. That is, the smallest running time of the algorithm for all inputs of every

possible size. For example, when an algorithm’s complexity is given by Ω(n), the running time T (n)
of the algorithm satisfies T (n)≥ c ·n. To ensure that this lower bound is valid for all possible inputs

of every size n, the factor c must be chosen small enough.

Θ-notation. Intuitively, the notation f (n) = Θ(g(n)) is used for two functions f (n) and g(n)
when their leading-term and thus their growth is of the same order. That is, for all n ≥ n0, the

function f (n) equals g(n) to within a constant factor. Formally,

Θ(g(n)) = { f (n) | there exist positive constants c1, c2, and n0 such that

0≤ c1 · g(n)≤ f (n)≤ c2 · g(n) for all n≥ n0}.
(2.3)

This implies that f (n) = O(g(n)) and f (n) = Ω(g(n)). That is, in addition to an upper bound, the

Θ-notation also provides a lower bound of a function f (n), which makes the Θ-notation a stronger

notation than the O-notation. A graphical example of the Θ-notation is shown in Figure 2.1c.

Note that although we used examples for the running time, the notations and the definition of

worst-case and best-case from above similarly apply to the memory requirements of algorithms.

When we discuss the time and space complexity of parallel algorithms later in this document, in

addition to the problem size n, an additional parameter p is introduced. Here, p interchangeably

denotes the number of processes or processors (compute cores) executing the algorithm in parallel.

For example, a worst-case execution time may be given by O(n2/p). Using two parameters enables

us to investigate the scaling behavior with growing problem size, increasing process count, or a

combination of both.
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g(n)�	c

f (n)

n0

(a) f (n) = O(g(n))

g(n)�	c

f (n)

n0

(b) f (n) = Ω(g(n))

g(n)�	c2

g(n)�	c1

f (n)

n0

(c) f (n) = Θ(g(n))

Figure 2.1: Examples of the O-, Ω-, and Θ-notation. The smallest possible value for n0 is shown in
every example, however, larger values of n0 are possible as well. (a) O-notation: The value of the
function f (n) lies on or below c · g(n) for all n ≥ n0. (b) Ω-notation: The value of f (n) lies on or
above c · g(n) for all n ≥ n0. (c) Θ-notation: The value of f (n) lies on or between the functions
c1 · g(n) and c2 · g(n) for all n≥ n0.

2.2 Scalability

When evaluating the efficiency of a sequential algorithm, one usually examines the behavior of

the algorithm’s execution time with increasing problem size. The corresponding growth function

is a valuable tool to assess the suitability of the algorithm for solving problems of larger size. In

practice, a sequential algorithm whose time increases at most proportionally to the problem size n
times a factor of smaller order is considered efficient. Typical examples of complexities of efficient

algorithms are Θ(n), Θ(n log n), and Θ(
p

n). However, there are cases when the constant factors

“hidden” in the asymptotic notation are large and thus using algorithms with greater complexity

such as Θ(n2) might be faster for small inputs.

In parallel computing, we investigate the scalability of parallel algorithms. That is, we study

how an algorithm’s execution time behaves with increasing processor counts. Ideally, execution

time decreases proportionally to the number of processors in use. The metric to quantify the

performance improvement by using more compute resources is called speedup. However, different

factors limit the speedup and thus the scalability of an algorithm. Before we discuss models to

determine the speedup of algorithms analytically, we first define the term speedup more formally.

2.3 Speedup

Let us assume a parallel algorithm which solves a problem of size n on p processors in time Tp(n).
Let us further assume a sequential algorithm which solves the same problem in time T opt(n).
Moreover, let the sequential algorithm be optimal, that is, it can be shown that no other sequential

algorithm can solve the problem faster. The speedup of the parallel algorithm is then defined by

Speedup(n, p) =
T opt(n)
Tp(n)

(2.4)

and denotes the reduction in execution time by using the parallel algorithm instead of the best

sequential one. This definition of speedup applies to theoretical analysis using asymptotic notations
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as well as practical evaluation with empirical running times. In practice, the execution time T opt(n)
of the best sequential algorithm may not be known. Examples for possible reasons are:

• Optimal asymptotic complexity unknown—The lower bound of the asymptotic complexity for

solving a problem is not known. In this case, different sequential algorithms which solve the

problem exist, however, it is not clear whether a better algorithm can be found.

• Algorithm with optimal asymptotic complexity unknown—Although the lower bound of the

asymptotic complexity of a problem has already been determined, no algorithm which

achieves this lower bound has been formulated yet, and thus the time of the best sequen-

tial algorithm is still unknown.

• Best empirical execution time unknown—An asymptotically optimal algorithm for the prob-

lem exists, however, depending on the problem size and the properties of the input, other

algorithms with worse asymptotic complexity may be faster on the same computing system.

Implementing and evaluating the performance of all known algorithms for a problem might

be impractical.

Because of the reasons above, T opt(n) is sometimes replaced by the time of the best known
sequential algorithm. Another difficulty arises in practice when the problem size n is too large and

thus exceeds the memory capacity of a compute node. Consequently, no speedup result can be

reported for that size. Alternatively, to satisfy the memory requirements, the parallel algorithm is

run on the smallest possible number of processors for a given problem size. The corresponding

running time substitutes T opt(n). The resulting speedup is called relative speedup and should be

denoted as such when presenting performance results.

Note that the time of executing the parallel algorithm with only one processor T1(n) is usually

larger than T opt(n) of the best sequential algorithm and thus the calculated speedup becomes

larger. That is,

T opt(n)
Tp(n)

≤
T1(n)
Tp(n)

. (2.5)

Otherwise, if the speedup was smaller, the parallel algorithm with a single processor would become

the new best known sequential algorithm. Based on this discussion, it can be noted that the

computed speedup value strongly depends on the reference running time T opt(n). For that reason,

it is crucial to describe how this value is obtained and thus how the reported speedup results must

be interpreted.

One common question when analyzing the speedup of a parallel algorithm is: What is the great-

est speedup that can be obtained? In theory, the maximum speedup is equal to the number of

processors p and grows linearly with the processor count. More formally,

Speedup(n, p) =
T opt(n)
Tp(n)

≤ p. (2.6)

However, in practice, superlinear speedup which is larger than p can be achieved. One factor which

enables superlinear speedup is the memory hierarchy in today’s computing systems. For example,
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a sequential algorithm may often need to access main memory during execution because its data

do not fit into the fast cache memory of a single processor. On the other hand, using multiple

processors with the parallel algorithm not only enables parallel execution, but also provides more

cache in total and thus more data can be cached for fast access by the processors. Another case

of superlinear speedup occurs when the parallel algorithm performs less work than the sequential

one. Let us assume a sequential search algorithm which terminates as soon as the desired element

is found. By assigning subsets of elements to every processor in a corresponding parallel algorithm,

the desired element could be among the first ones encountered by a processor in its own subset.

Consequently, the total amount of elements searched can be less than in the sequential case and

the parallel algorithm performs less work.

Unfortunately, in Equation 2.6, the upper bound p on how much the execution time of a se-

quential algorithm can be improved by parallelization equally applies to all sequential algorithms

and thus is too general. Algorithm architects need a more accurate tool to assess the prospects of

speedup for their specific algorithms. Moreover, implementers of parallel algorithms should have

knowledge of factors which impair the scalability of their parallel implementations. The foundation

of the two most prominent models in the literature which more accurately predict the maximum

speedup on p processors is the observation that an algorithm consists of two portions. One portion

contains all steps which have to be executed sequentially. The other portion contains those steps

which can run in parallel without restrictions. Let s be the sequential fraction of the algorithm and

the remainder 1 − s be the parallel fraction. The execution time of every algorithm can now be

described as

T (n) = T (n) · (s+ (1− s)). (2.7)

It is important to note that an algorithm’s sequential fraction s depends on the problem size n.

To be more precise, we should denote the sequential portion by s(n). However, for the sake of

improved readability, we simply use s in the following.

The two models of speedup, which are known as Amdahl’s law [27] and law of Gustafson [28],

account for the phenomenon that the difference between maximum linear speedup and achieved

speedup grows with the sequential fraction s. However, the two laws differ with respect to the be-

havior of the problem size. While Amdahl’s law assumes a fixed problem size, the law of Gustafson

scales the problem size with the number of processors. In the following, we discuss both laws in

detail.

2.4 Amdahl’s Law

The concept of Amdahl’s law is best illustrated by a simple example. Suppose a program runs

for two hours. Now, the computing system which executes the program is improved by a faster

execution mode for some of the operations in the program. However, the fraction of the program

which cannot take advantage of the faster execution mode takes 30 min of the two hours total

execution time. As a consequence, the program cannot terminate in less than 30 min even if

the rest of the program’s execution time was hypothetically reduced to zero through the faster

execution mode.
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When we consider a parallel algorithm, the faster execution mode corresponds to parallel ex-

ecution on multiple processors. However, only the time of the parallel fraction of the algorithm

can be reduced through more processors, whereas the time of the sequential fraction remains the

same. Figure 2.2a depicts this phenomenon where the number of processors is increased from

one (i.e., sequential execution) to p > 1. Note that while the processor count changes, the size

of the problem n is fixed. Based on this observation, we can rewrite Equation 2.7 and formulate

the execution time Tp(n) of an algorithm on p processors in terms of its sequential time T1(n) on

a single processor as

Tp(n) = T1(n) ·
�

s+
1− s

p

�

. (2.8)

With this, Amdahl’s upper bound on the speedup with p processors for a fixed problem size n can

be deduced as follows:

Speedupfixed n(p) =
T opt(n)
Tp(n)

≤
T1(n)
Tp(n)

(by Equation 2.5)

≤
T1(n)

T1(n) ·
�

s+ 1−s
p

� (by Equation 2.8)

≤
1

s+ 1−s
p

(2.9)

In contrast to the previous upper bound p (Equation 2.6), this expression depends on the specific

algorithm. In particular, the sequential fraction s is determined by the given parallel algorithm and

problem size n. To examine the effect of the sequential fraction on the upper bound on the speedup,

let us consider different values of s for growing numbers of processors in Figure 2.2c. Scaling the

processor count while the problem size remains fixed is called strong scaling. As can be seen, even

with only 5% sequential fraction, the speedup levels off at about 20 for 4,096 processors. Ideally,

for 4,096 processors, we would expect a speedup of the same order. Hence, it seems that the

sequential fraction is a scalability bottleneck which limits the efficient use of multiple processors.

To further investigate the limitations due to the sequential portion, we assume an infinite number

of processors with p→∞. This yields

lim
p→∞

Speedupfixed n(p)≤ lim
p→∞

1

s+ 1−s
p

=
1
s

. (2.10)

This equation is an important result of Amdahl’s law. It tells us that the maximum speedup which

can be obtained for a given parallel algorithm and fixed-size problem is always limited by 1/s.
This exposes and quantifies a valuable guideline to algorithm architects and implementers: The

success of parallelizing a problem shrinks with the parallel fraction of the algorithm. Figure 2.2e

illustrates the significance of this simple rule. In general, we observe that even a small sequential

fraction such as 2% has a devastating effect on the maximum speedup. For example, using p =
1, 024 processors for an algorithm where a fraction of 2% must be executed sequentially limits

the speedup to 47, which is less than 4.6% of the theoretical upper limit of 1, 024. The reason
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is that Amdahl’s speedup function steeply descends in the vicinity of s = 0. Even for smaller

numbers of processors, such as 512, 256, and 128, the sequential fraction remains a severe obstacle

towards using multiple processors efficiently. This observation is very discouraging for any effort

of exploiting massive amounts of processors to reduce the time-to-solution of a time-consuming

problem. However, in the next section, we discuss an approach which still manages to use large

numbers of processors efficiently.

In addition to providing upper bounds on speedup, Amdahl’s model can also be used to de-

termine the minimum number of processors which are required to reach a desired speedup. To

achieve this, we can solve Equation 2.9 for the number of processors p:

Speedupfixed n(p)≤
1

s+ 1−s
p

1
Speedupfixed n(p)

≥ s+
1− s

p
1

Speedupfixed n(p)
− s ≥

1− s
p

p ≥
1− s
1

Speedupfixed n(p)
− s

(2.11)

As discussed above, the speedup in this Equation can be at most 1/s. Violating this premise leads to

wrong results. Let us consider the example visualized in Figure 2.2c where the sequential fraction

is denoted by s = 5% and the desired speedup is 10. Substitution in Equation 2.11 yields

p ≥
1− 0.05
1
10 − 0.05

=
0.95
0.05

=
95
5
= 19. (2.12)

This result has the following meaning. Given an algorithm solves a problem of size n on one

processor in time T1(n) of which 5% cannot be reduced by using more processors. To accelerate

the execution time by a factor of 10 (i.e., T1(n)/10), at least 19 processors are needed. Similarly,

Amdahl’s law can help deduce the upper bound on the sequential fraction s in order to achieve a

desired speedup for a given number of processors:

Speedupfixed n(p)≤
1

s+ 1−s
p

1
Speedupfixed n(p)

≥ s+
1− s

p
1

Speedupfixed n(p)
−

1
p
≥ s

�

1−
1
p

�

s ≤
1

Speedupfixed n(p)
− 1

p

1− 1
p

(2.13)

2.5 Law of Gustafson

Amdahl’s law showed us that a small sequential fraction of an algorithm such as s = 1% al-

ready limits the maximum speedup which can be obtained by exploiting more processors to
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Figure 2.2: Amdahl’s law vs. law of Gustafson. The left side illustrates the speedup for fixed-size
problems according to Amdahl’s law, while the right side depicts the behavior of the speedup for
scaled problem sizes according to the law of Gustafson. T1 denotes the execution time on a single
processor and Tp is the parallel execution time on p processors. On the left with Amdahl’s law,
s denotes the sequential fraction of T1, whereas on the right with the law of Gustafson, s represents
the sequential fraction of Tp.

1/s = 1/0.01 = 100 (Equation 2.10). In this example, even an infinite number of processors

is not able to further accelerate the execution time beyond a factor 100. In the light of this severe

limitation, Amdahl’s observation questions the need for thousands of processors and thus the use

of supercomputers altogether. Obviously, the only way to achieve speedup which grows with the
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number of processors is to continuously reduce the sequential fraction of the algorithm. However,

how should this be accomplished?

Note that for parallel algorithms, the fraction that must be executed sequentially usually shrinks

by increasing the size of the problem. Consequently, to raise the upper bound on the maximum

speedup, the problem size must grow with the processor count. In the literature, the special case

of scaling the problem size n proportionally to the number of processors p (i.e., n= k · p) is called

weak scaling.

Barsis and Gustafson [28] proposed a model to predict the maximum speedup for scaled problem

sizes. The model is known as law of Gustafson. It assumes that by increasing the problem size with

the number of processors, the amount of work that can be performed in parallel grows linearly

with the processor count, whereas the amount of work that must be executed sequentially does

not change. As a result, the sequential fraction which limits the speedup shrinks with increasing

numbers of processors and thus, in principle, performance improvements can be obtained for

unlimited processor counts.

Figure 2.2b illustrates the law of Gustafson. Here, Tp(n) = s + (1 − s) denotes the parallel

execution time for the scaled problem size n on p processors with s being the time spent in the

sequential portion and 1−s the time in the parallel portion. Running the same problem on only one

processor would prolong the execution time to T1(n) = s+ (1− s) · p because the single processor

must execute the parallel portions of length 1−s of the p processors sequentially. Correspondingly,

based on the sequential execution time T1(n), the parallel fraction of the algorithm is calculated

by

Time of parallel portion of T1(n)
Total execution time T1(n)

=
(1− s) · p

s+ (1− s) · p
(2.14)

and the sequential fraction equals

Time of sequential portion of T1(n)
Total execution time T1(n)

=
s

s+ (1− s) · p
. (2.15)

Given that the number of processors p appears in the denominator, the sequential fraction

shrinks with growing processor counts. Let us now deduce the upper bound on the speedup

for a scaled problem size n on p processors:

Speedupscaled n(p) =
T opt(n)
Tp(n)

≤
T1(n)
Tp(n)

(by Equation 2.5)

≤
s+ (1− s) · p

s+ (1− s)

≤ s+ (1− s) · p

(2.16)
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Interestingly, we can also substitute the sequential fraction (Equation 2.15) and the parallel frac-

tion (Equation 2.14) in Amdahl’s model (Equation 2.9) and obtain the speedup of solving the

problem on p processors:

Speedup(p)≤
T1(n)
Tp(n)

≤
1

s
s+(1−s)p +

1
p ·

(1−s)p
s+(1−s)p

≤
1

s+(1−s)
s+(1−s)p

≤ s+ (1− s) · p

(2.17)

As we can see, the result yields the same upper bound on the speedup as the law of

Gustafson (Equation 2.16). The reason is that scaling the problem size with the number of pro-

cessors p affects the size of the sequential fraction. This is different from the original assumption

in Amdahl’s law where the sequential fraction is considered to be constant, which ultimately lim-

its the scalability of every algorithm. In contrast, scaling the problem size with the number of

processors can provide an upper bound on the speedup which grows linearly with the processor

count. That is, theoretically, we can increase the number of processors without limits while still

observing performance improvements. Consequently, solving larger problems on more resources

is the foundation to efficiently use thousands of processors on today’s supercomputers.

Figure 2.2d shows the speedup according to Gustafson’s law with different sequential fractions s
of the parallel execution time Tp(n) for growing numbers of processors. Here, 1− s corresponds to

the slope of the speedup functions. Instead of fixing the sequential fraction, Figure 2.2f keeps the

processor count constant and depicts the speedup for a growing sequential fraction of the parallel

execution time Tp(n). As we can see, scaling the problem size with the number of processors

enables us to efficiently use hundreds of processors.

Until now, we identified that scaling the problem size enables us to use more processors effi-

ciently. However, inflating the problem for an algorithm whose time complexity is quadratic in the

input size such as O(n2/p) may become prohibitive at some point. Note that in the weak-scaling

scenario where the problem size n grows proportionally to the processor count p, the ratio n/p is

constant. That is, although we might observe good speedup by successively using additional pro-

cessors, the parallel execution time still grows as O(n · n/p) = O(n). This example demonstrates

that not only speedup but also the time complexity of an algorithm need to be carefully considered

in order to solve a problem in a timely manner through parallelization.

2.6 Law of Diminishing Returns

In the discussions above, we quantified the maximum speedup which can be obtained for fixed-size

problems and scaled problems where the problem size grows proportionally with the number of

processors. Another interesting aspect is the improvement in performance that every additional

processor contributes to the solution of a problem. Inspired by Korsunsky [29], we use the term

incremental improvement to denote the additional reduction in execution time by using one more
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processor. This definition is based on the term marginal product from economics [30]. Let us first

focus on problems of fixed size before we move to scaled problems.

Fixed problem size. The incremental improvement is formally defined by a difference where the

minuend (left term) denotes the reduction in execution time for p and the subtrahend (right term)

for p − 1 processors compared to a single processor. For a fixed problem size n, the incremental

improvement for p processors equals

T∆fixed n(p) =
�

T1(n)− Tp(n)
�

−
�

T1(n)− Tp−1(n)
�

= Tp−1(n)− Tp(n),
(2.18)

which is the timing difference between using p − 1 and p processors. Given that Amdahl’s law al-

ready identifies the sequential fraction s of an algorithm for solving a fixed-size problem as limiting

factor for performance improvements, we consider algorithms which can be perfectly parallelized

(i.e., s = 0) and thus achieve ideal speedup. Although this assumption does not reflect the common

case in practice, it enables us to study the greatest incremental improvements possible in an upper-

bound analysis. By scaling the sequential execution time to one, we can replace the execution time

with p− 1 processors Tp−1(n) by 1/(p− 1) and Tp(n) by 1/p. Thus,

T∆fixed n(p) = Tp−1(n)− Tp(n)

=
1

p− 1
−

1
p

=
p− (p− 1)
p(p− 1)

=
1

p2 − p
.

(2.19)

Figure 2.3a illustrates the behavior of T∆fixed n(p) for growing numbers of processors. As can be

observed, the contribution of one additional processor to accelerating the execution time of a

parallel algorithm diminishes with increasing processor counts. In economics, this phenomenon is

called diminishing marginal product [30] and demonstrates the law of diminishing returns [31, 32],

stating that the incremental output of production decreases at some point when only the amount

of a single resource is increased. In our case, the incremental output of production corresponds

to the incremental reduction in execution time and the resource that we increase is the number of

processors.

It is remarkable and worrying at the same time that we observe this behavior even for an “em-

barrassingly” parallel algorithm with perfect linear speedup. Consequently, any effort to accelerate

an algorithm by using more processors seems to face severe inefficiencies. On the other hand, there

are scenarios in life that obey the same rules. For example, distributing the work of a task among

the members of a team is similar to solving a problem with multiple processors. Although its effi-

ciency is limited by the law of diminishing returns, teamwork is ubiquitous in our lives. According

to Figure 2.3a, it is most efficient when only one or two people work on the same task since sharing

the work of a single fixed-size task reduces the incremental return per person. Nevertheless, there
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are strong arguments in favor of teamwork such as time constraints or when the complexity of a

task increases.

Usually the time budget for completing a task is restricted. Especially when facing hard dead-

lines, an obvious approach to accelerate the completion of a task is to distribute the work across a

team. The team size is chosen according to the workload of the task and further expanded propor-

tionally to the complexity of the task. These examples demonstrate our intuitive use of parallelism

in everyday life. Although we do not necessarily achieve highest efficiency, we are aware of fac-

tors which may harm it. Similarly, we apply strong and weak scaling techniques to solve problems

faster according to our requirements. In Figure 2.3a, we showed that strong scaling reduces the in-

cremental improvement by every additional processor. We shall now examine how the incremental

improvement behaves when scaling the problem size with the number of processors.

Scaled problem size. Similarly to the fixed problem size, we assume that the sequential fraction s
of an algorithm be zero. Let us deduce the incremental improvement for p processors when scaling

the problem size n proportionally to the number of processors (i.e, n = k · p). We start with the

difference from Equation 2.18 and modify it by using the scaled problem size k · (p − 1) for p − 1

processors and k · p for p processors:

T∆scaled n(p) =
�

T1(kp)− Tp(kp)
�

−
�

T1(k(p− 1))− Tp−1(k(p− 1))
�

(2.20)

Since s = 0, the sequential time T1(kp) is equal to p times the parallel execution time Tp(kp) on

p processors. That is, T1(kp) = p · Tp(kp) and accordingly T1(k(p− 1)) = (p− 1) · Tp−1(k(p− 1)).
This yields

T∆scaled n(p) =
�

p · Tp(kp)− Tp(kp)
�

−
�

(p− 1) · Tp−1(k(p− 1))− Tp−1(k(p− 1))
�

=
�

(p− 1) · Tp(kp)
�

−
�

(p− 2) · Tp−1(k(p− 1))
�

.
(2.21)

Given that the incremental improvement is a difference, we can determine a lower bound for it by

using an upper bound for the subtrahend (right term) of the difference. In particular, we assume

that

Tp−1(k(p− 1))≤ Tp(kp). (2.22)

Before we continue to simplify T∆scaled n(p), let us show why Equation 2.22 is a valid assumption.

Since the sequential fraction is zero, a problem which takes time T (n) on one processor, takes time

T (n)/p on p processors. Thus, Equation 2.22 can be rewritten as

T (k(p− 1))
p− 1

≤
T (kp)

p
. (2.23)

A function T (n) which satisfies this relation must grow monotonically and be at least linear in

the number of processors. Given that the problem size n scales with p (i.e., n = k · p), every

function T (n)≥ n satisfies Equation 2.23. Note that T (n) corresponds to the time of the sequential

algorithm. In practice, a linear growth of the sequential time is no limitation because parallelism

is usually used when time increases at least linearly with the problem size. Thus, Equation 2.22 is

a practical assumption.
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Let us now use the relation Tp−1(k(p − 1)) ≤ Tp(kp) to further simplify T∆scaled n(p) from Equa-

tion 2.21:

T∆scaled n(p) =
�

(p− 1) · Tp(kp)
�

−
�

(p− 2) · Tp−1(k(p− 1))
︸ ︷︷ ︸

≤Tp(kp)

�

≥ (p− 1) · Tp(kp)− (p− 2) · Tp(kp)

≥ Tp(kp)

(2.24)

This result tells us that the time difference in Equation 2.20 amounts to at least the time required

to solve a problem of size proportional to p with p processors. With the relation Tp−1(k(p− 1)) ≤
Tp(kp) (Equation 2.22), which implies that execution time Tp(kp) increases monotonically, the

time difference and thus the incremental improvement by using one more processor is at least

constant. Here, we note the contrast to the scenario with fixed problem size. In particular, while

the incremental improvement declines in strong scaling experiments, we observe at least constant

improvement with weak scaling. Thus, it seems as if the law of diminishing returns does not apply

to weak scaling. However, note that the law of diminishing returns refers to increasing the amount

of only one single resource. Weak scaling, on the other hand, increases both processor count and

problem size proportionally. For this reason, the law of diminishing returns does not limit the

incremental improvement. Applying this observation to our teamwork example yields that scaling

the size of a team proportionally to the task size allows to “escape” the law of diminishing returns

because more than one production parameter is altered.

Figure 2.3 illustrates incremental improvements for different functions of the sequential execu-

tion time and the corresponding ideal execution times using p processors. Under the assumption

that Tp−1(p − 1) ≤ Tp(p), the plots (d)-(f) confirm our lower bound Tp(kp) with k = 1 of the

incremental improvement in Equation 2.24. On the other hand, the plots (a)-(c) show decreasing

incremental improvements when the sequential execution time T1(p) grows less than linearly with

the number of processors p. Remember that we scale the problem size proportionally to the num-

ber of processors. Examples for functions of sequential execution time that grow slower than the

number of processors p are (i) T1(p) = 1 (constant), (ii) T1(p) = log2 p, and (iii) T1(p) =
p

p. We

note from Figure 2.3 that the sequential execution time must increase at least proportionally to the

number of processors to achieve at least a constant incremental improvement as demonstrated in

plot (d).

