
P RO G R A M M I N G M O D E L S A N D
E X T E N S I V E E VA L UAT I O N S U P P O RT

F O R M P T C P S C H E D U L I N G , A DA P TAT I O N
D E C I S I O N S , A N D DA S H V I D E O S T R E A M I N G

Am Fachbereich Informatik
der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Dissertationsschrift

von

A L E X A N D E R F R Ö M M G E N , M . S C .
Geboren am 29. März 1988 in Koblenz

Erstreferent: Prof. Dr.-Ing. Ralf Steinmetz
Korreferent: Prof. Alejandro Buchmann (Ph.D.)

Tag der Einreichung: 30.04.2018
Tag der Disputation: 18.06.2018

Hochschulkennziffer D17
Darmstadt 2018

Frömmgen, Alexander: Programming Models and Extensive Evaluation Support for
MPTCP Scheduling, Adaptation Decisions, and DASH Video Streaming

Darmstadt, Technische Universität Darmstadt,
Jahr der Veröffentlichung der Dissertation auf TUprints: 2018
Tag der mündlichen Prüfung: 18.06.2018

Veröffentlichung unter CC BY-SA 4.0 International
https://creativecommons.org/licenses/

https://creativecommons.org/licenses/

III

AC K N O W L E D G M E N T S

Ich möchte mich an dieser Stelle bei einigen Menschen bedanken. Zunächst
möchte ich mich bei meinen beiden Betreuern Prof. Buchmann und Prof.
Steinmetz für die uneingeschränkte Unterstützung in den vergangenen Jah-
ren bedanken. Beide gaben mir die Möglichkeit und Freiheit, meine Ideen
umzusetzen. Ich bin Prof. Steinmetz dankbar dafür, dass ich meine begonne-
nen Arbeiten mit Sorgfalt und Geduld abschließen durfte.

Ich möchte mich bei Wolfgang und Jörg dafür bedanken, dass den beiden
schon immer klar war, dass ich eines Tages promovieren würde.

Des Weiteren möchte ich mich bei all meinen Kollegen k∈ (DVS∪KOM∪
MAKI) bedanken. Die gemeinsamen Arbeiten mit Björn, Christian, Denny,
Julius, Martin, Max, Michael, Robert, Roland, Sabrina, Torsten und Wasiur
haben mir viel Freude und spannende Einsichten bereitet. Besonderer Dank
gilt Max und Robert, die mich bei meinen ersten akademischen Schritten
begleiteten. Ich möchte mich für die tolle Zusammenarbeit mit Michael be-
danken – auch wenn deswegen dann einiges nochmal umgeschrieben werden
musste. In diesem Zusammenhang möchte ich mich auch bei Roland bedan-
ken. Beide haben erfolgreich ein paar Kanten in meinem Hirn verbunden.

Ich möchte mich bei Denny und Prof. Effelsberg für die Gastfreundschaft
im DMS Büro und die vielen spannenden Video-Streaming-Einsichten bedan-
ken. Prof. Effelsberg, vielen Dank für Ihr Vertrauen und Ihre Erwartungen in
meine Arbeit. Dies hat mich stets angespornt.

Ich möchte mich bei Boris für die gute Betreuung und Unterstützung be-
danken. Danke, dass du mir zur richtigen Zeit Konferenzen jenseits der Kom-
munikationssysteme aufgezeigt hast. Ich möchte mich bei Amr für das per-
manente Umformulieren von Absätzen bedanken. Hast ja recht.

Des Weiteren möchte ich mich bei den vielen Studierenden bedanken, wel-
che meine Forschung über die Jahre unterstützt und unter meinen unausgego-
renen Ideen zu leiden hatten. Besonderer Dank geht an Andreas, Jan, Max,
Nikolas, Sreeram, Stefan, Tobias und Tobias.

Ich möchte mich bei den Feistels für die vielen qualvollen Runden bedan-
ken. Tja, Christopher, jetzt warst du doch (schneller ∨ besser).

Zu guter Letzt möchte ich mich bei meiner Familie für all die Unterstüt-
zung bedanken. Danke Mutter. Danke Vater. Danke Schwester. Danke Martin.
Danke Noah. Danke Mauz. Danke Krümel.

A B S T R AC T

In this dissertation, we identify that the analysis, implementation, and evalu-
ation of communication systems is hindered by two obstacles: i) missing ab-
stractions and the resulting implementation complexity and ii) the required ex-
tensive evaluations for today’s large configuration spaces and heterogeneous
network environments. A prominent example is Multipath TCP – today’s de
facto multipathing transport protocol. Multipath TCP packet scheduler inno-
vations are hindered by the implementation complexity of the Linux kernel
network stack and the required analysis for a variety of applications and net-
work conditions.

To tackle the first obstacle, we are the first to propose a programming
model as abstraction for the design and development of Multipath TCP sched-
ulers. We introduce the ProgMP programming model, which provides a pow-
erful specification language and a high-level API to specify executable Mul-
tipath TCP schedulers. We show the strength of ProgMP by implementing
13 novel general purpose, preference-, and application-aware schedulers tack-
ling diverse objectives. As part of these schedulers, we propose the first re-
dundant Multipath TCP scheduler and show that this scheduler significantly
reduces latency for applications with tight latency requirements but only mod-
erate throughput needs. We use ProgMP for a detailed analysis of design
decisions for the incorporation of redundancy to balance latency and through-
put. We further propose schedulers that retain fine-grained throughput or la-
tency objectives, or improve the interaction with upper layer protocols such
as HTTP/2, while preserving path preferences. Our detailed emulation-based
and real world measurements show that ProgMP enables timely scheduling
decisions and a wide range of executable, novel Multipath TCP schedulers.
Besides ProgMP, which is our main contribution to overcome the first ob-
stacle of missing abstractions, we further introduce programming models as
abstraction for the adaptation decisions of adaptive communication systems.
Here, we propose to specify the adaptation decision with event condition ac-
tion rules and learn rules for a given utility function with genetic program-
ming in extensive network experiments. Finally, we propose a programming
model for the specification of topology adaptations in communication sys-
tems based on topology graph patterns.

To overcome the second identified obstacle and foster extensive evalua-
tions, we present the MACI framework for the management, scalable execu-
tion, and interactive analysis of extensive network experiments. In essence,
MACI is a combination and integration of established tools to foster rigor-
ous, seamless evaluations throughout the research process. We discuss our
MACI experiences during i) the development and evaluation of our proposed
ProgMP schedulers, ii) the analysis of a distributed topology graph pattern
matching protocol, and iii) a systematic comparison of DASH video stream-
ing implementations. Our experiences confirm that MACI provides support

VI

for the recurring tasks in the evaluation of diverse communication systems
and significantly increases research efficiency. The experiments with MACI,
i. e., the ProgMP, the topology graph pattern matching, and the DASH exper-
iments, go beyond an evaluation of MACI and significantly contribute to the
understanding of these domains.

Overall, this dissertation contributes i) three programming models for the
domains of Multipath TCP, adaptive communication systems, and topology
adaptations in communication systems, ii) 13 novel, deployable general pur-
pose, preference-, and application-aware Multipath TCP schedulers, and iii)
a reusable framework for the seamless execution and analysis of extensive
network experiments.

Z U S A M M E N FA S S U N G

In dieser Dissertation zeigen wir auf, dass die Analyse, die Umsetzung und
die Evaluation von Kommunikationssystemen durch i) fehlende Abstraktio-
nen und die resultierende Implementierungskomplexität sowie ii) die benötig-
ten umfassenden Evaluationen für die Vielzahl an Konfigurationsmöglichkei-
ten und Netzwerkumgebungen erschwert werden. Multipath TCP, das de fac-
to Transportprotokoll zur Nutzung mehrerer Netzwerkpfade, stellt ein promi-
nentes Beispiel dar. Innovationen im Bereich der Multipath TCP Paket Sche-
duler werden durch die Implementierungskomplexität innerhalb des Linux-
Kernels und den benötigten umfassenden Analysen für die Vielzahl an An-
wendungen und Netzwerkumgebungen erschwert.

Zur Überwindung des ersten Hindernisses schlagen wir ProgMP, das ers-
te Programmiermodell für Multipath TCP Scheduler, als Abstraktion für den
Entwurf und die Entwicklung von Multipath TCP Schedulern vor. ProgMP
beinhaltet eine ausdrucksstarke Spezifikationssprache und eine einfache Pro-
grammierschnittstelle zur Spezifikation ausführbarer Multipath TCP Schedu-
ler. Wir zeigen die Stärken von ProgMP am Beispiel von 13 neuen Schedu-
lern mit unterschiedlichen Optimierungszielen auf. Als Teil dieser Scheduler
schlagen wir den ersten redundanten Multipath TCP Scheduler vor und zei-
gen, dass dieser die Latenz für Anwendungen mit strikten Latenzanforderun-
gen und moderaten Durchsatzanforderungen signifikant reduziert. Wir nutzen
ProgMP für eine detaillierte Analyse von Entwurfsentscheidungen für die
Verwendung von Redundanz zur Abwägung von Latenz und Durchsatz. Des
Weiteren schlagen wir Scheduler vor, welche feingranulare Durchsatz- oder
Latenzziele einhalten, sowie die Interaktion mit darüber liegenden Protokol-
len wie beispielsweise HTTP/2 optimieren und dabei Pfadpräferenzen einhal-
ten. Unsere detaillierten Evaluationen mittels Netzwerkemulation sowie Echt-
weltmessungen zeigen, dass ProgMP effiziente Schedulingentscheidungen
und eine Vielzahl neuer, ausführbarer Multipath TCP Scheduler ermöglicht.
Neben ProgMP, unserem Hauptbeitrag zur Überwindung fehlender Abstrak-
tionen, stellen wir des Weiteren Programmiermodelle als Abstraktionen für
die Adaptionsentscheidung adaptiver Kommunikationssysteme vor. So schla-
gen wir vor, Adaptionsentscheidungen mittels event condition action Regeln
(Ereignis, Bedingung, Aktion) zu spezifizieren und diese Regeln basierend
auf genetischer Programmierung in umfassenden Netzwerkexperimenten au-
tomatisch für eine gegebene Nutzenfunktion zu lernen. Schließlich stellen
wir ein Programmiermodell für die Spezifikation von Topologie-Adaptionen
in Kommunikationssystemen mittels Graphmustern in der Topologie vor.

Zur Überwindung des zweiten identifizierten Hindernisses haben wir das
MACI Framework zur Verwaltung, skalierbaren Ausführung und interakti-
ven Analyse von umfassenden Netzwerkexperimenten entwickelt. Im Kern
ist MACI eine Kombination und Integration etablierter Werkzeuge zur Förde-
rung gründlicher, nahtloser Evaluationen während des gesamten Forschungs-

VIII

prozesses. Wir diskutieren unsere Erfahrungen mit MACI während i) der Ent-
wicklung und Evaluation unserer vorgeschlagenen ProgMP Scheduler, ii) der
Analyse eines verteilten Protokolls zur Auffindung von Graphmustern in To-
pologien, sowie iii) eines systematischen Vergleichs von DASH Video Stre-
aming Implementierungen. Unsere Erfahrungen bestätigen, dass MACI wie-
derkehrende Aufgaben in der Evaluation diverser Kommunikationssysteme
unterstützt und dadurch die Forschungseffizienz signifikant erhöht. Die Ex-
perimente mit MACI für ProgMP, Topologiemustererkennung und DASH ge-
hen über eine Evaluation von MACI hinaus und stellen signifikante Beiträge
zum Verständnis der jeweiligen Gebiete dar.

Insgesamt beinhaltet diese Dissertation die folgenden Beiträge: i) drei Pro-
grammiermodelle für die Bereiche des Multipath TCP Schedulings, der ad-
aptiven Kommunikationssysteme, sowie der Topologie-Adaption in Kommu-
nikationssystemen, ii) 13 neue, ausführbare Multipath TCP Scheduler, sowie
iii) ein wiederverwendbares Framework zur nahtlosen Ausführung und Ana-
lyse umfassender Netzwerkexperimente.

AU T H O R ’ S P U B L I C AT I O N S

The author of this dissertation published major parts of the presented content
of this dissertation previously in the following publications:

Major Publications

[F1] Alexander Frömmgen, Jens Heuschkel, and Boris Koldehofe.
“Multipath TCP Scheduling for Thin Streams: Active Probing
and One-way Delay-awareness”. In: Proceedings of the IEEE
International Conference on Communications (ICC). 2018.

[F2] Alexander Frömmgen, Denny Stohr, Amr Rizk, and Boris
Koldehofe. Don’t Repeat Yourself: Seamless Execution and
Analysis of Extensive Network Experiments. Tech. rep. 2018.
URL: https://maci-research.net.

[F3] Michael Stein, Alexander Frömmgen, Roland Kluge, Wang
Lin, Augustin Wilberg, Boris Koldehofe, and Max Mühlhäuser.
“Scaling Topology Pattern Matching: A Distributed Approach”.
In: Proceedings of the ACM/SIGAPP Symposium on Applied
Computing (SAC). 2018.

[F4] Tobias Viernickel, Alexander Frömmgen, Amr Rizk, Boris
Koldehofe, and Ralf Steinmetz. “Multipath QUIC: A Deploy-
able Multipath Transport Protocol”. In: Proceedings of the
IEEE International Conference on Communications (ICC).
2018.

[F5] Alexander Frömmgen, Amr Rizk, Tobias Erbshäußer, Max
Weller, Boris Koldehofe, Alejandro Buchmann, and Ralf
Steinmetz. “A Programming Model for Application-defined
Multipath TCP Scheduling”. In: Proceedings of the ACM/I-
FIP/USENIX Middleware Conference, Best Paper Award.
ACM, 2017, pp. 134–146. URL: https://progmp.net.

[F6] Denny Stohr, Alexander Frömmgen1, Amr Rizk, Michael Zink,
Ralf Steinmetz, and Wolfgang Effelsberg. “Where are the
Sweet Spots?: A Systematic Approach to Reproducible DASH
Player Comparisons”. In: Proceedings of the ACM Conference
on Multimedia (MM). 2017, pp. 1113–1121. URL: https://
maci-research.net/dash.

[F7] Alexander Frömmgen, Tobias Erbshäußer, Torsten Zimmer-
mann, Klaus Wehrle, and Alejandro Buchmann. “ReMP TCP:
Low Latency Multipath TCP”. In: Proceedings of the IEEE
International Conference on Communications (ICC). Idea pro-
posed in CoNEXT’15 Student Workshop. 2016.

1The two first authors contributed equally to this work.

https://maci-research.net
https://progmp.net
https://maci-research.net/dash
https://maci-research.net/dash

X

[F8] Michael Stein, Alexander Frömmgen, Roland Kluge, Frank
Löffler, Andy Schürr, Alejandro Buchmann, and Max
Mühlhäuser. “TARL: Modeling Topology Adaptations for Net-
working Applications”. In: Proceedings of the International
Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). ACM. 2016, pp. 57–63.

[F9] Denny Stohr, Alexander Frömmgen, Jan Fornoff, Michael
Zink, Alejandro Buchmann, and Wolfgang Effelsberg. “QoE
Analysis of DASH Cross-Layer Dependencies by Extensive
Network Emulation”. In: Proceedings of the SIGCOMM Work-
shop on QoE-based Analysis and Management of Data Com-
munication Networks (Internet-QoE). ACM, 2016, pp. 25–30.

[F10] Alexander Frömmgen, Jens Heuschkel, Patrick Jahnke,
Fabio Cuozzo, Immanuel Schweizer, Patrick Eugster, Max
Mühlhäuser, and Alejandro Buchmann. “Crowdsourcing Mea-
surements of Mobile Network Performance and Mobility Dur-
ing a Large Scale Event”. In: Proceedings of the Interna-
tional Conference on Passive and Active Network Measure-
ment (PAM). Springer International Publishing. 2016, pp. 70–
82.

[F11] Wasiur R. KhudaBukhsh, Amr Rizk, Alexander Frömmgen,
and Heinz Koeppl. “Optimizing Stochastic Scheduling in Fork-
Join Queuing Models: Bounds and Applications”. In: Proceed-
ings of the IEEE INFOCOM. 2017.

[F12] Alexander Frömmgen, Robert Rehner, Max Lehn, and Alejan-
dro Buchmann. “Fossa: Using Genetic Programming to Learn
ECA Rules for Adaptive Networking Applications”. In: Pro-
ceedings of the Local Computer Networks (LCN). IEEE. 2015,
pp. 197–200.

[F13] Alexander Frömmgen, Robert Rehner, Max Lehn, and Alejan-
dro Buchmann. “Fossa: Learning ECA Rules for Adaptive Dis-
tributed Systems”. In: Proceedings of the International Confer-
ence on Autonomic Computing (ICAC). IEEE. 2015, pp. 207–
210.

[F14] Alexander Frömmgen, Björn Richerzhagen, Julius Rückert,
David Hausheer, Ralf Steinmetz, and Alejandro Buchmann.
“Towards the Description and Execution of Transitions in
Networked Systems”. In: Proceedings of the IFIP Interna-
tional Conference on Autonomous Infrastructure, Management
and Security (AIMS). Springer International Publishing. 2015,
pp. 17–29.

XI

Additional Publications

[F15] Alexander Frömmgen and Boris Koldehofe. “Demo: Program-
ming Application-defined Multipath TCP Schedulers”. In: Pro-
ceedings of the ACM/IFIP/USENIX Middleware Conference:
Posters and Demos. ACM, 2017, pp. 13–14.

[F16] Alexander Frömmgen. Mininet/Netem Emulation Pitfalls: A
Multipath TCP Scheduling Experience. Tech. rep. 2017. URL:
https://progmp.net/MininetPitfalls.pdf.

[F17] Christian Krupitzer, Julian Otto, Fabian Roth, Alexander
Frömmgen, and Christian Becker. “Adding Self-improvement
to an Autonomic Traffic Management System”. In: Proceed-
ings of the International Conference on Autonomic Computing
(ICAC). IEEE. 2017.

[F18] Alexander Frömmgen, Stefan Haas, Martin Pfannemüller, and
Boris Koldehofe. “Switching ZooKeeper’s Consensus Protocol
at Runtime”. In: Proceedings of the International Conference
on Autonomic Computing (ICAC) Poster Track. 2017.

[F19] Alexander Frömmgen, Denny Stohr, Jan Fornoff, Wolfgang Ef-
felsberg, and Alejandro Buchmann. “Demo: Capture and Re-
play: Reproducible Network Experiments in Mininet”. In: Pro-
ceedings of the Conference of the Special Interest Group on
Data Communication (SIGCOMM). ACM. 2016, pp. 621–622.

[F20] Jens Heuschkel, Alexander Frömmgen, Jon Crowcroft, and
Max Mühlhäuser. “VirtualStack: Adaptive Multipath Support
through Protocol Stack Virtualization”. In: Proceedings of
the International Network Conference (INC). Lulu.com. 2016,
p. 73.

[F21] Alexander Frömmgen, Sreeram Sadasivam, Sabrina Müller,
Anja Klein, and Alejandro Buchmann. “Poster: Use Your
Senses: A Smooth Multipath TCP WiFi/Mobile Handover”. In:
Proceedings of the Annual International Conference on Mobile
Computing and Networking (MobiCom). ACM. 2015, pp. 248–
250.

[F22] Alexander Frömmgen, Patrick Wagner, and Alejandro Buch-
mann. “Simulation-based Retrieval of Adaptation Knowledge”.
In: Proceedings of the International Conference on emerging
Networking EXperiments and Technologies (CoNEXT) Student
Workshop. ACM. 2015.

[F23] Alexander Frömmgen, Stefan Haas, Michael Stein, Robert
Rehner, Max Mühlhäuser, and Alejandro Buchmann. “Always
the Best: Executing Transitions between Search Overlays”. In:
Proceedings of the European Conference on Software Architec-
ture Workshops. ACM. 2015, pp. 1–4.

https://progmp.net/MininetPitfalls.pdf

XII

[F24] Alexander Frömmgen, Max Lehn, and Alejandro Buchmann.
“A Property Description Framework for Composable Soft-
ware”. In: Proceedings of the European Conference on Soft-
ware Architecture (ECSA). Springer International Publishing.
2014, pp. 267–282.

AU T H O R ’ S PAT E N T S

[1] Alexander Frömmgen. Method and System for Data Compres-
sion. US Pub. No.: US 2012/0323876. 2011.

[2] Alexander Frömmgen. Method and System for Inverted Index-
ing of a Dataset. US Pub. No.: US 2012/0323927. 2011.

[3] Alexander Frömmgen, Sabrina Müller, Sreeram Sadasivam,
Anja Klein, Alejandro Buchmann, Max Lehn, and Robert
Rehner. Verfahren zur Aufrechterhaltung der Performance
einer Multipath-TCP-Verbindung. DE102015114164 A1 - Ap-
plication. 2015.

[4] Alin Jula, Jan Carstens, and Alexander Frömmgen. Memory-
Aware Scheduling for NUMA Architectures. US Pub. No.: US
2012/0174117. 2010.

C O N T E N T S

1 I N T RO D U C T I O N 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Approach and Contributions 4
1.4 Thesis Organization . 7

2 B AC K G RO U N D A N D R E L AT E D W O R K O N M P T C P 9
2.1 Multipath TCP . 9

2.1.1 Connection Establishment and Wire Protocol Format 10
2.1.2 Path Management 12
2.1.3 Implementations 13

2.2 Multipath Scheduling . 14
2.2.1 RFCs on MPTCP Scheduling 14
2.2.2 Deployable Multipath TCP Schedulers 15
2.2.3 Multipath TCP Schedulers in Simulators 17
2.2.4 Multipath TCP Related Schedulers 17
2.2.5 Multipathing for SCTP 20
2.2.6 Singlepath Scheduling 21
2.2.7 MPTCP Scheduling Dependencies 21
2.2.8 Discussion . 21

3 A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G 23
3.1 Requirement Derivation . 23
3.2 Programming Models in Communication Systems 26
3.3 Programming Model Design 28

3.3.1 Model of the Scheduling Environment 28
3.3.2 Language Design 29
3.3.3 Scheduler Triggering and Execution 32
3.3.4 API for Application-aware Scheduling 32
3.3.5 Programming Model Discussion and Future Work . . 33

3.4 Execution Environment Implementation 36
3.4.1 Scheduler Location and Calling Model 36
3.4.2 Runtime Environment 37
3.4.3 Runtime Optimizations and Compilation 40
3.4.4 API for Application-aware Scheduling 41
3.4.5 Testing and Evaluation 42
3.4.6 Receiver-Side Packet Handling 44
3.4.7 Implementation Discussion and Future Work 47

4 E N A B L I N G E X T E N S I V E N E T W O R K E X P E R I M E N T S 49
4.1 Motivation . 49
4.2 Observations and Requirement Analysis 50
4.3 Experiment-Driven Research Process 52

4.3.1 A Single Executable Experiment Instance 53
4.3.2 Structuring Experiments 54

XVI C O N T E N T S

4.3.3 Interactive Data Analysis for Extensive Experiments 54
4.4 Implementation . 55
4.5 Related Work . 59
4.6 MACI Experiences . 60
4.7 Discussion and Future Work 62

5 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S 63
5.1 Evaluation Setup and Scenarios 63
5.2 Revisiting Existing Schedulers 66

5.2.1 Preamble and Reinjection Queue Handling 66
5.2.2 (Default) Minimum RTT Scheduler 66
5.2.3 Round Robin Scheduler 68
5.2.4 Redundant Scheduler 69
5.2.5 Discussion . 70

5.3 Active Probing for Thin Streams 71
5.4 Exploring Redundancy . 77
5.5 Signaling to Boost Short Flows 83
5.6 Balancing Round-trip Times and Subflow Preferences 86
5.7 Balancing Throughput and Subflow Preference 89
5.8 One-way Delay-Aware Scheduling 93
5.9 Towards HTTP/2-aware Scheduling 98
5.10 Pitfalls in Emulation . 102

5.10.1 Using a Fresh Network 102
5.10.2 Impact of Netem on the Network Stack 103
5.10.3 Changing the Network at Runtime 105

5.11 MACI Perspective . 106
5.12 ProgMP Perspective . 108
5.13 Discussion and Future Work 110

6 A P RO G R A M M I N G M O D E L F O R A DA P TAT I O N D E C I S I O N S 111
6.1 Motivation and Approach 111
6.2 Background and Related Work 112
6.3 Specifying Adaptation Decisions with ECA Rules 114
6.4 Learning ECA Rules . 114

6.4.1 Exploration Strategy: Genetic Programming 116
6.4.2 Efficiency Improvements 117

6.5 Transition Description and Execution 118
6.6 Evaluation . 118
6.7 Discussion and Future Work 120

7 A P RO G R A M M I N G M O D E L F O R T O P O L O G Y A DA P TAT I O N S 123
7.1 Motivation and Approach 123
7.2 Topology Adaptation Rule Language TARL 124
7.3 Expressiveness Evaluation 125
7.4 Distributed Topology Pattern Matching 128

7.4.1 Exploring Distributed Topology Pattern Matching . . 128
7.4.2 MACI Perspective 130

7.5 Discussion and Future Work 131
8 E X T E N S I V E DA S H V I D E O P L AY E R C O M PA R I S O N 133

C O N T E N T S XVII

8.1 Motivation and Background 133
8.2 Experimental Design Approach 134
8.3 DASH Analysis Overview 134
8.4 MACI Perspective . 137
8.5 Discussion and Future Work 138

9 D I S C U S S I O N A N D F U T U R E W O R K 139
9.1 Programming Models for Communication Systems 140
9.2 Extensive Network Experiments 141
9.3 Future Work . 141

Bibliography 145
A A P P E N D I C E S 171

A.1 Illustrating MACI Visualizations 171
A.2 Additional ProgMP Experiences 173
A.3 Packetdrill Testscript for the ProgMP Implementation 175
A.4 Presented ProgMP Schedulers 177
A.5 ProgMP Language Syntax 187
A.6 MPTCP Scheduler Commits 192

B E R K L Ä RU N G L AU T § 9 D E R P RO M OT I O N S O R D N U N G 195
C W I S S E N S C H A F T L I C H E R W E R D E G A N G D E S V E R F A S S E R S 197

1
I N T RO D U C T I O N

1.1 M OT I VAT I O N

Communication systems have to operate in an increasing variety of network The wide range
of network
environments. . .

environments and conditions. Applications deployed on the Internet, e. g.,
have to operate in advanced cellular networks with high throughput and low
latency as well as established legacy networks with inferior characteristics.
Furthermore, networking applications have to cope with suddenly changing
network conditions, e. g., due to network congestion and overload during
large scale events [F10]1. At the same time, the variety of applications and . . . and application

requirements. . .their individual requirements increases. For example, interactive networking
applications expose fundamentally different requirements than on demand
video streaming or traditional web browsing on the underlying network. The
interaction of the various application requirements and today’s heterogeneous . . . increases

complexity.network environments increases the complexity of developing and improving
today’s communication protocols and systems.

To flexibly fulfill requirements of different applications for varying envi-
ronments, communication systems are usually composed of components that
implement specialized mechanisms and functionality (Figure 1.1). The de- Abstractions. . .

composition of the required functionality proved to be a powerful abstraction
for research and development of communication systems. Research and de-
velopment on these specialized mechanisms, however, remains challenging
in the face of complex dependencies between the involved components, the . . . and systematic

evaluations are
required to cope
with the complexity.

application requirements, and the exposed network conditions. Novel mech-
anisms and their configurations have to be carefully evaluated for all antici-
pated applications and network conditions.

Application Application

requirements

Communication System

Environment Environment

Component Component

 Utility

executed in

e.g., Mechanism A e.g., Mechanism B

Observable behavior
Given,

not directly
controlled

Figure 1.1: Illustration of the dependencies of today’s decoupled, specialized com-
munication system components to fulfill different requirements of vari-
ous applications in a wide range of different network environments.

1Publications of the author of this dissertation are marked with a leading F.

2 I N T RO D U C T I O N

To illustrate components and their dependencies in today’s communicationExample:
Multipath TCP systems, we refer to the example of Multipath TCP (MPTCP). Multipath TCP

is a recent TCP evolution that overcomes a fundamental limitation of TCP: In
general, a TCP connection is restricted to a single network interface per com-
munication partner and a single network path per connection.2 Today’s net-
works and networking devices, however, exhibit multiple network interfaces
and network paths. Multipath TCP goes beyond TCP and supports the usage
of multiple subflows and network paths to increase throughput, reliability,
and load balancing in data-centers [147, 148] and mobile scenarios [23, 166].
As Multipath TCP is a transport layer protocol, it is usually implemented in
the network stack of the operating system. Multipath TCP implementations
can be decomposed into specialized components, e. g., the scheduler maps
packets to subflows, whereas the path manager controls the subflow creation
(Figure 1.2). These specialized components are further configurable for dif-
ferent application requirements and network environments.

We note that there is not a single packet scheduler that is optimal for all ap-
plication scenarios. Instead, the optimal scheduling strategy depends on the
requirements of the application, as well as flow and network characteristics.
The development of novel, deployable schedulers, however, is hindered byMultipath TCP

scheduler research
and development

lacks abstractions. . .

the implementation complexity in the Linux kernel. As a consequence, recent
works that propose scheduling optimizations for multipath protocols leave an
evaluation within the Multipath TCP Linux kernel open [29, 51, 98, 206] or
avoid complex changes in the underlying scheduler [62]. Thus, we identify
the need for abstractions for the efficient design and implementation of Mul-
tipath TCP schedulers.

The scheduling strategy influences performance characteristics of upper
layer protocols and algorithms, such as the HTTP protocol and DASH adap-
tation algorithms, and has to consider the experienced network conditions.. . . and extensive

evaluation support
for scheduler

innovations.

Thus, novel schedulers require extensive evaluations of their impact on vari-
ous performance metrics depending on the application requirements and (traf-
fic) characteristics as well as the variety of network environments.

Application Application

requirements

Multipath TCP

Environment Environment

Scheduler Path Manager

 Utility

executed in

e.g., default, redundant,
round robin, …

e.g, full-mesh,
none, …

Observable behavior

Userland

Network

Congestion Control

e.g., cubic, lia ,
BBR, …

Kernel

Figure 1.2: Multipath TCP has to fulfil different requirements of various applications
in a wide range of different network environments.

2More precisely, a TCP connection is identified by and bound to the tuple of (source
IP, source port, destination IP, destination port). TCP does not provide an explicit notion of
multiple paths. Details are discussed in Chapter 2.

1.2 P RO B L E M S TAT E M E N T 3

1.2 P RO B L E M S TAT E M E N T

Based on the previous motivation, we identify that the analysis, implementa-
tion, and evaluation of communication systems is hindered by i) missing ab-
stractions and the resulting implementation complexity, and ii) the required
extensive evaluations for today’s large configuration spaces and heteroge-
neous network environments. The goal of this dissertation is to overcome
these obstacles and develop abstractions for communication system research
and development, i. e., abstractions for Multipath TCP scheduling and adapta-
tion decisions, and to enable the seamless execution and analysis of extensive
network experiments. This goal results in the following research questions, Research Questions

which are tackled in this dissertation:

RQ I How can we enable deployable Multipath TCP scheduling innovations?

We note that the MPTCP scheduler design and development lacks fun-
damental abstractions and requires detailed knowledge about the net-
work stack implementation. The first research question asks for a way
to enable MPTCP scheduling innovations and to develop novel gen-
eral purpose, application-, and preference-aware MPTCP schedulers.
The research question asks for a detailed requirement analysis, an ap-
propriate abstraction, and its design, implementation, and evaluation.
Our evaluation has to provide evidence that the proposed abstraction
enables scheduler innovations, e. g., by presenting and discussing dif-
ferent, novel schedulers.

RQ II How can we extensively evaluate and compare the various configura-
tions of communication systems and network protocols in heteroge-
neous network environments?

This research question emerges from the observation that communica-
tion system research i) requires systematic network experiment studies
with a large number of network experiments, but ii) today’s network
simulators and emulators lack support for an efficient management, ex-
ecution, and analysis of these extensive network experiments. The eval-
uation of our proposed solution has to provide evidence that our solu-
tion supports the extensive evaluation of a wide range of communica-
tion systems and network protocols, e. g., by presenting and discussing
various case studies.

RQ III What is the design space and what are the opportunities of i) gen-
eral purpose, ii) preference-aware, and iii) application-aware Multipath
TCP scheduling?

We note that the design space of Multipath TCP scheduling is widely
unexplored due to i) missing abstractions for the design and implemen-
tation of Multipath TCP schedulers and ii) missing support for system-
atic extensive network experiments. As we overcome these limitations
in the first and the second research question, the third research question
asks for the opportunities of i) general purpose, ii) preference-aware,

4 I N T RO D U C T I O N

and iii) application-aware MPTCP scheduling. The answer for this re-
search question has to provide a comprehensive set of novel schedulers
and their detailed evaluations.

RQ IV What are suitable abstractions for the specification of the adaptation
decision for adaptive communication systems?

We note that the specification and derivation of the adaptation deci-
sion, i. e., the decision when to switch to which mechanism, lacks fun-
damental abstractions. This research question asks for ways to specify
adaptation decisions with different abstraction levels. Our evaluation
has to provide evidence that our proposed abstractions are suitable for
the specification of the adaptation decision, e. g., by applying them on
different adaptive communication systems.

1.3 A P P RO AC H A N D C O N T R I B U T I O N S

We approach our four research questions with a combination of i) an in-
creased level of abstraction by means of bespoke programming models and
languages and ii) an evaluation methodology that fosters systematic exten-
sive experiments, as illustrated in Figure 1.3. We approach the first researchRQ I→

MPTCP scheduler
programming model

question with ProgMP, the first programming model and executable specifi-
cation language for Multipath TCP scheduling. We solve the second research
question with MACI, the first framework for the management, the scalableRQ II→

Extensive experiment
framework

execution, and the interactive analysis of a large number of experiments. We
solve the third research question and show the strength of our Multipath TCP

RQ III→
Various novel

MPTCP schedulers

scheduler programming model ProgMP and our evaluation framework MACI
by designing, implementing, and evaluating various novel general purpose,
preference-, and application-aware schedulers tackling diverse objectives. Fi-
nally, we provide programming models for the domain of adaptation deci-RQ IV→

Programming
models for the

adaptation decision

sions. Here, we propose to specify the adaptation decisions with event condi-
tion action (ECA) rules and present the Fossa framework to learn these rules
in extensive experiments. We further introduce the topology adaptation rule
language TARL to specify topology adaptations in communication systems.
In the following, we present a more detailed overview of our contributions.

RQ I: A Programming Model for Multipath TCP Scheduling

In this dissertation, we propose the first programming model as abstractionThe 1st executable
MPTCP scheduler

specification
language

for the design and the implementation of Multipath TCP schedulers to enable
a wide range of scheduler innovations [F5]. We present ProgMP, the first
Multipath TCP scheduler specification language, which enables application
developers and researchers to specify Multipath TCP schedulers with a high
level of abstraction. We introduce a simple yet powerful scheduling API that
enables general purpose, application-, and preference-aware Multipath TCP
scheduling. We further provide an efficient runtime environment in the Mul-
tipath TCP Linux kernel, closing the gap between the scheduler specification
and its execution.

1.3 A P P RO AC H A N D C O N T R I B U T I O N S 5

Programming
Models

Extensive
Evaluation

Programming Models for the Adaptation Decision

Learn Adaptation Decisions as ECA Rules in Extensive Experiments (Fossa)

Topology Adaptation Rule Language (TARL)

Extensive DASH Player Comparison

3

6

4

5 Design and Analysis of Novel Multipath TCP Schedulers

7

8

Programming Model for Multipath TCP Scheduling (ProgMP)

RQ 1: How to enable MPTCP scheduler innovations?

RQ 2: How to enable extensive communication system evaluations?

RQ 3: What is the design space of MPTCP scheduling?

Chapter

Seamless Execution and Analysis of
Extensive Network Experiments (MACI)

RQ 4: How to specify adaptation decisions?

Application and evaluation of contribution

Provide abstractions and extensive evaluation support
for communication systems research and development.

Contribution to tackle research question

Figure 1.3: Overview and classification of the contributions with regard to the ap-
plied concepts of programming models and the extensive evaluations.

RQ II: Seamless Execution and Analysis of Extensive Network Experiments

We present MACI, the first framework for the seamless management, scal- The 1st extensive
evaluation
framework

able execution, and interactive analysis of network experiments [F2]. MACI
emerged from our requirements and experiences with a number of experi-
ment driven research efforts, including DASH video streaming configuration
studies [F9], the retrieval of ECA rules for adaptive systems [F12], and web
performance forecasts for HTTP [F22].

We discuss the advantages of MACI and show its significance for research
in various communication system domains, such as i) the development and
evaluation of our proposed novel ProgMP schedulers [F1, F5, F15], ii) the Extensive distributed

TARL analysisanalysis of a distributed topology graph pattern matching protocol for our
topology pattern-based rule language TARL, and iii) a systematic comparison Extensive DASH

player comparisonof DASH video streaming implementations, which goes beyond an evaluation
of MACI and significantly contributes to the understanding of today’s DASH
implementations [F6].

RQ III: Design and Analysis of Novel Multipath TCP Schedulers

We use ProgMP and MACI to derive, specify, and evaluate more than eight Novel schedulers. . .

novel, deployable Multipath TCP schedulers [F1, F5, F15]. This includes im- . . . with active
probing.provements of established schedulers, e. g., by recurrent active probing of un-

used subflows to obtain fresh round-trip time estimates and by the incorpora- . . . with one-way
delay-awareness.tion of one-way delay estimates. We propose schedulers to balance round-trip

times, throughput, and subflow preferences. We propose the first redundant . . . to achieve
performance targets.MPTCP scheduler [F7] and discuss design decisions for redundant transmis-

6 I N T RO D U C T I O N

sion, including the choice of new and old packets, the number of duplicates,. . . to balance
latency and
throughput.

and the incorporation of backup subflows, to trade throughput for reduced la-
tency. We use application information to improve the flow completion time in
heterogeneous environments. Finally, we show the benefits of adaptive, differ-. . . with application-

awareness. entiated scheduling during a single connection. Here, we present an HTTP/2-
aware scheduler that demonstrates how all building blocks of ProgMP inter-. . . with

HTTP/2-awareness. act to improve page load times and reduce the usage of costly subflows. We
present the design as well as detailed experiments for all these schedulers.

As part of our extensive ProgMP experiments, we additionally contributeAdvance experiment
reproducibility support for changing network conditions in the widely used network emulator

Mininet [F19] and identify emulation pitfalls [F16].

RQ IV: Programming Models for the Adaptation Decision

We further contribute abstractions for the adaptation decisions of adaptive net-
working applications. We apply the concept of event condition action (ECA)
rules on the specification of the adaptation decision [F13] and propose toLearn adaptation

decisions with
extensive

experiments

learn ECA rules for a user-defined utility function based on extensive ex-
periments [F12]. We further introduce the topology adaptation rule language

ECA and TARL rules
as adaptation trigger

TARL to specify and execute topology adaptations in communication systems
based on topology graph patterns.

Overview of the Author’s Publications

Table 1.1 provides a mapping of the contributions of this dissertation to the
relevant previous publications of the author of this dissertation.

Table 1.1: Overview of the contributions.

§3 Programming model for Multipath TCP scheduling

→ [F5]

§4 Seamless execution and analysis of extensive network experiments

→ [F2, F6, F9]

§5 Design and evaluation of novel MPTCP schedulers

→ [F1, F5, F7, F15, F16, F19]

Programming models for the adaptation decision

§6 Learn adaptation decisions as ECA rules in extensive experiments

→ [F12, F13, F14]

§7 Topology adaptation rule language (TARL)

→ [F3, F8]

§8 Extensive DASH player comparison

→ [F6, F9]

Related publications that are not directly reflected in this dissertation are
a property description framework for composable software [F24], a concept
for a smooth Multipath TCP WiFi to cellular handover [F21], crowdsourc-

1.4 T H E S I S O R G A N I Z AT I O N 7

ing measurements of mobile network performance and mobility during a
large scale event [F10], an experimental evaluation of bounds for stochas-
tic scheduling in fork-join queuing models [F11], and parts of the design of a
multipath extension for the QUIC transport protocol [F4].

1.4 T H E S I S O R G A N I Z AT I O N

Based on the overview of Figure 1.3, this dissertation is structured as follows.
In Chapter 2, we present background and related work on Multipath TCP
and Multipath TCP schedulers. Note that we present further background and
related work on additional, relevant domains throughout this dissertation in
favor of a continuous reading flow. In Chapter 3, we derive the requirements
for a Multipath TCP programming model and present our corresponding pro-
gramming model ProgMP and its runtime environment. In Chapter 4, we dis-
cuss the recurring requirements and background for extensive network exper-
iments and present our corresponding MACI framework. In Chapter 5, we
design and evaluate improved general purpose, application-, and preference-
aware MPTCP schedulers with ProgMP and MACI. In Chapter 6, we present
background on adaptive systems and learning and search-based software en-
gineering and introduce our event condition action rule-based programming
model for the adaptation decision. In Chapter 7, we present the topology adap-
tation rule language TARL. In Chapter 8, we apply MACI and the concept of
extensive network experiments on the application domain of DASH video
streaming. Finally, we provide a discussion of our overall contributions and
identify future work in Chapter 9.

2
BAC K G RO U N D A N D R E L AT E D W O R K O N M P T C P

In this chapter, we provide background on Multipath TCP and present notable
related work on Multipath TCP scheduling.1 This background and related
work is essential for the presentation and discussion of the first Multipath
TCP scheduler programming model (RQ I, Chapter 3) and the design of novel
Multipath TCP schedulers (RQ III, Chapter 5).

2.1 M U LT I PAT H T C P

Multipath TCP, as specified in [RFC 6824], is a recent TCP evolution, which Multiple subflows
for multiple pathsallows splitting the byte stream of a single transport layer connection over

multiple TCP subflows and network paths (Figure 2.1). Spreading a single
connection on multiple network paths increases throughput, reliability, and
load balancing in data-centers [147, 148] and mobile scenarios [F7, 23, 166].

Server

Subflow 2 (e.g., LTE)

Subflow 1 (e.g., WiFi)

Internet

Application

Client

Application

MPTCP MPTCP

Byte Stream Byte Stream

Figure 2.1: Multipath TCP uses multiple subflows and network paths for a single
transport layer connection.

Multipath TCP is designed to run in all TCP environments. Therefore, it A TCP evolution

provides the standard TCP byte stream socket interface dispensing with the
need for application modifications. A Multipath TCP connection splits traffic
on subflows, where each subflow behaves like a traditional TCP connection
to be deployable on the Internet [188]. Multipath TCP overcomes limitations
of TCP, e. g., it provides multihoming to enable a mobile handover without
additional network support, such as mobile IP [RFC 5944].

Conceptually, Multipath TCP adds three fundamental aspects to traditional
TCP. First, there is a multitude of congestion controls optimized for Multi-
path TCP to ensure that multiple subflows behave TCP friendly on joint bot-
tlenecks [RFC 6356, 85, 204, 207].2 Second, MPTCP requires a path man-
agement instance to trigger subflow establishments and destructions (see Sec-
tion 2.1.2). Finally, MPTCP introduces a scheduling decision, i. e., the map-

1While scheduling is at the same level as path management and congestion control, we
present scheduling in more detail as it is essential for the research questions of this dissertation.

2Remarkably, there is a large effort to ensure fairness in mostly disjoint mobile environ-
ments with WiFi and cellular networks, whereas browsers typically use multiple TCP connec-
tions for web traffic [RFC 2616, 121] and Google uses two concurrent cubic connections for
video streaming [100].

10 B AC K G RO U N D A N D R E L AT E D W O R K O N M P T C P

ping of packets on subflows (see Section 2.2). The wire protocol format of
Multipath TCP includes all primitives to control the multipathing communi-
cation and link multiple subflows. While the wire format and various MPTCP
enabled congestion controls are specified in RFCs, packet scheduling and
path management are not standardized. Many MPTCP implementations, such
as today’s implementation in the Linux kernel [131], additionally introduce
meta sockets as central abstraction for each connection.

In the following, we sketch the fundamentals of Multipath TCP that are re-
quired for this dissertation before discussing related work on Multipath TCP
scheduling in Section 2.2. For a comprehensive presentation of Multipath
TCP we refer to the corresponding RFCs. For a survey on general network-
layer multipathing we refer to Qadir et al. [146].

2.1.1 Connection Establishment and Wire Protocol Format

Figure 2.2 illustrates a Multipath TCP connection establishment as specifiedEstablish MPTCP
connections in [RFC 6824]. Therefore, the initiator (A) and the connection partner (B) in-

clude the MP_CAPABLE option accompanied by additional keys in a traditional
TCP three-way handshake.

Connection
Initiator (A)

Connection
Partner (B)

Connection
Partner (B) Path 1 Path 2

TCP Option

TCP Packet
SYN

MP_CAPABLE
KEYA

TCP Option

TCP Packet
SYN, ACK

MP_CAPABLE
KEYB

TCP Option

TCP Packet
ACK

MP_CAPABLE
KEYA, KEYB C

o
n

n
e

ct
io

n
 E

st
ab

lis
h

m
en

t
(T

h
re

e
-W

ay
 H

an
d

sh
ak

e)

Figure 2.2: Illustration of the Multipath TCP connection establishment with the
MP_CAPABLE and KEY options.

After the connection is established, both communication partners can trig-
ger the establishment of additional subflows using the MP_JOIN option and aJoin subflows

token identifier in a new TCP three-way handshake (Figure 2.3). Multipath
TCP additionally provides options to tear down subflows and advertise ad-
dresses to cope with middleboxes such as NATs [RFC 6824, 148].

The previous presentation shows that Multipath TCP requires several round-Scheduling
dependencies trip times to establish a connection and add additional subflows. This is an

important limitation for short flows that only require a few round-trip times.

2.1 M U LT I PAT H T C P 11

C
o

n
n

e
ct

io
n

 E
st

ab
lis

h
 …

 W
ay

 H
an

d
sh

ak
e)

Connection
Initiator (A)

Connection
Partner (B)

Connection
Partner (B) Path 1 Path 2

TCP Option

TCP Packet
SYN

MP_JOIN,
TOKEN(KEYA)

NONCEB

ADDRESS_IDB

TCP Option

TCP Packet
ACK

MP_CAPABLE
KEYA, KEYB

C
o

n
n

ec
ti

o
n

 E
st

ab
lis

h
m

en
t

(T
h

re
e

-W
ay

 H
an

d
sh

ak
e)

TCP Option

TCP Packet
SYN, ACK

MP_JOIN,
HMAC(KEYA, NA)

NONCEA

ADDRESS_IDA

TCP Option

TCP Packet
ACK

MP_JOIN,
HMAC(KEYB, NB)

Figure 2.3: Illustration of the MPTCP subflow addition with the MP_JOIN for a pre-
viously established MPTCP connection.

Furthermore, the packet scheduler has to consider that only established sub-
flows can transmit packets.

Multipath TCP relies on TCP options to transfer these control messages. To TCP options

ensure reliable in-order data delivery across subflows, MPTCP relies on a data
sequence number mapping to the subflows sequence number offset and an
optional checksum (Figure 2.4). The data sequence number mapping consists
of the Data Sequence Number, the Subflow Sequence Number, and the
Data Level Length. The complexity of the transferred control information
is required to ensure deployability in networks with middleboxes [RFC 6824,
148] and ensure security properties [RFC 6824, RFC 7430].

Kind

TC
P

 O
p

ti
o

n
s

TC
P

H

ea
d

er

Length Subtype Reserved and Flags
Data ACK (4 or 8 octets, depending on flags)

Data sequence number (4 or 8 octets, depending on flags)
Subflow Sequence Number (4 octets)

Data-Level Length (2 octets) Checksum (2 octets)

M
P

TC
P

O

p
ti

o
n

TC
P

Pa

yl
o

ad

E.g., Timestamp Option

Figure 2.4: Illustration of the MPTCP wire format.

12 B AC K G RO U N D A N D R E L AT E D W O R K O N M P T C P

2.1.2 Path Management

The path management controls the establishment and teardown of subflowsTrigger subflow
establishment using the previously presented MPTCP options and handshakes. A simple

yet powerful strategy is to establish a full mesh of subflows between all in-Full mesh

terfaces. With regard to mobile devices, a full mesh might be undesirable as
cellular interfaces require energy and are often metered. Paasch et al. [132]
propose two alternatives to the full mesh path management for mobile de-
vices, namely the backup mode, which establishes all subflows, but relies onBackup mode

WiFi as long as possible, and the single path mode, which establishes cel-Single path mode

lular subflows after the WiFi connection failed. We have further proposes a
proactive handover [F21], which triggers the establishment of the cellularProactive handover

subflow before the WiFi connection fails to enable a smooth handover while
avoiding unnecessary cellular subflows (Figure 2.5). Similar concepts were
later proposed by [172]. Alternative path management strategies include i)
the establishment of subflows if required to sustain throughput goals of the
application [F20] and the control of subflow creation and teardown based on
path characteristics experienced, e. g., to favor disjoint paths [68].

Figure 2.5: Real world measurement of an MPTCP handover using a WiFi connec-
tion loss forecast based on the link quality to establish the LTE subflow
before the WiFi connection is lost [F21].

From an implementation perspective, recent papers extended the socketExtended path
management API API to enable path management for the Linux kernel MPTCP implementa-

tion in the userspace [67, 68]. As path management decisions usually hap-
pen at a granularity of milliseconds, the introduced overhead for userspace
communication is negligible. We note that even though describing path man-Non-trivial details

agement strategies seams straightforward, the details for deployable, stable
implementations are important and non-trivial. What should happen if an in-

2.1 M U LT I PAT H T C P 13

terface fails for a short time period? When should the subflow be recreated?3

In Section 2.2, we show that MPTCP scheduling strategies exhibit the same
mismatch between their description and deployable, stable implementations.

While the separation of path management and packet scheduling reduces Scheduling
dependenciesthe overall complexity, we note that both interact with each other in various

ways. The scheduler, for example, is limited to the available subflows (con-
trolled by the path management), but can ignore established subflows unilat-
erally. De Conick et al. [33] showed that an integrated path management and
scheduling approach improves mobile handover. Finally, Apple’s MPTCP im-
plementation for iOS uses the BACKUP_FLAG to control packet scheduling at
the communication partners’ side for the Interactive mode.4

2.1.3 Implementations

As of today, the implementation in the Linux kernel [131] is the publicly avail- Linux kernel

able de facto standard Multipath TCP implementation. Apple is known to rely
on MPTCP for their voice-based cloud assistant service Siri. During the work
on this dissertation, Apple started to support MPTCP for a broader range of Apple iOS

applications on mobile devices with the advent of iOS11.5 Even though their
implementation is publicly available6, public research on MPTCP is mainly
restricted to the Linux kernel implementation as of today.

Coudron et al. [30] provide a Multipath TCP implementation for the dis- Implementations
for simulatorscrete event simulator ns-3. While this implementation enables systematic,

controlled Multipath TCP experiments, the findings have to be analyzed care-
fully for real world applicability.

Tazaki et al. [186, 187] present a direct code execution (DCE) approach
to run nearly unmodified applications and Linux kernel network stacks in the
discrete event simulator ns-3. The authors show that their approach enables
ns-3 experiments with the Linux kernel MPTCP implementation. With regard
to research on Multipath TCP, all these approaches provide different benefits
and drawbacks.

3A discussion on the MPTCP developer mailing list is available at https://listes-2.
sipr.ucl.ac.be/sympa/arc/mptcp-dev/2017-02/msg00006.html.

4An overview of the NSURLSessionMultipathServiceType for iOS application de-
velopers is available at https://developer.apple.com/documentation/foundation/

nsurlsessionmultipathservicetype.
5See https://support.apple.com/en-ca/HT201373.
6The iOS source is available at https://github.com/apple/darwin-xnu/tree/

xnu-4570.1.46/bsd/netinet.

https://listes-2.sipr.ucl.ac.be/sympa/arc/mptcp-dev/2017-02/msg00006.html
https://listes-2.sipr.ucl.ac.be/sympa/arc/mptcp-dev/2017-02/msg00006.html
https://developer.apple.com/documentation/foundation/nsurlsessionmultipathservicetype
https://developer.apple.com/documentation/foundation/nsurlsessionmultipathservicetype
https://support.apple.com/en-ca/HT201373
https://github.com/apple/darwin-xnu/tree/xnu-4570.1.46/bsd/netinet
https://github.com/apple/darwin-xnu/tree/xnu-4570.1.46/bsd/netinet

14 B AC K G RO U N D A N D R E L AT E D W O R K O N M P T C P

2.2 M U LT I PAT H S C H E D U L I N G

In comparison with traditional TCP, Multipath TCP introduces a fundamen-
tally new complexity, as packets of one stream need to be scheduled on mul-
tiple subflows. Each side of a Multipath TCP connection runs its own sched-
uler7 for outgoing packets. In general, the previously explained data sequence
number mapping enables the receiver side to order packets from multiple sub-
flows regardless of the used scheduling.8 The scheduling decision has a sub-
stantial impact on the protocol performance [6]. Bad scheduling decisions
may render the advantage of additional paths useless or even reduce the over-
all performance, e. g., by introducing head-of-line blocking [162].

In this section, we present background and related work on Multipath TCP
scheduling and general multipath scheduling. This overview results in the
classification of Table 2.1 and an overall discussion.

2.2.1 RFCs on MPTCP Scheduling

[RFC 6824] envisions multiple approaches for scheduling that go beyond
throughput optimization in paragraph 3.3.8. Subflow Policy:

“Within a local MPTCP implementation, a host may use any lo-
cal policy it wishes to decide how to share the traffic to be sent
over the available paths.

In the typical use case, where the goal is to maximize through-
put, all available paths will be used simultaneously for data trans-
fer, using coupled congestion control as described in [5] ([RFC
6356] - editor’s note). It is expected, however, that other use
cases will appear.

For instance, a possibility is an ’all-or-nothing’ approach, i. e.,
have a second path ready for use in the event of failure of the
first path, but alternatives could include entirely saturating one
path before using an additional path (the ’overflow’ case). Such
choices would be most likely based on the monetary cost of links,
but may also be based on properties such as the delay or jitter of
links, where stability (of delay or bandwidth) is more important
than throughput. Application requirements such as these are dis-
cussed in detail in [6] ([RFC 6897] - editor’s note).”

The RFC further specifies backup subflows as follows:Backup subflow
semantics

“Therefore, the MP_JOIN option (see Section 3.2) contains the ’B’
bit, which allows a host to indicate to its peer that this path should
be treated as a backup path to use only in the event of failure of

7In this dissertation, we use the term scheduler to refer to the Multipath TCP scheduler.
Schedulers are known in many other disciplines, such as process scheduling.

8Middleboxes might obstruct this by interfering with the sequence number mapping.

2.2 M U LT I PAT H S C H E D U L I N G 15

other working subflows (i. e., a subflow where the receiver has
indicated B=1 SHOULD NOT be used to send data unless there
are no usable subflows where B=0).”

In summary, the RFC is vague with regard to the concrete scheduling, but
provides a strict notion of the backup subflow semantics.

2.2.2 Deployable Multipath TCP Schedulers

In this section, we present an overview of deployable Multipath TCP sched-
ulers. Here, we define deployable as implemented in a usable execution envi-
ronment (typically, the Linux kernel) based on the MPTCP wire protocol.

AVA I L A B L E I N T H E L I N U X K E R N E L The current Linux kernel imple- The three schedulers
in the Linux kernelmentation is based on a pluggable scheduler [133] and comprises the round

robin, the default, and the redundant scheduler. The round robin scheduler
is known to perform poorly for heterogeneous paths, as slow subflows con-
strain the overall performance [133], but enables useful test setups. The de-
fault scheduler considers for each subflow the round-trip time (RTT) and the
congestion window. The scheduler assigns packets to the subflow with the
lowest RTT that has not exhausted its congestion window yet [148]. Remark-
ably, related work rarely mentions that the default scheduler only considers
subflows that fulfill the TCP short queue condition (i. e., are not throttled by
TSQ) and are not in a loss state.9 The redundant scheduler in the Linux ker-
nel is a combination of the works in [F7, 113] and aims to reduce latency for
applications with moderate bandwidth requirements.10

Although assessing code complexity is difficult, we note that the naive
round robin scheduler already requires 302 lines of code (LOC). Further com-
mits (two critical and six minor fixes) highlight the error susceptibility of
today’s development methodology (Appendix A.6). We revisit these sched-
ulers in Section 5.2 to discuss semantic details and illustrate the strength of
specifying schedulers using our programming model.

Inspired by TCPs pluggable Linux congestion control, Paasch et al. [133] Flexible MPTCP
Schedulersintroduce a pluggable scheduler for the Linux kernel. While this approach

increases flexibility with respect to the scheduler selection, it does not con-
tribute abstractions for the design and implementation of novel schedulers.

