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Abstract

This work presents three algorithms for the level set modeling of phase boundaries.
The application of these algorithms are high-order extended discontinuous Galerkin
methods for multiphase flow simulations.

The first algorithm is a reinitialization method, which is based on solving an elliptic
partial differential equation. The algorithm is high order accurate in global norms. This
reinitialization technique can be applied to arbitrary problems by using a first-order
solver as preconditioning.

The second algorithm is a high-order accurate solver for extending quantities from
the interface into the domain. This is especially helpful for using a so called extension
velocity for cases, in which the velocity of the interface is not given by a global field.
Like the reinitialization algorithm, the method relies on solving an elliptic partial
differential equation. Based on the underlying level-set, this problem might be ill-
posed. An extension by an artificial viscosity allows stable solutions even for these
cases.

The third algorithm is a coupling of these two algorithms to an upwind discretiza-
tion of the level set transport equation using an implicit time stepping scheme. For
sufficiently smooth problems, this coupling gives high order accuracy as well. Last,
this coupled scheme is applied to the simulation of a rising bubble using an unfitted
discontinuous Galerkin scheme, which shows good agreement with reference solutions
from literature.
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Zusammenfassung

Diese Arbeit beschreibt drei Algorithmen für die Modellierung von Phasengrenzen mit-
tels der Level-Set Methode. Die Anwendung dafür ist die Simulation von Mehrphasen-
strömungen mittels einer discontinuous Galerkin Methode mit hoher Ansatzordnung
und Erweiterung für geschnittene Zellen.

Der erste Algorithmus behandelt das sogenannte Reinitialisierungsproblem mittels der
Lösung eines elliptischen Problems. Dieser Algorithmus zeigt Konvergenzverhalten
hoher Ordnung in globalen Normen. Durch den Einsatz eines Präkonditionierers,
basierend auf einem Verfahren erster Ordnung kann die Methode auf beliebige Pro-
blemstellungen angewendet werden.

Der zweite Algorithmus behandelt die Ausbreitung von Größen von der Phasengrenze
in das Rechengebiet hinein. Diese Fragestellung ist besonders im Fall der sogenannten
Extension Velocity relevant, bei der der Geschwindigkeitswert an der Phasengrenze
nicht als globales Feld gegeben ist, das im gesamten Rechengebiet definiert ist. Wie
der Algorithmus für Reinitialisierung basiert diese Methode auf der Lösung einer
elliptischen Differentialgleichung. In Abhängigkeit des Level-Set Felds kann das Pro-
blem schlecht gestellt sein. Eine Erweiterung um eine sogenannte künstliche Viskosität
stabilisiert den Löser auch für diese Fälle.

Der Dritte Algorithmus koppelt diese beiden Algorithmen mit einem Upwind-Fluss für
die Level Set Transportgleichung unter Verwendung einer impliziten Zeitdiskretisie-
rung. Für glatte Probleme zeigt dieser Algorithmus ebenfalls eine hohe Fehlerordnung.
Abschließend wird dieses gekoppelte Schema auf die Simulation einer aufsteigenden
Blase mittels einer nicht randangepassten discontinuous Galerkin Methode angewen-
det. Die Ergebnisse zeigen gute Übereinstimmung mit Referenzlösungen aus der
Literatur.
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1 Introduction

Increasing computational power has led to the widespread acceptance of numerical
methods to solve engineering problems in fluid mechanics. The well established and
widely accepted method in research and development are so called low-order methods
which suffer from one major drawback: Their computational cost increases faster
than their accuracy, especially for three dimensional simulations and time dependent
problems.
To circumvent this, one must resort to so called higher-order methods, which deliver
superior accuracy, and their increase in accuracy scales larger than linearly with the
computational effort. These methods however are still a topic of active research, since
many well-established algorithms for low order methods do not deliver the required
accuracy and therefore need to be replaced. Here lies the topic of this thesis: The
discontinuous Galerkin method (DG) method is one of the most popular high-order
methods, since it allows the discretization of arbitrary geometries with unstructured
meshes and easy parallelization. The goal is to apply this method to the simulation
of multiphase flows, such as e.g. the motion of an air bubble in water. The numerical
methods for such flows are still a matter of active research even in the context of low-
order methods. These simulations additionally require special algorithms to model not
only the behavior of the fluid phases, but also the motion of the interface separating
them, for which this work uses a method called level set.

The level set method relies on employing a smooth function, which is defined on the
whole computational domain, just like the pressure or velocity field. This so called
level set function defines the interface between two phases by the positions where
it is zero. In contrast to other popular methods, this allows the simulation of flows
with changing topologies, such as the merge or split-up of droplets. In addition, the
method can be combined with so called sharp interface models. These models directly
implement jump conditions at the interface and thus allow high-order accuracy for
these kind of simulations. However, when applying a level set method, one needs two
additional algorithms:

First, especially when dealing with topological changes, the level-set function might
become very steep or flat, which might lead to increased errors in tracking the interface.
In addition, many applications require the gradient of the level set function to be a
good approximation to the normal of the fluid interface. To reconstruct both properties,
an algorithm called reinitialization is needed.

Second, in many cases the interest in the simulations lies in quantities, which are only
defined at the interface itself. When these quantities interact with a globally defined
field, one needs to extend the surface quantity into the domain. The example most
relevant for multiphase flows is the extension of the interface velocity into the domain,
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which moves the globally defined level-set function. For both algorithms there are well
established choices available from literature, but these approaches are not generally
suited for high-order discontinuous Galerkin methods. The main contribution of
this work are two ideas for reinitialization and extension, which are combined into a
motion algorithm for level set functions. This motion algorithm is then applied to the
multiphase flow simulations of a rising bubble.

1.1 Goals and outline of this work

This thesis presents a method to model the phase boundary in multi physics simu-
lations. This so called level set method requires additional algorithms. The goal of
this work is to present and evaluate these algorithms individually, together and in
combination with multiphase flow simulations. Chapter 2 introduces the continuum
mechanical models describing such multiphase flows. The numerical method used in
this thesis to solve arising partial differential equations (PDEs) from these models is
the discontinuous Galerkin method (DG). Chapter 3 gives a brief introduction to the
method and to the extensions needed when moving from single phase to multiphase
problems. This so called level set method requires two additional algorithms, which
are the core part of this thesis:

The first algorithm, called reinitialization, ensures smoothness of the level-set function.
Chapter 4 discusses a novel procedure for level set reinitialization in the context of
unfitted DG methods. Main parts of this chapter are based on the publication Utz et al.
(2017b) by the author of this thesis.

The second algorithm is needed, for quantities, which are only defined at the interface
but interact with globally defined fields. Prime example is the velocity at the interface,
which moves the globally defined level set function. Chapter 5 discusses a novel
procedure for extending quantities from a predefined interface into a domain. The
author’s second publication, Utz and Kummer (2017), is the basis for this chapter.
Chapter 6 briefly discusses a method for surface equations, which has some similarities
with the method presented in chapter 5.

Chapter 7 describes the combination of the two algorithms from chapters 4 and 5 with
an advection equation to calculate the motion of a surface. In the last chapter 8, this
motion algorithm is coupled to a multiphase Navier-Stokes simulation, where we
compare the simulation of a rising bubble to the results obtained by Heimann et al.
(2013) and the reference publication by Hysing et al. (2009).

1.2 The framework BoSSS

All numerical schemes presented are incorporated in the discontinuous Galerkin frame-
work BoSSS. This framework is a collection of multiple solvers, which are continuously
developed at the institute of fluid dynamics at TU Darmstadt. The main strengths of
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BoSSS is its object oriented programming approach, since it is written in the program-
ming language C#. Its modularized approach allows quick development of various
kind of solvers, such as incompressible flow and low Mach number flow solver by
Klein (2015), multiphase flow solver based on an extended DG approach by Kummer
(2012, 2016); Utz and Kummer (2017) and Utz et al. (2017b), compressible flow solver
incorporating the immersed boundary method and local time stepping by Müller
(2014); Müller et al. (2013) and Müller et al. (2017) or even solver for particle-laden
flows by Krause and Kummer (2017). Due to the platform-independence of C# and
the incorporation of MPI-parallelism, the BoSSS code runs on Windows, MacOS and
Linux alike from personal computers up to high-performance supercomputers such
as the Lichtenberg-Cluster at TU Darmstadt. Due to a continuous-integration based
development work flow, the latest developments in BoSSS are published on the website
github.com/fdydarmstadt/bosss, where it is available to the general public.

github.com/fdydarmstadt/bosss
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2 Mathematical model

This chapter introduces the continuum-mechanical models for viscous flows in the
vicinity of phase boundaries and the modeling of the interface itself using a level set
method. In addition it introduces the partial differential equations which are the basis
for the level set algorithms shown here. Central parts of this chapter are based on the
two peer-reviewed publications Utz et al. (2017b); Utz and Kummer (2017) and the
book chapter Utz et al. (2017a), which have all been published by the author of this
thesis.

2.1 Multiphase flows

A

B

Ω

∂Ω
I

~nI

Figure 2.1: Computational Domain with two phases

Consider a domain Ω, such as depicted in figure 2.1, in which an incompressible
multiphase flow problem is to be solved, i.e. the unknown quantities are the velocity
field ~u and the pressure field p and the position of the interface I. For the sake of
simplicity, the problems considered here are limited to two phases A and B with
piece-wise constant density ρ and dynamic viscosity µ:

ρ(~x) =

{
ρA for ~x ∈ A

ρB for ~x ∈ B
and µ(~x) =

{
µA for ~x ∈ A

µB for ~x ∈ B
. (2.1)

The two phases are separated by an interface I with the normal on the interface ~nI

pointing from A to B. In both phases Ω \ I, the flow is modelled by the incompressible
Navier-Stokes equations, which are the conservation of momentum

∂t~u+∇ · (ρ~u⊗ ~u) = −∇p+∇ · µ(∇~u+ (∇~u)T )− ~F in Ω, (2.2a)
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and the conservation of mass or continuity equation

∇ · ~u = 0 in Ω. (2.2b)

At the interface I , these two equation contract to the jump condition in the stresses
and the jump condition in the velocity field, see for example Wang and Oberlack (2011).
This jump operator of a vector quantity ~y is defined as

[[~y]] = ( ~yA − ~yB) . (2.3)

Then the jump condition in the stresses is written as[[
p~nI − µ(∇~u+ (∇~u)T )~nI

]]
= σκ~nI on I, (2.4a)

where σ denotes the surface tension, κ the mean curvature of I and ~nI the normal of
the interface I. The jump condition in the velocity field is

[[~u]] = 0 on I. (2.4b)

Furthermore, one has to specify boundary conditions

~u = ~uD on ∂ΩD (2.5)
µ
(
∇~u+∇~uT

)
· ~nΩ − p~nΩ = 0 on ∂ΩN, (2.6)

at the Dirichlet ∂ΩD and Neumann boundary ∂ΩN, where ~nΩ is the outward pointing
normal. And initial conditions

u(t = 0) = 0 in Ω. (2.7)

2.2 Surface transport of surfactants

The PDEs in the last section are defined on the whole domain Ω. It is however possible
to define a PDE not on the whole domain, but on a submanifold, such as the interface
I. One application for such surface-PDEs is for example the dynamics of surface active
agents, so called surfactants. Looking at the flow of two insoluble liquids, such as
water and oil, such a surfactant may for example be detergents, which are soluble
in both phases. However, these detergents accumulate at the interface between the
two phases, where their concentration is orders of magnitude higher than in the bulk
phase, see e.g. Dziuk and Elliott (2013) and Gross et al. (2015). Thus, a simplified
approximation for the dynamics of these surfactants is to model them as quantities,
which are only defined at the interface and which do not interact with the surrounding
bulk phases.

To accurately simulate diffusion along the surface, one must be able to discretize the
Laplace-Beltrami operator ∆I, which is the projection of the Laplace Operator onto
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the curved interface I. The surface-derivative ∇I is defined as the projection of the
gradient onto the surface

∇I = PI∇ = (I − ~nI ⊗ ~nI)∇ (2.8)

In this work, we limit ourselves to the model problem of the surface-poisson equation
on closed surfaces

∇I · ∇Iu = f on I (2.9a)∮
I

u = 0. (2.9b)

2.3 Level set methods

In addition to describing the dynamics of quantities in the phases A and B and their
coupling across the interface I, we need a model to describe the motion of the interface
itself. In the literature, there are two different approaches available: interface tracking
and interface capturing, see e.g. Gross and Reusken (2011) for an introduction and
overview. Interface tracking explicitly describes the position of the interface by an
explicit function for the interface position or by deforming a computational grid, which
is aligned with the interface. The alternative are interface capturing techniques, which
employ additional measures to implicitly describe the interface, such as particles (see
e.g. the marker and cell method by Harlow and Welch (1965)) or globally defined
functions such as the volume of fluid method by Hirt and Nichols (1981). The level
set method by Osher and Sethian (1988) follows the second idea: a D − 1 dimensional
manifold embedded in a domain Ω of D dimensions (or in multiphase physics, the
interface I) divides the domain into three parts: a phase A on one side of the interface
I, the phase B on the other side and the interface I itself. To implicitly describe
this configuration, a global function, the level ϕ is chosen such that it has the signed
distance property

ϕ(~x) =

{
dist(~x, I(ϕ)) in A(ϕ)

− dist(~x, I(ϕ)) in B(ϕ).
(2.10)

Then from a given level set ϕ given, the partitioning of the domain can be recomputed
as

A(ϕ) = {~x ∈ Ω : ϕ(~x) > 0} (2.11a)
B(ϕ) = {~x ∈ Ω : ϕ(~x) < 0} (2.11b)
I(ϕ) = {~x ∈ Ω : ϕ(~x) = 0}. (2.11c)
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If the interface is given, the signed distance formulation (2.10) can be computed by
solving the Eikonal equation

|∇ϕ| − 1 = 0 in Ω (2.12a)

with the boundary condition
ϕ = 0 on Ĩ (2.12b)

for a predefined interface Ĩ.
This definition of the interface has the property, that the normal on the interface can be
computed in the whole domain by the relationship

~nI =
∇ϕ
‖∇ϕ‖ = ∇ϕ. (2.13)

The motion of the interface is then given by the scalar transport equation

∂ϕ

∂t
+ ~uext · ∇ϕ = 0, (2.14)

with the velocity field ~uext being a smooth extension of the interface velocity ~uI, i.e.

~u = ~uI on I. (2.15)

Depending on this velocity field, this evolution may cause the level-set to become very
steep or flat close to the interface. There are two possibilities to remedy this: the first
is to use a process called reinitialization. The goal of reinitialization is to restore the
signed distance properties of the level-set, i.e. to find a solution of equation (2.12).
Starting point is an initial function ϕ̃, which defines the interface Ĩ = I(ϕ̃) and does
not have signed distance properties.

The second possibility is to move the level set by an extension velocity, which is
computed from

∇~uext,i · ∇ϕ = 0 ∀i ∈ {1, . . . , D}. (2.16)

It can be shown, that a level set field retains its signed distance properties, if the
velocity is constructed like that, see A.

Level-set methods are very popular in computational physics and engineering to
describe the movement of fronts Adalsteinsson and Sethian (1995); Osher and Sethian
(1988) or phase boundaries in multiphase problems Hou et al. (1997); Mulder et al.
(1992); Sussman et al. (1994). In this work, we focus on multiphase flows in the context
of high-order discontinuous Galerkin methods. There, reinitialization may suffer from
instability and should provide the same accuracy as the flow solver. We present and
critically examine a novel approach for these issues.
In the context of classical low order numerical schemes, the level-set method is well
established and available for a multitude of physical applications, see Osher and
Fedkiw (2001) for a review. They have further applications in computer graphics,
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where they are used in image segmentation, see Li et al. (2005) and Liu et al. (2013) or
way finding algorithms, see Kimmel and Sethian (1998). In computational engineering,
high-order methods are becoming increasingly popular, since they allow an increased
accuracy of computations, with the same computational effort compared to low-order
methods. Combining the discontinuous Galerkin method with the level set method
is popular to simulate multiphase flows, since the low numerical dissipation allows
highly accurate computation of the level-set movement, see Sussman and Hussaini
(2003); Grooss and Hesthaven (2006); Marchandise et al. (2007); Owkes and Desjardins
(2013)and Pochet et al. (2013).
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3 A discontinuous Galerkin method
for unfitted problems

This chapter very briefly introduces the discontinuous Galerkin method (DG) for the
example of a scalar conservation law. For a more detailed introduction, the reader
might refer to the overview papers Cockburn et al. (2000) and the textbooks by Li (2006),
Hesthaven and Warburton (2008) Di Pietro and Ern (2012). The method can be extended
to problems which include interfaces, which separate the computational domain into
two or more parts, the method presented here is the extended discontinuous Galerkin
method (XDG) proposed by Kummer (2012, 2016). The time domain is discretized by
implicit methods, which need to by extended to unfitted problems. This thesis uses
the method by Kummer et al. (2018).

This introduction is based on the two peer-reviewed publications Utz et al. (2017b);
Utz and Kummer (2017) and the book chapter Utz et al. (2017a), which have all been
published by the author of this thesis.