2.7 Message-Passing Model

All our parallel algorithms in this thesis are designed based on the message-passing programming

model and implemented using the MPI Message-Passing Interface, a choice we will motive below.

In the following, we provide an overview of the message-passing model and focus on the most

prominent specification in high-performance computing, the MPI standard.

According to the message-passing model [33], a parallel program is executed by multiple pro-

cesses simultaneously. Every process has access to its own local memory only but can communicate

with other processes by sending and receiving messages. Note that communication between pro-

cesses is explicitly instructed in the parallel program. In particular, to transfer data from the local
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(a) T1 = 1 (problem size fixed)
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(b) T1 = log2 p
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p
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(d) T1 = p
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(e) T1 = p log2 p
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(f) T1 = p2

Figure 2.3: Incremental improvement for (a) fixed and (b-f) scaled problem size. T1 denotes the
sequential execution time and Tp the execution time with p processors where the sequential
fraction is zero, that is, Tp = T1/p. In (a), the problem size n is fixed and the incremental
improvement is T∆fixed n =

�

T1 − Tp

�

−
�

T1 − Tp−1

�

. In (b-f), the problem size n is scaled with
the number of processors p so that n = p. Thus, the incremental improvement corresponds to
T∆scaled n =

�

T1(p)− Tp(p)
�

−
�

T1(p− 1)− Tp−1(p− 1)
�

.
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Figure 2.4: The message-passing model. Every process “P” has access to its local memory “M”. Pro-
cesses can communicate with each other by sending and receiving messages through the network.

memory of one process to the local memory of another process, both sender and receiver must

perform communication operations. Figure 2.4 illustrates the message-passing model. This model

naturally corresponds to the hardware of systems with distributed memory such as compute clus-

ters and supercomputers. A distributed-memory system contains a set of compute nodes where

every node has its local memory with a private address space, which cannot be accessed by other

compute nodes directly. To enable communication between compute nodes, a network connects

the nodes with each other. A data transfer is then initiated by the sending node, which injects a

message into the network, and the receiver performs an operation to store the message in its local

memory.

Note that the message-passing programming model does not prevent us from executing several

processes on the same compute node. Instead, given that every node usually contains multiple

processors, it is even common practice to run multiple processes per node. For example, when

processes from the message-passing model are implemented as operating system processes on the

same node, although sharing the physical memory of the node, every process has still its own

private address space.

2.7.1 The MPI Message-Passing Interface

The main goal of the Message-Passing Interface standard (MPI) [34, 33] is to define a program-

ming interface which enables the development of efficient and portable parallel applications using

the message-passing programming model. To increase programmer productivity, MPI also strives

to provide the functionality which is necessary to ease the implementation of a wide range of par-

allel algorithms. The MPI specification defines an application programming interface (API) that

MPI implementations provide in the form of a library. Freely available [35, 36] as well as pro-

prietary [37] MPI libraries exist. Due to its wide-spread use in the high-performance computing

community, operators of supercomputers usually provide MPI on their systems.

Although the current MPI-3.1 standard [34] defines functionality beyond the simple message-

passing programming model such as access to remote memory (RMA), an MPI program remains

a set of processes which communicate via messages. Note that in this thesis we also use the term

compute core to refer to a process in MPI. The reason is that we scale the number of MPI processes

and compute cores proportionally. We shall now discuss those concepts in MPI which are essential

for the rest of the thesis: (i) communicator, (ii) point-to-point communication, (iii) collective

communication, and (iv) one-sided communication.
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Communicator. Every communication operation is performed in a communicator, which com-

prises a group of processes. The initial communicator containing all processes of an MPI program

is called MPI_COMM_WORLD. Within a communicator, every process is identified by its rank.

Ranks are consecutively numbered from zero to the number of processes minus one. In addition

to predefined communicators such as MPI_COMM_WORLD, new communicators can be created of

subsets of processes. Note that messages sent in one communicator cannot be received in another

communicator. Thus, communication partners need to use the same communication context, that

is, the same communicator.

Point-to-point communication. To send a message from one process to another, MPI provides

point-to-point communication routines. For example, the sender calls MPI_Send and the receiver

MPI_Recv with the same communicator as argument. Additionally, the sender specifies the local

memory address of its send buffer, whereas the receiver provides the address of its local receive

buffer. Other arguments include the size and the data type of the payload of the message. Given

that both sender and receiver call communication routines for a particular message transfer, this

communication model is called two-sided communication.

Collective communication. Sometimes, data need to be communicated between more than two

processes. For example, one process may want to broadcast the same information to all the other

processes in a communicator. Instead of calling multiple send operations on the sender (one send

per receiver), and one corresponding receive on every receiver, it is sufficient to call the collective

MPI function MPI_Bcast on every process in the same communicator. In MPI terminology, the

originating process of the broadcast is called root. Other collective calls provide support such as for

gathering data from every process, synchronizing the execution of all processes, or global reduction

operations such as sum or maximum. Note that collective operations involve all processes in the

same communicator and thus require all of them to call the same collective function.

In addition to convenience, using MPI collectives instead of implementing them manually has

several advantages. For example, in the literature, usually different algorithms exist for imple-

menting a particular communication pattern. A high-quality MPI library provides state-of-the-art

communication algorithms and using them eliminates errors and inefficiencies which might occur

in own implementation efforts. Moreover, the MPI library may exploit hardware features of the

underlying communication system that are not available at the user level.

One-sided communication. While the first version of the MPI standard (MPI-1) defines a com-

plete interface of the message-passing model, MPI-2 adds and MPI-3 extends remote memory

operations which enable direct access to the remote memory of other processes. Now, it is possible

to perform a data transfer between two processes with only a single remote memory access (RMA)

communication routine. The caller of the RMA routine is called origin and the process whose

memory is accessed is named target. Given that the origin specifies the arguments of the send as

well as of the receive buffer in a single call, RMA functions are also called one-sided communication
operations.

Using one-sided over two-sided communication can be beneficial when the communication pat-

tern between processes is rather irregular or the exact number of data transfers is even a priori
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unknown. For example, a process may not know how many messages it will receive from other

processes and what the ranks of those processes are. However, to call the corresponding match-

ing receive calls in two-sided communication, this information must be obtained, which results

in higher code complexity and more administrative overheads during program execution. In this

thesis, we exploit one-sided communication in a scalable implementation of our scalable algorithm

of MSP. More details of our implementation are presented in Chapter 6.
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3 Related Work
We shall now review work related to the topic of this thesis. First, we introduce the concept

of synaptic plasticity, which accounts for the strength of synapses in the brain, followed by a

discussion of precursors of the Model of Structural Plasticity. After that, we focus on experimental

approaches for obtaining brain-connectivity maps. Since the MSP model uses neuronal electrical

activity to guide network dynamics, we also outline experimental techniques for acquiring data of

neuronal activity. In the last two sections, we present selected brain simulators and describe work

related to simulating n-body problems.

3.1 Synaptic and Structural Plasticity

Several mechanisms shape the neural network in the brain. Synaptic plasticity and structural plas-
ticity are the two dominating phenomena that affect brain connectivity in response to experience

and injury. In general, synaptic plasticity accounts for the change in strength of existing synapses.

According to Hebbian synaptic plasticity [38, 39], the strength of a synapse changes based on the

order of activation of the source (presynaptic neuron) and target neuron (postsynaptic neuron).

In particular, the efficacy of a synapse increases when the source neuron repeatedly fires before
the target neuron. Conversely, synaptic efficacy decreases when the source neuron repeatedly fires

after the target neuron. Additionally, homeostatic synaptic plasticity (synaptic scaling) adjusts the

strengths of all incoming synapses of a neuron with the goal of stabilizing the neuron’s activity at

a desired firing rate [40].

In contrast to synaptic plasticity, structural plasticity involves the mechanisms behind creation

and deletion of synapses. For example, sprouting of axonal boutons and dendritic spines (i.e.,

synaptic contacts on axons and dendrites, respectively) supports the formation of new synaptic

connections between neurons. That is, structural plasticity can connect previously disconnected

neurons, disconnect previously connected neurons, and increase or decrease the number of con-

nections between already connected neurons.

In addition to adjusting strengths of synapses and rewiring connections between existing neu-

rons, the dynamics of the connectome is even further spurred by the death of neurons. Causes

of death include traumatic injuries (injury through external force), stroke (lack of oxygen), neu-

rodegeneration (Alzheimer’s and Parkinson’s disease), and others. With the death of neurons, the

synapses to neighboring healthy neurons are removed as well. In response, the affected healthy

neurons try to form new synaptic connections. Regarding therapies after stroke, studies generally

agree that supporting structural plasticity correlates with improved recovery [41].

In contrast to cell death, even in the adult brain new neurons are generated and integrated into

the architecture of the brain network [42]. Examples for neurogenesis are the hippocampus (func-

tions for memory) and the olfactory bulb (functions for smell). Neurogenesis in the adulthood

might be the solution to the need of continuously incorporating new relevant information from an
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ever-changing world. In comparison to modifying strengths of synapses or adding more synapses

between existing neurons, the integration of newborn neurons into the neural network may sub-

stantially increase the storage capacity of the brain. Given that a neuron processes a multitude of

inputs and adjusts its connections to other neurons in response, the ability of a neuron to store

information may be much greater than that of a single synapse.

In this thesis, we consider a static number of neurons and focus on the scalable simulation of

network dynamics in the brain based on structural plasticity.

3.2 Models of Structural Plasticity

Well-known models that strive to capture structural plasticity include the Compensation Model by

Dammasch et al. [43] and the activity-dependent Neurite Outgrowth Model by van Ooyen and

van Pelt [44]. Based on the terminology in the literature, we call the axonal “plug” of a synapse

presynaptic element or axonal bouton, whereas the dendritic “socket” of a synapse is referred to

as postsynaptic element or dendritic spine.

The Compensation Model is inspired by the Compensation Theory of synaptogenesis by Wolff

and Wagner [45]. According to this theory, a neuron grows postsynaptic elements when its electri-

cal activity is below the target electrical activity and retracts postsynaptic elements when electrical

activity becomes to high. Similarly, electrical activity may also effect the morphology of axons of

the neuron. In contrast to early models of synaptic plasticity used in Hopfield [46] and Willshaw

networks [47], for the first time, the Compensation Model represents synapses as connections be-

tween presynaptic and postsynaptic elements. Those elements grow and shrink independently and

connect randomly to create synapses.

The Neurite Outgrowth Model was developed to simulate the growth of cell cultures. In partic-

ular, neuritic fields of neurons (i.e., axonal and dendritic extensions) are represented by circles,

where the center of a circle denotes the position of a neuron’s cell body. Similarly to the Compensa-

tion Model, when electrical activity is too low, the radius of the circle increases, and when activity

is too high, the radius decreases. Otherwise, when the desired electrical activity is reached, the

circle does not change. If circles overlap, the corresponding neurons are connected bidirectionally

with the extent of connectivity being proportional to the area of overlap.

Unfortunately, according to experimental findings, the Compensation Model as well as the Neu-

rite Outgrowth Model have limitations. In particular, the Compensation Model ignores topology

altogether and thus the distance between neurons is not considered in the process of synapse cre-

ation. On the other hand, the Neurite Outgrowth Model is too restrictive in that neurons always

connect to their direct neighbors before connecting to more distant neurons. These limitations are

addressed in the Model of Structural Plasticity [8], the subject of this thesis, where pre- and post-

synaptic elements are combined to form synapses in a distance-dependent way. A more detailed

motivation of the MSP model based on experimental evidence can be found in chapters of the book

The Rewiring Brain [48, 49].
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3.3 Brain-Connectivity Maps

To analyze the structure and function of the brain, information about the brain’s underlying net-

work is of utmost importance. For example, datasets of neural networks can (i) guide the develop-

ment and facilitate the comparison of computational models of the brain, (ii) support topological

analysis of network structure, and (iii) help to examine functional consequences of network per-

turbations, to improve therapies, and to investigate approaches to prevention of disorders [50].

Additionally, datasets of neural networks are indispensable for brain simulations where a connec-

tivity map specifies synaptic connections between neurons [51, 12].

A neural network can be modeled by a set of nodes (also called vertices) which are connected

through edges. Depending on the level of detail of the network, nodes may represent individual

neurons, groups of neurons, or even complete brain areas. On the other hand, edges can denote

(i) structural, (ii) functional, or (iii) effective connectivity [52, 53]. With structural connectivity,

edges are anatomical connections between nodes in the form of individual synapses or collections

thereof. While being rather static at the timescale of seconds and minutes, structural connectivity

can be dynamic at timescales of hours to days such as during learning and healing. The term

connectome is used to refer to the structural description of the whole brain [50]. In contrast to

physical connections, edges can also model correlations between the activity of nodes and thus

represent functional connectivity. Additionally, when the goal is also to account for the order of

activation between nodes (causality), directed edges can represent effective connectivity. Given

that the MSP model aims at describing the evolution of the connectome, we focus in this thesis on

the structural connectivity of the brain. Brain structure can be described at different spatial scales:

(i) microscale, (ii) mesoscale, and (iii) macroscale [50, 54].

Microscale. The microscopic scale observes the organization of the brain at the level of indi-

vidual neurons and synapses. To the best of our knowledge, the only dataset of a complete con-

nectome at the microscopic level is that of the worm Caenorhabditis elegans [55]. It consists of

302 neurons connected through 7,000 synapses. With current technology, determining brain-wide

connectivity for complex vertebrate brains at microscopic scale is prohibitive [54]. Instead, statis-

tical description is used. However, given the variance between individual brains, correspondence

cannot be assumed at the level of all neurons and synapses. Methods for obtaining microscale

brain-connectivity maps are primarily based on light and electron microscopy [56].

Mesoscale. In comparison to the microscopic level, a more coarse-grained view with less variance

between individual brains is provided at the mesoscopic level where ensembles of neurons of the

same type or sharing common features are considered as a unit [54]. Connectivity is then described

between those units. Similarly to the microscale, techniques to obtain mesoscopic connectivity data

are based on microscopy. Here, examples include serial block-face electron microscopy [57] and

serial two-photon tomography [58]. An open-access database [59] with mesoscopic connectivity

data of the mouse brain is provided by the Allen Institute for Brain Science.

Macroscale. Finally, at the macroscale, anatomically distinct brain regions and inter-regional

pathways in the form of fiber bundles define the structure of a neural network. To obtain the
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structural connectivity of a brain region’s fiber tracts, traditional invasive methods inject dyes into

the brain region and analyze their dispersion in brain tissue [60]. Recent noninvasive techniques

use magnetic resonance imaging (MRI) such as diffusion tensor imaging (DTI) or diffusion spec-

trum imaging (DSI) [60, 61]. The Human Connectome Project provides freely available datasets

of connectivity maps at macroscopic scale [62].

The focus of this thesis is on simulating structural plasticity with MSP where the resulting con-

nectivity maps describe the structure of the brain network at the microscopic scale with individual

neurons and synapses.

3.4 Measuring Neuronal Electrical Activity

In comparison to structural connectivity at the microscale, activity data of neurons is less difficult

to obtain. The governing principle of the MSP model is that neurons strive to maintain their desired

level of electrical activity. To obtain firing rates of neurons as parameter for simulations with MSP,

different experimental approaches exist [63]. Examples for noninvasive measurements include

functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). On the other

hand, invasive techniques comprise multielectrode array, electrocorticography (ECoG), and depth

electrodes.

3.5 Brain Simulators

Similarly to biological experiments at different spatial scales of the brain, brain simulators have

been developed to investigate observed phenomena in the brain with the help of mathematical

models. While some simulation frameworks such as the NEURON simulation environment [64]

are primarily designed to predict the behavior of individual neurons with complex anatomical

and biophysical properties, others focus on ensembles of neurons and their dynamics in large

neural networks. In this respect, the MSP model is targeting simulations of large brain networks.

Today’s largest brain simulations contain about 109 neurons. C2 [51, 13] and NEST [21, 65]

are examples of state-of-the-art neural network simulators of spiking neurons that are able to

reach such a scale. Both require the user to describe the connectivity between neurons before the

simulation starts. Although the connectivity map remains static during simulation, the strength

of the synapses may change over time according to rules of synaptic plasticity (Section 3.1). In

addition to simulation software, custom computer architectures for brain simulation have been

developed as well. For example, the SpiNNaker system [66] is designed to simulate large-scale

networks of spiking neurons at biological real time.

3.6 n -body Simulation

An example of using n-body simulation in brain research has been presented by Prasad et al. [67],

where cortical brain regions are represented as particles with mass proportional to the region’s

volume. Particles attract each other with a force proportional to the strength of the connectivity
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between the regions they represent. The connectivity between regions was derived from diffusion

imaging data from patients with Alzheimer’s disease and healthy subjects. Based on these param-

eters, the authors use a gravitational n-body simulation to obtain a connectivity matrix between

brain regions. This matrix is then examined with the goal of distinguishing between patients and

healthy subjects. Our work differs from this approach in that we do not perform an n-body sim-

ulation. Instead, we adopt ideas of hierarchical n-body methods to reduce the complexity of a

structural plasticity model.

According to Pfalzner and Gibbon [68], the first n-body simulations calculated all direct particle-

particle interactions for systems of molecules, which resulted in the term molecular dynamics.
Today, however, molecular dynamics refers to a wider range of different physical systems. In addi-

tion to molecular dynamics, n-body methods are also applied in areas such as astrophysics, plasma

physics, and fluid dynamics. While in astrophysical simulations particles represent large-scale stel-

lar structures such as stars and galaxies that interact through the long-range gravitational force, at

the other end of the spatial scale particles may represent atoms when investigating the behavior

of molecules based on long-range Coulomb and short-range Lennard-Jones potentials [69]. Note

that the physical concepts of force and potential are directly related to each other. For this reason,

we focus on potentials below. Given that short-range potentials rapidly decay with increasing dis-

tance between particles, every particle needs to interact with only a small number of its nearest

neighbors, which is much smaller than the total number of particles in the system. On the other

hand, slowly decaying long-range potentials such as the gravitational potential and the Coulomb

potential cannot be easily truncated with a cutoff scheme because the error would become too

large. Hence, simulating long-range interactions in a physical system with n particles requires

calculations for all pairs of particles, which results in the computational complexity O(n2).

To overcome the scalability limitation of the quadratic complexity of long-range gravitational

interactions, hierarchical n-body methods were first developed in the field of astrophysics. To-

day, the most prominent hierarchical particle methods are Barnes-Hut [18] and the Fast Multi-

pole Method (FMM) [19], which reduce the complexity of long-range interactions from O(n2)
to O(n log n) and O(n), respectively. Examples for implementations of Barnes-Hut are the two

codes PEPC [70] and 2HOT [71]. PEPC has been used to efficiently simulate long-range Coulomb

potentials in systems with about 64 · 109 particles on 458, 752 cores of an IBM Blue Gene/Q sys-

tem [72]. In gravitational simulations, 2HOT was able to calculate mutual gravitational attractions

for 1012 particles on 262,144 cores of a Cray XT system. Extreme-scale results have also been pre-

sented for FMM. Here, simulations of the Coulomb potential were performed for 3 · 1012 particles

on 294,912 cores of an IBM Blue Gene/P system [73]. Using 18,000 compute nodes with one CPU

and one GPU each, the PKDGRAV3 code [74] simulated gravitational interactions of 8 · 1012 parti-

cles with a variant of FMM. Similarly to dedicated computers for brain simulation, special-purpose

systems have been designed to accelerate the solution of n-body problems. Examples include the

GRAPE [75] series of parallel computers for gravitational simulations and the Anton system [76]

for accelerating molecular dynamics n-body problems.

The concepts of long-range potentials between particles and distance-dependent probability for

pairs of neurons are similar enough to make the adaptation of n-body methods [18, 19] to our

problem a realistic option. Another motivation is that the data locality and approximation of ad-
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vanced n-body methods seem to better mimic biological behavior in the brain. In particular, while

“actively” trying to find a vacant dendrite, a neuron’s vacant axon has only partial knowledge of

other available neurons. Our choice of n-body methods for adaptation is the Barnes-Hut algorithm,

a decision we will outline in Chapter 5.
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4 The MSP Model of Structural Plasticity
We discuss in this chapter the Model of Structural Plasticity (MSP) [8], its biological significance,

and the model parameters that we use for all simulations in this dissertation. Before we describe

MSP in detail, let us briefly review the basic components involved in the dynamics of the brain

network.

In the brain, nerve cells (neurons) form a neural network by connecting to each other through

synapses. While a single neuron grows multiple dendrites, it develops at most one axon, which

is split up into several branches towards its end (see Figure 4.1). Typically, a synapse is created

when an axonal bouton (“plug”) of one neuron connects to a dendritic spine (“socket”) of another

neuron. According to their names, axonal boutons denote synaptic contact points that grow on

axons, whereas dendritic spines are protrusions on dendrites.

MSP is a network model of the brain at the microscopic scale of individual neurons and synapses.

In MSP, neurons create and delete synapses according to their electrical activity. The electrical

activity of a neuron denotes the frequency at which it generates electrical signals (spikes) and sends

them to its directly connected neighbors. When activity is too low, a neuron starts to grow axonal

and dendritic synaptic elements (synaptic contact points). Conversely, when electrical activity is

too high, synaptic elements shrink and are deleted. A synapse is a directed connection between

two neurons. To create a synapse, an axonal synaptic element of the source neuron connects to

a dendritic synaptic element of the target neuron. Now, every time the source neuron fires an

electrical spike, the newly created synapse transmits a signal to the target neuron. Depending on

the type of the source neuron, the signal may either increase or decrease the electrical activity of

the target. When a synaptic element previously bound in a synapse is deleted, the corresponding

synapse is removed as well. Based on these rules, MSP simulates the structural dynamics of the

neural network in the brain in an activity-dependent fashion. MSP consists of three basic steps:

(i) update of electrical activity, (ii) update of synaptic elements, and (iii) update of connectivity,

which are explained below.

4.1 Update of Electrical Activity

The electrical activity of each neuron is continuously calculated on a millisecond timescale. Intra-

cellular calcium concentration is updated according to the electrical activity. As calcium concen-

tration and average firing rate are linearly proportional, the model uses calcium concentration to

guide the growth dynamics of the synaptic elements.

We use a Poisson spiking neuron model to determine when a neuron generates an electrical

signal. The firing rate of a neuron decreases exponentially over time by a constant decay factor

until it reaches a specified minimum. Spikes received through synapses from neighboring neurons

(synaptic input) affect the firing rate. In particular, a spike from an excitatory neuron increases

whereas a spike from an inhibitory neuron decreases the firing rate. Based on its firing rate r,
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Figure 4.1: A neuron consisting of cell body, several dendrites, and one axon on the right that splits
up into multiple branches at the end.

a neuron fires in a time step and sends a spike to all its neighbors with probability r · d t, where

time step size d t = 1 ms. After generating a spike, the neuron enters a refractory phase for

4 ms, in which it cannot fire anymore. Based on electrical activity, a neuron’s intracellular calcium

concentration is calculated as follows:

dCa
d t
=

(

−Ca(t)
τ + β if neuron fires

−Ca(t)
τ else

(4.1)

τ is the calcium decay constant and β is the calcium intake constant denoting how much calcium

is accumulated every time the neuron fires. The calcium concentration is then used to guide the

growth of synaptic elements.

4.2 Update of Synaptic Elements

The detailed morphology of synaptic elements is abstracted and represented only by the number

of synaptic contacts on axons (axonal boutons) and dendrites (dendritic spines). We call these

contacts collectively synaptic elements. A homeostatic rule determines for each neuron when

axonal and dendritic synaptic elements are created or deleted. If the calcium concentration is

below the desired set point, they are created. If it is above the set point, they are deleted. Creation

or deletion proceeds until the desired level of electrical activity has been reached. The homeostatic

rule is described through a Gaussian-shaped growth curve. Figure 4.2 depicts the growth curve in

our simulations.

More formally, the growth curve equals

dz
d t
= ν

�

2 exp

�

−
�

Ca(t)− ξ
ζ

�2�

− 1

�

(4.2)

with

ξ=
η+ ε

2

ζ=
η− ε

2
p
− ln0.5

.
(4.3)
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Figure 4.2: Homeostatic growth curve which determines the creation and deletion of synaptic ele-
ments based on a neuron’s calcium concentration. The curve reflects the parameters in our simu-
lations with ν = 10−5, η = 0, and the desired calcium concentration (set point) ε = 0.5. A neuron
grows synaptic elements until the set point is reached. When calcium concentration exceeds the
set point, synaptic elements are deleted. Creation and deletion is a continuous process, where a
neuron’s number of synaptic elements is represented by a real number x . The actual number of
synaptic elements available is the greatest integer bxc that is less than or equal to x .

Here, ν denotes the growth rate and η is the minimum amount of calcium concentration a neuron

requires to start growing synaptic elements. The set point of a neuron’s calcium concentration is

denoted by ε.

4.3 Update of Connectivity

At discrete points in time, existing synapses are deleted and new synapses are formed, depending

on the current number of synaptic elements. A synapse is deleted after either the participating

axonal or dendritic element has been removed during the update of synaptic elements. If a synapse

is removed, a synaptic element that was previously bound in this synapse becomes vacant again. If

a source neuron with a vacant axonal element is assumed, then the target neuron which the axonal

element will try to connect to is determined by considering every neuron as a potential target and

calculating the probability of establishing a connection. The probability depends on the distance

between source and target, and the number of unbound dendritic elements available at the target.