C O M P E N S AT E L O S S I N S H O RT DATA - C E N T E R F L O W S The works
in [22, 75] propose Multipath TCP scheduling optimizations for packet loss
compensation in data-center environments to improve the tail flow comple-
tion time. Hwang et al. [75] propose a Fast Coupled Retransmission for unac-
knowledged packets on non-congested paths when a duplicate acknowledge-

9In Section 5.10.2, we discuss this observation in more detail.
10While the redundant scheduler is contributed by the author of this dissertation, we present

it as background on Multipath TCP scheduling as it is part of today’s open source MPTCP
Linux kernel implementation. We present a detailed motivation, analysis, and evaluation of
the redundant scheduler in Section 5.4.

16 B AC K G RO U N D A N D R E L AT E D W O R K O N M P T C P

ment is received. Chen et al. [22] recover packets on alternative subflows
by retransmitting the oldest, unacknowledged packet of the subflow with the
highest loss rate when loss is suspected. Both independent works use slightRetransmit when

loss is suspected variations of the same idea. Following their pseudo code, both works implic-
itly detect the end of flow by checking if the sending queue is empty. An
analysis and evaluation of design decisions, such as the choice of the retrans-
mitted packet, is not provided.

V I D E O S T R E A M I N G Recent work in [62] presents a preference-aware
Dynamic Adaptive Streaming over HTTP (DASH) framework, denoted as MP-Preference-aware

video streaming DASH, and shows the potential of differentiating between MPTCP paths for
DASH. The authors introduce an additional control loop on top of the sched-
uler, which controls the visibility of subflows for the default scheduler. While
this concept appears comparable to the established backup subflow seman-
tics, the authors do not discuss or justify their design decision to introduce
an additional control loop. MP-DASH provides an important step towards
preference-aware scheduling, but remains confined to the chunk-based DASH
video streaming application.

Lim et al. [109, 110] propose an earliest completion first (ECF) sched-Earliest
completion first uler. This scheduler considers the amount of data that is queued in the send

buffer with the goal of minimizing completion time. While this scheduler is
designed as general purpose scheduler, the authors show that it is particularly
efficient for video streaming over heterogeneous paths.

PAC K E T O R D E R A N D R E C E I V E W I N D O W C O N S I D E R AT I O N S Re-
ceive buffer blocking and out of order received packets attracted much atten-
tion such as in [41, 130, 160, 208] due to their performance impact. Concern-
ing out-of-order-received packets, Yang et al. [208] show the potential of out-
of-order transmission to achieve in-order arrival. The authors implementedOut-of-order

transmission the proposed scheduler in the Linux kernel and evaluated the performance
with large file transfers in a network with seldom buffering. Ferlin et al. [41]
propose a BLocking ESTimation scheduler (BLEST) to reduce head-of-lineBlocking Estimation

scheduler blocking due to receive buffer restrictions in heterogeneous environments by
estimating the blocking time. The authors further reimplement DAPS [98]
and the out-of-order transmission scheduler [208] for a detailed comparison
in the Linux kernel. Ou et al. [130] build on these works and propose an
MPTCP out-of-order transmission enabled joint congestion and scheduling
control. Oh et al. [127] use a constraint-based approach to enable a receiver
buffer and network delay based scheduling. Jin et al. [77] focus on throughput
and predict the future throughput of paths to avoid under-performing paths.
Kim et al. [87] sketch the idea of a scheduler that focuses on flow completion
time based on the remaining untransmitted packets.

2.2 M U LT I PAT H S C H E D U L I N G 17

2.2.3 Multipath TCP Schedulers in Simulators

Additional scheduler optimizations where proposed and evaluated based on
simulator experiments. Kuhn et al. [98] introduce an analytical model to
reduce the receiver buffer blocking time for MPTCP and CMT-SCTP with
delay-aware packet scheduling (DAPS) and provide an evaluation in the net- Delay-aware packet

schedulingwork simulator ns-2. The DAPS scheduler assumes that there is a large differ-
ence in delays between the different paths and it assumes that the congestion
windows are stable. The evaluation in ns-2 compares the performance with a
rather naive blind round robin scheduling.

Shreedhar et al. [171] propose a QueueAware scheduler and use the MPTCP
implementation for the discrete event simulator ns-3 of Coudron et al. [30] to
compare the performance with the ns-3 pendant of the default scheduler.

Wu et al. [205] provide a sophisticated analytical model for video stream-
ing with forward error correction over heterogeneous wireless networks. The
authors implemented their approach together with an own Multipath TCP im-
plementation for the Exata11 network emulator.

2.2.4 Multipath TCP Related Schedulers

In this section, we provide an overview of Multipath TCP related schedulers,
i. e., schedulers for multipath protocols or with Multipath TCP in mind, but
without a Multipath TCP integration and evaluation.

Nikravesh et al. [125] conduct a large Multipath TCP user study and iden-
tify the scheduling algorithm as source of suboptimal performance. Based on
their findings, they present a sophisticated MPFlex proxy architecture as re- MPFlex

placement for Multipath TCP. MPFlex uses a single connection to multiplex
all traffic and runs the scheduling decision and a scheduling policy match-
ing for different applications in the userspace. The MPFlex scheduler calling
model, the induced overhead at the sending server, and the impact on the
scheduling timeliness are not discussed. Nikravesh et al. [125] propose two
scheduler tunings for the default scheduler: i) a smarter consideration of the
sending buffer, as Kim et al. [88] also noticed that small buffers on lowest
RTT might lead to problems, and ii) the packet reinjection based on timeouts
and receive window sizes.

Guo et al. [56, 57] build on the work of Nikravesh et al. [125] and pro-
pose to accelerate multipath transport through balanced subflow completion. Balanced subflow

completionEssentially, the authors use out-of-order transmission on top of the MPFlex
architecture to improve HTTP-based web traffic.12

R E D U N DA N C Y Liu et al. [111] and Xu et al. [206] propose redundant
transmission on multiple paths for mice flows to reduce flow completion time
in data-centers. Both works provide evaluations based on own multipath im-
plementations on top of TCP.

11See http://www.scalable-networks.com/exata.
12This work was developed independently and concurrently to our publication [F5].

http://www.scalable-networks.com/exata

18
B

A
C

K
G

R
O

U
N

D
A

N
D

R
E

L
A

T
E

D
W

O
R

K
O

N
M

P
T

C
P

In Linux Kernel

Signaled Appl. Info.

Preferences

Reference

Publication Date

Pseudo Code Lines

Part of the open source MPTCP Linux kernel implementation

Default, non-exhausted subflow with lowest RTT first Yes No Binary [148] 2012 -

Bufferbloat mitigation [133] 2014 -

Opportunistic retransmissions [133] 2014 -

Round robin, mainly for testing purposes Yes No Binary [133] 2014 -

Redundant transmission for latency sensitive flows Yes No Binary [F7, 113] 2016 -

Evaluated in the MPTCP Linux kernel implementation

Packet loss in data-centers

Retransmit at the flow end in case of duplicate Acks Yes, N/A Implicit No [75] 2016 18

Retransmit when loss suspected Yes Implicit No [22] 2016 8

Preference-aware DASH video streaming Yes, N/A No Yes [62] 2016 -

Earliest completion first based on subflow buffers Yes, N/A No No [109, 110] 2017 20

BLEST receive window blocking estimation Yes13 No No [41] 2016 -

Out-of-order packet transmission for in-order arrival Yes13, N/A No No [208] 2014 20

2.2
M

U
L

T
IP

A
T

H
S

C
H

E
D

U
L

IN
G

19

Evaluated in MPTCP Simulators

DAPS, generate delay-aware packet schedule ns-213 No No [98] 2014 18

Queue-aware analytical optimization ns-3, N/A No No [171] 2017 -

Video streaming FEC in wireless Exata Yes No [205] 2015 -

Multipath TCP Related

MPFlex architecture Novel protocol to replace MPTCP Over TCP/UDP Policies per App. Yes [125] 2016 -

Buffer-aware scheduling, Smart reinjection [125] 2016 -

Balanced subflow completion for HTTP MPFlex Yes - [56, 57] 2017 23

Redundant in data-centers

RepFlow for mice flows Over TCP No - [206] 2014 -

RepNet for mice flows Over TCP No - [111] 2018 -

Energy optimized video streaming

Optimization problem Over TCP Video meta data Yes [51] 2015 -

Integer Linear Program - Video meta data - [29] 2016 -

Table 2.1: Overview of related work on Multipath TCP scheduling and Multipath TCP related scheduling. A binary preference only relies on backup subflows if all
other subflows fail. - symbolises that the publication does not state this information.

20 B AC K G RO U N D A N D R E L AT E D W O R K O N M P T C P

V I D E O S T R E A M I N G Corbillon et al. [29] propose the concept of cross-
layer schedulers to leverage information from the application and the trans-
port layer. The authors model the video transmission over multiple paths as
Integer Linear Program and use multipath traces to evaluate their implemen-
tation as an application layer scheduler on top of Multipath TCP.

Go et al. [51] propose an energy-efficient adaptive HTTP-based video stream-
ing over heterogeneous wireless networks. The authors aim to benefit from
Multipath TCP, yet they use traditional TCP for their evaluation.

A D D I T I O N A L S C H E D U L E R S A S O P T I M I Z AT I O N P RO B L E M Rueck-
elt [154] introduces an additional multipath transport protocol and models
the scheduling decision as optimization problem. Similarly, Khuda Bukhsh
et al. [F11, 86] provide additional optimization problems and solutions of
optimal packet distribution on multiple paths.

2.2.5 Multipathing for SCTP

In this section, we provide an overview of the Stream Control Transmission
Protocol (SCTP), which is a notable example of a multipath enabled transport
protocol. SCTP is a reliable transport protocol on top of a connectionless
packet network such as IP [RFC 4960]. SCTP is motivated by the limitations
of TCP. Even though it provides multihoming, the original proposals assume
data transfer only on the primary path, as specified in [RFC 4960]:

“By default, an endpoint SHOULD always transmit to the pri-
mary path, unless the SCTP user explicitly specifies the destina-
tion transport address (and possibly source transport address) to
use.”

Retransmitted data might use alternative addresses (and therefore paths),
as specified in [RFC 5944]:

“In its current form, SCTP does not do load sharing, that is, multi-
homing is used for redundancy purposes only. A single address is
chosen as the "primary" address and is used as the destination for
all DATA chunks for normal transmission. Retransmitted DATA
chunks use the alternate address(es) to improve the probability of
reaching the remote endpoint, while continued failure to send to
the primary address ultimately results in the decision to transmit
all DATA chunks to the alternate until heartbeats can reestablish
the reachability of the primary.”

Iyengar et al. [76] propose a Concurrent Multipath Transfer (CMT) exten-Concurrent
Multipath Transfer

for SCTP
sion for SCTP, which utilises multiple paths simultaneously. Based on this
work, Sarwar et al. [160] propose to delay packets to favor in order delivery

13Ferlin et al. [41] (re-) implemented BLEST [41], DAPS [98], and the out-of-order trans-
mission [208] for the Linux kernel and made it publicly available at https://bitbucket.
org/blest_mptcp/mptcp-paper-ifip2016.

https://bitbucket.org/blest_mptcp/mptcp-paper-ifip2016
https://bitbucket.org/blest_mptcp/mptcp-paper-ifip2016

2.2 M U LT I PAT H S C H E D U L I N G 21

for SCTP which is transferred to MPTCP with their DAPS scheduler [98].
With regard to multipath APIs, Dreibholz et al. [37] propose an extended
sender queue information socket API for SCTP.

2.2.6 Singlepath Scheduling

Packet scheduling is a basic operation in communication networks. Network
switches, for example, schedule packets of multiple flows to egress-ports in
the network. TCP implementations on the end-host exhibit scheduling, e. g.,
i) the well-known Nagle algorithm (specified in [RFC 896, RFC 1122]) re- Nagle, . . .

duces packet header overhead by delaying packet transmission, ii) TCP keep
alive messages are scheduled based on idle times, and iii) different types of keep alive, . . .

packet retransmissions, such as traditional retransmission timeouts as well as
fast and early retransmits [43, 149] are scheduled for loss recovery. Besides and fast retransmit

are packet
scheduling strategies

these widely deployed TCP scheduling optimizations, recent proposals such
as Halfback [108] retransmit unacknowledged packets in a reverse order.

From a Multipath TCP scheduling perspective, the dependencies between
singlepath packet scheduling and multipath scheduling are important. What
are, for example, the semantics of the Nagle algorithm in case packets are
split on multiple subflows?

2.2.7 MPTCP Scheduling Dependencies

Even though scheduling is conceptually separated from other concerns, we
note that all building blocks of MPTCP are closely tied and depend on each
other. Today’s schedulers, for example, require subflows to be initiated by the Path-manager and

schedulerpath-manager and consider the congestion window maintained by the conges-
tion control. Optimizing MPTCP for high throughput effectively lets the con- Congestion control

and schedulergestion control schedule the traffic [204], as the scheduler is blocked by the
congestion control. This was, for example, shown and exploited by Popovici
et al. [145]. For thinner application limited flows, such as for request-response
patterns, congestion windows are not permanently exhausted, reducing the
impact of the congestion control on the scheduling decision. As most conges-
tion control algorithms increase the congestion window based on transmitted
data, the congestion window only builds up where packets are scheduled.

2.2.8 Discussion

The anticipated scheduler optimizations confirm our observation that there is No one size fits all
schedulera wide range of potential Multipath TCP schedulers and no one size fits all

scheduler. We note that the proposed scheduler optimizations include many
design decisions, which are rarely evaluated. We assume that this lack of fine The need for efficient

implementations and
evaluations

grained design decision analyses is caused by the required implementation
effort and the evaluation overhead. This assumption supports the motivation
and significance of our research questions.

22 B AC K G RO U N D A N D R E L AT E D W O R K O N M P T C P

Besides this lack of fine grained design decision analyses, we further note
that evaluation based comparisons of proposed schedulers from different pub-
lications are seldom.14 We assume that this is caused by the implementation
overhead, as many implementations are not publicly available. Even with the
best of intentions, the reimplementation of already proposed schedulers is
hindered by the complexity and imprecision of the scheduler description inThe need for

precise scheduler
specifications

the publications. Performance evaluations with reimplemented schedulers are
error prone due to the significant impact of tuning parameters.

The classification in Table 2.1 shows that recent works propose schedul-The need to
simplify MPTCP

scheduler
implementation

ing optimizations for multipath protocols, but leave an evaluation within the
MPTCP Linux kernel open. We argue that an implementation within Multi-
path TCP is superior for various reasons. First, a real MPTCP implementa-
tion is indispensable to assess the real-world performance, as subtle imple-
mentation differences may have a large impact. Second, the proposed sched-
ulers benefit from the proved concepts of MPTCP, such as transparent end-
to-end connection establishment in the advent of Middleboxes and multipath-
enabled congestion controls. Finally, an integration and usage of the wirefor-
mat of Multipath TCP is indispensable for interoperability. A typical MPTCP
scheduler optimization does not require receiver side changes, whereas an
implementation on top of TCP introduces a new application layer protocol.

Finally, we note that a systematic design of application- and preference-
aware schedulers is missing. A few examples from the Multipath TCP re-The need for

abstractions lated schedulers show the potential of incorporating application knowledge
and preferences. As of today, the development of application- and preference-
aware schedulers requires detailed application and Linux kernel networking
stack knowledge.

14Ferlin et al. [41] provide a notable example with their implementation of various sched-
ulers from the related work for a detailed evaluation of their proposed BLEST scheduler.

3
A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G

In the previous chapters, we identified that Multipath TCP misses fundamen-
tal abstractions to foster deployable scheduling innovations and substantiated
the significance of our first research question:

RQ I: How can we enable deployable Multipath TCP scheduling innovations? First Research
Questions

In this chapter, we tackle this research question and propose ProgMP, a pro-
gramming model as abstraction for Multipath TCP scheduling. Based on a de-
tailed requirement analysis and an overview of programming models in com-
munication systems, we introduce the ProgMP programming model. ProgMP
consists of the model of the scheduling environment, a bespoke scheduler
specification language, the scheduler calling model, and a powerful yet sim-
ple API. We further present the implementation of a runtime environment for
the programming model in the Linux kernel. For an evaluation of the expres-
siveness and a detailed discussion of the programming model experiences,
we refer to our presentation of novel schedulers in Chapter 5. Parts of this
chapter are published in [F5, F15].

ProgMP is publicly available together with detailed examples and tutorials Publicly available

at https://progmp.net to enable researchers and application developers
to benefit from our experiences and to specify executable general purpose,
application-, and preference-aware MPTCP schedulers.

3.1 R E Q U I R E M E N T D E R I VAT I O N

In this section, we present and discuss requirements for a Multipath TCP
scheduler programming model and conclude with a discussion of the target
audience and user group.

E X C H A N G E O F I D E A S The specification language should enable the ex-
change of scheduling ideas, i. e., the communication between and discussions
of domain experts. The specification language has to abstract over implemen- A language for

communication. . .tation details and should provide a compact, crisp, and comprehensive expres-
sion of the scheduling logic and eliminate ambiguity. A domain expert should
be able to reason about a scheduler and compare schedulers based on an ex-
plicit specification. Today’s lack of a specification language leads to short in-
formal descriptions of scheduling strategies, which tend to be underspecified,
e. g., with regard to important corner cases. To illustrate this, imagine a round
robin scheduler. The name round robin scheduler provides a basic impres-
sion of the scheduling strategy, but does not specify if a currently unavailable
subflow should be skipped or the scheduler should block in this case. About

https://progmp.net

24 A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G

half of the presented scheduler publications in Section 2.2 try to mitigate the
imprecision by providing pseudo code. A scheduler specification language. . . to replace

pseudo code. . . should provide the expressiveness and crispness to replace these pseudo code
descriptions with a well-defined specification.

E VA L UA B L E A N D E X E C U TA B L E Section 2.2 showed that researchers
proposed a variety of multipath scheduling optimizations, but left the imple-
mentation of these optimizations in a real Multipath TCP environment, i. e.,
the Multipath TCP Linux kernel network stack, for future work. Instead, eval-
uations of these works rely on user-level implementations that mimic MPTCP
and established schedulers. We suspect that the lacking MPTCP implementa-
tions are caused by the complexity and effort of the development in the Linux
kernel networking stack.

Additionally, we note that even the implemented schedulers are in general
solely compared with the available schedulers in the Multipath TCP Linux
kernel. We suspect that this is caused by the intricateness of integrating exist-
ing research results in the Multipath TCP Linux kernel for own publications.
This is amplified by the marginal integration of scheduling research optimiza-
tions in the Multipath TCP Linux kernel.1

We argue that schedulers have to be executed for realistic evaluations and. . . that should be
executable. . . comparisons. This claim is supported by Section 5.10, where we show that

emulations and simplifications are error prone and misleading. Thus, a pro-
gramming model for schedulers should enable rapid evaluations and compar-
isons of executable schedulers in real MPTCP environments and fosters the
transition from research to production. In contrast, a non-executable specifi-
cation language would require a time consuming and error prone reimplemen-
tation for evaluations and therefore not encourage real MPTCP evaluations.

E F F I C I E N T E X E C U T I O N The programming model and the specification
language need to enable an efficient execution and timely scheduling deci-. . . efficiently.

sions.2 To saturate a 1 Gbit connection with a packet size of 1500 bytes per
packet, about 715,827 packets have to be scheduled per second.3 Thus, the per
packet scheduling decision should require at most a few hundred nano sec-
onds. Following this requirement, the language design and implementation
of the corresponding runtime environment have to be considered holistically.
Thus, the scheduling language should carefully balance language features,
expressiveness, and efficient execution, e. g., with regard to usually time con-

1The author of this dissertation integrated the redundant scheduler code of ReMP [F7] into
the MPTCP Linux kernel (https://github.com/multipath-tcp/mptcp/blob/mptcp_v0.
93/net/mptcp/mptcp_redundant.c).

2Here, we have to emphasize the difference between the programming language and the
implementation. In general, a programming language does not have properties such as efficient
execution. In this particular case, however, we design the language with assumptions about the
implementation in mind. Different implementations and underlying hardware might change
these assumption. We refer to [36] for an early, general discussion on this differentiation.

3This is a simplified example for illustration. In high-throughput environments, TCP seg-
mentation offloading (TSO) enables larger packets in the hosts networking stack depending
on the workload and traffic pattern.

https://github.com/multipath-tcp/mptcp/blob/mptcp_v0.93/net/mptcp/mptcp_redundant.c
https://github.com/multipath-tcp/mptcp/blob/mptcp_v0.93/net/mptcp/mptcp_redundant.c

3.1 R E Q U I R E M E N T D E R I VAT I O N 25

suming dynamic memory allocations. Furthermore, the scheduler execution
is preferably automatically optimizable by the runtime environment.

E X P R E S S I V E N E S S The expressiveness of the programming model and
its specification language should preferably enable the specification of all Expressiveness for a

wide range of
schedulers. . .

schedulers in a convenient way. However, the specification of all schedulers
conflicts with the reduced complexity of a domain-specific language and
the requirement of an efficient execution. Solving optimization problems per
packet, e. g., is not feasible for most scenarios. Thus, our goal is the design
of an executable specification language that can express all reasonable and
efficiently executable schedulers.

For complex scheduler logic that cannot be evaluated online per packet, the . . . and open for
external
extensibility.

programming model of the specification language should enable the integra-
tion of offline logic. Thus, a controller might solve optimization problems or
incorporate additional knowledge offline and outside of the scheduling loop,
and control the online scheduler logic. This concept is similar to the Open-
Flow/SDN separation of the Controller and the Flow Tables.

G R AC E F U L F A I L U R E H A N D L I N G The execution semantics of the pro-
gramming model should allow a graceful failure handling. Typical pitfalls in
the selection of both packets and subflows relate to the establishment of new
subflows and the sudden failure of established subflows. In a pure C imple-
mentation in the Linux kernel, the disappearance of a subflow easily leads to
stale references and crashes of the operating system. Ideally, accessing stale
subflow references should not only be prohibited or fail gracefully, but should
be impossible by design. Further, handling references to packets, for example,
for the assignment to multiple subflows, is a substantial source for errors. In
particular, packets must not be lost, e. g., when the target subflow ceases after
the packet is already removed from the sending queue. Finally, scheduling
decisions have to terminate to ensure liveness of the communication system.

TA R G E T AU D I E N C E Based on the discussed programming model re-
quirements, the target audience includes domain experts and researchers. Be-
side these, the specification language should enable network administrators
of a managed network environment to specify schedulers that incorporate
network specifics and optimize in accordance to additional management func-
tions, such as explicit path controls [72]. With regard to application develop-
ers, we anticipate that only developers of applications that crucially depend on
network performance characteristics will specify an own application-aware
scheduler. However, extended application libraries may ensure that entire ap-
plication classes benefit from improved application-aware schedulers.

26 A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G

3.2 P RO G R A M M I N G M O D E L S I N C O M M U N I C AT I O N S Y S T E M S

In this section, we present an overview of programming models and lan-
guages as abstractions in the domain of communication systems.

The Click modular router [94] abstracts over implementation details ofThe Click modular
router. . . packet processing modules and enables the composition of complex router

logic as graphs of packet processing modules. A Click configuration is spec-
ified with a declarative language based on declarations and connections to. . . uses a declarative

language. abstract over procedural packet processing. The abstractions and the model
of Click were applied on additional use cases, such as network function vir-
tualization [101, 117]. The underlying execution environment was tuned for
high speed I/O [7] and to leverage available hardware [89, 185]. While the
concepts and the idea of Click appear simple, the abstraction proved to be
powerful and applicable for a wide range of applications.

The OpenFlow protocol is an additional example for increasing programma-OpenFlow. . .

bility [118]. While OpenFlow [118] is sold as protocol between switches and
controllers, it essentially represents a programming model for the switches
based on the manipulation of flow table entries. The enabled programmability
of OpenFlow took the community by storm and expanded to the general con-
cept of software-defined networking (SDN) [91], network-wide programma-. . . and SDN

bility [47], and more fine-granular programmability of the underlying packet
processing pipeline [13].

Here, P4 represents an example of a high-level language for program-Programmable
packet processing ming protocol-independent packet processors [13]. Sivaraman et al. [173,

174] raised the abstraction layer for scheduling in switches and propose pro-
grammable packet scheduling, e. g., by executing a block of imperative code
the moment the packet comes in.

On end-hosts, configurable traffic shapers already provide abstractions for
scheduling decisions between independent flows, e. g., based on QoS flags.
The Readable TCP in the Prolac Protocol Language [93] was suggested forTransport protocol

specification
language

the development and implementation of comprehensive transport protocols,
i. e., packet header handling and semantics. Basu et al. [9] propose a domain-
specific language for the construction and validation of communication sys-
tem protocols. Arashloo et al. [5] propose a domain-specific congestion spec-Congestion control

specification
language

ification language and offload it into the network card. Narayan et al. [122]
propose programming abstractions and an API to specify congestion controls.
Finally, Hong et al. [70] present a programming model to simplify the de-
velopment for a large number of heterogeneous, distributed devises in the
Internet of Things.

We note that the aforementioned programming models and languages use
concepts of the software engineering domain to different extent. While there
is no single, agreed definition for domain-specific languages in the domain ofDomain-specific

languages software engineering, Deursen et al. [191] propose the following definition:

“A domain-specific language (DSL) is a programming language
or executable specification language that offers, through appro-

3.2 P RO G R A M M I N G M O D E L S I N C O M M U N I C AT I O N S Y S T E M S 27

priate notations and abstractions, expressive power focused on,
and usually restricted to, a particular problem domain.”

Following this definition, the presented examples represent domain-specific
languages, as they offer notations and abstractions for a particular problem
domain and are usually introduced with a corresponding execution environ-
ment. The presented overview shows that programming models and languages Programming

models proved
to be powerful
abstractions for
communication
systems

as abstractions for communication systems gained traction in recent years.
Furthermore, these examples confirm that programming models provide pow-
erful abstraction and are a suitable or at least promising approach for commu-
nication system research and development.

28 A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G

3.3 P RO G R A M M I N G M O D E L D E S I G N

In the following, we present our proposed programming model design, in-
cluding the scheduler specification language, the calling model, and APIs.
The programming model and the specification language are designed to meet
the requirements as presented in Section 3.1. A detailed language overview,
scheduler examples, and API tutorials are provided at https://progmp.net.
Appendix A.5 provides an EBNF-based syntax specification.

3.3.1 Model of the Scheduling Environment

In this section, we analyze and model the scheduling environment based on
the implementation as presented by [8]. Fundamentally, the Multipath TCP
scheduler decides when to send which packet. The scheduler decouples twoDecouple sending

queue and subflows building blocks: i) the sending queues and ii) the subflows (Figure 3.1).

Subflow sbf1

Queue Qsbf1

A
p

p
lic

at
io

n

Sending Queue Q

Reinjection Queue RQ

Sc
h

e
d

u
le

r

Prop.: rtt, cwnd, …

Subflow sbf2

Queue Qsbf2

Prop.: rtt, cwnd, …

p2 p3 p4

p1

Packets in Flight QU

p1

Sending Queues Subflows

PUSH

PUSH

op*

op*

*operation, e.g., POP

PUSH

op*

Figure 3.1: Model of the scheduling environment.

The application uses the stream-based TCP socket interface to send data.
The network stack fragments this data stream into packets pi, which are
pushed to the sending queue Q = [p1, . . . , pm]. The scheduler takes theseSending queue Q

packets from Q and pushes them into subflow queues. For each packet, the
scheduler chooses at least one subflow out of the set of available subflows
S = {s1, . . . ,sn} based on the subflow’s properties. Packets might be mapped
to multiple subflows, e. g., for redundant transmission or loss recovery.

TCP has to keep sent packets until they are acknowledged. Accordingly,
there is a queue QU for unacknowledged packets in flight. Packets that are re-Additional queues

moved from the sending queue Q are stored in QU . In case a subflow suspects
a packet drop, e. g., due to three duplicate acknowledgements or a retransmis-
sion timeout, this packet is automatically added to the reinjection queue RQ.
Packets are not reinjected into the sending queue Q. This does not reduce the
expressiveness with regard to sending duplicates, as the packets are still in
QU . Acknowledged packets are automatically removed from all queues.

Each communication partner runs its own scheduler. Sender and receiver
side are decoupled using the data sequence number mapping of MPTCP, as
explained in Section 2.1.1. The sender ensures correct sequence numbers re-
gardless of the used scheduling. The receiver ensures in-order delivery to the
receiver application based on these sequence numbers.

https://progmp.net

3.3 P RO G R A M M I N G M O D E L D E S I G N 29

3.3.2 Language Design

E N T I T I E S A N D P RO P E RT I E S We model the elements of the previously
presented scheduling environment as entities in the specification language.
Thus, the language provides entities for the sending queue Q, the packet in
flight queue QU, and the reinjection queue RQ. Queues have properties, e. g.,
they might be EMPTY, and provide operations for selecting and removing pack-
ets (GET, TOP, and POP). Packets possess properties, such as their LENGTH.

Furthermore, the specification language contains the SUBFLOWS entity with
the set of all subflows. Subflows provide a PUSH operation to schedule a
packet and have properties, such as the round-trip time RTT, the congestion
window CWND as maintained by the congestion control algorithm, and the
number of packets in flight PACKETS_IN_FLIGHT. The language further pro-
vides function-like properties to retrieve properties of subflow and packet
combinations, e. g., to check whether a subflows’ receive window can accom-
modate a packet using HAS_WINDOW_FOR(<packet>).

D E C L A R AT I V E S E L E C T I O N For both the subflow and the packet selec- Declarative subflow
and packet selectiontion, we rely on a declarative specification with the operations

• FILTER(element => boolean_predicate(element)),

• MIN(element => integer_ predicate(element)), and

• MAX(element => integer_ predicate(element)).

The declarative specification avoids complex and error prone control flows
and directly represents the intention of the developer. Listing 3.1 provides an
example excerpt of a scheduler specification. Here, the specified scheduler
pushes a packet on the subflow with the minimum round-trip time that has a
congestion window larger than the packets in flight.� �

1 SUBFLOWS.FILTER(sbf => sbf.CWND > sbf.PACKETS_IN_FLIGHT).

2 MIN(sbf => sbf.RTT).PUSH(Q.POP());� �
Listing 3.1: Excerpt of a scheduler specification that pushes packets on

the subflow with minimum round-trip time (RTT) that has not
exhausted its congestion window.

VA R I A B L E S , T Y P E S Y S T E M , A N D S TAT E Dynamic memory alloca- Avoid time
consuming memory
allocations

tion is often time consuming and tends to introduce unpredictable delays.
Therefore, the specification language is designed to avoid dynamic memory
allocation at runtime and to be executable with static memory allocation at
scheduler initialization time.

An early language prototype did not provide variables to keep the language
minimal. We found, however, that the support of variables reduces the com-
plexity of our specified schedulers. Based on this experience, the specifica- Single-assignment

variablestion language supports variables to store intermediate results during a single

30 A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G

scheduler execution in a single-assignment form. Listing 3.2 shows an illus-
trating example with and without variable support. The runtime environment
can allocate the required memory at the initialization of the scheduler and
reuse the allocated memory per scheduler execution.� �

1 /* Chosen approach with variables */

2
3 VAR sbfCandis = SUBFLOWS.FILTER(sbf => sbf.CWND > 10);

4
5 IF(!sbfCandis.IS_EMPTY) {

6 sbfCandis.FILTER(...

7
8 /* Compared with the worse alternative without variables */

9
10 IF(!SUBFLOWS.FILTER(sbf => sbf.CWND > 10).IS_EMPTY) {

11 SUBFLOWS.FILTER(sbf => sbf.CWND > 10) ...� �
Listing 3.2: Illustration of the advantages of a scheduler specification

that supports variables. Here, the variable sbfCandis stores
intermediate results.

The language provides an implicit and static type system and thereby avoidsStatic type system

dynamic type errors, as each variable has the implicit type of its initial as-
signment. We found that the built-in types are sufficient to express sched-
ulers; user-defined elementary and composite types are neither required nor
supported. In contrast to the established implementation of schedulers in C,
(type) cast errors, memory leaks, and dangling or wild pointers are impossible
without the need for time consuming garbage collection.

Variables do not keep state between scheduler executions to prevent stale
references to subflows and packets. Instead, each scheduler keeps a limited
state of integer values, denoted as Registers, between the scheduler execu-Registers keep state

tions. In retrospective, a limited number of variables that keep state in combi-
nation with a well-defined handling of stale references might simplify certain
scheduler designs and should be considered for future work. In Section 3.3.4,
we present how these registers are additionally used for the application API.

S I D E E F F E C T S For simple reasoning on schedulers, only PUSH and SETLimited side
effects. . . operations have side effects.4 Furthermore, these operations with side effects

must not be used in conditions or the predicates of FILTER, MIN, and MAX

statements. This avoids common pitfalls, e. g., packets are not accidentally
removed due to a statement such as IF (Q.POP().SENT_ON(sbf)). Addi-
tionally, subflow and packet properties as well as variables are immutable. . . and immutable

values. . . during a single scheduler execution. The combination of these restrictions en-
ables sophisticated optimizations, e. g., many operation results may be cached
and many operations may be evaluated lazy or in an arbitrary order. These re-. . . simplify

reasoning. strictions do not negatively affect the expressiveness, but help the runtime
environment and the developer to reason on schedulers.

4Note that while the SET statement is not possible in lambda expressions according to
the grammar in Appendix A.5, the prohibition of POP in a condition or FILTER is context
sensitive and not part of our provided grammar. A more elaborated grammar might express
this constraint at the cost of simplicity and clarity.

3.3 P RO G R A M M I N G M O D E L D E S I G N 31

C O N T RO L F L O W In addition to the declarative operations, we found that
the specification language requires simple control flow primitives, such as IF
.. ELSE .., to simplify the development of schedulers and to provide the
necessary expressiveness for various schedulers. Furthermore, the language
provides a RETURN statement to avoid deep nesting of other control flow oper-
ations. Listing 3.3 provides an example for illustration.� �

1 IF (SUBFLOWS.EMPTY) { /* Nothing to do */

2 RETURN;

3 }

4
5 IF (!RQ.EMPTY) {

6 /* Handle reinjection queue */

7 } ELSE IF (!Q.EMPTY) {

8 /* Handle sending queue */

9 } ELSE {

10 /* We might send redundant data */

11 }� �
Listing 3.3: Illustration of the IF .. ELSE .. and RETURN primitives.

An early prototype of the language did not support loops to keep the lan- Limited loops

guage minimal. We found, however, that a FOREACH-loop, as shown in List-
ing 3.4, significantly simplifies the specification of many schedulers. The lan-
guage does not support FOR-loops with an index, as we cannot verify that
these loops terminate and they are commonly used to reimplement already
provided declarative selections. Focusing on a small language, we found that Neither functions

nor recursionneither functions nor recursion are necessary to express schedulers.� �
1 FOREACH(VAR sbf IN SUBFLOWS) {

2 sbf.PUSH(Q.TOP);

3 }� �
Listing 3.4: Illustration of the FOREACH control flow primitive.

N U L L H A N D L I N G An early language prototype did not provide Null val-
ues. We found, however, that the support of Null values in combination with
graceful but well-defined error handling simplifies the specification of sched- Graceful but

well-defined
Null-handling

ulers and enables efficiency improvements during the execution. Listing 3.5
shows an illustrating comparison.� �

1 /* Implemented version: */

2
3 /* Here, MIN might return NULL without a scheduler failure */

4 SUBFLOWS.FILTER(sbf => sbf.CWND > sbf.PACKETS_IN_FLIGHT).

5 MIN(sbf => sbf.RTT).PUSH(Q.POP());

6
7 /* Not implemented version (worse alternative): */

8
9 VAR sbfs = SUBFLOWS.FILTER(sbf=> sbf.CWND > sbf.PACKETS_IN_FLIGHT);

10
11 /* Without this condition, the scheduler might fail at runtime */

12 IF(!sbfs.EMPTY) { sbfs.MIN(sbf => sbf.RTT).PUSH(Q.POP()); }� �
Listing 3.5: Null handling example.

32 A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G

In ProgMP, the execution of a PUSH operation on NULL does not evaluate
the predicate and is therefore ignored. Thus, the POP operation in the example
in Listing 3.5 is not executed and the packet is not removed from Q in case
there is no subflow available.

3.3.3 Scheduler Triggering and Execution

The per packet scheduling decision should be based on the freshest available
information and should be taken timely before the packet is actually pushed
on the wire. Thus, scheduling packets in userspace at the moment the data is
pushed by the application is not sufficient. For example, the scheduler would
fail to take a reasonable scheduling decision in case all subflows are conges-
tion limited at the time the application pushes data. In this work, we extend
the implicit model of Barre et al. [8] and trigger the scheduler execution by
a number of events that include the arrival of new packets in Q or receiving
acknowledgements (Figure 3.2).

To simplify the scheduler development, the scheduler is not required to
handle all packets in Q upon one execution. Hence, a scheduler execution
rather focuses on a single or a few packets. Whereas a naive scheduler ap-
proach might schedule exactly one packet per execution, a single schedulerNo, one, or multiple

packets per
execution

execution in our programming model can schedule no, one, or even multiple
packets per scheduler execution by varying the number of PUSH invocations.
We found that this concept fundamentally simplifies many schedulers and
discuss the performance impacts of this design decision in Section 3.4.

Scheduler
with State (e.g., Q, Register)

New Packet in Q

New ACK

Timeout

Q.POP

Si
n

gl
e

Ev
en

t

Triggering Events Triggered Actions

List of Actions ∈ [POP, PUSH, …]
Example:

PUSH Scheduler Execution Q.POP PUSH PUSH

Figure 3.2: The scheduler execution is triggered by various events. A single sched-
uler execution might trigger multiple actions, e. g., schedule multiple
packets.

3.3.4 API for Application-aware Scheduling

In the following, we discuss requirements for an extended scheduling API
and present a corresponding API as part of our programming model, which
significantly expands the design space of MPTCP schedulers.

A P I R E Q U I R E M E N T S The scheduling API has to allow the applicationEnable
application-aware
scheduling by . . .

to interact with the scheduler and to provide all important information. Con-
sider, for example, a database where small requests that usually consist of a
few packets would significantly benefit from redundancy while introducing

3.3 P RO G R A M M I N G M O D E L D E S I G N 33

a limited overhead. In contrast, heavy database responses can be transmitted
throughput-optimized on the same connection. This example motivates the
need for a per-connection scheduler choice and means for the application to
inform the scheduler about changing intents. A scheduling intent is an in-
formation provided by the application to the scheduler to request a specific
scheduling behavior. Note that for a differentiated behavior on packet gran-
ularity, e. g., pushing latency sensitive packets, we require the application to
be able to provide per-packet scheduling intents. Based on this, we propose
an extended API for the interaction of the application with the scheduler.

C H O O S I N G A S C H E D U L E R The extended scheduler API supports a per- . . . choosing a
scheduler per
connection. . .

MPTCP-connection scheduler choice permitting a concurrent use of differ-
ent schedulers for different connections. The application is allowed to load
its own, application-defined schedulers or reuse loaded schedulers to reduce
compilation overhead. Switching schedulers at runtime is discouraged, as we
experienced that this provokes inconsistent states, e. g., due to different as-
sumptions and strategies of schedulers. Instead, we encourage to rely on set-
ting registers, as presented next and revisited in Section 5.12.

S E T T I N G R E G I S T E R S An application can set registers in the scheduler. . . . setting registers
in the scheduler. . .This enables, for example, different scheduling modes. Such modes comprise,

e. g., an aggressive retransmission mode for latency sensitive content, or a
data flushing mode that shortens transmission time when the application has
no more data to send.

PAC K E T P RO P E RT I E S An application can set packet properties for dif- . . . and setting packet
properties.ferentiated handling of packets. High priority packets may, for example, be

transferred redundantly or additionally sent on backup subflows. Further, pack-
ets can be forced on certain subflows depending on their properties, e. g., to
ensure privacy.

3.3.5 Programming Model Discussion and Future Work

Table 3.1 provides a summary of the main programming model design de-
cisions and concepts, as presented in this section. The expressiveness and
power of the scheduler programming model are confirmed by the wide range
of scheduler innovations presented in Chapter 5. In the following, we discuss
potential or discarded extensions and pitfalls we found during the program-
ming model design. Additional examples are provided in Appendix A.2.

P OT E N T I A L E X T E N S I O N S During the development and evaluation of
schedulers, we recurrently wanted to check certain properties of our sched-
ulers, e. g., if the scheduler is work conserving, skips packets in the sending
queue, or pushes packets of the reinjection queue if a subflow is available.
We implemented checks for these properties in the runtime environment but Strict modes and

assertsoutside of the language. We envision schedulers to specify strict modes and

34 A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G

Table 3.1: Programming model design decisions and concepts.

Concept

Subflow properties e.g., RTT, RTT_VAR, CWND, QUEUED,

PACKETS_IN_FLIGHT, IS_BACKUP, ...

Packet properties e.g., LENGTH, SENT_ON(sbf)

Subflow selection Declarative based on FILTER, MIN, and MAX

with packet and subflow properties

Packet selection Declarative based on FILTER, MIN, and MAX

with packet and subflow properties

Variables Single assignment, implicit typing

Types Static, non-extensible type system (int, bool,

packet, subflow, subflow list, packet queue)

Concurrency Immutable properties and variables

Side Effects Restricted to PUSH and SET operations

Exceptions No exceptions by design

Null Graceful and well-defined Null-handling

Scheduler execution None, one, or multiple packets per execution

API Choose scheduler, set register, set packet property

asserts to express these properties and control the runtime environment, as
shown in Listing 3.6. These strict modes and assertions might be combined
with sophisticated static verification approaches, as envisioned in Section 9.1.� �

1 WORK CONSERVING SCHEDULER;

2 /* ... some code ... */

3 ASSERT(RQ.EMPTY);� �
Listing 3.6: Strict modes for work conserving schedulers and assertions.

We found the presented Null value handling useful for the specification
of novel schedulers in Chapter 5. We considered that PUSH operations addi-Feedback for

PUSH operations tionally return if the operation was executed, i. e., if both a packet and a sub-
flow where available. While this extension might simplify recurring scheduler
specification patterns (Listing 3.7), it might increase the complexity to read
and understand schedulers for inexperienced users.� �

1 /* The current pattern... */

2
3 VAR minSbf = sbfs.MIN(sbf => sbf.RTT);

4 IF (minSbf != NULL) {

5 minSbf.PUSH(...);

6 RETURN;

7 }

8
9 /* ...might be simplified like this */

3.3 P RO G R A M M I N G M O D E L D E S I G N 35

10
11 IF (sbfs.MIN(sbf => sbf.RTT).PUSH(...)) {

12 RETURN;

13 }� �
Listing 3.7: Example how a the return value of the PUSH operation might

simplify the scheduler specification.

E X P E R I E N C E D P I T F A L L S Listing 3.8 shows a recurrently experienced
pitfall. Here, the scheduler might DROP an unsent packet from the sending
queue in case the filter operation returns no subflows. We identify an evolu-
tion of the language design to avoid these pitfalls as future work.� �

1 VAR skb = Q.TOP;

2 SUBFLOWS.FILTER(...).MIN(...).PUSH(skb);

3
4 /* Filter might return an empty result, thus,

5 * packet might be dropped but not sent */

6
7 DROP(Q.POP());� �

Listing 3.8: Unintentional drop of an unsent packet.

D I S C A R D E D E X T E N S I O N S Due to the single assignment variable ap-
proach, we considered to support hoisting to simplify scheduler specifica- Discarded hoisting

tions as shown in Listing 3.9. We discarded this, as we found that this fea-
ture reduces scheduler comprehension. We found that the single assignment
approach and multiple declarations with assignments provide an inconsistent
language experience.� �

1 IF(R1 == 0) {

2 VAR sbfCandis = ...;

3 } ELSE {

4 VAR sbfCandis = ...;

5 }

6
7 sbfCandis.FILTER(...)� �

Listing 3.9: Example how hoisting might simplify the scheduler specification.

36 A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G

3.4 E X E C U T I O N E N V I RO N M E N T I M P L E M E N TAT I O N

In this section, we provide implementation details of the scheduler runtime
environment and the packet handling at the receiver. Further, we discuss the
computational overhead of our runtime environment and show that our run-
time environment retains scheduling throughput performance.

3.4.1 Scheduler Location and Calling Model

While designing the implementation of the calling model, we considered two
alternatives: i) userspace up-call to a userspace scheduler and ii) in-kernel
processing.5 While the userspace up-call simplifies the development effort
for the runtime environment, it introduces latency and computational over-
head. We used a netlink-based prototype on the same infrastructure used in
Section 3.4.5, where we observed that a single up-call requires about 2.4 µs.
A single scheduler execution in the Linux kernel implementation requires,
however, about 0.2 µs on the same infrastructure. Although optimizations for
kernel-userspace communication, e. g., batch processing as proposed for the
OpenVSwitch [142], reduce this overhead, we decided to implement the run-
time environment in the kernel between the sending packet queues and theA runtime in

the kernel . . . subflows to provide maximum performance (Figure 3.3).

Application

Programmable
Scheduler

Userland

Kernel
Network Stack

Sending
Queue

Subflows

Send Data

Load MPTCP
Scheduler

Figure 3.3: The programmable scheduler is located in the network stack between the
sending queue and the subflows to enable timely scheduling decisions.

As we anticipate flexible per application and per connection schedulers,
schedulers have to be executed in isolation. Failures in one scheduler should
not harm other applications or schedulers. To enable applications in a multi. . . that ensures

isolation. tenancy cloud environment to provide and use own schedulers, relying on ker-
nel modules is not possible, as kernel modules do not provide the necessary
isolation between applications and tenants. Even a non-malicious implemen-
tation error in a C kernel module provided by the user might lead to a kernel
panic and thereby terminate all running applications or lead to an information
disclosure, e. g., by disclosing private memory content of other applications
in the network.

5Note that the programming model abstracts over implementation details, which allows
the scheduler developer to be agnostic with respect to both alternatives.

3.4 E X E C U T I O N E N V I RO N M E N T I M P L E M E N TAT I O N 37

3.4.2 Runtime Environment

In this section, we provide an overview of the runtime environment imple-
mentation6, and discuss notable implementation details, i. e., how to augment
PUSH operations and queue handling in the runtime environment API.

3.4.2.1 Overview

We implemented the runtime environment for the programming model with
nearly 20,000 LOC in the Linux kernel and integrated it in the existing Mul-
tipath TCP Linux kernel implementation version 0.90 (Linux kernel version
4.1.20). Figure 3.4 illustrates the overall implementation. The userland appli-
cation writes the scheduler specification into the kernel using the proc filesys-
tem. The proc filesystem is a pseudo-filesystem, which provides an interface
to kernel data structures.7 The runtime environment contains a compiler front-
end, i. e., a lexer and a parser, to generate a control flow graph of the input
program. We considered to leverage established parser generators, such as
yacc and ANTLR, but found that these tools generate code that is not directly
executable in the Linux kernel due to library dependencies.

Runtime
Environment API

ProgMP

Lexer

Parser

Kernel

Control Flow Graph Scheduler Optimizer

Native Code

Userland Write to /proc/…/schedulers

Interpreter

eBPF Compiler

Compiler Frontend

Network Stack

Uses

Ahead of Time
Compiler

Figure 3.4: Detailed overview of the runtime environment implementation.

The runtime environment implementation further provides an interpreter Interpreter,. . .

that directly executes the control flow graph representation. This interpreter
is a baseline implementation, which does not require changing executable
machine instructions at runtime, and works without additional support of the
operating system. We further implemented an ahead-of-time compiler and . . . ahead-of-time,

and just-in-time
compiler

an eBPF-based just-in-time compiler. The ahead-of-time compiler generates
and compiles C functions to be called at runtime. Thus, the programming
model is executable without the need of a parser or interpreter in the kernel.
Finally, the eBPF compiler translates the intermediate representation into the
machine independent eBPF assembly language and uses the eBPF kernel in-
frastructure [28] to compile to native code. Both the interpreter and native

6We would like to thank Tobias Erbshäußer for his implementation support for the lexer,
parser, and intermediate representations as part of his activity as student assistant. Parts of
the optimization and eBPF compilation were developed by Tobias Erbshäußer for his Master
thesis [S12], which was motivated and supervised by the author of this dissertation.

7See http://man7.org/linux/man-pages/man5/proc.5.html.

http://man7.org/linux/man-pages/man5/proc.5.html

38 A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G

code rely on the Runtime Environment API to execute PUSH operations and
abstract over implementation details of the underlying queues, as presented
in the following.

3.4.2.2 Implementation of the PUSH Operation

The programming model supports to schedule none, one, or multiple packets
per scheduler execution, as illustrated in Listing 3.10.� �

1 SUBFLOWS.MIN(sbf => sbf.RTT).PUSH(Q.POP());

2 SUBFLOWS.MIN(sbf => sbf.RTT).PUSH(Q.POP());� �
Listing 3.10: Scheduler excerpt that schedules up to two packets per execution.

An analysis of the established scheduler interface implementation [133]
shows that the interface is limited to schedule none or one packet per sched-
uler invocation. To remain compatible with this interface, we considered two
alternative implementation approaches: i) coroutines or ii) decoupling the
PUSH operation with a queue.

Coroutines, in contrast to subroutines, keep state between consecutive callsCoroutines?

and continue execution at the last state [27]. This makes coroutines ideal to
implement iterators. Coroutines are usually implemented using stacks or con-
tinuations. In the previous example, a coroutine implementation would return
from the scheduler call when reaching the first PUSH and continue at this po-
sition when called again. A first analysis in the implementation showed that
the execution of the PUSH operation is time consuming. Thus, if we rely on
coroutines, we have to ensure that variables do not change between consecu-
tive calls. Listing 3.11 illustrates this, as a round-trip time value change dur-
ing the execution might lead to an inconsistent state. Furthermore, a coroutine
would require to keep the execution state, i. e., the current execution stack.� �

1 VAR sbf = ...;

2
3 IF (sbf.RTT_MS < 100) { PRINT("rtt is less than 100"); }

4
5 /* Time consuming push execution */

6 sbf.PUSH(Q.POP());

7
8 IF (sbf.RTT_MS > 100) { PRINT("rtt is greater than 100"); }� �

Listing 3.11: In a naive scheduler execution environment, subflow properties
might change during a time consuming execution of the PUSH

operation.

As we anticipate only a limited number of PUSH operations per scheduler
execution, we decided against coroutines and to defer the PUSH operation.Deferred execution

with a queue! We decouple the PUSH operation in the language from the actual execution
in the network stack using a small, pre-allocated queue (Figure 3.5). This
speeds up the execution due to a higher cache locality and reduces the risk
that properties change during the scheduler execution.

3.4 E X E C U T I O N E N V I RO N M E N T I M P L E M E N TAT I O N 39

if actions.empty {

 manage_resources()

 while side effects {

 execute_scheduler_program()

 }

}

action = remove_first_action()

if action.is_valid() {

 action.sbf.entail(action.skb)

 action.sbf.xmit()

}

action_queue

sbf packet end_seq

Scheduler Runtime Environment
?

Scheduler
Execution

append

remove

Figure 3.5: Implementation of the deferred PUSH operation with a queue of actions.

The runtime environment ensures that expectable side effects of the PUSH

operation are maintained, e. g., as illustrated in Listing 3.12, and that subflows
and packets in the action queue are not stale when taken from the queue.� �

1 VAR sbf = ...;

2 VAR skb = ...;

3
4 VAR queued = sbf.QUEUED;

5
6 sbf.PUSH(skb);

7
8 IF (skb.SENT_ON(sbf) AND queued + 1 == sbf.QUEUED) {

9 /* Returns true, as visible side effects are maintained */

10 }� �
Listing 3.12: Example of the maintained visible side effects required for the

deferred PUSH execution.

3.4.2.3 Implementation of the Queue Abstraction

The proposed programming model enables flexible packet handling in the
sending queues. In particular, packets can be removed from the middle of
the sending queue or sent without removing them from the sending queue, as
illustrated in Listing 3.13.� �

1 VAR topPacket = Q.TOP;

2 VAR sbf = SUBFLOWS.MIN(sbf => sbf.RTT)

3
4 sbf.PUSH(Q.TOP);

5
6 IF (topPacket.SEQ == Q.TOP.SEQ) {

7 /* Returns true, as the top of the queue did not change */

8 }

9
10 /* Remove a packet from the middle of the sending queue */

11 sbf.PUSH(Q.FILTER(skb => skb.USER == 1).POP());� �
Listing 3.13: Example of packet queue operations that go beyond the

traditional Linux kernel packet queue operations.

To support these operations, the runtime manages an own queue_position
pointer in the sk_write_queue in addition to the established sk_send_head

40 A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G

pointer (Figure 3.6). In conjunction with an additional in_queue flag in the
sk_buff packet, the queue_position pointer provides an augmented queue
on top of the existing queues. This enables POP operations in the middle of
the queue and PUSH operations with TOP packets without removing them from
the sending queue Q. These changes avoid more complex changes of the exist-
ing networking stack. This is important, as, for example, the queue position
implicitly maintains the sequence numbers and operations, such as packet
fragmentation, operate on these queues.

Q

queue_position

QU

sk_write_queue

sk_send_head

head tail

len lock

sk_buff

prev next

in_queue

data

sk_buff

prev next

in_queue

data

sk_buff

prev next

in_queue

data

Always references to
 the next unsent packet

References to the queue
position of ProgMP

bold: added for ProgMP

Figure 3.6: Implementation of the augmented queues.

3.4.3 Runtime Optimizations and Compilation

We implemented a wide range of optimizations based on the declarative lan-
guage elements. FILTERs, for example, are evaluated using late materializa-
tion. Two additional optimizations are particularly interesting: i) constant sub-
flows and ii) compressed executions. As the number of Multipath TCP sub-
flows changes rarely, the JIT-compiler optimizes for a constant number of
subflows and returns to the original version otherwise. The second optimiza-
tion increases the number of actions per scheduler execution to compress the
number of executions. For example, to push data from Q on the subflow that
has the lowest RTT and that has not exhausted its congestion window, the run-
time environment automatically transforms the scheduler to schedule more
packets per scheduler execution (Listing 3.14). This reduces the scheduler
overhead and increases cache hit probabilities. Note that all optimizations are
enabled by the abstractions of the programming model.� �

1 SUBFLOWS.FILTER(sbf => sbf.SKBS_IN_FLIGHT < sbf.CWND).

2 MIN(sbf => sbf.RTT).PUSH(Q.POP())

3
4 /* Is transformed to */

5
6 VAR bestSbf = SUBFLOWS.FILTER(sbf => sbf.SKBS_IN_FLIGHT < sbf.CWND).

MIN(sbf => sbf.RTT);

7 VAR remainingSpace = bestSbf.CWND - bestSbf.SKBS_IN_FLIGHT;

8
9 IF (remainingSpace == 3) {

3.4 E X E C U T I O N E N V I RO N M E N T I M P L E M E N TAT I O N 41

10 bestSbf.PUSH(Q.POP());

11 bestSbf.PUSH(Q.POP());

12 bestSbf.PUSH(Q.POP());

13 } ELSE IF (remainingSpace == 2) {

14 bestSbf.PUSH(Q.POP());

15 bestSbf.PUSH(Q.POP());

16 } ELSE {

17 bestSbf.PUSH(Q.POP());

18 }� �
Listing 3.14: Automatic transformation to reduce scheduling overhead by

scheduling more packets per execution.

To further speed up the scheduler execution, we decided to use eBPF, a eBPF Compilation

special-purpose virtual machine in the Linux kernel [28]. This is comparable
to recent efforts to speed up P4 with eBPF in the Open vSwitch [141]. The
eBPF compilation replaces most interpreter calls with native code and com-
bines scheduler primitives such as FILTER, reducing the number of loops and
function calls. The compilation is executed concurrently in a separate thread,
therefore not harming network performance. We found the existing eBPF in-
frastructure in the userspace insufficient because we required to compile to
eBPF in the kernel. To this end, we implemented an extended version of the
linear scan register allocation, specifically, the Second-Chance Binpacking al-
gorithm [189], which is computationally superior to iterative computations
arising in graph-coloring register allocation.

3.4.4 API for Application-aware Scheduling

Figure 3.7 shows the implementation of the API for application-aware schedul-
ing. This API consists of the traditional socket, additional sockopts to choose
the scheduler and set registers and packet properties, as well as an extensive
proc-based interface to load schedulers and retrieve performance statistics.