3.1 State of the art

Discontinuous Galerkin methods were originally developed by Reed and Hill (1973)
to simulate neutron transport and has been extended to general conservation laws by
Cockburn and Shu (1991), to convection-diffusion by Cockburn and Shu (1998) and to
the Stokes and Navier-Stokes problem by Cockburn et al. (2005); Girault et al. (2005)
and Shahbazi et al. (2007). Recently, the method has gained quite some popularity, due
to the fact that modern discontinuous Galerkin methods share the easy use of unstruc-
tured meshes and with the finite element method and the conservation properties with
the finite volume method. Thus, many insights gained using DG may be applied to the
other two methods and vice-versa. One example is the SIMPLE-algorithm, which is
popular for the solution of the saddle-point system arising from the discretization of the
Navier-Stokes. This algorithm, which was originally developed for the finite volume
method, has been successfully applied to DG discretizations by Klein et al. (2013a,b).
Another example is the adaption of the extended finite element method (XFEM) to DG
in the context of multiphase flows by Kummer (2012); Heimann et al. (2013); Fechter
and Munz (2015) and Saye (2017). Due to the flux formulation, for the DG method,
only information across an edge between two cells has to be exchanged, which limits
communication in parallel computations to a minimum, which makes the method
scale up to thousands of processors, even on complicated geometries, see Beck et al.
(2014) and Sonntag and Munz (2017).
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3.2 Introduction to the discontinuous Galerkin method

The discontinuous Galerkin method is a numerical method to discretize conservation
laws for quantities u of the form

∂tu+∇ · f(u) = 0, (3.1)

which shall be solved on a domain Ω. The first step to do so, is to derive the weak form
of the conservation law by multiplying it by a test function v and integrating over the
domain. Integration by parts then yields

∂t

∫
Ω

uv dV +

∫
Ω

∇ · f(u) v dV =

∂t

∫
Ω

uv dV −
∫

Ω

f(u) · ∇v dV +

∫
∂Ω

f(u) · ~nΩv dS = 0. (3.2)

This weak form is the starting point for many computational methods for partial
differential equations. Note, that this weak form includes an integration over the
spatial domain, but not over the time domain. Thus, all discretization approximating
the integrals given here only approximate the spatial domain, time discretizations
are discussed in the section 3.5. While the discontinuous Galerkin method can be
used for time discretization as well (so-called space-time DG, see section 3.5.2), this
introduction focuses on the spatial discretization only.

For the discontinuous Galerkin method, the D-dimensional domain Ω ⊂ RD is approx-
imated by the computational Domain Ωh = ∪

K∈K
K which consists non-overlapping

cells K with a characteristic mesh size h. Together, these cells form the grid (or mesh)
K = {K1, . . . , KJ}. The outward pointing normal of each cell is denoted by ~ne. The
skeleton Γ of this grid is defined as the union of all cell edges

Γ = ∪
K∈K

∂K. (3.3)

On this grid the weak form (5.11) is interpreted in a cell local way. To do so, the test
function v and the trial functions u are defined on each cell separately. Thus, they
are discontinuous across the cell interfaces. Typically, the functions are chosen as
polynomials of degree k. This means, we choose the test and trial functions

u, v ∈ VDG(K) (3.4a)

from the broken polynomial space

VDG(K) := {f ∈ L2(Ωh); ∀K ∈ Ωh : f |K ∈ Pk(K)}. (3.4b)



Introduction to the discontinuous Galerkin method 11

We denote the value at the inner side of an element by the superscript ”− ”, the outside
by the superscript ”+”. Then, we can define the jump and mean operators:

{~u} =
1

2

(
~u+ + ~u−

)
(3.5a)

[[u]] = u+ + u− (3.5b)

Using this definitions, the functions u and v can be plugged into the weak form (3.2).
However, these leads to a decoupling of the individual cells from each other. Therefore
we need to introduce a numerical flux f̃ , which couples adjacent cells. Doing so we
end up with the spatial discretization

find u ∈ VDG(K) s.t.

∂t
∑
K∈K

∫
Ki

uv dV −
∑
K∈K

∫
Ki

f(u) · ∇v dV +
∑
e∈Γ

∫
e

f̃(u+, u−, ~ne) [[v]] dS

= 0 ∀v ∈ VDG(K)

since the sum over all elements and edges is the same, as the integral over the domain,
this is usually written as

find u ∈ VDG(K) s.t.

∂t

∫
Ωh

uv dV −
∫

Ωh

f(u) · ∇v dV +

∫
Γ

f̃(u+, u−, ~ne) [[v]] dS

= 0 ∀v ∈ VDG(K).

(3.6)

This numerical flux must be continuous, consistent with the original PDE, i.e.

f̃(u, u, ~n) = f(u) · ~n, (3.7)

conservative
f̃(u+, u−, ~n) = −f̃(u−, u+,−~n) (3.8)

and enforce the boundary conditions at the edge of the domain. Since the function
space VDG is polynomial, the function u can be written as a linear combination of basis
function φi ∈ VDG

u =
∑
i

ûiφi (3.9)

with ûi being the scalar coefficients. We choose orthonormal basis functions for φi, i.e.
they have the property ∫

K

φiφj dV = δij (3.10)

with the Kronecker Delta δij .
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In the end, the discretized form (3.6) can be written as the nonlinear vector-equation

N(~̂u) = ~b, (3.11)

which simplifies for linear PDEs to the linear system

A~̂u = ~b. (3.12)

This linear system can be solved by appropriate direct or iterative methods, see the
textbook by Meister (2011). The direct methods used in Bounded Support Spectral
Solver (BoSSS) are the PARDISO package by Schenk and Gärtner (2004) and the
MUMPS package Amestoy et al. (2006). Since the systems shown in this thesis are
comparably small, they are exclusively solved by such direct methods, instead of
employing iterative methods.

3.3 Adaptation of DG to unfitted problems

The previous chapter introduced a method for a general conservation law which is
defined on the whole domain Ω. This method however is not suited for problems that
include conditions at the interface, such as (2.4a) or (2.4b). This chapter introduces
an extension to standard DG schemes that allows the solution of such problems. For
details on the discretization, the reader might refer to the publications Kummer (2012)
and Kummer (2016). The starting point is a steady state two phase problem with an
interface condition, which might be modeled as

∇ · fΩi
(u) = 0 in Ω ∀Ωi = {A,B} (3.13a)

[[f(u)]] · ~nI = 0 on I, (3.13b)

where material parameters in the fluxes fA and fB differ. This additional interface
condition may cause a kink or jump of the quantity u across the interface. If the
interface is not aligned with the grid, which is the general case, this jump or kink
cannot be approximated using the piecewise smooth function space VDG that we
introduced previously. Therefore we employ a method first presented by Kummer
(2012) which is closely related to the XFEM method in the context of multiphase flows)
and therefore called unfitted or extended discontinuous Galerkin method (XDG). See
e.g. Gross and Reusken (2011); Sauerland (2013) and Lehrenfeld (2015) for XFEM
related literature in the context of multiphase flows.

The interface I might be arbitrarily positioned in the domain. Then some cells are
located fully in the phase A or B. Cells which include the interface are called cut cells.
Thus,we can define a new grid, the so called cut cell grid which is

KCut = {K1 ∩ A, K1 ∩B, . . . , Kj ∩ A, Kj ∩B} (3.14)
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For the ease of notation, this includes cells with measure zero. Using a DG space on
this cut cell mesh is equivalent to the extended VDG space on the original mesh:

VX
DG(K) = VDG(KCut) (3.15)

Simply speaking, on cells, which do not contain the interface, these are the same cell
local polynomials. On cells which do contain the interface (and thus are cut by it),
this defines two separate degrees of freedom on the two halves of the cell u|K∩A and
u|K∩B. This requires individual test functions on each half v|K∩A and v|K∩B. With this
definition, the spatial discretization of the two-phase conservation law (3.13) is

find u ∈ VX
DG(K) s.t.

−
∫
A∪B

f(u) · ∇v dV +

∫
Γ∩(A∪B)

f̃(u+, u−, ~ne) [[v]] dS

+

∫
I

(f̃(uA, uB, ~nI)) [[v]] dS

= 0 ∀v ∈ VX
DG(K).

(3.16)

This gives a well-defined method, which has the same form as the original DG-scheme
but is defined on cut-cells K ∩ A and K ∩B instead of the original cells K with fluxes
across cut edges ∂K ∩A, ∂K ∩B and the interface I. Again the numerical flux f̃ must
be chosen appropriately to the given differential equations and the boundary and
jump conditions. This means, the weak form remains unchanged, but the method is
now defined on cut cells K ∩ A which may have an arbitrary shape. This requires an
integration method on these cut cells.

3.4 The hierarchical moment fitting method

When employing a sharp interface method to discretize a multiphysics problem, such
as (3.16) the burden of discretization lies in the numerical integration over the interface
and over the individual parts of the cells cut by it. Typical integration techniques for
such an integral require a reconstruction of the interface, see e.g. Min and Gibou (2007,
2008); Engwer (2009); Müller et al. (2012); Gross and Reusken (2011). However, this
appraoch is limited in its accuracy due to runtime restrictions, see Min and Gibou
(2007). We therefore chose a different approach introduced by Müller et al. (2013) called
hierarchical moment-fitting (HMF) which allows accurate integration over cut cells
and surfaces without an explicit reconstruction of the interface.

The idea of Müller et al. (2013) is to construct integration rules, such as the Gauß
quadrature, but individually tailored to the individual cut cell. The concept behind
such an integration rule is to approximate the integration of a function fi over a domain
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Ω, by sum of the function multiplied by weights W = {wi}i=1,...,N evaluated at the
points X = {~xi}i=1,...,N .

N∑
i=1

f(xi)wi =

∫
Ω

f dV (3.17)

For multiple functions B = {fj}j=1,...,M , then gives the system f1(~x1) . . . f1(~xN)
... . . . ...

fM(~x1) . . . fM(~xN)


︸ ︷︷ ︸

=:A

w1

...
wN

 =


∫

Ω
f1 dV

...∫
Ω
fM dV


︸ ︷︷ ︸

=:b

. (3.18)

The idea behind HMF is, to use this system the other way around: By picking a specific
basis B of RD, the right hand side of this system can be evaluated exactly. If the points
X are fixed, this leads to a linear system of the form

Ajiwi =

∫
Ω

fj dV. (3.19)

The exact integration of the right hand side of (3.18) is achieved by exploiting Gauss’s
theorem ∫

Ω

∇ · ~f dV =

∮
∂Ω

~f · ~nΩ dS. (3.20)

This means, if an integration rule over the boundary of a domain ∂Ω and its normals
are available, one can generate a quadrature rule for the whole domain. The idea
can be applied even further: if the function space B is chosen from divergence free
functions ~f ∗, the relationship can be further used to generate quadrature rules for the ,
if the integral over the rest of the domain is known.∫

A

∇ · ~f ∗ dV =

∮
∂A

~f ∗ · ~nΩ dS =∮
(∂Ω∩A)∪I

~f ∗ · ~nΩ dS =

∫
∂Ω∩A

~f ∗ · ~nΩ dS +

∫
I

~f ∗ · ~nI dS = 0 (3.21)

Using this approach Müller et al. (2013) and Kummer (2016) develop a hierarchy of
quadrature methods,which allow accurate integration over surfaces and cut cells in
arbitrary spatial dimensions. Their method is used for all such integrations throughout
this thesis. Since the details of the HMF method are not repeated here, the reader
might refer to the original publications by Müller et al. (2013) and Kummer (2016) and
the PhD thesis by Müller (2014).
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3.5 Temporal discretization

The precious chapters discussed a discretization of the spatial domain for the example
of a scalar conservation law (3.1). This resulted in the semi-discrete equation (3.6). In
general this equation can be written as the system of ordinary differential equations
(ODEs) for an unknown vector ~u

∂t~u = F (~u) in t ∈ (0, T ). (3.22)

For a detailed introduction to schemes for ordinary differential equations of this
kind, the reader might refer to one of the numerous introductory books on numerics,
e.g. Schwarz and Köckler (2013). In the context of discontinuous Galerkin methods,
Di Pietro and Ern (2012) and Hesthaven and Warburton (2008) give good introduction.

All time stepping schemes aim to calculate the quantity u(tn) at a certain time level
tn from values at previous time levels tn−1, tn−2, . . . , where ∆t = tn − tn−1 is the time
step size. The methods for solving this equation are typically split into two groups:
explicit methods, which involve evaluations of F at time steps which have already
been computed, and implicit methods, which involve this function at points in time,
which have not yet been computed, and thus require an inversion of F .

While explicit methods are quite popular in the context of DG methods for hyperbolic
equations, they suffer from the drawback of being limited by a maximal time step size
∆t. This time step size typically scales with the grid size as ∆t ∼ h

k
for hyperbolic and

even ∆t ∼
(
h
k

)2 for parabolic problems, where h is the size of the computational cells
and k is the polynomial degree for u see e.g. Gassner et al. (2007). In contrast to this,
many implicit methods are designed such that they do not have any or at least not
such a severe restriction to their time step size.

3.5.1 Implicit time stepping schemes

This thesis aims to avoid the restriction of the times step size by employing implicit
time stepping schemes of the form

β0

γ∆t
u(tn)− αF (u(tn)) = −

s∑
i=1

βi
γ∆t

u(tn−i) + (1− α)F (u(tn)). (3.23)

The coefficients for these backward differentiation formula (BDF) are given in the table
3.1.

Calculating the unknown u(tn) requires an inversion of the function F . In the context
of DG methods this is the solution of the system (3.6) arising from the discretization.
From the schemes available from table 3.1, the Crank-Nicholson Scheme is chosen for
all time-dependent equations in this thesis. The reason for this is, that only the BDF
1, the BDF 2 and the Crank-Nicholson scheme are unconditionally stable, while there



16 A discontinuous Galerkin method for unfitted problems

Table 3.1: Coefficients for the BDF schemes of different order s.

Scheme s α γ β0 β1 β2 β3 β4

BDF 1 (Implicit Euler) 1 1 1 −1
BDF 2 1 2 3 −4 1
BDF 3 1 6 11 −18 9 −2
BDF 4 1 12 25 −48 36 −16 3
Crank-Nicholson 1

2
1 1 −1

are time step restriction for the higher order BDF schemes. The implicit Euler scheme
(BDF 1) is only first order accurate, which causes the time stepping to be the limiting
factor for the accuracy of simulations. The second order BDF scheme gives the same
accuracy as the Crank-Nicholson scheme, but additionally requires values at tn−2.

3.5.2 Extension to moving interfaces

The XDG idea of extending the polynomial space on elements cut by the interface can
be used to discretize problems involving a moving interface. In this case however, both
parts of the domain A(t) and B(t) are time dependent, thus the spatially discrete but
temporally continuous form of the PDE cannot be discretized in time by applying an
algorithm for solving systems of ODEs.∫

A(t)

∂tuv dV 6= ∂t

∫
A(t)

uv dV (3.24)

Therefore we need to use a more general approach to solving problems including a
moving interface. To do so, the original conservation law (3.1) can be rewritten as

∂tu+∇ · f(u) =

(
∂t
∇

)
·
(

u

f(u)

)
= ∇∗ · f ∗(u) = 0. (3.25)

A Rankine-Hugoniot condition with an interface velocity s = ~uI · ~nI can be expressed
as

[[f · ~nΩ]]− [[su]] =

[[(
u

f(u)

)
·
(
−s
~nI

)
·
]]

= [[f ∗(u) · ~n∗I]] = 0 on I∗ (3.26)

The time interval and spatial domain on which this problem is to be solved, can also
be rewritten as

Ω∗ = (0, T )× Ω(t) (3.27a)
A∗ = (0, T )× A(t) (3.27b)
B∗ = (0, T )×B(t) (3.27c)
I∗ = (0, T )× I(t). (3.27d)
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Thus, the whole multiphase conservation law is

∇∗ · f ∗(u) = 0 on Ω∗ (3.28)
[[f ∗(u) · ~n∗I]] = 0 on I∗. (3.29)

With the only difference being the index ∗ this is the same as the steady state equation
(3.13). This is the so called space-time formulation of the problem. While imagining
an additional dimension is rather challenging, the numerical methods for such an
equation are exactly the same as for a PDE that only defined on a spatial domain. Of
course such an equation can be discretized by any Galerkin method just like any other
conservation law. In the context of discontinuous Galerkin methods, this approach is
called space-time DG and has been successfully applied to problems involving moving
interfaces and unfitting discretizations by Lehrenfeld (2014, 2015) or Weller and Bänsch
(2017). For a general introduction to space time DG, the reader might refer to the
textbook by Thomée (2006).

This space-time domain is shown in figure 3.1. Conceptually, designing a numerical
method for this domain is the same as for a domain with independent variables x and
y instead of ~x and t.

t

~x

I

A(t = 0)

A(t = T )

B(t = 0)

∂Ω

B(t = 0)

∂Ω

~n∗Ω = ~nΩ~nI

s

~n∗Ω = ~nΩ

~n∗Ω

~n∗Ω

Figure 3.1: Space-Time domain including a moving interface I

Multiplying equation (3.29) by a space-time test function v∗ and integrating by parts
over the space-time domain gives

−
∫

Ω∗
f ∗(u) · ∇∗v∗ dV ∗ +

∫
∂Ω∗

f ∗(u) · ~nΩ∗ v
∗ dS∗ +

∫
I∗

[[f ∗(u) · ~n∗I]] v∗ dS∗ = 0. (3.30)

This equation can be solved directly by employing an unfitted discontinuous Galerkin
discretization for the space-time domain. This however requires the solution of large
linear systems, since all temporal degrees of freedom must be solved at the same time.
For special choices of the temporal test functions and an XDG discretization in space,
the method can be reduced to classical implicit time stepping schemes such as the
implicit Euler or the Crank-Nicholson timestepping scheme, with additional terms
considering the motion of the interface Kummer et al. (2018).
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This is the approach used here, following Kummer et al. (2018). The integrals over
the space-time domain and its boundaries can be rewritten into individual integration
steps over time and space. For the general case (3.30) this then reads

find u ∈ VX
DG s.t.