Given the three-dimensional position (x , y, z) of a source neuron j and a target neuron candidate i,
we can evaluate a Gaussian-shaped kernel:

Ki j = exp

�

−
(x j − x i)2 + (y j − yi)2 + (z j − zi)2

σ2

�

(4.4)

The numerator in the exponent is the square of the distance between source and target neuron.

σ is a simulation parameter that controls the width of the curve. To avoid creating autapses (i.e.,
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Figure 4.3: Distance-dependent kernel function Ki j . The smaller the distance between two neurons
j and i, the larger the value of the function. The width parameter σ is equal to 750.

source neuron connecting to itself), we set Ki j = 0 for i = j. Figure 4.3 illustrates the kernel

function Ki j which we use for our simulations. Ki j is then weighted by a factor wi denoting

the number of vacant dendritic elements at the target neuron. This yields |Neurons| (number of

neurons) values of the form {wi · Ki j | j is source neuron ∧ i ∈ Neurons} for the source neuron j.
The sum of the elements in this set is not necessarily 1. To construct probabilities, all the elements

are finally scaled so that their sum equals 1. Finally, a random number in the interval [0,1] selects

the target neuron out of all candidates. Constructing the probabilities in this way ensures that

the closer the two neurons are, and the more dendrites the target neuron candidate offers, the

higher the probability for the target neuron candidate to be chosen for synapse formation. During

the connectivity update, every vacant axonal element selects a target neuron, as described above.

Note that multiple axonal elements may try to connect to the same target neuron. If the neuron

does not have sufficient vacant dendritic elements, some of the axonal elements are rejected. In

this case of a conflict, they try to find another target neuron during the next connectivity update.

The extent of changes in the neural network is determined by the update of synaptic elements.

As these elements grow rather slowly, the connectivity update occurs only infrequently. That is, a

connectivity time step takes longer than a simulation time step during which the electrical activity

and the number of synaptic elements are updated. Figure 4.4 illustrates the two different time

scales of simulation time steps and connectivity time steps.

4.4 Performance Considerations

A naïve implementation of MSP leads to the following execution times. Steps 1) and 2) consider

every neuron and thus run in O(n). In step 3), every neuron is examined to decide which of its

synapses have to be deleted. As the number of synapses per neuron is limited through a con-

stant (due to biological reasons), synapse deletion runs in O(n). However, for synapse creation in

step 3), probabilities are calculated for all pairs of neurons, which takes O(n2). This worst case

occurs in the early phase of network creation where no synapses exist yet and all neurons still
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Simulation
time step

Connectivity
time step

Biological simulation time

Figure 4.4: Different time steps in MSP. During a simulation time step, electrical activity and the
number of synaptic elements of every neuron are updated. During a connectivity time step,
synapses are created and deleted between neurons. Connectivity time steps are larger and thus
executed less frequently than simulation time steps. In all simulations in this thesis, a single con-
nectivity time step takes 100 ms biological time and corresponds to 100 simulation time steps of
length 1 ms biological time each.

have vacant axonal elements available. Figure 4.5a depicts this situation. Note that the number

of synapses created during the first 5 · 105 ms is in the order of the number of neurons and much

higher than during the remainder of the simulation. The peaks in the plot appear because we

apply the same growth curve to all synaptic elements. That is, after all axonal elements have been

bound in synapses during connectivity updates, new axonal elements grow and become available

for all neurons at about the same time. Figure 4.5b illustrates the course of the amount of synapses

deleted during the simulation. The corresponding average calcium concentration of the neurons

is shown in Figure 4.6. The calcium concentration oscillates until 106 ms because of the peaks

of the number of synapses created. In particular, more excitatory synapses cause more excitatory

synaptic input and thus the calcium concentration, which is directly proportional to the firing rate,

increases. Especially if major structural changes occur, that is, at the beginning or after introducing

lesions, synapse creation prevents MSP from being scaled to large neural networks. Thus, reduc-

ing the complexity of MSP’s synapse creation is a prerequisite for simulating larger portions of the

brain.

4.5 Biological Significance

The origins of the MSP model date far back and long before the beginning of using supercom-

puters in neuroscience. In 1986, Dammasch et al. proposed and used the compensation algo-

rithm [43], a very early precursor of MSP, to simulate effects as observed in experiments which are

caused by changes in the firing rate of cervical ganglion cells of rats in response to GABA applica-

tion [77]. Wolff and colleagues anticipated already that changes in electrical activity would have

a morphogenic effect (i.e., formation and deletion of synaptic elements and synapses) on these

neurons [45]. At that time, Dammasch et al. used the compensation algorithm with 30 neurons to

predict the network effects of such local cellular manipulations.

Decades later, Butz and van Ooyen used MSP to explore network reorganization in the visual

cortex of adult mice after focal retinal lesions [8]. They could show that the need of neurons to

maintain firing rate homeostasis is the driving force for network reorganization and can account for
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(b) Number of synapses deleted over time

Figure 4.5: The number of synapses MSP (a) creates and (b) deletes over time for 105 neurons. A
“×” sign marks the number of synapses created or deleted at a certain point in time during the
simulation. Every “×” sign corresponds to 100 ms simulated time. To save simulation time, every
neuron is initialized with one vacant axonal element and two vacant dendritic elements. Otherwise,
we would have to wait until synaptic elements have grown to form synapses. At the beginning, no
synapses exist and the network is empty. Neurons start forming synapses to reach their desired
level of electrical activity. From about 3 · 106 ms on, the neurons enter equilibrium and only a few
synapses are being formed. To maintain the desired level of electrical activity, some synapses are
also deleted as the simulation progresses.

events of brain repair over a time course of up to three months. In addition, they found remarkable

similarities with network reorganization after focal stroke even in humans [78].
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Figure 4.6: Average calcium concentration of 105 neurons over time. The calcium concentration
and the results in Figure 4.5 are obtained from the same simulation. Every “×” sign corresponds to
500 ms simulated time. From about 3 · 106 ms on, the neurons reach the average calcium set point
of 0.5 and enter equilibrium.

However, to bridge the gap between a microscopic description at the cellular level and a macro-

scopic description of anatomical fiber tracts, it is imperative to increase the neuron count in simu-

lations of MSP significantly. Unfortunately, MSP does not scale well and sufficient neuron numbers

cannot be modeled. By lifting the scalability limitation of MSP, it becomes for the first time possible

to simulate large or even full-scale neural networks with structural plasticity. Ultimately, through

simulation, it paves the way for addressing anatomically important questions on the dynamics of

network reorganization after brain damage.

4.6 Simulation Parameters

Based on the description of MSP above, Table 4.1 lists the model parameters that we use for all

simulations in this dissertation. One simulation time step corresponds to 1 ms biological time.

All simulations contain two neuron populations where 80% are excitatory and 20% are inhibitory

neurons. Both populations use the same parameter set as depicted in Table 4.1. That is, all neurons

strive for the same set point of calcium concentration ε. Additionally, the same growth curve is

applied to all synaptic elements. That is, excitatory and inhibitory axonal elements as well as

excitatory and inhibitory dendritic elements grow and shrink according to identical rules.

Note that according to our choice of the growth rate, it takes 10 s for a new synaptic element

to grow. This is much faster than experimentally observed in the brain [48]. Here, the biological

timescale corresponds to several hours and days. However, running a simulation for hours of

biological time to grow single synaptic elements is not practical. Additionally, using a faster growth

rate in our simulations does not affect the final wiring diagram. It only reduces the time waiting

for synaptic elements to become available for synapse creation.
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Table 4.1: Simulation parameters in this dissertation. Parameters are ordered according to the steps
in MSP. The parameters apply to all simulations.

Parameter Value

Percentage of excitatory neurons 80%

Percentage of inhibitory neurons 20%

Simulation time step 1 ms

Update of Electrical Activity

Calcium intake constant β 0.001

Calcium decay constant τ 5,000

Refractory phase length 4 ms

Update of Synaptic Elements

Growth rate ν 10−5 elements per ms

Minimum calcium concentration η to

grow synaptic elements

0

Calcium set point ε 0.5

Update of Connectivity

Connectivity time step 100 ms

Width of Gaussian-shaped kernel σ 750

In contrast to the static parameters, other simulation parameters change and are explicitly men-

tioned in the corresponding sections. These parameters are, for example, the number of neurons,

the biological simulation time, the dimensions of the simulation domain, or the precision parame-

ter of our approximation algorithm.

4.7 Algorithm Summary

The execution flow of the MSP algorithm is summarized in Figure 4.7. We call the sequential

version sequential original algorithm and the parallel version parallel original algorithm. Let us first

focus on the sequential version before we describe its parallel counterpart.

Sequential original algorithm. Figure 4.7a outlines the sequential MSP algorithm. Before the

algorithm enters the main loop of the simulation (line 3), it creates a network without synapses

and initializes the number of synaptic elements of every neuron. The steps within the main loop are

executed in every iteration. The algorithm terminates when the neurons reach the desired average

level of calcium concentration (line 3). Note that termination does not depend on changes in

the structure of the neural network, as this is the result that we are investigating. Moreover,

depending on simulation parameters such as calcium increase when a neuron fires, growth curve

of synaptic elements, and time between connectivity updates, network dynamics might not even

reach equilibrium [11].

During the update of electrical activity (line 4), three steps are performed for every neuron:

(i) receive spikes (electrical signals) from other neurons connected to it through synapses, (ii) cal-
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1: Create empty network without synapses . O(n)
2: Initialize number of synaptic elements per neuron . O(n)
3: while Desired average calcium concentration not reached do

4: UPDATEELECTRICALACTIVITY . O(n)
5: UPDATESYNAPTICELEMENTS . O(n)
6: if Connectivity time step completed then

7: UPDATECONNECTIVITY { . O(n2)
8: Delete synapses & update network . O(n)
9: Create synapses {

10: Find target neuron for every vacant axonal element . O(n2)
11: Update network . O(n)
12: }

13: }

14: end if

15: end while
(a) Sequential original algorithm

1: Create empty network without synapses . O(1)
2: Initialize number of synaptic elements . O(n/p)
3: while Desired average calcium concentration not reached do

4: UPDATEELECTRICALACTIVITY . O(n/p)
5: UPDATESYNAPTICELEMENTS . O(n/p)
6: if Connectivity time step completed then

7: UPDATECONNECTIVITY { . O(n2/p+ n)
8: Delete synapses & update network . O(n/p)
9: Create synapses {

10: Gather all neurons from other processes . O(n)
11: Find target neurons for vacant axonal elements . O(n2/p)
12: Update network . O(n/p)
13: }

14: }

15: end if

16: end while
(b) Parallel original algorithm

Figure 4.7: Original MSP algorithm: the simulation flow of (a) the sequential and (b) the parallel
original MSP algorithm. The time complexity of each step is shown on the right. Simulation pa-
rameters appear in italics. n denotes the number of neurons. The simulation terminates when the
neurons reach the desired average calcium concentration. The connectivity update is only executed
when a connectivity time step is completed. (b) p denotes the number of processes. It is explicitly
stated when a step is performed for all neurons of the simulation. Otherwise, the step processes
local neurons only.
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culate electrical activity and calcium concentration based on the spikes received, and (iii) deter-

mine if neuron fires a spike by considering its updated electrical activity and send the spike to its

directly connected neighbors. Spikes generated in the current iteration are received by the neu-

rons in the next iteration. During the update of synaptic elements (line 5), every neuron creates

or deletes synaptic elements based on the updated calcium concentration. As can be seen, the

connectivity update (line 7), which depends on the number of synaptic elements, has quadratic

and thus the greatest complexity. Given that synaptic elements grow much slower compared to

the frequency at which neurons fire, the connectivity update is run only when a connectivity time

step is completed (line 6) and thus not in every iteration. Note that this parameter should not be

too large as this might lead to high oscillations in connectivity and thus electrical activity of the

neurons [11]. However, as our experimental results in Chapter 8 show, even a single connectivity

update using the parallel version of the original MSP algorithm (Figure 4.7b) takes as long as about

40 min for 106 neurons on the Lichtenberg compute cluster, which makes it the clear bottleneck.

This is why we must update the connectivity more quickly.

Parallel original algorithm. Our parallel version of the original MSP is based on the message-

passing programming model (Section 2.7 in Chapter 2), which is the reason why we use terms

such as processes and local in the description below. In the parallel version of the original MSP

(Figure 4.7b), the workload of n neurons is equally distributed over p processes so that every

process simulates n/p neurons. Consequently, every process performs all steps of the sequential

original algorithm for its own subset of neurons only. However, given that for every local neuron

probabilities to connect to every other neuron still have to be calculated, all neurons are replicated

on every process. Replication saves the cost of repeatedly fetching neurons from other processes at

the expense of space complexity O(n) per process. Another difference to the sequential algorithm

is the use of a distributed data structure to represent the neural network. In particular, every

process stores only the portion of the network which contains its own neurons. On every process,

the partial network can be initialized to the empty network in constant time (line 1).

Similarly to the sequential original algorithm, every process executes the update of electrical

activity (line 4) and the update of synaptic elements (line 5) for all its neurons. However, while

updating synaptic elements does not require interprocess communication, processes need to ex-

change spikes for updating the electrical activity because a neuron which receives spikes is not

necessarily located on the same process as its firing neighbors. Interprocess communication is also

performed during the update of connectivity. For example, when a synaptic element bound in a

synapse is removed, the process which owns the source or target neuron at the other end of the

synapse needs to be informed so that it can update its portion of the neural network and increment

its own neuron’s counter of vacant synaptic elements. Accordingly, a process must contact other

processes when its local neurons connect to remote neurons. Furthermore, while trying to find

partners for synapse creation, every process needs access to the current number of synaptic ele-

ments available on every neuron. To ensure that, all processes must gather this information about

all neurons in every connectivity update upfront (line 10). The corresponding communication step

can be performed in time O(log p + n) with a technique which is called recursive doubling [79].

Since every process contains at least one neuron, the total number of processes p is less than or
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equal to the number of neurons n. Consequently, O(log p + n) = O(log n+ n) and the worst-case

time complexity of gathering all neurons in a connectivity update is O(n).
Given that every process only needs to find target neurons for its own n/p neurons (line 11),

the corresponding complexity equals O(n/p · n) = O(n2/p), which is a factor p less than in the

sequential original algorithm. Although parallelization of the sequential algorithm reduces the

time of one connectivity update from O(n2) to O(n2/p + n), the time is still dominated by the

square of the number of neurons n2. For example, when we double the number of neurons from n
to 2n, the term n2/p becomes (2n)2/p = 4n2/p. Consequently, the number of processes must grow

by a factor 4 to compensate for a twofold increase of the problem size. This example demonstrates

the urgent need to overcome the scalability limitation by the quadratic complexity of MSP.
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5 A Scalable Algorithm for MSP
We shall now describe our scalable approximation algorithm for MSP, an adaptation of the Barnes-

Hut n-body method to our specific problem. After presenting the algorithm, we analyze the error

which is caused by our approximation of the original MSP.

In the following, we consider neurons as particles in n-body methods. However, we note that

the roles source and target do not equally apply to particles and neurons. In particular, in n-body

methods, source particles exert force on a target particle and the new position of the target particle

is determined in every time step. That is, calculations are performed for target particles. On the

other hand, in brain simulation, a neuron that tries to find a partner for synapse creation is called

source neuron because it contains the axon (i.e., the origin) of the synapse. The partner selected

for synapse creation is called target. In contrast to particle methods, calculations are performed for

source neurons. Consequently, source and target neuron in brain simulation correspond to target
and source particle in particle simulation, respectively.

Although the O(n) complexity of FMM is lower than the O(n log n) complexity of Barnes-Hut, we

chose Barnes-Hut because FMM is harder to tailor to our needs and to implement. One noteworthy

difference is that FMM groups not only source but also target particles and calculates interactions

between groups. However, synapse creation is initiated by an individual source neuron with a va-

cant axonal element. When forming a group of source neurons in FMM, it must be ensured that the

individual source neuron can use the group’s probabilities of establishing connections with other

(groups of) target neuron candidates. Recalculating these probabilities when the source neuron is

finally processed, or storing them for re-use, could harm the scalability of the FMM. Figure 5.1b

depicts an example for two groups of neurons. The black circles represent a group of source neu-

rons, while the gray circles form a group of distant target neuron candidates. According to the

approach of FMM, only one probability of creating a synapse between the two groups of neurons

is calculated (black solid line). This value is then used as the probability of each source neuron of

establishing a connection to the group of target neuron candidates. Typically, for a given group of

source neurons, multiple groups of target neuron candidates exist. The corresponding probabili-

ties should then immediately be used for all source neurons in the same group. Recalculating or

storing them for later use may impair the scalability of the FMM.

In comparison to FMM, the Barnes-Hut method groups only target neurons, which more closely

matches our problem (see Figure 5.1a). Moreover, it was unclear whether adapting hierarchical

n-body methods for MSP would provide approximation techniques which are accurate enough to

resemble exact networks of MSP. The FMM appeared too complex for this exploration. Finally,

it was unsure whether the superior scalability and thus the additional complexity of FMM may

ultimately be needed, given that the number of neurons in the human brain (1011) is the largest

problem that our algorithm will ever be required to handle efficiently. For these reasons, we believe

that following the design philosophy of the simpler Barnes-Hut algorithm is a reasonable choice.
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(a) Barnes-Hut: target neu-

ron candidates are grouped

(b) FMM: source neurons

and target neuron candi-

dates are grouped

Figure 5.1: Approaches of different n -body methods. Two ensembles of neurons are depicted.
Black circles represent source neurons, whereas gray circles are target neuron candidates. Every
solid black line denotes a probability calculation. (a) Barnes-Hut groups target neuron candidates.
(b) FMM groups source neurons and target neuron candidates.

Calculating the probabilities for creating synapses is the most time-consuming part of MSP. Sim-

ilarly to Barnes-Hut, we combine distant neurons into groups whenever possible instead of consid-

ering them individually. Neurons in the same group have a similar distance to the source neuron.

We represent a group of neurons through a virtual neuron whose position is a linear combina-

tion of the positions of the group members. Weight factors position the virtual neuron closer to

neurons with many vacant dendritic elements. The number of vacant dendritic elements of the

virtual neuron is the sum of vacant dendritic elements present in the entire group. This approach

resembles the concept of the center of mass in gravitational versions of the Barnes-Hut algorithm.

Only neurons close to the source neuron are considered individually because they differ more in

their relative distance to the source neuron. Otherwise, the probability error, caused by using the

averaged position of the virtual neuron, could become too large. Figure 5.2 shows an example.

Neuron 2 is too close to the source neuron and hence not considered as part of a group. Below,

we explain the three steps of our algorithm: (i) tree construction, (ii) tree update, and (iii) target

neuron selection.

5.1 Tree Construction

Similarly to the Barnes-Hut algorithm, we start by forming a tree of neuron groups. However,

compared to particles in an n-body simulation, our neurons do not move. Thus, the tree is created

only once at the start of the simulation. The tree construction proceeds as follows: Given a cube

that contains all neurons in our simulation domain, we create a spatial tree representation of the

domain step-by-step. If the domain contains more than one neuron, we subdivide it into eight

cubical subdomains of equal size. Each of the eight subdomains is then recursively subdivided if it

contains more than one neuron. The recursion ends when every subdomain contains at most one
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Figure 5.2: A two-dimensional example of grouping neurons. Neurons 3-6 and 7-8 are in the same
respective squares. They form two groups. The length of their squares is denoted by l, which can
be seen as the spatial extent of the group. The two groups are represented by a virtual neuron
(black solid circle). The source neuron is neuron 1. Instead of considering all individual neurons as
target neuron candidates, grouping reduces the work at this stage to considering only two virtual
neurons and two normal neurons (neuron 2 and the source neuron itself). To avoid autapses, the
source neuron’s probability is set to zero. A dashed line depicts the distance d from the source
neuron to the other neurons under consideration, which are neuron 2 and the two virtual neurons.

neuron. As a result, we obtain an octree (i.e., a tree with at most eight children per node) with

the root representing the cube containing all neurons. Its children are the eight subdomains that

it was divided into and so on. Every leaf in the tree represents a single neuron, every inner node

represents a virtual neuron in its subdomain. This hierarchy of subdomains defines the groups of

neurons that we need. For ease of illustration, we have used two-dimensional examples in our

figures. In comparison to three dimensions, we have subdivided a domain into four squares and

the resulting tree is a quadtree (i.e., a tree with at most four children per node). Figure 5.3 shows

the final subdivision of a domain and the resulting tree.

The depth of the tree depends on the distribution of the neurons. The closer neurons are located

to each other, the more domain subdivisions are required and the tree depth could in principle

grow indefinitely [80]. Fortunately, biological constraints ensure that neurons are not positioned

at purely arbitrary distances from each other within the brain. For example, the diameter of the

soma (cell body) of neurons determines the minimum distance between neurons. In general,

neuron densities vary depending on the brain region and the cortical layer. In this work, we

consider a high density of neurons such as in layer 5A of the rat cortex [81], where the average

distance between neurons is about 26 µm. Let us analyze how this translates into the tree depth.

We assume that a cube with edge length L contains all neurons of the simulation. Let the smallest

distance between any two neurons be s. How often must the cube be recursively subdivided until

all neurons belong to separate subdomains? The smallest subdomain containing two neurons with

minimum distance s has edge length e = s/
p

3. Figure 5.4 illustrates the smallest subdomain in

two and three dimensions. To calculate edge length e, we consider the Euclidean distance between

two closest neurons. Given that the distance s between these neurons is already known, we obtain

the equation

p

e2 + e2 + e2 = s. (5.1)
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Figure 5.3: A two-dimensional tree-construction example. On the left, we see the subdivision of
the simulation domain. On the right, we see the resulting tree. Neurons are numbered from 1 to 8.
The inner nodes in the tree are virtual neurons, while the leaves are real neurons belonging to their
subdomains.

s
2

s
3

Figure 5.4: The smallest subdomain containing two neurons with minimum distance s in two (left)
and three (right) dimensions. Black circles depict neurons and the fractions denote edge lengths.

Solving for e yields
p

3e2 = s
p

3e = s

e = s/
p

3

(5.2)

Now, we can rephrase the question: How often must the cube be recursively halved until subdo-

mains with edge length less than s/
p

3 are obtained? To answer this question, we need to find the

smallest k which satisfies L/2k < s/
p

3. Solving for k yields L
p

3/s < 2k, and finally

k =

�

log2
L
p

3
s

�

. (5.3)

Note that k grows when the length L of the cube increases, or the minimum distance s between

neurons decreases. For example, the average length of the human brain is about 20 cm. We believe

that the average distance of 26 µm between densely packed neurons in the rat cortex is also valid

for the human brain. Using these biological constraints and assigning L = 20 cm and s = 26 µm

yields:

k =

�

log2
20 · 10−2 ·

p
3

26 · 10−6

�

≤ 14 (5.4)
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The result tells us that, under the above assumptions, a cube containing all neurons of the human

brain is at most 14 times recursively subdivided until every neuron belongs to a separate subdo-

main. Consequently, the maximum depth of the tree would be 14. In practice, the maximum length

of any simulation domain will most likely not exceed the length of the human brain. Moreover, the

smallest distance between neurons in the human brain is not expected to be much smaller than

s = 10 µm [82], as the lower bound is the diameter of the neuron’s cell body. For s = 10 µm, tree

depth k ≤ 16. From these observations follows that

L
p

3
s
≈

20 · 10−2 ·
p

3
10 · 10−6

≈ 34, 642= O(n), (5.5)

where n is the number of neurons. Note that 34, 642 is a constant and thus in O(n). Finally, we

can provide an asymptotic upper bound for the tree depth k:

k =

�

log2
L
p

3
s

�

≤ log2 O(n)≤ O(log n) (5.6)

For this reason, we conclude that the depth of the tree is O(log n). As in Barnes-Hut, we create

the tree by successively inserting all neurons into the tree. Since our tree is of depth O(log n), tree

creation takes O(n log n).

5.2 Tree Update

In general, neurons in the mature brain do not move, but the number of their vacant dendritic

elements is subject to change. For this reason, the tree has to be updated before creating new

synapses. For every leaf (i.e., real neuron), we store the current number of vacant dendritic ele-

ments. For every inner node (virtual neuron), we not only update the number of vacant elements

but also the position of its virtual neuron. The number of vacant dendritic elements is simply the

sum of those available on its (direct) children. Let v be a virtual neuron. Then the number of

vacant dendritic elements is

Dv =
∑

i∈Children

Di. (5.7)

The position is a linear combination of the positions of its children and their vacant dendritic

elements. After updating its vacant element count, the x-coordinate of the virtual neuron v is

calculated as

xv = 1/Dv

∑

i∈Children

x i Di. (5.8)

The y- and z-coordinates are obtained in a similar way. We update the information in the tree

bottom-up from the leaves to the root via postorder traversal, which takes time O(n).
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5.3 Target Neuron Selection

After a tree update, we form new synapses by finding a target neuron for every vacant axonal

element. To minimize the number of probability calculations, we already decide at the coarser level

of neuron groups which neurons the source neuron will not connect to and which we therefore do

not need to consider any further. If the source neuron decides to connect to a virtual neuron, we

unfold the group it represents. This makes all its (virtual) constituent neurons visible, from which

we again select one. Every group selection decreases the number of target neuron candidates. The

recursion ends once a single real target neuron has been selected. Selecting a target neuron for a

given source neuron means choosing a path from the root to a leaf. To decide which subdomains

we consider as a whole on the path down the tree, we use the acceptance criterion (AC) of the

Barnes-Hut method. Let d be the distance from the source neuron to the virtual neuron. Let l
denote the length of the virtual neuron’s subdomain. If l/d < θ , we calculate a single connection

probability for the entire subdomain. Otherwise, we unfold it and recursively apply the AC to its

constituent subdomains. Here, θ ∈ [0,1] is a configurable precision parameter that ensures that

subdomains for which we calculate probabilities are distant enough from the source neuron in

relation to their size. Note that a subdomain can be unfolded for two reasons, either because it has

been selected to form a connection or because it does not satisfy the AC.