Queue Q

Packet Scheduler p2 p3 p4

Userspace

Kernel
 Scheduler API

Choose
Scheduler

Registers

Set Register
Set Packet
Property

proc fs

p5 PROP

Parser / Optimizer / Repository

Application

Socket API

R1 R2 …

Figure 3.7: Extended scheduler API implementation.

Based on this low-level API, we further provide APIs for Python and C
that abstract over the underlying communication details. Figure 3.8 shows an
example Python application that controls the ProgMP scheduler.

42 A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G

Userspace

Kernel

Application, e.g., Webserver

 Ext. API Socket API

Isolated Scheduler

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

import socket

from progmp import ProgMp

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect(("10.0.0.2", 8080))

try:

 ProgMp.loadScheduler("python_api_example...")

 ProgMp.setScheduler(s, "python_api_example")

except:

 print "Scheduler loading error."

ProgMp.setRegister(s, Progmp.R1(), 5)

s.send("Multipath is awesome!")

Figure 3.8: Usage example of the Python API for ProgMP.

3.4.5 Testing and Evaluation

We tested and evaluated the implementation of our runtime environment with
regard to the computational overhead, the scalability with the number of
schedulers, and the correctness of the implementation.

3.4.5.1 Computational Overhead

We highly optimized our runtime environment implementation, as overhead
is a main consideration regarding abstractions. We empirically evaluated our
implementation using two bare-metal servers with 64 cores and 128 GB of
RAM connected on a 10Gb/s network. We compare the execution times of
the C-based default scheduler implementation with a semantically equivalent
scheduler specified in our programming model. An isolated measurement of
the schedulers’ execution times in the Linux kernel is challenging, as col-
lecting and storing measurements introduces significant overhead. Figure 3.9
(top) shows the relative execution times with respect to the default scheduler,
where the eBPF-based optimization reduces the computational overhead of
the interpreter from ∼ 44% to ∼25%. Observe that the impact of the number
of subflows is marginal. In additional measurements, we found that the exe-
cution times and the effectiveness of the implemented optimizations depend
on a multitude of factors, such as the network characteristics and the used
scheduler operations. Figure 3.9 (bottom) shows the maximum throughput
for a CPU-limited connection. It is important to note that the total throughput
is not affected by the slower scheduling shown in the top figure.

Our programming model does not target a maximum throughput beyond
10Gb/s for a single connection, but enables schedulers beyond the existing
throughput optimizations. Our evaluation shows that running our eBPF-based

3.4 E X E C U T I O N E N V I RO N M E N T I M P L E M E N TAT I O N 43

0.0

0.5

1.0

1.5

2.0

R
e
la

tv
ie

 E
x
e
cu

ti
o
n
 T

im
e

p
e
r

S
ch

e
d
u
le

d
 P

a
ck

e
t

1 Subflow

2 Subflows

3 Subflows

4 Subflows

5 Subflows

6 Subflows
0.0

0.5

1.0

1.5

2.0
R

e
la

ti
v
e
 T

h
ro

u
g
h
p
u
t

MinRTT Default

MinRTT Interpreter

MinRTT eBPF

Figure 3.9: Overhead evaluation of our implemented runtime environment for the
programming model.

implementation, the overhead of our programming model abstraction is neg-
ligible for the targeted application scenarios.

3.4.5.2 Number of Schedulers

As previously loaded schedulers can be reused, we anticipate a limited num-
ber of different, concurrently loaded schedulers. The required memory per
scheduler depends on the concrete scheduler, e. g., the round robin scheduler
requires 3048 byte. Each instantiation of the scheduler requires 328 byte in
addition. Compared to the overall network stack, the memory overhead of
our runtime environment does not restrict the adoption of our programming
model.

3.4.5.3 Testing

The presented runtime environment is a complex implementation with many
dependencies, and therefore requires systematic testing. During the develop-
ment, we relied on the following three testing approaches. First, we used the Debugging in DCE

reproducible executions in the direct code execution (DCE) environment for
the network simulator ns-3 (see Section 2.1.3), as this environment enables to
debug the network stack in a deterministic environment. Second, we relied on
large experiment studies with MACI, as presented in Chapter 4 and Chapter 5. Large experiments

Third, we used Packetdrill [18] for systematic tests with crafted input packet
traces. Listing 3.15 shows excerpts of an example Packetdrill script to tests if Systematic crafted

input tracesthe sending queue size changes as expected (see Appendix A.3 for a full code
listing). Therefore, the script configures and loads a scheduler, which uses
the PRINT statement to print the queue size (lines 3–6), establishes a Multi-
path TCP connection with two subflows (lines 8–14), sends 2000 byte which
should result in two packets due to the maximum segment size of 1500 byte
(lines 16–17), and finally checks the PRINT result of the loaded scheduler.

44 A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G

� �
1 // Test if the sending queue size reaches 2

2
3 // Configure ProgMP

4 +0 ‘sysctl -w net.mptcp.mptcp_scheduler=rbs‘

5 +0 ‘echo "SCHEDULER two_in_q; PRINT(\"Q.COUNT %u\", Q.COUNT); IF(Q.

COUNT > 1) { SUBFLOWS.GET(0).PUSH(Q.POP()); SUBFLOWS.GET(0).

PUSH(Q.POP()); }" > /proc/net/mptcp_net/rbs/schedulers ‘

6 +0 ‘echo "two_in_q" > /proc/net/mptcp_net/rbs/default ‘

7
8 // Establish sockets and two subflows

9 +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3

10 ...

11 +0 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7,

mp_capable key_a> sock(3)

12 +0 > S. 0:0(0) ack 1 win 28800 <mss 1460,nop,nop,sackOK,nop,wscale

7,mp_capable key_b> sock(3)

13 ...

14 +0 mp_join_accept(10) = 11

15
16 // Write 2000 byte to the socket stream

17 +0 write(4, ..., 2000) = 2000

18
19 // Give some time to trigger retransmissions

20 +0 ‘sleep 5‘

21
22 // Check if the queue size was 2

23 +0 ‘dmesg | grep "Q.COUNT 2"‘� �
Listing 3.15: Excerpt of a Packetdrill script to test if the sending queue size

changes as expected.

3.4.6 Receiver-Side Packet Handling

At the receiver side, all received in-order packets should be pushed to theHandle as much as
possible application as soon as possible. The sequence number mapping of MPTCP, as

specified in [RFC 6824], provides the necessary information to map subflow
sequence numbers to meta sequence numbers given that each packet carries
a full mapping that contains the packet itself. We observe, however, that the
current implementation in the Linux kernel does not deliver all packets as
soon as possible. For certain packet losses and out-of-order patterns between
subflows, in-order data is not pushed to the application. We found that only in-
subflow-order packets without gaps are pushed from the subflow to the meta
socket, even though out-of-order packets on the subflow might fit in-order in
the meta receive queue.

This is caused by the multilayer queue architecture with both a receive
and an out-of-order queue per subflow and meta socket (Figure 3.10). In this
architecture, the subflow queues are ordered by the subflow sequence num-
ber, whereas the meta queue is ordered by the data sequence number. This
implementation is reasonable, as it significantly reduces the computational
effort while the phenomenon appears very seldom with today’s default sched-
uler. We found, however, that the enabled wide range of schedulers increases

3.4 E X E C U T I O N E N V I RO N M E N T I M P L E M E N TAT I O N 45

the chance that this phenomena appears. In the following, we provide a sys-
tematic analysis of the out-of-order packet handling at the receiver side and
provide an implementation to overcome these limitations.8

Receive Queue

Out-of-Order Queue

In Subflow Sequence Number Order

Subflow 1

Receive Queue

Out-of-Order Queue

Subflow 2

Receive Queue

Out-of-Order Queue

Meta Socket

In Data Sequence Number Order

Figure 3.10: Receive queue architecture: Each subflow and the meta socket have an
own receive and out-of-order queue. Only in-order packets without gaps
are forwarded from the subflow queues to the meta socket.

3.4.6.1 Receiver-Side Packet Handling Analysis

As previously noted, only packets that are in-order on the subflow are pushed
to the meta socket. In the following, we provide an analysis of possible queue
states that cause unnecessary processing delays. We appreciated the use of the
Packetdrill [18] tool. Packetrill enables to test the Linux kernel network stack
with crafted input packet traces. We used this to extensively test the receiver
side packet handling for incoming packet combinations.

S I M P L E S T E X A M P L E Figure 3.11 illustrates the limitation with the most
simple example. Here, a dropped or delayed packet on subflow 2 leads to
a gap with regard to the subflow sequence number space. Even though the
packet with the data sequence number (dsn) 1001 fits in the global receive
space, the implementation handles packets on subflows after packets are in
subflow sequence number order and without gaps.

D I F F E R I N G S U B F L O W A N D DATA O R D E R Figure 3.12 shows that
packets that are ordered by the subflow sequence number in the subflow re-
ceive queue do not have to be ordered by the data sequence number. Accord-
ingly, the receiver side packet handling has to consider that the first packet of
the out-of-order queue is not always the first packet with regard to the data
sequence number.

8The Packetdrill scripts to replay the analyzed input queue states and the source for our
implementation are available at https://github.com/AlexanderFroemmgen/mptcp_ofo_
queue_handling.

9The Packetdrill script to replay this input queue state is available at https:

//github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_

scripts/1_simple_example.pkt

https://github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling
https://github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling
https://github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_scripts/1_simple_example.pkt
https://github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_scripts/1_simple_example.pkt
https://github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_scripts/1_simple_example.pkt

46 A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G

Subflows Sequence Number: seq 1001 len 1000

Data Sequence Number: dsn 1001 dlen 1000 ssn 1001

Received on Subflow 1

Received on Subflow 2

Subflows Sequence Number: seq 1 len 1000

Data Sequence Number: dsn 1 dlen 1000 ssn 1

Subflows Sequence Number: seq 1 len 1000

Data Sequence Number: dsn 1 dlen 1000 ssn 1

Dropped on Subflow 2
R

eceiver Sid
e

K
n

o
w

led
ge

Figure 3.11: Example where the current receiver side does not forward a packet with
the data sequence number 1001, even though the packet fits in the data
sequence number space.9

Subflows Sequence Number: seq 1001 len 1000

Data Sequence Number: dsn 2001 dlen 1000 ssn 1001

Received on Subflow 1

Received on Subflow 2

Subflows Sequence Number: seq 1 len 1000

Data Sequence Number: dsn 1 dlen 1000 ssn 1

Subflows Sequence Number: seq 1 len 1000

Data Sequence Number: dsn 1 dlen 1000 ssn 1

Dropped on Subflow 2

R
eceiver Sid

e K
n

o
w

led
ge

Subflows Sequence Number: seq 2001 len 1000

Data Sequence Number: dsn 1001 dlen 1000 ssn 2001

Figure 3.12: The out-of-order queue of a subflow is ordered by the subflow sequence
number. Thus, the first packet of the out-of-order queue is not always
the first packet with regard the data sequence number.10

PA RT I A L LY OV E R L A P P I N G PAC K E T S Figure 3.13 shows an example
of a partially overlapping packet, where the receiver side has to consider that
a packet might contribute only partly to the new available data.

Subflows Sequence Number: seq 501 len 1000

Data Sequence Number: dsn 501 dlen 1000 ssn 501

Received on Subflow 1

Received on Subflow 2

Subflows Sequence Number: seq 1 len 1000

Data Sequence Number: dsn 1 dlen 1000 ssn 1

Subflows Sequence Number: seq 1 len 500

Data Sequence Number: dsn 1 dlen 500 ssn 1

Dropped on Subflow 2

R
eceiver Sid

e
K

n
o

w
led

ge

Figure 3.13: Partially overlapping packets might contain additional data.11

M O R E D E P E N D E N C I E S B E T W E E N S U B F L O W S Finally, Figure 3.14
shows that a new packet in one subflow might lead to new available packets in

10The Packetdrill script to replay this input queue state is available at https:

//github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_

scripts/2_differing_orders.pkt.

https://github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_scripts/2_differing_orders.pkt
https://github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_scripts/2_differing_orders.pkt
https://github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_scripts/2_differing_orders.pkt

3.4 E X E C U T I O N E N V I RO N M E N T I M P L E M E N TAT I O N 47

other subflows. Thus, the receiver side has to recheck if incoming data leads
to additional available data in other subflows.

Subflows Sequence Number: seq 1001 len 1000

Data Sequence Number: dsn 2001 dlen 1000 ssn 1001

Received on Subflow 1

Received on Subflow 2

Subflows Sequence Number: seq 1 len 1000

Data Sequence Number: dsn 1 dlen 1000 ssn 1

Subflows Sequence Number: seq 1 len 1000

Data Sequence Number: dsn 1 dlen 1000 ssn 1

Dropped on Subflow 2

R
eceiver Sid

e K
n

o
w

led
ge

Subflows Sequence Number: seq 1001 len 1000

Data Sequence Number: dsn 1001 dlen 1000 ssn 1001

Figure 3.14: In this example, an optimal receiver has to forward the second packet on
subflow 1 after handled the out-of-order packet on the second subflow.12

PAC K E T S W I T H O U T M A P P I N G Besides these cases, we additionally
have to consider packets without a data sequence number mapping. We leave
these additional cases as future work.

3.4.6.2 Receiver-Side Packet Handling Implementation

We implemented all changes at the receiver-side to avoid unnecessary packet
forwarding delays between the subflow and the meta socket. This is computa-
tional expensive, as the packets in the subflow queues are sorted by subflow
sequence number, but have to be read in order of the data sequence num-
ber (as shown in Figure 3.12). Figure 3.15 shows the required changes at the
receiver side. Note that ofo_push only checks all subflows out_of_order

queues and not the subflow receive queues, as packets in the subflow receive
queues are either in the meta receive or the out-of-order queue.

3.4.7 Implementation Discussion and Future Work

In this section, we presented our runtime environment implementation for
ProgMP. This implementation is designed to provide highest flexibility and
performance for an isolated scheduler execution. We showed that the imple-
mentation fulfills these requirements. In retrospect, we find that the implemen-
tation effort was very large and the complexity of the developed source code
is very high. For more confined application scenarios and correspondingly
adapted requirements, different implementation alternatives might be easier
with regard to the implementation effort, the code complexity, and ultimately

11The Packetdrill script to replay this input queue state is available at https:

//github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_

scripts/3_overlapping_packets.pkt.
12The Packetdrill script to replay this input queue state is available at https:

//github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_

scripts/4_check_all_ofo_queues_after_new_packet.pkt.

https://github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_scripts/3_overlapping_packets.pkt
https://github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_scripts/3_overlapping_packets.pkt
https://github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_scripts/3_overlapping_packets.pkt
https://github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_scripts/4_check_all_ofo_queues_after_new_packet.pkt
https://github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_scripts/4_check_all_ofo_queues_after_new_packet.pkt
https://github.com/AlexanderFroemmgen/mptcp_ofo_queue_handling/packetdrill_scripts/4_check_all_ofo_queues_after_new_packet.pkt

48 A P RO G R A M M I N G M O D E L F O R M P T C P S C H E D U L I N G

tcp_data_queue(sk, skb)

packet handling loop:

 fit in?

 fills gap?

 ofo_push(sk)

ofo_push(sk)

 do

 foreach skb in sk ooo_queue

 fit in meta sk_receive_queue?

 fills gap?

 fills gap for sk ooo_queue?

 while loop found matches

 tcp_data_ready(meta)

case a

case b

case a
and case b

bold = added

Receive Queue

Out-of-Order Queue

In Subflow Sequence Number Order

Subflow 1

Receive Queue

Out-of-Order Queue

Subflow 2

Receive Queue

Out-of-Order Queue

Meta Socket

In Data Sequence Number Order

Figure 3.15: Illustration of the added functionality and the achieved packet flow.

the code maintainability. For example, while the approach with the lexer and
parser in the Linux kernel ensures isolation between schedulers, as no non-
scheduler code can be loaded, a compile infrastructure in the user-land might
leverage the same programming model with less effort. Furthermore, our de-
velopment was driven by avoiding changes in the remaining network stack.
We find that a fundamental refracting of the scheduler interface in the Mul-
tipath TCP implementation based on our experiences might simplify code
complexity.

This is only a limitation with regard to the implementation effort that we
spent on the reusable execution environment. This is neither a limitation of
the programming model nor the usability and efficiency of the implemented
execution environment.

4
E NA B L I N G E X T E N S I V E N E T W O R K E X P E R I M E N T S

In the previous chapters, we identified the need for systematic network eval-
uations with extensive network experiments. With ProgMP, we enable the
specification of various MPTCP schedulers. These novel schedulers, however,
require careful experimental validations with a variety of traffic patterns in a
large number of heterogeneous network environments. This substantiates the
significance of our second research question:

RQ II How can we extensively evaluate and compare the various configu- II Research
Questionsrations of communication systems and network protocols in heteroge-

neous network environments?

In the following, we provide a detailed motivation and requirement analysis
for extensive network experiments that goes beyond the application domain
of MPTCP scheduling. We propose a general model, which captures the re- A general. . .

curring requirements of an experiment driven research process. We present
the design and implementation of MACI1, the first framework for the man- . . . framework

for extensive
experiment.

agement, the scalable execution, and the interactive analysis of a large num-
ber of network experiments. Finally, we discuss the benefits of MACI based
on our experiences with various research projects and refer to evaluations
with MACI in this dissertation, e. g., for systematic evaluations of specified
ProgMP schedulers or a detailed analysis of DASH video streaming players.
Parts of this chapter are published in [F2, F6].

MACI is open source and publicly available together with detailed exam- Publicly available

ples at https://maci-research.net to enable other researchers to increase
their efficiency and benefit from our experiences.

4.1 M OT I VAT I O N

Communication system research relies on experiments. Accordingly, meth-
ods and tools, such as network simulators and their incorporated network
models, emerged in the community to enable controlled experiments. There
is a plethora of simulators and emulators available, which are tailored for dif-
ferent application scenarios, underlying abstractions, and used network mod-
els [2, 21, 63, 106, 123, 129, 153, 183, 192, 212]. Controlled experiments
with these execution environments are usually incorporated in the design and
development of communication systems to provide recurring feedback.

We note that support for seamless, systematic, and extensive network ex-
periments and analysis is missing. This implies i) the specification, manage-
ment and documentation of experiments and their dependent and independent

1An initial implementation of MACI was implemented by Andreas Bauer as part of his
bachelor thesis [S6], which was motivated and supervised by the author of this dissertation.

https://maci-research.net

50 E N A B L I N G E X T E N S I V E N E T W O R K E X P E R I M E N T S

control parameters, ii) the scalable experiment execution, i. e., the parallel ex-
ecution of a large set of experiments, iii) and the interactive analysis of the
experiment results based on the previous specified control parameters. We ar-
gue that an integrated solution is indispensable to increase the efficiency of
communication systems research.

4.2 O B S E RVAT I O N S A N D R E Q U I R E M E N T A N A LY S I S

To make the case for developing MACI, we start by analyzing recent observa-
tions and recurring requirements for conducting network experiments.

I M P ROV E R E S E A R C H E F F I C I E N C Y The driving requirement for an
integrated network experiment framework is to improve research efficiency.
This allows the researcher to focus on reasoning, questioning and improvingFocus on research

the observed behavior. An increased efficiency improves the quality and rigor
of evaluations. The specification and management of evaluations has to be in-
tuitive and convenient to ensure wide adoption of reusable components. This
includes the initial setup of the framework. Finally, an experiment frameworkFoster collaboration

should coordinate experiments and support sharing of results to foster collab-
oration between researchers.

O W N R E S E A R C H E X P E R I E N C E S Foremost, our motivation for the de-
velopment of MACI was grounded in our own requirements and experiences.
We observed that we recurrently implemented support infrastructure and toolsDon’t repeat

yourself to automate experiments and analyze results during research on various com-
munication systems [F9, F12, F13, F22]. The development of these tools
typically started from scratch for every new research project. While we usu-
ally started with just a few scripts, the tooling evolved with the research
project, and finally required a notable fraction of the overall research effort.
Even though the overall development of these infrastructure tools is usually
straightforward, the development distracts from the actual research and delays
the project. Early design decisions for the implementation recurrently turned
out to be wrong, causing major refactoring overhead. Further, we note that
researchers and developers tend to write just an own, small analysis script,
which hinders collaboration. Based on these observations, we argue for a
reusable communication system experiment framework.

I N C R E A S I N G C O M P L E X I T Y While today’s modular, layered commu-
nication systems enable optimizations and reduce complexity per layer and
concern, research on communication systems has to consider complex cross-
layer dependencies. The development and tuning of a transport protocols, forComplex

dependencies. . . example, has to consider various network environments, application work-
loads, traffic patterns, and network stack configurations. The performance of
a DASH adaptation algorithm, for example, might change significantly when
replacing the underlying cubic TCP congestion control with BBR or replac-
ing TCP with alternative transport protocols such as MPTCP and QUIC. The

4.2 O B S E RVAT I O N S A N D R E Q U I R E M E N T A N A LY S I S 51

systematic analysis of these cross-layer dependencies, even if only a single . . . require extensive
experiments.layer should be optimized, requires extensive network experiments.

I N C R E A S I N G I N N OVAT I O N S P E E D We observe an increasing speed Increasing
innovation speed . . .of network innovations. The recently proposed QUIC transport protocol [60],

for example, is designed with the explicit goal to enable frequent iterative
improvements [100]. Hence, these iterative improvements have to be repeti-
tively analyzed with respect to their impact on the application performance,
e.g., in the previous DASH video streaming example.

Recent advances in network programmability further increase the innova- . . . and
increasing network
programmability . . .

tion speed. Our proposed MPTCP scheduler specification language ProgMP,
for example, enables rapid scheduler specification. The design decisions of
these schedulers, however, have to be evaluated carefully in systematic exper-
iments. Similarly, emerging domain-specific languages for congestion con-
trols simplify writing congestion controls [5]. The specified congestion con-
trols, however, require rigorous evaluations. Since these languages enable
rapid specifications of novel communication system algorithms, we argue that . . . require extensive

experiments.we need support for rapid evaluations with systematic experiments.

E X T E N S I V E E X P E R I M E N T S We observe an increasing number of ex-
tensive experiment studies in various communication system domains. These Recurring extensive

experiments for. . .studies consist of a large number of individual emulations or simulations.
Kakhki et al. [79] identify the rapid evolution of network protocols, i. e.,

of the QUIC transport protocol. The authors present a rigorous evaluation
of various QUIC protocol versions and provide their QUIC specific evalua- QUIC,

tion infrastructure online2. Paasch et al. [134] used an experimental design
approach for Multipath TCP. The authors evaluate the dependencies of vari- MPTCP,

ous parameters, including MPTCP configuration parameters such as buffer
sizes, and environment conditions, such as the available capacity and the
propagation delay. Hock et al. [69] conducted a detailed testbed-based eval- BBR,

uation of the recently proposed BBR congestion control [19]. In [F9], we
contributed to a DASH specific evaluation framework and an exhaustive net- . . . and DASH. . .

work emulation-based study of DASH video streaming. Independently of this
work, Zabrovskiy et al. [210] conducted an extensive emulation-based study
of DASH video streaming. All these examples confirm the need for extensive
experiments and contribute frameworks for their confined research domain. A
general reusable experiment framework for communication systems research . . . without a general,

reusable framework.remains an open issue.

S C A L A B L E , PA R A L L E L E X P E R I M E N T S Experiments with many rep-
etitions and variations are time and resource consuming but usually provide
better insights and higher confidence. For a long time, the parallel experi- Increased resource

availability. . .ment execution was limited by the available infrastructure. Recent infrastruc-
ture management advances pave the way for scalable experiment execution.

2The authors made their QUIC specific evaluation framework online available at https:
//arashmolavi.github.io/quic/.

https://arashmolavi.github.io/quic/
https://arashmolavi.github.io/quic/

52 E N A B L I N G E X T E N S I V E N E T W O R K E X P E R I M E N T S

Tools like OpenStack and Proxmox enable private cloud environments to eas-
ily allocate and share computing resources. Public cloud providers apparently
provide infinite computing resources.

We note that the workload of evaluations with a large number of exper-
iments is highly parallel, often denoted as embarrassingly parallel [46], as. . . and parallel

nature of network
experiments.

there are no dependencies or communication between the experiments. Thus,
parallel experiment execution enables an enormous speed up. We illustrate
this for a congestion control experiment: a comparison study of 4 congestion
controls with 10 workloads in 10 network environments, where each config-
uration should be repeated 100 times and each experiment requires about 10
seconds requires over 4 days on a single execution environment. On a cloud
platform, the same experiment requires a few minutes and costs less than
10$.3 This is in particular important, as researchers require timely evaluations
once novel concepts are implemented, but usually do not permanently fully
utilise their evaluation infrastructure.

M O D U L A R F R A M E W O R K The framework has to be modular to sup-
port and exchange major components and customize the system. This in-
cludes simple APIs for the connection of additional components, e. g., to au-
tomatically trigger new evaluations based on previous results. As there arePluggable execution

environments already various optimized execution environments, such as simulators, emu-
lators, hardware testbeds, or real-world infrastructure, the framework should
support their integration and not their replacement.

I N T E R AC T I V E A N A LY S I S The framework has to foster a systematic
analysis of the conducted experiments. This includes the management, col-
lection, and aggregation of experiment results. Following the experiences of
data analytics, business intelligence, and data science, data should be visually
inspectable. The researcher should interact with the system, e.g., to filter for
certain configurations, and trigger the evaluation of additional configurations.

R E P RO D U C I B I L I T Y The conducted experiments have to be reproducible.
This is in particular important as research prototype implementations evolve
quickly. The framework has to support rerunning previous experiments, which
requires access to the used implementations and configurations.

4.3 E X P E R I M E N T- D R I V E N R E S E A R C H P RO C E S S

Based on the previous observations and analyzed requirements, MACI is de-
signed for an experiment-driven research process. This process relies on recur-
ring evaluations with implementations of systems, protocols, and algorithms.
MACI supports the entire lifecycle of an iterative research process, including
the initial execution and analysis of prototypes with a few varying parameters,
the refinement of the underlying algorithms, protocols, and implementations,
and the extensive evaluation of matured implementations. Therefore, MACI

3For a price of 0.50$ per hour for a medium AWS EC2 instance (January 5th, 2018).

4.3 E X P E R I M E N T- D R I V E N R E S E A R C H P RO C E S S 53

enables the management of experiments, their scalable execution4, and the
interactive analysis of the experiment results integrated in a seamless fashion.
Figure 4.1 illustrates the experiment-driven research process. In the follow-
ing, we present the design of MACI for seamless experiment execution and
interactive analysis.

Configurations

En
vi

ro
n

.

Slicing and
Drill Down

Single Experiment Result Add Config. and
Env. Variations

Fix / Improve
Implementation

Add Protocols
and Algorithms

Inspect Results: Interactive Data Analysis and Exploration
Web Frontend to

Manage Experiments

Experiment Study Experiment

Experiment

Configurations

Environments

x

Scalable
Experiment Execution

Iterative Refinments in the Research Process

Pluggable Execution
Environment

…

Figure 4.1: Overview of the experiment-driven research process supported by MACI.
MACI enables the management of experiments, their scalable execution,
as well as an interactive data analysis to explore the experiment results.

4.3.1 A Single Executable Experiment Instance

Based on the previous requirement discussion, MACI uses an Experiment
as smallest, executable instance (Figure 4.2). An experiment consists of the
configuration of the analyzed application, the environment conditions of the
experiment, and the implicit retrieved version information, such as git com-
mit identifier. The experiment further consists of an experiment script, which
specifies the control flow, e. g., by controlling tools such as ns-3, Mininet, or
custom simulators. The execution of an experiment results in various mea-
surements, such as target metrics and logging information. In MACI, experi-
ments are the smallest, atomic execution units. MACI controls the generation
and parallel execution of experiments in a scalable worker infrastructure.

Environment X Version Target Metric

Measurements
<<Executable>>

Experiment

Configuration

 Logging

X

Experiment Script

Figure 4.2: A single experiment is defined by the experiment script, a concrete en-
vironment specification, a concrete configuration, and the used version
of the target application. The execution of a single experiment results in
various measurements, including target metrics and logging information.

MACI explicitly differentiates between configuration and environment pa- Configuration vs.
environmentrameters. This should encourage the research to question the experiment setup

4It is important to distinguish between scaling a single experiment, e. g., a single Mininet
emulation with regard to the number of emulated hosts, and scaling the parallel execution
of thousands of experiments. The former is supported by approaches such as Maxinet [200],
whereas the latter is enabled by MACI.

54 E N A B L I N G E X T E N S I V E N E T W O R K E X P E R I M E N T S

and enables MACI to automatically prepare for meaningful analysis, e. g., to
determine the best configuration per environment as shown in Section 4.3.3.

4.3.2 Structuring Experiments

We structure experiments by decoupling experiment study templates, experi-
ment study configurations, experiment studies, and experiments (Figure 4.3).
An experiment template is a reusable template that exposes variables, e. g.,
with regard to the application configuration and the environment conditions.
Examples of such templates are test setups for the page load time of web
traffic or the average video streaming quality. Experiment configurations are
concrete assignments of application configurations and environment condi-
tions for a specific experiment template.

Experiment Study

+ Id
+ Name
+ Create Date

<<Executable>>
Experiment

+ Id
+ Status
+ Log Messages
+ Target Metrics
+ Concrete Config.
+ Concrete Env.

Create Experiment Study

+ Name
+ Scripts
+ Required Capabilities

+ Configurations
+ Environments

Experiment Study
Template

Experiment Study
Configuration

Figure 4.3: Experiment studies are concrete instantiations of experiment study tem-
plates and bundle a collection of experiments.

The instantiation of an experiment study template and an experiment study
configuration results in an experiment study. Experiment studies consist of
a potentially large number of experiments, i. e., combinations of the pro-
vided application configuration and environment condition parameters. The
presented experiment structure enables researchers to efficiently manage ex-
periments, e. g., by reusing specified templates.

4.3.3 Interactive Data Analysis for Extensive Experiments

In this section, we discuss recurring analysis requirements and their imple-
mentation in MACI. The data analysis process is inspired by established con-
cepts for the analysis of multidimensional data, i. e., the established OLAP
(hyper) cube [26, 53]. The OLAP cube, as illustrated in Figure 4.4, is a mul-
tidimensional data cube. In MACI, each dimension represents a configuration
or environment parameter. The user interface of MACI allows the selection
of target metrics, as well as the specification of filters and aggregations based
on configuration and environment parameters. The result of these operations
is represented visually, e. g., as box plots. The interactive analysis and visu-
alization of the data distributions enables researchers to inspect sources of
variances by changing filters and aggregations.

4.4 I M P L E M E N TAT I O N 55

Configuration
Parameters

En
vi

ro
n

m
e

n
t

C
o

n
d

it
io

n
s

Results of a Single Experiment

Figure 4.4: The OLAP cube is an established data analysis model in the domain of
business intelligence and data warehousing.

MACI provides various views to interactively analyze experiment results.
These interactive views are seamlessly available based on collected experi-
ment results and the provided meta-data from the experiment template. In
particular, the data model, e. g., the available configuration parameters, is
automatically derived from the specified data in the management frontend.
MACI automatically supports the following interactive data analysis features:

• Inspect target metric aggregates and distributions

MACI enables the comparison of target metrics for different configura-
tion and environment parameters. The analysis is visualized as box plot
and can be interactively filtered and aggregated based on the provided
configuration and environment parameters to analyze dependencies and
inspect the underlying target metric distributions.

• Inspect single experiments

MACI further supports a drill down operation to select and analyze a
single experiment execution, e. g., to plot target metrics over time.

• Inspect trade-offs

We note that applications usually exhibit conflicting optimization met-
rics. MACI automatically generates Pareto frontiers to balance conflict-
ing target metrics, such as throughput and latency for congestion con-
trols, loss resilience and overhead for redundant MPTCP schedulers,
and video resolution and stalling probability in video streaming.

• Retrieve the best configuration per environment

Inspired by our observation that a single configuration is not always
superior in all environments, MACI further automatically provides a
visual representation of the optimal configuration per environment.

4.4 I M P L E M E N TAT I O N

In this section, we present the architecture and implementation of the afore-
mentioned model to facilitate extensive evaluation studies. For the implemen-

56 E N A B L I N G E X T E N S I V E N E T W O R K E X P E R I M E N T S

tation of MACI, we attached importance to i) a wide applicability5, ii) a mod-
ular architecture, iii) the seamless integration of established tools and frame-
works, and iv) a comfortable user experience.

Figure 4.5 provides an overview of the MACI architecture, which consists
of i) a central backend, ii) a web frontend, iii) a multitude of worker instances,
and iv) a Jupyter notebook server instance for data analysis. The contribution
of MACI goes beyond these modules, but stems from their seamless integra-
tion to foster the experiment-driven research process. In the following, we
present the different modules and their integration.

Worker
(worker.py)

Backend
(ASP.NET Core)

Web Frontend

experiment.py
parameters.py

…

Pull Job

Data Analysis
(Jupyter Notebook)

Push Result

Start Worker

Jo
b

 (
si

m
u

la
ti

o
n

.z
ip

)

Result Dataset

Manage
Experiments

W
eb

 A
P

I

Java API

Fi
le

 S
ys

te
m

SQLite

Worker
(worker.py)
Worker

(worker.py)

Figure 4.5: The implementation of MACI consists of a management web frontend,
an ASP.NET Core backend, a Jupyter notebook server instance for data
analysis, and a multitude of worker instances.

4.4.1 Frontend

The web frontend includes an editor and management features for all steps of
the experiment lifecycle, e. g., the specification of the experiment and its con-
figuration and environment parameters as well as the monitoring of running
experiments. Figure 4.6 shows the management view for experiment study
templates. This view includes an editor for the experiment script (left), and
the configuration and environment parameters (right). The frontend provides
direct feedback, e. g., of the total experiment duration (right), and automates
reoccurring manual steps. It is implemented with HTML and JavaScript based
on the Angular.js and Bootstrap framework.

Figure 4.7 shows the management view for a running experiment study.
The view provides an overview of the current execution (top right), of all
included experiments (bottom right), the executed experiment script (bottom
left), and management features, e. g., to add configuration and environment
parameters (top left).

5We considered a closer integration with cloud computing products such as AWS RDS
and AWS S3 for MACI’s data storage. However, we preferred to avoid possible lock-in effects
to ensure wide applicability.

4.4 I M P L E M E N TAT I O N 57

Figure 4.6: Experiment study template view of MACI, which enables the manage-
ment of templates and the creation of experiment studies.

Figure 4.7: Experiment study view of MACI.

4.4.2 Backend

The backend is implemented as ASP.NET Core server application. ASP.NET
Core applications are executable on all operating systems that we anticipate
for MACI, i. e., Windows, Linux and macOS. The server provides a REST
API for the web frontend and additional management applications, e. g., using
a ready to use Java interface. The backend relies on a SQLite database as
data store, as this allows easy setups and reasonable performance for most
workloads. The underlying data store can be easily exchanged for application
workloads that go beyond the capabilities of SQLite.

58 E N A B L I N G E X T E N S I V E N E T W O R K E X P E R I M E N T S

4.4.3 Execution Environment Integration

To integrate and control established network simulators and emulators, MACI
relies on Python scripts. The developer has to specify a single Python script
using declared MACI Variables for configuration and environment parame-
ters. MACI uses dependency injection to control these MACI Variables and
generate all combinations of configurations and environments. Listing 4.1
shows a simple example.� �

1 # required import of dependencies
2 import maci

3
4 # inform MACI that the simulation starts now
5 maci.start()

6
7 # configure environment and mechanisms
8 framework.param(’myParam’, default=5)

9 # alternative
10 print "myParam is {{myParam}}"
11
12 # record values
13 value = 42

14 framework.record(’key’, value)

15 framework.warn(’key’, value)

16
17 # inform MACI about the end of the experiment
18 framework.stop()� �

Listing 4.1: API usage example for the integration of established experiments.

4.4.4 Scaling Out Experiment Execution

Experiment instances are executed in parallel to speed up the evaluation.
MACI supports the manual management of workers (servers) as well as the
integration with manageable infrastructures, i. e., AWS EC2 and Proxmox.6

As many experiments require own operating system modules (e.g., MPTCP
experiments in Mininet) and do not support multiple concurrent experiments
per host, we follow an Infrastructure as a Service cloud model. For experi-
ments with less infrastructure dependencies, we envision more resource effi-
cient serverless computations, such as AWS Lambda.

4.4.5 Analysing a Large Number of Experiments

For the data analysis, we rely on the established SciPy [165] data science
tool-chain of Jupyter, numpy, and pandas. We discarded commercial alter-
natives in favor of a publicly available framework. MACI provides analysis
template scripts that instantly provide interactive analysis features to explore

6This work was supported by an AWS research grant. The author of this dissertation
would like to thank Amazon.

4.5 R E L AT E D W O R K 59

and drill down experiments intuitively. Figure 4.8 provides an illustrating ex-
ample with the selection of the filter, grouping, and target metrics (top), the
generated scripts for reproducible plot generation (middle), and the gener-
ated box plot (bottom). The templates are at the sweet spot of automation and
flexibility, as they are easily extendable by researchers with the vast Python
software module ecosystem.

Figure 4.8: Screenshot of the generated analysis interface.

4.5 R E L AT E D W O R K

In the following, we provide an overview of related work on experiment
frameworks. MACI is designed to integrate and benefit from established exe-
cution environments [2, 21, 63, 106, 123, 129, 153, 183, 192, 212] and pro-
vides complementary and orthogonal management and analysis functionality
for experiment-driven research projects. In contrast to parameter tuning and
performance analysis frameworks [16, 38], MACI supports communication
system researchers for seamless network experiments throughout the research
process. The works in [20, 138] present network monitoring frameworks to
collect network performance metrics in ns-3. In contrast, MACI covers the
entire experiment process and includes monitoring interfaces. The presented
monitoring frameworks for ns-3 might be integrated in MACI.

Perrone et al. [139] automate wireless network simulations by guiding the
experimenter to avoid methodology flaws in wireless network simulations.
Similar frameworks for large-scale simulations and the analysis of results of
the simulator ns-2 (ns-3) are presented by Andreozzi et al. [3] (respectively
Hallagan et al. [59, 140]). These tools emerged from the same motivation
and implement similar concepts as MACI. In particular, the authors show that
their tools reduce script errors and the required time for network experiments.
MACI goes beyond these frameworks, i. e., MACI covers a wider range of
the research process and is more general. The previously proposed frame-
works, for example, are deeply integrated with a particular network simulator.
The network emulator Mininet, for example, is not supported. This makes

60 E N A B L I N G E X T E N S I V E N E T W O R K E X P E R I M E N T S

these frameworks useless for real network application evaluations, such as
our extensive DASH video streaming study in Chapter 8, and evaluations
with real operating system network protocol implementations, such as our
MPTCP evaluations with ProgMP in Chapter 5.7

4.6 M AC I E X P E R I E N C E S

We greatly benefited from MACI during the development and evaluation of
Multipath TCP schedulers [F1, F4, F5, F15], the analysis and comparison of
DASH video streaming players [F6], and the analysis of a distributed topol-
ogy graph pattern matching algorithm [F3]. We further provided MACI to
students and found that MACI i) increased their speed and systematics by
guiding them through the experiment lifecycle and ii) helped us to monitor
their progress in the management frontend. Table 4.1 provides an overview of
the MACI applications as of writing this dissertation. Overall, the table shows
that MACI is a reusable tool for a wide range of communication system re-
search, as it was successfully used for experiment studies in various domains
of communication systems on different layers with different execution envi-
ronments. For a discussion of our MACI experiences with regard to ProgMP,
DASH video streaming, and topology graph pattern matching algorithms, we
refer to the corresponding sections of this dissertation, as shown in Table 4.1.
In the following, we discuss our MACI experiences based on the conducted
student theses.

M P T C P E X P E R I M E N TA L D E S I G N S T U DY In [S6], a bachelor student
reproduced the results of a Multipath TCP experimental design study [134].
Besides the necessary evaluation setup for the execution of a single experi-
ment instance, only six lines of code were required to benefit from all MACI
features. This includes the parallel experiment execution and an analysis with
plots that are comparable to the plots of the original publication. Figure A.2
shows a plot, which is automatically generated by the interactive analysis fea-
tures of MACI.

Q U I C M U LT I PAT H E X T E N S I O N D E V E L O P M E N T In [S20], a master
student designed and implemented a multipath extension for QUIC, which
eventually resulted in [F4]. The student used MACI for the iterative develop-
ment and research process and reports that he found MACI helpful. Figure A.3
shows an analysis plot of the final student thesis, which illustrates the applica-
tion of MACI during the thesis. The figure is automatically generated by the
interactive analysis features of MACI and only slightly modified for presen-
tation purposes. The figure shows a download time comparison of different
transport protocols for different file sizes.

7For the sake of completeness, the network simulator ns-3 provides a direct code execu-
tion (DCE) extension that enables the usage of Linux kernel transport protocol implementa-
tions in ns-3 simulations (Section 2.1.3). In general, however, our claim that the related work
is limited to a single simulator, holds true.

4.6
M

A
C

I
E

X
P

E
R

IE
N

C
E

S
61

Table 4.1: Overview of the applications of MACI.

Execution Environment

Layer Protocol Student Thesis

Publication

Used by Bachelor and Master Students

Reproduce MPTCP experimental design study [134] Mininet Transport MPTCP [S6]

QUIC multipath extension development Mininet Transport (MP-) QUIC, (MP-) TCP [S20] [F4]

Learn and evaluate QUIC congestion controls Mininet Transport QUIC [S10]

Used by PhD Students

Development of novel MPTCP schedulers Mininet Transport MPTCP [F1, F5, F15]

→ Detailed discussion in Section 5.11

Analysis of distributed pattern matching Java Diverse DPM [F3]

→ Detailed discussion in Section 7.4.2

DASH player analysis and comparison Mininet Application DASH [F6]

→ Detailed discussion in Section 8.4

62 E N A B L I N G E X T E N S I V E N E T W O R K E X P E R I M E N T S

Q U I C C O N G E S T I O N C O N T RO L C O M PA R I S O N In [S10], a bachelor
student designed congestion controls for QUIC. The student used MACI for
the detailed comparison of different congestion controls and reports that he
found MACI helpful. Figure A.4 shows an analysis of the final student thesis,
which illustrates the application of MACI during the thesis. The figure is au-
tomatically generated by the interactive analysis features of MACI and only
slightly modified for presentation purposes.

4.7 D I S C U S S I O N A N D F U T U R E W O R K

In this chapter, we presented MACI, the first bespoke framework for the seam-
less management, scalable execution, and interactive analysis of a large num-
ber of experiments. MACI emerged as the result of our experiences, require-
ments, and learned best practices during various research projects and evolved
into a smart combination and integration of established tools to foster rigor-
ous evaluations throughout the research process. MACI adopts, for example,
the concepts of interactive data analysis from the domains of business intelli-
gence and data science on network experiments. MACI follows the zeitgeist
of agile development and continuous integration by removing obstacles to
fast iterations, which hinder research progress.

While MACI provides support for the recurring requirements of an exper-
iment driven research process, we find that many helpful features are still
missing. With regard to the expressiveness and model of the experiment con-
figurations and environments, for example, we envision the use of feature
models to specify dependencies of configurations. With regard to the scalable
execution, spot instances might provide monetary savings for non-urgent ex-
periments. Even though big data analysis frameworks were not required for
our use cases so far, we envision that their integration in the seamless research
process might be beneficial for certain application scenarios.

Finally, the MACI concept of a seamless evaluation integration in the re-
search process might enable the establishment of more advanced experiment
concepts in the daily research.

5
D E S I G N A N D A NA LY S I S O F N OV E L M P T C P
S C H E D U L E R S

In the previous chapters, we presented ProgMP for the specification of exe-
cutable Multipath TCP schedulers and MACI for the extensive evaluation of
network protocols and applications. In this chapter, we build on these works
to tackle the third research question:

III What is the design space and what are the opportunities of i) general III Research
Questionspurpose, ii) preference-aware, and iii) application-aware Multipath TCP

scheduling?

In this chapter, we use ProgMP to revisit and extend established schedulers,
and systematically design general purpose, application-, and preference-aware
schedulers that go beyond the established schedulers. This chapter contributes
i) an evaluation of the expressiveness, the significance, and the applicabil- Contributions:

ProgMP and MACI
evaluation and novel
schedulers

ity of our programming model ProgMP, ii) an analysis of the scheduler de-
sign space, iii) the derivation and specification of novel schedulers, iv) the
measurement of the achievable improvements, and v) an evaluation of MACI.
Parts of this chapter are published in [F1, F5, F7, F15, F16, F19].

Table 5.1 provides an overview of the discussed schedulers and the out-
line of this chapter. In Section 5.2, we revisit established schedulers to con-
firm the expressiveness of the programming model. We improve these sched-
ulers, e. g., by recurrent probing of unused subflows to obtain fresh round-trip
time estimates (Section 5.3). We discuss the design decisions for redundant
transmission with regard to the choice of fresh and old packets (Section 5.4).
We present various preference- and application-aware schedulers to improve
the flow completion time in heterogeneous environments (Section 5.5) and
to achieve an acceptable round-trip time (Section 5.6) as well as acceptable
throughputs (Section 5.7). We introduce a one-way delay-aware scheduler for
thin streams (Section 5.8). We further show the benefits of adaptive schedul-
ing during a single connection in a case study of HTTP/2-aware scheduling
that demonstrates how all building blocks of the programming model inter-
act to improve page load times and achieve a reduced usage of costly sub-
flows (Section 5.9). Finally, we discuss emulation pitfalls we experienced
(Section 5.10), the contribution of MACI and ProgMP on the design and eval-
uation of the schedulers (Section 5.11 and Section 5.12), and the potential
future work on schedulers (Section 5.13).

5.1 E VA L UAT I O N S E T U P A N D S C E N A R I O S

For our scheduler evaluations and comparisons, we use various applications,
traffic patterns, target metrics, and network environments. Most evaluation

64
D

E
S

IG
N

A
N

D
A

N
A

L
Y

S
IS

O
F

N
O

V
E

L
M

P
T

C
P

S
C

H
E

D
U

L
E

R
S

Preferences Signaled Discussed Lines of Code

Application Info Flavors with Prefix

Revisit Established

Default 1 15 §5.2.2

with backup-semantics Binary 1 Default + 7 = 22 §5.2.2

Round robin Binary 2 21 and 35 §5.2.3

Redundant1 Binary 1 21 §5.2.4

Novel Schedulers and Features

Active probing for timely RTT estimates for thin streams 3 31, 34, and 38 §5.3

Balance latency and induced overhead for redundant scheduling 3 17, 21, and 24 §5.4

Minimize flow completion time in heterogeneous environments End of flow 1 28 §5.5

Preference-awareness to achieve tolerable RTT Yes Tolerable RTT 2 23 and 26 §5.6

Preference-awareness to achieve acceptable throughput Yes Acceptable throughput 2 22 and 35 §5.7

One-way delay-aware scheduling 1 15 §5.8

Adaptive scheduling for HTTP/2 Yes HTTP-semantics 1 26 §5.9

Table 5.1: Analyzed Multipath TCP scheduler design space. Most schedulers share a common prefix of 11 lines. This reduces the effectively novel lines of code to 4
till 27 per novel scheduler. See Table 5.2 for a comparison of the lines of code with the existing C implementations.

5.1 E VA L UAT I O N S E T U P A N D S C E N A R I O S 65

setups and implementations are available online at https://progmp.net/
evaluations.html. In the following, we present our recurring evaluation
setups and scenarios.

For throughput measurements, we rely on the established iperf 2 tool. For Multiple
applications and
traffic patterns. . .

measurements of the flow completion time, we implemented small sample
applications in Python and C. These applications are configurable with regard
to the flow size and flow repetition. For measurements of the application-layer
round-trip time, we rely on flow completion time measurements with small
flow sizes. We further implemented a constant bitrate stream application to
measure application-limited flows. Finally, we use real world applications,
such as the Nghttpd HTTP server3 and the Postgres SQL database, to show
the applicability for real world applications and traffic patterns.

For the systematic evaluation of different network environments, we rely . . . emulated in
different network
environments . . .

on Mininet [63] emulations with varying topologies. As Mininet enables the
usage of the Linux kernel network stack implementation, it is suitable to run
our ProgMP runtime environment, as presented in Section 3.4.2. Internally,
Mininet relies on network namespaces to provide isolation between emulated
hosts and uses TC and netem for traffic shaping.

We carefully designed our emulation studies to avoid measurement errors
and discuss experienced pitfalls in Section 5.10. As Mininet emulates multi-
ple hosts on a single machine and is known to be sensitive with regard to the
available computational resources, we ensured that the emulation instances
were provisioned with enough computation resources.

The mobile real world measurements are conducted with a Laptop running . . . and real world
environments.Ubuntu and our ProgMP runtime environment as well as schedulers imple-

mented as C modules, i. e., the default and the redundant scheduler. We con-
nected the Laptop with multiple Nexus 5 mobile devices using USB tethering
as well as residential WiFi networks. For the cellular connections, we used
both the Deutsche Telekom and the O2 network in Germany.

1This scheduler was contributed by us but is classified as established scheduler, as it
was originally developed without ProgMP. In fact, the experiences during the design and
evaluation of the redundant scheduler motivated the development of ProgMP.

2See https://iperf.fr/.
3See https://nghttp2.org/documentation/nghttpd.1.html.

https://progmp.net/evaluations.html
https://progmp.net/evaluations.html
https://iperf.fr/
https://nghttp2.org/documentation/nghttpd.1.html

66 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

5.2 R E V I S I T I N G E X I S T I N G S C H E D U L E R S

In this section, we show the expressiveness of our programming model by
revisiting and specifying the MPTCP schedulers that are included in today’s
MPTCP Linux kernel implementation with the version number 0.94, i. e., the
default scheduler, the round robin scheduler, and the redundant scheduler. In
the following, we start with a specification of the general reinjection queue
handling before presenting the individual schedulers.

5.2.1 Preamble and Reinjection Queue Handling

We note that most schedulers use the same, recurring preamble for handling
packet reinjections from the reinjection queue (Listing 5.1). This preamble i)
prioritizes packet reinjection over fresh packets (note that the code is at the
beginning of the scheduler and therefore executed first), ii) pushes packets
on the unsaturated subflow with the lowest round-trip time that did not send
this packet so far, and iii) removes the packet from the reinjection queue, i. e.,
does not retransmit the packet on multiple subflows.� �

1 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => !sbf.IS_THROTTLED AND

2 sbf.CWND > sbf.PACKETS_IN_FLIGHT + sbf.QUEUED AND !sbf.IS_LOSSY);

3
4 IF(sbfCandidates.EMPTY) { RETURN; }

5
6 IF (!RQ.EMPTY) {

7 VAR sbfCandidate = sbfCandidates.FILTER(sbf =>

8 sbf.HAS_WINDOW_FOR(RQ.TOP) AND

9 !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

10 IF (sbfCandidate != NULL) {

11 sbfCandidate.PUSH(RQ.POP());

12 RETURN;

13 }

14 }� �
Listing 5.1: Recurring scheduler preamble for packet reinjection.

The recurring preamble is no sign of a deficient language design, but the
consequence of today’s schedulers. We argue that the design space of packet
reinjection goes beyond the currently used strategy, e. g., by retransmitting
packets on multiple subflows redundantly. Furthermore, removing the recur-
ring packet reinjection pattern from the scheduler specification would hide a
fundamental scheduling aspect from the developer.

We omit the preamble in the following schedulers and concentrate on ex-
cerpts that reflect the key functionality of the schedulers and the programming
model. Complete listings of are available in Appendix A.4.

5.2.2 (Default) Minimum RTT Scheduler

The current default scheduler in the MPTCP Linux kernel [131] pushes pack-
ets from the sending queue on the subflow with the lowest round-trip time

5.2 R E V I S I T I N G E X I S T I N G S C H E D U L E R S 67

(RTT) and unexhausted congestion window [148]. Listing 5.2 shows a cor-
responding scheduler specification for the default scheduler (omitting the
reinjection queue handling as discussed in Section 5.2.1). Our programming
model allows to easily explore a wide range of related schedulers, e. g., con-
sidering the RTT variance for jitter reduction or the RTT ratio of the available
subflows to minimize packet dispersion.� �

1 IF (!Q.EMPTY) {

2 sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR(Q.TOP)).

3 MIN(sbf => sbf.RTT).PUSH(Q.POP());

4 }� �
Listing 5.2: Scheduler specification of the default scheduler.4

B AC K U P S E M A N T I C S In Section 3.3.8. Subflow Policy of [RFC 6824],
the MP_PRIO option is introduced to communicate subflow priorities. This pri-
ority information is used by the default scheduler for a binary backup subflow
decision. As shown in Listing 5.3, the scheduler filters the set of all subflows Use backup subflows

if there is no
alternative

to check for non-backup subflows. The scheduler only uses backup subflows
when there is not a single non-backup subflow. In the following sections, we
show how our programming model provides the flexibility to consider addi-
tional metrics, such as round-trip times or capacities, for the backup decision.� �

1 VAR considerBackups = SUBFLOWS.FILTER(sbf => !sbf.IS_BACKUP).EMPTY;

2
3 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => !sbf.IS_THROTTLED AND

4 sbf.CWND > sbf.PACKETS_IN_FLIGHT + sbf.QUEUED AND !sbf.IS_LOSSY

5 AND (sbf.IS_BACKUP == considerBackups));

6
7 sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR(Q.TOP)).

8 MIN(sbf => sbf.RTT).PUSH(Q.POP());� �
Listing 5.3: Backup subflow handling of the default scheduler.5

O P P O RT U N I S T I C R E T R A N S M I S S I O N Packets on a slow subflow might
cause a receive window block. The opportunistic retransmission [148] ex-
tends the default scheduler by retransmitting packets from a slower subflow
(higher RTT) on a faster subflow (lower RTT) when the receive window is
blocked, i. e., using IF(!minRttSbf.HAS_WINDOW_FOR(Q.TOP)). Our pro-
gramming model allows to explore the wide range of related schedulers, e. g.,
to anticipate such a situation and retransmit packets before the receive win-
dow blocks or to selectively retransmit these packets on multiple subflows.

B U F F E R B L O AT M I T I G AT I O N Paasch et al. [133] present a bufferbloat
mitigation scheme. This scheme compares the smallest experienced RTT and
the current RTT to detect bufferbloat [24] and reduces the congestion window

4See Listing A.4 for a full code example. We provide a ready-to-use test environment at
http://progmp.net/progmp.html#dissertation_default.

5See Listing A.5 for a full code example. We provide a ready-to-use test environment at
http://progmp.net/progmp.html#dissertation_default_backup.

http://progmp.net/progmp.html#dissertation_default
http://progmp.net/progmp.html#dissertation_default_backup

68 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

accordingly. Here, the authors utilize a congestion window that is reduced
by a conservative factor such as cwndlimit = λ (sRTTmin/sRTT) cwnd with
λ = 3 as shown by [42]. Optimizations like this can be easily deployed and
tweaked in our scheduler model.

5.2.3 Round Robin Scheduler

Listing 5.4 presents the specification of the round robin scheduler [133]. Each
subflow maintains a quota of packets in the USER-defined per-subflow vari-
able. The quotas are reset when all subflows filled their quota. The implemen-
tation provides two tuning parameters, the quota and the behavior in case a
subflow is cwnd_limited.

The comprehensive specification of the round robin scheduler enables us
to reason about details. We note, for example, that in case all subflows are
saturated, all quotas are reset. Depending on the experienced traffic patterns,
this might result in unexpected behavior.� �

1 /* Tuning parameters */

2 VAR quota = 1;

3 VAR cwnd_limited = 1; /* 1: Fills the cwnd on all subflows. */

4
5 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => !sbf.IS_THROTTLED AND

6 sbf.USER < quota AND !sbf.IS_LOSSY AND (cwnd_limited == 0 OR

7 sbf.CWND > sbf.QUEUED + sbf.PACKETS_IN_FLIGHT));

8
9 /* Take subflow that started to use quota */

10 VAR inUse = sbfCandidates.FILTER(sbf => sbf.USER != 0).GET(0);

11 IF (inUse != NULL) {

12 IF (inUse.CWND > inUse.QUEUED + inUse.PACKETS_IN_FLIGHT) {

13 inUse.PUSH(Q.POP());

14 }

15 RETURN;

16 }

17
18 VAR fresh = sbfCandidates.GET(0);

19 IF (fresh != NULL) {

20 IF (fresh.CWND > fresh.QUEUED + fresh.PACKETS_IN_FLIGHT) {

21 fresh.PUSH(Q.POP());

22 }

23 RETURN;

24 }

25
26 /* Reset quota */

27 FOREACH (VAR sbf IN SUBFLOWS) { sbf.SET_USER(0); }� �
Listing 5.4: The round robin scheduler.6

Listing 5.4 represents the round robin scheduler in today’s MPTCP Linux
kernel implementation. Listing 5.5 shows an alternative specification relying
on a cyclic subflow index in register R1. This scheduler skips subflows with
an exhausted congestion window.