−
∫ tn+1

tn

∫
A(t)∪B(t)

f(u) · ∇v dV dt

+

∫
A(t)∪B(t)

uv dV
∣∣∣∣
t=tn+1

−
∫
A(t)∪B(t)

uv dV
∣∣∣∣
t=tn

+

∫ tn+1

tn

∫
Γ∩(A(t)∪B(t))

f̃(u+, u−, ~ne) [[v]] dS dt

+

∫ tn+1

tn

∫
I

(f̃(uA, uB, ~nI)− s [[u]]) [[v]] dS dt

= 0 ∀v ∈ VX
DG(K). (3.31)

It is important to note, that it is required to evaluate the mass matrices, i.e. the first two
terms in (3.31) at both time levels individually. Failing to do so leads to a consistency
error of the time discretization as noted by Fries and Zilian (2009) and Kummer et al.
(2018).

For the simulations shown in the last chapter, 8 a Crank-Nicholson time stepper is
used. This means, the temporal integrals in equation (3.31) are approximated as∫ tn+1

tn
(. . . ) dt =

∆t

2

(
(. . . )|tn + (. . . )|tn+1

)
(3.32)

For further details on the method, especially on the treatment of small cut cells and
interfaces which move across cell boundaries, the reader might refer to the original
publication by Kummer et al. (2018).
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4 Level set reinitialization

This chapter discusses an algorithm to restore the signed-distance property of the
level-set function, which is based on solving an elliptic PDE in contrast to commonly
used algorithms. Main parts of this chapter are based on the publication Utz et al.
(2017b), where this algorithm was first introduced and only minor formulations have
been changed. Section 4.4 extends the method from the original publication by a
preconditioning method involving a first order fast marching scheme.

Let’s revisit some definitions from chapter 2: If the level set function is defined as in
equation (2.10),

ϕ(~x) =

{
dist(~x, I(ϕ)) in A(ϕ)

− dist(~x, I(ϕ)) in B(ϕ)
(see 2.10)

the norm of the gradient is always one, which defines the Eikonal equation

|∇ϕ| = 1. (see 2.12)

The normal on the interface can be computed as

~nI =
∇ϕ
‖∇ϕ‖ = ∇ϕ. (see 2.13)

This means, the closest point on the interface can be computed as

xcp = x− ϕ(x)
∇ϕ
‖∇ϕ‖ . (4.1)

As already mentioned in section 2.3, the level set may loose its signed distance proper-
ties due to advection. The dashed lines in figure 4.1 depict two possible situations, in
which this becomes troublesome. First, with decreasing level set gradient, determining
the position of the interface becomes increasingly bad conditioned. Second, the level
set might become disturbed or even oscillate, such that the level set gradient becomes
very steep or even switches its sign. In such a case, the equation (4.1) does not give
convergent results and the normal calculated from equation (2.13) is no feasible ap-
proximation to the interface gradient anymore, which is problematic for the quadrature
technique shown in section 3.4. Thus, we need a procedure, to recover the signed
distance property (2.13) from a given level set field.
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Figure 4.1: Deviation of the level set from the signed distance property

4.1 Algorithms for level set reinitialization

The techniques used for reinitialization can be divided in multiple groups: direct and
geometry-based approaches, which aim to solve (2.10) and PDE based algorithms,
which seek for a solution of (2.12).

4.1.1 Direct and geometric algorithms

Direct approaches calculate the distance to the interface for every grid point in the
computational domain individually, usually by including some kind of search algo-
rithm. In the discontinuous Galerkin context, this approach is used by Desjardins and
Pitsch (2009); Marchandise et al. (2007); Marchandise (2006); Pochet et al. (2013) and
Saye (2014).

Fast marching algorithms iteratively extend the field point by point starting from the
zero contour. The method was originally developed in the finite difference context
by Adalsteinsson and Sethian (1995, 1999) and is well established therein with con-
tributions to improve the accuracy to second order by Chéné et al. (2007) and Chopp
(2001) and to third order by Luddens et al. (2015). The method has been extended
to finite element methods on unstructured grids and general triangulated surfaces
by Kimmel and Sethian (1998) and was further improved by Elias et al. (2007) and
Groß et al. (2006). Sussman and Hussaini (2003) applied fast marching to a high-order
discontinuous Galerkin method on structured grids.

Fast sweeping methods are a second possibility. The main idea is to update the
information at one point, or in one cell, based on the values of the surrounding cells
by ”Gauss-Seidel iterations with alternating sweeping orderings”(Zhao (2005)). Fast
sweeping is well established for several numerical methods: Originally, the method
was designed for the finite difference method by Tsai et al. (2003) and Zhao (2005).
In this context it was later extended for efficient parallel implementations Jeong and
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Whitaker (2008) and Detrixhe et al. (2013). Wu and Zhang (2014) extended the method
to achieve third order accuracy. Qian et al. (2007) applied the method to finite element
method (FEM) with first order accuracy, Xia et al. (2008) published an application of
fast sweeping to DG on triangular grids with second order accuracy . For triangular
grids, the method was further improved for parallel performance by Fortmeier and
Bücker (2011); Fu et al. (2011, 2013) and Shakoor et al. (2015). Cheng and Shu (2007)
applied the method to DG simulations on structured, quadrilateral grids and multiple
groups improved this to second order accuracy (see Li et al. (2008); Zhang et al. (2011)
and Luo (2013)) and third order accuracy (see Wu and Zhang (2014)). These DG-based
approaches rely on solving the Eikonal equation (2.12) or a reformulation for each cell
locally.

To the author’s knowledge neither fast marching, nor fast sweeping algorithms are
available, which allow higher than third-order accuracy on unstructured grids.

4.1.2 PDE-based algorithms

While the previous algorithms rely on a point wise or cell wise update of the level-
set, PDE-based approaches reformulate the problem (2.12) and solve a global system.
The resulting PDEs can be incorporated into the equation describing the level-set
motion or solved individually, or may serve as the base for local solvers in a fast
marching or sweeping method. These algorithms can be divided into approaches,
which directly solve the Hamilton-Jacobi problem (see Cheng and Shu (2007); Hu
and Shu (1999)), hyperbolic (see Sussman et al. (1994)) and parabolic (see Li et al. Li
et al. (2005)) approaches. A recent addition to PDE based reinitialization techniques
is the approach by Basting and Kuzmin (2012), which is based on solving an elliptic
problem. The approach developed there has caught some attention in the literature (see
Basting and Kuzmin (2014); Holmgren and Kreiss (2015); Rasthofer (2015)) and was
considered a promising alternative for level-set reinitialization, but not investigated
further. Therefore this approach was extended to DG by the author of this thesis (see
the publication Utz et al. (2017b)).

4.1.3 Hyperbolic reinitialization

The most popular choice for PDE-based algorithm is to reformulate (2.12) as the time
dependent, hyperbolic problem

∂ϕ

∂t
− sign(ϕ̃) (|∇ϕ| − 1) = 0 in Ω (4.2a)

with the initial condition
ϕ(~x, t = 0) = ϕ̃(~x). (4.2b)

Then, the steady-state solution of this problem is the solution of the Eikonal equation.
This idea was originally developed by Sussman et al. (1994) for a finite difference
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discretization and was further improved by Russo and Smereka (2000). Della Rocca
and Blanquart (2014) included a ghost-cell method to allow reinitialization, if the
zero-contour intersects the boundary of the domain. In the context of finite element
and discontinuous Galerkin methods, special measures have to be taken, to stabilize
the algorithm: Grooss and Hesthaven (2006) modify the hyperbolic reinitialization
to flatten the level-set function far from the interface, thus avoiding the influence
of singularities outside a narrow region around the interface. Afterwards, they re-
move high frequency oscillations by a filtering technique. Hyperbolic reinitialization
methods may suffer from a shift and oscillations of the zero-isocontour, such that the
pseudo-time stepping does not convergence to a steady state. This has been reported in
the context of discontinuous Galerkin methods by Mousavi (2014) and in the context of
finite element methods by Basting and Kuzmin (2012), as well as in the finite difference
context, where Hartmann et al. (2008, 2010) solve the issue by explicitly calculating
the signed distance solution in the cells cut by the interface I. Therefore, this thesis
focuses on a different approach by using a method based on solving an elliptic system.

4.2 Elliptic reinitialization

Elliptic reinitialization aims to avoid oscillations in the zero-isocontour and stability
issues, associated with hyperbolic reinitialization. The idea is to consider an energy
functional R of the form

R (ϕ) =

∫
Ω

ψ (|∇ϕ|) d~x (4.3)

with the potential function ψ(|∇ϕ|). The simplest choice for the potential is the single
well ψ(s) = 1/2 (s− 1)2:

R (ϕ) =
1

2

∫
Ω

(|∇ϕ| − 1)2 d~x,

which is discussed in section 4.2.1. The function has an associated diffusion rate d,
which is defined as

d(s) =
dψ(s)

d(s)

1

s
. (4.4)

Minimizing this functional is equivalent to searching for the steady-state-solution of
the problem

∂ϕ

∂t
+
∂R

∂ϕ
= 0, (4.5)

see Li et al. (2005), which is called parabolic reinitialization.

Instead of evolving this time dependent PDE to steady state, Basting and Kuzmin
(2012) propose to directly solve the minimization problem

min R(ϕ) s.t. ϕ = 0 on I(ϕ̃). (4.6)
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The constraint at the interface can be enforced by a penalty term

P (ϕ) = α

∫
I(ϕ̃)

ϕ2

2
dS, (4.7)

where α is a sufficiently large penalty parameter. This penalty term is discussed in
detail in section 4.2.3.

Taking the functional derivative gives the variational form (or weak form)

δR(ϕ, v) + δP (ϕ, v) =

∫
Ω

d(|∇ϕ|)∇ϕ · ∇v d~x+ α

∫
I(ϕ̃)

ϕv dS = 0 ∀v (4.8)

with the test function v. The strong form of the minimization problem is

∂R

∂ϕ
= ∇ · (d (|∇ϕ|)∇ϕ) = 0 in Ω (4.9a)

ϕ = 0 on I(ϕ̃). (4.9b)

Note, that equation (4.9a) can be split into a linear part ∆ϕ and a nonlinear part f(ϕ)

∆ϕ−∇ · (1− d (|∇ϕ|)∇ϕ) = ∆ϕ− f(ϕ) = 0 (4.10)

This is used later to define an iteration scheme, where a Poisson equation has to be
solved in each iteration step.

4.2.1 Potential functions
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Figure 4.2: Single-well (ψ1) and double-well (ψ2) potential function
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Basting and Kuzmin (2012) use two different formulations for the potential function ψ,
see figure 4.2: the single-well potential

ψ1(s) = 1/2(s− 1)2 (4.11a)

d1(s) = 1− 1

s
(4.11b)

and the double-well potential

ψ2(s) =

{
1/2s2(s− 1)2 if s ≤ 1

1/2(s− 1)2 if s > 1
(4.12a)

d2(s) =

{
2s2 − 3s+ 1 if s ≤ 1

1− 1
s

if s > 1
. (4.12b)

Note, that for ψ1 only s = |∇ϕ| = 1 is a solution, while ψ2 possesses the additional
solution s = |∇ϕ| = 0. As Basting and Kuzmin (2012) and Li et al. (2010) already
pointed out, the single well potential leads to numerical instabilities in regions, where
∇ϕ goes to zero, both references introduce a double well potential to circumvent this
problem. Both references demonstrate the reinitialization in a narrow band region
around the interface with such a double well potential. Far from the interface, the
solution would converge to a constant function. However, as we will show in section
4.3.3, the double-well potential may flatten the level-set function in any region where
the level-set gradient is overly low. In the context of a multiphysics solver, it is therefore
advisable to execute the algorithm before such flat regions may occur.

4.2.2 Discretization

The starting point for the DG discretization of equation (4.10) is to multiply it by
the test function v and to integrate the result over each cell individually and sum
over the whole grid. The resulting terms are called consistency terms, since they
give a discretization consistent with the original PDE. To achieve a stable method,
the symmetry term in a2, the penalty term a3 are added. The result is the standard
symmetric interior penalty method for the linear terms a1 . . . a3 (see, e.g. Di Pietro and
Ern (2012)). No additional terms are added for the nonlinear terms, thus we end up
with the incomplete interior penalty method for the nonlinear terms b1 and b2. Last,
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the penalty term a4 enforces the boundary condition at the interface (see, e.g. Di Pietro
and Ern (2012)):

find ϕ ∈ VDG(K) s.t.∫
Ωh

∇ϕ · ∇v d~x

︸ ︷︷ ︸
a1(ϕ,v), SIP volume term

−
∫

Γ\∂Ω

({∇ϕ} · [[v]] + {∇v} · [[ϕ]]) dS

︸ ︷︷ ︸
a2(ϕ,v), SIP consistency & symmetry term

+

∫
Γ\∂Ω

η [[ϕ]] · [[v]] dS

︸ ︷︷ ︸
a3(ϕ,v), SIP penalty term

−
∫
Ωh

(1− d (|∇ϕ|))∇ϕ · ∇v d~x

︸ ︷︷ ︸
b1(ϕ,v), nonlinear volume part

+

∫
Γ\∂Ω

{(1− d (|∇ϕ|))∇ϕ} · [[v]] dS

︸ ︷︷ ︸
b2(ϕ,v), nonlinear consistency part

+

∫
I(ϕ̃)

αϕv dS

︸ ︷︷ ︸
a4(ϕ,v), B.C. at Interface

= 0

∀v ∈ VDG(K) (4.13)

In short, the above problem reads

find ϕ ∈ VDG(K) s.t.
4∑
i=1

ai(ϕ, v) =: a(ϕ, v) = b(ϕ, v) := −
2∑
i=1

bi(ϕ, v)

∀v ∈ VDG(K). (4.14)

Therein, the terms a1, . . . , a4 are linear and symmetric, whereas the terms b1 and b2 are
nonlinear and in general not symmetric. It should be noted, that the nonsymmetric
discretization of the nonlinear part is known to deliver sub-optimal convergence rates
of hp, see e.g. Rivière (2008). The volume integrals a1 and b1 and the surface integrals
on the cell edges a2, a3 and b2 can be obtained using standard Gauß-quadrature, but the
surface integral a4 is only defined implicitly by the initial level-set field ϕ̃. Therefore,
this integration is performed using the hierarchical moment fitting method by Müller
et al. (2013), which is explained in more detail in 3.4.

4.2.3 Choice of the penalty parameter

The parameter η is the penalty parameter, which weakly enforces the inter-element
continuity, and α the penalty for the boundary condition at the interface. Both values
are chosen identical as determined by Hillewaert (2013):

α = η = max{cK+ , cK−} (4.15)
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where
cK = C(k)

|∂K|
|K| . (4.16)

The numerical examples in this work, all consider quadrilaterals, for which Hillewaert
(2013) gives the sharp estimate for the constant C depending on the polynomial degree
k

C(k) ≥ (k + 1)2. (4.17)

For triangular (D = 2) and tetrahedral (D = 3) elements, Shahbazi (2005) gives the
factor C(k)

C(k) ≥ (k + 1)(k +D)

D
. (4.18)

4.2.4 Iteration procedure

Following Basting and Kuzmin (2012), we solve this nonlinear system using the fix
point iteration

a(ϕn+1, v) = b(ϕn, v) ∀v ∈ VDG(K). (4.19)

Since the resulting linear systems considered here are quite small, we use the direct
solver PARDISO (see Schenk and Gärtner (2004)). For larger problems, one might
exploit the symmetry of the system (4.19) by using a variant of the conjugate gradient
algorithm.

4.3 Numerical test cases

After a discussion of suitable error measures for the reinitialization, we present three
different setups for our reinitialization procedure: First, the focus is on the test case
of a circular interface. We compare our method to the reference solution by Basting
and Kuzmin (2012), examine the influence of the penalty parameter at the interface α
and the convergence behaviour of the method. Second, we show how the choice of
the initial conditions and the potential function affects the convergence of the scheme.
Third, we show the convergence properties of the method on the example of a distorted
droplet. Last, we show stability of the algorithm even for geometrical features that
contain singularities and only span few grid cells.
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4.3.1 Error measures

Suitable norms are needed to measure the quality of the reinitialization procedure. If
the signed distance solution for a geometry is given analytically, one can employ the
standard global norms

EL2 = ‖ϕ− ϕexact‖2 =

∫
Ω

h (ϕ− ϕexact)
2 d~x

1/2

(4.20a)

EL1 = ‖ϕ− ϕexact‖1 = (

∫
Ω

h|ϕ− ϕexact|d~x) (4.20b)

EL∞ = ‖ϕ− ϕexact‖∞ = max
~x∈Ωh

|ϕ(~x)− ϕexact(~x)|. (4.20c)

It is well known that convergence in the L2-norm breaks down to first order if the
analytical solution contains singularities. If the interest lies in the accuracy of the
method, the error calculation may be restricted to a narrow-band region around the
interface, which does not include the singularity. In this part of the domain, one might
expect higher order accuracy. We choose a different approach: In the test cases 4.3.2.3
and 4.3.4 we limit the computational domain, such that possible singularities lie outside
the domain and cannot affect the accuracy of the method. Later we demonstrate the
stability of the method for cases, where the singularities lie in computational cells next
to the interface.

If no analytical solution is available, one might consider different options:
For two-phase flow simulations, the main goal of reinitialization is to have an approxi-
mate signed distance function while maintaining the shape of the interface.

A measure for the deviation of the level-set from its original position is the approach
employed by Basting and Kuzmin (2012), who integrate the new level-set field over
the original contour:

Ec =

 ∫
I(ϕ̃)

ϕ2ds


1
2

(4.21)

If the level-set shifts its position, it will have a nonzero value at the point, where it was
before. Since the level-set has signed distance properties after the reinitialization, this
value is a measure for the spatial deviation from the original position.

Last, the deviation from the signed distance field can be measured by

ESD = ‖(1− |∇ϕ|)‖2 =

 ∫
Ωh

(1− |∇ϕ|)2 d~x

 1
2

. (4.22)
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Note, that this norm does not measure deviations in the interface position.