The reason for using the Barnes-Hut AC is as follows. Neurons in a subdomain that satisfies the

criterion have similar distances to the source neuron. Thus, the distance of their virtual neuron

seems to properly approximate their individual distances to the source neuron. On the other hand,

the neurons in a subdomain that does not meet the AC may show greater relative differences in

their distance to the source neuron. Consequently, their probabilities differ more and a single

virtual neuron would not properly represent all neurons in the group.

Figure 5.5 continues our previous example with neuron 1 being the source neuron. Starting

from the root, the AC is applied. Because the root does not satisfy l/d < θ for its domain, we

need to unfold it. The same is true for its first child. At this point, the recursion stops because both

its children are leaves. The other two children of the root satisfy the AC and remain closed for

now. The gray shaded area marks the first set of nodes for which we now calculate probabilities,

as described in Chapter 4. The difference to the original MSP is that we only consider a subset of

neurons, with some of them being virtual. Based on their probabilities, we select one neuron from

this subset. It is the second child of the root (framed square), a virtual neuron. In the next step

(Figure 5.5b), we unfold the subdomain of the selected neuron and apply the AC to one virtual

neuron and neuron 6. Both satisfy the AC (gray area). Note that a real neuron is trivially accepted

since unfolding is not possible. We calculate the connection probabilities and select one neuron,

which is neuron 6. It is a real neuron and thus the target neuron for source neuron 1. Now, the

selection terminates at this point.

The complexity of the target neuron selection depends on the number of nodes to consider. With

θ = 0, all subdomains are unfolded and we consider every neuron for a given source neuron. That

is, the algorithm is exact and behaves as the original MSP with complexity O(n2). For θ > 0,

we start considering groups of neurons. Here, the complexity depends on the depth of the tree,

which we assume to be O(log n), as previously stated. When randomly selecting nodes on the path
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(b) Step 2

Figure 5.5: A two-dimensional example of target neuron selection in two steps (a) and (b). Neu-
ron 1 is the source neuron. Areas shaded in gray identify the set of (virtual) neurons from which
one must be selected. The selection is framed. In (b), arrows indicate the path from the root to
neuron 6, which is chosen as target neuron.

down from the root to the target neuron, after every selection the depth of the remaining subtree is

reduced in the worst case by one only. That is, we have to perform O(log n) steps (depth of the tree)

until we find a target neuron. To determine the complexity of each step, we follow the argument

of Barnes and Hut for homogeneously distributed particles [18]. In particular, when increasing

the number of neurons, the new additional subdomains not containing the source neuron incur a

certain amount of extra probability calculations. This amount depends on θ but not on the number

of neurons. Consequently, increasing the number of neurons by a constant factor only increases

the number of probability calculations by an additive constant (for θ). That is, the complexity of

each step is O(log n). Therefore, it takes time proportional to O(log2 n) to find a target neuron for

one source neuron. Under the biologically motivated assumption that the tree is of depth O(log n),
the complexity of finding a target neuron for every neuron in one connectivity update is therefore

O(n log2 n).

5.4 Error Analysis

The purpose of this section is now to analyze the error of our approximation algorithm. In Fig-

ure 5.5, the path of subdomains that contain the source neuron (root and its first child) is com-

pletely unfolded until the source neuron is encountered. This is very helpful for avoiding autapses,

as is usually desirable in brain simulations. To avoid autapses, MSP sets the probability of a neu-

ron to connect to itself to zero. However, during the recursive descent, every virtual neuron’s

probability, which depends on the position and number of dendrites, is based on all neurons in its

subdomain. As we have no information about whether or not the source neuron is included in a

particular virtual neuron’s domain, we cannot exclude the source neuron’s contribution from the

virtual neuron. Consequently, the probability assigned to a virtual neuron whose group contains

the source neuron is too high. This is because the zero probability of the source neuron applies

only if it is considered directly and not through a virtual neuron. As a side effect, the selection also

becomes biased towards other neurons in the same domain through the inflated probability of the

source neuron. To eliminate this bias, we define the AC in such a way that the source neuron can
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never become part of a virtual neuron’s domain during probability calculations. We accomplish

this by setting θ ≤ 1/
p

3.

According to the AC, every subdomain with l/d ≥ θ is unfolded, with d again being the distance

from the source neuron and l the edge length of the subdomain. The ratio l/d decreases with

increasing distance d between the source neuron and the subdomain’s virtual neuron. This is

also true for subdomains of different sizes l that contain the source neuron. For those is d =p
l2 + l2 + l2 = l

p
3 the greatest possible distance between the source neuron and the virtual

neuron (in three dimensions). After substituting l
p

3 for d in the fraction l/d, l/d = l
l
p

3
= 1/

p
3

becomes the smallest possible ratio between l and d. As a result, setting θ ≤ 1/
p

3 and defining

the AC as l/d < θ unfolds all subdomains containing the source neuron. Note that 1/
p

3 > 0.5.

That is, setting θ ≤ 0.5 is a practical usage guideline for our algorithm. To achieve the same

behavior in two dimensions, we need to set θ ≤ 1/
p

2.

Let us now discuss how a vacant axonal element of the source neuron selects a target neuron

for synapse creation in the tree. We run a multistage probability experiment in which, starting

from the root, virtual neurons are randomly selected until a real neuron is chosen. Intuitively, this

corresponds to following a path from the root to a leaf as indicated by arrows in Figure 5.5b. The

sample space S (set of all possible outcomes) of the experiment comprises all possible paths from

the root to the leaves (real neurons), one path per neuron. Tree nodes which do not satisfy the

acceptance criterion AC for the source neuron are unfolded and thus do not occur on the paths.

Since the AC depends on the source neuron’s position, every source neuron has its own sample

space.

The tree diagram in Figure 5.6 illustrates the probability experiment with multiple stages for our

example. Neuron 1 is the source neuron whose vacant axonal element tries to find a target neuron.

As can be seen, the diagram omits the virtual parent neuron of the neurons 1 and 2 because it does

not satisfy the AC. The corresponding sample space is S = {1,2, AC3, AC4, AC5, A6, B7, B8}, where

each element is the concatenation of the nodes along the path. For example, AC4 is the path

between the nodes A-C-4. Given that a path is selected only when all nodes on the path have

been selected successively, the probability of choosing path A-C-4 (event AC4) in the example is

P(AC4) = P(A∩ C ∩ 4). Note that a node’s likelihood of being selected in a stage depends on the

nodes selected in previous stages. In our example, node 4 can only be selected in stage three if

nodes A and C were selected in stages one to two. Hence, P(A∩C∩4) = P(A)·P(C | A)·P(4 | A∩C).
In general, before a target neuron tk at depth k in the tree is selected for synapse creation, all

virtual neurons {vi | 0 ≤ i < k ∧ vi satisfies AC} on the path to the target neuron are selected.

This path is of length k. The probability of selecting tk depends on the depth k, the precision

parameter θ , and tk ’s number of vacant dendrites. While depth and precision are constant, the

number of vacant dendrites changes in the update of synaptic elements and thus tk ’s chance of

being selected for synapse creation, too. Based on the concatenated notation of the sample space

above, the probability of connecting to tk is

P(v0 . . . vk−1 tk) = P(v0) · P(v1 | v0) · P(v2 | v0 ∩ v1) · . . . · P(tk | v0 ∩ . . .∩ vk−1). (5.9)

With θ = 0, our approximation method uses the same probabilities as the exact MSP for selecting

a target neuron. In particular, the multistage probability experiment shrinks to one stage where
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Figure 5.6: Tree diagram of the multistage probability experiment for neuron 1. Real neurons are
numbers, virtual neurons are letters. A vacant axonal element of source neuron 1 tries to find a
target neuron for synapse creation. In every stage, a (virtual) neuron is selected. The experiment
terminates once a real neuron is chosen. The children of the node selected in the current stage are
the set of nodes to chose from in the next stage.

probabilities are calculated for all neurons directly without virtual neurons in between. Here, the

error of our approximation becomes zero, while the complexity becomes quadratic. Of course,

an error analysis is supposed to indicate the extent to which the approximated probabilities differ

from the exact MSP. However, it is difficult to determine analytically which effect the error has

on the actual structure of the resulting neural network. Hence, we run simulations with different

precision parameters and analyze their effect on the resulting networks in Chapter 7.

5.5 Algorithm Summary

The execution flow of our scalable MSP algorithm is depicted in Figure 5.7. We call this version

sequential scalable algorithm. Although being similar to the sequential original algorithm in Fig-

ure 4.7a, this algorithm contains major differences regarding the most time-consuming step, the

update of connectivity. In the following, we describe the differences between the two algorithms.

Before our sequential scalable algorithm enters the while loop (line 4) it constructs the tree from

the simulation domain in time O(n log n). This operation is executed only once and thus is outside

of the while loop. In the while loop, the update of electrical activity and the update of synaptic

elements are identical to the original algorithm and run in time O(n) per iteration. For synapse

creation during the update of connectivity, the tree is traversed from bottom to top to calculate

the current number of dendrites and positions of the virtual neurons based on the changes of the

number of dendrites of the real neurons, the leaves of the tree. The tree traversal in line 11 takes

time O(n). Finally, our approximation of MSP is used to find a target neuron for every vacant ax-

onal element in line 12. In comparison to the sequential original algorithm, our sequential scalable

algorithm brings the complexity from O(n2) down to O(n log2 n), which now becomes the overall

computational complexity of the approximated MSP.
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1: Create empty network without synapses . O(n)
2: Initialize number of synaptic elements per neuron . O(n)
3: Construct tree from domain . O(n log n)
4: while Desired average calcium concentration not reached do

5: UPDATEELECTRICALACTIVITY . O(n)
6: UPDATESYNAPTICELEMENTS . O(n)
7: if Connectivity time step completed then

8: UPDATECONNECTIVITY { . O(n log2 n)
9: Delete synapses & update network . O(n)

10: Create synapses {

11: Update tree . O(n)
12: Find target neuron for every vacant axonal element . O(n log2 n)
13: Update network . O(n)
14: }

15: }

16: end if

17: end while

Figure 5.7: Sequential scalable algorithm: the simulation flow of MSP when using our hierarchical
algorithm. The runtime complexity of each step is shown on the right. Simulation parameters
appear in italics. n denotes the number of neurons. The simulation terminates when the neurons
reach the desired average calcium concentration. The connectivity update is only executed when a
connectivity time step is completed.
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6 Implementations of the Scalable
Algorithm

In this chapter, we present two MPI-based implementations of the scalable algorithm. Our first

approach enabled us to simulate neuron counts which are already two orders of magnitude larger

compared to the largest possible simulations of the original MSP (see Section 8.1). However,

the scalability of this simple approach is limited because of the high memory consumption per

process. By eliminating this bottleneck, our second implementation is a truly scalable parallel

implementation of our scalable approximation algorithm of MSP.

6.1 Simple Approach

In our first approach, every process simulates n/p neurons, where p is the total number of pro-

cesses. Although distributing the work of the neurons over all processes is easily achieved, an

efficient distribution of the octree is more complicated (see Section 6.2). Hence, our simple imple-

mentation stores the complete tree and thus all neurons on every process. This simple approach

enabled us already to simulate 107 neurons with our approximation algorithm of MSP. So far, the

largest published simulations of a simplified version of MSP contained 105 neurons [11] (Chap-

ter 1). Figure 6.1 lists the steps performed by every process with their complexity. We call this

version parallel scalable algorithm with replicated tree, since the complete octree is replicated on all

processes. In the following, we focus on those steps which require a more detailed description. Al-

though several of the steps are similar to the parallel original algorithm (Figure 4.7b), we mention

them here again to highlight the difference to our sequential scalable algorithm (Figure 5.7).

Every process maintains a subgraph of the entire neural network with the incoming and outgo-

ing edges (synapses) of its own neurons. Our corresponding graph data structure can be initialized

to the empty network in constant time O(1), as a graph node is only added when it is required for

creating an edge (line 1). Line 3 constructs the tree which contains all neurons in time O(n log n)
before the simulation starts. Similarly to the sequential scalable algorithm (Figure 5.7), every pro-

cess performs the update of electrical activity (line 5) and the update of synaptic elements (line 6)

for all its neurons. However, while updating synaptic elements does not require interprocess com-

munication, processes need to exchange spikes for updating the electrical activity because a neuron

which receives spikes is not necessarily located on the same process as its firing neighbors. Before

a process can update the positions and the number of vacant dendrites of all (virtual) neurons in

the tree (line 12), it needs to gather this information about the neurons belonging to the other

processes (line 11). Given that every process simulates n/p neurons, the time of finding a target

neuron for every vacant axonal element decreases now from O(n log2 n) from the sequential scal-

able algorithm to O(n/p log2 n) (line 13). One iteration of a complete simulation step takes time

O(n/p log2 n+n). In practice, this is the dominant term as a typical simulation executes thousands
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1: Create empty network without synapses . O(1)
2: Initialize number of synaptic elements . O(n/p)
3: Construct tree with all neurons . O(n log n)
4: while Desired average calcium concentration not reached do

5: UPDATEELECTRICALACTIVITY . O(n/p)
6: UPDATESYNAPTICELEMENTS . O(n/p)
7: if Connectivity time step completed then

8: UPDATECONNECTIVITY { . O(n/p log2 n+ n)
9: Delete synapses & update network . O(n/p)

10: Create synapses {

11: Gather all neurons . O(n)
12: Update tree of all neurons . O(n)
13: Find target neurons for vacant axonal elements . O(n/p log2 n)
14: Update network . O(n/p)
15: }

16: }

17: end if

18: end while

Figure 6.1: Parallel scalable algorithm with replicated tree: the simulation flow of MSP for each
process when using our hierarchical algorithm with the replicated tree. The time complexity of
each step is shown on the right. Simulation parameters appear in italics. n denotes the number
of neurons. The simulation terminates when the neurons reach the desired average calcium con-
centration. The connectivity update is only executed when a connectivity time step is completed.
p is the number of processes. It is explicitly stated when a step is performed for all neurons of the
simulation. Otherwise, every process performs operations for local neurons only.

of iterations. Given that every process stores the complete tree and thus all neurons, the space

complexity per process is O(n). This clearly limits the total number of neurons to the memory

available per compute node. To address this limitation, the tree needs to be distributed over all

processes so that every process stores only a portion of the neurons. This approach is discussed in

Section 6.2.

6.2 Distribution of the Tree

Let us now present our implementation with a distributed tree. The main components of the

implementation are: (i) domain decomposition, (ii) assignment of the blocks of the decomposed

domain to the processes, (iii) the distributed tree, and (iv) access to remote tree nodes.

6.2.1 Domain Decomposition

With the aim of distributing the neurons of the simulation domain over all processes, we decom-

pose the domain by recursively dividing it into blocks. For a two-dimensional domain, the blocks
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Figure 6.2: Two-dimensional example of a domain decomposition into blocks and its subdivision
obtained during tree construction. The blocks of the domain decomposition (denoted by thick
lines) are aligned with the subdivisions of the tree construction.

Figure 6.3: Tree corresponding to the subdivision of the domain in Figure 6.2. Tree nodes are only
depicted up to the level of subdomains which correspond to the regular coarse-grained grid of
blocks of the domain decomposition in Figure 6.2. Every triangle represents the subtree below the
tree node (branch node) to which it is attached. Branch nodes are drawn as empty squares.

are squares, whereas blocks are cubes for three dimensions. These blocks are then assigned to the

processes. All neurons inside the same block are stored on and simulated by the same process.

Note that this decomposition is not the same subdivison as obtained during the tree construction

phase of the scalable algorithm (Section 5.1). However, the resulting blocks are aligned with the

boundaries of the subdomains (leaves of the tree) created during the tree construction. Figure 6.2

depicts a two-dimensional example of a simulation domain’s decomposition and its subdivision ob-

tained during the tree construction. The decomposition is a regular subdivision into blocks of equal

size, whereas the tree construction yields subdomains of different sizes because every subdomain

must contain at most one neuron, which results in different numbers of recursive subdivisions.

Note that the blocks of the decomposition resemble a grid on top of the subdomains of the tree.

To create a grid which is aligned with the tree structure, we decompose the domain into a power

of eight blocks for three dimensions (power of four for two dimensions). Here, eight corresponds

to the maximum number of children in an octree (four is the maximum number of children in a

quadtree). This ensures that by assigning a block to a process, this process contains all the neurons

of the corresponding subdomains in the scalable algorithm’s tree. Figure 6.3 illustrates the tree

created for the example domain in Figure 6.2. The tree nodes are only depicted up to the level of

subdomains which correspond to the blocks of the domain decomposition. The Barnes-Hut litera-

ture [83] calls the tree nodes at this level branch nodes. A branch node is a node whose children
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are completely available on the same process. The role of the branch nodes is discussed in more

detail below.

Our domain decomposition exploits that, although organized in layers, neurons are relatively

homogeneously distributed in the brain. This ensures that every block contains about the same

number of neurons. With the goal of equally distributing neurons and thus the work over processes,

blocks are assigned to processes. Nevertheless, the granularity of blocks and thus the smallest unit

of work which can be assigned could be too large. For example, decomposing the domain into

few large blocks could lead to load imbalance between processes whose number of blocks differs

by only one. Reducing the block size and thus increasing the number of blocks can help to better

balance the load between processes. Although simple, our domain decomposition is powerful

enough to enable simulations of 109 neurons, as we will show in Chapter 8. The Barnes-Hut

literature proposes further load-balancing schemes for particle simulations [83, 84, 85], such as

orthogonal recursive bisectioning or the hashed-octree scheme, which could also be adapted to our

brain simulation.

6.2.2 Assignment of the Blocks of the Decomposed Domain

After decomposing the domain into blocks, we assign a set of blocks to every process. Here, the

goal is to equally distribute the number of blocks over the processes while maintaining spatial lo-

cality per process. The equal distribution accounts for balancing the work between processes. The

spatial locality ensures that the blocks of each process are located as close as possible to each other

in the simulation domain. Locality is motivated by the scalable algorithm’s acceptance criterion,

according to which a source neuron calculates probabilities for all target neuron candidates in its

close neighborhood. Neurons outside of this neighborhood are grouped and groups are approx-

imated through virtual neurons, which reduces the number of calculations for distant neurons.

Hence, assigning neighboring blocks to the same process minimizes the number of costly requests

to other processes for retrieving the position and the number of dendrites of non-local (virtual)

neurons.

To determine which blocks are close to each other, we “draw” a Morton curve [86] through

the domain. The Morton curve is a space-filling curve that maps a block’s three-dimensional

(two-dimensional) position in the domain to its one-dimensional position on the curve. Neigh-

boring blocks on space-filling curves are often neighbors in the simulation domain, as well.

Figure 6.4 continues the two-dimensional example and shows the Morton curve through the

blocks of the domain decomposition. The corresponding mapping function of the Morton

curve achieves this by interleaving the binary coordinate values of the block. For example,

let us assume that the three-dimensional position of a block in binary notation has the form

(x2 x1 x0, y2 y1 y0, z2z1z0), where subscripts denote bit positions. The mapping position on the

Morton curve is (z2 y2 x2z1 y1 x1z0 y0 x0). The two-dimensional position (2, 1) of the block marked

in Figure 6.4 is in binary notation (x1 x0, y1 y0) = (10, 01). The Morton-curve mapping yields

(y1 x1 y0 x0) = (0110), which is position 6 on the curve.

To assign blocks to processes, we cut the Morton curve into equally-sized parts and assign each

part to one process. Using the inverse Morton-curve mapping, every process can then quickly
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Figure 6.4: Morton curve which passes through the blocks of the domain decomposition. A number
inside every block denotes the block’s position on the Morton curve. The numbers along the edges
of the domain represent x - and y -coordinates of the blocks. The curve starts at block (0,0) and
ends at block (3, 3). The block with the coordinates (2, 1) has position 6 on the Morton curve.
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Figure 6.5: Assignment of the blocks of the domain decomposition in Figure 6.2 to eight processes.
Each pattern type marks the blocks of one process. The number next to each pattern refers to
the rank of the process which owns the blocks with this pattern. Neighboring process ranks are
assigned neighboring blocks on the Morton curve.

determine the three-dimensional position of its blocks in the simulation domain. This achieves

balanced load while preserving spatial locality. Figure 6.5 shows the assignment of the blocks to

eight processes for our example.

Note that the Morton-curve contains jumps which impairs its spatial locality property, as visible

between position 7 and 8 in Figure 6.4. To reduce a negative impact on the spatial locality of our

block-to-process assignment, those jumps should coincide with the cuts of the curve. Alternatively,

more complex space-filling curves such as the Hilbert curve [87] yield better spatial locality.

6.2.3 The Distributed Tree

By distributing the domain over the processes, every process owns only a subset of the neurons

in the simulation domain. Consequently, processes store only part of the scalable algorithm’s

original tree. We call this part partial tree. The partial tree of every process contains the nodes
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Figure 6.6: Partial tree of process 0. Empty squares denote branch nodes. Every triangle is the
subtree with all (virtual) neurons below the corresponding branch node. Numbers denote the
process ranks of the owners of the tree nodes.

of the original tree from the root down to including the branch nodes. That is, this upper part is

replicated on all processes. In addition, each process expands its own partial tree by adding all

children (i.e., the subtree) of those branch nodes which correspond to the blocks of the domain

assigned to it. Figure 6.6 shows the partial tree on process 0 for our example. Merging the partial

trees of all processes would yield the original tree again. Now, every process has only incomplete

knowledge of the simulation domain. This resembles the real brain where neurons have only

partial knowledge of their environment.

As a result, when a process unfolds a branch node in its partial tree and is not the owner of this

branch node, it needs to know which other process (the owner) to contact to retrieve the branch

node’s children. For the sake of simplicity, we provide this contact information by storing the MPI

rank of the owner in every tree node. Note that only branch nodes owned by remote processes are

labeled with MPI ranks that differ from the own rank. All the remaining nodes in the partial tree

carry the same local rank. In our example, Figure 6.6 shows process 0’s partial tree augmented

with the MPI ranks of the owner of each node.

6.2.4 Access to Remote Tree Nodes

To retrieve tree nodes from other processes, we use MPI’s one-sided communication routines. They

combine the send call on the sender and the receive call on the receiver of traditional two-sided

communication into one call. In this approach, which is called remote memory access (RMA),

the calling process (origin) specifies both the send buffer and the receive buffer. The process

at the other end of the RMA communication is called target. We use MPI RMA passive-target

synchronization as it does not require the target to call any MPI routines. Our choice of MPI’s

one-sided communication model is motivated by the properties of our scalable algorithm: First,

a process does not need to be actively involved when other processes fetch tree nodes from it,

as the corresponding data is already available in memory and does not need to be “prepared”

for transmission (e.g., by copying into a contiguous send buffer). Of course, this assumes an

appropriate data layout in memory. Second, MSP and thus our algorithm focuses on the mature

brain in which neurons do not move, as opposed to moving particles in a particle simulation, for

example.
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However, while real neurons do not move, virtual neurons change their positions. Note that

we calculate the position of a virtual neuron according to the concept of center of mass in its

subdomain, where we use the number of dendrites as mass. Given that the number of dendrites

of real neurons change, a virtual neuron moves according to the spatial distribution of dendrites

in its subdomain. As described in the tree update in Section 5.2, the x-coordinate of a virtual

neuron v is the weighted average of the x-coordinates of the real neurons in v ’s subdomain. Here,

the weights are the numbers of dendrites of the real neurons. Similarly, v ’s y- and z-coordinates

are computed. This calculation considers neurons as particles with evolving mass and ensures that

v remains in its subdomain. Consequently, the edges in the tree do not change, which implies that

the owners (RMA target ranks) of tree nodes are static as well.

From the programmer’s productivity perspective, using RMA for fetching tree nodes from a

remote process avoids additional code complexity. In particular, a process needs to answer an

a priori unknown number of incoming requests for tree nodes and, at the same time, find target

neurons for its own local neurons. To avoid deadlocks, answering remote requests and processing

local neurons should ideally overlap. For example, the Barnes-Hut code PEPC implements this

approach with a dedicated user-level communication thread [70]. With our RMA operations,

this manually implemented communication thread is not needed, as the MPI library transparently

handles the incoming memory accesses.

Finally, MPI RMA operations have also potential to improve performance over two-sided com-

munication by eliminating the need to match send and receive calls. This reduces the amount

of synchronization between processes and allows them to progress more independently of each

other. For example, combining send and receive in one RMA call such as MPI_Get avoids scenarios

where the sender has to wait for the receiver or vice versa. However, RMA operations strongly de-

pend on the progress these operations make in the MPI library after they have been initiated. For

example, an optimized RMA implementation could ensure progress through a dedicated progress

thread internally. Moreover, the network hardware’s support for remote direct memory access

(RDMA) operations, such as available with InfiniBand, could be exploited [88, 89, 90]. RDMA

operations enable data transfers over the network without involving the host CPU of the sender or

receiver. The MPI library on the Blue Gene/Q system on which we evaluate our scalable algorithm’s

implementation with the distributed tree provides a progress thread [91].

In addition to the target rank, the origin of the RMA call needs to specify the memory location

of the tree node to be fetched. We use the absolute memory addresses (pointers) that every tree

node stores of its children (one pointer per child). That is, a tree node labeled with the rank of

its own process contains pointers to locations in local memory, while a tree node labeled with a

remote rank contains pointers to locations in the memory of the remote process. However, how

does a process get the “remote” pointers? As shown in Figure 6.6, every branch node is the root

of a subtree which is completely owned by one process. This is why every process broadcasts the

branch nodes that it owns (i.e., labeled with its own rank) to the other processes. Finally, the

received branch nodes contain the remote pointers.