6See Listing A.6 for a full code example. We provide a ready-to-use test environment at
http://progmp.net/progmp.html#dissertation_round_robin.

http://progmp.net/progmp.html#dissertation_round_robin

5.2 R E V I S I T I N G E X I S T I N G S C H E D U L E R S 69

� �
1 IF (R1 >= SUBFLOWS.COUNT) { SET(R1, 0); }

2
3 IF (!Q.EMPTY) {

4 VAR sbf = SUBFLOWS.GET(R1);

5 IF (sbf.CWND > sbf.PACKETS_IN_FLIGHT + sbf.QUEUED AND

6 !sbf.IS_THROTTLED AND !sbf.IS_LOSSY) {

7 sbf.PUSH(Q.POP());

8 }

9 SET(R1, R1 + 1);

10 }� �
Listing 5.5: Alternative round robin scheduler with a cyclic subflow index.7

5.2.4 Redundant Scheduler

The MPTCP Linux kernel implementation contains a redundant scheduler,
which sends packets redundantly to trade bandwidth for latency. This sched-
uler is a result of two independent research efforts [F7, 113]. Even though
both independent research efforts developed redundant schedulers, a detailed
comparison of both schedulers is difficult.8 The term redundant, for example,
does not specify the behavior given dynamic subflow conditions. Should the
scheduler retransmit all packets on a new subflow that becomes available?
Our programming model eliminates this ambiguity by providing an explicit
and comprehensive specification, as shown in Listing 5.6. The implementa-
tion in the Linux kernel additionally provides the same backup semantics as
the default scheduler.� �

1 FOREACH(VAR sbf IN sbfCandidates) {

2 VAR skb = QU.FILTER(s => !s.SENT_ON(sbf)).TOP;

3 /* Are all QU packets sent on this sbf? */

4 IF(skb != NULL) {

5 sbf.PUSH(skb);

6 } ELSE {

7 sbf.PUSH(Q.POP());

8 }

9 }� �
Listing 5.6: Specification of the redundant scheduler.9

7See Listing A.7 for a full code example. We provide a ready-to-use test environment at
https://progmp.net/progmp.html#dissertation_round_robin2.

8See https://github.com/multipath-tcp/mptcp/pull/95 for a discussion on the
semantic differences between both original implementations. The discussion illustrates the
difficulty of a semantic comparison based on the C implementations.

9See Listing A.8 for a full code example. We provide a ready-to-use test environment at
https://progmp.net/progmp.html#dissertation_redundant. A scheduler that consid-
ers backup semantics is provided at https://progmp.net/progmp.html#dissertation_
redundant_backup.

https://progmp.net/progmp.html#dissertation_round_robin2
https://github.com/multipath-tcp/mptcp/pull/95
https://progmp.net/progmp.html#dissertation_redundant
https://progmp.net/progmp.html#dissertation_redundant_backup
https://progmp.net/progmp.html#dissertation_redundant_backup

70 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

5.2.5 Discussion

In this section, we showed that our programming model enables a compact
and comprehensive specification of today’s Multipath TCP schedulers. An im-
plementation complexity comparison between ProgMP and the established C
implementation is non trivial. The number of required lines of code, a weak
complexity indicator, shows that ProgMP requires only between 3.4% and
12.4% of a comparable C implementation (Table 5.2). A more compact C
implementation might, however, reduce the number of lines for the C im-
plementation. In addition to the original feature commits, today’s C sched-
ulers needed at least twelve commits to fix bugs and add functionalities (Ap-
pendix A.6). This supports our claim that C implementations are complex and
error prone.

Table 5.2: Comparison of the lines of code required in the original C implementation
and our presented specified schedulers.

Scheduler Lines of code Lines of code

including empty lines without empty lines

ProgMP C Relative ProgMP C Relative

Default 22 634 3.4% 19 530 3.6%

Round robin 35 302 11.6% 30 241 12.4%

Redundant 28 302 9.3% 25 251 10.0%

5.3 AC T I V E P RO B I N G F O R T H I N S T R E A M S 71

5.3 AC T I V E P RO B I N G F O R T H I N S T R E A M S

In the following, we motivate, design, and evaluate an active probing sched-
uler for thin streams.

5.3.1 Motivation and Analysis

Long, data-intensive connections, such as heavy elephant streams, are usually
throughput limited and easily exhaust the congestion window of the lowest
round-trip time subflow. Thus, packets of heavy streams are spread over all
subflows by the default scheduler (Figure 5.1, top). Thin streams, as predomi-
nant for interactive applications, such as online games [55], SSH- and control- Thin streams . . .

connections, however, are long-running connections that exhibit only a few
packets per round-trip time (Figure 5.1, bottom). These thin streams usually
have tight latency requirements and are sensitive for the application-layer
round-trip time rather than the throughput. We note that the default sched-
uler effectively uses only the subflow with the lowest RTT for thin streams, . . . effectively use a

single subflow . . .as a few packets easily fit on a single subflow.
The default Multipath TCP scheduler relies on the round-trip time esti-

mations of the subflows TCP retransmission timeout calculation. Thus, Mul-
tipath TCP implicitly obtains subflow round-trip time estimates by sending
data on these subflows. As thin streams effectively use a single subflow, es- . . . which causes

stale RTT estimates.timates of the remaining subflows become stale. Thus, the default scheduler
does not notice reducing round-trip times of the remaining subflows, e. g., due
to fluctuating cross-traffic and queuing [50, 184].

Figure 5.1: Heavy streams are spread over multiple subflows, whereas thin streams
usually rely on the minimum round-trip time subflow.

We note that most heavy streams are actually thin in one direction due
to a request-response pattern. Many applications and application-layer pro-
tocols send small requests and large responses in long-running TCP connec-
tions. For example, HTTP/2 connections handle multiple requests and are
kept open for a long time to reduce the handshake overhead [120]. Figure 5.2
shows an example where a client C sends a small request to the server S. The

72 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

S C C Subflow 2 Subflow 1

R
TT

 E
st

im
at

io
n

Response Data
(with TCP ACK) Response Data

Request

TCP ACK

R
TT

 E
st

im
at

io
n

R
TT

 E
st

im
at

io
n

TCP ACK

Figure 5.2: Even if one direction of a stream fills all subflows, the other direction
might be thin and lack useful RTT estimates.

server replies with a large response. The data packets and the corresponding
acknowledgements enable S to estimate the RTT on both subflows. However,
C is not able to estimate the RTT on the second subflow with the default
scheduler, as this requires sending TCP data and receiving a corresponding
TCP acknowledgement. In this section, we propose to actively probe unusedActive probing . . .

subflows for thin streams. This probing has to be executed within MPTCP, as
alternatives, such as ICMP-based round-trip time estimates, might be priori-
tized or routed differently by the network.

5.3.2 Scheduler Design

Our previous analysis showed that RTT estimates become stale if subflows
are not used regularly. Accordingly, we propose to actively probe unused sub-
flows. In the following, we discuss details of our redundant probing packets
at the end of a burst design.

R E D U N DA N T P RO B I N G PAC K E T We denote the set of subflows that. . . with redundant
packets . . . were not used recently as S̃ out of all subflows S. A naive probing approach

would schedule the next packet of the sending queue on a subflow s ∈ S̃ as
soon as there is at least one stale subflow, i. e., S̃ 6= /0. This probing subflow
is in general not the subflow with the minimum round-trip. Thus, scheduling
a fresh packet on this subflow negatively affects the delay for this packet and
might increase the flow completion time. We therefore propose to send the
probing packet redundantly on the best and the stale subflows S̃.

P RO B I N G AT T H E E N D O F T H E B U R S T Redundancy has to be used. . . at the end
of a burst. carefully to avoid harming performance. Consider a connection is not used

for a short time period. Consequently, the scheduler should probe all subflows,
as S̃ = S. If the application sends a burst of packets, a naive redundant prob-
ing packet scheduler would transmit the first packet redundantly. If the burst
saturates the best subflow, however, the redundant packet wastes resources

5.3 AC T I V E P RO B I N G F O R T H I N S T R E A M S 73

of the probed subflows. The spare congestion window of the probed subflow
should ideally be used for fresh instead of redundant packets. In particular,
the last packets of the burst implicitly probe the stale subflows as soon as the
best subflow is saturated. We therefore propose to probe stale subflows with
redundant packets at the end of a burst.

Listing 5.7 shows the specification of the active probing scheduler with
ProgMP. Lines 10–24 implement active probing in addition to the default
scheduler (lines 5–8). The scheduler keeps track of the next probing time per
subflow. We use per subflow probing intervals, i. e., a multiple of the subflows
RTT, to balance probing aggressiveness for a wide range of environments and
avoid synchronized probes on multiple subflows. Line 14 checks if the last
packet of a burst is scheduled, i. e., if the sending queue is empty and the
TCP PUSH flag is set. Note that relying on the sending queue to determine the
end of a burst (Q.EMPTY) is insufficient due to the scheduler timing. When
an application pushes data to the socket, the scheduler might be invoked as
soon as the first packet is queued. Thus, the sending queue Q contains a single
packet when the scheduler is first called even though the application is still
pushing additional data. Finally, the scheduler pushes the last packet of the
queue (packetToSend) redundantly on stale subflows in case the last packet
of a burst is scheduled.� �

1 IF (Q.EMPTY) { RETURN; } /* Nothing to do */

2
3 VAR probingIntervallRttMultiplier = 5; /* Tuning parameter */

4
5 /* Schedule as usual. There is at least one subflow */

6 VAR packetToSend = Q.TOP;

7 VAR bestSbf = sbfCandidates.MIN(sbf => sbf.RTT);

8 bestSbf.PUSH(Q.POP());

9
10 /* Reset subflow probing timeout */

11 bestSbf.SET_USER(CURRENT_TIME_MS + bestSbf.RTT *
12 probingIntervallRttMultiplier);

13
14 IF(Q.EMPTY AND packetToSend.PSH) { /* End of a burst ? */

15 VAR probingSbfs = sbfCandidates.FILTER(sbf =>

16 sbf.USER < CURRENT_TIME_MS);

17
18 FOREACH(VAR sbf IN probingSbfs) {

19 /* Send redundant packet and reset subflow probing timeout */

20 sbf.PUSH(packetToSend);

21 sbf.SET_USER(CURRENT_TIME_MS + sbf.RTT *
22 probingIntervallRttMultiplier);

23 }

24 }� �
Listing 5.7: Specification of an active probing scheduler. Lines 5–8 essentially

represent the default scheduler, whereas lines 10–24 implement
redundant probing packets at the end of a burst.10

10See Listing A.9 for a full code example. We provide a ready-to-use test environment at
http://progmp.net/progmp.html#dissertation_active_probing.

http://progmp.net/progmp.html#dissertation_active_probing

74 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

5.3.3 Evaluation

In the following, we evaluate the impact of active probing on the application-
layer RTT, the efficiency, and the maximum achievable throughput.

P RO O F O F C O N C E P T We systematically reduce the round-trip time of
the second subflow, starting with a high round-trip time, in a Mininet setup
with two disjoint paths. This corresponds to a typical scenario were conges-
tion initially causes high delays on the second subflow [184]. We use a sam-
ple application that recurrently sends small requests and waits for a response,
thereby tracking the application-layer round-trip time as experienced by this
application. Note that the application-layer round-trip time corresponds to the
flow completion time for small flows.

Figure 5.3 shows traces of the application-layer RTT for the established
schedulers (default, redundant, and round robin), our proposed redundant
probing packet scheduler, and a slight variation that uses fresh probing pack-
ets instead of redundant packets. The default scheduler constantly uses theDefault’s RTTs

become stale first subflow and remains unaware of the second subflow’s RTT. The redun-
dant scheduler provides the lowest possible application-layer round-trip time,
as the used sample application is not throughput limited. The redundant prob-
ing packet scheduler uses the minimum RTT subflow at the beginning. WhenRedundant probing

works! the RTT of the second subflow falls below the RTT of the first subflow, the
measurement shows a few smaller application-layer RTT samples caused by
the redundant probing packets, before the scheduler eventually prefers the
second subflow. The time till the second subflow is preferred depends on the
used round-trip time sample smoothing and is an aggressiveness parameters.
Finally, the evaluation shows that the naive non-redundant probing introducesNon-redundant

probing fails high performance degradations, as high RTT subflows increase the flow com-
pletion times.

5 10 15 20 25 30
Time [s]

Application-Layer Round-Trip Time

Fresh Probing Packet Scheduler

5 10 15 20 25 30
Time [s]

0.08

0.10

0.12

0.14

0.16

0.18

A
p
p
.-

La
ye

r
R
TT

 [
s]

Application-Layer Round-Trip Time

Defauult Scheduler

Redundant Scheduler Round Robin Scheduuler

Redundant Probing Packet Scheduler

Round Robin Scheduler

Redundant Scheduler

Red. Probing Sched.

Fresh Probing Packet Scheduler

Defauult Scheduler

Figure 5.3: Application-layer round-trip time comparison. In the Mininet emulation,
the first subflow has a constant 100ms RTT, whereas the second subflow’s
RTT decreases from 160ms to 80ms. The measurement shows that the
default scheduler is outperformed by the redundant and the active probing
with redundancy scheduler.

5.3 AC T I V E P RO B I N G F O R T H I N S T R E A M S 75

The round robin scheduler performs bad at the beginning of the trace, as it
switches between the low RTT and the high RTT subflow. The detailed anal-
ysis shows that the experienced application-layer one-way delay fluctuates
with the round robin scheduler (Figure 5.4). Due to a timing dependency of
the round robin scheduler of the sender and the receiver, the application-layer
round-trip time does not fluctuate.

6 8 10 12 14
Time [s]

0.03

0.04

0.05

0.06

0.07

0.08

D
e
la

y
[s

]
One-way Transmission Delay (Round Robin Scheduler)

Figure 5.4: Experienced one-way delay with the round robin scheduler.

E N D O F B U R S T P RO B I N G We further evaluate the design decision to Probing at the end of
a burst. . .use the last packet of a burst for redundant probing. Figure 5.5 compares the

flow completion time for an already established MPTCP connection depend-
ing on the flow size in a setup with a non-changing 100ms RTT. The eval-
uation shows that the proposed redundant probing packet at the end of the

0.00

0.05

0.10

0.15

0.20

0.25

Fl
o
w

 C
o
m

p
l.

T
im

e
 [

s]

Default MinRTT Scheduler

25
.0

25
.5

26
.0

26
.5

27
.0

27
.5

28
.0

28
.5

29
.0

29
.5

30
.0

30
.5

31
.0

31
.5

32
.0

Flow Size [kb]

0.00

0.05

0.10

0.15

0.20

0.25

Fl
o
w

 C
o
m

p
l.

T
im

e
 [

s]

Naive Redundant Probing When Stale
0.00

0.05

0.10

0.15

0.20

0.25

Fl
o
w

 C
o
m

p
l.

T
im

e
 [

s]

Redundant Probing Packet at the End of a Burst

Figure 5.5: The proposed redundant probing packet at the end of a burst does not
harm flow completion times, whereas a naive probing as soon as a sub-
flow becomes stale negatively affects the flow completion time depending
on the flow size.

76 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

burst does not harm flow completion times compared to the default scheduler.. . . does not harm. . .

The naive probing as soon as a subflow becomes stale, however, negatively
affects the flow completion time depending on the flow size, i. e., when the
redundant packet steals congestion window of fresh packets (for flow sizes. . . in contrast to

naive approaches. between 27.5 and 28.5kb in this example).

OV E R H E A D For an evaluation of the induced overhead, we compare the
totally transferred data on the wire with the actual data for the previous ex-
ample of Figure 5.3. As expected, the redundant scheduler transfers twice the
data in the scenario with two subflows (Figure 5.6). In contrast, the probing
scheduler only induces a small overhead. Note that this evaluation shows a
single example. In general, the overhead depends on a multitude of aspects,
such as the probing interval and the traffic pattern. In particular, the overhead
reduces for higher throughput requirements, as shown in the next evaluation.

Default

Redundant

Round Robin

Activ
e Probing

0.0

0.5

1.0

1.5

2.0

R
e
la

ti
ve

 D
a
ta

Relative Data Transfer

Figure 5.6: Normalized data transfer depending on the scheduler.

T H RO U G H P U T Measurements of the maximum throughput with iperf in
a scenario with two subflows show only non-significant throughput degrada-
tions for the probing scheduler (Figure 5.7). This is reasonable, as the sched-
uler does not trigger probing packets for the high throughput workload, which
saturates all subflows. In contrast, the redundant scheduler provides only half
the throughput. As a matter of fairness, we note that the redundant scheduler
is designed to sacrifice throughput for lowest possible latency of small flows,
as discussed in Section 5.4.

Default

Redundant

Round Robin

Activ
e Probing

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
e
la

ti
ve

 T
h
ro

u
g
h
p
u
t

Throughput Comparison

Figure 5.7: Throughput comparison with two subflows.

5.4 E X P L O R I N G R E D U N DA N C Y 77

5.4 E X P L O R I N G R E D U N DA N C Y

In the following, we explore the design space of redundant scheduling.

5.4.1 Motivation and Analysis

Multipath TCP originates from the need for higher throughput and reliability.
Redundant transmission over different subflows – a crude form of forward
error correction – was later independently proposed and proved helpful for
latency-sensitive applications in lossy environments by the author of this dis-
sertation [F7] and Lopez et al. [113].11

The existing redundant scheduler provides full redundancy, as discussed in
Section 5.2.4. Thus, the scheduler transmits all packets on all subflows unless
the packet is already acknowledged and therefore removed from QU before
being sent on the slower subflow. We argue that the design space for redun-
dant schedulers is widely unexplored, e. g., with regard to the choice of the Large, unexplored

design space for
redundancy

next packet, the level of redundancy in environments with multiple subflows,
as well as a fine granular control of the redundancy depending on contextual
and environmental parameters. Figure 5.8 provides an example for illustra-
tion. Here, the packets Seq 3, Seq 4, and Seq 5 as well as an acknowledge-
ment for packet Seq 2 are in flight. The sending queue contains the unsent
packets Seq 6 and Seq 7. Which packet should a redundant scheduler trans-
mit next? Should the scheduler prefer a fresh packet from Q, i. e., Seq 6, the
already sent packet Seq 5 from QU, or an earlier sent packet, such as Seq 3?

Seq 2

Seq 3 Seq 4

Seq 5

Q

Subflow 1 (RTT 50ms)

In Flight

Seq 3
Subflow 2 (RTT 150ms)

Receiver Sender

Ack 2

Seq 2

Seq 5

Seq 4

Seq 7

Seq 6

Seq 3

Figure 5.8: Should a redundant scheduler send the fresh packet Seq 6 or the old
packet Seq 5 when the acknowledgement arrives at the sender?

5.4.2 Scheduler Design

In this section, we propose two novel redundant schedulers. For a revision of
the established redundant scheduler, we refer to Section 5.2.4.

11Parts of the redundant scheduler as presented in [F7] were implemented by Tobias Erb-
shäußer as part of his Bachelor thesis [S11], which was motivated and supervised by the author
of this dissertation.

78 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

O P P O RT U N I S T I C R E D U N DA N C Y In general, the redundant scheduler
sends all packets redundantly. We note, however, that larger flows fill the con-Different

redundancy flavors gestion windows of all subflows and lead to more queued packets in Q. Based
on this observation, we propose the opportunistic redundant scheduler.
This scheduler sends packets on all subflows that have not exhausted their
congestion window when a packet is scheduled for the first time, as shown
in Listing 5.8. For thin flows, this scheduler provides full redundancy. Com-
pared to the redundant scheduler, however, gradually incoming acknowledge-
ments ensure that the scheduler favors fresh packets over the transmission of
redundant packets in case the sending queue Q fills.� �

1 IF(!sbfCandidates.EMPTY) {

2 FOREACH(VAR sbf IN sbfCandidates) {

3 sbf.PUSH(Q.TOP);

4 }

5 DROP(Q.POP());

6 }� �
Listing 5.8: Redundancy flavor, denoted as opportunistic redundancy, which

decides about redundancy the moment the packet is scheduled the
first time.12

R E D U N DA N T I F Q E M P T Y We additionally propose the redundant if

Q empty scheduler. This scheduler always favors fresh packets from Q and
only retransmits packets in case the sending queue Q is empty (Listing 5.9).
Thus, this scheduler behaves like the default scheduler as long as there are
unsent packets.� �

1 IF (!Q.EMPTY) {

2 sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR(skb)).

3 MIN(sbf => sbf.RTT).PUSH(Q.POP());

4 } ELSE {

5 /* Retransmit on all other subflows...

6 * Start with oldest packet

7 * that was not sent on a sbf that has cwnd */

8
9 VAR skbCandidate = QU.FILTER(skb_ =>

10 !sbfCandidates.FILTER(sbf => ! skb_.SENT_ON(sbf)).EMPTY

11).TOP;

12
13 sbfCandidates.FILTER(sbf => !skbCandidate.SENT_ON(sbf)).

14 MIN(sbf => sbf.RTT).PUSH(skbCandidate);

15 }� �
Listing 5.9: Alternative redundancy flavor, denoted as redundant if Q

empty, which retransmits if the sending queue is empty.13

12See Listing A.10 for a full code example. We provide a ready-to-use test environment at
https://progmp.net/progmp.html#dissertation_opportunistic_redundant.

13See Listing A.11 for a full code example. We provide a ready-to-use test environment at
https://progmp.net/progmp.html#dissertation_redundant_q_empty.

https://progmp.net/progmp.html#dissertation_opportunistic_redundant
https://progmp.net/progmp.html#dissertation_redundant_q_empty

5.4 E X P L O R I N G R E D U N DA N C Y 79

5.4.3 Evaluation

R E D U N DA N C Y I N T H E W I L D We evaluate the benefits of redundancy
in real world environments with the redundant MPTCP scheduler. Here, we
captures the application-layer round-trip time, which corresponds to the flow
completion time for small flows. We captured packet traces to determine what-
if values for singlepath TCP, i. e., pure LTE and WiFi connections.

Figure 5.9 shows a sample measurement between a residential WiFi and Residential WiFi
and LTELTE network in Heidelberg (Germany) and an AWS EC2 instance in North

Virgina in March 2015. Even though the WiFi connection exhibits nearly al-
ways lower round-trip times, the rare packet drops and retransmissions lead
to a high tail round-trip time for the WiFi connection. As the round-trip times
and packet losses of WiFi and LTE show a very low correlation, these WiFi
drops are all compensated by the LTE connection. In the measurement, the
redundant scheduler reduces the average RTT by 27%, the worst case RTT
compared with WiFi by over 78%, and the worst case RTT compared with
LTE by over 15%. Regarding the trade-off between minimal average RTT
(WiFi) and minimal worst case RTT (LTE), the redundant scheduler provides
the best of two worlds and ensures minimal average and minimal worst case
RTT at the same time. The cumulated round-trip times show the improve-
ment of the tail of the distribution. Our measurements confirm the results of
Chen et al. [23], who reported WiFi packet drop probabilities of 3% (note that
our figures show RTT measurements, thus each point represents two packets),
LTE packet drop probabilities of 0.1%, and 15ms latency difference between
WiFi and LTE.

0 20 40 60 80 100
Time

200

400

600

800

A
p
p
lic

a
ti
o
n
-L

a
ye

r
R
T
T
 [

m
s]

WiFi
LTE
Redundant

0 200 400 600 800
Application-Layer RTT [ms]

0

25

50

75

100

C
D

F

WiFi
LTE
Redundant

Figure 5.9: Real world measurement of the application-layer round-trip time be-
tween Heidelberg and North Virgina. The redundant scheduler compen-
sates WiFi packet drops and reduces the tail round-trip time significantly.

80 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

As the redundant scheduler is supposed to outperform singlepath TCP espe-Challenging train
environments . . . cially in challenging environments, we repeated the application-layer round-

trip time measurements to the server in North Virginia in a train moving with
up to 160km/h between Heidelberg and Frankfurt. Here, we used two Nexus
5 devices connected with a notebook for two parallel LTE connections. Fig-
ure 5.10 shows that the LTE connections experience a lot of packet drops and
retransmissions. This leads to extremely high variances in the application-
layer round-trip time and a very bad tail latency for singlepath connections.
We were surprised that even though both LTE connections used the same car-
rier, the packet drops show nearly no correlation. This allows the redundant. . . benefit

significantly from
redundancy.

scheduler to more than halve the average application-layer round-trip time
and reduce the standard deviation by a factor of 19 for the 100 second trace.

0 20 40 60 80 100
Time

0

2500

5000

7500

10000

A
p
p
lic

a
ti
o
n
-L

a
ye

r
R
T
T
 [

m
s]

LTE 1
LTE 2
Redundant

0 2000 4000 6000 8000 10000
Application-Layer RTT [ms]

0

25

50

75

100

C
D

F

LTE 1
LTE 2
Redundant

Figure 5.10: Real world measurement of the application-layer round-trip time to
North Virgina as experienced in a moving train between Heidelberg and
Frankfurt. The redundant scheduler compensates packet drops and large
delays effectively.

We repeated the real world measurements multiple times and experienced
similar behavior. To further confirm and understand the significant impact of
redundancy, we executed additional measurements with the unreliable UDP
protocol. The UDP measurements showed that some packets were still suc-
cessfully transmitted with more than 4 seconds delay. We assume that this
artefact might influence the round-trip time estimation and retransmission
timeout of the TCP connections.

C O N T RO L L E D E X P E R I M E N T S We used MACI for a systematic com-Systematic
redundancy flavor

comparison
parison of the different redundancy flavors. Figure 5.11 shows the average
flow completion time depending on the flow size in a Mininet environment
with two subflows and 2% loss. Each experiment consists of 200 requests. We

5.4 E X P L O R I N G R E D U N DA N C Y 81

100 101 102 103 104

Flowsize [Bytes]

0.10

0.15

0.20

0.25

0.30

0.35

Fl
o
w

 C
o
m

p
le

ti
o
n
 T

im
e
 [

s]

2% Loss

Default
Redundant If Queue Empty Opportunistic Redundancy

Redundant

104

Flowsize [Bytes]

0.1

0.2

0.3

0.4

0.5

Fl
o
w

 C
o
m

p
le

ti
o
n
 T

im
e
 [

s]

2% Loss

0 25000 50000 75000 100000 125000 150000 175000 200000
Flowsize [Bytes]

0.25

0.50

0.75

1.00

1.25

1.50

Fl
o
w

 C
o
m

p
le

ti
o
n
 T

im
e
 [

s]

2% Loss

Default

Default

Default

Default

Redundant

Redundant

Redundant

Figure 5.11: Average flow completion time depending on the flow size with two ho-
mogeneous subflows and 2% loss in Mininet.

executed these experiments for 32 different flow sizes and repeated each ex-
periment 20 times. The evaluation shows that all redundant schedulers outper-
form the default scheduler for small flows in a lossy environment. For increas-
ing flow sizes, the opportunistic redundant scheduler and the redundant
if Q empty scheduler outperform the redundant scheduler. Here, the default
scheduler is slightly better than the best redundancy flavors. A detailed analy-
sis shows that the opportunistic redundant scheduler and the redundant
if Q empty scheduler sometimes send redundant packets the moment before
new packets are added to the sending queue. Figure 5.12 shows the same ex-
periment with unlimited capacity and without loss. The evaluation confirms
that the performance degradation of the redundant schedulers for large flows
is caused by the waste of the available capacity.

These experiments compare the flow completion time, i. e., the time till all
packets arrived. Depending on the traffic pattern and the application, different

82 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

target metrics might be more relevant, e. g., the number of in-order packets at
a certain time. We discuss this for the example of HTTP in Section 5.9.

Default
Redundant If Queue Empty Opportunistic Redundancy

Redundant

0 25000 50000 75000 100000 125000 150000 175000 200000
Flowsize [Bytes]

0.10

0.11

0.12

0.13

Fl
o
w

 C
o
m

p
le

ti
o
n
 T

im
e
 [

s]

0% Loss, Not Throughput Limited

Figure 5.12: Average flow completion time depending on the flow size with two ho-
mogeneous subflows and without throughput limitation.

Figure 5.13 shows a comparison of the maximum achievable throughput.
We observe that the opportunistic redundant scheduler, the redundant

if Q empty scheduler, and the default scheduler provide nearly the max-
imum achievable throughput for iperf measurements with constantly high
throughput flows. For bursty flows, however, the throughput depends on fine
timing aspects. The opportunistic redundant scheduler and the redundant
if Q empty scheduler base their behavior on implicit information, i. e., the
queue sizes and incoming acknowledgements. Here, we again note that the
schedulers may send redundant packets just before new data arrives in Q. We
tackle this problem in the next section with application information.

Sin
gle

pa
th

 TC
P

Def
au

lt
MPT

CP

Red
un

da
nt

Opp
or

tu
nis

ti
Re

du
nd

an
cy

Re
du

nd
an

t I
f Q

 E
m

pt
y

0.0

0.5

1.0

1.5

2.0

R
e
la

ti
ve

 T
h
ro

u
g
h
p
u
t

iPerf Bursty Flows

Figure 5.13: Comparison of the maximum throughput normalized to singlepath TCP.

5.5 S I G N A L I N G T O B O O S T S H O RT F L O W S 83

5.5 S I G N A L I N G T O B O O S T S H O RT F L O W S

In the following, we motivate, design, and evaluate the usage of application
information and signals to boost short flows.

5.5.1 Motivation and Analysis

The significance of MPTCP scheduling decisions increases with the subflow
heterogeneity. Specifically, flow completion times of short flows may suf-
fer significantly in environments with heterogeneous round-trip times. Fig-
ure 5.14 illustrates a typical situation at the end of a short flow, where the
sending queue Q is empty and packets are still in flight. Here, we do not as-
sume any particular packet scheduling, e. g., packet Seq 35 may have been
scheduled on subflow 2 due to an exhausted congestion window at subflow
1. In this simplified example, packet Seq 35 will, in most cases, dominate
the flow completion time. However, entirely avoiding the slower subflow is
not optimal either as the flow completion time benefits from Seq 32 on the
slower subflow.

Seq 31

Seq 32

Seq 33 Seq 34

Seq 35

Q

Subflow 1 (RTT 40ms)

Seq 33
Subflow 2 (RTT 90ms)

Receiver Sender

Ack 31

Seq 32

Seq 35
Seq 34

QU
In Flight

Seq 31

Figure 5.14: The end of a short flow: The impact of heterogeneous subflows on the
FCT is most significant when scheduling the last packets of the flow.

In the previous sections, we used redundancy to compensate packet loss
and probe subflows. Some of these schedulers used implicit application infor-
mation, i. e., if Q is empty or the PSH flag of a packet is set, to guess if the end
of a flow is reached. In this section, we discuss how explicit application sig- Informed

redundancynals enable application-awareness and informed redundancy to compensate
previous scheduling decisions at the end of a flow.

5.5.2 Scheduler Design

The relative ratio of the subflow round-trip times, denoted hereafter RTT ra-
tio, is inherently dynamic in communication networks due to queuing, mobil-
ity, and interface-specific properties. This was empirically shown, for exam-
ple, for mobile networks [32, 35]. Our programming model enables MPTCP
schedulers that precisely leverage application information to address subflow
heterogeneity. Next, we show how signaling the end of the flow by the applica- Signal the

end of the flowtion leads to improved scheduler performance and optimized FCT for hetero-
geneous subflows. Listing 5.10 shows a novel selective compensating

84 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

scheduler that uses this elementary information to compensate for previous
scheduling decisions by selectively retransmitting packets in flight on sub-
flows where the packets were not sent so far at the signaled end of the flow.
To avoid retransmissions of packets that are in flight on a fast subflow, this
scheduler selectively retransmits packets that are only scheduled on slow sub-
flows. Thus, the selective compensating scheduler retransmits the unac-
knowledged packets Seq 32 and Seq 35 on subflow 1 but not Seq 33 and
Seq 34 on subflow 2 in the example of Figure 5.14.� �

1 /* ... Default scheduler ... */

2
3 VAR minRttRatio = 2;

4
5 /* Use R1 to signal end of flow */

6 IF(R1 == 1 AND Q.EMPTY) {

7 VAR bestSbf = sbfCandidates.MIN(sbf => sbf.RTT);

8 VAR sbfsToCompensate = SUBFLOWS.FILTER(sbf =>

9 sbf.RTT > bestSbf.RTT * minRttRatio);

10
11 /* Packet not on bestSbf but on at least one sbfToCompensate */

12 VAR skbCandidate = QU.FILTER(skb =>

13 !skb.SENT_ON(bestSbf) AND

14 !sbfsToCompensate.FILTER(sbf => skb.SENT_ON(sbf)).EMPTY

15).GET(0);

16
17 bestSbf.PUSH(skbCandidate);

18 }� �
Listing 5.10: A scheduler that compensates previous scheduling decisions at

the end of a flow.14

5.5.3 Evaluation

We evaluate the performance of the selective compensating scheduler
using a Mininet setup with two heterogeneous subflows while varying the
RTT ratio. As a baseline, we consider measurements for the default sched-
uler, where the flow completion time rapidly increases under high RTT ratios.
Being aware of the flow end, the novel scheduler efficiently optimizes the
flow completion time under skewed RTT ratios, as shown in Figure 5.15.

Our programming model enables a rapid comparison of different flavors of
the selective compensating scheduler. We compare the scheduler with a
naive compensating scheduler, which retransmits all packets at the end of
the flow. The evaluation of the induced overhead (Figure 5.15 right, normal-
ized to the default scheduler) shows that the naive scheduler induces large
overheads for small RTT ratios. The selective compensating scheduler,
however, is tuned for compensating behavior only for RTT ratios larger than
2 and effectively avoids this overhead for small RTT ratios. A variation of

14See Listing A.9 for a full code example. We provide a ready-to-use test environment at
http://progmp.net/progmp.html#dissertation_compensate.

http://progmp.net/progmp.html#dissertation_compensate

5.5 S I G N A L I N G T O B O O S T S H O RT F L O W S 85

the choice of the retransmitted packet using the TOP packet instead of first
(GET(0) in line 15) shows only minor impact on the flow completion time.

1 2 3 3.5 4

RTT Ratio

0.08

0.09

0.10

0.11

Fl
ow

 C
om

p
le

ti
on

 T
im

e
[s

]
Flow Completion Time

1 2 3 3.5 4

RTT Ratio

1.0

1.2

1.4

1.6

1.8

2.0

O
ve

rh
e
a
d
 R

a
ti
o

Overhead

Default Compensating Selective C. Compensating [TOP]
Left to right boxplots:

Figure 5.15: Leveraging application information to mitigate the impact of subflow
heterogeneity on short flows: The compensating scheduler reduces the
flow completion time under increasing RTT ratio by trading flow com-
pletion times for transmission overhead.

The selective compensating scheduler shows that the extended schedul-
ing API enables novel schedulers that significantly improve the flow comple-
tion time in heterogeneous environments with informed redundancy.

86 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

5.6 B A L A N C I N G RO U N D - T R I P T I M E S A N D S U B F L O W P R E F E R E N C E S

In the following, we motivate, design, and evaluate schedulers that balance
the experienced round-trip time and subflow preferences.

5.6.1 Motivation and Analysis

Interactive applications, such as voice-based personal assistant systems, usu-Latency sensitive
applications. . . ally exhibit request-response communication patterns with a few packets per

request. These applications are round-trip time sensitive but usually do not
benefit from increased throughput. At the same time, users have preferences. . . and user

preferences. with regard to the utilized network resources and corresponding subflows.
Paths in and between data-centers might, for example, be associated with dif-
ferent costs. Users of mobile devices, e. g., often prefer WiFi over metered cel-
lular traffic. A massive, international measurement study [35] of multi-homed
wireless MPTCP performance over WiFi and LTE interfaces showed that
around 15% of all measurement samples experienced a significantly higher
RTT on WiFi compared with LTE. Thus, users do not want to waste their ex-
pensive (metered cellular) traffic in case the round-trip time on the preferred
subflows is sufficient for the interactive application.

The backup mode of the default scheduler is unable to use the lower round-
trip time subflow in these scenarios. As of today, there is no scheduler that
schedules packets of interactive applications preference-aware while consid-
ering acceptable round-trip times.15

5.6.2 Scheduler Design

We propose schedulers that selectively utilize backup subflows to retain round-
trip times below a given acceptable upper round-trip time. Such a latency- and
preference-aware scheduler enables substantial performance improvements
for interactive applications while preserving subflow preferences.

I N I T I A L A P P RO AC H Listing 5.11 shows a scheduler that only considers
backup subflows if no non-backup subflow has a sufficient round-trip time
to retain the acceptable upper round-trip time (line 4). The application can
control the acceptable upper round-trip time by setting the R1 register with
the extended socket API of ProgMP.

A DVA N C E D A P P RO AC H The previous example fulfills the basic require-
ment of a round-trip time and preference-aware scheduler. Imagine, however,
a situation where the round-trip time of the non-backup subflow is slightly
higher than the round-trip time of the backup subflow. Here, the benefit of
the backup subflow is marginal. Listing 5.12 shows a scheduler that only con-Only use

significantly better
backup subflows

siders backup subflows if all non-backup subflows have a significantly higher

15During the finalisation of this dissertation, Apple deployed an interactive scheduler mode
for iOS, which uses cellular interfaces in case the WiFi round-trip time exceeds 500ms.

5.6 B A L A N C I N G RO U N D - T R I P T I M E S A N D S U B F L O W P R E F E R E N C E S 87

round-trip time. Note that this scheduler uses all subflows to derive the min-
imum round-trip time (lines 3–4) instead of the filtered result of available
subflows in the variable sbfCandidates. The application can control param-
eters, i. e., the round-trip time differences that are considered to be significant,
by setting the registers with the extended socket API of ProgMP.� �

1 VAR considerBackup = SUBFLOWS.FILTER(sbf => sbf.RTT < R1

2 AND !sbf.IS_BACKUP).EMPTY;

3
4 IF (considerBackup) {

5 /* No acceptable non-backup found, consider all subflows */

6 sbfCandidates.MIN(sbf => sbf.RTT).PUSH(Q.POP());

7 } ELSE {

8 /* Acceptable non-backup found, take best non-backup */

9 sbfCandidates.FILTER(sbf => !sbf.IS_BACKUP).

10 MIN(sbf => sbf.RTT).PUSH(Q.POP());

11 }� �
Listing 5.11: ProgMP specification of a scheduler that retains an acceptable

upper RTT and subflow preferences.16� �
1 VAR bestNonBackup = SUBFLOWS.FILTER(sbf => !sbf.IS_BACKUP).

2 MIN(sbf => sbf.RTT);

3 VAR bestBackup = SUBFLOWS.FILTER(sbf => sbf.IS_BACKUP).

4 MIN(sbf => sbf.RTT);

5
6 VAR considerBackup = bestBackup.RTT_MS < R1 AND

7 bestNonBackup.RTT_MS > R2;

8
9 IF (considerBackup) {

10 /* No acceptable non-backup found, consider all subflows */

11 sbfCandidates.MIN(sbf => sbf.RTT).PUSH(Q.POP());

12 } ELSE {

13 /* Acceptable non-backup found, take best non-backup */

14 sbfCandidates.FILTER(sbf => !sbf.IS_BACKUP).

15 MIN(sbf => sbf.RTT).PUSH(Q.POP());

16 }� �
Listing 5.12: A scheduler that considers RTT differences to retain an

acceptable RTT and subflow preferences.17

5.6.3 Evaluation

P RO O F O F C O N C E P T For a proof of concept, we use a Mininet emu-
lation and systematically increase the RTT on the preferred subflow. Fig-
ure 5.16 shows a graphical representation of the experienced round-trip times
using the PRINT feature of ProgMP during the Mininet emulation.

The default MinRTT scheduler uses the non-preferred subflow as soon as it
becomes the subflow with the lowest RTT, i. e., after 3 seconds (Figure 5.17,

16See Listing A.13 for a full code example. We provide a ready-to-use test environment at
http://progmp.net/progmp.html#dissertation_rtt_preference_aware.

17See Listing A.14 for a full code example. We provide a ready-to-use test environment at
http://progmp.net/progmp.html#dissertation_rtt_preference_aware_advance.

http://progmp.net/progmp.html#dissertation_rtt_preference_aware
http://progmp.net/progmp.html#dissertation_rtt_preference_aware_advance

88 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

0 2 4 6 8 10 12 14
40

50

60

70

80

90

100

110

120

R
T
T
 [

m
s]

Round-Trip Time over Time

Preferred Subflow (e.g., WiFi)
Non-Preferred Sublow (e.g., LTE)

Time [s]

Preferred Subflow

Figure 5.16: Scheduler comparison for a dynamic Mininet scenario. In contrast to
the established schedulers, the novel scheduler retains the acceptable
round-trip time (90ms) and subflow preferences (prefer WiFi).

top). Setting the non-preferred subflow as backup subflows does not provide
remedy, as backup subflows are only used when all non-backup subflows fail.
Thus, the backup subflow is not used in the presented round-trip time trace
(Figure 5.17, middle). Both examples show that the existing schedulers are
not flexible with regard to the backup subflow usage. Finally, Figure 5.17 (bot-
tom) confirms that the scheduler in Listing 5.11 enables RTT- and preference-
aware scheduling. Here, the scheduler starts using the backup subflow as soon
as the preferred subflow experiences round-trip times above the acceptable
RTT, as set to 90ms for the example run.

0 2 4 6 8 10 12 14

Default MinRTT Scheduler

0 2 4 6 8 10 12 14

Novel Acceptable RTT and Preference-Aware Scheduler

Time [s]

Preferred Subflow (e.g., WiFi)

U
se

d
 S

u
b
fl
ow

s
U

se
d
 S

u
b
fl
ow

s
U

se
d
 S

u
b
fl
ow

s

Non-Preferred Backup Sublow (e.g., LTE)

Non-Preferred Backup Sublow (e.g., LTE)

Preferred Subflow (e.g., WiFi)

0 2 4 6 8 10 12 14

Default MinRTT Scheduler (Backup Mode)

Preferred Subflow (e.g., WiFi)

Figure 5.17: Replayed round-trip time trace to compare the behavior of the sched-
ulers during changing round-trip times.

The design space of possible round-trip time and preference-aware sched-ProgMP supports a
large design space

for RTT-aware
schedulers

ulers goes beyond the two presented approaches. ProgMP enables the appli-
cation developer to easily adapt these examples, e. g., to consider additional
metrics. The specified schedulers, for example, check if all preferred subflows
have an unacceptable round-trip time. A slight modification might check if
the available subflows, i. e., those that have not exhausted their congestion
window, have unacceptable round-trip times. Such a scheduler would favor
increased throughput over subflow preferences, but might use backup sub-
flows only for a few packets depending on the traffic pattern.

5.7 B A L A N C I N G T H RO U G H P U T A N D S U B F L O W P R E F E R E N C E 89

5.7 B A L A N C I N G T H RO U G H P U T A N D S U B F L O W P R E F E R E N C E

In the following, we motivate, design, and evaluate schedulers that balance
the achieved throughput and subflow preferences.

5.7.1 Motivation and Analysis

We now consider Multipath TCP schedulers that combine application- and
preference-awareness to retain throughput targets. Again, subflow preferences
might capture a wide range of prioritizations, e. g., to consider asymmetric
subflow costs between data-centers or to avoid over-utilizing metered cellular
network links.

To illustrate the current inability of applications to leverage preference-
aware Multipath TCP scheduling, we conducted real world measurements
between a cloud provider and a mobile device on top of off-the-shelf MPTCP
with two subflows (WiFi and LTE). Figure 5.18 depicts an example of an
interactive streaming session. The first 6 seconds of the stream are encoded
with 1MB/s, the remaining part with 4MB/s. Although the 1MB/s stream is
sustainable on the 10ms RTT WiFi-subflow, we observe that today’s default
scheduler places 30% of the traffic on the higher RTT subflow (LTE, 40ms).
This is the result of the throughput and load balancing optimization of the
default scheduler in conjunction with specific timings of the congestion con-
trol and TCP small queue (TSQ) optimization. We note that setting the LTE
subflow to backup mode does not provide remedy as it practically deactivates
the subflow. This becomes evident when the stream quality rises to 4MB/s,
where the backup mode does not provide enough throughput.

0 2 4 6 8 10 12 14

time [s]

0

1000

2000

3000

4000

5000

th
ro

u
g
h
p
u
t

[k
B

 /
 s

]

1 MB Stream

4 MB Stream

WiFi LTE Default Default + backup

Figure 5.18: Setup and reproducible measurement result of an interactive streaming
session over MPTCP using WiFi and LTE with today’s default MinRTT
scheduler. Neither the default scheduler nor its backup option allow pre-
serving preferences, i. e., exhausting the bandwidth of the faster WiFi
subflow before relying on the additional one (LTE) while sustaining the
video bitrate of 4MB/s.

90 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

5.7.2 Scheduler Design

TA R G E T D E A D L I N E Deadline-driven applications such as Dynamic Adap-
tive Streaming over HTTP (DASH) pose deadlines on the arrival times of data
chunks. A preference-aware scheduler might restrict scheduling packets on
non-preferred subflows as long as data chunk deadlines are retained. Indepen-
dently of our work, MP-DASH [62] proposes a similar approach. MP-DASH
operates on top of the default scheduler to activate and deactivate the consid-
eration of backup subflows in the default scheduler. A comparable scheduler
with ProgMP requires only a slight modification of the established default
scheduler, as shown in Listing 5.13.� �

1 VAR considerBackups = (R1 == 1) OR /* This line is changed */

2 SUBFLOWS.FILTER(sbf => !sbf.IS_BACKUP).EMPTY;

3
4 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => !sbf.IS_THROTTLED AND

5 sbf.CWND > sbf.PACKETS_IN_FLIGHT + sbf.QUEUED AND !sbf.IS_LOSSY

6 AND (sbf.IS_BACKUP == considerBackups));

7
8 sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR(Q.TOP)).

9 MIN(sbf => sbf.RTT).PUSH(Q.POP());� �
Listing 5.13: ProgMP specification of a scheduler that can be controlled by the

application with regard to the consideration of backup subflows.
This scheduler is a slight variation of Listing 5.3.18

TA R G E T T H RO U G H P U T For applications that require a constant bit-rate
stream, e. g., interactive video applications, throughput variations are detri-
mental to the Quality of Experience (QoE). We propose a preference-aware
scheduler that only resorts to non-preferred subflows if the acceptable through-
put is not achieved. This scheduler has to provide timely scheduling decisions
to ensure constant bitrate streaming. Note that such a timely decision is usu-
ally not possible in the application layer.

Listing 5.14 shows the specification of the throughput- and preference-
aware TAP scheduler. Here, the application signals the required minimum
throughput to the scheduler by setting the target throughput in register R1.
The scheduler uses the up-to-date subflow properties per scheduling decision
to calculate the expected throughput. Non-preferred subflows are only used if
required and are restricted to transmit the leftover fraction targetBw−capPrefSbf

targetBw .

18See Listing A.15 for a full code example. We provide a ready-to-use test environment at
http://progmp.net/progmp.html#dissertation_backup_controlled.

http://progmp.net/progmp.html#dissertation_backup_controlled

5.7 B A L A N C I N G T H RO U G H P U T A N D S U B F L O W P R E F E R E N C E 91

� �
1 VAR targetBwKB = R1;

2 VAR prefAhead = R4;

3 VAR factor = 100;

4 VAR mss = 1400;

5 VAR maxAhead = 100 * factor;

6
7 VAR prefS = sbfCandidates.FILTER(s=>!s.IS_BACKUP).MIN(s=>s.RTT);

8 IF (prefS != NULL) {

9 prefS.PUSH(Q.POP());

10 IF (R4 < maxAhead) { SET(R4, R4 + factor); }

11 } ELSE {

12 VAR capKB = prefS.CWND / prefS.RTT_MS * mss;

13 VAR ratio = factor * capKB / (targetBwKB - capKB);

14 IF(prefAhead > ratio AND cap < targetBwKB) {

15 sbfCandidates.MIN(s => s.RTT).PUSH(Q.POP());

16 SET(R4, prefAhead - ratio);

17 }

18 }� �
Listing 5.14: ProgMP specification of a novel scheduler, which retains a target

throughput and subflow preferences.19

5.7.3 Evaluation

We evaluated the TAP scheduler in the wild between a client Laptop and an
Amazon EC2 server instance both running our runtime environment. On the
client side we used a Nexus 5 device with USB tethering as LTE modem to
a major European service provider and an IEEE 802.11n WiFi connection
to a typical residential broadband service. Figure 5.19 shows that the TAP

0 2 4 6 8 10 12 14
time [s]

0

1000

2000

3000

4000

5000

th
ro

u
g
h
p
u
t

[k
B
 /
 s

]

1 MB Stream

4 MB Stream

WiFi LTE
Default Preference-aware (NEW) 0.0

0.2
0.4
0.6
0.8
1.0
1.2

M
B
/s

 S
u
m

1 MB/s Stream

0
1
2
3
4
5
4 MB/s Stream

0.0
0.2
0.4
0.6
0.8
1.0
1.2

M
B
/s

 W
iF

i

0
1
2
3
4
5

Default

Backu
p
NEW

0.0
0.2
0.4
0.6
0.8
1.0
1.2

M
B
/s

 L
T
E

Default

Backu
p
NEW

0
1
2
3
4
5

Figure 5.19: Evaluation in the wild: In contrast to the default scheduler, the
throughput- and preference-aware (TAP) scheduler uses the signaled tar-
get throughput (1MB/s then 4MB/s) and efficiently utilizes subflows
according to their preferences.

19See Listing A.16 for a full code example. We provide a ready-to-use test environment at
http://progmp.net/progmp.html#dissertation_throughput_preference_aware.

http://progmp.net/progmp.html#dissertation_throughput_preference_aware

92 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

scheduler significantly reduces the non-preferred LTE usage while sustaining
the required overall stream throughput. In particular, the TAP scheduler deals
very efficiently with fluctuations in WiFi throughput. ProgMP enables a con-
venient specification and tuning of this throughput- and application-aware
scheduler for various throughput sensitive applications, e. g., by implement-
ing different aggressiveness flavors.

5.8 O N E - WAY D E L AY- AWA R E S C H E D U L I N G 93

5.8 O N E - WAY D E L AY- AWA R E S C H E D U L I N G

In the following, we motivate, design, and evaluate one-way delay-aware Mul-
tipath TCP scheduling.

5.8.1 Motivation and Analysis

Round-trip times are seldom symmetric. In data-centers, for example, con-
gestion in a single direction causes asymmetric queuing delays. Asymmetric Round-trip times are

seldom symmetricrouting in the Internet [136] and properties of access technologies, such as
HSDPA, LTE, and WiFi [99], cause asymmetric round-trip times. We argue
that thin streams, which require low application-layer round-trip times instead
of high throughput, benefit from scheduling packets on the subflow with the
lowest one-way delay instead of the lowest round-trip time. In particular, one-
way delay-aware scheduling enables application-layer round-trip times below
the minimum subflow round-trip time, as illustrated in Figure 5.20.

Server Client

SBF 1
10 ms

SBF 1 20 ms

SBF 2
15 ms

SBF 2
15 ms

SBF 2 SEQ 1 Data: RESPONSE

SBF 1 SEQ 1 Data: REQUEST

SBF 1 ACK 8

SBF 2 ACK 9

1

2

3

2

Figure 5.20: With one-way delay-aware scheduling, request response patterns on the
application layer can be finished in 10ms + 15ms = 25ms, which is less
than the minimum subflow round-trip time (10ms + 20ms = 30ms =
15ms + 15ms).

One-way delay-aware scheduling requires a one-way delay estimation. This
is challenging to obtain in a distributed system without synchronized clocks.
In the following, we show how multipathing enables sufficient one-way delay
estimates for scheduling decisions.

5.8.2 Calculating One-Way Delay Estimations

The default Multipath TCP scheduler uses the round-trip time estimations that
are used for the retransmission timeout calculation. Originally, the round-trip
time samples for computing the TCP retransmission timer ([RFC 6298]) re-
lied on Karn’s algorithm [80]. Today, the TCP Timestamp Option as specified
in [RFC 1323] (TCP Extensions for High Performance) supersedes this al-
gorithm and is ubiquitous for round-trip time measurements [97]. Each TCP
timestamp option contains two timestamps, the TSVal with the sender’s times-

94 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

tamp and the TSecr with the last received timestamps of the communication
partner. These values are used to estimate the round-trip time by comparing
a replied timestamp (originated from the local clock) with the local time (of
the local clock). As only timestamps of the same local clock are compared,
clock synchronization is not necessary.

One-way delay-aware scheduling essentially requires to order all subflows
by their outgoing one-way delay. In the following, we show how to order
subflows accordingly relying on the established TCP timestamp options to es-
timate outgoing one-way delay differences of different paths without synchro-
nized clocks. This design enables deployable one-way delay-aware MPTCP
scheduling without modifications at the communication partner. Figure 5.21
provides a TCP timestamp example with two subflows. Both hosts L and R

have different initial clocks (100 vs. 1000). The timestamps of received pack-
ets (TSVal and TSecr) originate from different, non-synchronized clocks. We
denote this using the indices L and R for the local and remote clocks. The pro-
cessing time at the remote host is denoted as P. We assume a reasonably small
clock drift between the sender and the receiver clock.

MPTCP Packet
TSValL = 100

L R R Subflow 2 Subflow 1

delay = 10

Initial Clock: 1000 Initial Clock: 1000 Initial Clock: 100

MPTCP Packet
TSValR = 1010
TSecrL = 100

delay = 20

delay = 15

delay = 15

MPTCP Packet
TSValL = 100

MPTCP Packet
TSValR = 1015
TSecrL = 100

Figure 5.21: TCP timestamps for two hosts (L and R) with non-synchronized clocks
and two subflows with asymmetric RTTs.

We calculate two delay estimators DEout and DEin for each subflow

DEout := TSValR−P−TSecrL (5.1)

DEin := NOWL−TSValR. (5.2)

Due to the non-synchronized clocks, the real delays are not derivable. How-
ever, the difference of the outgoing delay estimators of two different subflows
corresponds to the time difference when the packets were sent at the remote
side. Assuming (on average) constant processing times at the remote host, i.e.,
Psb f 1 = Psb f 2, this corresponds to the receive time difference and therefore to
the one-way delay difference diff.

5.8 O N E - WAY D E L AY- AWA R E S C H E D U L I N G 95

DEout, sbf1−DEout, sbf2

= TSValR, sb f 1−Psb f 1−TSecrL, sb f 1−
(TSValR, sb f 2−Psb f 2−TSecrL, sb f 2)

= TSValR, sb f 1−TSecrL, sb f 1−
TSValR, sb f 2 +TSecrL, sb f 2

(5.3)

Note that the initial packets neither have to be sent at the same time nor
redundantly. If both packets are sent with a time difference δ , the initial
timestamps differ by δ , i.e., TSecrL, sb f 1 +δ = TSecrL, sb f 2. This further im-
plies that the receive time differs by δ +diff and TSValR, sb f 1+δ +diff=

TSValR, sb f 2 and therefore TSValR, sb f 1−TSValR, sb f 2 + δ = diff.
In Figure 5.21, both subflows have the same RTT of 30 but different one-

way delays. Host A calculates the delay estimators per subflow

DEout, sb f 1 = 1015−100 = 915 (5.4)

DEout, sb f 2 = 1010−100 = 910. (5.5)

The comparison of both estimators shows that the outgoing delay of the
first subflow is higher than the second subflow. Accordingly, the MPTCP
scheduler at host A should prefer the second subflow. Remarkably, if both
hosts use the one-way delay-aware scheduler, the application-layer RTT be-
comes smaller than the smallest subflow RTT, i. e., 10+ 15 = 25 < 30.

The authors of [31, 177] discuss opportunities of multipathing and one-way
delay estimations. In contrast, this work is the first that explicitly analysis
MPTCP scheduling for thin flows and considers the complex dependencies
of scheduling, traffic patterns, and the available scheduling informations, to-
gether with an implementation and detailed evaluation.