It is important to note, that only the integral error measures ESD (4.22) and EL1 , EL2

and EL∞ (4.20) are norms of the level-set ϕ. Thus, only in these norms, convergence
rates can be expected.

4.3.2 Circular interface

4.3.2.1 Comparison with reference solution
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Figure 4.3: Comparison of PDE based approaches, data for hyperbolic and FEM
implementation of elliptic reinitialization from Basting and Kuzmin (2012)



Numerical test cases 29

As a first test case, we compare our method, with the reference by Basting and Kuzmin
(2012). The test case consists of a circular interface with a radius of 0.5, which is located
centered in the domain Ω = (0, 1)× (0, 1). The signed distance profile for this circle is

ϕexact(~x) = 0.25−
√

(x− 0.5)2 + (y − 0.5)2. (4.23)

We use the same initial condition and discretization as in the reference: The compu-
tational domain is subdivided by regular refinement into triangles of equal size. By
repeating this four times, we end up with 32 elements per side. Linear polynomials
(i.e. p = 1) are chosen. The potential function used here is the single-well potential
ψ1. The level-set is initialized as ϕ̃ = 2ϕexact and stochastically distorted with a maxi-
mal amplitude of 1/2h = 1/64 on all cells which do not contain the interface. Figure
4.3 compares the results of the FEM implementation of the elliptic reinitialization by
Basting and Kuzmin (2012), their implementation of a hyperbolic procedure and our
method in multiple error measures.

The hyperbolic reinitialization produces much higher errors in all norms, compared
to both elliptic procedures. Looking at the global EL1 and EL2 norms, the DG variant
produces significantly lower errors than the FEM implementation. However, the error
in the EL∞ norm is slightly higher than in the FEM case. This might be due to the
coupling terms in the gradient across the boundaries of the computational cells, which
penalize strong variations in the gradient across cells. While the original formulation
of basting and Kuzmin Basting and Kuzmin (2012) does not include these DG-specific
coupling terms , the term a2 in equation (4.13) leads to a smoothing of kinks at cell
edges, which causes a larger error at the singularity in the center of the circle. The error
at the interface of the DG implementation is slightly larger than for the FEM, while
still way below the hyperbolic variant. The main reason for this behaviour is the weak
enforcement of the boundary condition at the interface, which heavily depends on the
choice of the penalty parameter. This error can be reduced by increasing the penalty
parameter, at the cost of an increased condition number of the resulting linear systems,
as we demonstrate in the following section 4.3.2.2.

4.3.2.2 Influence of the penalty parameter

To test the influence of the penalty parameter at the interface, we vary this parameter
between 101 and 107, see figure 4.4. As a test case, we used the same case of a circle
on a triangular grid as before. While the penalty factor has a large impact on the
error of the zero contour, it only influences the global measures EL1 , EL2 and EL∞ ,
if the penalty factor at the interface is smaller than the calculated value. Shahbazi
(2005) derived the minimal penalty to achieve convergence in these global norms. We
choose α = η for three different reasons: First, the global error norms do not change
with an increase in the penalty. Second, while the condition number of the operator
a(u, v) is relatively constant for α < η, it rises significantly for α > η which may
lead to higher computational cost for solving the linear systems by an iterative solver.
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Figure 4.4: Error in different measures and condition number of the associated linear
system for varying penalty parameter α

Third, while the error in the contour Ec drops with increasing α, this does not alter the
h-convergence behavior of this norm.
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4.3.2.3 Convergence behaviour

−2 −1 0 1 2
−2

−1

0

1

2

x

y

Figure 4.5: Coarsest grid for convergence tests on a circular interface. The grey cell is
not part of the domain.

As a third test case for the circular interface, we look at h-convergence for polynomial
degrees k up to 5. The computational domain Ωh = (−2, 2)2 \ (−0.4, 0.4)2 is discretized
by a structured quadrilateral grid. The coarsest grid for this domain is shown in
figure 4.5 . It consists of 5 × 5 cells: The center cell is not a part of the domain, thus
avoiding that the singularity there spoils the convergence rate. The grids used for the
convergence study are obtained by subdividing the grid from figure 4.5equidistantly.
In contrast to the previous examples, we use the double-well potential ψ2, since this
potential performs better in the vicinity of singularities, as we will see later in section
4.3.3. As the initial condition we use the quadratic representation of the circle

ϕ̃ = x2 + y2 − 1. (4.24)

Figure 4.6 compares the results to the analytical solution

ϕexact =
√
x2 + y2 − 1. (4.25)

in figure . In the global norms, the convergence rates rise with the polynomial degree:
EL1 converges with approximately hk+1/2, EL2 with approximately hk. This suboptimal
convergence behaviour is to be expected due to the use of the incomplete interior
penalty discretization for the nonlinear term Rivière (2008). The signed-distance
property converges with a convergence rate larger than hk+2. The high convergence
rate of ESD might be explained by the relatively simple geometry of this test case - for
the more complex geometry in section 4.3.4 the convergence rate is hk+2. The shift of
the level-set contour shows a different behaviour: while beyond h−1 > 23, the error
converges with approximately hk, we see a lower error bound for polynomial degrees
of k = 4 and k = 5. This lower error bound might be explained by the approximate
integration rules used for the boundary condition and the calculation of the error
measure itself. Nevertheless, we will not further investigate this, because we show in
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section 4.3.4, that this error measure is limited to first order accuracy for practical test
cases.
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Figure 4.6: Results of the h-convergence study for the circular interface

4.3.3 Flat interface

As a second setup, we consider a level-set, which has two zero contours

ϕ̃1 = 4− (x− 0.5)2, (4.26)

see figure 4.7. The analytical solution for the reinitialization of this function is

ϕa =

{
2 + (x− 0.5) if x ≤ 0.5

2− (x− 0.5) if x > 0.5
(4.27)
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Figure 4.7: Initial level-sets ϕ̃1 and ϕ̃2 and analytical solution ϕa. The vertical lines
coincide with the numerical grid.

Scaling ϕ̃1 by an arbitrary factor γ smaller than 1 does not change the analytical
solution, but may affect the numerical solution depending on the chosen potential ψ.
For the numerical testcase we choose γ = 1/12.

ϕ̃2 = γϕ̃1 (4.28)

For this numerical test case, we use a grid of [6 × 3] elements spanning the domain
[−3, 3] × [−1, 1]. The initial contours ϕ̃1 and ϕ̃2, the analytical result ϕa , and the
partition of the domain in x-direction are shown in figure 4.7 .

Figure 4.8 shows three different computations for the initial conditions shown in figure
4.7 . The convergence criterion is ‖un − un−1‖ ≤ 5 ∗ 10−12, the polynomial degree is
k = 5. The first figure 4.8a shows the converged result for the initial condition ϕ̃2.
Almost in the whole domain, the solution is flattened out to a constant value of ϕ = 0.
This shows the drawback of the double-well potential ψ2: since the gradient in the
initial condition is much closer to zero than it is to one, see figure 4.7, the gradient in
the converged solution is zero, which causes the flattening of the solution. The third
figure 4.8c shows the same test case with the potential function ψ1. Since this potential
function allows only |∇ϕ| = 1, the solution starts to oscillate in the vicinity of the
singularity. These oscillations spread out from the affected cell and pollute the whole
solution. The only case with a satisfactory result is the figure 4.8b, which shows the
result for the initial condition ϕ̃1 and the double-well potential ψ2: we achieve good
agreement with the signed-distance solution around the interface. In the center cell,
the singularity is smoothed out, without oscillations and pollution of the nearby cells.
Therefore, we will use the double-well potential for all cases, where singularities might
occur. To avoid this behaviour, section 4.4 introduces a preconditioning technique.
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Figure 4.8: Solution for different potential function in the vicinity of a singularity.
Polynomial degree k = 5, thick black line ϕ = 0 , the figure is colored according to the
value of ϕ

4.3.4 Distorted circle

In multiphase flows, one often faces bubbles, which deviate from a spherical shape.
Such a shape might be described by the initial level-set

ϕ̃0 = (x+ 0.5)4 + y4 + (x− 0.5)2 + y2 − 1.1. (4.29)

Figure 4.9 shows the contour of the interface, isolines of the level-set and streamlines
following the level-set gradient for both the initial condition and the converged so-
lution. In contrast to the previous test cases, isolines of the level-set function are not
concentric, see figure 4.9a. For this test case, the computational domain was chosen
as Ωh = (−1, 1)2 \ (−0.2, 0.2) × (−0.6, 0.6). Like this, the singularity in the middle of
the contour lies outside the computational domain and cannot spoil the accuracy of
the calculation. The potential function is chosen as the double-well ψ2. In the context
of multiphase flows, this is usually a justified approximation. Since the level-set is
needed only within a narrow region around the interface and the surface curvature
radius is larger than the grid size, the singularities in the level-set can be excluded.
However, we will show in section 4.3.5, that our method is stable for this case, i.e.
when dealing with level set features of the same length-scale as the curvature radius.
For this test case no analytical solution is available. Therefore, we can only measure
the deviation in the absolute Gradient ESD, eq. (4.22), and from the zero contour EC ,
eq. (4.21). Figure 4.10 shows the h-convergence for polynomial degrees from k = 1 to
k = 5. While the level-set gradient converges with a rate of ESD ∝ hk+2, which is even
higher than expected for norms of the gradient hk, the contour error does not give high
order accuracy and converges with first order Ec ∝ h.
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Figure 4.9: Distorted circle on a grid [40×40] showing level-set isolines (zero isocontour
in bold line) and streamlines of the gradient (extending outwards), polynomial degree
k = 5
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Figure 4.10: Results of the h-convergence study for the distorted circle test case
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4.3.5 Ellipse

Last, we consider a very coarse discretization of an ellipsoidal interface in the domain
Ω = [−2, 2]2 with the initial level-set

ϕ = (x (1 + 0.3))2 + (y (1− 0.3))2 − 1. (4.30)

We discretize this domain with a grid of only 5× 5 grid cells, see figure 4.13. To avoid
oscillations due to the singularity, we choose the potential function as the double-well
potential ψ2. After the first iteration, the level-set function already closely approaches
the exact solution, as shown in the cross-sectional cut, see figure 4.11. Even on this
coarse grid, the initial interface is not moved by the reinitialization procedure, as
depicted in figures 4.11 and 4.13. Looking at figure 4.12, the method shows long term
stability.
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Figure 4.11: Cross-section of the level-
set ϕ(1) at y = 0 after the first iteration.
The vertical lines coincide with the nu-
merical grid. Analytical solution ϕexact

and the initial conditions ϕ̃ shown for
comparison
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Figure 4.12: L2 change rate of the level-
set field
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Figure 4.13: Ellipse on a coarse grid showing level-set isolines and outwards extending
normal vector , polynomial degree k = 3

4.3.6 Torus

As an additional testcase to Utz et al. (2017b) we look at the reinitialization of a three
dimensional contour: One possibility to describe the surface of a torus is via the level
set.

ϕ(x, y, z) = 5

(
z2 +

(√
x2 + y2 −R

)2

− r2

)
(4.31)

The signed distance solution of this torus is

ϕ(x, y, z) =

√
z2 +

(√
x2 + y2 −R

)2

− r (4.32)

We initialize the level set using equation 4.31 on the domain Ω = (−2, 2)3 using
a equidistant grid of 203 cells and a polynomial degree of k = 2. The geometry
parameters are chosen as r = 0.4 and R = 1.2. This test case converges to the analytical
solution 4.32, even with the curved singularity at the center of the small radius, as can
be seen in the two sections 4.14.
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Figure 4.14: Reinitialization of the level set function for a torus, solid lines: ϕ = 0,
dashed lines: ϕ = const.

4.4 Preconditioning

In addition to the publication Utz et al. (2017b), a preconditioning to the method is
proposed: As shown in the previous sections, the reinitialization method presented
here delivers accurate and stable results for the second potential ψ2, when the gradient
is sufficiently large. However, one can construct two kinds of initial conditions, which
cause a divergence of the algorithm. The first case is, when the gradient is small, which
leads to a flattening of the level set as shown in section 4.3.3. The second case is an
oscillation of the initial conditions, where the level-set gradient switches its sign. Then,
as shown in the introductory example, 4.1, both variants of the method shown here do
not converge to the exact solution, see figure 4.15.
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Figure 4.15: Reinitialization of oscillating initial conditions with and without precondi-
tioning

4.4.1 Coupling of fast marching and elliptic reinitialization

To circumvent this issue, a three-step method for the reinitialization is introduced:

1. Reinitialization of cells, which include the interface I using the single well poten-
tial ψ1. I.e. K ∈ K : ‖K ∩ I‖ 6= 0. This avoids that the level set function becomes
flat, as shown in figure 4.8a. Then all cut cells have signed distance property.

2. Reinitialization of all other cells K ∈ K : ‖K ∩ I‖ = 0 using a fast marching
procedure (see e.g. Adalsteinsson and Sethian (1995)). This gives a first-order
approximation on the actual solution. However, the procedure ensures, that
the sign of the gradient is correct and oscillations as shown in figure 4.15 are
removed.

3. Perform the algorithm described above with the potential function ψ2. This
ensures stable results in the vicinity of singularities. An unintentional flattening
of the interface is avoided by the preceding fast marching step.

pterThe fast marching procedure by Adalsteinsson and Sethian (1995) is based on
separating points on a grid into three groups, see figure 4.16: ”Accepted” points, which
are points, where the level set is already a solution of the Eikonal equation (2.12),
”Close” points, which are adjacent to the accepted points and which are recalculated
in the next loop of the marching procedure and ”Far” points, which have not been
calculated yet.

Each loop of the fast marching procedure consists of the following steps:

1. Recalculate the close points by an upwind finite difference discretization of the
Eikonal equation (2.12)

2. Mark the point with the smallest value from ”Close” as ”Accepted”

3. Move all points which are adjacent to the smallest value from ”Far” to ”Close”
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(a) Selection of the cell (b) Fast marching on the
individual cell

Far

Close
Accepted

Figure 4.16: Reinitialization using fast marching for the whole domain and individual
cells, the sub cell grid on the cell is depicted for the cell marked in gray

4. repeat loop

In the DG solver presented here, this process is implemented using a multi grid
approach: On the coarse level, each cell in the grid is treated as an individual data
point with the cell average being the value of this data point, see figure 4.16a. This
coarse step determines, which cell is to be recomputed next. On this cell, a new grid
is defined, see figure 4.16b. After computing this cell-based grid, its solution is L2

projected onto the DG polynomials of the level-set.

4.4.2 One dimensional test case

Figure 4.15 shows a one-dimensional test case on the domain Ω = (0, 2) for an initial
level set function

ϕ = sin(5x)) exp(−(5x))2) +
5

4
x. (4.33)

The analytical solutions for this initial condition is the straight line through the origin

ϕexact = x. (4.34)

Note, that without preconditioning the calculation does not only converge to a result,
which is not the signed distance solution, but also this incorrect solution intersects
the ϕ = 0 axis in additional positions. This behavior is especially bad in the context
of multiphase simulations, where these intersection points mean the emergence of so
called spurious bubble, i.e. bubbles appear and disappear in unphysical locations. With
the preconditioning algorithm however, this unwanted behavior is avoided altogether
and the calculation converges to the exact solution.
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4.4.3 Two dimensional test case

Figure 4.17 shows the results for this preconditioning technique for a two dimensional
test case. On the domain Ω = (−3, 3)2 using a equidistant grid of 202 cells, the level set
is initialized as

ϕ(r, θ) = 1− r − sin(3(r − 1)) exp(−(r − 1)2) (4.35)

in cylindrical coordinates, which is similar to the previous test case in one dimension.
The analytical solution is

ϕexact = 1− r = 1−
√
x2 + y2 (4.36)

The polynomial degree is chosen as k = 2. The results are similar to the one dimen-
sional case: without preconditioning, the level set retains the wrong gradient direction
as shown in figure 4.17b, in this two dimensional case, the solution even diverges after
several iterations. With preconditioning, the algorithm approximates the exact solution
well, as shown in figure 4.17c.
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Figure 4.17: Reinitialization of a level set with oscillating initial conditions
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5 The Extension Problem

This chapter covers the extension of a quantity from the interface into the domain using
an elliptic PDE. Main parts of this chapter are rewritten versions of the publication Utz
and Kummer (2017) by the author, and has been slightly altered and extended since
the publication of the paper.

5.1 The extension problem in multiphysics simulations

The problem of extending a quantity from a sub-manifold into the domain in which
it is embedded arises in many computational physics applications. A prominent
example is the simulation of moving interfaces using an interface capturing method,
such as the level set method. Especially when dealing with non-material interfaces,
the motion of the interface does not coincide with the bulk velocity at the interface
itself. Prominent examples of such problems are the simulation of the Stefan problem
(see Chen et al. (1997); Chessa et al. (2002); Gibou et al. (2002, 2003) and Javierre et al.
(2005)), multiphase flows with and without phase transition (see Zoby et al. (2012) and
McCaslin and Desjardins (2014)) and mean curvature flows (see Adalsteinsson and
Sethian (1999); Peng et al. (1999) and Schulte (2012)). Another case, where such an
extension is needed, is the solution of surface equations by an embedding approach as
in Kallendorf (2017).

In this article, we focus on methods which use an implicit surface description by
a level set method. This method describes a surface I via the zero-isocontour of a
sufficiently smooth function ϕ, which separates the domain Ω ⊂ RD into two parts A
and B. Revisiting chapter 2 the level set is usually chosen as the signed distance to the
interface, see equation (2.10). This can be rewritten by defining the closest point ~xc

ϕ(~x) =


|~xc(x)− ~x| in A

− |~xc(x)− ~x| in B

0 on I.