When a process unfolds a tree node marked as remote, it fetches all children in the same RMA

access epoch. MPI_Win_lock and MPI_Win_unlock respectively start and complete the access epoch

during which we issue up to eight MPI_Get calls to fetch the children. Only after MPI_Win_unlock

6.2 Distribution of the Tree 61



returns, the children are guaranteed to be locally available. For this reason, we have to wait for all

children before we can evaluate the acceptance criterion for any of them and, if necessary, fetch

their children, too. In comparison to the MPI-2 standard, MPI-3 provides two extensions which

could be helpful in our case: First, it allows access epochs to different remote processes at the same

time. Second, the request-based MPI_Rget can be used to complete individual remote reads even

before the access epoch is completed. A combination of these two extensions could help to better

overlap fetching remote tree nodes with processing local neurons.

Note that for finding target neurons, often the same remote tree nodes are used for probability

calculations by several source neurons on the same process. Instead of retrieving the same remote

nodes repeatedly, we store them in a tree-node cache and only issue RMA operations on cache

misses. This helps to reduce the time spent in communication.

To the best of our knowledge, the FLY [92, 93] code for cosmological simulations is the only

Barnes-Hut code at the time of writing which uses MPI RMA. In contrast to our approach, it also

uses RMA operations for the tree construction. In particular, all processes cooperate and build a

single tree structure one level after the other. During the force calculation of the particles, FLY uses

RMA-based work-stealing to dynamically balance the load between processes. The authors of FLY

state that the code contains about 110 calls to MPI_Win_lock and MPI_Win_unlock and 60 calls

to MPI_Put and MPI_Get [93]. Obviously, our approach of using MPI RMA in brain simulation is

more lightweight and strives to reduce code complexity while improving performance at the same

time.

6.2.5 Algorithm Summary

Let us now give an overview of our scalable algorithm’s implementation using the distributed tree

as described above. We call this version parallel scalable algorithm with distributed tree. Every pro-

cess owns about the same number of neurons n/p and performs all the steps for them. Figure 6.7

lists the individual steps with their complexity. Instead of discussing every single step, we focus on

those steps which require further explanation.

Note that the term lower partial tree refers to all tree nodes from the leaves up to including the

branch nodes. On the other hand, the upper partial tree contains the tree levels directly above

the branch nodes up to the root. In line 11, every process updates the positions and the number

of vacant dendrites of the (virtual) neurons in its lower partial tree from bottom to top. Before

the upper partial tree can be updated, the branch nodes owned by other processes need to be

updated with the current information from these processes. This is why in the branch-node ex-

change (line 12), every process sends its own branch nodes and receives those from the other

processes. The branch nodes received from other processes replace their outdated counterparts in

the partial tree (line 12). Now, all branch nodes contain the correct current position and number

of vacant dendrites of their corresponding virtual neuron. Finally, the upper partial tree is updated

up to the root from bottom to top (line 13). At this point, the partial tree of every process reflects

the current state of the neurons in the simulation. The lower partial tree contains n/p neurons and

thus the bottom-up traversal has complexity O(n/p). Similarly, line 13 traverses the upper partial

tree starting from the branch-node level with O(p) branch nodes in time O(p).
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1: Create empty network without synapses . O(1)
2: Initialize number of synaptic elements . O(n/p)
3: Insert local neurons into partial tree . O(n/p log n)
4: while Desired average calcium concentration not reached do

5: UPDATEELECTRICALACTIVITY . O(n/p)
6: UPDATESYNAPTICELEMENTS . O(n/p)
7: if Connectivity time step completed then

8: UPDATECONNECTIVITY { . O(n/p log2 n+ p)
9: Delete synapses & update network . O(n/p)

10: Create synapses {

11: Update lower partial tree . O(n/p)
12: Gather branch nodes & update them in the partial tree . O(p)
13: Update upper partial tree . O(p)
14: Find target neurons for vacant axonal elements . O(n/p log2 n)
15: Update network . O(n/p)
16: }

17: }

18: end if

19: end while

Figure 6.7: Parallel scalable algorithm with distributed tree: the simulation flow of MSP for each
process when using our hierarchical algorithm with the distributed tree. The time complexity of
each step is shown on the right. Simulation parameters appear in italics. n denotes the number of
neurons. The simulation terminates when the neurons reach the desired average calcium concen-
tration. The connectivity update is only executed when a connectivity time step is completed. p is
the number of processes.

The total time of a single simulation step is O(n/p log2 n+ p). With our design of the distributed

tree, the space complexity per process drops from O(n) to O(n/p + p). Note that the additive

term p stems from the branch node exchange between all the processes. However, our practical

results in Chapter 8 do not indicate memory capacity issues even for 256k processes.
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7 Accuracy
Before we evaluate the accuracy of our scalable algorithm in terms of impact of the approximation

on the quality of the results in this chapter, we shall first describe our methodology of analyzing

the network structure of the synaptic connections between neurons. This is the basis for com-

paring networks generated by the original MSP and our approximation algorithm. We introduce

graph topology metrics which quantify the structure of a neural network, followed by two software

frameworks for graph analytics. After that, we outline our solution for analyzing the structure of

neural networks. Finally, we describe the simulation parameters of our experiments before we

present and analyze the accuracy results.

To analyze the structure of a neural network, we model the network of interconnected neurons

as a directed graph G = (V, E) where V is the set of vertices and E is the set of directed edges

between the vertices. For a directed graph, the edges (u, v ) and (v , u) with u, v ∈ V are not equal.

Every vertex v ∈ V represents one neuron in the network, and every directed edge e ∈ E denotes a

synaptic connection from a source to a target neuron. The biological motivation for using directed

edges is that the presynaptic (source) neuron always sends spikes to the postsynaptic (target)

neuron. In addition, we assign a weight w(e) with a weight function w : E → R to every edge e.

The weight of an edge e = (u, v ) from source neuron vertex u to target neuron vertex v is equal to

the number of synapses from source to target. The sum of all edge weights equals the number of

synapses in the neural network. Similarly to synapses, the three-dimensional position of a neuron

is assigned to its corresponding vertex by the function pos : V → R3. Figure 7.1 depicts the graph

representation of a neural network with 5 neurons.

7.1 Graph Topology Metrics

In the following, we describe the metrics which we use to analyze the topology of the graph rep-

resentation of a neural network and provide their computational complexities. Before we discuss

the metrics, let us briefly introduce some definitions on which the metrics are based. We follow

the definitions in the book Introduction to Algorithms [26].

Euclidean distance. The Euclidean distance between two vertices u and v is the spatial separa-

tion in the three-dimensional simulation domain between them:

d(u, v ) =
Æ

(xu − xv )2 + (yu − yv )2 + (zu − zv )2. (7.1)

Here, the three-dimensional position of vertex u is (xu, yu, zu) and the position of vertex v is

(xv , yv , zv ).
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V = {1, 2,3, 4,5}

E = {(1,3), (2, 1), (2, 4), (3,1),

(3,5), (4, 2), (5, 2)}

Figure 7.1: Graph representation of a neural network. The grid helps to illustrate the positions of
the vertices. The corresponding edge weights and vertex positions are shown in Table 7.1

Table 7.1: Edge weights (a) and vertex positions (b) of the graph in Figure 7.1. To improve readabil-
ity, we use two- instead of three-dimensional neuron positions.

(a) Edge weights

Edge e (1,3) (2,1) (2,4) (3, 1) (3, 5) (4, 2) (5,2)
Edge weight w(e) 1 1 2 3 1 1 1

(b) Vertex positions

Vertex v 1 2 3 4 5

Position pos(v ) (3,5) (6,4) (2, 2) (6, 1) (0,0)

Path length. A path from vertex u to vertex v is an alternating sequence of vertices and edges

where every edge connects two successive vertices. We denote a path p from vertex u to vertex v

by u
p
  v . For our weighted graphs, the length l(p) of a path p with vertices v0, v1, . . . , vk equals

the sum of the inverse weights of its edges:

l(p) =
k
∑

i=1

1
w(vi−1, vi)

(7.2)

For example, in Figure 7.1, the path from vertex 3 to vertex 4 contains the vertices in the order

3− 5− 2− 4. The corresponding edge weights on this path are 1− 1− 2. The sum of the inverse

edge weights 1+ 1+ 1/2= 2.5 is the length of the path between vertices 3 and 4.

Shortest-path length. Using the length of a path (Equation 7.2), we can now define the shortest-
path length. Intuitively, the shortest-path length δ(u, v ) from vertex u to vertex v is the minimum

length of all possible paths from u to v . More formally, we define

δ(u, v )

(

min{l(p) | u
p
  v } if there is a path from u to v

∞ else.
(7.3)

If no path between u and v exists, the shortest-path length δ(u, v ) becomes infinite. Finally, a

shortest path from vertex u to vertex v is any path p with length l(p) = δ(u, v ).
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7.1.1 Number of Edges

Although not a measure of topology, the number of edges |E| in a graph indicates how strongly

vertices are connected to each other. By connecting vertices to larger structures, edges are basic

building blocks of graph topologies. Information about the amount of edges in a graph can help to

identify the reasons for particularly high or low values of certain topology metrics. For example, a

large average shortest-path length between vertices could be caused by a small number of edges

in the graph. Since the weight of a directed edge denotes the number of synapses from a source

to a target neuron, the number of edges in the graph representation is not necessarily equal to the

number of synapses in the neural network. Instead, the number of edges counts the neuron pairs

which are connected through at least one synapse ranging from the source neuron to the target

neuron of the pair. That is, a pair of neurons with synapses in both directions is counted twice.

The number of edges in a graph can be determined in linear time O(|V | + |E|) by traversing the

graph and counting every edge.

7.1.2 Average Euclidean Distance

Similarly to the number of edges, this metric is not a traditional graph topology metric. As dis-

cussed above, every vertex is assigned the three-dimensional position of its corresponding neuron.

Based on these positions, the metric considers all directed edges with their respective weights and

multiplies every weight with the Euclidean distance between the two vertices connected through

the edge. Finally, the sum over all edges of products of edge weight and Euclidean distance is

divided by the sum of all edge weights. Formally, the metric is calculated as
∑

(u,v )∈E
w(u, v ) · d(u, v )

∑

(u,v )∈E
w(u, v )

, (7.4)

where w(u, v ) denotes the weight of edge (u, v ) and d(u, v ) the Euclidean distance (Equation 7.1)

between the two vertices u and v . Given that the sum of all edge weights equals the number

of synapses in the neural network, this metric denotes the average Euclidean distance between

the two neurons of a synapse. More intuitively, the reader may assume that Equation 7.4 be the

average length of a synapse in the simulation domain. However, this interpretation is incorrect.

Let us assume two synapses. Although their corresponding source and target neurons have the

same distance, both synapses are not necessarily of the same length. The reason is that axons do

not always grow in a straight line [94] and thus the distance between neurons cannot account for

synapse length. Note that the MSP model does not simulate physical properties of synapses such

as their lengths. Instead, it creates and deletes synapses based on the electrical activity of and

the distance between neurons (Section 4.3). Consequently, information about synapse length is

not available in the simulation. Given that our approximation algorithm of MSP forms groups of

neurons and thus approximates the individual distances between source neuron and target neuron

candidates, inaccuracies could affect the average Euclidean distance in a neural network compared

to the original MSP. To calculate the average Euclidean distance, all edges need to be processed.

Depending on the underlying graph data structure, the computational complexity is O(|V |+ |E|).
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7.1.3 Average Shortest-Path Length

The average shortest-path length in a graph, also known as characteristic path length [95], is based

on the shortest paths between all pairs of vertices. To obtain the lengths of all shortest paths, we

consider all ordered pairs of vertices (i.e., (u, v ) 6= (v , u) with u, v ∈ V ) and calculate the length

of a shortest path between every pair. Finally, we compute the sum of the lengths and divide it

by the total number of paths (vertex pairs). This yields the average shortest-path length for our

weighted directed graphs. Note that this metric assumes that all vertices can reach each other,

which is not always true in a directed graph. Otherwise, it becomes infinite. The formal definition

of the average shortest-path length is

1
n(n− 1)

·
∑

u 6=v∈V

δ(u, v ), (7.5)

where n is the number of vertices in the graph and δ(u, v ) the length of a shortest path from

vertex u to vertex v (Equation 7.3). If no path from u to v exists, δ(u, v ) becomes infinite and thus

the value of the average shortest-path length metric. The number of vertex pairs equals n(n− 1).
This metric accounts for the separation between two neurons in the neural network, which is a

global network property. However, neighboring neurons with several synapses between each other

are considered to be “closer” to each other and thus are more likely to be on a shortest path. To

determine the average shortest-path length for n vertices, we need to find the n(n − 1) = Θ(n2)
shortest paths between all pairs of vertices. Consequently, the lower bound of the time complexity

of this metric is Ω(n2). Unfortunately, the quadratic complexity prevents us from calculating it for

large neural networks. Using a Fibonacci heap, Fredman and Tarjan [96] showed that Johnson’s

algorithm [97] can compute all-pairs shortest paths for a graph with n vertices and m edges in time

O(n2 log n+ nm). Thus, the average shortest-path length can be obtained in time O(n2 log n+ nm)
as well.

7.1.4 Global Efficiency

As discussed in the previous section, the average shortest-path length of a graph is infinite when at

least two vertices cannot reach each other. In contrast, the global efficiency [98] is less restrictive

and can be meaningfully computed in this case. It corresponds to the average inverse shortest-path

length and is defined for n vertices as

1
n(n− 1)

·
∑

u 6=v∈V

1
δ(u, v )

, (7.6)

where δ(u, v ) is again the length of a shortest path between two vertices u and v (Equation 7.3). If

there is no path from vertex u to vertex v , δ(u, v ) becomes infinite and thus the inverse 1/δ(u, v ) =
1/∞ = 0 adds zero to the global efficiency. According to Latora and Marchiori [98], the term

1/δ(u, v ) denotes the communication efficiency between the vertices u and v :

ε(u, v ) =
1

δ(u, v )
(7.7)
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In particular, let us consider a graph as a communication network where all vertices exchange

messages in parallel with each other. The “closer” two vertices are together in the network, the

faster a message arrives at the receiver while interfering less with other messages on its way. This

scenario motivates that communication efficiency between two vertices is inversely proportional

to the length of a shortest path between them. In the worst case, two vertices are not connected

through a path and thus their communication efficiency drops to the minimum value zero. On the

other hand, the maximum efficiency depends on the smallest possible value δ(u, v ) for any two

vertices in the graph. A neural network is a communication network in which a neuron sends elec-

trical spikes to its direct neighbors simultaneously and in parallel with other neurons. We account

for multiple synapses between neighboring neurons by assigning their communication efficiency

proportionally to the number of synapses between them. This is achieved by our definition of

δ(u, v ) in Equation 7.3. For example, in Figure 7.1, neuron 3 connects with three synapses to

neuron 1. The corresponding communication efficiency from neuron 3 to neuron 1 is

ε(3,1) =
1

δ(3,1)

=
1
1

w(3,1)

(by Equation 7.3)

=
1
1
3

(by Table 7.1a)

= 3.

(7.8)

Given that calculating the global efficiency requires to determine shortest paths between all vertices

in the graph, the computational complexity is at least quadratic in the number of vertices. Similarly

to the average shortest-path length, we can use Johnson’s algorithm to obtain the global efficiency

of a graph with n vertices and m edges in time O(n2 log n+ nm) [96].

7.1.5 Average Betweenness Centrality

Betweenness centrality is one of several standard measures of centrality in graphs [99]. It was

proposed by Freeman [100] with the goal to measure centrality of a vertex in terms of its potential

for control of communication between other vertices. That is, the extent to which a vertex lies on

shortest paths between other vertices. The “centrality” of a vertex increases proportionally with

the fraction of shortest paths which contain the vertex. Let σst be the number of shortest paths

from vertex s to vertex t. Similarly, let σst(v ) be those paths that pass through vertex v . The

betweenness centrality of v is then defined by

CB(v ) =
∑

s 6=v 6=t∈V

σst(v )
σst

. (7.9)

Following the motivation of Freeman [100], the fraction σst (v )
σst

denotes the probability that a mes-

sage along a shortest path from vertex s to vertex t passes through vertex v . This equals the

probability that v can control communication along shortest paths between s and t. Calculating
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betweenness centrality of neurons in a neural network helps to quantify the importance of indi-

vidual neurons as critical stations in information processing. For example, a neuron with a high

betweenness centrality lies on a large fraction of shortest paths between other neurons. When

this neuron dies, signals that previously traveled on shortest paths through this neuron now might

have to go longer distances. In this dissertation, we use the average of the betweenness centrality

of n vertices in a graph. That is, we sum up the values of all vertices and divide it by the total

number of vertices:
1
n
·
∑

v∈V

CB(v ) (7.10)

Here, CB(v ) denotes the betweenness centrality of a vertex according to Equation 7.9. The al-

gorithm of Brandes [99] calculates betweenness centrality of all n vertices with m edges in time

O(n2 log n+nm) for our weighted graphs. Consequently, the asymptotic time of Brandes’ algorithm

equals the computational complexity of the average betweenness centrality.

7.1.6 Average Clustering Coefficient

Another metric to analyze the structure of a graph is the clustering coefficient. It can be computed

for every vertex and denotes the extent to which the neighborhood of a vertex is interconnected.

The clustering coefficient counts triangles of vertices in the graph. A triangle comprises three

vertices and three edges, which connect every vertex to the other two vertices. The clustering co-

efficient of vertex v is the ratio between the number of triangles that contain v and the maximum

number of triangles that v could in principle form with its direct neighbors. Consequently, the

clustering coefficient takes a value in the interval [0, 1]. Figure 7.2a illustrates a vertex together

with its neighboring vertices of a graph. As can be seen, the vertex is part of two triangles. Af-

ter inserting more edges between the neighbors of the vertex, Figure 7.2b depicts the maximum

number of triangles that this vertex could in principle form with its neighborhood. Note that the

maximum triangle count is reached when the vertex and its neighbors form a complete graph in

which all vertices are connected with each other. Originally, the clustering coefficient was intro-

duced for unweighted undirected graphs [95]. Fagiolo [101] extends this definition to weighted

directed graphs, which we adopt for our representation of neural networks. For ease of illustration,

we follow the approach of Fagiolo who derives a formal definition of the clustering coefficient for

weighted directed graphs from simpler unweighted undirected graphs.

Unweighted undirected graph. Let us consider an unweighted undirected graph where the ver-

tices i and j are adjacent to each other (i.e., connected through an edge) when ai j = a ji = 1.

Otherwise, ai j = a ji = 0. The number of triangles that vertex i forms with its neighbors is denoted

by t(i), while the maximum number of triangles that i could form with its neighbors is T (i). The

clustering coefficient of vertex i is then defined by

CC(i) =
t(i)
T (i)

=
1
2 ·
∑

j 6=k∈N(i) ai jaika jk

1
2 · di(di − 1)

=

∑

j 6=k∈N(i) ai jaika jk

di(di − 1)
, (7.11)

where N(i) is the set of direct neighbors and di the number of edges (i.e., the degree) of vertex i.
Every product ai jaika jk equals one when the corresponding triangle of vertices i− j−k exists in the
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(a) Triangles actually formed (b) All possible triangles

Figure 7.2: A vertex with its direct neighbors extracted from an undirected graph. Edges connect-
ing the vertex (black circle) to its neighbors (empty circles) and the neighbors among each other
are shown. Edges from the neighbors to other vertices in the graph are only indicated. In (a), the
two triangles that contain the vertex are depicted. Subfigure (b) presents all six triangles that the
vertex could form with its neighbors if there were more edges between the neighbors. Dashed
lines depict the additional edges.

graph. Otherwise, the product is zero and the potential triangle is not counted. However, the sum

in the numerator counts every triangle twice, once in the order i − j − k and once in the opposite

order i − k − j. To avoid counting every triangle twice, we multiply the sum with the factor 1/2.

The denominator counts all pairs of vertices in the neighborhood of vertex i.

Weighted undirected graph. We shall now derive the clustering coefficient for weighted undi-

rected graphs from unweighted graphs. Instead of the previous binary values ai j ∈ {0,1}, every

edge between two vertices i and j has now a weight wi j ∈ [0,1]. For vertices i and j which are not

connected with each other, the weight wi j = 0. Given that we still consider undirected graphs, edge

weights are symmetric (i.e., wi j = w ji). Similarly to Equation 7.11, Fagiolo defines the clustering

coefficient of a vertex i in a weighted undirected graph by

CCW (i) =
tW (i)
TW (i)

=
1
2 ·
∑

j 6=k∈N(i)w
1/3
i j w1/3

ik w1/3
jk

1
2 · di(di − 1)

=

∑

j 6=k∈N(i)w
1/3
i j w1/3

ik w1/3
jk

di(di − 1)
. (7.12)

In comparison to unweighted graphs, the products in the numerator have changed to

w1/3
i j w1/3

ik w1/3
jk = 3

p

wi jwikw jk, which is the geometric mean of the edge weights in a triangle.

Fagiolo adopted this approach from Onnela et al. [102]. Now, instead of counting numbers of

triangles, the numerator sums triangle “intensities”. Note that the weighted clustering coefficient

CCW (i) (Equation 7.12) is reduced to its unweighted counterpart CC(i) (Equation 7.11) when edge

weights become binary (zero or one). The weighted clustering coefficient CCW (i) of a vertex i takes

its maximum value of one only if i forms a complete graph with its neighbors in which all edges

have weight one (i.e., the maximum, since edge weight wi j ∈ [0,1]).

Unweighted directed graph. Let us consider an unweighted directed graph where ai j = 1 when

a directed edge connects vertex i to vertex j. Otherwise, ai j = 0. The presence of the edge in the
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(g) a jiakiak j = 1

ji

k

(h) a jiakia jk = 1

Figure 7.3: Triangles in a directed graph. The eight triangles are all possible triangles that a single
vertex i can form with two neighboring vertices j and k. Every triangle is identified by a product of
the form a••a••a•• = 1. A factor of the product such as ai j equals one when there is an edge from
vertex i to vertex j. Otherwise, ai j = 0. Consequently, all products (a-h) indicate the presence of
the corresponding edges of each triangle.

opposite direction from vertex j to vertex i is indicated by a ji = 1. While in undirected graphs

every vertex can only form one triangle with any two of its neighbors, in a directed graph, a vertex

can form up to eight different triangles with the same two neighbors. Figure 7.3 depicts all eight

possibilities. Based on this observation, Fagiolo defines the clustering coefficient of vertex i in an

unweighted directed graph by

CCD(i) =
tD(i)
TD(i)

=
1
2 ·
∑

j 6=k∈N(i)(ai j + a ji)(aik + aki)(a jk + ak j)

di(di − 1)− 2d↔i
. (7.13)

In the numerator, the product (ai j+a ji)(aik+aki)(a jk+ak j) counts all triangles that vertex i forms

with the other two vertices j and k. Each of the three factors of the product counts all directed

edges between two vertices. For example, the factor (ai j + a ji) counts the directed edges between

vertex i and vertex j. If the edge from i to j and the edge in the opposite direction from j to i
exist, ai j = a ji = 1 and thus the factor becomes (1 + 1) = 2. However, if there is no edge from

j to i, a ji = 0 and the factor equals (1 + 0) = 1. Consequently, each of the three factors can

take the value 0, 1 or 2, and thus every product can be at most 2 · 2 · 2 = 8. This corresponds

to the maximum number of triangles between three vertices as depicted in Figure 7.3. Note that

removing the parentheses in the expression (ai j+a ji)(aik+aki)(a jk+ak j) yields the eight products

of the form a••a••a•• in the same Figure. Given that the sum
∑

j 6=k∈N(i) considers every pair of

neighbors of vertex i twice (once in the order ( j, k) and once in the order (k, j)), we scale it by

1/2 in order to obtain the correct number of triangles containing vertex i. The denominator TD(i)
in Equation 7.13 counts all possible triangles that vertex i could form with its neighbors without

attaching more edges to it. That is, only potential edges between neighbors of vertex i are added.

The example in Figure 7.4 shows the triangles of a vertex and its corresponding maximum set of

triangles in a directed graph.
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(a) Triangles actually formed (b) All possible triangles

Figure 7.4: A vertex with its direct neighbors extracted from a directed graph. Edges connecting
the vertex (black circle) to its neighbors (empty circles) and the neighbors among each other are
shown. Edges from the neighbors to other vertices in the graph are only indicated. In (a), the
two triangles that contain the vertex are depicted. Subfigure (b) shows all 12 triangles that the
vertex could form with its neighbors if there were more edges between the neighbors. Dashed
lines depict the additional edges.

As can be seen in the denominator of Equation 7.13, the maximum number of possible triangles

containing vertex i is TD(i) = di(di − 1)− 2d↔i . With di being the sum of incoming and outgoing

edges of vertex i, di(di − 1)/2 counts all edge pairs of i. Every pair of edges connects two vertices

to vertex i. Since a pair of vertices j and k can form up to two edges ( j, k) and (k, j) between

each other, every edge pair represents two possible triangles of vertex i. This gives us at most

di(di−1) triangles in total. However, the two vertices of an edge pair are not necessarily different.

This is the case when vertex i forms an outgoing and an incoming edge with the same neighbor.

The corresponding pair of the two edges cannot form a triangle and thus must not be counted. Ac-

cordingly, the number of edge pairs which connect vertex i to the same neighbor is d↔i , where the

doubly-headed arrow denotes the bidirectional connection. Finally, multiplying d↔i by two (be-

cause every edge pair was counted twice) and subtracting it from the previous maximum number

of triangles di(di − 1) yields the correct value TD(i) = di(di − 1)− 2d↔i .