5.8.3 Scheduler Design

We implemented the presented one-way delay estimator calculation in the
receive_packet_handler of the MPTCP Linux kernel implementation and
integrated it into ProgMP. This allows a convenient specification of the delay-
aware scheduler relying on the added subflow properties DELAY_OUT and
DELAY_IN, as shown in Listing 5.15.� �

1 IF (!Q.EMPTY) {

2 sbfCandidates.MIN(sbf => sbf.DELAY_OUT).PUSH(Q.POP());

3 }� �
Listing 5.15: Scheduler specification of the one-way delay-aware scheduler.20

20See Listing A.17 for a full code example. We provide a ready-to-use test environment at
http://progmp.net/progmp.html#dissertation_onewaydelay.

http://progmp.net/progmp.html#dissertation_onewaydelay

96 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

5.8.4 Evaluation

For an evaluation of the one-way delay-aware scheduling, we use Mininet
to systematically vary the delay asymmetry λ = DelayOUT

DelayIN
while keeping the

round-trip time constant. Figure 5.22 compares the application-layer round-
trip time of the default scheduler, the round robin scheduler, the redundant
scheduler, and the one-way delay-aware scheduler. The figure shows that the
application-layer round-trip time with the default scheduler is independent
of the delay asymmetry. The redundant scheduler benefits from asymmetric
delays due to the evaluation setup with limited throughput requirements. The
round robin scheduler provides on average the same application-layer RTT as
the default scheduler, but shows increasing variances for higher asymmetries.
Finally, the one-way delay-aware scheduler is able to achieve the same, min-
imum application-layer RTT as the redundant scheduler. The measurement
further confirms that the one-way delay-aware scheduler achieves application-
layer round-trip times below the minimum subflow RTT.

0.5 0.8 1.0 1.2 1.5 1.8 2.0
Delay Asymmetry

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

A
p
p
.
La

ye
r

R
o
u
n
d
-T

ri
p
 T

im
e
 [

s]

Default MinRTT Scheduler

0.5 0.8 1.0 1.2 1.5 1.8 2.0
Delay Asymmetry

Redundant Scheduler

0.5 0.8 1.0 1.2 1.5 1.8 2.0
Delay Asymmetry

Round Robin Scheduler

0.5 0.8 1.0 1.2 1.5 1.8 2.0
Delay Asymmetry

One-way Delay-aware Scheduler

S
ym

m
et

ri
c

S
ym

m
et

ri
c

S
ym

m
et

ri
c

S
ym

m
et

ri
c

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

A
p
p
.
La

ye
r

R
o
u
n
d
-T

ri
p
 T

im
e
 [

s]

Figure 5.22: Application-layer round-trip time depending on the delay asymmetry.
The default scheduler does not benefit from asymmetric delays, whereas
the variance increases for the round robin scheduler. The one-way delay-
aware scheduler provides the same reduced application-layer RTT than
the redundant scheduler without inducing overhead.

The overhead of the redundant scheduler becomes apparent when compar-
ing the flow completion time for larger responses of 500kb (Figure 5.23).
These flows require multiple round-trip times to complete. While the one-
way delay-aware scheduler and the default scheduler provide nearly the same
flow completion times, the performance of the redundant scheduler decreases
due to the wasted resources.

5.8 O N E - WAY D E L AY- AWA R E S C H E D U L I N G 97

1.2 1.5 1.8 2.0 2.2 2.5
Delay Asymmetry

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Fl
o
w

 C
o
m

p
le

ti
o
n
 T

im
e
 [

s] Default MinRTT Scheduler

1.2 1.5 1.8 2.0 2.2 2.5
Delay Asymmetry

Redundant Scheduler

1.2 1.5 1.8 2.0 2.2 2.5
Delay Asymmetry

One-way Delay-aware Scheduler

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

Fl
o
w

 C
o
m

p
le

ti
o
n
 T

im
e
 [

s]

Figure 5.23: The default scheduler and the one-way delay-aware scheduler provide
comparable flow completion times for 500kb responses, whereas the
performance of redundant scheduler decreases.

98 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

5.9 T O WA R D S H T T P / 2 - AWA R E S C H E D U L I N G

In the following, we motivate, design, and evaluate an HTTP/2-aware Multi-
path TCP scheduler.

5.9.1 Motivation and Analysis

HTTP is one of the fundamental protocols of today’s Internet. Thus, boost-
ing the HTTP and mobile web performance is a promising opportunity for
MPTCP and a key to universal MPTCP deployment. Next, we analyze rel-
evant aspects of today’s web infrastructure and implement a novel HTTP/2-
aware scheduler that overcomes existing limitations.21

Measurement studies with off-the-shelf MPTCP showed only marginal per-
formance improvements for HTTP [125] and revealed that web protocols in-
cur complex interactions with the multipath-enabled transport layer [61]. To-
day, browsers, web servers, and the web content are highly tuned and have
complex dependencies. The traffic patterns, for example, depend on the used
HTTP version, content optimizations, and infrastructure. Multiple short-lived
connections, for example, might boost HTTP/1.1 performance but do not ben-
efit from MPTCP due to the slow initial subflow establishment. The widely
used optimization to distribute web content on multiple server [54], denoted
as domain sharding, reduces the amount of data per TCP connection and the
potential of MPTCP scheduling optimizations.

These optimizations for HTTP/1.1 are not necessary or even detrimental
with the optimizations of HTTP/2 such as framing and multiplexing. With
HTTP/2, browsers may, for example, use a single TCP connection efficiently
for multiple HTTP requests while signaling priorities to web servers to favor
CSS and JavaScript over images to reduce initial loading times. Thus, the
transition from HTTP/1.1 to the emerging HTTP/2 protocol particularly im-
proves performance for pages that rely on a single TCP connection and might
increase the potential of MPTCP.

5.9.2 Scheduler Design

Overall, the previous analysis illustrates that HTTP performance has com-
plex dependencies on the content, the infrastructure, and the used protocols.
In the following, we highlight and overcome two shortcomings of today’s un-
informed MPTCP schedulers. First, packets that refer to external resources
may be scheduled on slow subflows, delaying the corresponding 3rd-party
content requests and thereby potentially increasing the page load time. One
fourth of the Alexa-200 pages have 3rd-party dependencies on their critical
path of initial page loading [198]. Second, subflow preferences are not con-
sidered. This leads to transferring substantial data amounts, such as images,

21Parts of the HTTP-aware scheduler were developed by Max Weller as part of his Bache-
lor thesis [S22], which was motivated and supervised by the author of this dissertation.

5.9 T O WA R D S H T T P / 2 - AWA R E S C H E D U L I N G 99

HTTP/2
Stream

External (blocking)
dependencies

Required for
initial page

HTML

CSS / JS

Images Preference-
aware

No High RTT

Content Scheduling

Min RTT

1st Byte

Last Byte

Figure 5.24: Illustration of the different scheduling strategies depending on the con-
tent in the HTTP stream.

on non-preferred subflows, such as metered cellular networks, after the initial
page is loaded, hence, not even increasing the perceived quality by the user.

H T T P / 2 - AWA R E S C H E D U L I N G To overcome these shortcomings we
implemented a novel HTTP/2-aware scheduler. This scheduler leverages all
building blocks of our programming model, using content-dependent schedul-
ing strategies as shown in Figure 5.24. For the initial data, i. e., until the infor-
mation on external dependencies is transferred, subflows with high round-trip
times are avoided. The remaining data that is required to render the initial
page is transferred with the default minimum RTT scheduler strategy. For
the remaining data that is not required for the initial page and therefore inde-
pendent of the perceived quality by the user we invoke preference-awareness.
Listing 5.16 shows a ProgMP scheduler that implements the presented adap-
tive scheduling.� �

1 IF (Q.EMPTY) { RETURN; }

2
3 VAR modeNoHighRtt = 0;

4 VAR modeMinRtt = 1;

5 VAR modePrefAware = 2;

6
7 IF (Q.TOP.USER == modeNoHighRtt) {

8 VAR minRttSbf = SUBFLOWS.MIN(sbf => sbf.RTT).RTT;

9 sbfCandidates.FILTER(sbf => sbf.RTT < minRttSbf * 3 / 2).

10 MIN(sbf => sbf.RTT).PUSH(Q.POP());

11 } ELSE IF (Q.TOP.USER == modeMinRtt) {

12 sbfCandidates.MIN(sbf => sbf.RTT).PUSH(Q.POP());

13 } ELSE IF (Q.TOP.USER == modePrefAware) {

14 sbfCandidates.FILTER(sbf => !sbf.IS_BACKUP).

15 MIN(sbf => sbf.RTT).PUSH(Q.POP());

16 }� �
Listing 5.16: ProgMP specification of a novel scheduler that adapts the

scheduling strategy depending on the content of the overlying
HTTP connection.22

100 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

M P T C P - AWA R E W E B S E RV E R We extended the Nghttp2 library [124]
to forward HTTP content information through the OpenSSL library to our
scheduler API, as shown in Figure 5.25. Thus, each packet is annotated with
the content type and the registers contain information about the required bytes
for the initial page. This information enables the application-aware MPTCP
scheduler of Listing 5.16. Note that content type dependent scheduling can
be seen as information disclosure.

Prio 1
Queue

O
u

tb
o

u
n

d

It
em

 HTTP headers,
data frames, …

W
ri

te
 B

u
ff

er

(6
4

kB
)

O
p

en
 S

SL

(d
ef

au
lt

 1
6

kB
)

Li
n

u
x

Ke
rn

el

N
et

w
o

rk
 S

ta
ck

write

ssl_write

fill_wb

Prio N
Queue …

skbs with encrypted
TLS records and
added annotations

Q

Scheduler

Userspace

Kernel

added annotations
with content type and
queue information

Figure 5.25: Illustration of the buffers and data path of the Nghttp2 web server. Here,
we annotated content type information throughout the data path.

5.9.3 Evaluation

We conducted a measurement study in the wild, using our extended the Nghttp2
library as web server on an EC2 instance and a recent Google Chrome browser
(Chrome version 56) on our client with a WiFi and an LTE interface. To
evaluate the impact of the RTT-ratio, we systematically increased packet de-
lays on the WiFi interface. Inspired by highly optimized web pages, such as
amazon.com, we used an exemplary page with optimized HTML, CSS, and
JavaScript layout. With this optimized page, more than half of the data, in par-
ticular images that are outside of the initial view, are transferred after the ini-
tial page. Our measurements show that the HTTP/2-aware scheduler success-
fully tunes the initial dependency retrieval time for heterogeneous round-trip
times (Figure 5.26), and therefore enables earliest possible dependency res-
olution. A deeper analysis of the homogeneous RTT scenario (40ms / 40ms)
shows that higher variances on the second subflow cause variance in the load

22See Listing A.18 for a full code example. We provide a ready-to-use test environment at
http://progmp.net/progmp.html#dissertation_http_aware.

http://progmp.net/progmp.html#dissertation_http_aware

5.9 T O WA R D S H T T P / 2 - AWA R E S C H E D U L I N G 101

time for both MPTCP scheduler. The preference-aware scheduling efficiently
reduces the transferred data on the less preferred LTE subflow without affect-
ing the initial page load time.

~20
/~

40

~30
/~

40

~40
/~

40

~60
/4

0

RTT WiFi / LTE [ms]

0.04

0.06

0.08

0.10

T
im

e
 [

s]

Depencencies End

~20
/~

40

~30
/~

40

~40
/~

40

~60
/4

0

RTT WiFi / LTE [ms]

0.1

0.2

T
im

e
 [

s]

Initial Page End

Default Singlepath HTTP/2-Aware

~20
/~

40

~30
/~

40

~40
/~

40

~60
/4

0

RTT WiFi / LTE [ms]

0.2

0.5

0.8

R
a
ti
o
 [

B
yt

e
s

LT
E
 /
 T

o
ta

l]

Preferences

Left to right boxplots:

Figure 5.26: Real-world evaluation of a novel HTTP/2-aware MPTCP scheduler. The
time to retrieve all dependency information is significantly reduced by
avoiding high RTT subflows for the initial packets without affecting the
remaining time for non-external content. The preference-aware schedul-
ing of content that is not required for the initial page view significantly
reduces the usage of the metered LTE subflow.

The real world measurements of our HTTP-aware scheduler confirm the
potential of application- and preference-aware MPTCP scheduling. We en-
vision a systematic improvement of the overall HTTP stack in combination
with a large, extensive real world evaluation as promising future work.

102 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

5.10 P I T F A L L S I N E M U L AT I O N

By carefully analysing the results of our experiments, we found a few recur-
ring pitfalls in network emulations and network experiments in general. In the
following, we share notable examples to increase the researchers awareness
of these pitfalls.

5.10.1 Using a Fresh Network

We always used a fresh network, i. e., started Mininet from scratch, to avoid
measurement artefact and dependencies between experiments. We found, how-
ever, that fresh networks introduce measurement artefacts. The initial ARPARP requests in

unused networks. . . requests ([RFC 826]) increase the experienced round-trip time of the first
packet. We assume, however, that most real world MPTCP scenarios are run-
ning in networks that are already used and do not require ARP requests for a
new MPTCP connection setup. Thus, we decided to mitigate this by heating
up the network with a few ICMP ping messages. Figure 5.27 shows a mea-
surement with and without heating up the network in a network with 100ms. . . impact the

smoothed RTT
estimation.

round-trip times. Here, we see that the smoothed round-trip time requires mul-

0 100 200 300 400
Time [ms]

0

50

100

150

200

250

S
m

o
o
th

e
d
 R

T
T
 [

m
s]

No Network Heat Up

Initiator - First Subflow
Partner - First Subflow

0 100 200 300 400
Time [ms]

90.0

92.5

95.0

97.5

100.0

102.5

105.0

107.5

110.0

S
m

o
o
th

e
d
 R

T
T
 [

m
s]

Network Heat Up

Initiator - First Subflow
Partner - First Subflow
Initiator - Second Subflow
Partner - Second Subflow

Figure 5.27: Comparison of the smoothed round-trip time as experienced and main-
tained by the network stack depending an initial heat up of the network
to avoid ARP requests.

5.10 P I T F A L L S I N E M U L AT I O N 103

tiple round-trip times and multiple measurement samples to reach the actual
value in the environment without heat up. Additionally, we note that the estab-
lishment of the second subflow is significantly delayed due to the experienced
higher round-trip times. While these round-trip time artefacts might be less
important for many Mininet application scenarios, we note that in particular
the MPTCP scheduling decision is very round-trip time sensitive.

Listing 5.17 shows the experienced round-trip times for the initial ICMP
pings. The values support our argumentation, as the initial round-trip time is
twice the actual round-trip time.� �

1 PING 11.0.0.2 (11.0.0.2) 56(84) bytes of data.

2 64 bytes from 11.0.0.2: icmp_seq=1 ttl=64 time=204 ms

3 64 bytes from 11.0.0.2: icmp_seq=2 ttl=64 time=100 ms

4 64 bytes from 11.0.0.2: icmp_seq=3 ttl=64 time=100 ms

5 64 bytes from 11.0.0.2: icmp_seq=4 ttl=64 time=100 ms� �
Listing 5.17: Initial ICMP ping measurement output to heat up the network.

Finally, we note that there is not a single correct behavior and emulation
setup. The emulation should behave like a real world environment. Thus, if a
real world environment requires initial ARP requests, the emulation should re-
quire these as well. In particular, we note the cellular connections experience
initial setup delays. These delays depend on the used cellular technology and What about cellular

connections?if the network was already used, e. g., for a DNS request.

5.10.2 Impact of Netem on the Network Stack

During our work on Multipath TCP scheduling, we initially experienced sys-
tematic and reproducible differences between real-world measurements and
Mininet experiments.23 For an application that sends a burst of eight packets
in a network with two heterogeneous paths, for example, all eight packets Differences between

emulations and the
real world

were scheduled on the first subflow (Figure 5.28). In our real world measure-
ment, however, packets were split on both subflows (Figure 5.29).

Host 1 Host 2

Switch
1

Switch
2

10ms 10ms

20ms 20ms

Application

Sending Queue

Packet 1

Packet 2

Packet 3

Packet 4

11.0.0.2

10.0.0.2 10.0.0.1

11.0.0.1

Packet 5

Packet 6

Packet 7

Packet 8

Figure 5.28: All packets are scheduled on the first subflow in our Mininet setup.

Digging into the Multipath TCP implementation, we found that the sched-
uler stops using the first path due to TCP small queues (TSQ).24 TSQ is an

23Parts of these findings were developed in cooperation with Max Weller and previously
published in [F16] and his bachelor thesis [S22], supervised by the author of this dissertation.

24See https://lwn.net/Articles/507065.

https://lwn.net/Articles/507065

104 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

Figure 5.29: Packets are split on both subflow in the real world environment.

effort to reduce queue sizes in the network stack. Large queues in the network
stack are known to increase latency due to queuing delays. During the devel-
opment of Multipath TCP, a commit was added to avoid sending packets on
subflows that are considered throttled by TSQ (Listing 5.18).25� �

1 /* If TSQ is already throttling us, do not send on this subflow. When
2 * TSQ gets cleared the subflow becomes eligible again.
3 */
4
5 if (test_bit(TSQ_THROTTLED, &tp->tsq_flags))

6 return 0;� �
Listing 5.18: The Multipath TCP default scheduler checks if a subflow is

already throttled by TSQ.

Mininet relies on netem26 for delay emulation. Checking the implemen-
tation of netem27, we found that packets that are delayed by netem are not
considered queued by TSQ (Listing 5.19).� �

1 /* If a delay is expected, orphan the skb. (orphaning usually takes
2 * place at TX completion time, so _before_ the link transit delay)
3 */
4 if (q->latency || q->jitter || q->rate)

5 skb_orphan_partial(skb);� �
Listing 5.19: The netem implementation removes delayed packets from the

sending queue.

Thus, MPTCP never experiences a TSQ throttled subflow in Mininet setups
with delayed links at the sender. To substantiate our claim, we repeated the
previous Mininet emulation with a slightly modified topology (Listing 5.20).
In this topology, the first link at the sender does not use netem. We found

25This feature was added to MPTCP in July 2014 with commit https://github.com/
multipath-tcp/mptcp/commit/5c278893b37fe48c66ff226793607687b8482ba9. Based
on our findings, it was removed in March 2018 https://github.com/multipath-tcp/

mptcp/commit/d50611004d1f05da5d839aea36c7cd247fee15da.
26See https://wiki.linuxfoundation.org/networking/netem.
27See https://elixir.free-electrons.com/linux/v4.14/source/net/sched/

sch_netem.c#L462.

https://github.com/multipath-tcp/mptcp/commit/5c278893b37fe48c66ff226793607687b8482ba9
https://github.com/multipath-tcp/mptcp/commit/5c278893b37fe48c66ff226793607687b8482ba9
https://github.com/multipath-tcp/mptcp/commit/d50611004d1f05da5d839aea36c7cd247fee15da
https://github.com/multipath-tcp/mptcp/commit/d50611004d1f05da5d839aea36c7cd247fee15da
https://wiki.linuxfoundation.org/networking/netem
https://elixir.free-electrons.com/linux/v4.14/source/net/sched/sch_netem.c#L462
https://elixir.free-electrons.com/linux/v4.14/source/net/sched/sch_netem.c#L462

5.10 P I T F A L L S I N E M U L AT I O N 105

that Mininet emulations with this setup behave comparable to our real world
experiments and relied on a comparable setups for our experiments.� �

1 class StaticTopo(Topo):

2 def build(self):

3 h1 = self.addHost(’h1’)
4 h2 = self.addHost(’h2’)
5
6 /* first path */

7 s1 = self.addSwitch(’s1’)
8 self.addLink(h1, s1, bw=100)

9 self.addLink(h2, s1, bw=100, delay="20ms")
10
11 /* second path */

12 s2 = self.addSwitch(’s2’)
13 self.addLink(h1, s2, bw=100)

14 self.addLink(h2, s2, bw=100, delay="40ms")� �
Listing 5.20: Python code snippet for a modified topology that has no netem

delay on the sender’s link.

5.10.3 Changing the Network at Runtime

During our experiments with changing round-trip times and bandwidths, we
initially relied on the Mininet API to set link properties.28 However, we found
that Mininet resets the underlying traffic shaper by destroying and recreating
them, which causes significant measurement artefacts. Figure 5.30 shows that
a direct change of the underlying traffic shaper without the Mininet API leads
to plausible, smooth behavior.

Figure 5.30: Comparison of the used smooth change of the traffic shaper and the hard
reset of Mininet.

28Parts of these findings were developed in cooperation with Denny Stohr and previously
published in [F19]. A pull request to fix this issue in Mininet was not accepted so far (https:
//github.com/mininet/mininet/pull/650).

https://github.com/mininet/mininet/pull/650
https://github.com/mininet/mininet/pull/650

106 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

5.11 M AC I P E R S P E C T I V E

I T E R AT I V E R E S E A R C H P RO C E S S We used MACI for the development,
evaluation, and analysis of the MPTCP schedulers as presented in this chap-
ter.29 Therefore, we followed an iterative approach that consists of an anal-
ysis of the scheduling environment, the derivation of scheduling optimiza-
tions, their prototypical implementation with ProgMP, the experiment-based
scheduler evaluation, and the refinement of the scheduler prototypes. MACI
supported us during all steps of this iterative research process, as illustrated
in Figure 5.31. In particular, we found MACI beneficial for the iterative im-
provements and bug fixes, as it enabled us to quickly evaluate the impact of
the improvements on all relevant experiments.

Add Traffic Pattern

Fix / Improve
Scheduler

Add Loss
Probability

Interactive Data AnalysisParallel Experiment ExecutionManage Experiments

Executable Experiment

Executable Experiment

ProgMP Emulation Experiment Script

Scheduler, Traffic Pattern (Flow Type, Flow Size,
Flow Repetition), Network Conditions (Loss, …

Flow Completion Time, Throughput, …

…

Figure 5.5

Figure 5.31: Experiment-driven research process for the ProgMP evaluations.

I N T E R AC T I V E A N A LY S I S We benefited form the interactive analysis of
experiment results with MACI. We used MACI to compare the performance
of multiple schedulers in various environments for different application work-
loads using the filter and aggregation selection in the interactive analysis.
Most visualizations in this chapter are generated with MACI and are only
slightly modified for illustration purposes.

S C A L A B L E E X E C U T I O N Finally, the scalable execution significantly in-
creased our evaluation speed. The evaluation of different redundancy flavors
in Section 5.4.3, for example, consists of 30,720 experiments, where each ex-
periment requires nearly one minute. With MACI, we executed these experi-
ments with up to 20 workers on Amazon AWS in about a single day instead of
21 days on a single machine. These experiments on Amazon AWS t2.xlarge30,720 experiments

for 95$ instances cost about 95$. Since we pay $0.1856 per hour, the parallel execu-
tion costs the same as the sequential execution.

During these parallel executions, we noted that our current MACI imple-
mentation provides only limited scalability. We found that this is caused by a
bottleneck in the Entity Framework of the ASP.NET Core backend and the un-
derlying SQLite database. Future work on the implementation might include

29More precise, parts of these scheduler were developed and analyzed with early proto-
types of MACI, as ProgMP and MACI were developed concurrently.

5.11 M AC I P E R S P E C T I V E 107

concepts like message queues to overcome this implementation limitation.
Additionally, our current implementation does not support scaling virtual ma-
chines in multiple AWS regions and therefore is restricted to the offered scal-
ability of a single AWS region. Future work on the implementation might
overcome this limitation and allow to execute the previous mentioned experi-
ments in a few minutes.

As we refined the schedulers during our research and repeated the exper-
iments, we repeatedly benefited from the MACI speed up. We found these
speed ups important for our research efficiency, as it enabled us to focus on a
scheduler problem without interruption and long waiting periods.

108 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

5.12 P RO G M P P E R S P E C T I V E

First of all, we note that the extensive discussion, analysis, and implemen-ProgMP enables
scheduler

innovations
tation of novel schedulers in this chapter was enabled by the ProgMP pro-
gramming model and its provided abstractions. This confirms our claim that
ProgMP enables MPTCP scheduler innovations. Overall, Table 5.3 shows
that ProgMP fulfils the requirements as presented in Section 3.1. In the fol-
lowing, we support this claim with a discussion of our ProgMP experiences
during the design and analysis of novel schedulers throughout this chapter.

The wide range of presented and evaluated schedulers confirms the expres-
siveness of our programming model. In particular, our programming model
enabled us to evaluated and compare design decisions, such as the choice and
timing of the probing packet in Section 5.3 and different flavors of redundancy
in Section 5.4. Thus, we showed that the programming model bridges the gap
between profound Linux kernel knowledge, networking details, and the appli-
cation logic. As the number of lines required to express schedulers is about
ten times lower than equivalent implementations in C, we argue that the pre-
sented programming model is much more usable than any existing approach.
In particular, we argue that the novel ProgMP schedulers with up to 38 lines
of code (Table 5.1) are enabled by the abstractions of ProgMP and would
require complex C implementations. Overall, we found that the recurring pat-
tern to handle the reinjection queue, as presented in Section 5.2.1, contributes
a significant number of lines and complexity to all presented schedulers.

Table 5.3: ProgMP requirement fulfilment.

Requirement

Exchange of ideas Used in publications, discussions, and

throughout this chapter to exchange ideas

Evaluable and executable Execution environment implemented and

various schedulers executed in this chapter

Efficient execution Evaluated in Section 3.4.5.1

Executed various schedulers in this chapter

Expressiveness Expressed various schedulers in this chapter

Graceful failure handling Yes

We consider a detailed usability study as promising future work. Yet, we
conducted a limited user study with computer science students where 9 out of
10 participants, who never modified Linux kernel sources, successfully imple-
mented a new scheduler with predefined functionality using our programming
model. Further, we found ProgMP useful for education in the Communication
Networks II and Communication Networks IV lectures in the winter semester

5.12 P RO G M P P E R S P E C T I V E 109

2017 at TU Darmstadt. Finally, we note that the ProgMP demo page with the
web editor is well suited to discuss general MPTCP scheduler concepts.30

A DA P T I V E S C H E D U L I N G AT RU N T I M E A single Multipath TCP con-
nection might face changing network conditions, different traffic patterns, and
varying application requirements, as discussed in the motivation of this disser-
tation (Section 1.1). We found ProgMP powerful to handle these changes in
various of the presented schedulers. The preference-aware schedulers, for ex-
ample, change their behavior, i. e., the considered subflows, depending on the
environment conditions. The HTTP/2-aware scheduler changes the schedul-
ing strategy depending on the application payload. Listing 5.21 summarizes
the recurring patterns to enable adaptive scheduling with ProgMP.� �

1 VAR defaultScheduling = 0;

2 VAR redundantScheduling = 1;

3 VAR environmentAwareScheduling = 2;

4
5 /* R1 controlled by the application */

6 IF (R1 == defaultScheduling) {

7 /* Default scheduling */

8 } ELSE IF (R1 == redundantScheduling) {

9 /* Redundant scheduling */

10 } ELSE IF (R1 == environmentAwareScheduling) {

11 /* Environment-aware scheduling */

12 VAR bestNonBackup = SUBFLOWS.FILTER(sbf => !sbf.IS_BACKUP).

13 MIN(sbf => sbf.RTT);

14 VAR bestBackup = SUBFLOWS.FILTER(sbf => sbf.IS_BACKUP).

15 MIN(sbf => sbf.RTT);

16
17 VAR considerBackup = bestBackup.RTT_MS < bestNonBackup.RTT_MS;

18 IF (considerBackup) { /* ... */� �
Listing 5.21: ProgMP snippet that illustrates adaptive scheduling strategies

depending on the signaled application information and the
experienced network conditions.

C O M P O S A B I L I T Y In this chapter, we presented incremental improve-
ments for established schedulers as well as fundamentally novel schedulers.
The primitives of our programming model were sufficient to express and com-
pose all these schedulers and features. A combination of the active probing
features, for example, with the round-trip time and preference-aware sched-
uler is easily expressible with ProgMP. We envision a direct support and con-
cept for composability to naively combine features as future work.

L A N G UAG E E X T E N S I B I L I T Y So far, we mostly explored the design
space of scheduling based on the confined set of metrics that are available
in ProgMP and that are typically available in the network stack, such as the
measured round-trip time and the congestion window. The language exten-
sion to incorporate one-way delay estimations was straight forward, but re-

30See https://progmp.net/progmp.net.

https://progmp.net/progmp.net

110 D E S I G N A N D A N A LY S I S O F N OV E L M P T C P S C H E D U L E R S

quired changes in the runtime environment. Overall, we note that the pre-
sented language enables a wide range of schedulers and allows the extension
with additional metrics. A concept for systematic language extensibility was
not required but is promising future work.

5.13 D I S C U S S I O N A N D F U T U R E W O R K

In this chapter, we explored the design space of MPTCP scheduling and pro-
posed more than eight novel schedulers or scheduling optimizations. We iden-
tified that in particular the incorporation of application knowledge and sub-
flow preferences significantly extends the design space and opportunities of
MPTCP scheduling. Overall, this chapter contributes to the fundamental un-
derstanding of Multipath TCP scheduling.

While we presented and evaluated more than eight novel scheduler, we
anticipate that ProgMP enables a lot more, optimized schedulers. In particu-Towards thousands

of schedulers lar, we anticipate schedulers that incorporate active capacity probing, more
fine-granular redundancy and backup semantics (e. g., use two out of three
subflows, only use backup subflow if less than two subflows are available),
and more application-aware schedulers (e. g., to consider TLS records as log-
ical chunks of data or to support transitions on upper layer protocols [115,
152]).

6
A P RO G R A M M I N G M O D E L F O R A DA P TAT I O N
D E C I S I O N S

In the previous chapters, we showed that programming models provide well
suited abstractions for the design and implementation of communication sys-
tems, i. e., for the MPTCP scheduling decision. In this chapter, we go beyond
the domain of MPTCP and focus on the domain of adaptive communication
systems to tackle the fourth research question:

RQ IV: What are suitable abstractions for the specification of the adaptation Fourth Research
Questionsdecision for adaptive communication systems?

We tackle this research question with a programming model for the adapta- A programming
models as
abstractions for the
adaptation decision

tion decision of adaptive communication systems. We propose to specify the
adaptation trigger with event condition action (ECA) rules. As alternative to
the direct specification of ECA rules, we propose to automatically learn ECA
rules with extensive experiments in a reproducible execution environment for
a given utility function. We implement the Fossa framework, which consists
of an ECA engine and a learning framework, and show the potential of our
learning approach for an adaptive search overlay scenario. In this dissertation,
we focus on the general concepts of Fossa and refer to [F13, F14] for a de-
tailed presentation. We further refine the ECA-based programming model for
topology adaptations in Chapter 7.

6.1 M OT I VAT I O N A N D A P P RO AC H

Adaptivity is often used to provide high performance in dynamic environ- Challenging single
parameter
adaptation

ments. However, even the simple adaptation of a single system parameter,
such as TCP’s congestion window, proved to be challenging, as shown by
the continued work on TCP congestion controls [19, 52, 122, 161, 202, 211].
Distributed systems with a multitude of complex adaptations, e. g., exchanges More mechanisms,

more complexityof mechanisms and protocol implementations during runtime, introduce ad-
ditional interdependencies and non-linearities that are hard to model and pre-
dict. Understanding the consequences of a congestion control exchange at run-
time, for example, requires a detailed model of the involved congestion con-
trols. Even for a single congestion control, characteristics, such as the steady
state throughput, depend on network specifics (e. g., the used queueing pol-
icy and experienced packet loss distributions) and protocol details (e. g., the
used fast retransmission and timeout schema) [135]. Thus, developing realis-
tic analytical performance models is extremely hard for non-trivial systems
but required for direct modeling of the adaptation decision. Implementations and

optimization metrics
are available

We note that the definition of relevant performance metrics is often feasible
even though the derivation of an explicit model of the performance functions

112 A P RO G R A M M I N G M O D E L F O R A DA P TAT I O N D E C I S I O N S

for a given implementation is challenging. The gap between the specification
of a utility-based adaptation decision and the concrete adaptation rules hin-
ders the incorporation of adaptations for many distributed systems.

In this section, we propose offline learning for the adaptation decision logic,Learn adaptation
decisions i. e., when to switch to which mechanism or parameter, automatically based

on a utility function without the need for explicit performance models. This
approach leverages the benefits of a utility-oriented adaptive behavior speci-
fication, especially the high abstraction level and the straightforward expres-
sion of the optimization goal, without the need for a detailed analytical perfor-
mance model of the application and the underlying distributed infrastructure.

We present the Fossa framework, which consists of i) an ECA engine toFossa

trigger and execute adaptations in communication systems based on ECA
rules and ii) an offline learner that uses a reproducible execution environ-
ment (e. g., a network simulator), representative workloads, and expected en-
vironment conditions to automatically derive the adaptation decision repre-
sented as event condition action (ECA) rules. The well-defined syntax of theLearn ECA rules

ECA rules allows an efficient genetic programming exploration strategy. If re-
quired, Fossa generates a Pareto frontier of solutions for multiple utility func-
tions, obviating the need to balance different metrics in advance and making
the factual trade-offs visible.

Overall, this chapter introduces two programming models for adaptive com-
munication systems with different abstraction layers. First, the developer ofECA rules as

abstraction for the
adaptation decision.

an adaptive communication system can specify ECA rules and benefit from
the underlying concepts of complex event processing [15] and stream pro-
cessing concepts. In particular, the abstractions to specify complex event
conditions and the decoupling of the monitoring components (information
provider) from the adaptation decision logic (information receiver) in a dis-
tributed adaptive system are promising. Second, in case the (performance)
dependencies of the adaptive communication system and its mechanisms are
too complex, the developer benefits from the higher abstraction of a utility-
based specification and the automatic derivation of corresponding ECA rules.

6.2 B AC K G RO U N D A N D R E L AT E D W O R K

In the following, we present an overview of related work on adaptive systems
and automated learning in software engineering.

6.2.1 Adaptive Systems

Adaptive systems incorporate mechanisms to reason about and trigger adap-
tations, e. g., relying on utility functions, goal policies, or action policies [84].
We note that concepts for adaptive systems are published with slightly vary-
ing motivations in the area of adaptive systems, self-adaptive systems [11, 25,
34], autonomic computing [74], and organic computing.

U T I L I T Y F U N C T I O N S Utility functions are a widely used concept toUtility Functions

specify preferred configurations with a high abstraction level [84]. Walsh

6.2 B AC K G RO U N D A N D R E L AT E D W O R K 113

et al. [195], for example, use utility functions to optimize the resource alloca-
tion in a dynamic, distributed environment. To derive the concrete adaptation
decisions at runtime, these solutions require a detailed system model to fore-
cast the utility of different configurations and the costs of the adaptations [11].

Utility functions are often used in communication systems to specify im- Utility functions in
communication
systems

plicit adaptations resulting from the network dynamics. Utility functions for
the specification of routing based on the flow bandwidth and experienced la-
tencies have been proposed recurrently, e. g., as vision for the Internet [170]
or for emerging software-defined networks [58]. Lehn [104] uses utility func-
tions to specify the trade-off of throughput and information staleness for In-
terestCast, a distributed event dissemination mechanism. Further applications
of utility functions are in the area of ad-hoc networks [17, 179].

A DA P TAT I O N RU L E S There are a variety of established approaches to Adaptation rules

describe the concrete adaptive behavior with rules, such as condition-action
rules [44], adaptation strategies and adaptation operators in the rainbow frame-
work [48], priority rules [45], policies [4], and action policies [84]. Additional
approaches model the whole feedback loop [194] or extend use case diagrams
to explicitly describe the adaptive behavior [114]. These approaches assume
i) a developer or domain expert who provides the rules or ii) a performance
model of the application to retrieve the rules (e. g., Gueyoung et al. [78] use
queuing models).

6.2.2 Learning and Search-Based Software Engineering

Search based optimization techniques for software engineering [65] often use
meta heuristics such as simulated annealing and genetic programming to miti-
gate the need for analytical models and to cope with large search spaces [144].
Notable works proposed to search offline for superior configurations and tun-
ing parameters of non-adaptive programs [14, 197] or use genetic improve-
ment at runtime to redeploy improved configurations [66].

G E N E T I C P RO G R A M M I N G Evolutionary algorithms enable computers Evolutionary
algorithmsto solve problems automatically based on a given fitness function. For a com-

prehensive overview, we refer to Poli et al. [144]. Genetic programming is an Genetic
programmingevolutionary algorithm that operates on a representation of a computer pro-

gram. The algorithm transforms populations of programs stochastically with Mutation and
crossovermutation and crossover operations into new, hopefully better populations of

programs. The efficiency of genetic programming benefits from a crisp spec-
ification of the solution space. Accordingly, a strong type system allows to
generate more likely valid candidates [144].

L E A R N I N G C O N G E S T I O N C O N T RO L S In the area of communication Computer generated
congestion controlssystems, end-to-end congestion control algorithms are analyzed in detail and

discussed controversially [202]. Winstein et al. recently presented Remy [203],
a program that generates congestion control algorithms for a given objective

114 A P RO G R A M M I N G M O D E L F O R A DA P TAT I O N D E C I S I O N S

function. Remy internally represents the congestion control as a set of rules
that map input values, such as experienced round-trip time ratios, to changes
of the current congestion window size. Remy improves these rules by exe-
cuting (more or less arbitrary) refined rules in a network simulator to judge
their performance. The authors showed that Remy outperforms highly opti-
mized congestion controls that are based on analytical models in ns-3 sim-
ulations [175, 203]. Remy is tailored to the congestion control domain and
suggests the potential of learning adaptation rules for distributed systems.

6.3 S P E C I F Y I N G A DA P TAT I O N D E C I S I O N S W I T H E C A RU L E S

We propose to use ECA rules to specify the adaptation decision. ECA rules
are triggered by events which cause the evaluation of the condition. If the
condition evaluates to true, the action leads to a concrete adaptation.

Listing 6.1 illustrates the overall concept with an example for an adaptive,
distributed search overlay application. If the number of received messages
(MsgRcvEvent) in the last 30 seconds is greater than 5 and the number of hops
a message is forwarded (NumOfhops) is less than 10, the parameter transition
MyParaTrans is executed with the parameter 10. The event and condition
expressions are inspired by event processing languages such as the ESPER
Event Processing Language (EPL)1 and StreamSQL.� �

1 on first match

2 (count(MsgRcvEvent, 30s) > 5) and (NumOfHops < 10):

3 execute parameter transition MyParaTrans at self set value (10);� �
Listing 6.1: Example of an ECA rule.

The Fossa ECA engine is implemented efficiently with an event processing
unit, which works as message broker between the incoming events and the
corresponding ECA rules. The overall architecture of the Fossa ECA Engine
ensures that only relevant monitoring values are collected to minimize the
monitoring overhead for the adaptivity.

6.4 L E A R N I N G E C A RU L E S

The Fossa learner is optimized to derive adaptation decision logic represented
as ECA rules based on a given utility function. Fossa derives a set of ECAAggregated utility

rules for adaptive distributed systems that maximizes the experienced aggre-
gated utility of the system execution, i. e.,

Rmax = argmaxRA W
w u(E (R,w)) (6.1)

where W represents the set of all considered environments and workloads,
E (R,w) represents the execution of the system with a given rule set R in
an environment and for a workload w, and u represents the scalar utility of a
given execution. A is the aggregation function used to a aggregate the utilities
achieved in different environments.

1See http://esper.codehaus.org/.

http://esper.codehaus.org/

6.4 L E A R N I N G E C A RU L E S 115

Input

Considered Events and
Monitoring Metrics

Learner Reproducible Execution Environment

Transition Description

Utility Function

Considered Workloads

Genetic Programming
Learner

Utility Function

ECA rules

ECA Engine

Application

Measurements

Scalar Utility

Figure 6.1: Based on the provided input, Fossa derives suitable ECA rules relying on
multiple test executions in a reproducible execution environment.

Figure 6.1 illustrates the Fossa architecture. Fossa uses various input pa- Fossa architecture

rameters for a genetic programming optimization relying on a reproducible
execution environment. In particular, Fossa relies on: Fossa input

• The events and monitoring values that specify the input metric space
for the ECA rule events and conditions.

• The transition description, which provides a model of the action space
of the event condition action rules, i. e., of the available adaptations and
mechanisms (see Section 6.5).

• The utility function, which specifies the fitness of a concrete execution
based on the monitored performance metrics.

• A reproducible execution environment with an implementation of the
system to collect measurements during the execution of a given ECA
rule set.

• A set of representative sample workloads and environments.

During the offline learning, Fossa triggers the execution of the distributed Mapping executions
to utilitysystem with subsets R = {r1, . . . ,rn} of all possible ECA rules R ⊃ R.2 The

execution E (R) of the application with a rule set R represents a mapping
function E (R)→M , where M = {(time,node, type,value), . . .} is the set
of all measurements during the execution. The utility function u maps this set
M to a scalar utility value u(M)→R. Thus, Fossa requires a reproducible
execution environment to retrieve the utility of a given rule set R.

The reproducible execution environment replaces complex formal and an- Simulators,
emulators, and
testbeds

alytical models of the application and the adaptive behavior. Network simula-
tors such as ns-2, ns-3 [126], OMNet++ [128], and PeerfactSim.KOM [183],
network emulators such as Mininet [63], and real world testbeds such as Em-
ulab.Net [39] and PlanetLab [143], which are commonly used to develop and
evaluate distributed systems, are well suited as underlying infrastructure for a
reproducible execution environment. To avoid a mismatch between the spec-
ified application behavior and the real implementation, Fossa runs the real
implementation of the application on top of this infrastructure.

2As conditions can contain arbitrary expression combinations, the set of all ECA rules R
is infinite. For practical reasons the used subset of rules R contains only a limited rule set.

116 A P RO G R A M M I N G M O D E L F O R A DA P TAT I O N D E C I S I O N S

6.4.1 Exploration Strategy: Genetic Programming

In the following, we present how Fossa uses genetic programming to derive
ECA rules for adaptive distributed systems (Figure 6.2). Based on an initial
generation of random rule sets or developer provided initial rules, Fossa gen-
erates and evaluates additional rule sets. Depending on the fitness (specified
by the utility function), the evaluated ECA rule set is added to the evolution
pool. Fossa prefers smaller ECA rule sets in case two different sets lead to
the same utility. This should lead to smaller ECA rule sets and allows the
developer to interpret the result.

<<Optional>>
Learn Initial Configurations

Repeat
n Times

Random
Choice

Choose Random
Parent

Choose Random
Parents

Execute Mutation
on Parents‘ Rules

Execute Mutation
and Crossover

Generate Random
Rule Set

Normalize
Rule Set and

Filter

Execute Rule Set in
Execution

Environment

Evolutionary
Optimization Pool

Figure 6.2: Overview of the genetic programming exploration strategy with muta-
tions, crossovers, and random rule generations.

Fossa’s genetic programming algorithm operates on the abstract syntax tree
of the ECA rules. We illustrate this process for the Abstract Syntax Tree (AST)
of Listing 6.1, as shown in Figure 6.3.

The rule has one condition with multiple terms and one action with a pa-Operate on the AST

rameter transition. The modifications of the genetic programming algorithm
change values of the AST nodes and add or remove branches. It is important
that these modifications are designed to have a high probability to find useful
ECA rule sets. Compared to naive optimizations, the bespoke ECA rule lan-
guage with its type system and well defined grammar as well as the specifica-
tion of the monitoring values allows to efficiently avoid invalid ECA rules. In
the following, we present Fossa’s basic operations to manipulate ECA rules.

G E N E R AT E A R A N D O M RU L E The condition and the action of a ran-Random rules

dom rule is generated recursively. Therefore, each term chooses random (but
lexically and syntactically correct) children. To favor small rules, the proba-
bility of a leaf node increases with increasing recursion depth.

6.4 L E A R N I N G E C A RU L E S 117

Figure 6.3: Example of mutations on the abstract syntax tree representation of the
ECA rule of Listing 6.1.

M U TAT E A RU L E Both the condition and the action of a rule are modified Mutations

by mutations in different ways:

• Change the value of a constant (e. g., mutation A in Figure 6.3 changes
the time interval from 30 seconds to 2 seconds).

• Change an operator, e. g., an and to an or for two boolean operands.

• Change events or monitoring values.

• Add, remove, or replace subexpressions (branches) based on the node
types (e. g., mutation B in Figure 6.3 replaces the adaptation action).

Each modification and combinations of modifications are executed with a
certain probability. This ensures that Fossa tries slight variations as well as
huge changes of the existing rules. Additional, rules and mutations of these
rules are used at the same time with a certain probability. This supports the
generation of more specialized rules.

C RO S S OV E R O F T W O RU L E S O R RU L E S E T S Two rule sets are com- Crossovers

bined by i) generating a new rule set as the union of random subsets of their
parents’ rule sets and ii) combining rules from the different sets, e. g., by re-
placing branches of one rule with branches of the other rule. The crossover
of two rule sets can be very effective. In case, for example, one rule set is
optimized for a certain situation and another set for another situation, a com-
bination might perform well in both situations.

6.4.2 Efficiency Improvements

As the number of required evaluation executions limits the learning perfor-
mance, we propose efficiency improvements that rely on the integration of
the ECA Engine and the ECA Learner.

I N C R E A S E T H E M AT C H I N G P RO B A B I L I T Y As ECA rules that always Increased matching
probabilityevaluate to false have no effect, we propose to increase the probability of a

rule match to increase the probability of finding good rules.
Fossa automatically builds a model of the monitoring values during the Build a model

learning process each time a rule is evaluated. Fossa leverages this model to

118 A P RO G R A M M I N G M O D E L F O R A DA P TAT I O N D E C I S I O N S

generate conditions and expressions that have a high matching probability. If,
for example, the monitoring value Number of Hops is in the interval [20,50],
the expression Number of Hops< 10 will never evaluate to true (Figure 6.3,
leftmost branch). Therefore, Fossa uses the monitoring value intervals for a
symbolic execution [90] of the expression. The resulting information is used
to generate constants that increase the matching probability.

Fossa further monitors the match count of each rule during the executionFavor small
rule sets and removes rules that never match. In case Fossa detects that a subexpression

always evaluates to the same value during an execution, this subexpression
is replaced by the constant term. This reduces the size of the rules without
affecting their semantics.

D E C R E A S E T H E N U M B E R O F R E Q U I R E D E VA L UAT I O N S During aDecrease required
evaluations long running genetic programming optimization, there is a high probability

that rule sets are generated twice. We propose to filter semantically equal
rule sets to avoid costly repetitive evaluations. As semantically equal ruleFilter semantically

equal rule sets sets might have different representations, we normalize the rules for duplicate
detection. The expression 5 < MonitoringValue, for example, has the same
semantic as MonitoringValue > 3+ 2. We normalize rules with constant
folding and ordering of commutative operation operands.

Fossa further schedules experiments to minimize the number of required
evaluations by discarding a rule set as soon as the aggregated utility cannot
reach the required minimum.

6.5 T R A N S I T I O N D E S C R I P T I O N A N D E X E C U T I O N

For the description of the considered and available adaptations during the
exploration and for their execution at runtime, Fossa relies on our transition
model [F14]. This model allows the definition and execution of transitions fol-
lowing a well defined lifecycle for component exchange and provides proxy-Transition lifecycle

based abstractions for the application developer. Figure 6.4 illustrates the life-
cycle of an elementary runrun transition, as introduced in [F14] and further
refined by [151, 155]. The state transitions in the lifecycle are annotated with
the triggering state transition events and triggered component transitions. All
components that implement this lifecycle can be controlled and considered by
Fossa without modifications. Alternative approaches for compositional adap-
tation [119], such as [40, 82, 157, 158], might be integrated in future work
and might benefit from Fossa’s learning approach as well.

6.6 E VA L UAT I O N

In the following, we present previous evaluations of Fossa for an adaptive
search overlay sample application with five different environment settings
during the learning process [F12, F13]. For the performance of the genetic
programming approach, there are two baselines: the non-adaptive static ap-
plication and randomly generated ECA rules. Figure 6.5 shows that Fossa

6.6 E VA L UAT I O N 119

Parallel Active

Initializing

parent: execute
trg: init

trg: finished; src: finished
parent: parallel active

Aborted

trg: abort; src: finished
trg: clean up; src: run

Clean up

parent: finished

src: clean up

Recovered

trg: finished; src: finished

parent: recovered

Rollback

parent: rollback

trg: clean up; src: run

Initialized

trg: finished
trg: start; src: shutdown

src: finished trg: finished;
src: finished

Figure 6.4: Lifecycle of a runrun transition as introduced in [F14].

outperforms both baselines after a few hundred simulations. Even though the Outperforms static
and random
solutions

average utility for all environment settings is strictly increasing with the ge-
netic programming search, the minimum and maximum utilities for certain
environments might decrease. Note that we cannot compare our results with
an optimal solution, due to the lack of a corresponding performance model
and as a full search is not computationally feasible due to the infinite space
of possible ECA rules.

Figure 6.5: Improvement of the utility during the execution of Fossa for an adaptive
search overlay sample application.

The evaluation in [F12, F13] further shows that the proposed efficiency
improvements (Section 6.4.2) reduce the required number of simulations to
30% for this application scenario.

Figure 6.6 shows an example how Fossa optimizes for two contradictory
optimization goals. Therefore, Fossa keeps all ECA rule sets that are on the Pareto frontier

generationPareto frontier of both optimization goals in the evolutionary pool. Here, we
balance the resource consumption (X-axis) and the number of failed requests
(Y-axis) of the search overlay sample application. The black points repre-

120 A P RO G R A M M I N G M O D E L F O R A DA P TAT I O N D E C I S I O N S

sent all static configurations without ECA rules. The red points represent
all learned ECA rule sets that lead to the corresponding performance met-
rics. As lower values are better, the figure shows that the adaptive solutions
with the learned ECA rules dominate all static configurations. Fossa and the
generated Pareto frontier allows the developer to balance the contradictory
optimization goals and the aggregated utility function based on the actually
necessary trade-offs.

Figure 6.6: Pareto frontier for two contradictory optimization goals (lower is better).
The adaptive solutions with the learned ECA rules dominate all static
configurations.

We further found the concept of ECA rules useful for the specificationFurther applications

of adaptation decisions for the transition between consensus protocols in
Zookeeper [F18], the activation of cellular interfaces in multipath environ-
ments [F20, F21], and as starting point for the development of the topology
adaptation rule language TARL [F8].

6.7 D I S C U S S I O N A N D F U T U R E W O R K

6.7.1 ECA Rules for Adaptation Decision Logic

In this work, we focus on the offline learning of adaptation decision logicYet another rule
language? and introduced the concise, well-defined ECA model for adaptation rules. In

general, we assume that Fossa’s genetic programming optimization is applica-
ble on other executable adaptation descriptions with well-defined semantics.
However, we showed that the integration of the ECA model and the learning
algorithms enables significant efficiency improvements, e. g., by using the
notion of semantically equal ECA rules and controlling required monitoring
based on the requirements of the specified rules.

To the best of our knowledge, we are the first to explicitly propose streamStream processing
abstractions for
adaptation rules

processing concepts for self-adaptive systems and autonomic computing. This
enables to use well known, powerful abstractions for the adaptation decision,
e. g., to integrate aggregations in conditions instead of artificially creating
new, pre-aggregated metrics.

6.7 D I S C U S S I O N A N D F U T U R E W O R K 121

Fossa can be classified in the explicit MAPE-K reference model for au- MAPE loop

tonomic computing by Kephart et al. [83]. The Fossa ECA Engine runs the
monitoring and the execution at runtime to execute ECA rules, whereas the
Fossa ECA Learner executes the analyze and plan part offline. This reduces
the overhead of the adaptivity at runtime, as the evaluation of the ECA rules
is usually more efficient than online learning. Our work implicitly addresses Adaptive systems

research roadmapresearch challenges identified by Cheng et al. in their research roadmap for
self-adaptive systems [25]. For example, in an adaptive system, it is impor-
tant to ensure that the monitoring overhead does not nullify the benefit of the
adaptivity. In existing adaptive systems, it is complex to model the perfor-
mance impact of the monitoring and the execution of the adaptation. As our
proposed methodology optimizes based on the overall utility, the impact of
the used ECA rules and their execution is always considered.

6.7.2 Learning Approach

Fossa provides the benefits of a utility-oriented adaptive behavior, especially The best of
two worlds:
utility and rules

the high abstraction level and the straightforward expression of the optimiza-
tion goal, without the need for a complex and detailed analytical performance
model of the application and the environment. As Fossa uses utility functions
as black boxes, arbitrary utility functions are supported. In contrast, many op-
timization methods require certain properties and representations, such as a
closed-form expression, continuity, or differentiability.

Fossa automatically learns rules that are tested in a set of representative Can we trust
the rules?workloads and environments. There are, however, general reservations with

regard to the applicability of learned algorithms. A prediction for the behavior
of learned rules with slightly different workloads and environments is impos-
sible. This is a general debate for learned algorithms. Learned rules require
a careful test and deployment. As the ECA rules are human readable, the
developer should examine them to obtain insights on the adaptive behavior.

Even in application scenarios that do not tolerate only partially understood Benchmark for the
potentiallearned solutions, the learned rules provide a benchmark for the performance

of alternative solutions. Sivaraman et al. [175], e. g., used their learned con-
gestion control as benchmark to discuss the potential of congestion controls,
as the optimal achievable performance of a distributed coordination algorithm
is unknown.

Figure 6.7 illustrates alternative approaches to learn adaptation logic rely- Alternative:
classification and
regression

ing on emerging learning frameworks [1] or established classifications and
regressions, as proposed by the author of this dissertation in [F22]. Accord-
ingly, these approaches have different representations of the learned model,
e. g., a neuronal network, and require additional feature engineering to choose
relevant metrics and their aggregations. The aggregation is implicitly learned
in Fossa, as it is part of the underlying stream processing model of the ECA
rules. Furthermore, Fossa learns the consequences of an adaptation, includ-
ing the costs of an adaptation, and includes a mechanism to choose additional
required simulations.

122 A P RO G R A M M I N G M O D E L F O R A DA P TAT I O N D E C I S I O N S

Classifier/Regression
for Target Configuration

Metrics, Configs.

Aggregated Metrics

Classifier

Target Configuration

Simulations

Classifier/Regression
to Forecast Performance

Metrics, Configs.

Aggregated Metrics

Classifier

Forecasted Performance

Simulations

Fossa
Genetic Programming

Fo
ss

a
EC

A

En
gi

n
e

Adaptations

Simulations

Fo
ss

a
Le

ar
n

er

Figure 6.7: Overview of classification- and regression-based alternatives for Fossa’s
ECA-based genetic programming approach.

Fossa showed the feasibility and potential of learning adaptation rules based
on utility functions. We envision that Fossa would benefit from the integra-Search space

reduction tion of rule generation concepts from complex event processing [116] and
more sophisticated semantics of the adaptation execution, e. g., to incorporate
knowledge about valid configurations and component compositions [10] to re-
duce the search space and ensure reconfiguration consistency. Like most ma-
chine learning approaches, Fossa provides a lot of adjustable hyper-parameters
to tune the learning process. A detailed analysis and automatic tuning of these
parameters, similar to [150], remains promising future work.

Based on our findings, we envision a Generic Fossa for domain-specificGeneric Fossa

languages in communication systems as shown in Figure 6.8. Generic Fossa
takes a specification of the domain-specific language3, e. g., the context-free
grammar of the language as Backus–Naur form, an attribute grammar [92],
or even the specification of the language type system and formal semantics,
as input. The genetic programming algorithm operates on the model of the
domain-specific language and further requires a reproducible execution en-
vironment with a runtime environment of the domain-specific language to
automatically learn programs in the communication system.

Generic Fossa Scalable, Reproducible Execution
Environment (e.g., MACI)

Domain-Specific Language

Programms

Runtime Environment Grammar Metrics

Input

Figure 6.8: Vision of a Generic Fossa in MACI, which leverages genetic program-
ming for various domain-specific languages given their grammar.

3Note that this is not a specification in the domain-specific language, but a specification
of the domain-specific language.

7
A P RO G R A M M I N G M O D E L F O R T O P O L O G Y
A DA P TAT I O N S

In the previous chapter, we presented a programming model as abstraction
for the specification of adaptation decisions based on ECA rules that are opti-
mized to meet a given utility function. In this chapter, we focus on topology
adaptations in the domain of adaptive communication systems and refine our
solution for the fourth research question with regard to topology adaptations.

RQ IV: What are suitable abstractions for the specification of the adaptation Fourth Research
Questionsdecision for adaptive communication systems?

In this chapter, we present our extension of the presented ECA rule model
to the domain of topology adaptations.1 For a detailed presentation, we refer
to the respective publications in [F3, F8].

7.1 M OT I VAT I O N A N D A P P RO AC H

Topology adaptations enable networking applications to cope with changing Executable topology
adaptations . . .environments and requirements, e. g., by switching between mesh and tree

topologies [201]. Video streaming overlays, for example, adapt their video
distribution topology to cope with fluctuating peers [137, 156, 169, 193, 196].
Topology adaptations are applied in wireless sensor networks to reduce en-
ergy consumption [164], for event dissemination in dynamic virtual reali-
ties [104, 105], for load balancing in search overlays [95], and connectivity
maintenance in peer-to-peer networks [112]. We note that the related work
on topology adaptations in these domains focuses on concrete topology adap-
tations for their applications and optimization goals. Abstractions or models . . . are missing

abstractions.for the specification and execution of topology adaptations are missing.
We propose the topology adaptation rule language TARL, which provides TARL

abstractions to specify and execute topology adaptation. TARL reduces the
complexity of topology adaptations by decoupling the adaptation logic from
the application logic. TARL provides a reusable runtime environment, which
enables rapid development and evaluation of novel topology adaptations.