(5.1)

where ~xc ∈ I is the closest point on the surface for every point ~x ∈ Ω in the domain, i.e.

~xc(~x) = arg min
~xc∈I

( |~xc − ~x|). (5.2)
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With such a level set function, we choose the extension field u at any point to be the
value at the closest point on the interface, i.e.

u(~x) = u0 (~xc(x)) . (5.3)

This is equivalent to the solution of the PDE:

∇ϕ · ∇u = 0 in Ω, (5.4a)
u = u0 on I. (5.4b)

This problem is well posed for closed interfaces. However, when the interface intersects
the boundary as shown in figure 5.1 , one has to specify additional Dirichlet boundary
conditions there

u = uD on {∂Ω | ϕ∇ϕ · ~nΩ > 0}, (5.4c)

since the characteristics in the area marked in gray do not originate from the interface.

∂Ω

I

ϕ∇ϕ

Figure 5.1: Additional boundary conditions, when the interface and the boundary
intersect. The problematic region is shown in grey. The arrows depict the direction in
which information propagates from the interface into the domain.

One possibility of solving the extension problem (5.4) is to solve equation (5.3) directly
by using some kind of search algorithm, see e.g. Zoby et al. (2012); Gibou and Fedkiw
(2005).

Another option is to interpret (5.4) as the steady state limit of an advection equation

∂tu+∇ϕ · ∇u = 0 in Ω (5.5a)
u = u0 on I, (5.5b)

which is solved using a suitable time stepping scheme. This idea has been applied in
the context of finite difference schemes by multiple authors, see e.g. Chen et al. (1997);
Peng et al. (1999); Gibou et al. (2002, 2003), in the context of high-order discontinuous
Galerkin methods such a method would require a shock limiting scheme, which are
available for general advection problems, see e.g. Persson and Peraire (2006); Klöckner
et al. (2011) and level-set reinitialization Karakus et al. (2016), but have not been applied
to extension problems yet.
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However, most established methods directly seek for a solution of equation (5.4). Using
continuous finite elements, equation (5.4) can be solved by a Galerkin Least-Squares
approach Chessa et al. (2002); Sauerland (2013); Pawel Stapór (2016).

In the context of second-order methods, the most popular algorithms are the fast
marching Adalsteinsson and Sethian (1999); Chopp (2000); Frolkovic et al. (2015) and
the fast sweeping methods Aslam (2004); Frolkovic et al. (2015). While these methods
are unparalleled in terms of speed for low order methods, in the context of discon-
tinuous Galerkin methods, they require cell-local solver. For level-set reinitialization,
such solvers up to order three Zhang et al. (2011); Wu and Zhang (2014) have been
published, but to the authors’ knowledge no such solver is available for the extension
problem.

In this article, we choose another PDE-based approach, which may serve as the basis
of a marching or sweeping algorithm. The starting point is to reformulate (5.4) into an
ellipitc PDE following the same idea as for the reinitialization problem presented in
chapter 4. While the Eikonal equation for level-set reinitialization leads to a non-linear
elliptic PDE, this approach for the extension problem results in an PDE for anisotropic
diffusion. Using anisotropic diffusion for the extension problem is briefly mentioned,
but not examined further in the master’s thesis of Schulte (2012) in the context of a
continuous FEM. After introducing this reformulation of the problem into an elliptic
PDE, we give an upwind discretization of the resulting PDE. This gives high-order
accuracy even in the presence of singularities, which are necessarily present in concave
regions of the level set. Last, we demonstrate the properties of our scheme for several
test cases. Depending on the level set field, the problem might be ill-posed. Therefore,
section 5.5 introduces an additional isotropic viscosity, which stabilizes the method
even for such ill-posed problems.

Note that there are other possibilities than (5.4) to obtain a smooth extension of a
quantity from the interface: In the context of finite difference methods Aslam (2004);
Aslam et al. (2014) introduce an extension procedure for multidimensional extrapola-
tion, which requires solving multiple equations similar to (5.4) involving higher-order
derivatives of u. Moroney et al. (2017) introduce a finite difference scheme which
completely avoids the dependence on the level-set gradient by solving a biharmonic
equation. This requires solving a globally coupled system but allows the incorporation
of boundary conditions.

5.2 Reformulation of the extension problem as an elliptic
PDE

In contrast to Utz and Kummer (2017), the problem is slightly modified. Instead of
solving equation (5.4), the gradient of the level set function is normalized ∇ϕ

|∇ϕ| = ∇̂ϕ,

which is the expression for the interface normal vector ∇̂ϕ|I = ~nI. This yields the PDE

∇̂ϕ · ∇u = 0. (5.6)
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Note, that solutions to this equations are also solutions to the original problem (5.4).
However, in regions, where |∇ϕ| becomes small, the problem is better conditioned
since |∇̂ϕ| = 1 and thus leads to more stable results. As in the previous chapter, the
problem (5.6) is reformulated into the variational minimization problem

min R(u) =

∫
Ω

ψ(∇̂ϕ · ∇u) dV (5.7a)

s.t. u = u0 on I, (5.7b)

where ψ is a smooth potential with a minimum at ψ(0). Introducing the Gâteaux
derivate ∂R(u)[v] and a Lagrange multiplier λ, the solution of this minimization prob-
lem is the solution of the variational problem

find u s.t. ∂R(u)[v]− λ
∮
I

(u− u0)v dS = 0 ∀v, (5.8)

where

∂R(u)[v] =

∫
Ω

∇v · ∂ψ(∇̂ϕ · ∇u)

∂(∇u)
dV =

∫
Ω

∇v · ∇̂ϕ ψ′(∇̂ϕ · ∇u) dV. (5.9)

Taking the simplest choice for ψ
ψ(s) = s2/2 (5.10)

gives

∂R(u)[v] =

∫
Ω

∇v · ∇̂ϕ
(
∇̂ϕ · ∇u

)
dV, (5.11)

which can be rewritten by partial integration as

∂R(u)[v] = −
∫
Ω

∇ ·
(
∇̂ϕ · ∇u∇̂ϕ

)
v dV +

∫
∂Ω

(
∇̂ϕ · ∇u∇̂ϕ

)
· ~nv dS. (5.12)

Including the constraint (5.7b) and (5.4c) via a Lagrange multiplier λ gives

−
∫
Ω

∇ ·
((
∇̂ϕ⊗ ∇̂ϕ

)
∇u
)
v dV +

∫
∂Ω

((
∇̂ϕ⊗ ∇̂ϕ

)
∇u
)
· ~nv dS

− λ
∮
I

(u− u0)v dS − λ
∫
∂ΩD

(u− uD)v dS = 0 ∀v. (5.13)
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Interpreting this integral form locally, and rewriting the tensor κ = ∇̂ϕ ⊗ ∇̂ϕ, we
obtain the PDE

∇ ·
(
κ∇u

)
= 0 in Ω \ I (5.14a)(

κ∇u
)
· ~n = 0 on ∂Ω (5.14b)

u = uD on ∂ΩD (5.14c)
u = u0 on I. (5.14d)

This equation describes the steady state limit of anisotropic diffusion with Neumann
boundary conditions and the Dirichlet boundary conditions (5.7b) and (5.4c). Note
that (5.13) and (5.14) are linear in u. Thus a discretization of the problem can be solved
without iteration by a suitable linear solver.

5.3 Upwind discretization

Using equation (5.13), we discretize the problem by introducing a numerical flux f̃
and replace the Lagrange multiplier by a penalty term 2η = λ at the interface.

find u ∈ VDG(K) s.t.
0 = aext(u, ϕ, v) =

−
∫

Ωh

(∇̂ϕ⊗ ∇̂ϕ)∇u · ∇v dV +

∫
Γ

f̃(u, v, ϕ) dS −
∫
I

2η(u− u0)v dS = 0

∀v ∈ VDG(K) (5.15)

The integral over the interface is calculated using the hierarchical moment-fitting
(HMF) quadrature shown in section 3.4.

5.3.1 The original symmetric interior penalty (SIP) flux for anisotropic
diffusion

In this context, one of the standard choices for the numerical flux is the SIP flux see e.g.
Ern et al. (2008)

f̃ =
({
∇̂ϕ · ∇u

}
[[v]] +

{
∇̂ϕ · ∇v

}
[[u]]
){
∇̂ϕ · ~n

}
− η [[u]] [[v]] . (5.16)
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Using the shorthand notation

∇̂ϕ · ∇u = ∇uϕ (5.17a)

∇̂ϕ · ∇v = ∇vϕ (5.17b)

∇̂ϕ · ~n = ~nϕ (5.17c)

for the components projected on the normalized gradient of the level set, this dis-
cretization

f̃ = ({∇uϕ} [[v]] + {∇vϕ} [[u]]) {~nϕ} − η [[u]] [[v]] . (5.18)

Following Shahbazi (2005) and Hillewaert (2013), the penalty parameter η is calculated
from the selected polynomial degree k and the spatial dimension of the problem d as

η =
(k + 1)(k + d)

d

‖∂K‖
‖K‖ . (5.19)

Since it enforces a Dirichlet value at the interface I and the Dirichlet Boundary ∂ΩD,
the penalty parameter is scaled by a factor of 2, see Shahbazi (2005).

This problem is linear and symmetric, thus the resulting linear system may be solved
using a standard solver. However, this still leads to a globally coupled linear system,
which has the major drawback that a global system must be solved and that singulari-
ties pollute the solution in the entire domain. These singularities arise in all interface
geometries, where the curvature radius of the interface is smaller than the size of the
computational domain. This means, all test cases shown below cannot be calculated
using the SIP flux without diverging results.

Remark on the penalty parameter

In the original publication by the author, Utz and Kummer (2017), the penalty parame-
ter η was scaled by an additional factor µ, which was calculated according to Ern et al.
(2008) as

µ =


(

1
κ+n

+ 1
κ−n

)−1

∀κ±n 6= 0

0 else,
(5.20a)

where
κ±n = (~nTκ~n)± = (~n · ∇̂ϕ±)2 (5.20b)

is the component of the diffusion tensor κ in the direction of the edge-normal ~n. Note
that this value may become zero when the level set gradient is tangential to the cell
face. This decoupling of the two neighboring cells in this case, leads to instability of
the scheme in some test cases. Therefore the parameter is removed in the method
presented here.
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5.3.2 Adaption of the flux for upwinding

The initial problem can be seen as the long-term limit of the time-dependent advection
problem (5.5) with∇ϕ as the underlying velocity field of the advection. In this original
problem, the solution emanates from the interface and is constant along the character-
istics. This implies that information moves unidirectionally from the interface into the
domain.

We exploit this property to facilitate a marching procedure for the reformulated system.
Thus, we reintroduce this directional dependency in our discretization by only using
the SIP flux on edges cut by the interface and upwind-fluxes on all other edges. Using
the shorthand notation (5.17), this flux reads

f̃ =


({∇uϕ} [[v]] + {∇vϕ} [[u]]) {~nϕ} − η [[u]] [[v]] ∀∂K ∩ I 6= ∅
({∇uϕ} (−v+) + (∇vϕ)+ [[u]]) {~nϕ} − η [[u]] (−v+) ∀

{
ϕ∇̂ϕ · ~n

}
≥ 0

({∇uϕ} (v−) + (∇vϕ)− [[u]]) {~nϕ} − η [[u]] (v−) ∀
{
ϕ∇̂ϕ · ~n

}
< 0,

(5.21)

where ∇̂ϕ is the cell average of the normalized level set gradient, which ensures a
unidirectional flux across each edge.

On the boundaries, the flux (5.21) simplifies to

f̃ =

{
0 ∀sgn(ϕ∇̂ϕ · ~n) ≥ 0

(∇uϕv +∇vϕ (u− uD)) (∇̂ϕ · ~nΩ)− η(u− uD)v ∀sgn(ϕ∇̂ϕ · ~n) < 0.
(5.22)

The first line in (5.21) gives the flux between two cells cut by the interface I. On these
edges we introduce a bidirectional coupling, since the value of the level set changes
across such edges. The second and third line give the flux for all other edges in the grid.
In regions where the level set is positive, information propagates from small to large
level set values, i.e. in the direction of a positive gradient, and vice-versa in regions

with a negative level set value. A positive value of ϕ∇̂ϕ · ~n means, that information
propagates from the inner cell (−) into the outer cell (+). In this case the contribution
of the inner cell is set to zero, which is equivalent to the Neumann boundary condition
(5.14b). The flux for the outer cell can be interpreted as a mixed boundary condition,
where the first term in (5.21) gives the gradient in that cell and the last two terms give

the absolute value. For the opposite sign of ϕ∇̂ϕ · ~n the dependency is vice-versa.

Except for cut-cells, this choice of the fluxes results in a pure upwind matrix for all
cells that do not contain the surface I. Two adjacent cut-cells, on the other hand, are
coupled in both directions.

It is important to note that the gradient of the level set∇ϕ is evaluated symbolically,
thus limiting the order of convergence of the scheme to O(hk). This may be circum-
vented by using a central-difference discretization of the gradient operator. However,
this introduces a coupling between neighbouring cells. Due to this coupling, oscilla-
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Figure 5.2: Extension and level set for the one-dimensional test case. The vertical lines
coincide with the numerical grid. Two surfaces in a one-dimensional domain, the cells
are numbered from left to right. The triangle denotes the cell with the singularity, the
squares denote the cells containing the interface

tions in the level set at singularities may spoil the accuracy in adjacent cells, leading to
a reduced robustness of the scheme. We will show this behaviour using the example
of Zalesak’s disk, see section 5.4.3.

In Figure 5.2 we show a simple one-dimensional test case. We consider two interface
in domain Ω = [−2π + 1, 2π + 1] with the level set function ϕ = |x| − π and the initial
function at the interface u0 = x. This gives two interfaces at xI = ±π, leading to the
exact solution of uexact = sgn(x)π. This exact solution cannot be represented by the
polynomials Note that the overshoot in the center cell containing the interface does
not extend into the domain. Figure 5.3 shows the sparsity pattern of the resulting
matrix. The whole matrix can be solved cell by cell starting from the cells containing
the surface (2 and 7).



50 The Extension Problem

0 5 10

0

5

10

Row Index

C
ol

um
n

In
de

x

(a) Sparsity pattern for the SIP flux, note
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Figure 5.3: Resulting sparsity patterns for the different flux formulations, all entries for
one cell are depicted as one data point, the cut-cells are marked by a square, the cell
containing the singularity is marked by a triangle, see Figure 5.2

5.4 Test cases

Note, that the actual numerical values presented here slightly differ from the results
published in the original publication Utz and Kummer (2017) since the discretization
has been altered as explained before. The general results however are the same as
shown in the paper. First, we examine a circular level set on a structured grid consisting
of quadrilateral elements. For this test case we show high order convergence, even if
we do not exclude the point singularity at the centre of the circle from the calculation.
Second, we look at two linear interfaces in a channel discretized by triangular elements.
In contrast to the first test case, the singularity is a line that is not aligned with the faces
of the grid. As for the first test case we obtain high order accuracy. Last, using the disk
test case by Zalesak (1979) we demonstrate how the choice of evaluating the gradient
of the level set influences the stability of our method . Evaluating the gradient locally
leads to a stable method even on unstructured triangular grids.

5.4.1 Circular interface

We consider a circular interface in the rectangular domain Ω = [−1.9, 2.1]. The level set
function is ϕ =

√
x2 + y2− 1, such that the singularity does not coincide with the faces

of the grid. The initial function at the interface is chosen as

u0 = 1− x2 + y. (5.23)
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When dealing with a circular interface, we can reformulate the problem in cylindrical
coordinates u0 (r, θ) = 1− (r cos(θ))2 + r sin(θ). Since the extension is constant on lines
defined by θ = const., the analytical solution is given by

uexact (r, θ) = u0 (1, θ) = 1− (r cos(θ))2 + r sin(θ) =

= y

√
x2 + y2 + y√
x2 + y2

. (5.24)

The solution of the extension problem with our algorithm results in isocontours of the
extended quantity emanating from the origin of the circle, as shown in Figure 5.4.
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Figure 5.4: Circular test case, coarsest grid, p = 3; dark line: level set; light lines:
isolines of the extension; grey background: cell with singularity

This solution contains a singularity at the origin (x, y) = (0, 0). It is well-known,
that such singularities spoils the convergence properties of high-order algorithms.
However, the fluxes in this thesis are designed in such a way that the coupling between
uncut cells is unidirectional and always in the direction of increasing absolute value of
the level set function. Cells that contain the singularity also contain extremal values
in the level set function. Therefore, these cells do not influence the neighbouring
cells, and thus the error in all cells that do not contain the singularity should not
be affected. For this test case we calculate the error norm on a restricted domain
Ω̃ = [−1.9, 2.1]2 \ [−0.4, 0.1]2. Looking at Figure 5.4, this means that we exclude the
cell containing the singularity, which is depicted with a grey background. All finer
grids are computed by successive splitting of the cells. In Figure 5.5 we compare the
experimental order of convergence (EOC) of the L2-error on the restricted domain for
polynomial degrees k of up to 5. This test case gives a convergence rate of hk. As
mentioned before, this suboptimal convergence rate is due to the fact that the signed-
distance level set cannot be represented by the polynomial basis exactly. Therefore,
the level set itself exhibits an error of O(hk+1) and the error in the level set gradient is
O(hk) . The latter influences the calculation of u.