Weighted directed graph. Based on the clustering coefficients defined above, we can now derive

the clustering coefficient for weighted directed graphs:

CCWD(i) =
tWD(i)
TWD(i)

=
1
2 ·
∑

j 6=k∈N(i)(w
1/3
i j +w1/3

ji )(w
1/3
ik +w1/3

ki )(w
1/3
jk +w1/3

k j )

di(di − 1)− 2d↔i
. (7.14)

It is defined by combining the clustering coefficient for unweighted directed graphs (Equation 7.13)

with the edge weights for weighted graphs (Equation 7.12). The only difference to unweighted

directed graphs is the numerator in which the number of directed triangles tD(i) formed by vertex i
is replaced by its weighted counterpart tWD(i). Similarly to Equation 7.12, when edge weights are

binary (i.e, 1 or 0), the coefficients for weighted and unweighted directed graphs become equal,

CCWD(i) = CCD(i). As for the definitions above, CCWD(i) ∈ [0,1]. Note that the denominator

TWD(i) could become zero for a vertex when it has zero, one, or two edges. In this case, the
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clustering coefficient is undefined. Similarly, the same observation is true for the other clustering

coefficient definitions above.

Based on Fagiolo’s formal definition of the clustering coefficient for weighted directed

graphs (Equation 7.14), the average clustering coefficient of a graph is computed by the arith-

metic mean of the individual clustering coefficients of all vertices in the graph:
1
n
·
∑

v∈V

CCWD(v ) (7.15)

To ensure that the individual clustering coefficients are in the interval [0, 1], we set the weight wi j

of an edge from vertex i to vertex j in Equation 7.14 to the inverse of the number of synapses

from the corresponding neuron i to neuron j. Since we compute the average of the clustering

coefficients of all vertices, vertices whose coefficients are not defined cannot contribute to this

average. To account for this case, Kaiser [103] proposed to provide the number of the vertices

which cannot contribute in addition to the computed average value.

Let us now analyze the computational complexity of this graph metric. To calculate the aver-

age, we need to compute one clustering coefficient for every vertex. The numerator tWD(i) in

Equation 7.14 can be computed by means of repeated matrix multiplication [101]. In particular,

tWD(i) =
1
2
·
�

W [1/3] +
�

W>
�[1/3]�3

ii
. (7.16)

Here, W is an n× n matrix with n being the number of vertices and a matrix element wi j equals

the weight of the directed edge (i, j). The transpose of matrix W is denoted by W>. Matrix W [1/3]

is constructed by extracting the third root of every element of W . Thus, the elements of W [1/3] are

w1/3
i j . Similarly,

�

W>
�[1/3]

is calculated from W>. Finally, the subscript ii in Equation 7.16 denotes

the i-th element on the main diagonal of a matrix. Note that the matrix
�

W [1/3] +
�

W>
�[1/3]�3

in

Equation 7.16 is the same for all vertices in the graph. Computing the cube of an n× n matrix re-

quires two matrix multiplications with time O(n3) each. Thus, tWD(i) can be obtained in time O(n3)
for all vertices. The denominator TWD(i) in Equation 7.14 counts all bidirectional connections d↔i
between a vertex i and its neighbors. To count these connections, we need to check for every

edge (i, j) whether its reverse counterpart ( j, i) exists. Using a data structure such as a balanced

search tree to store all edges, a given edge can be found in time O(log m), where m is the total

number of edges in the graph. Consequently, the computational complexity of counting all bidirec-

tional connections is O(m log m). Given that a graph with n vertices contains at most O(n2) edges,

the complexity of calculating TWD(i) for all vertices is O(m log m) = O(n2 log n2) = O(n2 log n).
Note that the cubic time of tWD(i) is larger than O(n2 log n) and thus calculating the average clus-

tering coefficient in a graph with n vertices has complexity O(n3). However, as we will discuss later

in Section 7.4, for sparse graphs a different method, which is not based on matrix multiplication,

can be more efficient.

7.2 Brain Connectivity Toolbox

The Brain Connectivity Toolbox (BCT) [104, 105] is an open source graph analysis software pack-

age that is widely used in brain-imaging research. The functionality of the BCT is summarized as

follows:
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• Graph metrics—Functionality to calculate graph topology metrics for unweighted and undi-

rected as well as weighted and directed graphs.

• Graph manipulation—Graph edges can be removed by applying a weight threshold and

graphs can be converted from weighted to unweighted or directed to undirected ones.

• Generation of null-hypothesis graphs—To establish the significance of statistics obtained for

a specific graph, null-hypothesis graphs of specific topologies can be generated to compare

their corresponding topology metrics to those of the graph under investigation.

• Cortical connectivity data sets—BCT contains graphs of cortical networks of different mam-

malian species.

With respect to this thesis, the strength of BCT is that it offers functions to calculate many dif-

ferent graph topology metrics not only for unweighted undirected but also for weighted directed

graphs. Unfortunately, a graph is represented by an adjacency matrix and algebraic algorithms are

used for calculating graph metrics. Consequently, to perform an operation for all direct neighbors

of a vertex in a graph with n vertices, n − 1 matrix entries must be examined although a vertex

might have one neighbor only. That is, the time complexity for sparse and dense graphs is the

same. Although neural networks are usually sparse with a relatively small set of direct neigh-

bors per neuron in comparison to the total number of neurons, this property is not exploited for

performance improvements in BCT.

To analyze the graphs generated by the original MSP and our approximation of it, we started

to use the C++ version of the BCT, which provides a subset of the functionality of BCT’s actively

maintained MATLAB version. Unfortunately, the time to calculate the topology metrics described

above for a graph with 104 vertices exceeded several hours. Given that we needed to analyze mul-

tiple networks, the performance of BCT could not meet our requirements. Hence, we investigated

alternative solutions and decided to implement our own framework to analyze the structure of

neural networks based on the Boost Graph Library [106].

7.3 Boost Graph Library

Before we describe our own solution for analyzing the structure of neural networks, we shall

now give an overview of the Boost Graph Library [106], which is the basis of our graph analysis

framework Network Analyzer (Section 7.4). The Boost Graph Library (BGL) defines interfaces to

develop generic graph algorithms independently of a particular data structure and to customize

these algorithms to solve a large range of problems. It is part of the Boost C++ libraries [107].

The Boost libraries contain more than 90 peer-reviewed individual libraries which cover a broad

spectrum of applications. Examples of libraries include algorithms, data structures, mathematics,

concurrent programming, and many more. By emphasizing portable and high-quality libraries

which follow the design philosophy of the C++ Standard Library, the Boost community aims to

provide reference implementations which are suitable for standardization. For example, some

Boost libraries are included in the C++11 Standard. The structure of this section is as follows:

After introducing BGL’s design based on the concepts in Section 7.3.1, we discuss graph classes
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and graph algorithms in Sections 7.3.2 and 7.3.3. Our introduction to the BGL is based on the

book The Boost Graph Library: User Guide and Reference Manual [107] and we recommend it for

further reference. However, the most recent documentation is available online [108].

7.3.1 Concepts

In addition to a set of function prototypes, which is often referred to as interface, BGL specifies

further properties of an interface and summarizes them by the term concept. In particular, a concept

contains:

1. Syntactic requirements—function names and numbers of arguments

2. Semantic requirements—effects of executing a particular function

3. Time and space complexity guarantees—upper bounds of the asymptotic execution time and

the memory consumption

For example, the BidirectionalGraph concept provides the function in_edges(v, g), which returns

an iterator to the incoming edges of vertex v in graph g. Additionally, this concept requires that

an implementation of in_edges() returns in constant time. BGL defines three main groups of

concepts: (i) graph traversal concepts, (ii) graph modification concepts, and (iii) visitor concepts.

Some concepts refine other concepts and thus build a hierarchy. Figure 7.5 illustrates the graph

traversal concepts. As can be seen, the Graph concept is a basic concept which is refined (ex-

tended) by the other traversal concepts at a lower level in the hierarchy. The BidirectionalGraph
concept is even a refinement of IncidenceGraph. It complements the facilities of IncidenceGraph
for processing outgoing edges of vertices by additional functions and types for incoming edges.

Instead of discussing every concept in detail, we summarize the functionality of the BGL concepts

below. Note that our examples contain function templates where the graph type is a template pa-

rameter and thus they can be applied to all graph types in BGL. Although the components of BGL

are defined in the boost namespace, we omit the namespace for the sake of brevity.

Vertex and Edge Descriptors

To hide implementation details and provide a uniform interface regardless of the graph type, the

BGL provides opaque handles to access vertices and edges in a graph. These handles are called

vertex descriptors and edge descriptors, respectively, and are usually implemented as integers or

pointers. The descriptor types are available through the graph_traits traits class. A traits class is a

class template whose only use is to provide a mapping from a given type to other types, functions,

or constants. A less generic alternative to querying types through a traits class are nested type

definitions in classes, which can then be accessed through the scope operator ::. Vertex and

edge descriptors have basic functionality. They can be default constructed, copied, and compared

for equality. Additionally, an edge descriptor enables access to the source and target vertex of

its corresponding edge. The following function template is an example of using vertex and edge

descriptors. It can be used with any graph type to determine whether an edge is a self-loop (i.e.,

edge connecting a vertex to itself).
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Graph

Types common to all 

graph concepts

IncidenceGraph

Constant-time access 

to sequence of out-

edges of a vertex 

AdjacencyGraph

Constant-time access 

to sequence of direct 

neighbors of a vertex

EdgeListGraph

Constant-time access 

to sequence of all 

edges in the graph

AdjacencyMatrix

Constant-time access 

to any edge in the 

graph

VertexListGraph

Constant-time access 

to sequence of all 

vertices in the graph

BidirectionalGraph

Constant-time access 

to sequence of in-

edges of a vertex 

Figure 7.5: Graph traversal concepts of the Boost Graph Library. Every concept is described by its
main requirement. A graph type which meets the requirement of a concept models (i.e., imple-
ments) this concept. Arrows denote concept refinements where the head of an arrow points to
the resulting new concept.

1: template <typename Graph>

2: bool is_self_loop(typename graph_traits<Graph>::edge_descriptor e,

3: const Graph& g)

4: {

5: typename graph_traits<Graph>::vertex_descriptor u, v;

6: u = source(e, g);

7: v = target(e, g);

8: return u == v;

9: }

Property Maps

BGL allows properties to be associated with vertices and edges. For example, every vertex can

be named and every edge should be assigned a weight. A uniform syntax to access properties

is defined by the property maps concept. Here, a property map is an object which maps a set of

key objects to a set of value objects. Three functions are available with a property map p_map:

get(p_map, key) returns the value object for the key, put(p_map, key, value) assigns value to

the value object associated with the key, and p_map[key] returns a reference to the value object of

key. The example below prints the weight of an edge together with the names of its two vertices.

1: template <typename Graph, typename EdgeWeightMap, typename VertexNameMap>

2: void print_edge_weight(typename graph_traits<Graph>::edge_descriptor e,

3: const Graph& g,

4: EdgeWeightMap weight_map,

5: VertexNameMap name_map)
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6: {

7: std::cout << "edge_weight(" << get(name_map, source(e, g)) << ","

8: << get(name_map, target(e, g)) << ") = "

9: << weight_map[e];

10: }

For more details on how to add properties to a graph and obtain the corresponding property maps,

please refer to the literature [106].

Graph Traversal

A graph in BGL is defined by several collections. Apparently, vertices and edges are two of them.

In addition, outgoing edges (out-edges), incoming edges (in-edges), and adjacent vertices can be

queried for every vertex. Similarly to the Standard Template Library, iterators are provided to

traverse each collection:

1. Vertex iterator—is used to visit all vertices in a graph. The value type is a vertex descriptor.

2. Edge iterator—is used to visit all edges in a graph. The value type is an edge descriptor.

3. Out-edge iterator—is used to access all out-edges of a given vertex v . The value type is an

edge descriptor and every descriptor in this iterator range contains v as source vertex and a

vertex adjacent to v as target vertex.

4. In-edge iterator—is used to access all in-edges of a given vertex v . The value type is an edge

descriptor and every descriptor in this iterator range contains v as target vertex and a vertex

adjacent to v as source vertex.

5. Adjacency iterator—is used to access every neighbor u of a vertex v which is connected

through an out-edge from v to u. Here, the term adjacency can be misleading since the

iterator range excludes vertices which are connected through a directed edge pointing to

vertex v .

Similarly to descriptors, the iterator types of a graph type are accessible through the

graph_traits class. For every iterator type above, BGL defines a function which returns a pair of

two iterators. While the first iterator points to the first object in the sequence, the second iterator

refers to the past-the-end object of the sequence. According to the order of the iterators above, the

functions are vertices, edges, out_edges, in_edges, and adjacent_vertices. The following

example uses our previous function print_edge_weight to traverse all edges and print every edge

with its weight.

1: template <typename Graph, typename EdgeWeightMap, typename VertexNameMap>

2: void print_edge_weights(const Graph& g,

3: EdgeWeightMap weight_map,

4: VertexNameMap name_map)

5: {
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6: typename graph_traits<Graph>::edge_iterator first, last;

7: for (std::tie(first, last) = edges(g); first != last; ++first) {

8: print_edge_weight(*first, g, weight_map, name_map);

9: std::cout << std::endl;

10: }

11: }

Note that not every graph type in the BGL implements all iterator types. Depending on the un-

derlying data structure of the graph, efficient versions of some iterators cannot be provided. For

example, the in-edges of a vertex in a directed graph can only be obtained efficiently when the

vertex stores them in addition to its out-edges. Consequently, every edge (u, v ) needs to be stored

twice. Once as out-edge of vertex u and once as in-edge of vertex v . However, only few algorithms

traverse in-edges of vertices and thus storing them at the expense of doubling the memory per

edge is not always required. The operations supported by a particular graph type are documented

through concepts. For example, a graph which implements the AdjacencyGraph concept provides

an adjacency iterator and the function adjacent_vertices. A type that meets the requirements of

a concept is called model of the concept. Similarly, algorithms in BGL list the concepts which their

parameters should model. This ensures that an algorithm can use those operations of a parameter,

such as a graph, which are necessary for its execution. The mechanism which checks during com-

pilation whether all parameters provided to an algorithm model the required concepts is called

concept checking.

Graph Construction and Modification

To modify the structure of a graph, BGL defines concepts for creating and removing vertices

and edges. The following example inserts an edge into and removes a vertex from a graph g

of type Graph. Edges can only be created between vertices which are already in the graph. Before

a vertex can be deleted, all edges which connect to this vertex must be removed as well.

1: typename graph_traits<Graph>::vertex_descriptor a, b, u;

2: a = add_vertex(g); b = add_vertex(g);

3: add_edge(a, b, g);

4: // Assume that u is a valid vertex descriptor

5: clear_vertex(u, g);

6: remove_vertex(u, g);

Algorithm Visitors

An algorithm visitor is a function object (functor) which can be passed to a graph algorithm to cus-

tomize its behavior. However, instead of providing only a single operator() method, a BGL visitor

defines multiple functions which are called at certain event points in an algorithm. The set of event

points differs among algorithms. An example for an event point is discover vertex in BGL’s breadth-

first search (BFS) implementation. The corresponding function discover_vertex of the visitor
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object is invoked for a vertex when the algorithm encounters it for the first time. In total, the BFS

algorithm defines eight event points for customization.

7.3.2 Graph Classes

After presenting concepts in the previous section, let us now discuss concrete graph classes which

implement the graph concepts. BGL provides two primary graph classes: adjacency_list and

adjacency_matrix. The adjacency_list is designed for sparse graphs where the number of

edges is much smaller than the number of vertices. It is a highly configurable adjacency-list repre-

sentation of a graph. The graph is a collection of vertices and every vertex stores the collection of its

outgoing edges (out-edges). Depending on the particular requirements, different implementations

of vertex and edge collections are available. The adjacency_list is a class template with several

template parameters: EdgeList, VertexList, Directed, VertexProperties, EdgeProperties,

and GraphProperties.

• VertexList determines which container is used to store the vertices of the graph. Similarly,

EdgeList selects the container for the edges of every vertex. Both parameters affect the

time of insertion and removal of vertices or edges, the traversal speed, and the memory

consumption of the graph.

• The Directed parameter configures whether the graph is undirected, directed with access to

the out-edges of every vertex, or directed with access to out- and in-edges of all vertices.

• The types of the properties attached to vertices, edges, and the graph are specified by the

property template parameters VertexProperties, EdgeProperties, and GraphProperties.

For dense graphs where almost all pairs of vertices are connected through edges, BGL provides the

adjacency_matrix class. It represents a graph by an adjacency matrix which consumes O(|V |2)
memory instead of O(|V | + |E|) of the adjacency list. Here, |V | denotes the number of vertices

and |E| the number of edges in the graph. For undirected graphs, the |V | × |V | matrix contain-

ing the edges is symmetric. Hence, adjacency_matrix requires only the lower triangle and the

diagonal entries of the matrix to store all edges and thus memory consumption is approximately

halved. While adjacency_matrix provides operations to add and remove edges from the graph,

the set of vertices is rigid and cannot be modified. One advantage of an adjacency-matrix based

implementation is that the time for adding or removing an edge is constant. This is not possible

with the adjacency list. On the other hand, traversing all out-edges of every vertex, such as in

breadth-first search, takes time O(|V |2) compared to O(|V |+ |E|) of an adjacency list. Similarly to

the adjacency_list class, properties can also be assigned to vertices, edges, and the graph itself

using the adjacency_matrix class.

The following example demonstrates the creation of a directed graph of five vertices with the

adjacency_list class. Based on the parameter vecS (line 3), all vertices of the graph are stored

in a std::vector container. Similarly, listS in line 2 requests to store the edges of every vertex in

a std::list. Another container type is, for example, std::set, which can be selected by setS. By

assigning bidirectionalS to the Directed template parameter (line 4), we configure that every
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vertex has access to its outgoing and its incoming edges. Finally, in line 1, we define that every

edge should be associated with a weight. The corresponding type is then provided as edge property

(line 6).

1: struct EdgeProperties { double weight; };

2: typedef adjacency_list<listS, // EdgeList

3: vecS, // VertexList

4: bidirectionalS, // Directed

5: no_property, // VertexProperties

6: EdgeProperties // EdgeProperties

7: > Graph;

8: Graph graph(5);

Note that this graph implements all except the AdjacencyMatrix concept from Figure 7.5. Given

that new vertices and edges can be added and existing ones can be removed, the graph also mod-

els the graph modification concepts VertexMutableGraph and EdgeMutableGraph. By providing

mutable edge properties, the EdgeMutablePropertyGraph concept is satisfied as well. The imple-

mented concepts on the one hand, and the concepts required by an algorithm on the other hand,

determine whether our graph is eligible for executing a particular algorithm. In the next section,

we give an overview of already existing algorithms in BGL.

7.3.3 Graph Algorithms

The operations and graph classes described above provide a good foundation for developing new

graph algorithms. In addition, BGL offers already a rich set of algorithms. All of them are im-

plemented as function templates where the graph type is a template parameter. Moreover, some

algorithms take property maps, such as the distance map for shortest-path algorithms, or visitor

types to specify call-back functions which should be invoked at certain event points in the algo-

rithm. To make it more convenient to use functions which have a large number of parameters with

many of them having default values, BGL employs named parameters. This technique allows to

assign a value to a formal parameter of the function based on the parameter’s name, regardless of

the position in the parameter list.

The provided algorithms belong to more than 18 different categories. Below is a selection of

them with some examples for algorithms:

Basic Search Algorithms

Breadth-first search, Depth-first search

Shortest Paths Algorithms

Dijkstra, Johnson

Minimum Spanning Tree Algorithms

Kruskal, Prim

Maximum Flow Algorithms

Edmonds-Karp

Graph Metrics

Brandes betweenness centrality

Connected Components Algorithms

Connected components, strong compo-

nents
Of the algorithms available in BGL, Johnson’s algorithm to calculate shortest paths between all

vertices and Brandes’ algorithm for betweenness centrality can be used to obtain three of the six
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topology metrics for weighted directed graphs from Section 7.1: (i) average shortest path length,

(ii) global efficiency, and (iii) average betweenness centrality. The remaining metrics have to

implemented manually.

7.3.4 Parallel Boost Graph Library

For the sake of completeness, we also briefly review The Parallel Boost Graph Library (PBGL) [109],

which extends the Boost Graph Library with capabilities for distributed computing. This enables

the execution of algorithms on larger graphs, which might not fit into the memory of a single

compute node anymore, and to speedup graph algorithms via parallelization. To achieve this,

PBGL spreads the storage of a graph over multiple processes. In comparison to BGL, the primary

data structure is a distributed adjacency list. That is, the vertices and edges of a graph are divided

among the processes. Similarly, properties of vertices and edges are now stored in distributed
property maps. Algorithms for PBGL are developed in the SPMD (single program, multiple data)

style in which the same program is executed by several processes and every process works on its

own subgraph. To synchronize the state of the distributed data structures, all processes synchronize

globally. Communication between processes is accomplished through the explicit exchange of

messages. The corresponding process group interface for inter-process communication in PBGL is

implemented with MPI. Note that an algorithm which is available in BGL must first be parallelized

using the interface of PBGL to run in parallel. For this reason, parallel versions of only a small

subset of the current BGL graph algorithms exist.

7.4 Network Analyzer

We shall now give an overview of our framework for analyzing the structure of neural networks.

Given that the Brain Connectivity Toolbox (Section 7.2) could not meet our performance require-

ments for analyzing networks with 104 neurons and more, we implemented facilities in a tool

called Network Analyzer to calculate the graph topology metrics from Section 7.1 based on the

Boost Graph Library (BGL) (Section 7.3).

Since BGL already provides an implementation of Johnson’s algorithm [97] for calculating the

length of a shortest path between all vertices, we use this algorithm to determine the average

shortest-path length as well as the global efficiency of a graph. Additionally, BGL provides Bran-

des’ betweenness centrality algorithm [99] which we invoke to compute the average betweenness

centrality. Unfortunately, an implementation for the clustering coefficient of weighted directed

graphs is not available in BGL (version 1.66.0). We implemented an algorithm which finds all

triangles that a vertex forms with its direct neighbors with three nested loops where every loop

iterates over all neighbors of a given vertex. Let dG denote the maximum number of neighbors of

any vertex in a graph G. The number of iterations of each of the three loops is then at most dG.

Consequently, all triangles of a single vertex are found in time O(d3
G) and thus of all |V | vertices

in the graph in time O(d3
G|V |). Although this algorithm is inefficient for dense graphs where the

complexity becomes O(|V |4), it performs well for our purpose of analyzing sparse neural networks.
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Table 7.2: Time complexities of the graph topology metrics in the Network Analyzer. The number
of vertices in the graph is denoted by |V | and the number of edges by |E|. dG is the maximum
degree of a vertex in a graph G.

Graph Topology Metric Time Complexity

Number of edges O(|V |+ |E|)
Average Euclidean distance O(|V |+ |E|)
Average shortest-path length O(|V ||E| log |V |)
Global efficiency O(|V ||E| log |V |)
Average betweenness centrality O((|V |2+|V ||E|) log |V |)
Average clustering coefficient O(d3

G|V |)

Table 7.2 lists the time complexity of every graph topology metric in our Network Analyzer.

Note that the algorithms that we use from BGL use data structures which result in higher asymp-

totic time complexity compared to the most advanced implementations published in the literature.

Nevertheless, we did not encounter performance issues which would justify the additional code

complexity of more sophisticated data structures.

7.5 Simulation Parameters

Let us now describe the simulation parameters that we used to obtain our accuracy results in

Section 7.6. While our parameters of the MSP model are fixed and correspond to those presented

in Table 4.1 in Section 4.6, we use different configurations for the remaining parameter set in our

simulations. In the following, we describe the configuration that we use to validate the accuracy

of our approximation algorithm. The parameters correspond to layer 5A of the rat cortex [81],

which is about 500 µm thick with a density of 54,500 neurons per mm3. With this density, the

average distance between neurons in all three dimensions is about 26 µm. We randomly distribute

the neurons in a volume of height 500 µm and let the other two dimensions grow with the number

of neurons. Of the neurons, 20% are inhibitory, the remaining 80% are excitatory. Initially, no

synapses exist. Every neuron is initialized with vacant synaptic elements: one excitatory and one

inhibitory dendritic element plus one axonal element. The type of the axonal element depends

on the type of the neuron. Excitatory neurons form excitatory axonal elements while inhibitory

neurons form inhibitory axonal elements. However, both neuron populations grow excitatory and

inhibitory dendritic elements. Synapses are only possible between synaptic elements of the same

type. That is, excitatory axonal elements only connect to excitatory dendritic elements. A similar

rule applies to inhibitory synaptic elements. During all simulations, we run the connectivity update

every 100 ms biological time, which equals 100 simulation steps. The biological simulation time

is 6 · 106 ms, which allows 60,000 connectivity updates. In our experiments, we consider an MPI-

based version of the original MSP algorithm and our replicated-tree implementation of the scalable

MSP approximation algorithm (Section 6.1).
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7.6 Accuracy Results

To validate the accuracy of our approximation algorithm, we compare neural networks of our

scalable algorithm with replicated tree to those generated by the original MSP. We consider a

neural network as a weighted directed graph where neurons are the vertices and synapses are the

directed edges pointing from a source neuron to a target neuron. The number of synapses reaching

from the source to the target is the edge weight. Our comparison is based on the graph topology

metrics from Section 7.1 that Butz et al. [110] use to describe the structure of neural networks:

(i) number of edges, (ii) average Euclidean distance, (iii) average shortest path length, (iv) global

efficiency, (v) average betweenness centrality, and (vi) average clustering coefficient. We compare

networks of the original MSP and our algorithm with 103, 104, and 105 neurons. The quadratic

computational complexity of some of the graph metrics prevents us from evaluating networks with

larger neuron counts (Section 7.4).