1The content of this section emerged from a cooperation with Michael Stein and Roland
Kluge. The author of this dissertation contributed major parts of the TARL language syntax
and expressiveness evaluation, whereas Michael Stein and Roland Kluge contributed the analy-
sis of topology adaptation characteristics, the conceptual architecture for topology adaptations,
and their general background in topology adaptations.

124 A P RO G R A M M I N G M O D E L F O R T O P O L O G Y A DA P TAT I O N S

7.2 T O P O L O G Y A DA P TAT I O N RU L E L A N G UAG E TA R L

In the following, we present the topology adaptation rule language TARL. In
contrast to existing adaptation rule languages in Section 6.2.1, TARL is specif-
ically designed for the characteristics and requirements of topology adapta-
tions in networking applications.

Stein et al. [F8, 180, 181] identified the four characteristics of local topol-Characteristics of
local topology

adaptations
ogy adaptations: i) locality, ii) simple graph operations, iii) pattern based de-
cision making, and iv) multiple topologies. The authors further present a con-
ceptual architecture for local topology adaptations, which decouples the localConceptual

architecture topology adaptation logic, the topology provider, and the application. TARL
is designed based on this conceptual architecture and these four characteris-
tics. Accordingly, TARL supports the wide range of applications that execute
topology adaptations locally on each device in a decentralized way.

TARL rules specify the topology adaptation logic in a declarative rule-
based manner. A TARL rule consists of three subsequent parts, i) a preambleRule-based

adaptation logic with constant and selector declarations, ii) the condition specification, and iii)
the action part. The execution part is triggered depending on the condition
evaluation. In the following, we focus on the condition and execution part.

I L L U S T R AT I N G E X A M P L E Listing 7.1 shows a TARL rule example.
The TARL rule specifies the low delay jump, as proposed by Wang et al. [196].Example: low delay

jump topology
adaptation

The low delay jump minimizes latency in overlay video streaming topolo-
gies by reducing the depth of the streaming tree. For this purpose, nodes try
to replace their parents with alternative nodes that have a lower tree depth.
The corresponding TARL rule contains two match expressions to specify
the currentParent (line 3) and all parentCandidates (line 5). In case
the treeDepth of the parentCandidate with the lowest treeDepth (line
4–6) is smaller than the current treeDepth (line 1–7), both neighbors are
exchanged (line 8). Following the conceptual architecture of TARL, the spec-
ified rule relies on a monitoring of the topology and assumes an actor to
manipulate the topology.� �

1 filter(

2 join(

3 match(TP, Tree, currentParent - e0 -> self),

4 min(

5 match(TP, Neighborhood, parentCandidate - e1 -> self),

6 parentCandidate.treeDepth)),

7 currentParent.treeDepth > parentCandidate.treeDepth)

8 execute every match:

9 at (self, TP, Tree) move neighbor (currentParent, parentCandidate)� �
Listing 7.1: TARL rule that implements the low delay jump topology

adaptation, as proposed by Wang et al. [196].

C O N D I T I O N S Table 7.1 provides an overview of the language primitives
to handle topology graph patterns in the condition. Here, M represents a setTopology graph

pattern matching of matches. A match is a mapping from nodes of the pattern P to nodes in

7.3 E X P R E S S I V E N E S S E VA L UAT I O N 125

Table 7.1: TARL language primitives for the condition specifications to express
topology graph patterns.

M← [match(Topology Provider, Topology Name, Pattern P)

M← [filter(M, fB)

M← [join(M, M)

M← [min(M, fR) and max(M, fR)

Number← [count(M)

the topology graph and from edges in the pattern P to edges in the topology
graph.2 Thus, the match operation returns the set of all matches, which repre-
sents the set of all found occurrences of the pattern P in the topology graph.
Further operations allow to filter matches based on boolean predicates,
join matches of potentially different topologies, select subsets of matches
that lead to the min or max values of numeric properties, or count the num-
ber of matches.

AC T I O N S The execution part is triggered for each match in the condition. Topology pattern
modificationTable 7.2 provides an overview of the language primitives to modify the topol-

ogy based on the identified three recurring graph operations.

Table 7.2: TARL language primitives for the action specification to express topology
graph pattern modifications.

add neighbor(N, Topology Provider, Topology Name)

remove neighbor(N, Topology Provider, Topology Name)

move neighbor(N1, N2, Topology Provider, Topology Name)

7.3 E X P R E S S I V E N E S S E VA L UAT I O N

In the following, we evaluate the expressiveness of TARL. Therefore, we
revisit established topology adaptation algorithms and discuss an eye tracker
supported TARL user study.

R E V I S I T T O P O L O G Y A DA P TAT I O N A L G O R I T H M S To evaluate the Expressiveness

expressiveness of TARL, we specified representative topology adaptation al-
gorithms from the overlay video streaming and wireless sensor network do-
mains with TARL (Table 7.3).3 We followed the description and presentation
of the original papers. A proof of the semantic equality of the TARL represen-
tation and the presented algorithms in the original papers is beyond the scope
of this section. We discuss the general requirement for a notion of semantic
equality in Section 7.5.

2We provide a graph based specification of the operator semantics in [F8].
3The modeled TARL rules of the original publication [F8] are available at http://www.

dvs.tu-darmstadt.de/tarl.

http://www.dvs.tu-darmstadt.de/tarl
http://www.dvs.tu-darmstadt.de/tarl

126 A P RO G R A M M I N G M O D E L F O R T O P O L O G Y A DA P TAT I O N S

Table 7.3: Revisited topology adaptation algorithms for an evaluation of the expres-
siveness of TARL.

Algorithm Modele
d

Lines
of Code

Filte
r

Join Max
/M

in

Sele
cto

r

Topologies

Add
Rem

ov
e

Mov
e

Domain: Video Streaming Overlay

Chunkyspread [193]

Load Optimization
√

18
√ √ √

≥ 3
√

Latency Optimization
√

25
√ √ √

≥ 3
√

Distributed Market [137]
√

42
√ √ √ √

≥ 2
√

DCO [169]

Provider Selection
√

10
√ √

2
√

Requester Selection
√

7
√

2
√

mTreebone [196]

Low Delay Jump
√

9
√ √

2
√

High Degree Preemption
√

20
√ √

2
√ √ √

TRANSIT TopT [156]

Low Delay Jump
√

21
√ √ √ √

≥ 2
√

High Degree Preemption
√

41
√ √ √ √

≥ 3
√ √ √

Domain: Wireless Sensor Networks

kTC [164]
√

17
√

2
√

Gabriel [199]
√

9
√

2
√

Relative-Neighborh. [81]
√

9
√

2
√

Yao [209]
√

13
√ √ √

2
√

LMST [107] no

We successfully specified 13 out of the 14 analyzed algorithms. As all lan-
guage operators are used repeatedly in both domains, we conclude that TARL
provides an appropriate level of abstraction to specify a wide range of topol-Appropriate level of

abstraction ogy adaptation algorithms. Although wireless sensor networks exhibit multi-
ple topologies, the corresponding conditions only rely on one of these topolo-
gies. Thus, join operations are only used in the video streaming overlays.
TARL cannot express LMST [107], as this would require matching paths of
arbitrary length. Even though TARL could be extended to support LMST, we
discarded an extension solely for a single use case.

Our specified TARL rules require between 7 and 42 lines of code. A com-Convenient
specification parison with the required lines of code in the original publications is hindered

by the accessibility of their source code and the effort to analyze their imple-
mentations. However, we claim that a central specification of the adaptation
logic in a few lines is convenient and maintainable for the developer.

7.3 E X P R E S S I V E N E S S E VA L UAT I O N 127

U S E R S T U DY To substantiate the claim that TARL increases the effi-
ciency of the developer and the maintainability of the application, we con-
ducted a limited eye tracker supported user study with 12 students from TU Eye tracker

supported
user study

Darmstadt.4 During the study, participants were asked to interpret a given
adaptation rule, i. e., to specify the topology change caused by the rule (Fig-
ure 7.1). Our study shows a measurable advantage of TARL with regard to
accuracy, solution time, and visual effort compared with a Java-based alter-
native. Figure 7.2, for example, shows that TARL significantly reduces the
number of fixations and therefore the visual effort.

Figure 7.1: User study setup and visual fixations. The participants were asked to in-
terpret a given adaptation rule (top left). The orange circles visualize eye
fixations of the participants during the task. Figure taken from [S4].

0.18 0.20 0.22 0.24 0.26 0.28 0.30
Mean fixation duration in seconds

0

2000

4000

6000

8000

Fi
xa

ti
o
n
 c

o
u
n
t

TARL
Java

Figure 7.2: While the participants showed comparable fixation durations with TARL
and Java, the number of fixations is significantly lower with TARL. Fig-
ure taken from [S4].

4This user study was conducted by Gregor Albrecht as part of his bachelor thesis [S4],
which was motivated and supervised by the author of this dissertation.

128 A P RO G R A M M I N G M O D E L F O R T O P O L O G Y A DA P TAT I O N S

7.4 D I S T R I B U T E D T O P O L O G Y PAT T E R N M AT C H I N G

TARL enables the specification of topology adaptation logic and abstractsProgramming model
abstracts over

implementation
details. . .

over implementation details of the execution environment. Accordingly, the
TARL execution environment can optimize, e. g., the underlying topology pat-
tern matching. In [F8], we present the implementation of a proof-of-concept
TARL runtime environment and discuss potential optimizations. In [F3], we. . . and enables

optimizing execution
environments.

further present the first distributed pattern matching (DPM) protocol5 for
topology adaptations. In this protocol, participating network nodes send par-
tial pattern matches based on their local knowledge to their neighbors. TheDistributed topology

pattern matching neigbhors try to complete the pattern matching process based on their local
knowledge. Thus, the DPM protocol enables the matching of patterns that are
larger than the local view size of the participating nodes.

DPM differs fundamentally from traditional topology pattern matching.
Accordingly, we identify the need for a systematic analysis of the distributed
pattern matcher, i. e., with regard to major configuration and environment pa-
rameters and their impact on performance metrics. We use MACI to system-The case for

extensive
experiments
with MACI.

atically analyze the impact of i) the topology graph with its graph parameters
such as its node degree, ii) the pattern and its size, and iii) the local view size.
While details of the DPM protocol and detailed case studies are contributed
by Michael Stein and presented in [F3], we focus on a summary of the ex-
perimental design and the MACI perspective. In the following, we start with
a presentation of the evaluation and the major findings before we discuss the
contribution of MACI.

7.4.1 Exploring Distributed Topology Pattern Matching

In this evaluation, we use Erdős-Rényi graphs with varying i) number of
nodes, ii) average node degree, and iii) edge weights. We use the topology
pattern with the self-node , as shown in Listing 7.2.6 To sys-
tematically analyze the impact of the pattern frequency on the required num-A lower pattern

frequency. . . ber of messages per node, we further use a constraint for the edge weight in
the pattern to control the pattern frequencies by changing the edge weights
in the graph. Here, the pattern frequency is the average number of matches
per node (# matches

nodes). In general, the pattern frequency is a contextual property
based on the interference between the pattern and the topology graph.� �

1 match(self <- e1 -> n1, n1 <- e2 -> n2, n2 <- e3 -> n3,

2 n1 <- e4 -> n4)

3 execute every match: ...� �
Listing 7.2: TARL rule with a topology pattern of a horizon of 3.

5We refer to the distributed pattern matching approach as protocol, because it essentially
defines how messages are exchanged. From a conceptual point of view, the protocol imple-
ments a distributed pattern matching algorithm.

6Our evaluation focuses on the distributed pattern matching protocol. Therefore, we use
patterns that require a view size of more than two and that are usually infeasible with tradi-
tional pattern matching (horizon > 2). Additional optimizations, e. g., moving the self node in
the pattern, would reduce the required horizon of the pattern.

7.4 D I S T R I B U T E D T O P O L O G Y PAT T E R N M AT C H I N G 129

k = 1 k = 2 k = 3 (Non-Distributed Pattern Matching)

0 25 50 75 100
Pattern Frequency

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Av
g.

 N
um

be
r
of

 M
es

sa
ge

s

0 25 50 75 100
Pattern Frequency

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Av
g.

 N
um

be
r
of

 M
es

sa
ge

s

0 25 50 75 100
Pattern Frequency

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Av
g.

 N
um

be
r
of

 M
es

sa
ge

s

0 25 50 75 100
Pattern Frequency

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Av
g.

 N
um

be
r
of

 M
es

sa
ge

s

Broadcast

0 25 50 75 100
Pattern Frequency

2

4

6

8

10

Av
g.

 N
um

be
r
of

 M
es

sa
ge

s

k = 4 (Non-Distributed PM)

Broadcast - Larger Pattern

No Broadcast

Broadcast - Node Degree 10 Broadcast - Node Degree 2

Figure 7.3: While the non-distributed pattern matcher induces a constant overhead
regardless of the pattern frequency, the number of messages of the dis-
tributed pattern matcher depends on the pattern frequency. This visual-
ization is automatically provided by MACI and only slightly modified
for the presentation in this dissertation.

Figure 7.3 shows the average number of messages per node depending on
the pattern frequency and the local view size k. The message overhead of the
non-distributed pattern matcher depends on the view size but is independent
of the pattern frequency. The distributed pattern matcher overhead depends
on the number of matching candidates and matches, as the algorithm sends
search messages for partial matches. Thus, the number of messages increases . . . increases the

benefit of DPM.with the pattern frequency for distributed matching, whereas it is constant for
the non-distributed case (Figure 7.3, k = 3 left, k = 4 right).

130 A P RO G R A M M I N G M O D E L F O R T O P O L O G Y A DA P TAT I O N S

A basic communication primitive in various network environments is broad-Missing broadcast
functionalities. . . cast, which denotes the operation of delivering a message sent only once to

all 1-hop neighbors of the sender. Broadcast messages are not available in all
applications and environments, e.g., wireless networks usually provide broad-
casts thanks to a shared medium, whereas overlay networks typically do not.
Broadcasts reduce the cost to retrieve a local view because they provide an
efficient local communication. Figure 7.3 compares Broadcast and No Broad-. . . increase the

benefit of DPM. cast scenarios. The benefit of the distributed pattern matcher is higher for
environments without broadcasts.

We further evaluate the impact of graph parameters in Figure 7.3. In the
chosen setting, small node degrees favor small local views: For an average
node degree of 2, the configuration with k = 1 is superior for all pattern fre-The optimal k. . .

quencies. The evaluation with a Larger Pattern, which requires k = 4 for the
non-distributed matcher, in Figure 7.3 supports these observations. In this ex-. . . depends on the

pattern and
environment.

ample, the optimal k is 1, 2 or 4 depending on the pattern frequency. This
shows that the optimal k for distributed matching is not always 1 but depends
on both the pattern and the topology graph.

7.4.2 MACI Perspective

To conduct the previous experimental design study, we relied on MACI, our
framework for the seamless execution and analysis of extensive network ex-
periments, as presented in Chapter 4. Overall, MACI provided support for all
non-TARL and non-DPM specific tasks and enabled us to focus on the specific
aspects for our analysis of distributed topology pattern matching.

C U S T O M S I M U L AT O R The TARL runtime environment and the DPM
protocol are implemented in a Java-based simulator. We extended the exist-
ing simulator with a few lines of code to store the target metrics in MACI.
Therefore, we relied on the Java API of MACI, as shown in Listing 7.3.� �

1 public void record(final String key, final int value)

2 throws IOException;

3
4 public void record(final String key, final int value,

5 final long time) throws IOException;

6
7 public void record(final String key, final String value)

8 throws IOException;

9
10 /* ... */
11
12 public void warn(final String key, final String message)

13 throws FileNotFoundException;� �
Listing 7.3: Java API to store target metrics with MACI.

I N T E R AC T I V E A N A LY S I S We benefited from the interactive analysisInteractive analysis

features of MACI, which generated the visualizations as shown in Figure 7.3

7.5 D I S C U S S I O N A N D F U T U R E W O R K 131

based on our specified target metric, filter, and aggregation selection. The vi-
sualizations are only slightly modified for the presentation in this dissertation.
Besides these visualizations, additional time-based MACI visualizations are
used in [F3, 180].

S C A L A B L E E X E C U T I O N The used simulator provides full isolation and
therefore does not require an own operating system per execution, as Mininet
does. Thus, we benefited from the parallelism of the setup with up to 100
parallel experiment executions.

7.5 D I S C U S S I O N A N D F U T U R E W O R K

In this section, we introduced the executable specification language TARL
as abstraction for topology adaptations. TARL closes the gap between the
domain of general graph pattern matching and graph rewriting [12, 49, 102],
and the diverse topology adaptations in various domains of communication
systems [95, 104, 105, 112, 137, 156, 164, 169, 193, 196, 201].

U S E R S T U DY Established eye tracker supported user studies in the area
of programming languages [64, 168, 190] showed that subtle differences
in the syntax and variable naming have a significant impact on the under-
standability of source code. Accordingly, our user study, which indicates that
TARL rules require less visual effort and are easier to read than comparable
Java implementations, has to be treated carefully. In general, we note that
the design of domain-specific languages with regard to the user experience is
based on educated guesses and lacks well-established best-practices.

F U T U R E W O R K O N S E M A N T I C S While TARL provides well defined
semantics based on graph pattern matching, we note that semantics and con- Future work on

semantics and
consistency
models. . .

sistency models for the environment monitoring and the execution of topol-
ogy modifications are missing. The topology monitoring, for example, does
not specify at which point in time the reported topology on a local node
was monitored in the network. The distributed nature of communication sys-
tems, the usually asynchronous communication, and the constant environ-
ment changes introduce many imprecisions. Thus, the reported topology might . . . for topology

monitoring. . .be a combination of different snapshots and might never have been in the re-
ported state. The execution part of TARL rules does neither guarantee that
all topology modifications are executed atomically in the distributed environ- . . . and topology

modifications.ments nor what happens in case an operation fails. We note that the revisited
application scenarios do neither provide nor require these semantics due to
their nature of best effort overlay networks and wireless sensor networks.

However, these semantics are required to reason about topology adapta-
tions. For future work, we anticipate a notion of semantically equal topology Notion of

semantic equalityadaptations based on the envisioned consistency models. This would enable
us to discuss the semantic equality of the TARL representation and the pre-
sented algorithms in the original papers. Furthermore, a notion of semantic

132 A P RO G R A M M I N G M O D E L F O R T O P O L O G Y A DA P TAT I O N S

equality is required to discuss meaningful optimizations for TARL and rea-
son about correctness properties. For example, it seems trivial that both pat-
terns self - e0 - n0 - e1 - n1 and n0 - e0 - self - e1 - n1 are
semantically equal. However, in a highly dynamic distributed environment,
the required two hop monitoring data might be outdated whereas the one hop
data finds the match. This limitation makes reasoning about i) the correct-
ness and semantic equality of local topology and distributed topology pattern
matching and ii) the concurrent execution of multiple topology adaptations
meaningless. Note that such a consistency model does not have to provide
strong guarantees but concepts to reason about possible states.

8
E X T E N S I V E DA S H V I D E O P L AY E R C O M PA R I S O N

In this chapter, we present a MACI case study with a DASH video streaming MACI (RQ II)
evaluation. . .analysis using extensive network experiments.1 The result of this analysis is

a valuable contribution for the video streaming domain that goes beyond an . . . and video
streaming
contribution.

evaluation of MACI, our solution for the second research question. In this
chapter, we focus on a presentation of the general concepts and findings. For
a detailed presentation, we refer to our publications [F2, F6, F9].

8.1 M OT I VAT I O N A N D B AC K G RO U N D

Multimedia communication systems have to be carefully designed to provide
a satisfying user experience [182]. Dynamic Adaptive Streaming over HTTP
(DASH) [176] adapts the video quality at runtime to cope with changing net- Dynamic Adaptive

Streaming over
HTTP (DASH)

work conditions. The HTTP server offers each video segment in various video
bitrate representations. At the client side, the DASH player uses an adapta-
tion algorithm to dynamically choose the representation of the next segment
considering the previously observed network conditions. The DASH player
optimizes for various metrics that impact the perceived Quality of Experience
(QoE) of the user [167], such as a high video quality and a low number of
playback interrupts (stallings).

There is a large number of DASH players, such as DASH.JS2 and Shaka3, Various DASH
player. . .which implement their particular default adaptation algorithms as well as ad-
. . . with various
adaptation
algorithms. . .

ditional algorithms. These adaptation algorithms are based on different adap-
tation principles, such as throughput-based adaptation and buffer-based adap-
tation. We refer to [96] for a survey on rate adaptation techniques for DASH.
Each player provides an own set of configuration parameters. We notice that . . . and various

configuration
parameters. . .

empirical evaluations of adaptation algorithms are typically conducted in a
single player [73, 159, 178] or academic DASH emulators such as AStream4.

Furthermore, today’s DASH players have to ensure a high user satisfaction . . . have to operate in
various network
environments.

in a wide range of fluctuating network conditions. A recent publications of
Google, for example, show that their customers experience mean round-trip
times between 38ms in South Korea and 188ms in India [100].

1The presented work in this chapter is the result of a joint effort with Denny Stohr and
was previously published in [F6, F9]. The author of this dissertation contributed the general
methodology and implementation for large extensive network emulations, whereas Denny
Stohr contributed the DASH video streaming specific aspects and implementations, such as
the used DASH player abstraction and video metric collections. The analysis and interpreta-
tion of the results are joint work.

2See https://github.com/Dash-Industry-Forum/dash.js.
3See https://github.com/google/shaka-player.
4See https://github.com/pari685/AStream.

https://github.com/Dash-Industry-Forum/dash.js
https://github.com/google/shaka-player
https://github.com/pari685/AStream

134 E X T E N S I V E DA S H V I D E O P L AY E R C O M PA R I S O N

Considering this large evaluation space, we make the case for systematicThe case for
systematic extensive

MACI experiments.
experimental comparisons and evaluations of today’s DASH player designs
and implementations. The required systematic extensive experiments for the
application scenario of DASH video streaming substantiates our argument for
the reusable experiment framework MACI.

8.2 E X P E R I M E N TA L D E S I G N A P P RO AC H

In this section, we present our experimental design for a large DASH player
and adaptation algorithm analysis. Based on the previous motivation, we60 configurations. . .

chose the player, the adaptation algorithm, the video segment lengths, a range
of target playout buffer sizes, and the network environment parameters as con-. . . in 20

environments. trol variables (depicted in Table 8.1). For an evaluation of the network param-
eters, we concentrate on a systematic comparison of the available bandwidth
with varying statistical properties. We refer to our previous publication for
an analysis of the impact of the loss rate [F9] and a detailed presentation of
the DASH player specific abstractions [F6]. We use the established Tears of
Steel5 DASH data set prepared by [103], featuring nine H.264-AVC encoded
representations in the range of 0.243Mbps to 10Mbps.

Table 8.1: Experiment control variables.

Variable Values

Configuration

Player DASH.JS, Shaka, AStream

AA standard, BOLA

segment length 1, 2, 6, 10, 15 [s]

target buffer size default, 5, 20 [s]

Environment µBW 0.8, 2, 5, 7.5, 10 [Mbps]

(Avail. BW) σ2
BW 0, 0.8, 2, 5 [Mbps2]

8.3 DA S H A N A LY S I S OV E RV I E W

In this section, we provide an overview of our DASH player and adaptation
algorithm analysis results. Figure 8.1 shows the total stalling duration during
playback of the analyzed DASH players and their adaptation algorithms under
varying network conditions and segment length configuration of 6 seconds.
The stalling duration increases with the bandwidth variance for the DASH.JSIncreasing

bandwidth variance,
increasing stalling

durations.

and Shaka player, as higher variances increase the bandwidth fluctuations.
AStream, however, exhibits the opposite trend and shows in general larger
stalling durations. To evaluate the impact of the segment length, Figure 8.2
shows the same comparison for 15 second segments. We see that the stalling15s segments show

larger stalling
durations than 6s

segments.

duration with 15 second segments is significantly larger for the DASH.JS and
Shaka player. We assume that this is a consequence of the used default player

5See https://mango.blender.org/.

https://mango.blender.org/

8.3 DA S H A N A LY S I S OV E RV I E W 135

buffer size (between 10 and 12 seconds), which is smaller than the segment
length. Again, we note that AStream exhibits the opposite trend. A more de-
tailed analysis showed that implementation errors in the emulator code lead
to this unexpected and unrepresentative behavior [F6].

AStream DASH.JS ShakaPlayer

Adapt. Algo. Bola Bola Default Default

Real Java Script PlayerResearch
Emulator

BW Variance 0.8 2.0 5.0 0.8 2.0 5.0 0.8 2.0 5.0 0.8 2.0 5.0
0

2

4

6

8

10
T
o
ta

l S
ta

lli
n
g
 D

u
ra

ti
on

 [
s]

Stalling Duration, 5Mbps Mean Bandwidth, 6s Segements

Figure 8.1: Total stalling duration of DASH players with various adaptation algo-
rithms, and available bandwidth volatilities for a segment length configu-
ration of 6s (lower is better, experiment setup as described in Section 8.2).

AStream DASH.JS ShakaPlayer

Adapt. Algo. Bola Bola Default Default

Real Java Script PlayerResearch
Emulator

0.00.82.05.00.00.82.05.00.00.82.05.00.00.82.05.0
0

2

4

6

8

10

T
o
ta

l S
ta

lli
n
g
 D

u
ra

ti
o
n
 [

s]

Stalling Duration, 5Mbps Mean Bandwidth, 15s Segements

BW Variance

Figure 8.2: Total stalling duration DASH players with various adaptation algorithms
and available bandwidth volatilities for a segment length configuration of
15s (lower is better, experiment setup as described in Section 8.2).

Figure 8.3 further investigates the impact on an aggregated stalling Qual-
ity of Experience (QoE) metric based on the stalling events and their dura-
tion [71]. Here, we note that the aggregated stalling QoE metric shows com-
parable results to the total stalling duration.

Overall, the comparison shows that the choice of the adaptation algorithm The player
configuration is
more important than
the adaptation
algorithm.

is dominated by the choice of the player and its configuration. This illustra-
tive example substantiates the need for a large systematic comparison, as an
isolated analysis of single DASH players or parameters is not sufficient to
evaluate streaming performance.

136 E X T E N S I V E DA S H V I D E O P L AY E R C O M PA R I S O N

AStream DASH.JS ShakaPlayer

Adapt. Algo. Bola Bola Default Default

Real Java Script PlayerResearch
Emulator

BW Variance 0.0 0.8 2.0 5.0 0.0 0.8 2.0 5.0 0.0 0.8 2.0 5.0 0.0 0.8 2.0 5.0
0

1

2

3

4

5

S
ta

lli
n
g
 Q

o
E

Stalling QoE, 5Mbps Mean Bandwidth, 6s Segements

Figure 8.3: Stalling QoE by [71] of DASH players with various adaptation algo-
rithms and available bandwidth volatilities for a segment length config-
urations of 6s (higher is better, experiment setup as described in Sec-
tion 8.2).

The experienced quality for the user depends on multiple performance met-Performance metric
trade-offs. . . rics, such as the stalling events and the video playback bitrate. Due to the

intrinsic difficulty of constructing a single comprehensive quality metric, the
choice of the optimal player and its configuration is a multidimensional op-
timization problem. Figure 8.4 shows a scatter plot to analyze the trade-offs. . . visualized as

Pareto frontier. . . between two exemplary performance metrics, i) the playback bitrate and ii)
the previously introduced stalling QoE.6 Each entry in the graph denotes the
performance of a particular configuration averaged over all considered net-
work conditions. As all player and adaptation algorithm combinations are. . . show that no

single configuration
dominates both

target metrics. . .

represented at least once on the Pareto frontier, no single configuration dom-

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4
M e a n P la yb a ck Bit r a t e [M b p s]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

S
ta

ll
in

g
 Q

o
E

Pa r e to fr on t ie r

N on -Op t . S h a ka

Op t . S h a ka

N on -Op t . DAS H .JS (BOLA)

Op t . DAS H .JS (BOLA)

N on -Op t . DAS H .JS (S t a n d .)

Op t . DAS H .JS (S t a n d .)

S m a ll Buffe r,
Lon g S e g m e n t s

1 5 s S e g m e n t s
2 0 s Buffe r

2 s S e g m e n t s
2 0 s Buffe r

6 s S e g m e n t s
2 0 s Buffe r

2 s S e g m e n t s
2 0 s Buffe r

1 5 s S e g m e n t s
2 0 s Buffe r

S h a ka

S h a ka

S h a ka

DAS H .JS (BOLA)

Both Dash.JS

Figure 8.4: Trade-offs between playback bitrate and stalling QoE for different play-
ers and adaptation algorithms, aggregated over all environment condi-
tions of Table 8.1. This visualization is automatically provided by MACI
and only slightly modified for the presentation in this dissertation.

6We omit AStream due to inconsistent stalling results as discussed in [F6].

8.4 M AC I P E R S P E C T I V E 137

inates both target metrics. Thus, the choice of the player and adaptation al-
gorithm only depends on the weighting of an aggregation function for both
performance metrics.

A closer analysis shows multiple dependencies and trends: i) large buffer . . . and that large
buffer sizes dominate
the performance for
all player.

sizes dominate the performance for all player configurations for both consid-
ered metrics, ii) increasing the segment length leads to higher playback bit-
rates. iii) combinations of small buffer sizes and long segments perform badly.
Finally, Figure 8.4 shows the minor impact of different adaptation algorithms
within DASH.JS, i. e., the green and red marks collate without a consistently
superior adaptation algorithm.

8.4 M AC I P E R S P E C T I V E

To conduct the previous experimental design study, we relied on MACI, our
framework for the seamless execution and analysis of extensive network ex-
periments, as presented in Chapter 4. Thus, the DASH evaluation represents
a case study and evaluation for MACI.

Figure 8.5 illustrates the relationship between MACI and the DASH spe-
cific aspects. MACI provides the reusable infrastructure to manage the exper-
iments, execute them in parallel on a distributed infrastructure, and analyze
the collected metrics. The DASH specific aspects are embedded in the emula-
tion script for the execution of the DASH experiments. Based on the config-
uration of the emulation script provided by MACI, the experiment results in
various performance metrics which are again collected by MACI. Figure 8.6
shows the automatically generated user interface for the interactive data anal-
ysis, which directly leads to visual representations as shown in Figure 8.1, 8.2,
8.3, 8.4. The visualizations are only slightly modified for the presentation in
this dissertation, Figure A.1 shows an unmodified example for illustration.

Figure 7.6

Add Segment
Length

Fix / Improve
Implementation

Add Mean
Bandwidth

Interactive Data Analysis Parallel Experiment Execution Manage Experiments

Executable Experiment

Executable Experiment

DASH Emulation Experiment Script

Player, Adaptation Algorithm, Player Config.,
Segment Length, Network Conditions, …

Stallling Events, Playback Bitrates, …

…

Figure 7.1

Figure 7.2

Figure 8.5: Experiment-driven research process for the DASH evaluation study.

I T E R AT I V E R E S E A R C H P RO C E S S We developed, tested, and improved Iterative Research
Processthe DASH specific measurement features iteratively. The interactive analysis

of the experiment results enabled us i) to quickly detect errors and inconsis-
tencies in our measurements and implementations and ii) to identify regions
of interest and to add additional measurement metrics and configurations to

138 E X T E N S I V E DA S H V I D E O P L AY E R C O M PA R I S O N

further investigate and question our findings within the process. We profited
from MACI for interactive analysis group sessions to discuss and question
hypotheses. The simple repetition of experiment studies with improved and
extended implementations was crucial for our efficiency.

S C A L A B L E E X E C U T I O N As a single execution of all configurations inScalable Execution

all environments requires more than 40 hours (120s video playback per exper-
iment), the parallel experiment execution significantly increased our iteration
speed and enabled us to retrieve reliable results with dozens of repetitions.

Figure 8.6: Automatically generated graphical user-interface for the DASH analysis.

The experience report in this section oversimplifies the internal aspects of
the DASH emulation script and setup, which are presented in [F6]. MACI
provided support for all non-DASH specific tasks and enabled us to focus on
the DASH specific aspects for the DASH player comparison.

8.5 D I S C U S S I O N A N D F U T U R E W O R K

In this chapter, we showed that the large design and evaluation space of
DASH video streaming requires systematic extensive experiments. Our ex-
tensive evaluation study showed that the impact of the player and its config-
uration dominates the choice of the adaptation algorithm with regard to var-
ious target metrics. In particular, the buffer size dominates all other control
parameters with regard to the experienced video playback bitrate and stalling
behavior. We found MACI indispensable in all phases of the research and
development process for this DASH study.

For future work, we envision the consideration and integration of additional
DASH players and bitrate adaptation algorithms as well as the consideration
of lower network layers [163]. We envision that this might be supported by ad-
ditional MACI features, e. g., to automatically generate and evaluate promis-
ing configurations.

9
D I S C U S S I O N A N D F U T U R E W O R K

This dissertation contributes i) three programming models for the domains
of Multipath TCP (ProgMP), adaptive communication systems (Fossa), and
topology adaptations in communication systems (TARL), ii) more than eight
novel, deployable general purpose, preference-, and application-aware Multi-
path TCP schedulers, and iii) the reusable MACI framework for the seamless
execution and analysis of extensive network experiments (Figure 9.1). Major
parts of our contributions are publicly available.1

Seamless Execution and
Analysis of Extensive
Network Experiments

Programming Model for
Multipath TCP Scheduling

Design and Analysis of
Novel Multipath TCP Schedulers

Extensive DASH Player
Comparison

Programming Model for
Adaptation Logic

Programming Model for

Topology Adaptations

Fossa ProgMP MACI

TARL

Enables / Used for Concept enables / used for

PA

PA Source publicly available

PA

DASH Study MPTCP Schedulers PA PA

Figure 9.1: Overview of the contributions of this dissertation and their dependencies.

This dissertation overcomes the obstacles for the analysis, implementation,
and evaluation of communication systems, i. e., i) the missing abstractions
and the resulting implementation complexity, and ii) the required extensive
evaluations for today’s large configuration spaces and heterogeneous network
environments, as identified in Chapter 1. ProgMP and TARL are abstractions
for the specification of concrete MPTCP schedulers and topology adaptation
strategies, whereas Fossa provides abstractions for the specification of the
adaptation decision. In addition to these abstractions for the analysis and im-
plementation of communication systems, MACI increases the efficiency for
the evaluation with extensive experiments (Figure 9.2). MACI proved its use-
fulness for the analysis and evaluation of our proposed ProgMP schedulers,
the analysis of a distributed topology graph pattern matching protocol for
TARL, and a systematic comparison of DASH video streaming implementa-
tions. These experiments go beyond an evaluation of MACI and significantly
contribute to the understanding of their domains.

Overall, this dissertation provides various contributions in different do-
mains. We find, however, that the contribution to the understanding of Multi-
path TCP scheduling, i. e., the ProgMP programming model, the wide range
of novel schedulers, and the detailed experimental evaluation of these sched-
ulers, is the most fundamental contribution of this dissertation.

1See https://progmp.net and https://maci-research.net.

https://progmp.net
https://maci-research.net

140 D I S C U S S I O N A N D F U T U R E W O R K

Application Application

requirements

Communication System

Environment Environment

MPTCP Scheduler Topology Adaptation Logic

executed in

ProgMP to
specify schedulers

TARL to speciy
topology adaptatios

Component A Component B

Fossa to specify and learn
adaptation decision logic

MACI for extensive
evaluations

Figure 9.2: Illustration of the contributions in the context of today’s decoupled com-
munication system components.

In the following, we compare our presented programming models, discuss
the extensive network experiment approach, and conclude with an overview
of identified future work.

9.1 P RO G R A M M I N G M O D E L S F O R C O M M U N I C AT I O N S Y S T E M S

In this dissertation, we identified missing abstractions in communication sys-
tem research and development. We presented three programming models for
different target domains in the area of communication systems (Figure 9.3).
First, the Multipath TCP scheduler programming model ProgMP enables to
specify when to send which packet on which subflow. Second, the Fossa ECA-
and utility function-based programming model for adaptation decisions en-
ables to specify when to switch to which mechanism. Third, the topology
adaptation rule language TARL enables to specify when and how to modify
the surrounding topology.

Programming Model for
Multipath TCP Scheduling

Programming Model for
Adaptation Decisions

Programming Model for

Topology Adaptations

Fossa

ProgMP

TARL

When to send which packet on which subflow?

When to switch to which mechanism?

Broad application domain, open and integrative model

 Confined for MPTCP scheduling, small set of decision variables

Declarative packet and subflow selection

Declarative aggregations and conditions

When and how to modify the topology?

 Confined for topology operations, open wrt. graph attributes

Declarative pattern specification

What:

What:

What:

Scope:

Scope:

Scope:

Linux kernel network stack Runtime Environment:

Java simulator Runtime Environment:

Java simulator Runtime Environment:

Figure 9.3: Comparison of the presented programming models.

The presented programming models and their languages provide bespokeProgramming
models as

abstractions
abstractions for their domains. Thus, the concepts and primitives of the pro-
gramming models differ due to their target domains. Fossa, for example, tar-
gets a broad application domain and is therefore designed to be open and in-

9.2 E X T E N S I V E N E T W O R K E X P E R I M E N T S 141

tegrative for different metrics, events, and possible mechanisms. In contrast,
the Multipath TCP scheduling decision is a rather confined domain with a
small set of possible decision variables.

We expressed a large number of notable programs and algorithms of their Expressive . . .

respective domains to confirm the expressiveness, efficiency, and understand-
ability of the proposed programming models. All three programming models
rely on declarative specifications, e. g., for the subflow selection in ProgMP, . . . and declarative

specifications.for aggregations and condition in Fossa, and topology patterns in TARL.
The domain-specific languages of all three presented programming models Executable in

runtime environmentare executable. Here, we note that the significance of the ProgMP runtime
environment goes beyond the two other environments, as it supports and is
compatible with the de facto multipathing transport protocol MPTCP. Thus,
ProgMP is directly usable by all applications that rely on TCP and run on top
of our ProgMP Linux kernel runtime environment.

9.2 E X T E N S I V E N E T W O R K E X P E R I M E N T S

In this dissertation, we identified the need for the seamless execution and
analysis of extensive network experiments. We presented MACI as a generic,
reusable framework for large, extensive network experiments. We benefited
from MACI during the analysis and evaluation of ProgMP-based MPTCP
schedulers, the evaluation of the distributed topology pattern matching algo-
rithm for TARL, and during an extensive DASH video streaming comparison.

MACI is inspired by our first experiences with the execution of a large
number of evaluations during the development of the genetic programming
learner of Fossa. The concept of MACI, the support for extensive experiments,
enables the genetic programming learner of Fossa.

9.3 F U T U R E W O R K

While we discussed future work throughout this dissertation, we present an
overview of the most promising future work in the following. Figure 9.4 illus-
trates the different areas of future work and their relationship to the contribu-
tions of this dissertation.

Seamless Execution and
Analysis of Extensive
Network Experiments

Programming Model for
Multipath TCP Scheduling

General Programming
Model for Scheduling

Learn ECA Rules as
Adaptation Logic in

Extensive Experiments

Fossa ProgMP MACI

Application of

Reasoning
on Schedulers

Learning on Extensive
Experiments

Future Extensive
Experiment Studies

T
h
is

 D
is

s
e
rt

a
ti
o
n

F
u
tu

re
 W

o
rk

Generic Fossa

MPTCP Scheduler
Innovations

Foundation for

Figure 9.4: Illustration of the different areas of future work based on the contribu-
tions of this dissertation.

142 D I S C U S S I O N A N D F U T U R E W O R K

M AC I We made MACI publicly available to enable other researchers toFuture extensive
experiment studies benefit from MACI for their extensive experiment studies. While MACI pro-

vides a comprehensive support for an iterative research process, we envision
helpful additional features, e. g., to increase the level of automation by auto-
matically generating additional experiments for promising configurations.

G E N E R I C F O S S A Besides the use of the ECA- and the learning-based
approach of Fossa for more applications, we envision a Generic Fossa forGeneric Fossa

the emerging programming models in communication systems. The Generic
Fossa might take the specification of a domain-specific language as input to
generate optimized programs for the corresponding domain with genetic pro-
gramming and extensive network experiments. The Generic Fossa would, for
example, enable to learn optimized TARL rules based on the TARL grammar
and the presented evaluation setups in MACI.

A G E N E R A L P RO G R A M M I N G M O D E L F O R S C H E D U L I N G ProgMP
proved to be a powerful enabler for deployable Multipath TCP scheduler in-
novations. We showed that ProgMP enables a compact specification of a wide
range of Multipath TCP schedulers. We envision an extension of ProgMP to-A general

programming model
for packet scheduler

wards a general packet scheduler programming model, e. g., as illustrated in
Listing 9.1. The inclusion of event-based expressions, e. g., as used in the
ECA language of Fossa, might enable the specification of monitoring metrics
beyond the confined Multipath TCP scheduling model and enable more fine-
granular timing primitives. In combination with the support for the specifica-
tion of packet queues, this would enable the specification of a broader range
of packet schedulers but might increase the complexity for the specification
of Multipath TCP schedulers.� �

1 /* Support for events, e.g., to manage metrics */

2 DECLARE smooth_rtt

3 ON receive_packet packet EVENT

4 WITH CONDITION packet.ACK = TRUE

5 ACTION SET smooth_rtt = smooth_rtt * 0.4 + packet.RTT * 0.6;

6
7 /* Support to define persistent queues */

8 DEFINE QUEUE reinjectionQueue;

9
10 reinjectionQueue.PUSH(QU.FILTER(skb =>

11 skb.SENT_TIME > CURRENT_TIME_MS + 2 * smooth_rtt));� �
Listing 9.1: Envisioned ProgMP extensions towards a general packet scheduler

programming model.

R E A S O N I N G O N S C H E D U L E R S We further envision advanced reason-Reasoning
on ProgMP

schedulers. . .
ing on ProgMP schedulers. The envisioned Generic Fossa, for example, might

. . . with Generic
Fossa. . .

automatically derive and refine schedulers in extensive experiments with ge-
netic programming. Further, we envision that the confined ProgMP program-
ming model enables powerful verifications. Symbolic execution, for example,. . . and symbolic

execution. might efficiently verify correctness and liveness properties of schedulers. The

9.3 F U T U R E W O R K 143

verification and analysis might help the scheduler developer and increase trust
in learned, automatically derived schedulers.

M P T C P S C H E D U L E R I N N OVAT I O N S The contributions of this work Future scheduler
innovationspave the way for future Multipath TCP scheduler innovations. This includes

improved general purpose, application-, and preference-aware schedulers. We
envision, for example, DASH-aware Multipath TCP schedulers that are opti-
mized to provide a high quality of experience while preserving user pref-
erences. Finally, we envision improved Multipath TCP schedulers based on
large real-world evaluations.

B I B L I O G R A P H Y

[F1] Alexander Frömmgen, Jens Heuschkel, and Boris Koldehofe.
“Multipath TCP Scheduling for Thin Streams: Active Probing
and One-way Delay-awareness”. In: Proceedings of the IEEE
International Conference on Communications (ICC). 2018.

[F2] Alexander Frömmgen, Denny Stohr, Amr Rizk, and Boris
Koldehofe. Don’t Repeat Yourself: Seamless Execution and
Analysis of Extensive Network Experiments. Tech. rep. 2018.
URL: https://maci-research.net.

[F3] Michael Stein, Alexander Frömmgen, Roland Kluge, Wang
Lin, Augustin Wilberg, Boris Koldehofe, and Max Mühlhäuser.
“Scaling Topology Pattern Matching: A Distributed Approach”.
In: Proceedings of the ACM/SIGAPP Symposium on Applied
Computing (SAC). 2018.

[F4] Tobias Viernickel, Alexander Frömmgen, Amr Rizk, Boris
Koldehofe, and Ralf Steinmetz. “Multipath QUIC: A Deploy-
able Multipath Transport Protocol”. In: Proceedings of the
IEEE International Conference on Communications (ICC).
2018.

[F5] Alexander Frömmgen, Amr Rizk, Tobias Erbshäußer, Max
Weller, Boris Koldehofe, Alejandro Buchmann, and Ralf
Steinmetz. “A Programming Model for Application-defined
Multipath TCP Scheduling”. In: Proceedings of the ACM/I-
FIP/USENIX Middleware Conference, Best Paper Award.
ACM, 2017, pp. 134–146. URL: https://progmp.net.

[F6] Denny Stohr, Alexander Frömmgen2, Amr Rizk, Michael Zink,
Ralf Steinmetz, and Wolfgang Effelsberg. “Where are the
Sweet Spots?: A Systematic Approach to Reproducible DASH
Player Comparisons”. In: Proceedings of the ACM Conference
on Multimedia (MM). 2017, pp. 1113–1121. URL: https://
maci-research.net/dash.

[F7] Alexander Frömmgen, Tobias Erbshäußer, Torsten Zimmer-
mann, Klaus Wehrle, and Alejandro Buchmann. “ReMP TCP:
Low Latency Multipath TCP”. In: Proceedings of the IEEE
International Conference on Communications (ICC). Idea pro-
posed in CoNEXT’15 Student Workshop. 2016.

2The two first authors contributed equally to this work.

https://maci-research.net
https://progmp.net
https://maci-research.net/dash
https://maci-research.net/dash

146 Bibliography

[F8] Michael Stein, Alexander Frömmgen, Roland Kluge, Frank
Löffler, Andy Schürr, Alejandro Buchmann, and Max
Mühlhäuser. “TARL: Modeling Topology Adaptations for Net-
working Applications”. In: Proceedings of the International
Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). ACM. 2016, pp. 57–63.

[F9] Denny Stohr, Alexander Frömmgen, Jan Fornoff, Michael
Zink, Alejandro Buchmann, and Wolfgang Effelsberg. “QoE
Analysis of DASH Cross-Layer Dependencies by Extensive
Network Emulation”. In: Proceedings of the SIGCOMM Work-
shop on QoE-based Analysis and Management of Data Com-
munication Networks (Internet-QoE). ACM, 2016, pp. 25–30.

[F10] Alexander Frömmgen, Jens Heuschkel, Patrick Jahnke,
Fabio Cuozzo, Immanuel Schweizer, Patrick Eugster, Max
Mühlhäuser, and Alejandro Buchmann. “Crowdsourcing Mea-
surements of Mobile Network Performance and Mobility Dur-
ing a Large Scale Event”. In: Proceedings of the Interna-
tional Conference on Passive and Active Network Measure-
ment (PAM). Springer International Publishing. 2016, pp. 70–
82.

[F11] Wasiur R. KhudaBukhsh, Amr Rizk, Alexander Frömmgen,
and Heinz Koeppl. “Optimizing Stochastic Scheduling in Fork-
Join Queuing Models: Bounds and Applications”. In: Proceed-
ings of the IEEE INFOCOM. 2017.

[F12] Alexander Frömmgen, Robert Rehner, Max Lehn, and Alejan-
dro Buchmann. “Fossa: Using Genetic Programming to Learn
ECA Rules for Adaptive Networking Applications”. In: Pro-
ceedings of the Local Computer Networks (LCN). IEEE. 2015,
pp. 197–200.

[F13] Alexander Frömmgen, Robert Rehner, Max Lehn, and Alejan-
dro Buchmann. “Fossa: Learning ECA Rules for Adaptive Dis-
tributed Systems”. In: Proceedings of the International Confer-
ence on Autonomic Computing (ICAC). IEEE. 2015, pp. 207–
210.

[F14] Alexander Frömmgen, Björn Richerzhagen, Julius Rückert,
David Hausheer, Ralf Steinmetz, and Alejandro Buchmann.
“Towards the Description and Execution of Transitions in
Networked Systems”. In: Proceedings of the IFIP Interna-
tional Conference on Autonomous Infrastructure, Management
and Security (AIMS). Springer International Publishing. 2015,
pp. 17–29.

[F15] Alexander Frömmgen and Boris Koldehofe. “Demo: Program-
ming Application-defined Multipath TCP Schedulers”. In: Pro-
ceedings of the ACM/IFIP/USENIX Middleware Conference:
Posters and Demos. ACM, 2017, pp. 13–14.

Bibliography 147

[F16] Alexander Frömmgen. Mininet/Netem Emulation Pitfalls: A
Multipath TCP Scheduling Experience. Tech. rep. 2017. URL:
https://progmp.net/MininetPitfalls.pdf.

[F18] Alexander Frömmgen, Stefan Haas, Martin Pfannemüller, and
Boris Koldehofe. “Switching ZooKeeper’s Consensus Protocol
at Runtime”. In: Proceedings of the International Conference
on Autonomic Computing (ICAC) Poster Track. 2017.

[F19] Alexander Frömmgen, Denny Stohr, Jan Fornoff, Wolfgang Ef-
felsberg, and Alejandro Buchmann. “Demo: Capture and Re-
play: Reproducible Network Experiments in Mininet”. In: Pro-
ceedings of the Conference of the Special Interest Group on
Data Communication (SIGCOMM). ACM. 2016, pp. 621–622.

[F20] Jens Heuschkel, Alexander Frömmgen, Jon Crowcroft, and
Max Mühlhäuser. “VirtualStack: Adaptive Multipath Support
through Protocol Stack Virtualization”. In: Proceedings of
the International Network Conference (INC). Lulu.com. 2016,
p. 73.

[F21] Alexander Frömmgen, Sreeram Sadasivam, Sabrina Müller,
Anja Klein, and Alejandro Buchmann. “Poster: Use Your
Senses: A Smooth Multipath TCP WiFi/Mobile Handover”. In:
Proceedings of the Annual International Conference on Mobile
Computing and Networking (MobiCom). ACM. 2015, pp. 248–
250.

[F22] Alexander Frömmgen, Patrick Wagner, and Alejandro Buch-
mann. “Simulation-based Retrieval of Adaptation Knowledge”.
In: Proceedings of the International Conference on emerging
Networking EXperiments and Technologies (CoNEXT) Student
Workshop. ACM. 2015.

[F24] Alexander Frömmgen, Max Lehn, and Alejandro Buchmann.
“A Property Description Framework for Composable Soft-
ware”. In: Proceedings of the European Conference on Soft-
ware Architecture (ECSA). Springer International Publishing.
2014, pp. 267–282.

[S4] Gregor Albrecht. Eye-Tracker Supported Evaluation of a
Domain-Specific Topology Adaptation Language. Bachelor
Thesis, KOM, TU Darmstadt, Supervised by Alexander Fröm-
mgen. 2017.

[S6] Andreas Bauer. Eine Plattform zur Ausführung und Evaluation
von Netzwerksimulationen mit vielen Konfigurationen. Bach-
elor Thesis, KOM, TU Darmstadt, Supervised by Alexander
Frömmgen. 2017.

[S10] Nikolas Eller. Maschinelles Lernen der Staukontrolle im QUIC
Transportprotokoll. Bachelor Thesis, KOM, TU Darmstadt, Su-
pervised by Alexander Frömmgen. 2018.

https://progmp.net/MininetPitfalls.pdf

148 Bibliography

[S11] Tobias Erbshäußer. Optimierung der Latenz in Multipath-TCP
Netzwerken durch Vervielfältigung und quantitative Verteilung
der Datenpakete. Bachelor Thesis, DVS, TU Darmstadt, Su-
pervised by Alexander Frömmgen. 2015.

[S12] Tobias Erbshäußer. Optimization of Custom Schedulers in Mul-
tipath TCP. Master Thesis, DVS, TU Darmstadt, Supervised
by Alexander Frömmgen. 2017.

[S20] Tobias Viernickel. Verbesserte Web-Performance mit Multi-
path Scheduling für HTTP/2 und QUIC. Master Thesis, KOM,
TU Darmstadt, Supervised by Alexander Frömmgen. 2017.

[S22] Max Weller. Optimierte Zusammenarbeit von HTTP/2 und
Multipath-TCP-Schedulern. Bachelor Thesis, KOM, TU
Darmstadt, Supervised by Alexander Frömmgen. 2017.

[RFC 826] David Plummer. Ethernet Address Resolution Protocol: Or
converting network protocol addresses to 48. bit Ethernet ad-
dress for transmission on Ethernet hardware. RFC 826. Inter-
net Engineering Task Force, 1982. URL: https : / / tools .
ietf.org/html/rfc826.

[RFC 896] John Nagle. Congestion Control in IP/TCP Internetworks.
RFC 896. Internet Engineering Task Force, 1984. URL: http:
//www.ietf.org/rfc/rfc896.txt.

[RFC 1122] Robert Braden. Requirements for Internet Hosts – Communica-
tion Layers. RFC 1122. Internet Engineering Task Force, 1989.
URL: http://www.ietf.org/rfc/rfc1122.txt.

[RFC 1323] Van Jacobson, Bob Braden, and Dave Borman. TCP Exten-
sions for High Performance. RFC 1323. Internet Engineering
Task Force, 1992. URL: https://tools.ietf.org/html/
rfc1323.

[RFC 2616] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Hen-
rik Frystyk Nielsen, Larry Masinter, Paul J. Leach, and
Tim Berners-Lee. RFC 2616, Hypertext Transfer Protocol
– HTTP/1.1. Internet Engineering Task Force, 1999. URL:
https://tools.ietf.org/html/rfc2616.

[RFC 4960] Randall Stewart. Stream Control Transmission Protocol. RFC
4960. Internet Engineering Task Force, 2007. URL: http://
www.ietf.org/rfc/rfc4960.txt.

[RFC 5944] Charles E. Perkins. IP Mobility Support for IPv4, Revised.
RFC 5944. Internet Engineering Task Force, Nov. 2010. URL:
http://www.ietf.org/rfc/rfc5944.txt.

[RFC 6298] Vern Paxson, Mark Allman, Jerry Chu, and Matt Sargent. Com-
puting TCP’s Retransmission Timer. RFC 6298. Internet Engi-
neering Task Force, 2011. URL: https://tools.ietf.org/
html/rfc6298.

https://tools.ietf.org/html/rfc826
https://tools.ietf.org/html/rfc826
http://www.ietf.org/rfc/rfc896.txt
http://www.ietf.org/rfc/rfc896.txt
http://www.ietf.org/rfc/rfc1122.txt
https://tools.ietf.org/html/rfc1323
https://tools.ietf.org/html/rfc1323
https://tools.ietf.org/html/rfc2616
http://www.ietf.org/rfc/rfc4960.txt
http://www.ietf.org/rfc/rfc4960.txt
http://www.ietf.org/rfc/rfc5944.txt
https://tools.ietf.org/html/rfc6298
https://tools.ietf.org/html/rfc6298

Bibliography 149

[RFC 6356] Costin Raiciu, Mark Handly, and Damon Wischik. Coupled
Congestion Control for Multipath Transport Protocols. RFC
6356. Internet Engineering Task Force, 2011. URL: http://
www.ietf.org/rfc/rfc6356.txt.

[RFC 6824] Alan Ford, Costin Raiciu, Mark Handley, and Olivier Bonaven-
ture. TCP Extensions for Multipath Operation with Multiple
Addresses. RFC 6824. Internet Engineering Task Force, 2013.
URL: http://www.ietf.org/rfc/rfc6824.txt.

[RFC 6897] Michael Scharf and Alan Ford. Multipath TCP (MPTCP) Ap-
plication Interface Considerations. RFC 6897. Internet Engi-
neering Task Force, 2013. URL: http://www.ietf.org/
rfc/rfc6897.txt.

[RFC 7430] Marcelo Bagnulo, Christoph Paasch, Olivier Bonaventure, and
Costin Raiciu. Analysis of Residual Threats and Fernando
Gont and Possible Fixes for Multipath TCP (MPTCP). RFC
7430. Internet Engineering Task Force, 2015. URL: http://
www.ietf.org/rfc/rfc7430.txt.

[1] Martin Abadi et al. “TensorFlow: A System for Large-scale
Machine Learning”. In: Proceedings of the USENIX Con-
ference on Operating Systems Design and Implementation
(OSDI). 2016, pp. 265–283.

[2] Alexander Afanasyev, Ilya Moiseenko, Lixia Zhang, et al.
“ndnSIM: NDN simulator for NS-3”. In: University of Cali-
fornia, Los Angeles, Tech. Rep (2012).

[3] Matteo Maria Andreozzi, Giovanni Stea, and Carlo Vallati.
“A Framework for Large-scale Simulations and Output Result
Analysis with NS-2”. In: Proceedings of the International Con-
ference on Simulation Tools and Techniques (Simutools). 2009,
pp. 1–7.