52 The Extension Problem

100 101
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

h−1

‖u
−
u

ex
ac

t‖ 2
,Ω

h

k = 1
k = 2
k = 3
k = 4
k = 5

k EOC

1 0.77
2 2.31
3 3.14
4 4.15
5 4.84

Figure 5.5: Results of the h-convergence study for the circular test case.
Note: the data points left of the dashed line are not used for the calculation of the EOC,
since they lie outside the asymptotic range

5.4.2 Linear interfaces

As a second test case we consider a line singularity that is not aligned with the grid
edges. Thus, we set two linear interfaces on a regular triangular grid of the domain
Ω = [−2π + 1, 2π + 1] × [−π, π]. The coarsest grid is depicted in Figure 5.6. This
configuration gives a singularity, which is not perpendicular to the grid edges.

The two interfaces are represented by the level set function ϕ = (x− 3)(x+ 3). Note
that this choice is no signed-distance representation for the interfaces at x = ±3. We
choose the initial function at the interface to be

u0 = x sin(y). (5.25)

Then, the analytical solution is given by

uexact = 3 sign(x) sin(y). (5.26)

Note, that we calculate the error on the restricted domain Ω̃ = Ω \ [−π + 1, 1]× [−π, π],
since the singularity in the gray cells (Figure 5.6) only limits the accuracy in these cells.

Figure 5.7 shows the experimental order of convergence (EOC) for multiple polynomial
orders. This test case gives an error of roughly hk+1 , which is the optimal convergence-
rate for such a DG-scheme. This is due to the quadratic nature of the level set field and
the linearity of the interface, which are exactly represented by the polynomial basis-
functions. Thus, the calculation of the level set gradient does not limit the accuracy in
this test case.
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Figure 5.6: Channel with two interfaces, coarsest grid (16 triangular cells) p = 5, dark
vertical lines: interface, dashed lines: isolines of the extension, grey background: cells
with singularity
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Figure 5.7: Results of the h-convergence study for the channel test case

5.4.3 Zalesaks disk

Next, the the method is applied to the more challenging geometry of the disk test case
by Zalesak (1979). This test case consists of a circular contour with a rectangular cut out,
leading to sharp kinks in the level set contour. We discretize the domain by a randomly
distorted triangular grid, consisting of 25 cells in each spatial direction. In Figure 5.8,
we compare the normalized local error in the extension field for the evaluation of the
level set gradient∇ϕ by a flux formulation and by a local derivative. Evaluating∇ϕ by
a central difference formulation causes oscillations in the level set function that pollute
nearby cells since the value of the gradient is coupled to neighboring cells. This leads
to comparably large errors, especially in the regions close to the kinks of the interface.
If we evaluate ∇ϕ locally, possible oscillations in the gradient are limited to the cell
containing the kinks, giving stable results.

This demonstrates the stability of our method even on highly irregular grids and for
interfaces with high curvatures or kinks and geometries, which are of the same size
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as the grid cells. Note that the chosen contour exhibits a curved kink in the level set
contour inside the circular domain and three straight kinks in the rectangular part.
Such discontinuities cannot be exactly represented by a polynomial basis, which causes
oscillations in the level set.
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Figure 5.8: Zalesak’s disk k = 3, grey-scale: normalized local error, dark line: level set

5.4.4 Boundary conditions

The next test case is designed to evaluate the method including boundary conditions
for the extension equation. The straight line at x = 0 can be represented by the level
set function

ϕ = x+ xy. (5.27)

It is important to note, that this level set is not a signed distance representation of
this geometry. Applying the method of characteristics, the extension problem can be
solved analytically by using the coordinate transformation

s(x, y) =
√

1− x2 + y2 + 2y − 1 (5.28)

which introduces the parametrization of s = y on I. Restricting the test case to the
domain Ω = (−1, 1) × (0, 1) requires additional boundary conditions at x = 0, since
s < 0 does not map to a point on the interface. Therefore, the full boundary conditions
are selected as:

u = 0 on y = 0 (5.29a)
u = x5 − x6 on I (5.29b)

These boundary conditions are chosen such that they are smooth at the origin and not
exactly represented by the polynomials of order up to k = 5, which are tested in figure
5.10.
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Figure 5.9: Setup for testing the boundary conditions

Using these boundary conditions, the analytical solution is

u =

{
0 ∀x| − x2 + y2 + 2y < 0

s(x)5 − s(x)6 else,
(5.30)

which is shown in gray scale in figure 5.9. To measure the convergence rate of the
method, this problem is discretized on a domain of 4× 4 cells, and all finer grids are
created by successive splitting of the cells. As shown in figure 5.10, this gives the same
accuracy of hk as the tests involving only an extension from the interface.
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Figure 5.10: Results of the h-convergence study for the boundary test case
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5.4.5 Three dimensional test case

As an additional testcase to Utz and Kummer (2017), we again look at the problem of a
torus. Revisiting section 4.3.6 signed distance level set of a torus with a small radius of
r = r0 and a large radius of R, see e.g. Abbena et al. (2006).

ϕ(x, y, z) =

√
z2 +

(√
x2 + y2 −R

)2

− r0 (5.31)

For this geometry, a so called toroidal coordinate system can be defined using the
transformations

x = (R + r cos(θ)) ∗ cos(φ) (5.32a)
y = (R + r cos(θ)) ∗ sin(φ) (5.32b)

z = r sin(θ), (5.32c)

see Moon and Spencer (2012), with the inverse transformation

φ = arctan(
x2

y2
) (5.33a)

θ = arctan(
z2√

x2 + y2 −R
) (5.33b)

r =

√(√
x2 + y2 −R

)2

+ z2. (5.33c)

On the surface we employ the initial conditions

u0 = 3 + x2 + y + z on I (5.34)

using the transformation (5.32), we know, that the solution is constant along lines
θ = const., φ = const. and has boundary conditions at r = r0. Thus, the analytical
solution is

u = 3 + x(θ, φ, r0)2 + y(θ, φ, r0) + z(θ, φ, r0) (5.35)

As in the test case for the reinitialization problem, we choose the computational domain
as Ω = (−2, 2)3 with an equidistant grid of 203 cells and a polynomial degree of k = 2,
see figure 5.11. This test case converges to the analytical solution, with the regions of
larger errors located on a ring along the center of the small radius z = 0, x2 + y2 = r2

and in the center of the large radius x = y = 0.
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Figure 5.11: Extension from a toroidal surface, errors above ‖u − uexact‖1 > 0.05 are
shown in gray scale

5.5 Stabilization of ill-posed problems

The discretization presented in this section and all test cases shown here share one
assumption: the original PDE (5.4) is assumed to be well-posed. Only then, the
reformulation in equation (5.14) has a solution. However, one can construct cases for
the level-set function, where the original problem (5.4) does not have a unique solution.
This is especially the case if the level set does not have signed properties. Technically,
then (5.3) and (5.4) are not equivalent anymore, but such cases might occur, when
solving the reinitialization problem numerically. In this case, one typically resorts to
the so called vanishing viscosity solution.

lim
ε→0
∇ϕ · ∇u− ε∆u = 0 in Ω (5.36)

This topic is for example discussed for general Hamilton-Jacobi equation in Tugurlan
(2008). Zhao et al. (1996) and Karakus et al. (2014) explicitly add such a term to their
hyperbolic methods for level-set reinitialization for stability. this means we extend
(5.15) to

find u ∈VDG s.t.
aext(u, ϕ, v) + ε sext(u, ϕ, v) = 0 (5.37)

∀v ∈ VDG,

where the viscosity ε is added by a standard SIP flux in the stabilization term

sext(u, ϕ, v) = −
∫

Ωh

∇u ·∇v dV +

∫
Γ\∂Ω

({∇u} [[v]] + {∇v} [[u]]) ·~n− η [[u]] [[v]] dS (5.38)
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Figure 5.12: Ill-posed level-set

Our reformulated extension algorithm suffers from the same issue: As an example, we
use the same level set function as in the previous section

ϕ = x+ x|y|, (5.39)

but change the computational domain to Ω = (−2, 2)× (−1, 1). In this case, there are
no inflow boundary conditions (5.4c), since the vector ϕ∇ϕ is pointing outwards of
the domain on all boundaries. Then no solution exists inside the boundaries

1−
√
x2 + 1 < y < 1 +

√
x2 + 1. (5.40)

Choosing the boundary condition at the interface symmetric to the x-axis u0 = cos(πy),
the vanishing viscosity solution is in analogy to (5.36).

u =

{
0 ∀{x, y}|1− x2 + y2 + 2|y| < 1

cos(
√

1− x2 + y2 + 2|y| − 1) else
(5.41)
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Figure 5.13: Results of the h-convergence study with ε = 10−2
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Figure 5.12 shows the results of this test case without and with artificial viscosity.
Without artificial viscosity, the results are very accurate in the part of the domain, where
the problem is well-posed, but the method fails in the region, where the extension
equation is ill-posed. The results with artificial viscosity however show a uniformly
distributed error, which is low in the whole domain, but much higher in the well posed
part of the domain. This also reflects in the results shown in figure 5.13, which depicts
the L2 error for different cell sizes and polynomial degrees altering the PDE introduces
a first order error, such that no high order convergence can be observed.
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6 Outlook: Trace DG

This chapter briefly steps aside from the problem of multiphase flows and looks at
a more abstract problem. The typical problems for computational engineers are the
solution of partial differential equations in some domain Ω. This domain corresponds
to the physical problem in question, thus it is either three-dimensional or of lower
dimension. However, there are problems which are not defined on the whole domain,
but on submanifolds, such as surfaces or space-curves in 3D or a line in 2D. Example
solid mechanics problems on plates and shells, fluid flow on the surface of a soap
bubble, or the motion of surface active substances at the interface between two fluid
phases are introduced in section 2.2.

When solving problems that are defined on a sub-manifold of the computational
domain, one faces similar challenges as with solving multiphysics problems. When
solving such surface equations, there are two choices: Either the surface itself is
explicitly reconstructed. Then one defines a surface grid with its own degrees of
freedom, on which the equations can be solved, such as proposed e.g. Antonietti et al.
(2015). The other possibility is to use an embedding approach: The idea behind this is
to use elements and a function space which is defined in the whole domain. Of course,
then one needs methods for integrating finite element spaces, which are cut by the
surface as with multiphase physics.

This implies, that solutions to a differential equation on a surface are represented by
functions that might vary perpendicular to the surface. Thus one needs some method
of stabilization, otherwise the discrete problem is not well posed, see Dziuk and Elliott
(2013). Since one is formally looking for solutions in a function space, which is derived
by restricting the function space in the whole domain to the surface, these methods are
sometimes referred to as Trace-FEM or Cut-FEM. This idea has recently gained some
interest after its introduction by Demlow and Dziuk (2007) and has been adapted by
Gross and Reusken (2011); Gross et al. (2015) and Olshanskii et al. (2014) for surface
convection-diffusion and coupling to a bulk phase in the context of piecewise linear
finite elements. In their 2017 Paper, Burman et al. (2017) extend the approach from
continuous finite elements to a piecewise linear cut DG method, which they combine
with a ghost-penalty stabilization. This is the first work to combine the Trace-FEM
idea with a discontinuous Galerkin approach. Grande et al. (2016) are the first to
introduce a high-order Cut-FEM approach for surface equations. In their paper they
compare different stabilization methods, proving that the so called normal derivative
stabilization gives high order accuracy.

A prototype example for partial differential equations on surfaces is the surface Poisson
problem

∇I · (∇Iu) = f(u) (6.1)
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on a closed surface, which thus does not require any boundary conditions, but is
subject to the periodicity of the domain.

6.1 Discretization

Here, we present a method which combines high order function spaces and the normal
mode stabilization as presented by Grande et al. (2016) with a discontinuous Galerkin
Ansatz as shown by Burman et al. (2017).

find u ∈ VDG s.t.
a(u, v)I + s(u, v)Ωh

= f(v)I (6.2)

where a(u, v)I is chosen either as the tangential gradient form of the Laplace operator
a1(u, v)I or as the full gradient form a2(u, v)I.

a1(u, v)I =

∫
I

∇Iu · ∇Iv d~x

+

∮
Γ∩I

({∇Iu} · ~nΓ [[v]] + {∇Iv} · ~nΓ [[u]]) dS −
∮

Γ∩I

η [[u]] · [[v]] dS (6.3)

a2(u, v)I =

∫
I

∇u · ∇v d~x

+

∮
Γ∩I

({∇u} · ~nΓ [[v]] + {∇v} · ~nΓ [[u]]) dS −
∮

Γ∩I

η [[u]] · [[v]] dS (6.4)

f(v) =

∫
I

fv dV. (6.5)

Burman et al. (2016) show, that both forms give second order convergence, when
using piecewise linear polynomials on the background mesh. However, numerical
experiments using high order polynomials give evidence, that only the form a2 leads
to stable results, when looking at manifolds embedded in a three-dimensional domain.
Thus, we limit our numerical test cases to the form a2, like Burman et al. (2016).

In the literature, multiple stabilization terms s(u, v) are discussed: Grande et al. (2016)
and Burman et al. (2016) compare ghost penalty stabilitzation, full gradient surface
stabilization , full gradient volume stabilization (only Grande et al. (2016)) and normal
gradient stabilization.

However, both publications rule out most stabilization terms:

• Ghost penalization has the disadvantage, that with rising polynomial order, an
increasing amount of derivatives has to be evaluated at the face: For piecewise



62 Outlook: Trace DG

quadratic functions, it requires the evaluation of the Hessian of u, piecewise cubic
function require the evaluation of a third order tensor and so forth. This increases
the implementation effort enormously. Massjung (2012)

• full gradient surface stabilization may result in an unbounded condition number
for polynomial order k > 1 Burman et al. (2016)

• the full gradient volume stabilization does not lead to a consistent discretization
for k > 1

• Only the normal gradient stabilization gives stable results for arbitrary poly-
nomial degrees k without the need for additional terms like the ghost penalty
method

Therefore, the Trace-DG method presented here is stabilized using the normal mode
approach, which reads

s(u, v)Ωh
= −

∫
∪K∈K:‖K∩I‖6=0

(∇ϕ⊗∇ϕ)∇u · ∇v dV +

∫
∪e∈Γ:‖K∩I‖6=0

−η [[u]] [[v]] dS. (6.6)

This means, to apply the volume and the penalty term of the discretization for the
extension equation (5.15) on all cells and edges cute by the interface. Thus, the penalty
parameter η is chosen in analogy to the extension problem by equation (5.19).

The surface projection operator, see equation (2.8) can be expressed as

PI∇ = I − ~nI ⊗ ~nI = I −∇ϕ⊗∇ϕ (6.7)

for a signed distance level set. This is why the discretization a2 does not result in a
consistency error, when combined with this stabilization technique.

The integral over the interface is calculated using the hierarchical moment fitting
quadrature by Müller et al. (2013). For the sake of simplicity, the method does not
employ any treatment at the boundaries and is therefore limited to closed surfaces or
surfaces, which are perpendicular to the boundaries of the domain.

6.2 Numerical test cases

This section aims to demonstrate the capabilities of the Trace-DG method. The example
of a circular interface demonstrates the accuracy of the method, while the testcase of a
square interface and a torus show the stability of the method. Since Trace-DG aims to
solve surface PDEs, the errors relevant to the solution are located only at the interface
itself. Thus the norms to measure the error are defined only at the interface.

‖u− uexact‖2,I =

√∮
I

(u− uexact)2 dS (6.8)
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6.2.1 Poisson equation on a circle

As a first canonical testcase in two dimensions, let’s consider the Poisson-equation in
cylindrical coordinates r, φ, z, see e.g. Spurk (2013),

∆u = ∇ · ∇u =
∂2u

∂r2
+

1

r

∂2u

∂ϕ2
+
∂2u

∂z2
= f. (6.9)

The limit to the surface r = const. in two dimensions, i.e. ∂/∂z = 0, then gives the
surface PDE on the circle

∆Iu =
1

r

∂2u

∂ϕ2
= fI, (6.10)

for which one analytical solution is

u = sin(aφ) (6.11a)

for the right hand side

f = −a
2

r2
sin(aφ). (6.11b)
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Figure 6.1: Results for the Circle Testcase, k = 5 on the coarsest grid.

100
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

h−1

‖u
−
u

ex
ac

t‖ 2
,I

k = 1
k = 2
k = 3
k = 4
k = 5

k EOC

1 1.48
2 2.68
3 3.48
4 4.07
5 3.54

Figure 6.2: Results of the h-convergence study for the poisson-equation on a circle



64 Outlook: Trace DG

To examine the convergence behavior of the method, a circular interface with radius
r = 2 is discretized on the domain Ω = [−3, 3]2, the meshes used for the study are
equidistant with 8, 16, 32 and 64 cells in both directions. The results for the coarsest
grid and a polynomial degree of five is depicted in figure 6.1. Note, that the largest
errors are located in cells, where the interface intersects the cell at a corner and thus
the interface piece I ∩ K is quite small. Figure 6.2 shows the results for this test
case: polynomial degrees one through four show the desired high order convergence
rates, while k = 5 is slightly suboptimal. This is due to the fact, that the condition
number of the resulting linear system becomes large, since the size of the interface
section in each cell vary drastically see e.g. Kummer (2016); Kummer et al. (2018) and
Müller et al. (2017) in the context of XDG methods or Legrain et al. (2012); Sauerland
(2013) and Lehrenfeld (2015) in the context of extended finite element method (XFEM).
Finding a suitable preconditioning strategy to remedy this might be the topic of further
investigation.

6.2.2 Poisson equation on a rectangle

The second test case is the surface equation on the rectangle [−1, 1]× [−1, 1]. A suitable
level set function for such an interface is

ϕ = inf(|x| − 1, |y| − 1). (6.12)

The interface given by this level set is kinked along the lines

y = ±x ∀|x| < 1, |y| < 1. (6.13)

Since this causes oscillations in the polynomial representation of the level set, high
order convergence cannot be expected. However, the method is still required to give
reasonably accurate results. For the right hand side

f =
π2

4
sin(

π

2
x) sin(

π

2
y) (6.14)

the analytical solution of the surface PDE is

u =


− sin(π

2
x) ∀y ≥ 0 ∩ |y| ≥ |x|

sin(π
2
x) ∀y < 0 ∩ |y| ≥ |x|

− sin(π
2
y) ∀x ≥ 0 ∩ |y| ≤ |x|

sin(π
2
y) else

(6.15)

since the surface derivative operator is simply ∂
∂x

at y = ±1 and ∂
∂y

at x = ±1.