At the end of the simulation after 60, 000 connectivity updates, the neuronal electrical activ-

ity (desired average calcium concentration) and the network have reached their equilibrium and

change only insignificantly. Note that equilibrium is in fact already reached after about 50, 580

updates of connectivity in our experiments. However, even during equilibrium small numbers of

neurons are rewired to maintain the desired electrical activity. Continuing the simulation until

60, 000 connectivity updates captures additional minor structural changes which could affect the

accuracy of the approximated networks of our algorithm.

Figure 7.6 shows the metrics of the networks generated by our algorithm relative to those of the

original MSP. For every metric, we calculate the percentage of the difference from the original MSP

according to
�a

b
− 1

�

· 100, (7.17)

where a denotes the metric of the approximated network and b of the exact network using the

original MSP. Except for the average clustering coefficient, the networks produced by our algorithm

differ only by about 1% from the original MSP. This is even true for low precisions. However, for

104 neurons the average clustering coefficient differs by about 5% with even a small θ = 0.2. One

possible reason could be that clustering coefficients of some vertices are undefined as described in

Section 7.1.6 and thus do not contribute to the average value. In all our experiments, however, the

clustering coefficient of every vertex can always be calculated. To investigate this case further, we

discuss the influence of random numbers on network topology in the next section.

7.6.1 Influence of Random Numbers

Given that MSP is based on probabilistic decisions, the structure of the resulting neural network

depends on the random numbers which are used for those decisions. We take the same configu-

ration as above with 104 neurons and run 11 simulations with different random number seeds for

the original MSP and our approximation of it with θ = 0.2. In particular, while neuron positions

are the same in every run, the sequence of random numbers which is used during target neuron

selection changes according to the random number seed. Figure 7.7 shows the individual average
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coefficient

Figure 7.6: Network comparison between the original MSP and our algorithm for 103, 104, 105 neu-
rons. The bars at each cluster correspond from left to right to θ = 0.1, 0.2, 0.3, 0.4. We use the
C++11 Mersenne Twister 19937 random number generator std::mt19937 with its default seed of
5,489 for all results.

clustering coefficients for all 11 random number seeds. Interestingly, even for the exact MSP, aver-

age clustering coefficients differ by up to 7% from the coefficient obtained with the default random

number seed 5, 489. Consequently, the 5% difference, which was previously obtained in Figure 7.6

between original MSP and approximation algorithm, can also be found between different runs of

the exact MSP. That is, the difference observed between original MSP and our algorithm is within

the difference that is caused by random numbers.

To give an overview of how all graph metrics are affected by using different random numbers,

Figure 7.8 depicts the average and standard deviation of the metrics over 11 simulations for both

algorithms. It can be seen that the difference between the average of the exact MSP and our

algorithm is below 1% for all metrics. Also the standard deviations are similar except for the

average Euclidean distance. However, although the “spread” around the average is different for

this metric, the actual average of our method only differs by 0.14%. Hence, we do not consider

the difference in the standard deviation as significant.
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Figure 7.7: Average clustering coefficients of networks generated with 11 different random num-
ber seeds for the original MSP and our parallel scalable algorithm with replicated tree. The net-
works contain 104 neurons and θ = 0.2 for our algorithm with replicated tree. We use the C++11
Mersenne Twister 19937 random number generator std::mt19937. The default seed of this gener-
ator is 5,489.

These experiments support our claim that our approximated networks are still precise enough to

represent neural networks of the exact MSP. Nevertheless, to account for the variation of the results

due to MSP’s probabilistic approach, several simulation runs are necessary to reliably capture the

essential structure of a neural network at the end of the simulation. This is true for both, the exact

MSP and our approximation of it. Thus, the scalability of the MSP algorithm is even more critical.
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Figure 7.8: Network comparison between the original MSP and our algorithm with replicated tree
with θ = 0.2 for 104 neurons. The results per method are based on 11 simulations with a different
random number seed for each run. Each dot denotes the average of the 11 simulations. Bars depict
the standard deviations.
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8 Performance
We shall now evaluate the performance of our scalable algorithm empirically. Our evaluation con-

sists of three parts. First, we investigate the performance of our parallel scalable algorithm with

replicated tree (simple approach), and compare it to the original MSP algorithm. The algorithm

with replicated tree was the first implementation of our scalable approximation algorithm with the

purpose of evaluating our concept at an early stage. Second, to analyze the scalability of our algo-

rithm, we run large-scale simulations with up to 109 neurons using the parallel scalable algorithm

with distributed tree. The algorithm with distributed tree was developed after the accuracy and

performance of our simple approach with replicated tree had been established. Finally, we extrap-

olate the performance of the scalable algorithm to 1011, the approximate number of neurons in the

human brain.

8.1 Simple Approach vs. Original MSP

In this section, we compare the performance of the scalable algorithm with replicated tree to the

original MSP algorithm. After describing the configuration of our experiments, we discuss the

results obtained for weak- and strong-scaling timing measurements. To be able to more reliably

capture the performance behavior of the two algorithms, we run our experiments on two different

compute clusters: Lichtenberg and JURECA.

Lichtenberg. Lichtenberg is located at TU Darmstadt. It consists of 1,412 compute nodes in

total. We use nodes which are equipped with two Intel Xeon E5-2670 (8 cores each), code name

Sandy Bridge, and 32 GiB RAM. The nodes are connected through InfiniBand FDR10 (40 Gbit/s)

in an island network topology. At the lowest level, one island comprises a central switch with

32 nodes. Every island is then connected to a top-level switch. Connectivity between islands is

limited. In particular, 8 nodes share one link for communication between islands.

JURECA. The JURECA system [111] is located at the Jülich Supercomputing Centre of

Forschungszentrum Jülich. It consists of 1, 872 compute nodes. The nodes house two Intel

Xeon E5-2680 v3 (12 cores each), code name Haswell, and 128 GiB RAM. The cluster network

is InfiniBand EDR (100 Gbit/s) with a nonblocking fat tree network topology.

Similarly to the parameters in the accuracy validation (Section 7.5), we randomly distribute the

neurons in a volume of height 500 µm and let the other two dimensions grow with the number

of neurons, which yields a density of about 54,500 neurons per mm3. In contrast to the accuracy

validation, however, we simulate only the very first connectivity update where no synapses yet

exist and every neuron has vacant synaptic elements. That is, every neuron is trying to find a

target neuron for its vacant axonal element. The first update of connectivity is the most time-

consuming step because every neuron is looking for partners for synapse creation, whereas in
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subsequent updates most of the previously vacant axonal elements are already bound in synapses.

We illustrated this phenomenon in Section 4.4 in Figure 4.5a. For that reason, the first update

of connectivity is suitable to investigate the worst-case performance of a connectivity update in

simulations of structural plasticity.

In the evaluation, we use the same MPI-based implementations of the scalable algorithm with

replicated tree and the original MSP as for the accuracy validation in Chapter 7. In contrast to

the original MSP, the algorithm with replicated tree performs tree construction and tree update

(Figure 6.1, lines 3 and 12). Nevertheless, even for 107 neurons tree construction does not exceed

2 min. We do not include this time in our measurements as it is a one-off expense. Another

difference is the synapse formation, which is accelerated via approximation in the replicated tree

algorithm (Figure 6.1, line 13). To balance the workload, every process simulates the same number

of neurons n/p in both algorithms. However, given that every neuron considers all the other

neurons for synapse creation in the original MSP, not only the replicated tree but also the original

MSP algorithm stores all neurons on every process. Due to the resulting high memory consumption,

we run only two processes per compute node on Lichtenberg, and four processes per node on

JURECA.

8.1.1 Weak Scaling

Figure 8.1a and 8.1b depict our weak-scaling results for one connectivity update for the original

MSP and the replicated tree algorithm on Lichtenberg. For the original MSP, every timing result

is the average of 5 runs. For the replicated tree algorithm, every reported timing is the arithmetic

mean of the execution times of 7 runs. The original MSP needs about 40 min for 106 neurons, while

the algorithm with replicated tree terminates in 2 min. Even only for 105 neurons, the original

MSP takes about 4 min. On the other hand, for high precision with θ = 0.1, the replicated-

tree algorithm is still in the range of 4 min for 107 neurons. This large number of neurons is

practically out of reach for the original MSP. The results also show that reducing the precision of

our method from 0.1 to 0.2 can help to further reduce the execution time by at least a factor of 2.5

for 107 neurons.

Figure 8.2 presents the weak-scaling results on JURECA. Similarly to Lichtenberg, every timing

result for the original MSP is the average of 5 runs, and for the replicated tree algorithm, every tim-

ing is the average of 7 execution times. In general, the results resemble the behavior on Lichtenberg

and confirm the superior scalability of our approximation algorithm over the original MSP. How-

ever, differences can be observed with respect to the original MSP. For example, for 5 ·105 neurons,

execution time drops by about 6% from 22 min on Lichtenberg to 16 min on JURECA. Similarly,

for 106 neurons, time decreases from 42 min to 33 min on JURECA, which is an improvement

of 21%. There are several potential reasons for the performance gain on JURECA. One reason is

the more advanced Haswell CPU microarchitecture on JURECA. Another reason may be the faster

interconnection network. Finally, it could also be beneficial to run additional processes per com-

pute node, two more than on Lichtenberg. This halves the number of compute nodes and thus

reduces inter-node communication by using faster shared-memory based intra-node communica-

tion. To further investigate the performance of the original MSP on JURECA, we ran experiments
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for 1.5 ·106 neurons on 150 cores and 2 ·106 neurons on 200 cores. While one connectivity update

with 1.5 ·106 neurons took about 51 min (Figure 8.2a), we canceled the simulation of 2 ·106 neu-

rons after 60 min. These results show that the quadratic complexity of the original MSP is the

limiting factor even on a faster computing system such as JURECA.

We shall now examine whether the timing results correspond to the expected asymptotic behav-

ior. As discussed in Section 6.1, the replicated tree algorithm has time complexity O(n/p log2 n+n).
On the other hand, our parallel version of the original MSP has complexity O(n2/p + n), where

the term n2/p accounts for the pairwise probability calculations between all neurons which are

executed on p processors in parallel. What both algorithms share is the additive term n which

quantifies the time for gathering all neurons on every process. Given that we perform weak-

scaling experiments, the number of neurons is proportional to the process count and thus the ratio

n/p is constant. Consequently, the time complexity of the algorithm with replicated tree becomes

O(n/p log2 n+ n) = O(log2 n+ n) = O(n) and of the original MSP O(n2/p+ n) = O(n+ n) = O(n).
Interestingly, both algorithms have now the same asymptotic upper bound O(n). However, their

exact execution times differ significantly as shown in our empirical results. The reason is that

while the time of the algorithm with replicated tree is still dominated by the term log2 n, the paral-

lel original MSP grows with n due to the n2 probability calculations. Of course, the expected O(n)
growth behavior for weak scaling is confirmed by our results. However, in practice, the asymptotic

notation may be too coarse to compare the performance of algorithms. In our case, O(n) “hides”

time differences of about one order of magnitude.

8.1.2 Strong Scaling

Figure 8.3 depicts strong-scaling results of one connectivity update for the algorithm with repli-

cated tree on Lichtenberg. We simulate 105, 106, and 107 neurons. For 105 neurons, every timing is

the average of 10 runs. For 106 and 107 neurons, a timing result is the average of 5 runs. Although

every process stores all neurons, it only tries to find target neurons for its own portion of neurons.

Hence, the neurons-per-core counts in the following refer to the number of neurons for which a

single process has to find target neurons. For 105 neurons, we start with 8 cores and double the

number of cores until we reach 128. Accordingly, the number of neurons per core decreases from

12,500 to about 781 neurons. At this point, no further speedup can be observed. For 106 neurons,

starting from 8 cores, we double the core count until 512. This corresponds to repeatedly cutting

the number of neurons per core in half from 125, 000 down to about 1,953. Using more than

512 cores for 106 neurons would not reduce the execution time anymore because the sequential

fraction of the program execution dominates the total execution time. This typical observation

in strong-scaling results is explained by Amdahl’s law and discussed in Section 2.4. Finally, for

107 neurons, neuron counts per core range from 156,250 using 64 cores to about 9, 765 neurons

with 1, 024 cores. All results exhibit good scalability given that successively doubling the number

of cores respectively reduces the execution time by a factor 2. However, we notice differences in

the scaling behavior for 105, 106 and 107 neurons. For example, the experiments for 105 neurons

scale up to 781 neurons per core. Beyond that, no further speedup can be achieved. For 106

neurons, performance gains stop at 1,953 neurons per core. Ideally, we would expect that scal-
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(b) Weak scaling of replicated tree only

Figure 8.1: Weak-scaling results of replicated tree vs. original MSP on Lichtenberg. Every compute
node executes two processes. Execution times depend on the precision parameter θ . The number
of neurons per MPI process (core) is 104. The numbers of neurons and (cores) are: 105 (10),
5 · 105 (50), 106 (100), 5 · 106 (500), 107 (1,000).

ing stops at the same number of neurons per core for every experiment on the same computing

system. The difference between 781 and 1,953 neurons per core can be explained with Amdahl’s

model of the execution time. Note that the time complexity of our algorithm with replicated tree

is O(n/p log2 n+ n) with an additive term n that grows with the number of neurons. By increasing

the neuron count, the sequential portion s of the algorithm grows. This implies that the upper

bound of the speedup 1/s shrinks according to the law of Amdahl. Consequently, adding more

cores and thus further reducing the number of neurons per core does not improve the execution

time anymore. Hence, different numbers of neurons result in different strong-scaling behavior.
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(b) Weak scaling of replicated tree only

Figure 8.2: Weak-scaling results of replicated tree vs. original MSP on JURECA. Every compute node
executes four processes. Execution times depend on the precision parameter θ . The number of
neurons per MPI process (core) is 104. The numbers of neurons and (cores) are: 105 (10), 5 ·
105 (50), 106 (100), 5 · 106 (500), 107 (1, 000). In (a), for the original MSP, one additional timing
result is obtained for 1.5 · 106 (150) neurons (cores) in comparison to the results on Lichtenberg in
Figure 8.1.

Figure 8.4 illustrates the strong-scaling results on JURECA. The numbers of runs for the timing re-

sults correspond to those on Lichtenberg. For 105 neurons, every timing is the average of 10 runs.

For 106 and 107 neurons, every reported timing is the average of 5 runs. Similarly to weak scaling,

the strong-scaling results are almost identical on Lichtenberg and JURECA. That is, four processes

per compute node on JURECA yield about the same performance as two processes per node on

Lichtenberg.
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Figure 8.3: Strong-scaling execution times of the replicated tree with θ = 0.3 on Lichtenberg. Every
compute node executes two processes.
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Figure 8.4: Strong-scaling execution times of the replicated tree with θ = 0.3 on JURECA. Every
compute node executes four processes.

8.2 Distribution of the Tree

To investigate the scalability of our approximation algorithm with distributed tree, we perform

large-scale structural plasticity simulations on the IBM Blue Gene/Q system JUQUEEN [112]

at Forschungszentrum Jülich. The system houses 28,672 compute nodes where each node is

equipped with one IBM PowerPC A2 (16 cores) and 16 GiB RAM. The network is a 5d-torus custom

design. To improve RMA performance, we enable the progress thread of JUQUEEN’s MPI library

during our measurements. In our experiments, all neurons are randomly distributed in a cube

where the average distance between neurons is 26 µm. Note that some experiments exceed the
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number of neurons in the rat brain (2 ·108) [113]. However, we are convinced that the parameter

of 26 µm average distance between neurons is also a valid approximation in the human brain,

which is the final scalability target of our algorithm. As in the previous experiments, we simu-

late the very first connectivity update where no synapses yet exist and every neuron has vacant

elements, as described above. Similarly, we do not include the initializations (e.g., inserting local

neurons into the partial tree) in our timings, since they are executed only once before simulation

start. However, for all experiments, initialization is below 2 s. We run simulations for numbers of

processes (cores) which are powers of two. Given that the simulation domain is decomposed into

a power of eight blocks, every process is assigned one, two, or four blocks. We execute one process

on every core, which amounts to 16 processes per compute node.

8.2.1 Weak Scaling

In this section, we discuss the weak-scaling results of the distributed tree. After an overview of the

results, we focus on analyzing a sawtooth pattern of the timings and how to avoid it. Then, we

compare our theoretical expectations of the execution times to the empirical results. Finally, we

investigate the influence of random numbers on the performance.

Figure 8.5a shows weak-scaling results of the distributed-tree algorithm for one connectivity up-

date of up to 109 neurons and different precisions. Every process (core) contains 5,000 neurons.

We start with 128 processes which corresponds to 640, 000 neurons in total and iteratively double

the process count together with the neuron count. This ensures that the number of neurons per

process n/p remains constant. Each timing result is the average of 5 runs. For all results, the stan-

dard deviation is always below 1 s. As can be seen, the precision parameter θ clearly determines

the slope of the execution times. While the graphs of the functions for θ = 0.3 and 0.4 are closer

together, θ = 0.2 shows a much larger increase. A similar pattern is also visible for the replicated

tree for θ = 0.1 and 0.2 (Figure 8.1b). Note that this behavior can also be observed for Barnes-Hut

due to the non-linear relationship between the work and precision θ [114, 115, 116]. In particular,

work grows proportionally to 1/θ 3. Nevertheless, all our weak-scaling results exhibit logarithmic

scaling in the number of neurons. Informally, we can see that every time we double the number

of neurons, execution time increases by about the same additive constant c. The logarithm of the

neuron count corresponds to this growth behavior. For example, let

T (n) = a log n+ b (8.1)

be the logarithmic execution time of our weak-scaling results. By doubling the number of neurons,

execution time becomes

T (2n) = a log (2n) + b = a(log 2+ log n) + b = a log n+ b+ a log2
︸ ︷︷ ︸

constant c

, (8.2)

where a log2 is the constant increment c between two neighboring timings in Figure 8.5a. To

compute a performance model of the form T (n) = a log n + b of the execution time, a must be

chosen so that a log 2 approximately equals c. Finally, b is assigned a value so that T (n) matches
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Figure 8.5: Weak-scaling results of the distributed-tree algorithm with different precision parame-
ters. The number of neurons per MPI process (core) is 5,000. The numbers of cores start from 128

and are doubled until at most 262,144. (a-c) Execution times depend on the number of blocks that
every process is assigned from the decomposed domain.
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21 6 87

Figure 8.6: Example of the first stage of target neuron selection. Circles denote real neurons,
whereas squares correspond to virtual neurons. Neuron 1 is the source neuron. Areas shaded in
gray identify the set of (virtual) neurons from which one must be selected.

our empirical timing data as closely as possible. In Section 8.3, we calculate performance models

of our execution times and determine statistical quality measures of how well the resulting models

match the empirical timings by means of a performance model generator. Another remarkable

result is that for θ = 0.2, execution times exhibit a sawtooth pattern for different neuron counts.

Although less pronounced, the same pattern can be found for θ = 0.3 and 0.4. Let us analyze the

sawtooth pattern in more detail in the next section.

Sawtooth Pattern

One possible explanation for the sawtooth pattern of the execution times is the multistage selection

procedure of target neurons. As discussed in Section 5.4 and depicted in Figure 5.6, while trying to

find a target neuron, a source neuron selects virtual neurons until it finally chooses a real neuron.

Every time a virtual neuron is selected, its corresponding subdomain must be unfolded so that

the neurons that are now available for selection become visible. Due to this multistage selection,

some simulations unfold more subdomains and thus cause more work than others. For example,

Figure 8.6 shows the first selection stage of a source neuron in which it chooses a target neuron.

At this stage, the number of subdomains, i.e. (virtual) neurons, which are offered for selection

is completely determined by the Barnes-Hut acceptance criterion. While selecting a real neuron

terminates the procedure, choosing a virtual neuron starts the second stage of selection. Given

that we use a distributed tree, execution times are even more sensitive to the multistage selection

because some tree nodes must be retrieved from other processes. In particular, when a source

neuron chooses a virtual target neuron residing on a remote process, the virtual neuron must be

unfolded and all the remaining (virtual) neurons have to be retrieved from the remote process for

this source neuron. In contrast, at the expense of an O(n) space complexity per process, our simple

approach with the replicated tree (Section 6.1) stores the complete tree on every process and thus

all neurons are locally available. Consequently, unfolding subdomains is less expensive in this case.

However, although the multistage selection affects execution times, it is unclear whether its effect

is strong enough to account for the extent of the sawtooths as observed in our measurements in

Figure 8.5a.

Another possible reason for the sawtooth pattern of our timings could be the number of blocks

that each process is assigned during domain decomposition, as discussed in Section 6.2. Note that

we decompose the three-dimensional simulation domain into a power of eight (i.e., 8k blocks).
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These blocks correspond to the nodes at level k in the octree, which is constructed as described in

Section 5.1. We run experiments for powers of two (i.e., 2l processes). Every process is equally

assigned 8k/2l blocks. To ensure that each of the 2l processes is assigned at least one block, 8k must

be a multiple of 2l . For the results in Figure 8.5a, we always choose the smallest power of eight.

Thus, with 128, 256, and 512 processes, every process is assigned 4, 2, and 1 blocks, respectively.

This 4− 2− 1 pattern continues along the x-axis for the remaining numbers of processes. That is,

with 1, 024 processes, every process gets 4 blocks again. It is remarkable that this 4−2−1 pattern

resembles the timings in Figure 8.5a for all precision parameters. In particular, the timings can be

divided into groups of three, where each group comprises three successively increasing timings.

The first timing of a group of three is marked by an execution time which is faster than the last

timing of the previous group in the plot.

Different Numbers of Blocks per Process

To investigate how the number of blocks per process affects execution times, we ran additional

timing experiments with different numbers of blocks per process. Figure 8.5b depicts the results

for a 32−16−64 block pattern, while Figure 8.5c was obtained with a 256−128−512 block pattern.

Again, each timing result is the average of 5 runs. For all results, the standard deviation is always

below 1 s. Both figures confirm our observation that the number of blocks per process directly

correlates with the execution times. The higher the number of blocks per process, the lower the

execution time. While Figure 8.5 shows all execution times of the same blocks-per-process pattern

in the same plot, Figure 8.7 groups execution times according to the precision θ . This view enables

a direct comparison of how the number of blocks per process affects the timings of simulations with

the same precision parameter. For all precisions in Figure 8.7, the 256− 128− 512 block pattern

consistently results in the fastest execution, whereas the 4−2−1 pattern turns out to be the slowest

execution. With θ = 0.2, the maximum time difference occurs for 512 processes. Here, execution

time is about 5 min with 512 blocks per process. In contrast, using only 1 block per process

prolongates execution by about 3 min until 8 min. As expected, the timing difference between

512 blocks and 1 block per process is also the maximum for θ = 0.3 and 0.4. However, instead

of 3 min, the difference decreases to about 50 s for θ = 0.3 and about 20 s for θ = 0.4. These

observations raise two questions: (i) Why do more blocks per process result in faster execution?

(ii) Why does the advantage of using more blocks diminish with decreasing precision, that is,

increasing θ?

To answer these questions, let us consider 512 processes with 1 and 512 blocks-per-process

assignments, for which we obtained the maximum time difference. Note that by assigning 1 block

to each of the 512 processes, the domain is decomposed into 8 · 8 · 8 = 512 blocks, 8 blocks

per dimension. Similarly, by assigning 512 blocks to each of the 512 processes, the domain is

decomposed into 64 · 64 · 64 = 262, 144 blocks, 64 blocks per dimension. Given that the size

of the simulation domain is the same in both cases, the blocks must be of different size. More

precisely, the edge length of a cubic block in the 1 block-per-process scenario is eight times larger

than the edge length using 512 blocks per process. This follows from the 1-to-8 ratio of the number

of blocks per dimension between the two scenarios. Figure 8.8 shows the corresponding partial
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octrees that every process stores. With 1 block per process, the part of the tree that is replicated

on all processes ends at level three. The branch nodes at this level correspond to the 512 blocks

of the domain decomposition. On the other hand, with 512 blocks per process, all processes store

the same partial tree up to level six. Level six contains 262, 144 branch nodes, which correspond

to the blocks of the domain.

Based on our implementation of the scalable algorithm with replicated tree, we note that the

more levels of the octree are replicated on all processes, the fewer neurons have to be retrieved

remotely. This argument is not only valid with respect to the multistage neuron selection as dis-

cussed above, but also regarding the Barnes-Hut acceptance criterion (AC). In particular, during

target neuron selection (Section 5.3), the AC determines the depth of the tree traversal. To con-

struct a set of target neuron candidates for synapse creation, starting from the root of the tree,

virtual neurons are unfolded until all virtual target neuron candidates satisfy the AC. Every time

a virtual neuron is unfolded, the AC must be evaluated for its children at the next deeper level in

the tree and so on. Figure 8.6 depicts a set of target neuron candidates which satisfy the AC. Here,

the parent of the neurons 1 and 2 was unfolded because it did not satisfy the AC.