[4] Richard John Anthony. “A Policy-Definition Language and
Prototype Implementation Library for Policy-based Auto-
nomic Systems”. In: Proceedings of the International Confer-
ence on Autonomic Computing (ICAC). IEEE. 2006, pp. 265–
276.

[5] Mina Tahmasbi Arashloo, Monia Ghobadi, Jennifer Rexford,
and David Walker. “HotCocoa: Hardware Congestion Control
Abstractions”. In: Proceedings of the ACM Workshop on Hot
Topics in Networks (HotNets). 2017.

[6] Behnaz Arzani, Alexander Gurney, Shuotian Cheng, Roch
Guerin, and Boon Thau Loo. “Impact of Path Characteristics
and Scheduling Policies on MPTCP Performance”. In: IEEE
International Conference on Advanced Information Network-
ing and Applications Workshops (WAINA). 2014.

http://www.ietf.org/rfc/rfc6356.txt
http://www.ietf.org/rfc/rfc6356.txt
http://www.ietf.org/rfc/rfc6824.txt
http://www.ietf.org/rfc/rfc6897.txt
http://www.ietf.org/rfc/rfc6897.txt
http://www.ietf.org/rfc/rfc7430.txt
http://www.ietf.org/rfc/rfc7430.txt

150 Bibliography

[7] Tom Barbette, Cyril Soldani, and Laurent Mathy. “Fast
Userspace Packet Processing”. In: Proceedings of the
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems. 2015, pp. 5–16.

[8] Sebastien Barre, Christoph Paasch, and Olivier Bonaventure.
“MultiPath TCP: From Theory to Practice”. In: Proceedings
of the IFIP International Conference on Networking Research
(Networking). 2011.

[9] Anindya Basu, Mark Hayden, Greg Morrisett, and Thorsten
von Eicken. A Language-Based Approach to Protocol Con-
struction. Cornell University.

[10] Thais Batista, Ackbar Joolia, and Geoff Coulson. “Managing
Dynamic Reconfiguration in Component-based Systems”. In:
Software Architecture. Springer, 2005.

[11] Matthias Becker, Markus Luckey, and Steffen Becker. “Model-
driven Performance Engineering of Self-adaptive Systems: A
Survey”. In: ACM SIGSOFT Quality of Software Architectures
(QoSA). 2012, pp. 117–122.

[12] Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth,
István Ráth, Zoltán Ujhelyi, and Dániel Varró. “Viatra 3: A Re-
active Model Transformation Platform”. In: Theory and Prac-
tice of Model Transformations. Vol. 9152. Lecture Notes in
Computer Science (LNCS). 2015, pp. 101–110.

[13] Pat Bosshart et al. “P4: Programming Protocol-independent
Packet Processors”. In: SIGCOMM Computer Communication
Review 44.3 (2014), pp. 87–95.

[14] Nevon Brake, James R. Cordy, Elizabeth Dancy, Marin Litoiu,
and Valentina Popescu. “Automating Discovery of Software
Tuning Parameters”. In: Proceedings of the International
Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS). ACM, 2008, pp. 65–72.

[15] Alejandro Buchmann and Boris Koldehofe. “Complex Event
Processing”. In: IT-Information Technology Methoden und in-
novative Anwendungen der Informatik und Informationstech-
nik (2009), pp. 241–242.

[16] Anton Burtsev, Nikhil Mishrikoti, Eric Eide, and Robert Ricci.
“Weir: A Streaming Language for Performance Analysis”. In:
Proceedings of the Workshop on Programming Languages and
Operating Systems (PLOS). 2013.

[17] John Byers and Gabriel Nasser. “Utility-based decision-
making in wireless sensor networks”. In: Annual Workshop on
Mobile and Ad Hoc Networking and Computing (MobiHOC).
2000, pp. 143–144.

Bibliography 151

[18] Neal Cardwell, Yuchung Cheng, Lawrence Brakmo, Matt
Mathis, Barath Raghavan, Nandita Dukkipati, Hsiao-keng
Jerry Chu, Andreas Terzis, and Tom Herbert. “Packetdrill:
Scriptable Network Stack Testing, from Sockets to Packets”.
In: Presented as part of the USENIX Annual Technical Confer-
ence (USENIX ATC). 2013.

[19] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil
Hassas Yeganeh, and Van Jacobson. “BBR: Congestion-Based
Congestion Control”. In: ACM Queue 14. 2016.

[20] Gustavo Carneiro, Pedro Fortuna, and Manuel Ricardo. “Flow-
Monitor: A Network Monitoring Framework for the Network
Simulator 3 (NS-3)”. In: Proceedings of the International ICST
Conference on Performance Evaluation Methodologies and
Tools (VALUETOOLS). 2009.

[21] Min-Cheng Chan, Chien Chen, Jun-Xian Huang, Ted Kuo, Li-
Hsing Yen, and Chien-Chao Tseng. “OpenNet: A Simulator for
Software-Defined Wireless Local Area Network”. In: Wireless
Communications and Networking Conference (WCNC). IEEE.
2014, pp. 3332–3336.

[22] Guo Chen, Yuanwei Lu, Yuan Meng, Bojie Li, Kun Tan, Dan
Pei, Peng Cheng, Layong Larry Luo, Yongqiang Xiong, Xiao-
liang Wang, et al. “Fast and Cautious: Leveraging Multi-path
Diversity for Transport Loss Recovery in Data Centers”. In:
Presented as part of the USENIX Annual Technical Conference
(USENIX ATC). 2016.

[23] Yung-Chih Chen, Yeon-sup Lim, Richard J Gibbens, Erich M
Nahum, Ramin Khalili, and Don Towsley. “A Measurement-
Based Study of Multipath TCP Performance over Wireless Net-
works”. In: Proceedings of the International Conference on In-
ternet Measurements (IMC). 2013.

[24] Yung-Chih Chen and Don Towsley. “On bufferbloat and de-
lay analysis of multipath TCP in wireless networks”. In: Pro-
ceedings of the IFIP International Conference on Networking
Research (Networking). 2014.

[25] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola
Inverardi, Jeff Magee, et al. “Software Engineering for Self-
Adaptive Systems: A Research Roadmap”. In: Software Engi-
neering for Self-Adaptive Systems. Vol. 5525. Lecture Notes in
Computer Science (LNCS). Springer Berlin Heidelberg, 2009,
pp. 1–26.

[26] Edgar Codd, Sharon Codd, and Clynch Salley. Providing
OLAP (on-line analytical processing) to user-analysts: An IT
mandate. 1993.

152 Bibliography

[27] Melvin E. Conway. “Design of a Separable Transition-diagram
Compiler”. In: Communications of the ACM 6.7 (1963),
pp. 396–408.

[28] Jonathan Corbet. Extending extended BPF. https : / / lwn .
net/Articles/603983/. 2014.

[29] Xavier Corbillon, Ramon Aparicio-Pardo, Nicolas Kuhn,
Geraldine Texier, and Gwendal Simon. “Cross-layer Sched-
uler for Video Streaming over MPTCP”. In: Proceedings of
the International Conference on Multimedia Systems (MMSys).
2016.

[30] Matthieu Coudron and Stefano Secci. “An Implementation of
Multipath TCP in ns3”. In: The International Journal of Com-
puter and Telecommunications Networking (2017), pp. 1–11.

[31] Matthieu Coudron, Stefano Secci, and Guy Pujolle. “Differ-
entiated Pacing on Multiple Paths to Improve One-way Delay
Estimations”. In: Proceedings of the IFIP International Con-
ference on Networking Research (Networking). 2015.

[32] Quentin De Coninck, Matthieu Baerts, Benjamin Hesmans,
and Olivier Bonaventure. “A First Analysis of Multipath TCP
on Smartphones”. In: Proceedings of the International Con-
ference on Passive and Active Network Measurement (PAM).
2016.

[33] Quentin De Coninck and Olivier Bonaventure. Every Millisec-
ond Counts: Tuning Multipath TCP for Interactive Applica-
tions on Smartphones. Tech. rep. 2017.

[34] Rogerio De Lemos, Holger Giese, Hausi A Müller, Mary
Shaw, Jesper Andersson, Marin Litoiu, Bradley Schmerl,
Gabriel Tamura, Norha M Villegas, Thomas Vogel, et al. “Soft-
ware Engineering for Self-Adaptive Systems: A Second Re-
search Roadmap”. In: Software Engineering for Self-Adaptive
Systems II. Lecture Notes in Computer Science (LNCS).
Springer, 2013, pp. 1–32.

[35] Shuo Deng, Ravi Netravali, Anirudh Sivaraman, and Hari
Balakrishnan. “WiFi, LTE, or both?: Measuring Multi-homed
Wireless Internet Performance”. In: Proceedings of the Inter-
national Conference on Internet Measurements (IMC). 2014.

[36] Edsger W. Dijkstra. “On the Role of Scientific Thought”.
In: Selected Writings on Computing: A Personal Perspective.
Springer, 1982, pp. 60–66.

[37] Thomas Dreibholz, Robin Seggelmann, and Martin Becke.
Sender Queue Info Option for the SCTP Socket API. Internet-
Draft. Internet Engineering Task Force, 2013.

https://lwn.net/Articles/603983/
https://lwn.net/Articles/603983/

Bibliography 153

[38] Dmitry Duplyakin, Jed Brown, and Robert Ricci. “Active
Learning in Performance Analysis”. In: Proceedings of the
IEEE Cluster Conference. 2016.

[39] Emulab. http://www.emulab.net/.

[40] Pascal Felber, Benoit Garbinato, and Rachid Guerraoui. To-
wards Reliable CORBA: Integration vs. Service Approach.
Tech. rep. 1997.

[41] Simone Ferlin, Oezgue Alay, Olivier Mehani, and Roksana
Boreli. “BLEST: Blocking Estimation-based MPTCP Sched-
uler for Heterogeneous Networks”. In: Proceedings of the IFIP
International Conference on Networking Research (Network-
ing). 2016.

[42] Simone Ferlin-Oliveira, Thomas Dreibholz, and Ozgu Alay.
“Tackling the Challenge of Bufferbloat in Multi-Path Trans-
port over Heterogeneous Wireless Networks”. In: IEEE In-
ternational Symposium of Quality of Service (IWQoS). 2014,
pp. 123–128.

[43] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath
Raghavan, Neal Cardwell, Yuchung Cheng, Ankur Jain, Shuai
Hao, Ethan Katz-Bassett, and Ramesh Govindan. “Reduc-
ing Web Latency: The Virtue of Gentle Aggression”. In:
SIGCOMM Computer Communication Review 43.4 (2013),
pp. 159–170.

[44] Franck Fleurey, Vegard Dehlen, Nelly Bencomo, Brice Morin,
and Jean-Marc Jézéquel. “Modeling and Validating Dynamic
Adaptation”. In: Models in Software Engineering. Ed. by
MichelR.V. Chaudron. Vol. 5421. Lecture Notes in Computer
Science (LNCS). Springer Berlin Heidelberg, 2009, pp. 97–
108.

[45] Franck Fleurey and Arnor Solberg. “A Domain Specific Mod-
eling Language Supporting Specification, Simulation and Exe-
cution of Dynamic Adaptive Systems”. In: Model Driven Engi-
neering Languages and Systems. Springer, 2009, pp. 606–621.

[46] Foster, Ian. Designing and Building Parallel Programs. Addi-
son–Wesley, 1995. ISBN: 9780201575941.

[47] Nate Foster, Rob Harrison, Michael J Freedman, Christopher
Monsanto, Jennifer Rexford, Alec Story, and David Walker.
“Frenetic: A Network Programming Language”. In: Proceed-
ings of the ACM SIGPLAN International Conference on Func-
tional Programming (ICFP). 2011.

http://www.emulab.net/

154 Bibliography

[48] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley
Schmerl, and Peter Steenkiste. “Rainbow: Architecture-Based
Self-Adaptation with Reusable Infrastructure”. In: Proceed-
ings of the International Conference on Autonomic Computing
(ICAC). 2004.

[49] Rubino Geiß and Moritz Kroll. “GrGen.NET: A Fast, Expres-
sive, and General Purpose Graph Rewrite Tool”. In: Appli-
cations of Graph Transformations with Industrial Relevance.
Vol. 5088. Lecture Notes in Computer Science (LNCS). 2008,
pp. 568–569.

[50] Jim Gettys and Kathleen Nichols. “Bufferbloat: Dark Buffers
in the Internet”. In: Queue (2011).

[51] Yunmin Go, Oh Chan Kwon, and Hwangjun Song. “An
Energy-Efficient HTTP Adaptive Video Streaming With Net-
working Cost Constraint Over Heterogeneous Wireless Net-
works”. In: IEEE Transactions on Multimedia 17.9 (2015),
pp. 1646–1657.

[52] Prateesh Goyal, Mohammad Alizadeh, and Hari Balakrishnan.
“Rethinking Congestion Control for Cellular Networks”. In:
Proceedings of the ACM Workshop on Hot Topics in Networks
(HotNets). 2017, pp. 115–121.

[53] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Lay-
man, Don Reichart, Murali Venkatrao, Frank Pellow, and
Hamid Pirahesh. “Data Cube: A Relational Aggregation Op-
erator Generalizing Group-By, Cross-Tab, and Sub-Totals”. In:
Data Mining and Knowledge Discovery (1997), pp. 29–53.

[54] Ilya Grigorik. “Making the Web Faster with HTTP 2.0”. In:
Queue 11.10 (2013), p. 40.

[55] Carsten Griwodz and Pål Halvorsen. “The Fun of using TCP
for an MMORPG”. In: Workshop on Network and Operating
Systems support for Digital Audio and Video. ACM. 2006.

[56] Yihua Ethan Guo, Ashkan Nikravesh, Z. Morley Mao, Feng
Qian, and Subhabrata Sen. “Accelerating Multipath Transport
Through Balanced Subflow Completion”. In: Proceedings of
the Annual International Conference on Mobile Computing
and Networking (MobiCom). ACM. 2017, pp. 141–153.

[57] Yihua Ethan Guo, Ashkan Nikravesh, Z. Morley Mao, Feng
Qian, and Subhabrata Sen. “Demo: DEMS: DEcoupled Multi-
path Scheduler for Accelerating Multipath Transport”. In: Pro-
ceedings of the Annual International Conference on Mobile
Computing and Networking (MobiCom). ACM, 2017, pp. 477–
479.

Bibliography 155

[58] Nikola Gvozdiev, Brad Karp, and Mark Handley. “FUBAR:
Flow Utility Based Routing”. In: Proceedings of the ACM
Workshop on Hot Topics in Networks (HotNets). 2014.

[59] Andrew Hallagan, Bryan Ward, and L. Felipe Perrone. “An Ex-
periment Automation Framework for NS-3”. In: Proceedings
of the International ICST Conference on Simulation Tools and
Techniques (Simutools). 2010, 38:1–38:2.

[60] Ryan Hamilton, Janardhan Iyengar, Ian Swett, and Alyssa
Wilk. QUIC: A UDP-based secure and reliable transport
for HTTP/2. Internet-Draft. Internet Engineering Task Force,
2016.

[61] Bo Han, Feng Qian, Shuai Hao, Lusheng Ji, and NJ Bedmin-
ster. “An Anatomy of Mobile Web Performance over Mul-
tipath TCP”. In: Proceedings of the International Confer-
ence on emerging Networking EXperiments and Technologies
(CoNEXT). ACM. 2015.

[62] Bo Han, Feng Qian, Lusheng Ji, and Vijay Gopalakrish-
nan. “MP-DASH: Adaptive Video Streaming Over Preference-
Aware Multipath”. In: Proceedings of the International Confer-
ence on emerging Networking EXperiments and Technologies
(CoNEXT). ACM. 2016.

[63] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar,
Bob Lantz, and Nick McKeown. “Reproducible Network Ex-
periments Using Container-based Emulation”. In: Proceedings
of the International Conference on emerging Networking EX-
periments and Technologies (CoNEXT). ACM. 2012, pp. 253–
264.

[64] Michael Hansen, Robert L Goldstone, and Andrew Lumsdaine.
“What makes code hard to understand?” In: arXiv preprint
arXiv:1304.5257 (2013).

[65] Mark Harman. “The Current State and Future of Search Based
Software Engineering”. In: Proceedings of the Conference
on the Future of Software Engineering (FOSE). IEEE. 2007,
pp. 342–357.

[66] Mark Harman, Yue Jia, William B. Langdon, Justyna Petke,
Iman Hemati Moghadam, Shin Yoo, and Fan Wu. “Genetic Im-
provement for Adaptive Software Engineering (Keynote)”. In:
Proceedings of the International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems (SEAMS).
ACM, 2014, pp. 1–4.

[67] Benjamin Hesmans and Olivier Bonaventure. “An Enhanced
Socket API for Multipath TCP”. In: IRTF Applied Networking
Research Workshop. 2016.

156 Bibliography

[68] Benjamin Hesmans, Gregory Detal, Raphael Bauduin, Olivier
Bonaventure, et al. “SMAPP: Towards Smart Multipath TCP-
enabled APPlications”. In: Proceedings of the International
Conference on emerging Networking EXperiments and Tech-
nologies (CoNEXT). ACM. 2015.

[69] Mario Hock, Roland Bless, and Martina Zitterbart. “Experi-
mental Evaluation of BBR Congestion Control”. In: Proceed-
ings of the International Conference on Network Protocols
(ICNP). IEEE. 2017.

[70] Kirak Hong, David Lillethun, Umakishore Ramachandran,
Beate Ottenwälder, and Boris Koldehofe. “Mobile Fog: A Pro-
gramming Model for Large-Scale Applications on the Internet
of Things”. In: Proceedings of the ACM SIGCOMM Workshop
on Mobile Cloud Computing. ACM. 2013, pp. 15–20.

[71] Tobias Hoßfeld, Raimund Schatz, Ernst Biersack, and Louis
Plissonneau. “Internet Video Delivery in Youtube: From Traf-
fic Measurements to Quality of Experience”. In: Lecture Notes
in Computer Science (LNCS) 7754 (2013), pp. 264–301.

[72] Shuihai Hu, Kai Chen, Haitao Wu, Wei Bai, Chang Lan, Hao
Wang, Hongze Zhao, and Chuanxiong Guo. “Explicit Path
Control in Commodity Data Centers: Design and Applica-
tions”. In: USENIX Symposium on Networked Systems Design
and Implementation (NSDI). 2015.

[73] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew
Trunnell, and Mark Watson. “A Buffer-based Approach to Rate
Adaptation: Evidence from a Large Video Streaming Service”.
In: Proceedings of the ACM SIGCOMM. 2014, pp. 187–198.

[74] Markus C. Huebscher and Julie A. McCann. “A Survey of Au-
tonomic Computing-degrees, Models, and Applications”. In:
ACM Computing Surveys (CSUR) 40.3 (2008), p. 7.

[75] J. Hwang, A. Walid, and J. Yoo. “Fast Coupled Retransmis-
sion for Multipath TCP in Data Center Networks”. In: IEEE
Systems Journal (2016).

[76] Janardhan R. Iyengar, Paul D. Amer, and Randall Stewart.
“Concurrent Multipath Transfer using SCTP Multihoming over
Independent End-to-End Paths”. In: IEEE/ACM Transactions
on Networking 14.5 (2006), pp. 951–964.

[77] Xiaomin Jin, Yuanan Liu, Wenhao Fan, Fan Wu, and
Hongguang Zhang. “A Throughput Improved Path Selection
Method Based on Throughput Prediction Model and Avail-
able Bandwidth for MPTCP”. In: International Journal of Fu-
ture Generation Communication and Networking 8.2 (2015),
pp. 105–114.

Bibliography 157

[78] Gueyoung Jung, K.R. Joshi, M.A. Hiltunen, R.D. Schlichting,
and C. Pu. “Generating Adaptation Policies for Multi-tier Ap-
plications in Consolidated Server Environments”. In: Proceed-
ings of the International Conference on Autonomic Computing
(ICAC). 2008, pp. 23–32.

[79] Arash Kakhki, Samuel Jero, David Choffnes, Christina Nita-
Rotaru, and Alan Mislove. “Taking a Long Look at QUIC: An
Approach for Rigorous Evaluation of Rapidly Evolving Trans-
port Protocols”. In: Proceedings of the International Confer-
ence on Internet Measurements (IMC). 2017.

[80] Phil Karn and Craig Partridge. “Improving Round-trip Time
Estimates in Reliable Transport Protocols”. In: ACM SIG-
COMM Computer Communication Review (1987), pp. 2–7.

[81] Brad Karp and H. T. Kung. “GPSR: Greedy Perimeter State-
less Routing for Wireless Networks”. In: Proceedings of the
Annual International Conference on Mobile Computing and
Networking (MobiCom). 2000, pp. 243–254.

[82] Eric P. Kasten, Philip K. McKinley, Seyed Masoud Sadjadi,
and R. E. Kurt Stirewalt. “Separating Introspection and Inter-
cession to Support Metamorphic Distributed Systems”. In: Dis-
tributed Computing Systems Workshops. 2002.

[83] Jeffrey O. Kephart and D. M. Chess. “The Vision of Auto-
nomic Computing”. In: Computer (2003), pp. 41–50.

[84] Jeffrey O. Kephart and Rajarshi Das. “Achieving Self-
Management via Utility Functions”. In: IEEE Internet Com-
puting 11.1 (2007), pp. 40–48.

[85] Ramin Khalili, Nicolas Gast, Miroslav Popovic, Utkarsh Upad-
hyay, and Jean-Yves Le Boudec. “MPTCP is not Pareto-
optimal: Performance Issues and a Possible Solution”. In: Pro-
ceedings of the International Conference on emerging Net-
working EXperiments and Technologies (CoNEXT). ACM.
2012.

[86] Wasiur R. KhudaBukhsh, Bastian Alt, Sounak Kar, Amr Rizk,
and Heinz Koeppl. “Collaborative Uploading in Heteroge-
neous Networks: Optimal and Adaptive Strategies”. In: Pro-
ceedings of the IEEE INFOCOM. 2018.

[87] Hyungjik Kim and Sunwoong Choi. Data Path Selection for
Multipath TCP Considering RTT. Tech. rep. 2016.

[88] Hyungjik Kim and Sunwoong Choi. “The effect of routing path
buffer size on throughput of multipath TCP”. In: Proceedings
of the International Conference on Information and Communi-
cation Technology Convergence (ICTC). IEEE, 2016.

158 Bibliography

[89] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma, Jun-
hyun Shim, and Sue Moon. “NBA (Network Balancing Act):
A High-Performance Packet Processing Framework for Hetero-
geneous Processors”. In: Proceedings of the European Confer-
ence on Computer Systems. ACM. 2015, p. 22.

[90] James C. King. “Symbolic Execution and Program Testing”.
In: Communications of the ACM 19.7 (1976), pp. 385–394.

[91] Keith Kirkpatrick. “Software-defined Networking”. In: Com-
munications of the ACM 56.9 (2013), pp. 16–19.

[92] Donald E. Knuth. “Semantics of Context-free Languages: Cor-
rection”. In: Theory of Computing Systems 5.2 (1971), pp. 95–
96.

[93] Eddie Kohler, M. Frans Kaashoek, and David R. Montgomery.
“A Readable TCP in the Prolac Protocol Language”. In: Pro-
ceedings of the ACM SIGCOMM. 1999.

[94] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M Frans Kaashoek. “The Click Modular Router”. In: ACM
Transactions on Computer Systems 18.3 (2000), pp. 263–297.

[95] Lachezar Krumov, Immanuel Schweizer, Dirk Bradler, and
Thorsten Strufe. “Leveraging Network Motifs for the Adapta-
tion of Structured Peer-to-Peer-Networks”. In: Proceedings of
the IEEE GLOBECOM. 2010, pp. 1–5.

[96] Jonathan Kua, Grenville Armitage, and Philip Branch. “A Sur-
vey of Rate Adaptation Techniques for Dynamic Adaptive
Streaming Over HTTP”. In: IEEE Communications Surveys
and Tutorials 19.3 (2017), pp. 1842–1866.

[97] M. Kühlewind, S. Neuner, and B Trammell. “On the State of
ECN and TCP Options on the Internet.” In: Proceedings of
the International Conference on Passive and Active Network
Measurement (PAM). 2013, pp. 135–144.

[98] Nicolas Kuhn, Emmanuel Lochin, Ahlem Mifdaoui, Golam
Sarwar, Olivier Mehani, and Roksana Boreli. “DAPS: Intelli-
gent Delay-aware Packet scheduling for Multipath Transport”.
In: Proceedings of the IEEE International Conference on Com-
munications (ICC). 2014.

[99] Markus Laner, Philipp Svoboda, Peter Romirer-Maierhofer,
Navid Nikaein, Fabio Ricciato, and Markus Rupp. “A Com-
parison between One-way Delays in Operating HSPA and LTE
Networks”. In: International Symposium on Modeling and Op-
timization in Mobile, Ad Hoc and Wireless Networks (WiOpt).
2012, pp. 286–292.

Bibliography 159

[100] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vi-
cente, Charles Krasic, Dan Zhang, Fan Yang, Fedor Kouranov,
Ian Swett, Janardhan Iyengar, et al. “The QUIC Transport Pro-
tocol: Design and Internet-Scale Deployment”. In: Proceed-
ings of the ACM SIGCOMM. ACM. 2017, pp. 183–196.

[101] Rafael Laufer, Massimo Gallo, Diego Perino, and Anan-
datirtha Nandugudi. “Climb: Enabling Network Function
Composition with Click Middleboxes”. In: ACM SIGCOMM
Computer Communication Review 46.4 (2016), pp. 17–22.

[102] Erhan Leblebici, Anthony Anjorin, and Andy Schürr. “De-
veloping eMoflon with eMoflon”. In: Theory and Practice of
Model Transformations. Vol. 8568. Lecture Notes in Computer
Science (LNCS). 2014, pp. 138–145.

[103] Stefan Lederer, Christopher Müller, and Christian Timmerer.
“Dynamic Adaptive Streaming over HTTP Dataset”. In: Pro-
ceedings of the International Conference on Multimedia Sys-
tems (MMSys). ACM, 2012, p. 89.

[104] Max Lehn. “InterestCast: Adaptive Event Dissemination for
Interactive Real-Time Applications”. PhD thesis. Technische
Universität Darmstadt, 2016.

[105] Max Lehn, Robert Rehner, and Alejandro Buchmann. “Dis-
tributed Optimization of Event Dissemination Exploiting In-
terest Clustering”. In: Proceedings of the IEEE Conference on
Local Computer Networks (LCN). 2013, pp. 328–331.

[106] Christof Leng. “BubbleStorm: Replication, Updates, and Con-
sistency in Rendezvous Information Systems”. PhD thesis.
Technische Universität Darmstadt, 2012.

[107] Ning Li, Jennifer C. Hou, and Lui Sha. “Design and Anal-
ysis of an MST-Based Topology Control Algorithm”. In:
IEEE Transactions on Wireless Communications 4.3 (2005),
pp. 1195–1206.

[108] Qingxi Li, Mo Dong, and Brighten Godfrey. “Halfback: Run-
ning Short Flows Quickly and Safely”. In: Proceedings of
the International Conference on emerging Networking EXper-
iments and Technologies (CoNEXT). ACM. 2015.

[109] Yeon-sup Lim, Erich M. Nahum, Don Towsley, and Richard J.
Gibbens. “ECF: An MPTCP Path Scheduler to Manage Het-
erogeneous Paths”. In: Proceedings of the ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems. 2017, pp. 33–34.

160 Bibliography

[110] Yeon-sup Lim, Erich M. Nahum, Don Towsley, and Richard J.
Gibbens. “ECF: An MPTCP Path Scheduler to Manage Hetero-
geneous Paths”. In: Proceedings of the International Confer-
ence on emerging Networking EXperiments and Technologies
(CoNEXT). ACM. 2017.

[111] Shuhao Liu, Hong Xu, Libin Liu, Wei Bai, Kai Chen, and
Zhiping Cai. “RepNet: Cutting Latency with Flow Replication
in Data Center Networks”. In: IEEE Transactions on Services
Computing (2018).

[112] Xiaomei Liu, Li Xiao, Andrew Kreling, and Yunhao Liu. “Op-
timizing Overlay Topology by Reducing Cut Vertices”. In: Pro-
ceedings of the International Workshop on Network and Op-
erating Systems Support for Digital Audio and Video (NOSS-
DAV). ACM. 2006.

[113] Igor Lopez, Marina Aguado, Christian Pinedo, and Eduardo Ja-
cob. “SCADA Systems in the Railway Domain: Enhancing Re-
liability through Redundant MultipathTCP”. In: Proceedings
of the International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2015.

[114] Markus Luckey, Benjamin Nagel, Christian Gerth, and Gregor
Engels. “Adapt Cases: Extending Use Cases for Adaptive Sys-
tems”. In: Proceedings of the International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Systems
(SEAMS). ACM, 2011, pp. 30–39.

[115] Manisha Luthra, Boris Koldehofe, Pascal Weisenburger, Guido
Salvaneschi, and Raheel Arif. “TCEP: Adapting to Dynamic
User Environments by Enabling Transitions between Opera-
tor Placement Mechanisms”. In: Proceedings of the ACM In-
ternational Conference on Distributed Event-Based Systems
(DEBS). 2018.

[116] Alessandro Margara, Gianpaolo Cugola, and Giordano Tam-
burrelli. “Learning from the Past: Automated Rule Generation
for Complex Event Processing”. In: Proceedings of the ACM
International Conference on Distributed Event-Based Systems
(DEBS). 2014, pp. 47–58.

[117] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir
Olteanu, Michio Honda, Roberto Bifulco, and Felipe Huici.
“ClickOS and the Art of Network Function Virtualization”. In:
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI). 2014, pp. 459–473.

[118] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and
Jonathan Turner. “OpenFlow: Enabling Innovation in Campus

Bibliography 161

Networks”. In: ACM SIGCOMM Computer Communication
Review 38.2 (2008), pp. 69–74.

[119] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten,
and Betty H. C. Cheng. “Composing Adaptive Software”. In:
Computer 37.7 (2004), pp. 56–64.

[120] Patrick McManus. HTTP/2 is Live in Firefox. https : / /

bitsup.blogspot.de/2015/02/http2- is- live- in-

firefox.html. 2015.

[121] MozillaZine. Network.http.max-persistent-connections-per-
server. URL: http://kb.mozillazine.org/Network.http.
max-persistent-connections-per-server.

[122] Akshay Narayan, Frank J. Cangialosi, Prateesh Goyal, Srinivas
Narayana, Mohammad Alizadeh, and Hari Balakrishnan. “The
Case for Moving Congestion Control Out of the Datapath”. In:
Proceedings of the ACM Workshop on Hot Topics in Networks
(HotNets). 2017.

[123] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh
Goyal, Keith Winstein, James Mickens, and Hari Balakrishnan.
“Mahimahi: Accurate Record-and-Replay for HTTP”. In: Pre-
sented as part of the USENIX Annual Technical Conference
(USENIX ATC). 2015, pp. 417–429.

[124] Nghttp2: HTTP/2 C Library. https://nghttp2.org/. 2015.

[125] Ashkan Nikravesh, Yihua Guo, Feng Qian, Z. Morley Mao,
and Subhabrata Sen. “An In-depth Understanding of Multipath
TCP on Mobile Devices: Measurement and System Design”.
In: Proceedings of the Annual International Conference on Mo-
bile Computing and Networking (MobiCom). ACM. 2016.

[126] ns-3. http://www.nsnam.org/.

[127] Bong-Hwan Oh and Jaiyong Lee. “Constraint-based Proactive
Scheduling for MPTCP in Wireless Networks”. In: Computer
Networks 91 (2015), pp. 548–563.

[128] OMNet++. http://www.omnetpp.org/.

[129] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas
Finne, and Thiemo Voigt. “Cross-level Sensor Network Sim-
ulation with Cooja”. In: Proceedings of the IEEE Conference
on Local Computer Networks (LCN). 2006, pp. 641–648.

[130] Shih-Hao Ou, Chih-Wei Huang, Tzu-Kuan Lee, and Chih-
Yang Huang. “Out-of-order Transmission enabled Congestion
and Scheduling Control for Multipath TCP”. In: Proceedings
of the International Wireless Communications and Mobile
Computing Conference (IWCMC). IEEE, 2016.

https://bitsup.blogspot.de/2015/02/http2-is-live-in-firefox.html
https://bitsup.blogspot.de/2015/02/http2-is-live-in-firefox.html
https://bitsup.blogspot.de/2015/02/http2-is-live-in-firefox.html
http://kb.mozillazine.org/Network.http.max-persistent-connections-per-server
http://kb.mozillazine.org/Network.http.max-persistent-connections-per-server
https://nghttp2.org/
http://www.nsnam.org/
http://www.omnetpp.org/

162 Bibliography

[131] Christoph Paasch and Sebastien Barre. Multipath TCP in the
Linux Kernel. Available from http://www.multipath-tcp.

org.

[132] Christoph Paasch, Gregory Detal, Fabien Duchene, Costin
Raiciu, and Olivier Bonaventure. “Exploring Mobile/WiFi
Handover with Multipath TCP”. In: Proceedings of the
ACM SIGCOMM Workshop on Cellular Networks: Operations,
Challenges, and Future Design. 2012.

[133] Christoph Paasch, Simone Ferlin, Ozgu Alay, and Olivier
Bonaventure. “Experimental Evaluation of Multipath TCP
Schedulers”. In: Proceedings of the ACM SIGCOMM Work-
shop on Capacity Sharing. 2014.

[134] Christoph Paasch, Ramin Khalili, and Olivier Bonaventure.
“On the Benefits of Applying Experimental Design to Improve
Multipath TCP”. In: Proceedings of the International Confer-
ence on emerging Networking EXperiments and Technologies
(CoNEXT). ACM. 2013, pp. 393–398.

[135] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose.
“Modeling TCP Throughput: A Simple Model and its Empir-
ical Validation”. In: ACM SIGCOMM Computer Communica-
tion Review 28.4 (1998), pp. 303–314.

[136] Abhinav Pathak, Himabindu Pucha, Ying Zhang, Y. Charlie
Hu, and Z. Morley Mao. “A Measurement Study of Internet
Delay Asymmetry”. In: Proceedings of the International Con-
ference on Passive and Active Network Measurement (PAM).
Springer-Verlag, 2008, pp. 182–191.

[137] Amir H. Payberah, Jim Dowling, Fatemeh Rahimain, and Seif
Haridi. “Distributed Optimization of P2P Live Streaming Over-
lays”. In: Computing 94.8-10 (2012), pp. 621–647.

[138] L. Felipe Perrone, Thomas R. Henderson, Mitchell J. Watrous,
and Vinicius Daly Felizardo. “The Design of an Output Data
Collection Framework for NS-3”. In: Proceedings of the IEEE
Winter Simulation Conference (WSC). 2013, pp. 2984–2995.

[139] L. Felipe Perrone, Christopher J. Kenna, and Bryan C. Ward.
“Enhancing the Credibility of Wireless Network Simulations
with Experiment Automation”. In: Proceedings of the IEEE
International Conference on Wireless and Mobile Computing,
Networking and Communications. 2008, pp. 631–637.

[140] L. Felipe Perrone, Christopher S. Main, and Bryan C. Ward.
“Safe: Simulation Automation Framework for Experiments”.
In: Proceedings of the Winter Simulation Conference (WSC).
2012.

[141] Ben Pfaff. P4 and Open vSwitch. http://p4.org/p4/p4-
and-open-vswitch.

http://www.multipath-tcp.org
http://www.multipath-tcp.org
http://p4.org/p4/p4-and-open-vswitch
http://p4.org/p4/p4-and-open-vswitch

Bibliography 163

[142] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy
Zhou, Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer,
Pravin Shelar, et al. “The Design and Implementation of Open
vSwitch”. In: USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI). 2015.

[143] PlanetLab. https://www.planet-lab.org/.

[144] Riccardo Poli, William B. Langdon, Nicholas F. McPhee,
and John R. Koza. A Field Guide to Genetic Programming.
Lulu.com, 2008.

[145] Matei Popovici and Costin Raiciu. “Exploiting Multipath Con-
gestion Control for Fun and Profit”. In: Proceedings of the
ACM Workshop on Hot Topics in Networks (HotNets). 2016.

[146] Junaid Qadir, Anwaar Ali, Kok-Lim Alvin Yau, Arjna Sathi-
aseelan, and Jon Crowcroft. “Exploiting the Power of Multi-
plicity: A Holistic Survey of Network-Layer Multipath”. In:
IEEE Communications Surveys and Tutorials 17.4 (2015),
pp. 2176–2213.

[147] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam
Greenhalgh, Damon Wischik, and Mark Handley. “Improv-
ing datacenter performance and robustness with Multipath
TCP”. In: ACM SIGCOMM Computer Communication Review.
Vol. 41. 4. 2011, pp. 266–277.

[148] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford,
Michio Honda, Fabien Duchene, Olivier Bonaventure, and
Mark Handley. “How Hard Can It Be? Designing and Im-
plementing a Deployable Multipath TCP”. In: USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI). 2012.

[149] Mohammad Rajiullah, Per Hurtig, Anna Brunstrom, Andreas
Petlund, and Michael Welzl. “An Evaluation of Tail Loss Re-
covery Mechanisms for TCP”. In: ACM SIGCOMM Computer
Communication Review 45.1 (2015), pp. 5–11.

[150] Jeff Rasley, Yuxiong He, Feng Yan, Olatunji Ruwase, and Ro-
drigo Fonseca. “HyperDrive: Exploring Hyperparameters with
POP Scheduling”. In: Proceedings of the ACM/IFIP/USENIX
Middleware Conference. 2017.

[151] Björn Richerzhagen. “Mechanism Transitions in Publish/Sub-
scribe Systems-Adaptive Event Brokering for Location-based
Mobile Social Applications”. PhD thesis. Technische Univer-
sität Darmstadt, 2017.

https://www.planet-lab.org/

164 Bibliography

[152] Björn Richerzhagen, Stefan Wilk, Julius Rückert, Denny
Stohr, and Wolfgang Effelsberg. “Transitions in Live Video
Streaming Services”. In: Proceedings of the Workshop on De-
sign, Quality and Deployment of Adaptive Video Streaming
(VideoNext). 2014, pp. 37–38.

[153] George F. Riley and Thomas R. Henderson. “The ns-3 Network
Simulator”. In: Modeling and Tools for Network Simulation
(2010), pp. 15–34.

[154] Tobias Rückelt. “Connecting Vehicles to the Internet-Strategic
Data Transmission for Mobile Nodes using Heterogeneous
Wireless Networks”. PhD thesis. Technische Universität Darm-
stadt, 2017.

[155] Julius Rückert. “Large-scale Live Video Streaming Over the
Internet-Efficient and Flexible Content Delivery Using Net-
work and Application-Layer Mechanisms”. PhD thesis. 2016.

[156] Julius Rückert, Björn Richerzhagen, Eduardo Lidanski, Ralf
Steinmetz, and David Hausheer. “TopT: Supporting Flash
Crowd Events in Hybrid Overlay-based Live Streaming”. In:
Proceedings of the IFIP International Conference on Network-
ing Research (Networking). 2015.

[157] Seyed Masoud Sadjadi and Philip K. McKinley. “ACT: An
Adaptive CORBA Template to Support Unanticipated Adap-
tation”. In: Distributed Computing Systems. IEEE. 2004.

[158] Seyed Masoud Sadjadi, Philip. K. McKinley, E. P. Kasten,
and Z. Zhou. “MetaSockets: Design and Operation of Run-
time Reconfigurable Communication Services: Experiences
with Auto-adaptive and Reconfigurable Systems”. In: Software
Practice and Experience 36.11-12 (2006).

[159] Jacques Samain, Giovanna Carofiglio, Luca Muscariello,
Michele Papalini, Mauro Sardara, Michele Tortelli, and Dario
Rossi. “Dynamic Adaptive Video Streaming: Towards a Sys-
tematic Comparison of ICN and TCP/IP”. In: IEEE Transac-
tions on Multimedia 19.10 (2017), pp. 2166–2181.

[160] Golam Sarwar, Roksana Boreli, Emmanuel Lochin, Ahlem
Mifdaoui, and Graeme Smith. “Mitigating Receiver’s Buffer
Blocking by Delay Aware Packet Scheduling in Multipath
Data Transfer”. In: IEEE International Conference on Ad-
vanced Information Networking and Applications Workshops
(WAINA). 2013.

[161] Michael Schapira and Keith Winstein. “Congestion-Control
Throwdown”. In: Proceedings of the ACM Workshop on Hot
Topics in Networks (HotNets). 2017.

Bibliography 165

[162] Michael Scharf and Sebastian Kiesel. “Head-of-line Blocking
in TCP and SCTP: Analysis and Measurements”. In: IEEE
GLOBECOM.

[163] Matthias Schulz, Denny Stohr, Stefan Wilk, Benedikt Rudolph,
Wolfgang Effelsberg, and Matthias Hollick. “APP and PHY in
Harmony: A framework enabling flexible physical layer pro-
cessing to address application requirements”. In: Proceedings
of the International Conference and Workshops on Networked
Systems (NetSys). 2015, pp. 1–8.

[164] Immanuel Schweizer, Michael Wagner, Dirk Bradler, Max
Mühlhäuser, and Thorsten Strufe. “kTC - Robust and Adap-
tive Wireless Ad-hoc Topology Control”. In: Proceedings of
the International Conference on Computer Communications
and Networks (ICCCN). 2012.

[165] Scripy 0.9.3: Python tools for manage system commands as re-
placement to bash script. Python Software Foundation https:

//pypi.python.org/pypi/Scripy.

[166] SungHoon Seo. KT’s GiGA LTE. https://www.ietf.org/
proceedings/93/slides/slides-93-mptcp-3.pdf. 2015.

[167] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas
Zinner, Tobias Hoßfeld, and Phuoc Tran-Gia. “A Survey on
Quality of Experience of HTTP Adaptive Streaming”. In:
IEEE Communications Surveys and Tutorials (2015), pp. 469–
492.

[168] Bonita Sharif and Jonathan I. Maletic. “An Eye Tracking Study
on camelCase and Under_score Identifier Styles”. In: Proceed-
ings of the International Conference on Program Comprehen-
sion (ICPC). IEEE. 2010, pp. 196–205.

[169] Haiying Shen, Ze Li, and Jin Li. “A DHT-Aided Chunk-Driven
Overlay for Scalable and Efficient Peer-to-Peer Live Stream-
ing”. In: IEEE Transactions on Parallel Distributed Systems
24.11 (2013), pp. 2125–2137.

[170] Scott Shenker. “Fundamental Design Issues for the Future In-
ternet”. In: IEEE Journal on Selected Areas in Communica-
tions 13.7 (1995), pp. 1176–1188.

[171] Tanya Shreedhar, Nitinder Mohan, Sanjit K Kaul, and Jussi
Kangasharju. “More Than The Sum Of Its Parts: Exploit-
ing Cross-Layer and Joint-Flow Information in MPTCP”. In:
arXiv preprint arXiv:1711.07565 (2017).

[172] Hassan Sinky, Bechir Hamdaoui, and Mohsen Guizani. “Proac-
tive Multi-Path TCP for Seamless Handoff in Heterogeneous
Wireless Access Networks”. In: IEEE Transactions on Wire-
less Communications (2016).

https://pypi.python.org/pypi/Scripy
https://pypi.python.org/pypi/Scripy
https://www.ietf.org/proceedings/93/slides/slides-93-mptcp-3.pdf
https://www.ietf.org/proceedings/93/slides/slides-93-mptcp-3.pdf

166 Bibliography

[173] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon
Kim, Mohammad Alizadeh, Hari Balakrishnan, George Vargh-
ese, Nick McKeown, and Steve Licking. “Packet Transactions:
High-Level Programming for Line-Rate Switches”. In: Pro-
ceedings of the ACM SIGCOMM. 2016.

[174] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Al-
izadeh, Sharad Chole, Shang-Tse Chuang, Anurag Agrawal,
Hari Balakrishnan, Tom Edsall, Sachin Katti, and Nick McKe-
own. “Programmable Packet Scheduling at Line Rate”. In: Pro-
ceedings of the ACM SIGCOMM. 2016.

[175] Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and
Hari Balakrishnan. “An Experimental Study of the Learnabil-
ity of Congestion Control”. In: ACM SIGCOMM Computer
Communication Review. Vol. 44. 4. 2014, pp. 479–490.

[176] Iraj Sodagar. In: IEEE MultiMedia 18.4 (2011), pp. 62–67.

[177] Fei Song, Hongke Zhang, Sidong Zhang, Fernando Ramos,
and Jon Crowcroft. An Estimator of Forward and Backward
Delay for Multipath Transport. Tech. rep. 2009.

[178] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitaraman.
“BOLA: Near-optimal bitrate adaptation for online videos”. In:
Proceedings of the IEEE INFOCOM. 2016.

[179] Vikram Srinivasan, Carla F. Chiasserini, Pavan Nuggehalli,
and Ramesh R. Rao. “Optimal Rate Allocation and Traffic
Splits for Energy Efficient Routing in Ad Hoc Networks”. In:
Proceedings of the IEEE INFOCOM. 2002.

[180] Michael Stein. “Local Algorithms for Distributed Topology
Adaptation”. PhD thesis. Technische Universität Darmstadt,
2018.

[181] Michael Stein, Mathias Fischer, Immanuel Schweizer, and
Max Mühlhäuser. “A Classification of Locality in Network Re-
search”. In: ACM Computing Surveys 50.4 (2017), 53:1–53:37.

[182] Ralf Steinmetz. Multimedia: Computing Communications &
Applications. Pearson Education India, 2012.

[183] Dominik Stingl, Christian Gross, Julius Rückert, Leonhard
Nobach, Aleksandra Kovacevic, and Ralf Steinmetz. “Peer-
factSim.KOM: A Simulation Framework for Peer-to-Peer Sys-
tems”. In: Proceedings of the International Conference on
High Performance Computing and Simulation (HPCS). 2011,
pp. 577–584.

[184] Stephen D. Strowes. “Passively Measuring TCP Round-trip
Times”. In: ACM Queue (2013).

Bibliography 167

[185] Weibin Sun and Robert Ricci. “Fast and Flexible: Parallel
Packet Processing with GPUs and Click”. In: Proceedings of
the ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS). 2013, pp. 25–35.

[186] Hajime Tazaki, Emilio Mancini, Daniel Camara, Thierry
Turletti, and Walid Dabbous. “Direct Code Execution: Real-
istic Protocol Simulation with Running Code.” In: Demonstra-
tion of DCE at MSWIM. 2013.

[187] Hajime Tazaki, Frédéric Uarbani, Emilio Mancini, Mathieu
Lacage, Daniel Camara, Thierry Turletti, and Walid Dabbous.
“Direct Code Execution: Revisiting Library OS Architecture
for Reproducible Network Experiments”. In: Proceedings of
the International Conference on emerging Networking EXperi-
ments and Technologies (CoNEXT). ACM. 2013, pp. 217–228.

[188] Viet-Hoang Tran, Quentin De Coninck, Benjamin Hesmans,
Ramin Sadre, and Olivier Bonaventure. “Observing Real Mul-
tipath TCP Traffic”. In: Computer Communications (2016).

[189] Omri Traub, Glenn Holloway, and Michael D. Smith. “Quality
and Speed in Linear-scan Register Allocation”. In: Proceed-
ings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI). 1998.

[190] Rachel Turner, Michael Falcone, Bonita Sharif, and Alina
Lazar. “An Eye-tracking Study Assessing the Comprehension
of C++ and Python Source Code”. In: Proceedings of the Sym-
posium on Eye Tracking Research and Applications. ACM.
2014, pp. 231–234.

[191] Arie Van Deursen, Paul Klint, and Joost Visser. “Domain-
Specific Languages: An Annotated Bibliography”. In: ACM
Sigplan Notices 35.6 (2000), pp. 26–36.

[192] Andras Varga and Rudolf Hornig. “An Overview of the OM-
NeT++ Simulation Environment”. In: Proceedings of the Inter-
national Conference on Simulation Tools and Techniques for
Communications, Networks and Systems & Workshops. 2008.

[193] Vidhyashankar Venkataraman, Kaouru Yoshida, and Paul Fran-
cis. “Chunkyspread: Heterogeneous Unstructured Tree-Based
Peer-to-Peer Multicast”. In: Proceedings of the International
Conference on Network Protocols (ICNP). IEEE. 2006, pp. 2–
11.

[194] Thomas Vogel and Holger Giese. “A Language for Feedback
Loops in Self-Adaptive Systems: Executable Runtime Meg-
amodels”. In: Proceedings of the International Symposium on
Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS). ACM. 2012, pp. 129–138.

168 Bibliography

[195] William E. Walsh, Gerald Tesauro, Jeffrey O. Kephart, and Ra-
jarshi Das. “Utility Functions in Autonomic Systems”. In: Pro-
ceedings of the International Conference on Autonomic Com-
puting. IEEE. 2004, pp. 70–77.

[196] Feng Wang, Yongqiang Xiong, and Jiangchuan Liu. “mTree-
bone: A Hybrid Tree/Mesh Overlay for Application-Layer
Live Video Multicast”. In: Proceedings of the International
Conference on Distributed Computing Systems (ICDCS).
IEEE, 2007.

[197] Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke.
“Searching for Better Configurations: A Rigorous Approach
to Clone Evaluation”. In: Proceedings of the Joint Meeting
on Foundations of Software Engineering (FSE). ACM. 2013,
pp. 455–465.

[198] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishna-
murthy, and David Wetherall. “Demystifying Page Load Per-
formance with WProf”. In: USENIX Symposium on Networked
Systems Design and Implementation (NSDI). 2013.

[199] Yu Wang. “Topology Control for Wireless Sensor Networks”.
In: Wireless Sensor Networks and Applications. Signals and
Communication Technology. Springer, 2008, pp. 113–147.

[200] Philip Wette, Martin Draxler, Arne Schwabe, Felix Wal-
laschek, Mohammad Hassan Zahraee, and Holger Karl. “Max-
inet: Distributed Emulation of Software-defined Networks”. In:
Proceedings of the IFIP International Conference on Network-
ing Research (Networking). 2014.

[201] Matthias Wichtlhuber, Björn Richerzhagen, Julius Rückert,
and David Hausheer. “TRANSIT: Supporting Transitions in
Peer-to-Peer Live Video Streaming”. In: Proceedings of the
IFIP International Conference on Networking Research (Net-
working). 2014, pp. 1–9.

[202] Jörg Widmer, Robert Denda, and Martin Mauve. “A Survey
on TCP-friendly Congestion Control”. In: IEEE Network 15.3
(2001), pp. 28–37.

[203] Keith Winstein and Hari Balakrishnan. “TCP Ex Machina:
Computer-Generated Congestion Control”. In: SIGCOMM
Computer Communication Review. Vol. 43. 4. 2013, pp. 123–
134.

[204] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark
Handley. “Design, Implementation and Evaluation of Conges-
tion Control for Multipath TCP”. In: USENIX Symposium on
Networked Systems Design and Implementation (NSDI). 2011.

Bibliography 169

[205] Jiyan Wu, Chau Yuen, Bo Cheng, Ming Wang, and Junliang
Chen. “Streaming High-Quality Mobile Video with Multipath
TCP in Heterogeneous Wireless Networks”. In: IEEE Transac-
tions on Mobile Computing 15.9 (2015).

[206] Hong Xu and Baochun Li. “RepFlow: Minimizing Flow Com-
pletion Times with Replicated Flows in Data Centers”. In: Pro-
ceedings of the IEEE INFOCOM. 2014.

[207] Mingwei Xu. Delay-based Congestion Control for MPTCP. In-
ternet Engineering Task Force, 2014.

[208] Fan Yang, Qi Wang, and Paul D. Amer. “Out-of-order Trans-
mission for In-order Arrival Scheduling for Multipath TCP”.
In: IEEE International Conference on Advanced Information
Networking and Applications Workshops (WAINA). 2014.

[209] Andrew Chi-Chih Yao. “On Constructing Minimum Spanning
Trees in k-Dimensional Spaces and Related Problems”. In:
SIAM Journal on Computing 11.4 (1982), pp. 721–736.

[210] Anatoliy Zabrovskiy, Evgeny Kuzmin, Evgeny Petrov, Chris-
tian Timmerer, and Christopher Mueller. “AdViSE: Adaptive
Video Streaming Evaluation Framework for the Automated
Testing of Media Players”. In: Proceedings of the Interna-
tional Conference on Multimedia Systems (MMSys). ACM,
2017, pp. 217–220.

[211] Doron Zarchy, Radhika Mittal, and Scott Schapira Michael
and; Shenker. “An Axiomatic Approach to Congestion Con-
trol”. In: Proceedings of the ACM Workshop on Hot Topics in
Networks (HotNets). 2017.

[212] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. “GloMoSim:
A Library for Parallel Simulation of Large-scale Wireless Net-
works”. In: Proceedings of the IEEE Workshop on Parallel and
Distributed Simulation. 1998, pp. 154–161.

A
A P P E N D I C E S

A.1 I L L U S T R AT I N G M AC I V I S UA L I Z AT I O N S

(A
Pl

ay
er

, B
OL

A,
 0

.0
)

(A
Pl

ay
er

, B
OL

A,
 0

.8
)

(A
Pl

ay
er

, B
OL

A,
 2

.0
)

(A
Pl

ay
er

, B
OL

A,
 5

.0
)

(D
AS

H.
JS

, B
OL

A,
 0

.0
)

(D
AS

H.
JS

, B
OL

A,
 0

.8
)

(D
AS

H.
JS

, B
OL

A,
 2

.0
)

(D
AS

H.
JS

, B
OL

A,
 5

.0
)

(D
AS

H.
JS

, s
ta

nd
ar

d,
 0

.0
)

(D
AS

H.
JS

, s
ta

nd
ar

d,
 0

.8
)

(D
AS

H.
JS

, s
ta

nd
ar

d,
 2

.0
)

(D
AS

H.
JS

, s
ta

nd
ar

d,
 5

.0
)

(S
ha

ka
, s

ta
nd

ar
d,

 0
.0

)

(S
ha

ka
, s

ta
nd

ar
d,

 0
.8

)

(S
ha

ka
, s

ta
nd

ar
d,

 2
.0

)

(S
ha

ka
, s

ta
nd

ar
d,

 5
.0

)
[player, adaptationalgorithm, variance_bw]

2

3

4

hossfeld_stalling_qoe

Figure A.1: Unmodified, automatically generated MACI visualization for the DASH
evaluation (Figure 8.3). Stalling QoE by [71] of DASH players with var-
ious adaptation algorithms and available bandwidth volatilities for a seg-
ment length configurations of 6s (higher is better, experiment setup as
described in Section 8.2).

172 A P P E N D I C E S

Figure A.2: Reproduction of the aggregation benefit evaluation of [134] by [S6] with
MACI. Taken from [S6].

1
0

 K
B

2
0

 K
B

3
0

 K
B

4
0

 K
B

5
0

 K
B

6
0

 K
B

7
0

 K
B

8
0

 K
B

9
0

 K
B

1
0

 K
B

2
0

 K
B

3
0

 K
B

4
0

 K
B

5
0

 K
B

6
0

 K
B

7
0

 K
B

8
0

 K
B

9
0

 K
B

1
0

 K
B

2
0

 K
B

3
0

 K
B

4
0

 K
B

5
0

 K
B

6
0

 K
B

7
0

 K
B

8
0

 K
B

9
0

 K
B

1
0

 K
B

2
0

 K
B

3
0

 K
B

4
0

 K
B

5
0

K
B

6
0

 K
B

7
0

 K
B

8
0

 K
B

9
0

 K
B

0.1

0.15

0.2

0.25

0.3

0.35

D
o
w

n
lo

a
d

 T
im

e
 [

s]

Download times for small sized files

MPTCPMPQUIC QUIC TCP

Figure A.3: Download time comparison of different transport protocols as illustra-
tion for the application of MACI. Taken from [S20].

Figure A.4: Download time comparison of different transport protocols as illustra-
tion for the application of MACI. Taken from [S10].

A.2 A D D I T I O N A L P RO G M P E X P E R I E N C E S 173

A.2 A D D I T I O N A L P RO G M P E X P E R I E N C E S

In this section, we discuss complementary experiences with the ProgMP
scheduler specification language design.

A.2.1 Was the Packet Sent on all Subflows?