Figure 6.3 shows the results of this test case for a polynomial degree of k = 2 discretized
on the domain Ω = [−1.5, 1.5]2 using eight elements in each spatial direction. The
result approximates the solution well. The kinks in the contour at (x, y)T = (±1,±1)T



Numerical test cases 65

however cannot be exactly represented by the level. Therefore, the error in these cells
dominates.
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Figure 6.3: Results for the Square test case for a polynomial degree of k = 2

6.2.3 Poisson equation on a torus

As a final test case, a setup by Burman et al. (2016) and Grande et al. (2016) is selected:
The surface of a torus in 3D is given by the level set

ϕ =

√
z2 +

(√
(x2 + y2)−R

)2

− r. (6.16)

This torus is embedded in a three dimensional domain, which can be parametrized by
the toroidal coordinate system (see Moon and Spencer (2012) )

~x(φ, θ, r) = R

cos(φ)

sin(φ)

0

+ r

cos(φ) cos(θ)

sin(φ) cos(θ)

sin(θ)

 , (φ, θ) ∈ [0, 2π)2 . (6.17)

With R = const. and r = const. giving the surface of the torus. Using this coordinate
system, the analytical solution

u(x) = sin(3φ) cos(3θ + φ), (6.18)

−f(x) =
9 sin(3φ) cos(3θ + φ)

r2
+

+
10 sin(3φ) cos(3θ + φ) + 6 cos(3φ) sin(3θ + φ)

(R + r cos(θ))2

− 3 sin(θ) sin(3φ) sin(3θ + φ)

r(R + r cos(θ))
(6.19)

is adopted from Burman et al. (2016) and Grande et al. (2016).

Figure 6.4 shows the results of the surface poisson equation for this right hand side
on a torus with a large radius of R = 1 and a small radius r = 0.6. The domain is
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chosen as [−2, 2]3 discretized by 32 elements in each spatial direction and a polynomial
degree of k = 2. The result approximates the analytical solution well. The figure 6.4b
shows the distribution of the error along the surface. The error is largest, when the
intersection of the interface with the underlying grid is rather small and along the
inner ring, where the curvature of the interface is largest. Developing measures to
improve this might be the scope of further investigation.
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7 A combined motion algorithm for
the level set

This chapter describes the coupling of the reinitialization algorithm and the extension
algorithm shown in the previous section with a transport equation, to describe the
motion of an interface in a prescribed velocity field. The goal of the combined level
set algorithms is to move the level set with the velocity at the interface itself and to
retain the signed distance property of the level set. This chapter aims to extensively
test this combination of algorithms, before applying them to a discretization of the
Navier-Stokes equations.

7.1 Coupling of the level set algorithms

Both reinitialization , see chapter 4 and extension, see chapter 5 require the computa-
tionally expensive solution of linear systems. To keep the computational cost low, the
implicit Crank-Nicholson time stepping scheme is chosen, which allows comparably
large time steps ∆t. This however introduces a coupling of all three algorithms. This is
why, the iterative procedure algorithm 1 is introduced, which allows the computation
of the extension velocity based on the interface position at unknown time t+ 1.

For the motion of the interface the calculation of the extension velocity needs to be
coupled with the advection step using it, by iteratively solving for the new level set
position. Thus the loop in algorithm 1 is repeated until the level set converges within a
threshold λ.

Algorithm 1 Motion Algorithm for the level set

1: procedure MOVELEVELSET(ϕ,∆t, ~u)
2: ϕt+1 ← ϕt

3: while ‖ϕt+1 − ϕold‖2 > λ do . Perform until convergence
4: ϕold ← ϕt+1

5: ~uext = Extension(~u(t+ 1), ϕt+1) . ∇~uext,i · ∇ϕ = 0
6: ϕ∗ ← PerformAdvection(∆t,ϕt,~uext) . ∂tϕ

∗ + ~uext · ∇ϕ∗ = 0
7: ϕt+1 ← ReInitialization(ϕ∗) . |∇ϕ| = 1
8: end while
9: return ϕ(t+ 1)

10: end procedure
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Extension

The discretization of the advection equation requires a suitable velocity vector ~uext.
Here we follow the approach of Bernauer and Herzog (2011) of extending the individ-
ual components of the velocity. Thus, we solve the problem

∇~uext,i · ∇ϕ = 0 in Ω (7.1a)
~uext,i = ~ui on I (7.1b)

for each component of the velocity ~u using the algorithm from chapter 5. This approach
conserves the signed distance property of the level set, see appendix A in smooth
regions. The motion of the level set might lead to situations, where this equation is
ill-posed. Therefore, all numerical test cases use an additional viscosity term ensure
stability.

Reinitialization

In this motion algorithm reinitialization is needed for three reasons: Firstly, for general
geometries, the extension does not ensure the signed distance property close to singu-
larities. Secondly adding a viscosity term to the extension algorithm also removes this
property and third, as we will discuss in the next section 7.2, the transport equation
for the level set lacks suitable boundary conditions for general cases, which might
lead to oscillations close to boundaries. Aiming to simulate the motion of droplets
and bubbles, all three phenomena appear comparably far from the interface itself:
Assuming that the grid resolution is fine enough, singularities in the level set usually
appear close to the center of closed contours. The extension algorithm presented here
is based on an anisotropic viscosity of order O(1), while the isotropic part is of order
O(ε) which is usually chosen much smaller as ε ≤ 10−2. Oscillations due to missing
boundary conditions only happen at the boundary cells themselves, while the region
of interest lies inside the domain. In addition, the test case from section 4.3.4 showed,
that the reinitialization introduces a first order error in the position of the interface for
general geometries. We therefore use two different reinitialization strategies:
Reinitialization on cells cut by the interface is only required, if the interface is in a cell
including the boundary or is strongly curved, which both might introduce oscillations.
This case requires the reinitialization algorithm with preconditioning, as shown in 4.4.
If the curvature radius of the interface is much larger than the cell size, the interface is
located far from the boundaries and the velocity field is rather smooth, it is sufficient
to use reinitialization only for smoothing out oscillations at the boundary. In this case
only the fast marching algorithm 4.4.1 is used on the so called ”far cells”, which are all
cells which do not share any point with cells cut by the interface.

Since the motion algorithm performs an iterative loop for time stepping, it is sufficient
to perform only a single step of reinitialization in every iteration of the loop.
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7.2 Discretization of the level set transport equation

To move the level set with a velocity ~u, we need to solve an advection type equation of
the following form

∂ϕ

∂t
+ ~u · ∇ϕ = 0. (7.2)

Note, that for arbitrary velocity fields, this equation is not in divergence form. There-
fore we rewrite it as.

∂ϕ

∂t
+∇ · (~uϕ) = ϕ∇ · ~u. (7.3)

Since we will use an extension velocity, this velocity field will not be divergence free
and therefore, the source term on the right hand side of equation (7.3) will be non-zero.
We discretize this equation in DG as

find ϕ ∈ VDG(K) s.t.
∂

∂t

∫
Ωh

ϕv dV −
∫

Ωh

ϕ~u · ∇v dV +

∮
Γ

f̃(u, v, ϕ) dS −
∫

Ωh

ϕ∇ · ~uv dV = 0

∀v ∈ VDG(K) (7.4)

introducing a numerical flux f̃ .

Since we are dealing with a hyperbolic equation, a good choice is the local Lax-
Friedrichs flux, which reduces to the well known upwind flux for the linear, scalar
problem at hand:

f̃ = {~uϕ} · ~n [[v]] + |
{
~u · ~n

}
| [[ϕ]] [[v]] , (7.5)

see e.g. Shahbazi et al. (2007) or Hesthaven and Warburton (2008), where ~u denotes
the cell average of the velocity vector.

For the temporal discretization we apply a Crank-Nicholson time stepping scheme,
see section 3.5.1.

A note on boundary conditions

It is important to note, that neither equation (7.2) nor the discretization (7.4) introduce
any boundary condition for ϕ. Thus, this advection problem is ill-posed. To be well
posed, such an advection equation requires Dirichlet boundary conditions if ~u · ~nΩ < 0.
Loch (2013) discusses two possibilities for imposing boundary conditions, which both
introduce additional instabilities for a signed-distance level set. This publication
therefore does not introduce boundary conditions per se, but sets the flux at inflow
boundary conditions to

f̃ = ~uϕ · v ∀~x ∈ ∂Ω : ~u · ~nΩ < 0, (7.6)

which is equivalent to not setting boundary conditions at all. This may lead to oscil-
lations in the vicinity of such inflows. The algorithm presented here removes these
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oscillations, by applying reinitialization to the level set which stabilizes the method,
provided that the interface is far from such inflow boundaries. However, if the interface
is perpendicular to inflow boundaries, it is possible to define meaningful boundary
conditions for (7.2), which completely avoids the issue.

7.3 Test cases

The main goal of this work is to enable a cut-cell discontinuous Galerkin solver to
simulate the dynamics of bubbles and droplets. To simulate the motion of a bubble, two
features must be captured accurately: the motion of the bubble through the domain
and the deformation of the bubble due to an external flow field. This is examined by
two individual setups: The first test-case is the motion of a bubble in a velocity field,
which is equivalent to a solid-body rotation. Since this vector-field is not irrotational, it
is suited to test the motion of a bubble in viscous flow field.

The second test case covers the deformation of a circular bubble due to radial velocity
components. This covers stronger local gradients in the velocity and level set field than
the rotation test case and emulates a motion similar to that of an oscillating droplet
under the influence of surface tension.

To measure the quality of the motion algorithm, we use the contour error Ec as in
the chapter on reinitialization, see equation (4.21). If an analytical expression for the
interface is known, we can integrate its value along the interface contour provided by
the motion algorithm. This local value is the distance between the two contours.

Ec =

(∫
I(t)

ϕanalytical(t)
2 dS

) 1
2

(see eq. (4.21))

The last test case is the rotation of Zalesaks disk Zalesak (1979). This classical test case
demonstrates the stability of the motion algorithm, since the kinks in the interface
intrude oscillations in the whole level set field. Due to this behavior it is often used to
demonstrate numerical dissipation introduced by a motion algorithm.

7.3.1 Rotating circle

The first test case is the motion of a circular contour in a flow field which is rotating
around a point outside the circle as sketched in figure 7.1. While the contour is
not deforming, this test case checks, whether translation and rotation is accurately
computed.

The velocity field is chosen to have an angular velocity of ω = 1, which means in
Cartesian coordinates it can be expressed as

~u = ω~eθr = (−y, x)T (7.7)
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I

~u

Figure 7.1: Testcase: A circular contour performing a solid-body rotation

Then using the standard rotational transformation

(x∗, y∗)T =

(
cos(t) − sin(t)

sin(t) cos(t)

)
(x, y)T (7.8)

the solution can be transformed into a rotating frame of reference, where it is constant

ϕexact(x
∗, y∗) =

√
(x∗)2 + (y∗ − y0)2 − 1. (7.9)

For this test the vertical offset of the circle from the center of the domain is set to
y0 = 1.25. The problem is discretized on the domain Ω = (−3, 3)2 using computational
grids of 12× 12 up to 64× 64 cells and polynomial degrees k = 1 · · · 4. Time stepping
is performed by a Crank-Nicholson scheme using a time step size of ∆t = 10−3. This
time step size is chosen small enough to not limit the accuracy of the calculations. The
figures 7.2 show the results of two different set ups for the contour error Ec, which
measures the shift of the interface by the motion algorithm, evaluated after 300 time
steps at t = 0.3. For both test cases, the convergence criterion is set to λ = 10−8. The
isotropic viscosity is chosen as ε = 10−2. The figure on the left shows the results for the
algorithm including the reinitialization algorithm from chapter 4. Regardless of the
polynomial degree k chosen for the calculation, the method gives first order accuracy.
If reinitialization is only performed on the far-field, the method shows an accuracy of
Ec ∼ hk+1 for calculations with polynomial degree up to k ≤ 3 while being slightly
suboptimal for k = 4. Possible reasons for this reduction might be either the time step
size ∆t or the choice of the isotropic viscosity ε which stabilizes the extension equation.
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Figure 7.2: L2-Convergence Study, TimeStepper: Crank-Nicholson, ∆t = 0.001, t=0.3

7.3.2 Oscillating circle

The second test case examines the periodic deformation of a circular contour by a
temporally oscillating radial velocity component

~u(r, θ, t) = ~er cos (nθ) cos (πt) , (7.10)

as depicted in figure 7.3. Where θ and r are the independent coordinates for a standard
cylindrical coordinate as shown in figure 7.3, see e.g. Spurk (2013).

r(x, y) =
√
x2 + y2 (7.11a)

θ(x, y) = arctan
(y
x

)
(7.11b)

While the rotating circle test case 7.3.1 covers the rotational and translational motion
of a contour, this test case examines the deformation of a contour, as might occur e.g.

I

~u

r

θ

Figure 7.3: Testcase: A circular contour deforming by radial velocity components
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in the simulation of an oscillating droplet. With this coordinate transformation an
initially circular contour

ϕ(t = 0) =
√
x2 + y2 = r − 1

r(t = 0) = 1

becomes
rexact() = 1 +

1

π
cos (nθ) sin (πt) . (7.12)

One possible level-set for this geometry is

ϕ(x, y, t) = 1 +
1

π
cos
(
n arctan

(y
x

))
sin (πt)−

√
x2 + y2. (7.13)

Note, that this level set does not fulfill the signed distance property, except for times
t ∈ Z. Due to this, the result of the numerical experiment is evaluated after 4 oscillation
periods at t = 4.0. To measure the convergence rate of the scheme, the problem is
discretized on the domain Ω = (−2, 2)2 using polynomial degrees k = 1 . . . 4 and an
isotropic viscosity of ε = 10−3 to stabilize the extension equation. Figure 7.4 shows
the results for two different time step sizes: The results for the left figure, 7.4a are
obtained using a time step size of ∆t = 10−2, which limits the accuracy of the algorithm
to roughly h2.5. The limiting factor in this case is the second order accuracy of the
involved Crank-Nicholson time stepping scheme. Lowering the time step size to
∆t = 1e − 3 reduces the error induced by the time stepping algorithm. Then the
computation is dominated by the spatial accuracy of the scheme, which is almost
Ec ∼ hk+ 1

2 .
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Figure 7.4: Results of the h-convergence for the oscillating circle test case using different
time step sizes ∆t.
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7.3.3 Zalesaks disk

The last test case is Zalesaks famous disk (see Zalesak (1979)), that was already used to
test the extension algorithm individually in section 5.4.3. To test the motion algorithm,
this slotted disk is rotated about the origin by a unity angular velocity. The main
motivation for this test case is to show that the algorithm presented here is stable
even for cases which include sharp kinks in the interface, as they might occur in
under resolved simulations. Both previous test cases consisted of interface contours,
for which the curvature radius was much larger than the typical cell size. For both
these cases kinks in the level set are located far from the level set, which allows to
omit reinitialization and gives high order accuracy. The sharp kinks of the contour
in Zalesaks disk however introduce large errors in the cells containing them. Since a
polynomial cannot interpolate kinks accurately without oscillations, such a contour
causes a loss of high-order accuracy, which has been reported for this test case and
a discontinuous Galerkin method by Jibben and Herrmann (2012). These sources of
errors require a stabilization of the scheme by applying the elliptic reinitialization in
every time step.

The geometry for this testcase is shown in figure 7.5, where the geometry parameter of
the circle are chosen as r = 2, a = 0.3 and b = 1.

I

~u

x

y

r

a

b

Figure 7.5: Testcase: A slotted disk performing a solid-body rotation

To demonstrate the stability of the algorithm presented here, the test case is discretized
on the domain Ω = (−2.5, 2.5)2 with a very coarse grid of 16× 16 cells using a polyno-
mial degree of k = 3 and a rather large time step size of ∆t = 0.1. Even for this greatly
under resolved setting, the algorithm is stable and gives reasonable results see figure
7.6, although the result suffers from numerical dissipation, which has a smoothing
effect on the edges of the contour.

Refining the grid by a factor of three, i.e. a mesh with 48 × 48 cells and reducing
the time step size by a factor of 5 reduces numerical dissipation, which can be seen
in figure 7.7. However, comparing figures 7.6 and 7.7b shows, that the dissipation
introduced by reinitialization and the singularity at the kink is in the same length scale
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as the grid size h, which confirms the findings of the rotating circle test case, section
7.3.1, that reinitialization introduces a first order error in the position of the interface
contour.

−2 0 2

−2

0

2

x

y

t = 0
t = 1, . . . , 3

Figure 7.6: Result for Zalesaks disk on the coarse grid, numerical dissipation progres-
sively smooths the interface contour
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Figure 7.7: Result for Zalesaks disk on the fine grid showing progressive smoothing of
the kinks in the interface contour
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8 Multiphase flows

As a final step, this chapter applies the level set methods presented in the previous
chapters to a solver for incompressible multiphase flows. To discretize the Navier-
Stokes equations, we use the method by Kummer (2016) in combination with the time
stepping algorithm by Kummer et al. (2018). The resulting velocity field is iteratively
coupled to the motion algorithm from the previous section to determine the position
of the interface.