Let us now consider our two trees in Figure 8.8 again. Assume a virtual target neuron candidate

at level three in both trees. If the virtual neuron does not satisfy the AC, it must be unfolded

and the AC is evaluated for its children at level four. If the children do not satisfy the AC as

well, their children at level five must be examined, and so on. In the right tree, all tree levels

up to level six are replicated and thus locally available on every process. However, the left tree

replicates tree levels only up to level three. That is, when the target neuron at level three does

not satisfy the AC, all subsequent AC evaluations of the neuron’s children require access to remote

processes. Consequently, the different amount of replicated tree levels is the reason why execution

with 1 block per process takes longer than with 512 blocks per process. Similarly, the degree of

tree replication and thus indirectly the number of blocks per process is also responsible for the

sawtooth timings. For example, for the 4 − 2 − 1 block pattern in Figure 8.7a, execution time

decreases between 512 and 1,024 processes. As discussed above, for 512 processes, all tree nodes

are replicated up to level three. For 1, 024 processes, due to the 4−2−1 block pattern, the domain

is decomposed into 4 · 1,024 = 212 = 84 blocks. That is, four instead of three tree levels are

replicated. Hence, more AC evaluations can be performed locally without access to remote partial

octrees, which results in faster execution for 1, 024 processes. The same rationale holds for the

sawtooth-shaped timings of the other blocks-per-process patterns and precisions in Figure 8.7.

Avoiding the Sawtooth Pattern

Ideally, we would like to avoid the sawtooth execution times for different process counts and

always have the fastest execution. As it appears in Figure 8.7, the timings are smooth for differ-

ent process counts when processes consistently get the same number of blocks. For example,

considering only timings with four blocks per process, which is the case for 128, 1, 024, and

8, 192 processes, yields a monotonically increasing graph. However, since we decompose the

three-dimensional domain into 2k · 2k · 2k = 23k = 8k cubic blocks of the same size, it is not

possible for all process counts that every process gets the same number of blocks. Note that k must
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Figure 8.8: Comparison of two octrees with different domain decompositions. The number of
512 processes is the same for the two trees. Both trees are partial trees. The left tree is the partial
tree which is stored on every process after decomposing the simulation domain into 512 blocks.
The right tree is stored on every process after decomposing the domain into 262, 144 blocks. The
number at every tree level denotes the number of nodes at this level. The gray area depicts the
nodes of the tree which are replicated on all processes. The black area shows the nodes which
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black area is different for every process. (Left tree) Every process owns 1 of the 512 blocks, which
contains all its neurons. This block is labeled with 1 at level three of the tree. Level three comprises
all the branch nodes which correspond to the 512 blocks of the domain decomposition. (Right
tree) Every process owns 512 of the 262, 144 blocks, which contain all its neurons. These blocks are
labeled with 512 at level six of the tree. Level six comprises all the branch nodes which correspond
to the 262, 144 blocks of the domain decomposition.

be an integer to ensure that the 2k number of blocks per dimension is an integer as well. Let the

constant c be the number of blocks that should be assigned to every process and be p the total

number of processes. The corresponding number of blocks is

8k = c · p. (8.3)

Given that c and p are fixed, we need to find an integer k which satisfies this equation. Solving for

k yields

k = log8 (c · p)

k = log8 c + log8 p.
(8.4)
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According to Equation 8.4, k is not an integer for every number of processes p. For example, with

c = 4 and p = 128,

k = log8 4+ log8 128

k =
2
3
+

7
3

k = 3.

(8.5)

However, for p = 256,

k = log8 4+ log8 256

k =
2
3
+

8
3

k =
10
3

.

(8.6)

Given that we need to round the result of Equation 8.4 to obtain an integer for k, the number of

blocks per process c cannot be constant for arbitrary numbers of processes. Nevertheless, even with

variable numbers of blocks per process, one way to reduce the height of the sawtooths is to increase

the blocks-per-process counts. As illustrated in Figure 8.7, the 256−128−512 block pattern yields

the smallest time differences. Obviously, the sawtooths decline with increasing numbers of blocks

per process. We expect that the sawtooths eventually disappear when the complete tree is available

on every process. However, in practice, this is not possible for large neuron counts due to the large

memory consumption.

Memory consumption. Limitations due to restricted memory size can already be observed for

the 256−128−512 block pattern in Figure 8.7. In particular, we could not obtain measurements for

4, 096 and 8, 192 processes since memory allocations failed. Let us analyze the memory footprint

of the partial octree that is replicated on every process for 4,096 processes. According to the

256 − 128 − 512 pattern, every process gets 512 blocks of the decomposed domain. Thus, the

total number of blocks equals 512 ·4,096= 23·7 = 87. The corresponding octree is replicated until

level seven. Starting from level zero, the number of tree nodes until level seven is the sum of the

individual levels. Since level i contains 8i nodes, the total number of nodes of the replicated part

of the tree is
7
∑

i=0

8i = 87 ·

 

1−
�

1
8

�8

1− 1
8

!

= 2, 396,745. (8.7)

A single tree node occupies 200 B. Hence, every process replicates about 200 B · 2, 396,745 =
475 MiB of the tree. This size does not include the real neurons in the tree that are local to

a process and their additional data structures such as for storing the calcium concentration and

the number of synaptic elements. In comparison, the last timing results in Figure 8.7 were

obtained for 2, 048 processes with 128 blocks each. Here, the tree is replicated until level six

and comprises 299,593 nodes. These nodes consume only 200 B · 299, 593 = 57 MiB of memory.

To avoid memory capacity issues, the 32− 16− 64 block pattern is an appropriate alternative to

the 256− 128− 512 pattern. It combines similar execution times and fluctuations with a smaller

memory footprint. Our observations highlight and confirm the trade-off between performance and
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memory consumption. This trade-off is typical in algorithm design and accounts for the fact that

oftentimes more performance can be achieved by using more memory.

Finally, let us discuss why the time difference between different block patterns, such as between

the 4 − 2 − 1 and the 256 − 128 − 512 pattern, shrinks with decreasing precision. Figure 8.7

illustrates this behavior for θ = 0.2, 0.3, and 0.4. Given that the precision parameter, which is

part of the acceptance criterion l/d < θ , affects the depth of the tree traversal, the reason for

the diminishing time difference must be related to tree depth as well. By increasing θ , more

subdomains of virtual neurons satisfy the acceptance criterion (AC). Based on the ratio l/d, with l
being the length of the subdomain and d the distance from the subdomain’s virtual neuron to the

source neuron, now subdomains with a larger length-to-distance ratio satisfy the AC. Consequently,

instead of unfolding these parent subdomains and evaluating the AC for their children, the parents

themselves become already candidates for being selected as target neuron. In comparison to their

children, parent subdomains are closer to the root and thus at smaller depth in the tree. For this

reason, deep excursions towards the leaves are reduced. Consequently, the timing advantage of

replicating more and thus deeper levels of the tree, as implicitly done by assigning more blocks per

process, is lowered with decreasing precision.

Theoretical Expectations

Let us now examine whether our weak-scaling results match the theoretical expectations of the

execution time from Section 6.2.5. The analytically determined asymptotic upper bound of the

execution time is O(n/p log2 n+p). For weak-scaling results, n/p is constant. Thus O(n/p log2 n+p)
can be simplified to O(log2 n + p). Given that the empirical weak-scaling execution times grow

logarithmically with the number of neurons, the asymptotic upper bound is confirmed by our

experimental results. Interestingly, the term p of the number of processes is not visible in our

empirical timings even for 256k processes. In Chapter 7, we saw that using θ = 0.3 or 0.4 still

yields neural networks of the same quality as θ = 0.2 or even 0.1. This is why θ = 0.3 or 0.4 are

appropriate parameters for large-scale structural plasticity simulations with our scalable algorithm.

Influence of Random Numbers

In the previous sections, we discussed that execution times of the algorithm might show significant

variations because some simulations unfold more virtual neurons than others, or different amounts

of neurons have to be fetched from remote processes. These factors are influenced by the positions

of the neurons and decisions based on probabilities. To equally distribute the neurons in the

simulation domain, we generate their three-dimensional coordinates with the help of uniformly

distributed random numbers. With respect to probabilistic decisions, random numbers are also

used for selecting target neurons with given probabilities.

For example, let us assume a set of target neuron candidates ni (i = 1, . . . , m) where neuron ni

should be selected with probability P(ni), and the individual probabilities sum up to 1. To decide

which neuron to select, we construct an interval [0,1] and divide it into m subintervals, one for
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each neuron. The length of the subinterval of neuron ni equals the probability P(ni) of the neuron.

Then, we use a continuous random variable X whose values are uniformly distributed over the

interval [0, 1]. Given the density function of the corresponding uniform distribution

f (x) =

(

1 if x ∈ [0, 1]

0 else,
(8.8)

the probability that the random variable X takes a value x which falls into a subinterval [a, b] in

[0,1] (0 ≤ a ≤ b ≤ 1) equals the area under the density function f (x) between a and b. More

formally,

P(x ∈ [a, b]) =

∫ b

a

f (x) d x

=

∫ b

a

1 d x

=
�

x
�b

a

= b− a.

(8.9)

Note that b − a is the length of the subinterval [a, b]. This means that x falls into a subinterval

[a, b] with a probability which is equal to the length of the subinterval. Since every neuron ni has

a subinterval of length P(ni) in the interval [0, 1], each neuron is selected according to its desired

probability when x falls into its subinterval. To generate a random number x ∈ [0, 1], we use the

C++11 Mersenne Twister 19937 generator std::mt19937 in combination with the distribution

class template std::uniform_real_distribution. Figure 8.9 depicts an example where one out

of three neurons is selected.

Due to the vital role of random numbers in our algorithm, let us now investigate the effect of

the sequence of random numbers used in the simulation on performance. Random numbers are

generated based on a seed value. By changing the seed, the random number generator creates a

different sequence of random numbers. We ran timing experiments for three different numbers of

neurons and five different seed values per neuron count. The corresponding numbers of processes

are 512, 1,024, and 2, 048. We use the 4−2−1 blocks-per-process pattern which assigns one block

with 512 processes, four blocks with 1, 024, and two blocks per process with 2,048 processes. As

visible in Figure 8.7, the three consecutive process counts depict a dent in the timings and are

good candidates to examine whether this dent could be affected by the choice of random numbers.

For all experiments, the precision parameter is θ = 0.2. Figure 8.10 illustrates the timing results.

As expected, execution times vary according to the choice of the random number seed. Although

execution times differ by up to three seconds, with respect to the actual execution time of about

7 minutes, the variations due to different random numbers are negligible. We also note that there

is no clear pattern how certain random number seeds influence execution times. Although we

did not consider all possible sequences of random numbers, our results give strong indication that

the choice of random numbers is not significant for performance. Thus, the number of blocks per

process, as discussed above, remains the dominant factor for the execution times. Nevertheless, in

terms of accuracy (Section 7), effects of different random numbers can be observed even for the

original MSP.
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Figure 8.9: Neuron selection with a random number x . Neurons ni (i = 1, . . . , 3) are available for
selection. The probability to select neuron ni is P(ni), where P(ni) equals the length of the shaded
subinterval of the neuron. The random number x ∈ [0, 1] falls into the subinterval of neuron n2

and thus selects it.

8.2.2 Strong Scaling

The timing results of the strong-scaling experiments of simulating one connectivity update are

depicted in Figure 8.11. We simulate 227 ≈ 108 and 230 ≈ 109 neurons on up to 262, 144 cores

(processes) with precision θ = 0.3 and 0.4. For 108 neurons, we start with 8,192 processes where

every process contains 16,384 neurons. Successive doubling of the number of processes halves

the number of neurons per process until every process owns only 512 neurons. This is the case

for 262,144 processes. For 109 neurons, we use 131, 072 processes with 8, 192, and 262,144 pro-

cesses with 4,096 neurons each. Additionally, in comparison to θ = 0.3 in Figure 8.11a, for

θ = 0.4, we ran timing experiments for 65,536 processes in which every process is assigned

16,384 neurons. Unfortunately, the JUQUEEN system does not contain 524,288 cores which is

the reason why we stopped the experiments at 262,144 processes.

We observe an almost perfect strong scaling for all experiments. That is, doubling the number

of processes halves the execution time. However, for 108 neurons, our timings show that doubling

the number of processes from 32,768 to 65,536 yields a reduction in execution time which is even

larger than a factor two. Thus, the relative speedup between these two process counts exceeds the

expected maximum of two and denotes superlinear speedup. For reference, linear speedup, which

reflects ideal scaling behavior, is illustrated together with our results in Figure 8.11. Let Tθ (p)
denote the execution time in seconds with p processes and precision θ . For θ = 0.3, the relative

speedup between the two timings is

T0.3(32, 768)
T0.3(65, 536)

=
155.9642
71.4308

≈ 2.183, (8.10)
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and for θ = 0.4,
T0.4(32,768)
T0.4(65,536)

=
68.1725
31.4812

≈ 2.165. (8.11)

Note that all timings are the average of five measurements and the standard deviation is below

0.5 seconds for all numbers of processes. That is, perturbations of the measurements are rather

unlikely to be the reason for the additional performance gain. Usually, one expects cache effects to

cause superlinear speedup. Here, it is not the case. Instead, note that we use the 4− 2− 1 blocks-

per-process pattern in our experiments. Starting with 8, 192 processes and continuing along the

x-axis, three consecutive process counts assign respectively 4, 2, and 1 block per process. While

every process of 32, 768 gets one block, four blocks are assigned with 65, 536 processes. At the

same time, as discussed above, the number of replicated tree levels increases from five to six.

Now, more virtual neurons are locally available and consequently less time is spent to retrieve

remote neurons. This shows that the performance gain from 32, 768 to 65,536 processes consists

of two parts. The first improvement accounts for the additional number of processes and yields the

largest reduction in execution time. Given that we use twice the number of processes, however, the

improvement cannot be larger than a factor two. The second improvement reduces the execution

time even further by replicating more neurons in local trees. Combining both improvements results

in superlinear speedup.

8.2.3 Summary

Our weak- and strong-scaling results show that our scalable algorithm is able to simulate the dy-

namics of neural networks of up to 109 neurons and it can also efficiently use large numbers of

cores to speed up the simulation. Note that 109 neurons correspond to today’s largest brain simu-

lations with fixed connectivity [13, 21]. That is, our approximation algorithm of MSP could extend

state-of-the-art brain simulators with the ability to create large-scale neural networks from scratch

and to rewire their neurons during simulation, and thus help to deepen the understanding of the

brain. Unfortunately, MPI-3 is not available on JUQUEEN and thus we could not evaluate the

MPI-3 RMA extensions with our distributed-tree implementation on JUQUEEN. Instead, we ran

experiments using MPI-3 on Lichtenberg at TU Darmstadt. However, we did not observe perfor-

mance improvements. One reason might be that our process-local caches of remote tree nodes

could already satisfy most of the requests to partial trees of remote processes. Thus, only small

amounts of overlap between different RMA operations could be exploited with MPI-3. Neverthe-

less, we believe that the MPI-3 RMA extensions have potential to further speed up our RMA-based

implementation. A detailed analysis requires a performance evaluation of our algorithm including

the use of the tree-node cache with different MPI implementations on different systems.

8.3 Extrapolation

Despite good scaling behavior of our distributed-tree algorithm, we are still not able to run full-

scale simulations of the human brain. The reason is that to reach 1011 neurons, we still need to

increase the size of our largest simulation of 109 neurons by two orders of magnitude. Currently,
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Figure 8.11: Strong-scaling results of the distributed-tree algorithm. (a) Strong-scaling execution
time with θ = 0.3. (b) Strong-scaling execution time with θ = 0.4.

as in our weak-scaling experiments with the 4 − 2 − 1 blocks-per-process pattern, every process

(core) with 5,000 neurons occupies about 390 MiB memory on JUQUEEN. In these 390 MiB, every

process has still memory available for about 1.2 million tree nodes which have been preallocated

with MPI_Alloc_mem for access via RMA. Under the assumption that the memory footprint per

process does not exceed 500 MiB, a simulation of 1011 neurons would require 1011/5,000 =
2 · 107 processes (cores) with 500 MiB each. This amounts to 9.3 PiB RAM in total. Today’s

largest supercomputers in the TOP500 list (November 2017) are equipped with at most 1.6 PiB

memory (Sequoia [117]) and contain at most 1.98 · 107 cores (Gyoukou [118]). Nevertheless,

with reference to exascale computing, we would like to be able to “forecast” the execution time

expected for such a simulation if a system with sufficient compute resources was available. For this

108 8 Performance



 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

640,000 | 128

1,280,000 | 256

2,560,000 | 512

5,120,000 | 1k

10,240,000 | 2k

20,480,000 | 4k

40,960,000 | 8k

81,920,000 | 16k

163,840,000 | 32k

327,680,000 | 64k

655,360,000 | 128k

1,310,720,000 | 256k

10 11
 | 2·10 7

(hum
an

brain)

E
x
e

c
u
ti
o

n
 t

im
e
 [

m
in

]

   

Number of neurons | cores [k = 1024]

Distr. tree (θ = 0.3)
Distr. tree (θ = 0.4)
Performance model f(p) (θ = 0.3)
Performance model g(p) (θ = 0.4)

Figure 8.12: Weak-scaling results of the distributed-tree algorithm and extrapolation to the human
brain with 1011 neurons. The results were obtained for different precision parameters and the
4− 2− 1 blocks-per-process pattern. Along the x -axis, the number of blocks per process is 4, 2, 1,
which is repeated in this way. The number of neurons per MPI process (core) is 5,000. The numbers
of cores start from 128 and are doubled until 262,144. See Equation 8.12 for the performance
models f (p) and g(p).

reason, we create performance models based on our weak-scaling timings on JUQUEEN. We use

the performance model generator Extra-P [119] to obtain a function for the execution time.

The input parameter to this function is the number of processes (cores) p. Figure 8.12 illustrates

our weak-scaling results together with the performance models for θ = 0.3 and 0.4. For the sake

of clarity, we start to draw the models behind the timings obtained experimentally. The models

f (p) for θ = 0.3 and g(p) for θ = 0.4 are:

f (p) = 0.961461+ 0.14743 · log2 p

g(p) = 0.415784+ 0.0652235 · log2 p
(8.12)

These models grow logarithmically with the number of processes. Given that we consider weak-

scaling results where the ratio n/p between the number of neurons n and the number of processes p
is constant, our theoretical worst-case time complexity of O(n/p log2 n+p) (Section 6.2.5) becomes

O(log2 n+ p). Consequently, the generated models confirm the theoretical upper bound.

The statistical quality measures of the model for θ = 0.3 are (i) residual sum of squares

RSS= 0.1018 and (ii) adjusted R2 = 0.9682. The RSS is less than 4% of the average of the

timings. For θ = 0.4, RSS = 0.0169 and adjusted R2 = 0.9728. Here, the RSS is less than 2%

of the average of the timings. Both RSS values of 4% and 2% indicate a good fit between model

and data. Similarly, both models have an adjusted R2 close to 1, where 1 indicates a perfect fit

between model and data. Given these measures, we consider our models to be good representa-

tions of the timings. However, we note that the generated models do not account for the sawtooth
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pattern in our timing measurements. The reason is that the performance-model search space that

we provided to the model generator was based on our expectations of the asymptotic behavior.

In particular, candidate models were combinations of logarithmic and linear terms of the process

count and thus were not able to capture the sawtooth pattern. On the other hand, this approach

reduces the risk of creating models which closely fit the data, but fail to predict future behavior

reliably. As the statistical quality measures confirm, our approach creates models which closely fit

the data and likewise reduce the risk of overfitting. The corresponding plots of the models show

us an estimate of the execution time of the first connectivity update of MSP with 1011 neurons. In

particular, the extrapolated time is about 4.5 min for θ = 0.3 and 2 min for θ = 0.4.

Of course, given that these forecasts are based on scaling behavior for smaller total neuron

counts, they should be considered with a healthy degree of skepticism. Nevertheless, they can still

provide us a reasonable lower bound of the execution time on a potential exascale computer with

similar performance characteristics as the Blue Gene/Q system JUQUEEN. Based on this extrap-

olation, we believe that simulating structural plasticity of the full human brain with our scalable

approximation of MSP could be feasible on an exascale supercomputer even with today’s hardware

technology. However, given that our algorithm performs only a modest amount of floating point

operations, the tremendous computing power of an exascale machine might not even be needed.

In contrast, a scalable special-purpose system with modest floating point performance and with fo-

cus on low-latency communication might be an even more practical solution for brain simulation.

Such a neuromorphic computing system is also expected to consume only a fraction of the power

of a fully-featured exascale supercomputer.
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9 Conclusion
This chapter concludes the thesis. After a summary, we provide an outlook for future work and

highlight the impact that our results may have on the work of other researchers.

In this thesis, we investigated how the dynamics of the neural network in the brain can be

simulated in a scalable manner based on the Model of Structural Plasticity (MSP) by Butz and

van Ooyen. According to MSP, neurons create and delete synaptic connections between each other

with the goal to maintain their desired level of electrical activity. The firing rate of a neuron is

affected by electrical spikes received through synapses from neighboring neurons. While reception

of a spike from an excitatory neuron increases the firing rate, a spike from an inhibitory neuron

decreases it. Synapses are formed by following a probabilistic approach in which creation of a

synapse between a source and a target neuron candidate depends on (i) the number of vacant

dendritic elements available on the target and (ii) the distance between source and target. The

more dendritic elements the target neuron offers, and the closer target and source neuron are, the

higher the probability a synapse between them being formed. To determine which synapses should

be created, probabilities for all pairs of neurons have to be calculated and thus the time complexity

of MSP grows quadratically with the number of neurons. This limits the largest possible structural-

plasticity simulations to networks with 105 neurons, which is less than one finds in the brain of

a mouse (7.1 · 107 neurons) [113]. For larger numbers of neuron such as 106, one connectivity

update takes about 40 min with a parallel implementation of the original MSP, which is prohibitive

considering the frequency of such updates.

To improve the scalability of MSP, we presented an approximation algorithm which reduces the

time complexity from O(n2) to O(n log2 n). Our algorithm is inspired by the idea of grouping

particles in advanced n-body methods from particle physics. We adapted the Barnes-Hut method,

which was originally proposed for gravitational particle simulations in astrophysics, to the problem

of simulating the evolution of the connectome and thus discovered a new application area for par-

ticle methods. To evaluate the accuracy of our scalable algorithm, we compared networks of the

original MSP to those generated by the approximation of it for different combinations of neuron

count, precision parameter, and random number seed. For every network, six graph topology met-

rics were calculated. The results showed that the approximation underlying the scalable algorithm

does not adversely affect the quality of the neural networks.

In comparison to the original MSP, we showed that the implementation of the scalable algorithm

with replicated tree reduces the execution time required for one connectivity update of 106 neurons

from originally 40 min to about 2 min, an improvement by a factor of 20. Using more processors

enabled even further speedup. However, replicating the tree and thus all neurons on every process

limited the total number of neurons that could be simulated. Therefore, to increase the scalabil-

ity of our implementation, we distributed the tree across all processes. With this optimization,

encouraging performance results demonstrated the practical feasibility of simulating 109 neurons.
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For the first time, it will now be possible to simulate structural plasticity at the scale of a rat

brain (2 · 108 neurons) or a galago primate (0.94 · 109 neurons) [113] and beyond. With our

algorithm, we pushed the boundary of simulating structural plasticity of originally 105 neurons to

109, which is an improvement of four orders of magnitude. Nevertheless, we still did not reach

the human brain with 1011 neurons. However, our performance models predict that even with

today’s technology a full-scale simulation of the dynamics of the connectome in the human brain

is possible in principle. While this would require a machine with about six times the memory

capacity of today’s supercomputer with the largest amount of memory, a system that meets these

requirements might emerge quite soon with the advent of the first exascale system.

9.1 Outlook

Let us now review the impact and the prospects of our scalable algorithm. In general, we envision

two directions where the algorithm could support or even spark new research endeavors. On

the one hand, our scalable method for simulating the evolution of the connectome can be used in

biological simulation studies with the goal of better understanding structural dynamics in the brain.

This is of utmost importance to investigating the mechanisms behind learning and healing. On the

other hand, our scalable algorithm for MSP may assist scientists in building artificial brain-like

systems. Let us discuss both directions in more detail below.

Biological simulation of the brain. With our algorithm, neuroscientists can now more easily

create connectivity maps for large-scale brain simulations. Overall, our results will allow more

realistic large-scale brain simulations that, for the first time, account for the dynamics of the con-

nectome. To support the practical use of our scalable algorithm in the neuroscience community,

neuroscientists need to be able to easily apply the algorithm in established tools for brain sim-

ulation. Hence, one important next step is the integration of our algorithm in large-scale brain

simulators such as NEST or C2 to combine the rich functionality of those tools with the scalability

of our algorithm. Future work also includes an extension of the algorithm to account for the con-

nectivity between different brain areas. As an example, this is necessary when investigating the

dynamics of local connectivity in a certain brain area and global connectivity between brain areas

in response to a focal stroke. Given the large number of neurons in this scenario, the scalability of

our algorithm is essential.

Simulating lesions and making predictions of brain repair has a high potential for developing

optimized treatment therapies for patients. In particular, the ultimate goal will be to create an

individual treatment plan for each stroke patient. By combining the patient’s brain activity and

connectivity in a simulation, it may be possible to predict the outcome of different therapies. In

particular, imaging recordings of the brain of the patient after stroke could help guide the creation

of the brain connectivity map for the simulation. Electrical activity data of the healthy brain before

stroke may then be used to determine the target electrical activities of the neurons. Connectivity

map and target electrical activities are then parameters of the simulation of the effects of different

therapies. Based on the results, the most promising therapy can be identified before applying it to

the patient.
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Implementing brain functionality in artificial systems. Given the fascinating functionality of

the brain, scientists have been using insights from brain research to build brain-like systems for

solving problems related to language, vision, reasoning and many more [120]. Especially dur-

ing the last five years, the design of deep artificial neural networks to solve those problems has

received growing interest again. Although current artificial neural networks usually consist of lay-

ers of neurons where neighboring layers are connected with each other through regular synaptic

connection patterns, one could imagine more brain-like structures in the future. Given that our

algorithm can build large-scale in silico neural networks from scratch, neuroscientific findings from

using the MSP model with our scalable algorithm could advance the state of the art of designing

artificial neural networks that provide brain functionality.
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