An early language draft provided the SENT_ON_ALL_SUBFLOWS packet opera-
tion. This operation appeared convenient, as the information is recurrently re-
quired during scheduling. When using the operation during our experiments,
however, we found that this operation is misleading. As illustrating example,
assume we want to remove a packet from the reinjection queue if it was sent
on all subflows. During our experiments, we found that this scheduler stops
working in case a subflow becomes lossy, as we only push packet on non-
lossy subflows. We considered to change the operation to only check if it was
sent on all currently available subflows. However, we found that in many sit-
uations, we are actually interested if the packet was sent on all available sub-
flows that have congestion window left. Eventually, we decided to remove the
packet operation SENT_ON_ALL_SUBFLOWS, as we found that there is no rea-
son for a special operation as this operation does not summarize a recurring
pattern. All flavours of this pattern can be easily expressed in the language,
as shown in Listing A.1.� �

1 VAR skb = Q.TOP; /* Just an example packet */

2
3 VAR alternative1 = skb.SENT_ON_ALL_SUBFLOWS;

4
5 VAR alternative2 = SUBFLOWS.FILTER(sbf => !skb.SENT_ON(sbf)).EMPTY;

6
7 VAR alternative3 = SUBFLOWS.FILTER(sbf => sbf.LOSSY AND !skb.

SENT_ON(sbf)).EMPTY;

8
9 VAR alternative4 = SUBFLOWS.FILTER(sbf => sbf.LOSSY AND sbf.CWND >

sbf.SKBS_IN_FLIGHT + sbf.QUEUED AND !skb.SENT_ON(sbf)).EMPTY;� �
Listing A.1: Patterns to check if a packet was sent on all subflows.

A.2.2 Print Statements: Analysing the Scheduling Environment and Deci-
sions

ProgMP enables a convenient analysis of the dynamic scheduling environ-
ment and scheduling decisions. Interactive debugging of scheduling is in-
feasible due to the timing constraints and complexity of debugging Linux
kernel code.1 Thus, the developer usually has to rely on output for interfer-
ence. ProgMP provides a PRINT statement for these outputs. In contrast to
traditional Linux kernel print statements, ProgMP enables a fast update of
schedulers and print statements.

1The complexity of debugging Linux kernel code might be intended considering http:

//lwn.net/2000/0914/a/lt-debugger.php3.

http://lwn.net/2000/0914/a/lt-debugger.php3
http://lwn.net/2000/0914/a/lt-debugger.php3

174 A P P E N D I C E S

During our scheduler analysis in this dissertation, we recurrently show
timeplots of different variables. These are captured with PRINT statements,
such as Listing A.2 for round-trip time statistics. We found that PRINT state-
ments have a huge performance impact and should be used carefully. To bal-
ance the induced overhead the induced overhead, we restrict PRINT opera-
tions to occur only once in a time interval, e. g., every 200ms (line 1–3).� �

1 VAR interPrintInterval_ms = 200;

2
3 IF (R6 < CURRENT_TIME_MS) {

4 SET(R6, CURRENT_TIME_MS + interPrintInterval_ms);

5 PRINT("Number of subflows is %d", SUBFLOWS.COUNT);

6
7 FOREACH(VAR sbf IN SUBFLOWS) {

8 PRINT("Subflow with id = %d ...", sbf.ID);

9 PRINT("... has RTT = %d ...", sbf.RTT);

10 PRINT("... and is backup %d.", sbf.IS_BACKUP);

11 }

12 }� �
Listing A.2: ProgMP snippet that provides analysis information.2

2A full code example and a ready test environment is provided at https://progmp.net/
progmp.html#debug.

https://progmp.net/progmp.html#debug
https://progmp.net/progmp.html#debug

A.3 PAC K E T D R I L L T E S T S C R I P T F O R T H E P RO G M P I M P L E M E N TAT I O N 175

A.3 PAC K E T D R I L L T E S T S C R I P T F O R T H E P RO G M P I M P L E M E N -
TAT I O N

� �
1 // Test if the sending queue size reaches 2

2
3 // Clean output

4 0 ‘dmesg -c > /dev/null‘

5
6 // Configure ProgMP

7 +0 ‘sysctl -w net.mptcp.mptcp_scheduler=rbs‘

8 +0 ‘echo "SCHEDULER two_in_q; PRINT(\"Q.COUNT %u\", Q.COUNT); IF(Q.

COUNT > 1) { SUBFLOWS.GET(0).PUSH(Q.POP()); SUBFLOWS.GET(0).

PUSH(Q.POP()); }" > /proc/net/mptcp_net/rbs/schedulers ‘

9 +0 ‘echo "two_in_q" > /proc/net/mptcp_net/rbs/default ‘

10
11 // Establish sockets

12 +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3

13 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0

14 +0 bind(3, {sa_family = AF_INET, sin_port = htons(13000), sin_addr

= inet_addr("192.168.0.1")}, ...) = 0

15 +0 listen(3, 1) = 0

16
17 +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 5

18 +0 setsockopt(5, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0

19 +0 bind(5, {sa_family = AF_INET, sin_port = htons(13001), sin_addr

= inet_addr("192.168.0.1")}, ...) = 0

20 +0 listen(5,1) = 0

21
22 +0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 10

23 +0 setsockopt(10, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0

24 +0 bind(10, {sa_family = AF_INET, sin_port = htons(13002),

sin_addr = inet_addr("192.168.0.1")}, ...) = 0

25 +0 listen(10, 1) = 0

26
27 // Open first subflow with MPTCP

28 +0 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7,

mp_capable key_a> sock(3)

29 +0 > S. 0:0(0) ack 1 win 28800 <mss 1460,nop,nop,sackOK,nop,wscale

7,mp_capable key_b> sock(3)

30 +0 < . 1:1(0) ack 1 win 257 <mp_capable key_a key_b> sock(3)

31 +0 accept(3, ..., ...) = 4

32
33 // Open second subflow with MPTCP

34 +0 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7,

mp_join_syn address_id=1 token=sha1_32(key_b)> sock(10)

35 +0 > S. 0:0(0) ack 1 win 28800 <mss 1460,nop,nop,sackOK,nop,wscale

7,mp_join_syn_ack address_id=1 sender_hmac=trunc_l64_hmac(

key_b key_a)> sock(10)

36 +0 < . 1:1(0) ack 1 win 32792 <mp_join_ack sender_hmac=

full_160_hmac(key_a key_b)> sock(10)

37 +0 mp_join_accept(10) = 11

38
39 // Write 2000 byte to the socket stream

40 +0 write(4, ..., 2000) = 2000

41
42 // Give some time to trigger retransmissions

176 A P P E N D I C E S

43 +0 ‘sleep 5‘

44
45 // Check if the queue size was 2

46 +0 ‘dmesg | grep "Q.COUNT 2"‘� �
Listing A.3: Packetdrill script to test if the sending queue size changes as

expected (see Section 3.4.5.3 for a discussion).

A.4 P R E S E N T E D P RO G M P S C H E D U L E R S 177

A.4 P R E S E N T E D P RO G M P S C H E D U L E R S

� �
1 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => sbf.CWND > sbf.

SKBS_IN_FLIGHT + sbf.QUEUED AND !sbf.THROTTLED AND !sbf.LOSSY);

2
3 IF(sbfCandidates.EMPTY) { RETURN; }

4
5 IF (!RQ.EMPTY) {

6 VAR sbfCandidate = sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR

(RQ.TOP) AND !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

7 IF (sbfCandidate != NULL) {

8 sbfCandidate.PUSH(RQ.POP());

9 RETURN;

10 }

11 }

12
13 IF (!Q.EMPTY) {

14 sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR(Q.TOP)).MIN(sbf =>

sbf.RTT).PUSH(Q.POP());

15 }� �
Listing A.4: Full specification of the default scheduler as discussed in

Section 5.2. We provide a ready-to-use test environment at https:
//progmp.net/progmp.html#dissertation_default.

� �
1 VAR considerBackups = SUBFLOWS.FILTER(sbf => !sbf.IS_BACKUP).EMPTY;

2 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => !sbf.THROTTLED AND sbf.

CWND > sbf.SKBS_IN_FLIGHT + sbf.QUEUED AND !sbf.LOSSY AND ((sbf.

IS_BACKUP AND considerBackups) OR (!sbf.IS_BACKUP AND !

considerBackups)));

3
4 IF (!RQ.EMPTY) {

5 VAR sbfCandidate = sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR

(RQ.TOP) AND !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

6 IF (sbfCandidate != NULL) {

7 sbfCandidate.PUSH(RQ.POP());

8 RETURN;

9 } ELSE IF (!considerBackups) {

10 VAR sentOnAllNonBackupSubflows = SUBFLOWS.FILTER(sbf => !RQ.TOP.

SENT_ON(sbf)).EMPTY;

11
12 VAR backupSbfCandidate = SUBFLOWS.FILTER(sbf => !sbf.THROTTLED

AND sbf.CWND > sbf.SKBS_IN_FLIGHT + sbf.QUEUED AND !sbf.LOSSY

AND sbf.IS_BACKUP).MIN(sbf => sbf.RTT);

13 IF (backupSbfCandidate != NULL) {

14 backupSbfCandidate.PUSH(RQ.POP());

15 RETURN;

16 }

17 }

18 }

19
20 IF (!Q.EMPTY) {

21 sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR(Q.TOP)).MIN(sbf =>

sbf.RTT).PUSH(Q.POP());

22 }

https://progmp.net/progmp.html#dissertation_default
https://progmp.net/progmp.html#dissertation_default

178 A P P E N D I C E S

� �
Listing A.5: Full specification of the default scheduler with backup semantics

as discussed in Section 5.2. Note that this scheduler considers
backup subflows for packets from the reinjection queue in
case the packet was sent on all non-backup subflows, even
though non-backup subflows are available. We provide a ready-to-
use test environment at https://progmp.net/progmp.html#

dissertation_default_backup.� �
1 IF (!RQ.EMPTY) {

2 VAR sbfCandidate = SUBFLOWS.FILTER(sbf => !sbf.THROTTLED AND sbf.

CWND > sbf.SKBS_IN_FLIGHT + sbf.QUEUED AND !sbf.LOSSY AND sbf.

HAS_WINDOW_FOR(RQ.TOP) AND !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.

RTT);

3 IF (sbfCandidate != NULL) {

4 sbfCandidate.PUSH(RQ.POP());

5 RETURN;

6 }

7 }

8
9 /* tuning parameters */

10 VAR quota = 1;

11 VAR cwnd_limited = 1; /* 1: tries to fill the cwnd on all subflows.

*/

12
13 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => !sbf.THROTTLED AND sbf.

USER < quota AND !sbf.LOSSY AND (cwnd_limited == 0 OR sbf.CWND

> sbf.QUEUED + sbf.SKBS_IN_FLIGHT));

14
15 /* Take subflow which started to use quota */

16 VAR inUse = sbfCandidates.FILTER(sbf => sbf.USER != 0).GET(0);

17 IF (inUse != NULL) {

18 IF(inUse.CWND > inUse.QUEUED + inUse.SKBS_IN_FLIGHT) {

19 inUse.PUSH(Q.POP());

20 }

21 RETURN;

22 }

23
24 VAR fresh = sbfCandidates.GET(0);

25 IF (fresh != NULL) {

26 IF(fresh.CWND > fresh.QUEUED + fresh.SKBS_IN_FLIGHT) {

27 fresh.PUSH(Q.POP());

28 }

29 RETURN;

30 }

31
32 /* reset quota */

33 FOREACH(VAR sbf IN SUBFLOWS) {

34 sbf.SET_USER(0);

35 }� �
Listing A.6: Full specification of the round robin scheduler as discussed in

Section 5.2. We provide a ready-to-use test environment at https:
//progmp.net/progmp.html#dissertation_round_robin.

https://progmp.net/progmp.html#dissertation_default_backup
https://progmp.net/progmp.html#dissertation_default_backup
https://progmp.net/progmp.html#dissertation_round_robin
https://progmp.net/progmp.html#dissertation_round_robin

A.4 P R E S E N T E D P RO G M P S C H E D U L E R S 179

� �
1 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => sbf.CWND > sbf.

SKBS_IN_FLIGHT + sbf.QUEUED AND !sbf.THROTTLED AND !sbf.LOSSY);

2
3 IF(sbfCandidates.EMPTY) { RETURN; }

4
5 IF (!RQ.EMPTY) {

6 VAR sbfCandidate = sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR

(RQ.TOP) AND !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

7 IF (sbfCandidate != NULL) {

8 sbfCandidate.PUSH(RQ.POP());

9 RETURN;

10 }

11 }

12
13 IF (R1 >= SUBFLOWS.COUNT) { SET(R1, 0); }

14
15 IF (!Q.EMPTY) {

16 VAR sbf = SUBFLOWS.GET(R1);

17 IF (sbf.CWND > sbf.PACKETS_IN_FLIGHT + sbf.QUEUED AND

18 !sbf.IS_THROTTLED AND !sbf.IS_LOSSY) {

19 sbf.PUSH(Q.POP());

20 }

21 SET(R1, R1 + 1);

22 }� �
Listing A.7: Full specification of

the alternative round robin scheduler as discussed in Section 5.2.
We provide a ready-to-use test environment at https://progmp.
net/progmp.html#dissertation_round_robin2.� �

1 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => sbf.CWND > sbf.

SKBS_IN_FLIGHT + sbf.QUEUED AND !sbf.THROTTLED AND !sbf.LOSSY);

2
3 IF(sbfCandidates.EMPTY) { RETURN; }

4
5 IF (!RQ.EMPTY) {

6 VAR sbfCandidate = sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR

(RQ.TOP) AND !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

7 IF (sbfCandidate != NULL) {

8 sbfCandidate.PUSH(RQ.POP());

9 RETURN;

10 }

11 }

12
13 FOREACH(VAR sbf IN sbfCandidates) {

14 VAR skb = QU.FILTER(s => !s.SENT_ON(sbf)).TOP;

15 /* are all QU packets sent on this sbf? */

16 IF(skb != NULL) {

17 sbf.PUSH(skb);

18 } ELSE {

19 sbf.PUSH(Q.POP());

20 }

21 }� �
Listing A.8: Full specification of the redundant scheduler as discussed in

Section 5.2. We provide a ready-to-use test environment at https:
//progmp.net/progmp.html#dissertation_redundant.

https://progmp.net/progmp.html#dissertation_round_robin2
https://progmp.net/progmp.html#dissertation_round_robin2
https://progmp.net/progmp.html#dissertation_redundant
https://progmp.net/progmp.html#dissertation_redundant

180 A P P E N D I C E S

� �
1 VAR probingIntervallRttMultiplier = 5; /* Tuning parameter */

2
3 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => !sbf.THROTTLED AND sbf.

CWND > sbf.SKBS_IN_FLIGHT + sbf.QUEUED AND !sbf.LOSSY);

4
5 IF (sbfCandidates.EMPTY) { RETURN; }

6
7 IF (!RQ.EMPTY) {

8 VAR sbfCandidate = sbfCandidates.FILTER(sbf =>

9 sbf.HAS_WINDOW_FOR(RQ.TOP) AND

10 !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

11 IF (sbfCandidate != NULL) {

12 sbfCandidate.PUSH(RQ.POP());

13 RETURN;

14 }

15 }

16
17 IF (Q.EMPTY) { RETURN; }

18
19 /* Schedule as usual. There is at least one subflow */

20 VAR packetToSend = Q.TOP;

21 VAR bestSbf = sbfCandidates.MIN(sbf => sbf.RTT);

22 bestSbf.PUSH(Q.POP());

23
24 /* Reset subflow probing timeout */

25 bestSbf.SET_USER(CURRENT_TIME_MS + (bestSbf.RTT *
probingIntervallRttMultiplier));

26
27 IF (Q.EMPTY AND packetToSend.PSH) {

28 /* End of a burst ? */

29 FOREACH (VAR sbf IN sbfCandidates.FILTER(sbf => sbf.USER <

CURRENT_TIME_MS)) {

30 /* Send redundant packet and reset subflow probing timeout */

31 sbf.PUSH(packetToSend);

32 sbf.SET_USER(CURRENT_TIME_MS + (sbf.RTT *
probingIntervallRttMultiplier));

33 }

34 }� �
Listing A.9: Full specification of the active probing scheduler as discussed in

Section 5.3. We provide a
ready-to-use test environment at https://progmp.net/progmp.
html#dissertation_active_probing.� �

1 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => sbf.CWND > sbf.

SKBS_IN_FLIGHT + sbf.QUEUED AND !sbf.THROTTLED AND !sbf.LOSSY);

2
3 IF(sbfCandidates.EMPTY) { RETURN; }

4
5 IF (!RQ.EMPTY) {

6 VAR sbfCandidate = sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR

(RQ.TOP) AND !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

7 IF (sbfCandidate != NULL) {

8 sbfCandidate.PUSH(RQ.POP());

9 RETURN;

10 }

11 }

https://progmp.net/progmp.html#dissertation_active_probing
https://progmp.net/progmp.html#dissertation_active_probing

A.4 P R E S E N T E D P RO G M P S C H E D U L E R S 181

12
13 /* we are sure that there is at least one subflow */

14 FOREACH(VAR sbf IN sbfCandidates) {

15 sbf.PUSH(Q.TOP);

16 }

17 DROP(Q.POP());� �
Listing A.10: Full specification of the opportunistic redundant scheduler

as discussed in Section 5.4. We provide a ready-to-use
test environment at https://progmp.net/progmp.html#

dissertation_opportunistic_redundant.� �
1 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => sbf.CWND > sbf.

SKBS_IN_FLIGHT + sbf.QUEUED AND !sbf.THROTTLED AND !sbf.LOSSY);

2
3 IF(sbfCandidates.EMPTY) { RETURN; }

4
5 IF (!RQ.EMPTY) {

6 VAR sbfCandidate = sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR

(RQ.TOP) AND !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

7 IF (sbfCandidate != NULL) {

8 sbfCandidate.PUSH(RQ.POP());

9 RETURN;

10 }

11 }

12
13 IF (!Q.EMPTY) {

14 sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR(Q.TOP)).MIN(sbf =>

sbf.RTT).PUSH(Q.POP());

15 } ELSE {

16 /* retransmit on all other subflows... start with oldest skb

which was not sent on a sbf which has cwnd */

17
18 VAR skbCandidate = QU.

19 FILTER(skb_ =>

20 !sbfCandidates.FILTER(sbf => ! skb_.SENT_ON(sbf)).EMPTY

21).TOP;

22
23 sbfCandidates.FILTER(sbf => !skbCandidate.SENT_ON(sbf)).MIN(sbf

=> sbf.RTT).PUSH(skbCandidate);

24 }� �
Listing A.11: Full specification of a scheduler which retransmits packets if

the sending queue is empty as discussed in Section 5.4. We
provide a ready-to-use test environment at https://progmp.

net/progmp.html#dissertation_redundant_q_empty.� �
1 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => sbf.CWND > sbf.

SKBS_IN_FLIGHT + sbf.QUEUED

2 AND !sbf.THROTTLED AND !sbf.LOSSY);

3 IF(sbfCandidates.EMPTY) { RETURN; }

4
5 IF (!RQ.EMPTY) {

6 VAR sbfCandidate = sbfCandidates.FILTER(sbf => sbf.

HAS_WINDOW_FOR(RQ.TOP)

7 AND !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

8 IF (sbfCandidate != NULL) {

https://progmp.net/progmp.html#dissertation_opportunistic_redundant
https://progmp.net/progmp.html#dissertation_opportunistic_redundant
https://progmp.net/progmp.html#dissertation_redundant_q_empty
https://progmp.net/progmp.html#dissertation_redundant_q_empty

182 A P P E N D I C E S

9 sbfCandidate.PUSH(RQ.POP());

10 RETURN;

11 }

12 }

13
14 IF (!Q.EMPTY) {

15 sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR(Q.TOP)).MIN(sbf

=> sbf.RTT).PUSH(Q.POP());

16 }

17
18 VAR minRttRatio = 2;

19
20 IF(R1 == 1 AND Q.EMPTY) {

21 VAR bestSbf = sbfCandidates.MIN(sbf => sbf.RTT);

22 VAR sbfsToCompensate = SUBFLOWS.FILTER(sbf => sbf.RTT > bestSbf.

RTT * minRttRatio);

23
24 /* packet not on bestSbf but sent on at least one sbfToCompensate

*/

25 VAR skbCandidate = QU.FILTER(skb => !skb.SENT_ON(bestSbf) AND !

sbfsToCompensate.FILTER(sbf => skb.SENT_ON(sbf)).EMPTY).GET(0);

26
27 bestSbf.PUSH(skbCandidate);

28 }� �
Listing A.12: Full specification of a scheduler that compensates previous

scheduling decisions as discussed in Section 5.5. We provide
a ready-to-use test environment at https://progmp.net/

progmp.html#dissertation_compensate.� �
1 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => sbf.CWND > sbf.

SKBS_IN_FLIGHT + sbf.QUEUED

2 AND !sbf.THROTTLED AND !sbf.LOSSY);

3
4 IF(sbfCandidates.EMPTY) { RETURN; }

5
6 IF (!RQ.EMPTY) {

7 VAR sbfCandidate = sbfCandidates.FILTER(sbf => sbf.

HAS_WINDOW_FOR(RQ.TOP)

8 AND !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

9 IF (sbfCandidate != NULL) {

10 sbfCandidate.PUSH(RQ.POP());

11 RETURN;

12 }

13 }

14
15 IF (Q.EMPTY) { RETURN; }

16
17 VAR considerBackup = SUBFLOWS.FILTER(sbf => sbf.RTT < R1 AND !sbf.

IS_BACKUP).EMPTY;

18
19 IF (considerBackup) {

20 sbfCandidates.MIN(sbf => sbf.RTT).PUSH(Q.POP());

21 } ELSE {

22 sbfCandidates.FILTER(sbf => !sbf.IS_BACKUP).MIN(sbf => sbf.RTT).

PUSH(Q.POP());

23 }

https://progmp.net/progmp.html#dissertation_compensate
https://progmp.net/progmp.html#dissertation_compensate

A.4 P R E S E N T E D P RO G M P S C H E D U L E R S 183

� �
Listing A.13: Full specification of a round-trip time- and preference-aware

scheduler as discussed in Section 5.6. We provide a ready-to-
use test environment at https://progmp.net/progmp.html#
dissertation_rtt_preference_aware.� �

1 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => sbf.CWND > sbf.

SKBS_IN_FLIGHT + sbf.QUEUED

2 AND !sbf.THROTTLED AND !sbf.LOSSY);

3
4 IF(sbfCandidates.EMPTY) { RETURN; }

5
6 IF (!RQ.EMPTY) {

7 VAR sbfCandidate = sbfCandidates.FILTER(sbf => sbf.

HAS_WINDOW_FOR(RQ.TOP)

8 AND !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

9 IF (sbfCandidate != NULL) {

10 sbfCandidate.PUSH(RQ.POP());

11 RETURN;

12 }

13 }

14
15 IF (!Q.EMPTY) {

16 VAR bestNonBackup = SUBFLOWS.FILTER(sbf => !sbf.IS_BACKUP).MIN(

sbf => sbf.RTT);

17 VAR bestBackup = SUBFLOWS.FILTER(sbf => sbf.IS_BACKUP).MIN(sbf

=> sbf.RTT);

18
19 VAR considerBackup = bestBackup.RTT_MS < R1 AND bestNonBackup.

RTT_MS > R2;

20
21 IF (considerBackup) {

22 sbfCandidates.MIN(sbf => sbf.RTT).PUSH(Q.POP());

23 } ELSE {

24 sbfCandidates.FILTER(sbf => !sbf.IS_BACKUP).MIN(sbf => sbf.

RTT).PUSH(Q.POP());

25 }

26 }� �
Listing A.14: Full specification of a round-trip time- and preference-aware

scheduler as discussed in Section 5.6. We provide a ready-to-
use test environment at https://progmp.net/progmp.html#
dissertation_rtt_preference_aware_advance.� �

1 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => sbf.CWND > sbf.

SKBS_IN_FLIGHT + sbf.QUEUED AND !sbf.THROTTLED AND !sbf.LOSSY);

2
3 IF(sbfCandidates.EMPTY) { RETURN; }

4
5 IF (!RQ.EMPTY) {

6 VAR sbfCandidate = sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR

(RQ.TOP) AND !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

7 IF (sbfCandidate != NULL) {

8 sbfCandidate.PUSH(RQ.POP());

9 RETURN;

10 }

https://progmp.net/progmp.html#dissertation_rtt_preference_aware
https://progmp.net/progmp.html#dissertation_rtt_preference_aware
https://progmp.net/progmp.html#dissertation_rtt_preference_aware_advance
https://progmp.net/progmp.html#dissertation_rtt_preference_aware_advance

184 A P P E N D I C E S

11 }

12
13 FOREACH(VAR sbf IN sbfCandidates) {

14 VAR skb = QU.FILTER(s => !s.SENT_ON(sbf)).TOP;

15 /* are all QU packets sent on this sbf? */

16 IF(skb != NULL) {

17 sbf.PUSH(skb);

18 } ELSE {

19 sbf.PUSH(Q.POP());

20 }

21 }� �
Listing A.15: Full specification of a scheduler with externally controlled

backup subflow semantics as discussed in Section 5.7. We
provide a ready-to-use test environment at https://progmp.

net/progmp.html#dissertation_redundant.� �
1 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => sbf.CWND > sbf.

SKBS_IN_FLIGHT + sbf.QUEUED

2 AND !sbf.THROTTLED AND !sbf.LOSSY);

3 IF(sbfCandidates.EMPTY) { RETURN; }

4
5 IF (!RQ.EMPTY) {

6 VAR sbfCandidate = sbfCandidates.FILTER(sbf => sbf.

HAS_WINDOW_FOR(RQ.TOP)

7 AND !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

8 IF (sbfCandidate != NULL) {

9 sbfCandidate.PUSH(RQ.POP());

10 RETURN;

11 }

12 }

13
14 VAR targetBwKB = R1;

15 VAR prefAhead = R4;

16 VAR factor = 100;

17 VAR maxAhead = 100 * factor;

18
19 VAR prefS = sbfCandidates.FILTER(s=>!s.IS_BACKUP).MIN(s=>s.RTT);

20 IF (prefS != NULL) {

21 prefS.PUSH(Q.POP());

22 IF (R4 < maxAhead) {

23 SET(R4, R4 + factor);

24 }

25 } ELSE {

26 VAR mss = 1400;

27 VAR capKB = prefS.CWND / prefS.RTT_MS * mss;

28 VAR ratio = factor * capKB / (targetBwKB - capKB);

29 IF (prefAhead > ratio AND capKB < targetBwKB) {

30 sbfCandidates.MIN(s => s.RTT).PUSH(Q.POP());

31 SET(R4, prefAhead - ratio);

32 }

33 }� �
Listing A.16: Full specification of the throughput- and preference-aware

scheduler as discussed in Section 5.7. We provide a ready-to-
use test environment at https://progmp.net/progmp.html#
dissertation_throughput_preference_aware.

https://progmp.net/progmp.html#dissertation_redundant
https://progmp.net/progmp.html#dissertation_redundant
https://progmp.net/progmp.html#dissertation_throughput_preference_aware
https://progmp.net/progmp.html#dissertation_throughput_preference_aware

A.4 P R E S E N T E D P RO G M P S C H E D U L E R S 185

� �
1 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => sbf.CWND > sbf.

SKBS_IN_FLIGHT + sbf.QUEUED AND !sbf.THROTTLED AND !sbf.LOSSY);

2
3 IF(sbfCandidates.EMPTY) { RETURN; }

4
5 IF (!RQ.EMPTY) {

6 VAR sbfCandidate = sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR

(RQ.TOP) AND !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

7 IF (sbfCandidate != NULL) {

8 sbfCandidate.PUSH(RQ.POP());

9 RETURN;

10 }

11 }

12
13 IF (!Q.EMPTY) {

14 sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR(Q.TOP)).MIN(sbf =>

sbf.DELAY_OUT).PUSH(Q.POP());

15 }� �
Listing A.17: Full specification of the one-way delay-aware scheduler

as discussed in Section 5.8. We provide a ready-to-use
test environment at https://progmp.net/progmp.html#

dissertation_onewaydelay.

� �
1 VAR sbfCandidates = SUBFLOWS.FILTER(sbf => sbf.CWND > sbf.

SKBS_IN_FLIGHT + sbf.QUEUED AND !sbf.THROTTLED AND !sbf.LOSSY);

2
3 IF(sbfCandidates.EMPTY) { RETURN; }

4
5 IF (!RQ.EMPTY) {

6 VAR sbfCandidate = sbfCandidates.FILTER(sbf => sbf.HAS_WINDOW_FOR

(RQ.TOP) AND !RQ.TOP.SENT_ON(sbf)).MIN(sbf => sbf.RTT);

7 IF (sbfCandidate != NULL) {

8 sbfCandidate.PUSH(RQ.POP());

9 RETURN;

10 }

11 }

12
13 IF (Q.EMPTY) { RETURN; }

14
15 VAR modeNoHighRtt = 0;

16 VAR modeMinRtt = 1;

17 VAR modePrefAware = 2;

18
19 IF (Q.TOP.USER == modeNoHighRtt) {

20 VAR minRttSbf = SUBFLOWS.MIN(sbf => sbf.RTT).RTT;

21 sbfCandidates.FILTER(sbf => sbf.RTT < minRttSbf * 3 / 2).MIN(sbf

=> sbf.RTT).PUSH(Q.POP());

22 } ELSE IF (Q.TOP.USER == modeMinRtt) {

23 sbfCandidates.MIN(sbf => sbf.RTT).PUSH(Q.POP());

24 } ELSE IF (Q.TOP.USER == modePrefAware) {

25 sbfCandidates.FILTER(sbf => !sbf.IS_BACKUP).MIN(sbf => sbf.RTT).

PUSH(Q.POP());

26 }

https://progmp.net/progmp.html#dissertation_onewaydelay
https://progmp.net/progmp.html#dissertation_onewaydelay

186 A P P E N D I C E S

� �
Listing A.18: Full specification of the HTTP-aware scheduler as discussed

in Section 5.9. We provide a ready-to-use test environment at
https:

//progmp.net/progmp.html#dissertation_http_aware.

https://progmp.net/progmp.html#dissertation_http_aware
https://progmp.net/progmp.html#dissertation_http_aware

A.5 P RO G M P L A N G UAG E S Y N TA X 187

A.5 P RO G M P L A N G UAG E S Y N TA X

Listing A.19 provides an EBNF-based syntax specification of the ProgMP
language for the parser generator ANTLR43. While we used ANLTR for the
implementation of a validator for the editor at http://progmp.net/demo,
the runtime environment in the Linux kernel relies on a manually imple-
mented parser as presented in Section 3.4.� �

1 grammar ProgMP;

2
3 scheduler: ’SCHEDULER’ IDENTIFIER ’;’ statements;

4
5 /* Statements */

6
7 statements: statement+;

8
9 statement: (dropStatement | foreachStatement | ifStatement |

printStatement | setStatement | varStatement | pushStatement |

setUserStatement);

10
11 dropStatement: DROP ’(’ skbValue ’)’ ’;’;

12
13 foreachStatement: FOREACH ’(’ foreachDeclaration ’)’ ’{’ statements

’}’;

14
15 foreachDeclaration: ’VAR’ IDENTIFIER ’IN’ (skbList | sbfList |

IDENTIFIER | genericList);

16
17 ifStatement: ifBlock (ELSE ifBlock)* (ELSE ’{’ scopeArea ’}’)?;

18
19 ifBlock: IF ’(’ boolExpression ’)’ ’{’ scopeArea’}’;

20
21 scopeArea: (statements returnStatement?) | returnStatement;

22
23 printStatement: PRINT ’(’ stringValue (’,’ (intExpression |

boolExpression))? ’)’ ’;’;

24
25 returnStatement: RETURN ’;’;

26
27 setStatement: SET ’(’ register ’,’ intExpression ’)’ ’;’;

28
29 varStatement: VAR IDENTIFIER ’=’ (identifierHelper | boolExpression

| intExpression | skbValue | skbList | sbfValue | sbfList |

genericList) ’;’;

30
31 identifierHelper: IDENTIFIER;

32
33 pushStatement: sbfValue ’.’ PUSH ’(’ skbValue ’)’ ’;’;

34
35 setUserStatement: sbfValue ’.’ SET_USER ’(’ intExpression ’)’ ’;’;

36
37 /* Generic */

38
39 genericList: IDENTIFIER (’.’ FILTER ’(’ IDENTIFIER ’=>’

boolExpression ’)’)*;

3See http://www.antlr.org/.

http://progmp.net/demo
http://www.antlr.org/

188 A P P E N D I C E S

40
41 genericValue: genericList ’.’ ’GET(’ intExpression ’)’;

42
43 /* Packets */

44
45 skbValue: (genericValue | skbPop | skbTop | IDENTIFIER);

46
47 skbPop: (skbList | genericList) ’.’ POP ’()’;

48
49 skbTop: (skbList | genericList) ’.’ (TOP | ’GET(’ intExpression ’)’

);

50
51 skbList: ((Q | QU | RQ) (skbFilter)*);

52
53 skbFilter: ’.’ FILTER ’(’ IDENTIFIER ’=>’ boolExpression ’)’;

54
55 /* Subflows */

56
57 sbfValue: (sbfList | genericList) ’.’ (sbfMinMax | (GET ’(’

intExpression ’)’)) | IDENTIFIER | genericValue;

58
59 sbfList: (’SUBFLOWS’ (sbfFilter)*);

60
61 sbfFilter: ’.’ FILTER ’(’ IDENTIFIER ’=>’ boolExpression ’)’;

62
63 sbfMinMax: (MIN | MAX | ’SUM’) ’(’ IDENTIFIER ’=>’ intExpression ’)

’;

64
65 /* Expressions */

66
67 boolExpression: (boolLiteral | boolProperty | boolFromInt |

boolFromComparison | boolNotExpression | boolBracketExpression

| IDENTIFIER) ((AND | OR | ’==’ | ’!=’) boolExpression)?;

68
69 boolNotExpression: ’!’ boolExpression;

70
71 boolBracketExpression: ’(’ boolExpression ’)’;

72
73 boolLiteral: (TRUE | FALSE);

74
75 boolFromInt: intExpression (’<’ | ’>’ | ’==’ | ’!=’ | ’<=’ | ’>=’)

intExpression;

76
77 boolFromComparison: (skbValue (’==’ | ’!=’) skbValue) |

78 (sbfValue (’==’ | ’!=’) sbfValue) |

79 /* The order is important, as NULL comparisons do not have a

type */

80 (nullComparisonIdentifier (’==’ | ’!=’) NULL) |

81 (skbValue (’==’ | ’!=’) NULL) |

82 (sbfValue (’==’ | ’!=’) NULL);

83
84 nullComparisonIdentifier: IDENTIFIER;

85
86 boolProperty: ((sbfList ’.’ EMPTY) |

87 (skbList ’.’ EMPTY) | (genericList ’.’ EMPTY) | (skbValue ’.’ PSH)

| (skbValue ’.’ SENT_ON ’(’ sbfValue ’)’) |

A.5 P RO G M P L A N G UAG E S Y N TA X 189

88 (sbfValue ’.’ ’HAS_WINDOW_FOR’ ’(’ skbValue ’)’) | (sbfValue ’.’ ’

IS_BACKUP’) | (sbfValue ’.’ THROTTLED) | (sbfValue ’.’ LOSSY));

89
90 intExpression: (INT | intProperty | intBracketExpression |

IDENTIFIER) ((’+’ | ’-’ | ’*’ | ’/’ | ’%’) intExpression)?;

91
92 intBracketExpression: ’(’ intExpression ’)’;

93
94 intProperty: (’CURRENT_TIME_MS’ | register | ’RANDOM’ |

95 intSbfListProperty |

96 intGenericProperty |

97 intSkbListProperty |

98 intGenericListProperty |

99 intSkbProperty | intSbfProperty

100);

101
102 intGenericProperty: IDENTIFIER ’.’ USER;

103
104 intSkbProperty: skbValue ’.’ (LENGTH | SEQ | USER);

105
106 intSbfProperty: sbfValue ’.’ (CWND | ID | ’LOST_SKBS’ | RTT | ’

RTT_MS’ | ’RTT_VAR’ |

107 ’SKBS_IN_FLIGHT’ | QUEUED | DELAY_IN | DELAY_OUT | USER | ’

DELAY_OUT_ESTIMATOR’ | ’SSTHRESH’);

108
109 intSkbListProperty: (skbList ’.’ COUNT);

110
111 intSbfListProperty: (sbfList ’.’ COUNT);

112
113 intGenericListProperty: (genericList ’.’ COUNT);

114
115 register: (’R1’ | ’R2’ | ’R3’ | ’R4’ | ’R5’ | ’R6’);

116
117 stringValue: STRING;

118
119 expression: (boolExpression | intExpression);

120
121 /* LEXER Rules */

122
123 STRING: ’"’ ~(’\r’ | ’\n’ | ’"’)* ’"’;

124
125 INT: [0-9]+;

126
127 TRUE: ’TRUE’;

128
129 FALSE: ’FALSE’;

130
131 DROP: ’DROP’;

132
133 POP: ’POP’;

134
135 TOP: ’TOP’;

136
137 FOREACH: ’FOREACH’;

138
139 Q: ’Q’;

140

190 A P P E N D I C E S

141 RQ: ’RQ’;

142
143 QU: ’QU’;

144
145 IF: ’IF’;

146
147 ELSE: ’ELSE’;

148
149 PRINT: ’PRINT’;

150
151 RETURN: ’RETURN’;

152
153 SET: ’SET’;

154
155 VAR: ’VAR’;

156
157 FILTER: ’FILTER’;

158
159 AND: ’AND’;

160
161 OR: ’OR’;

162
163 EMPTY: ’EMPTY’;

164
165 COUNT: ’COUNT’;

166
167 LENGTH: ’LENGTH’;

168
169 QUEUED: ’QUEUED’;

170
171 RTT: ’RTT’;

172
173 ID: ’ID’;

174
175 CWND: ’CWND’;

176
177 USER: ’USER’;

178
179 SEQ: ’SEQ’;

180
181 SENT_ON: ’SENT_ON’;

182
183 MIN: ’MIN’;

184
185 MAX: ’MAX’;

186
187 GET: ’GET’;

188
189 PSH: ’PSH’;

190
191 THROTTLED: ’THROTTLED’;

192
193 LOSSY: ’LOSSY’;

194
195 NULL: ’NULL’;

196
197 PUSH: ’PUSH’;

A.5 P RO G M P L A N G UAG E S Y N TA X 191

198
199 SET_USER: ’SET_USER’;

200
201 DELAY_OUT: ’DELAY_OUT’;

202
203 DELAY_IN: ’DELAY_IN’;

204
205 IDENTIFIER: [a-z] [a-zA-Z_]*; /* we enforce a lower case character

in the parser.

206 We changed it to force it in the lexer to avoid ambigouity and

improve error messages. */

207
208 WS: [\t\r\n]+ -> skip;

209
210 SL_COMMENT: ’//’ .*? ’|n’ -> skip;

211
212 COMMENT: ’/*’ .*? ’*/’ -> skip;� �
Listing A.19: ANLTR grammar for the presented ProgMP scheduler

specification language.

192 A P P E N D I C E S

A.6 M P T C P S C H E D U L E R C O M M I T S

In this section, we list commits of the original MPTCP Linux kernel sched-
ulers implementations, which consist of additions of features and semantic
aspects, as well as bug fixes.

1. mptcp: Don’t prevent scheduling on subflows with TSQ-flag
set https://github.com/multipath-tcp/mptcp/commit/

d50611004d1f05da5d839aea36c7cd247fee15da

2. mptcp: Avoid over-counting packets_out with the redundant sched-
uler https://github.com/multipath-tcp/mptcp/commit/

0a00c9bbe56f9ae87d48d74530c226e3ab26b809

3. Fix NULL pointer dereference in redundant scheduler with empty sub-
flow list https://github.com/multipath-tcp/mptcp/commit/

8cf663220767588824ee55326502c748ae59885d

4. Fix skipping packets with the redundant scheduler
https://github.com/multipath-tcp/mptcp/commit/

5bb34f4de990003187364b7593bb867b4f6d1ce5

5. mptcp: sched: Improve active/backup subflow selection
https://github.com/multipath-tcp/mptcp/commit/

f9ca33df8007af2e31c887b6cee6a51b493801c7

6. mptcp: Do not schedule on tsq-throttled subflows
https://github.com/multipath-tcp/mptcp/commit/

5c278893b37fe48c66ff226793607687b8482ba9

7. mptcp: Don’t use tcp_cwnd_test in mptcp_is_available
https://github.com/multipath-tcp/mptcp/commit/

4c10c4895551cbf5f4a22f766e4f7f8455339069

8. mptcp: Check for skb in get_available_subflow
https://github.com/multipath-tcp/mptcp/commit/

6a5eb7c98f00a2aa02361dec831bf437824107df

9. mptcp: fix penal in slow start https://

github.com/multipath-tcp/mptcp/commit/

a155a39e9b9e89fbcab2be3e402f5039192fb9e9

10. mptcp: scheduler: Support interfaces that do not support
TSO https://github.com/multipath-tcp/mptcp/commit/

b9a46ab805291f506bf3da8c86ee5dbfceab26a4

11. mptcp: Fix quota checking in roundrobin scheduler
https://github.com/multipath-tcp/mptcp/commit/

8b98611bf0d15bc88b11632d34d294b0ccf739c4

https://github.com/multipath-tcp/mptcp/commit/d50611004d1f05da5d839aea36c7cd247fee15da
https://github.com/multipath-tcp/mptcp/commit/d50611004d1f05da5d839aea36c7cd247fee15da
https://github.com/multipath-tcp/mptcp/commit/0a00c9bbe56f9ae87d48d74530c226e3ab26b809
https://github.com/multipath-tcp/mptcp/commit/0a00c9bbe56f9ae87d48d74530c226e3ab26b809
https://github.com/multipath-tcp/mptcp/commit/8cf663220767588824ee55326502c748ae59885d
https://github.com/multipath-tcp/mptcp/commit/8cf663220767588824ee55326502c748ae59885d
https://github.com/multipath-tcp/mptcp/commit/5bb34f4de990003187364b7593bb867b4f6d1ce5
https://github.com/multipath-tcp/mptcp/commit/5bb34f4de990003187364b7593bb867b4f6d1ce5
https://github.com/multipath-tcp/mptcp/commit/f9ca33df8007af2e31c887b6cee6a51b493801c7
https://github.com/multipath-tcp/mptcp/commit/f9ca33df8007af2e31c887b6cee6a51b493801c7
https://github.com/multipath-tcp/mptcp/commit/5c278893b37fe48c66ff226793607687b8482ba9
https://github.com/multipath-tcp/mptcp/commit/5c278893b37fe48c66ff226793607687b8482ba9
https://github.com/multipath-tcp/mptcp/commit/4c10c4895551cbf5f4a22f766e4f7f8455339069
https://github.com/multipath-tcp/mptcp/commit/4c10c4895551cbf5f4a22f766e4f7f8455339069
https://github.com/multipath-tcp/mptcp/commit/6a5eb7c98f00a2aa02361dec831bf437824107df
https://github.com/multipath-tcp/mptcp/commit/6a5eb7c98f00a2aa02361dec831bf437824107df
https://github.com/multipath-tcp/mptcp/commit/a155a39e9b9e89fbcab2be3e402f5039192fb9e9
https://github.com/multipath-tcp/mptcp/commit/a155a39e9b9e89fbcab2be3e402f5039192fb9e9
https://github.com/multipath-tcp/mptcp/commit/a155a39e9b9e89fbcab2be3e402f5039192fb9e9
https://github.com/multipath-tcp/mptcp/commit/b9a46ab805291f506bf3da8c86ee5dbfceab26a4
https://github.com/multipath-tcp/mptcp/commit/b9a46ab805291f506bf3da8c86ee5dbfceab26a4
https://github.com/multipath-tcp/mptcp/commit/8b98611bf0d15bc88b11632d34d294b0ccf739c4
https://github.com/multipath-tcp/mptcp/commit/8b98611bf0d15bc88b11632d34d294b0ccf739c4

A.6 M P T C P S C H E D U L E R C O M M I T S 193

12. mptcp: mptcp_dss_len and mptcp_sched_rr can be static
https://github.com/multipath-tcp/mptcp/commit/

2025d6605d155db514c994cbb63c5023f735232e

13. mptcp: Disable nagle at meta-level considering segment
type https://github.com/multipath-tcp/mptcp/commit/

58fa7ade4fd94a7a45186f2f2c8969fd3934c079

https://github.com/multipath-tcp/mptcp/commit/2025d6605d155db514c994cbb63c5023f735232e
https://github.com/multipath-tcp/mptcp/commit/2025d6605d155db514c994cbb63c5023f735232e
https://github.com/multipath-tcp/mptcp/commit/58fa7ade4fd94a7a45186f2f2c8969fd3934c079
https://github.com/multipath-tcp/mptcp/commit/58fa7ade4fd94a7a45186f2f2c8969fd3934c079

B
E R K L Ä RU N G L AU T § 9 D E R P RO M OT I O N S O R D N U N G

Ich versichere hiermit, dass ich die vorliegende Dissertation allein und nur
unter Verwendung der angegebenen Literatur verfasst habe.

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 2018

Alexander Frömmgen

C
W I S S E N S C H A F T L I C H E R W E R D E G A N G D E S
V E R FA S S E R S

Personal Information

Name Alexander Frömmgen

Date of Birth March 29, 1988

Place of Birth Koblenz

Nationality German

Education

2016 – 2018 Technische Universität Darmstadt
Research Assistant – Multimedia Communications Lab

2013 – 2016 Technische Universität Darmstadt
Research Assistant – Databases and Distributed Systems
Group

2011 – 2013 Technische Universität Darmstadt
Computer Science – Degree: Masters of Science

2008 – 2011 DHBW Mannheim
Wirtschaftsinformatik – Degree: Bachelor of Science

S U P E RV I S E D T H E S I S

The author of this dissertation supervised the following student thesis:

[S1] Othmane Achoual. Switching the TCP Congestion Control at
Runtime. Bachelor Thesis, DVS, TU Darmstadt, Supervised by
Alexander Frömmgen. 2016.

[S2] Patrick Adler. Die Wahl von Datenstrukturen in Java: Krite-
rien, Auswirkungen und mögliche Automatisierung. Bachelor
Thesis, DVS, TU Darmstadt, Supervised by Alexander Fröm-
mgen. 2015.

[S3] Ejaz Ahmed. Consensus Protocol Analysis and Performance
Improvements for Zookeeper. Master Thesis, DVS, TU Darm-
stadt, Supervised by Alexander Frömmgen. 2016.

[S4] Gregor Albrecht. Eye-Tracker Supported Evaluation of a
Domain-Specific Topology Adaptation Language. Bachelor
Thesis, KOM, TU Darmstadt, Supervised by Alexander Fröm-
mgen. 2017.

[S5] Sohaib Amir. Self-Adaptive Systems: A Survey on Representa-
tions of Adaptation Logic. Master Thesis, DVS, TU Darmstadt,
Supervised by Alexander Frömmgen. 2016.

[S6] Andreas Bauer. Eine Plattform zur Ausführung und Evaluation
von Netzwerksimulationen mit vielen Konfigurationen. Bach-
elor Thesis, KOM, TU Darmstadt, Supervised by Alexander
Frömmgen. 2017.

[S7] Fabio Cuozzo. Erfassung und Analyse von Problemen mo-
biler Netze in Überlastsituationen. Bachelor Thesis, DVS, TU
Darmstadt, Supervised by Alexander Frömmgen. 2015.

[S8] Saju Daniel. MPTCP Ex Machina: Integration der Remy
Staukontrollen in MPTCP. Master Thesis, KOM, TU Darm-
stadt, Supervised by Alexander Frömmgen. 2017.

[S9] Anay Deshpande and Soumya Bhowmik. Design and Imple-
mentation of Multipath UDP. Seminar Thesis, KOM, TU
Darmstadt, Supervised by Alexander Frömmgen. 2017.

[S10] Nikolas Eller. Maschinelles Lernen der Staukontrolle im QUIC
Transportprotokoll. Bachelor Thesis, KOM, TU Darmstadt, Su-
pervised by Alexander Frömmgen. 2018.

[S11] Tobias Erbshäußer. Optimierung der Latenz in Multipath-TCP
Netzwerken durch Vervielfältigung und quantitative Verteilung
der Datenpakete. Bachelor Thesis, DVS, TU Darmstadt, Su-
pervised by Alexander Frömmgen. 2015.

200 W I S S E N S C H A F T L I C H E R W E R D E G A N G D E S V E R F A S S E R S

[S12] Tobias Erbshäußer. Optimization of Custom Schedulers in Mul-
tipath TCP. Master Thesis, DVS, TU Darmstadt, Supervised
by Alexander Frömmgen. 2017.

[S13] Jan Fornoff. Retrieving Adaptation Knowledge by Offline Sim-
ulation in MPEG DASH Video Streaming. Bachelor Thesis,
DVS, TU Darmstadt, Supervised by Alexander Frömmgen.
2016.

[S14] Gómez Guillermo. ATP: Adaptive Transport Protocol and
Socket Builder. Master Thesis, DVS, TU Darmstadt, Super-
vised by Alexander Frömmgen. 2016.

[S15] Stefan Haas. Transitionsstrategien zum Wechsel zwischen Peer-
to-Peer-Suchoverlays. Bachelor Thesis, DVS, TU Darmstadt,
Supervised by Alexander Frömmgen. 2015.

[S16] Claudius Kleemann. Derivation of Optimized Protocols for
Distributed Systems using Genetic Programming. Master The-
sis, KOM, TU Darmstadt, Supervised by Alexander Frömm-
gen. 2018.

[S17] Alexander Köhler. Eine Gegenüberstellung von selbst-
adaptiver Software mit TCP-basierten Überlastkontrollen und
ABR-Algorithmen. Bachelor Thesis, DVS, TU Darmstadt, Su-
pervised by Alexander Frömmgen. 2016.

[S18] Johannes Rüschel. Testgetriebene Ansätze zum automatischen
Eingliedern von VNFs und Cloud-Anwendungen. Master The-
sis, KOM, TU Darmstadt, Supervised by Alexander Frömm-
gen. 2018.

[S19] Sreeram Sadasivam. Use your Senses: A Smooth MPTCP
WiFi/Mobile Handover. Seminar Thesis, DVS, TU Darmstadt,
Supervised by Alexander Frömmgen. 2015.

[S20] Tobias Viernickel. Verbesserte Web-Performance mit Multi-
path Scheduling für HTTP/2 und QUIC. Master Thesis, KOM,
TU Darmstadt, Supervised by Alexander Frömmgen. 2017.

[S21] Patrick Wagner. Simulation Based Retrieval of Adaptation
Knowledge. Master Thesis, DVS, TU Darmstadt, Supervised
by Alexander Frömmgen. 2015.

[S22] Max Weller. Optimierte Zusammenarbeit von HTTP/2 und
Multipath-TCP-Schedulern. Bachelor Thesis, KOM, TU
Darmstadt, Supervised by Alexander Frömmgen. 2017.

	Abstract
	Zusammenfassung
	Publications
	Patents
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Approach and Contributions
	1.4 Thesis Organization

	2 Background and Related Work on MPTCP
	2.1 Multipath TCP
	2.1.1 Connection Establishment and Wire Protocol Format
	2.1.2 Path Management
	2.1.3 Implementations

	2.2 Multipath Scheduling
	2.2.1 RFCs on MPTCP Scheduling
	2.2.2 Deployable Multipath TCP Schedulers
	2.2.3 Multipath TCP Schedulers in Simulators
	2.2.4 Multipath TCP Related Schedulers
	2.2.5 Multipathing for SCTP
	2.2.6 Singlepath Scheduling
	2.2.7 MPTCP Scheduling Dependencies
	2.2.8 Discussion

	3 A Programming Model for MPTCP Scheduling
	3.1 Requirement Derivation
	3.2 Programming Models in Communication Systems
	3.3 Programming Model Design
	3.3.1 Model of the Scheduling Environment
	3.3.2 Language Design
	3.3.3 Scheduler Triggering and Execution
	3.3.4 API for Application-aware Scheduling
	3.3.5 Programming Model Discussion and Future Work

	3.4 Execution Environment Implementation
	3.4.1 Scheduler Location and Calling Model
	3.4.2 Runtime Environment
	3.4.3 Runtime Optimizations and Compilation
	3.4.4 API for Application-aware Scheduling
	3.4.5 Testing and Evaluation
	3.4.6 Receiver-Side Packet Handling
	3.4.7 Implementation Discussion and Future Work

	4 Enabling Extensive Network Experiments
	4.1 Motivation
	4.2 Observations and Requirement Analysis
	4.3 Experiment-Driven Research Process
	4.3.1 A Single Executable Experiment Instance
	4.3.2 Structuring Experiments
	4.3.3 Interactive Data Analysis for Extensive Experiments

	4.4 Implementation
	4.4.1 Frontend
	4.4.2 Backend
	4.4.3 Execution Environment Integration
	4.4.4 Scaling Out Experiment Execution
	4.4.5 Analysing a Large Number of Experiments

	4.5 Related Work
	4.6 MACI Experiences
	4.7 Discussion and Future Work

	5 Design and Analysis of Novel MPTCP Schedulers
	5.1 Evaluation Setup and Scenarios
	5.2 Revisiting Existing Schedulers
	5.2.1 Preamble and Reinjection Queue Handling
	5.2.2 (Default) Minimum RTT Scheduler
	5.2.3 Round Robin Scheduler
	5.2.4 Redundant Scheduler
	5.2.5 Discussion

	5.3 Active Probing for Thin Streams
	5.3.1 Motivation and Analysis
	5.3.2 Scheduler Design
	5.3.3 Evaluation

	5.4 Exploring Redundancy
	5.4.1 Motivation and Analysis
	5.4.2 Scheduler Design
	5.4.3 Evaluation

	5.5 Signaling to Boost Short Flows
	5.5.1 Motivation and Analysis
	5.5.2 Scheduler Design
	5.5.3 Evaluation

	5.6 Balancing Round-trip Times and Subflow Preferences
	5.6.1 Motivation and Analysis
	5.6.2 Scheduler Design
	5.6.3 Evaluation

	5.7 Balancing Throughput and Subflow Preference
	5.7.1 Motivation and Analysis
	5.7.2 Scheduler Design
	5.7.3 Evaluation

	5.8 One-way Delay-Aware Scheduling
	5.8.1 Motivation and Analysis
	5.8.2 Calculating One-Way Delay Estimations
	5.8.3 Scheduler Design
	5.8.4 Evaluation

	5.9 Towards HTTP/2-aware Scheduling
	5.9.1 Motivation and Analysis
	5.9.2 Scheduler Design
	5.9.3 Evaluation

	5.10 Pitfalls in Emulation
	5.10.1 Using a Fresh Network
	5.10.2 Impact of Netem on the Network Stack
	5.10.3 Changing the Network at Runtime

	5.11 MACI Perspective
	5.12 ProgMP Perspective
	5.13 Discussion and Future Work

	6 A Programming Model for Adaptation Decisions
	6.1 Motivation and Approach
	6.2 Background and Related Work
	6.2.1 Adaptive Systems
	6.2.2 Learning and Search-Based Software Engineering

	6.3 Specifying Adaptation Decisions with ECA Rules
	6.4 Learning ECA Rules
	6.4.1 Exploration Strategy: Genetic Programming
	6.4.2 Efficiency Improvements

	6.5 Transition Description and Execution
	6.6 Evaluation
	6.7 Discussion and Future Work
	6.7.1 ECA Rules for Adaptation Decision Logic
	6.7.2 Learning Approach

	7 A Programming Model for Topology Adaptations
	7.1 Motivation and Approach
	7.2 Topology Adaptation Rule Language TARL
	7.3 Expressiveness Evaluation
	7.4 Distributed Topology Pattern Matching
	7.4.1 Exploring Distributed Topology Pattern Matching
	7.4.2 MACI Perspective

	7.5 Discussion and Future Work

	8 Extensive DASH Video Player Comparison
	8.1 Motivation and Background
	8.2 Experimental Design Approach
	8.3 DASH Analysis Overview
	8.4 MACI Perspective
	8.5 Discussion and Future Work

	9 Discussion and Future Work
	9.1 Programming Models for Communication Systems
	9.2 Extensive Network Experiments
	9.3 Future Work

	Bibliography
	A Appendices
	A.1 Illustrating MACI Visualizations
	A.2 Additional ProgMP Experiences
	A.2.1 Was the Packet Sent on all Subflows?
	A.2.2 Print Statements: Analysing the Scheduling Environment and Decisions

	A.3 Packetdrill Testscript for the ProgMP Implementation
	A.4 Presented ProgMP Schedulers
	A.5 ProgMP Language Syntax
	A.6 MPTCP Scheduler Commits

	B Erklärung laut §9 der Promotionsordnung
	C Wissenschaftlicher Werdegang des Verfassers
	Supervised Thesis