8.1 Discretization of the Navier-Stokes equations

In shorthand notation, the discretization for the Navier-Stokes equations is

find(~u, p) ∈ VX
DG(K)s. t.∫

A(t)∪B(t)

~u~v dV
∣∣∣∣
t=tn+1

−
∫
A(t)∪B(t)

~u~v dV
∣∣∣∣
t=tn

+
∆t

2

(
Ns(~u, (~u, p), (~v, τ))− q(~v)− r(τ)− s(~v)− f(~v)

)
|t=tn (8.1)

+
∆t

2

(
Ns(~u, (~u, p), (~v, τ))− q(~v)− r(τ)− s(~v)− f(~v)

)
|t=tn+1 = 0

∀(~v, τ) ∈ VX
DG(K).

In time, this is a Crank-Nicholson discretization, which takes the motion of the domain
into account. The first two operators denote the mass matrices at the two time steps.
The spatial operator consists of the Navier-Stokes operator NS(−,−,−) , terms for
the boundary conditions q and r and source terms due surface tension s and external
forces f . The Navier Stokes operator can be split into two parts

Ns(~u, (~u, p), (~v, τ)) = L((~u, p), (~v, τ)) + t(~u, ~u,~v), (8.2)

Where the trilinear form t(−,−,−) represents the nonlinear convection terms, and the
bilinear Form L(−,−) represents the linear operator discretizing the Stokes equation

L((~u, p), (~v, τ)) = b(p,~v)− a(~u,~v)− b(τ, ~u). (8.3)

The Stokes operator itself consists of three individual operators, where b(−,−) is
the discrete form of the pressure gradient and the velocity divergence and a(−,−)

represent viscous terms.
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The convective terms are discretized by a local Lax-Friedrichs flux,

t(~w, ~u,~v) = −
∫

Ω
hρ(~u⊗ ~w) : ∇~v dV −

∮
Γ∪∂ΩN∪I

({~u⊗ ~w}~nΓ + (λLLF/2) [[~u]]) · [[ρ~v]] dS,

(8.4)
as used in the work of Shahbazi et al. (2007). See Kummer (2016) for details on the
choice of the local Lax-Friedrichs parameter λLLF.

The pressure gradient and velocity divergence are discretized by the standard central
difference flux

b(p,~v) = −
∫

Ω
hp ∇ · ~v dV −

∮
(Γ\∂ΩN)∪I

[[~v]] · ~nΓ {p} dS. (8.5)

Kummer (2016) slightly extends the original symmetric interior penalty (SIP) by Arnold
(1982) to the transposed part of the stress trensor as

a(~u,~v) = −
∫

Ω
hµ(∇~u : ∇~v + (∇~u)T : ∇~v) dV

+

∮
(Γ\∂ΩN)∪I

({
µ(∇~u+∇~uT )

}
~nΓ

)
· [[~v]] +

({
µ(∇~v +∇~vT )

}
~nΓ

)
· [[~u]] dS

−
∮

(Γ\∂ΩN)∪I
η [[~u]] · [[~v]] dS. (8.6)

Using a mixed order discretization, i.e. kp = k~u − 1, this discretization of the Stokes
operator is stable without additional stabilization, see e.g.Shahbazi et al. (2007) and
Klein et al. (2013b). For further details on the SIP discretization, refer to the original
publication by Arnold (1982) or Arnold et al. (2002) for a detailed analysis. The choice
of the penalty parameter must be adapted to the fact, that the method is defined on
two arbitrarily small sub cells K ∩ A and K ∩B. For details, see Kummer (2016).

At the boundaries, the Dirichlet conditions are added the source terms in the continuity
equation

r(τ) =

∮
ΓD

τ ~uD · ~nΩ dS, (8.7)

and source terms in the the convective and diffusive part of the momentum equation

q(~v) = −
∮

ΓD

(~uD ⊗ ~uD)~nΩ · [[ρ~v]] dS −
∮
∂ΩD

~uD ·
(
∇~v~nΩ +∇~vT~nΩ − η~v

)
dS

−
∮
∂Ωs

(
−p+ µ~n∂Ωs · (∇~u+∇~uT ) · ~n∂Ωs

)
(~v · ~n∂Ωs) dS. (8.8)

The boundary conditions used in this thesis are no slip boundary conditions

~uD = 0 on ∂Ω0 (8.9)
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and slip walls (see Reusken et al. (2017))

~u · ~n = 0 on ∂Ωs (8.10)
~t · (∇~u+∇~uT ) · ~n = 0 on ∂Ωs, (8.11)

where ~t is the tangential vector on ∂Ωs.

The term due to external forces is

f(~v) = −
∫

Ω

~F · ~v dV (8.12)

with ~F = ~gρ if only gravity acts on the fluid.

The last term is the discretization of the surface tension, which follows the Laplace-
Beltrami approach by Demlow and Dziuk (2007). Gross and Reusken (2011) give a
broad overview on this kind of discretization.

s(~v) = −
∮
I

σPI : {∇~v} dS +

∫
I∩Γ

σ {τI · [[~v]]I}Γ dS (8.13)

where τI is the tangential vector on the surface.

The resulting discretization (8.1) is nonlinear even for a prescribed interface position.
Therefore it must be solved iteratively.

8.2 Coupling of the level set to the Navier Stokes equa-
tion

To couple the Navier-Stokes system to the motion algorithm, the algorithm 1 is ex-
panded in the following way:

Algorithm 2 Motion Algorithm including the flow solver

1: procedure MULTIPHASEFLOWSOLVER(ϕt,∆t, ~ut)
2: ϕt+1 ← ϕt

3: while ‖ϕt+1 − ϕold‖2 > λ do . Perform until convergence
4: ϕold ← ϕt+1

5: ~uext = Extension(~u(t+ 1), ϕt+1) . ∇~uext,i · ∇ϕ = 0
6: ϕ∗ ← PerformAdvection(∆t,ϕt,~uext) . ∂tϕ

∗ + ~uext · ∇ϕ∗ = 0
7: ϕt+1 ← ReInitialization(ϕ∗) . |∇ϕ| = 1
8: At+1,Bt+1 ← UpdateDomains(ϕt+1)
9: ~ut+1, pt+1 ← SolveNSE(~ut, pt,At,Bt,At+1,Bt+1)

10: end while
11: return ϕt+1, ~ut+1, pt+1

12: end procedure
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This is a straight forward adaption of the original iterative scheme, algorithm 1, with
the difference that the velocity for the level set motion is not preset, but computed
from the Navier-Stokes system. Since the fluid interface moves in each iteration of the
solver, the interface position and thus the two domains A and B must be recomputed
in each time step.

Without mass transport, the jump condition for the velocity at the interface is [[~u]] =

0 see (2.4b) . In the XDG method used for the discretization of the Navier-Stokes
equations, this condition is enforced only weakly. Thus, the two velocity components
must not necessarily be equal. Then, the interface velocity, which is the boundary
condition for the extension velocity, must be some average of the values in the two
phases. In flows with largely varying densities between the phases, e.g. water and
air, the motion of the interface is dominated by the motion of the heavier fluid. Thus,
the boundary condition for the extension equation is chosen as the density averaged
velocity at the interface

~uext =
ρA~uA + ρB~uB
ρA + ρB

on I (8.14)

8.3 Rising bubble test case

To demonstrate the capabilities of the numerical methods presented in this thesis,
we apply the Navier-Stokes solver to a bubble of light liquid surrounded by heavy
liquid with surface tension between both phases. This test case is quite popular to
validate such a solver and detailed results are available for the three finite element
based solvers TP2D, FreeLIFE and MooNMD from the reference paper by Hysing et al.
(2009). In the context of an unfitted discontinuous Galerkin method, this test case has
been demonstrated by Heimann et al. (2013).

The set up as shown in figure 8.1: a circular bubble with a radius of r = 0.25 and its
centerpoint at (0.5, 0.5) is set into the domain Ω = (0, 1)× (0, 2) with a no slip wall ∂Ω0

at the top and bottom and slip walls ∂Ωs on the sides. The fluid of the bubble, A is
chosen to have a density of ρA = 100 and a viscosity of µA = 1. The denser fluid, B has
a density of ρB = 1000 and a viscosity of µB = 10. The surface tension of this material
pair is σ = 25. The initial conditions are chosen as ~u = 0 in the entire domain.

To compare the results to benchmark solutions by Hysing and Turek (2005) and
Heimann et al. (2013), the following quantities are computed: The area A of the
bubble

A =

∫
A

1 dV, (8.15)

the center of Mass ~xc

~xc =

∫
A
~xdV
A

, (8.16)
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Figure 8.1: Initial and boundary condition for the rising bubbble

and the mean velocity of the bubble

~umean =

∫
A
~udV
A

, (8.17)

of which the vertical component is the rise velocity urise. Using the area of the bubble,
one can define an equivalent radius

requiv. =

√
A

4π
. (8.18)

Without mass loss, this is equivalent to the initial radius of the bubble. The circularity
of the bubble c is then defined as the ratio between the circumference of the equivalent
circular bubble and the surface

c =
2πrequiv.∮
I

1 dS
=

√
A

2
∮
I

1 dS
. (8.19)

The results shown here are calculated using a grid of 40× 80 cells and a polynomial
degree of kϕ = k~u = 2 for the level set and velocity field and a polynomial degree of
kp = 1 for the pressure field. The time step size is chosen as ∆t = 0.0015625. Figure
8.2 and 8.3 compare the results from this computation with the quantities reported in
Hysing et al. (2009) and Heimann et al. (2013). Both circularity and rise velocity show
good agreement with the benchmark results, despite using twice as large time steps
and elements as Heimann et al. (2013). The detailed view 8.3 shows, that the method
presented here slightly overestimates the circularity of the bubble at the minimum and
underestimates the maximum of the rise velocity by a factor of roughly 10−3. Possible
reasons might be the coarser resolution of the results presented here, differences in
the handling of the level set or in the discretization. This might be the topic of further
investigation. Figure 8.4 shows the magnitude of the local velocity. The simulation
accurately covers the flow around the bubble as well as the dynamics in the wake
and inside the bubble. As can be seen from this figure and the graph in figure 8.2, the
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evolution of the bubbles shape due to the formation of the flow around it is represented
well. To fully examine the capabilities of the solver presented here, further studies
with different resolutions, material parameters and physical test cases are required.
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Figure 8.2: Comparison of the rising bubble test case with the benchmark data by
Heimann et al. (2013)
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9 Conclusion and outlook

This thesis covers several topics in the context of the simulation of multiphase flows
using an extended discontinuous Galerkin method (XDG): A novel method for reinitial-
ization, a method for the extension problem, the combination of both these algorithms
with a level set advection equation and an application of this algorithm to the simula-
tion of a rising bubble. In addition, an outlook is given, how the ideas for the extension
equation can be used to simulate surface equations.

9.1 Reinitialization

This chapter is based on the publication by the author Utz et al. (2017b) and presents a
procedure for level-set reinitialization, which accurately preserves the initial position
of the interface and converges in global norms of the level-set field, but gives only
first order accuracy in a norm measuring the shift of the interface. Both potential
functions presented here exhibit individual drawbacks: The single-well potential ψ1

may lead to oscillations in the vicinity of singularities, which may cause divergence
of the scheme. When applying the double well potential, the method is stable even
for interface features, which are about the same size as the grid cells and works on
triangular and quadrilateral grids. However, using the double well potential in regions,
where the initial conditions are overly flat, may lead to a constant solution, instead of
the desired signed distance. In addition to the results published in Utz et al. (2017b),
these drawbacks are avoided by combining the advantages of both approaches with a
first order preconditioning based on a fast marching procedure.

9.2 Extension

This chapter is based on the second publication by the author Utz and Kummer (2017)
and presents a novel technique for solving the extension problem, by reformulating
the problem into an elliptic differential equation. The nature of the original problem
allows a discretization using an upwind flux, which leads to a triangular matrix
structure. Thus, the discretization of the extension problem can be solved using a
marching algorithm. Numerical evidence indicates an accuracy of O(hk) and stability
on structured and unstructured grids, even for geometrical features in the same size as
the grid cells. In addition to the original publication, this thesis includes the treatment
of boundary conditions, i.e. cases, in which the interface intersects the boundary of
the domain and cases, where the initial extension problem is ill-posed. This requires
a modification of the original problem by adding artificial diffusion. This added
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diffusion introduces a first order error, but stabilizes the method even for ill-posed
conditions.

9.3 Trace-DG

As an outlook we briefly introduced a technique for solving surface PDEs called
Trace DG. This technique shows promising results while relying on a stabilization
approach which is similar to the method used for the extension problem. First results
are promising for two dimensional and three dimensional test cases alike.

9.4 Combining the algorithms

This chapter combines the extension and the reinitialization algorithm with an upwind
discretization to a motion algorithm for interfaces with arbitrary velocities. Since
the extension and the reinitialization both require the solution of linear systems, the
algorithm uses implicit time stepping to achieve large time steps, which requires an
iterative coupling of the different steps. For smooth problems, level-set reinitialization
can be limited to cells far from the interface, then the algorithm is high order accurate.
Including the reinitialization procedure, the method is stable even for low-regularity
problems such as Zalesaks disk.

9.5 Multiphase flows

In the final chapter, the level set algorithm is applied to a sharp interface discretization
of the Navier-Stokes equations by Kummer (2016) which includes an adapted time
stepping scheme by Kummer et al. (2018) and a Laplace-Beltrami formulation for the
surface tension terms. In the context of a simulation of a rising bubble, the motion
algorithm for the interface shows good agreement with benchmark results from litera-
ture even for rather coarse grids and time step sizes. It will be interesting to apply this
solver to more complex flows, such as the collision of droplets or the breakup of jets.
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Gassner, G., Lörcher, F., and Munz, C.-D. (2007). A contribution to the construction of
diffusion fluxes for finite volume and discontinuous Galerkin schemes. Journal of
Computational Physics, 224(2):1049–1063.



88 BIBLIOGRAPHY

Gibou, F. and Fedkiw, R. (2005). A fourth order accurate discretization for the Laplace
and heat equations on arbitrary domains, with applications to the Stefan problem.
Journal of Computational Physics, 202(2):577–601.

Gibou, F., Fedkiw, R., Caflisch, R., and Osher, S. (2003). A Level Set Approach for
the Numerical Simulation of Dendritic Growth. Journal of Scientific Computing, 19(1-
3):183–199.

Gibou, F., Fedkiw, R. P., Cheng, L.-T., and Kang, M. (2002). A Second-Order-Accurate
Symmetric Discretization of the Poisson Equation on Irregular Domains. Journal of
Computational Physics, 176(1):205–227.

Girault, V., Rivière, B., and Wheeler, M. (2005). A discontinuous Galerkin method with
nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems.
Mathematics of Computation, 74(249):53–84.

Grande, J., Lehrenfeld, C., and Reusken, A. (2016). Analysis of a high order Trace
Finite Element Method for PDEs on level set surfaces. arXiv:1611.01100 [math]. arXiv:
1611.01100.

Groß, S., Reichelt, V., and Reusken, A. (2006). A finite element based level set method
for two-phase incompressible flows. Computing and Visualization in Science, 9(4):239–
257.

Grooss, J. and Hesthaven, J. S. (2006). A level set discontinuous Galerkin method
for free surface flows. Computer Methods in Applied Mechanics and Engineering,
195(25–28):3406–3429.

Gross, S., Olshanskii, M. A., and Reusken, A. (2015). A trace finite element method for
a class of coupled bulk-interface transport problems. ESAIM: Mathematical Modelling
and Numerical Analysis, 49(5):1303–1330.

Gross, S. and Reusken, A. (2011). Numerical Methods for Two-phase Incompressible Flows.
Springer Science & Business Media.

Harlow, F. H. and Welch, J. E. (1965). Numerical Calculation of Time-Dependent
Viscous Incompressible Flow of Fluid with Free Surface. Physics of Fluids, 8(12):2182.
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Université Catholique de Louvain.

Marchandise, E., Geuzaine, P., Chevaugeon, N., and Remacle, J.-F. (2007). A stabilized
finite element method using a discontinuous level set approach for the computation
of bubble dynamics. Journal of Computational Physics, 225(1):949–974.

Massjung, R. (2012). An Unfitted Discontinuous Galerkin Method Applied to Elliptic
Interface Problems. SIAM Journal on Numerical Analysis, 50(6):3134–3162.

McCaslin, J. O. and Desjardins, O. (2014). A localized re-initialization equation for the
conservative level set method. Journal of Computational Physics, 262:408–426.

Meister, A. (2011). Numerik linearer Gleichungssysteme: eine Einführung in moderne
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A Conservation of the signed distance
property using an extension veloc-
ity

If the velocity field ~u for the level set advection (7.2) is chosen as the extension of a field
(7.1b), the level set will retain its signed distance property for all time. This follows
the same argument as Adalsteinsson and Sethian (1999) for a scalar extension velocity
formulation. Let’s revisit both equations:

∂ϕ

∂t
+ ~u · ∇ϕ = 0 (see (7.2))

∇~u · ∇ϕ = 0 (see (7.1b))

By applying the gradient operator to equation (7.2), it becomes

∂∇ϕ
∂t

+∇~u · ∇ϕ+ ~u · ∇ (∇ϕ) = 0, (A.1)

where the second term is zero due to the extension equation (7.1b).

Multiplying the result by the level set gradient∇ϕ gives

∂∇ϕ · ∇ϕ
∂t

+ ~u · ∇ (∇ϕ · ∇ϕ) = 0, (A.2)

or
∂|∇ϕ|2
∂t

+ ~u · ∇
(
|∇ϕ|2

)
= 0 (A.3)

If this motion algorithm is initialized using a signed-distance field, i.e.

‖∇ϕ‖|t=0 = 1 (A.4)

then the left hand side of (A.2) is zero for al times

∂∇ϕ · ∇ϕ
∂t

= 0 (A.5)

and thus the signed distance property is conserved.
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