
Users’ Loyalty to Agile Information

Systems

Am Fachbereich Rechts- und Wirtschaftswissenschaften

der Technischen Universität Darmstadt

eingereichte

Dissertation

vorgelegt von

Tillmann Grupp

geboren am 02.01.1982 in Bonn

zur Erlangung des akademischen Grades

Doctor rerum politicarum (Dr. rer. pol.)

Erstgutachter: Prof. Dr. Alexander Benlian

Zweitgutachter: Prof. Dr. Peter Buxmann

Darmstadt 2018

 Grupp, Tillmann : Users‘ Loyalty to Agile Information Systems

Darmstadt, Technische Universität Darmstadt,

Jahr der Veröffentlichung der Dissertation auf TUprints: 2018

Tag der mündlichen Prüfung: 12.07.2018

Veröffentlicht unter CC BY-NC-SA 4.0 International

https://creativecommons.org/licenses/

Abstract I

Abstract
Over the past few years, across many industrial sectors, Information Systems (IS) developed

with the help of agile methods have become the rule rather than the exception. Because of

their high flexibility, such Agile IS development methodologies help firms to keep pace with

emerging market requirements. At the same time, customers are also gaining increasing

market power due to an expanding digitalization of services and products, which decreases

switching barriers and increases transparency. As a result, it has become crucial for firms to

develop IS that continuously provide sufficient value to customers. This is one of the main

reasons why firms regularly deliver increments of Agile IS for users to update outdated

software versions. By doing so, firms try to bind and engage customers lastingly to capture

current and future revenue streams and stay competitive. Agile IS and software updates (that

deliver increments of Agile IS to users) have been researched thoroughly, however mostly

from a technical point of view. Nevertheless, because updates change a system while it is

already in use, they have the potential to impact users’ beliefs, attitudes, behaviors, and in

particular, loyalty to a software in the post-adoption phase. However, despite the importance

of better understanding user responses to Agile IS to provide an adequate theoretical

framework, research from a user’s perspective on Agile IS, and especially software updates, is

still scarce.

Against this backdrop, this thesis presents four empirical studies that were conducted to

investigate whether and how Agile IS affect users’ loyalty to IS, to identify potential

moderators, and to understand how Agile IS should be designed to facilitate potential positive

effects. In these studies, increments of Agile IS are operationalized as software updates and

customer loyalty as a user’s continuance intention with a system. By drawing on the IS

Continuance Model in a scenario-based online experiment, the first two studies reveal

empirically how Agile IS have the potential to increase user continuance intentions. Users of

Agile IS show greater IS continuance intentions, despite that some functionality is provided

only later on, as compared to a consistently feature-complete traditional IS. This effect is

diminished somewhat when the software is introduced with an extensive feature set right from

the beginning. Nevertheless, the size of an update does not seem to play a significant role. The

second study reveals that this positive effect of updates only emerges if the user is not very

knowledgeable regarding the software, because experts in contrast to novices seem to devalue

Agile IS (their continuance intentions decrease with Agile IS in comparison to traditional IS).

Additionally, the second study shows that the removal of features through updates reduces

Abstract II

continuance intentions even more than the equivalent addition of features when considering

the absolute magnitude of change. With empirical data from a laboratory experiment, the third

study identifies update frequency and update type as further moderators of the effect, and

confirms the hypothesized mediation mechanism presumed by the IS Continuance Model.

The fourth study examines the role of update delivery strategies, i.e., the timing and presence

of a notification and an installation choice. In this study, feature and security updates are

distinguished, as both seem to have different characteristics with respect to the delivery

strategy (i.e., users ‘need’ security but ‘want’ to add functionality). The findings show that

both update types should be announced to users, in the case of a security update, only after

successful installation, while presenting an installation choice to users prevents any positive

effect for all types of updates.

Overall, this thesis highlights the importance of understanding Agile IS and software updates

from the user’s perspective. First, the results show that Agile IS have the potential to affect

user’s continuance intentions, thereby contributing to a comprehensive theoretical foundation

on Agile IS. Also the findings put the user more at the center of investigations in IS. Second,

the empirical findings provide evidence in support of a necessary fine-grained understanding

of IT Artifacts as malleable compositions of specific features and characteristics. This

answers the call of several researchers to put the IT Artifact more at the focus of IS research

(Benbasat and Zmud 2003). Third, the results reveal that changes in IS might change users’

attitudes and behaviors over time, which extends the predominant view of IS in post-adoption

literature from a mostly static to a more dynamic perspective. With this finding, we answer

the call of several IS scholars to consider the evolution of IS more thoroughly (e.g., Jasperson

et al. 2005; Benbasat and Barki 2007). For practitioners, the findings of this thesis provide

empirically backed rationales to inform management decisions concerning the deployment of

Agile IS and offer guidance on strategic or design considerations. Overall, the results show

how and when the value provided by IS from a user’s perspective may be increased by the

deployment of Agile IS and software updates.

Zusammenfassung III

Zusammenfassung
In den letzten Jahren sind Informationssysteme, die mit agilen Methoden entwickelt werden,

in vielen Branchen zur Regel geworden. Solche agilen Informationssysteme (Agile IS) helfen

wegen ihrer Flexibilität Firmen dabei, auf dem neuesten Stand bezüglich neu aufkommender

Marktanforderungen zu bleiben. Jedoch gewinnen Kunden wegen der zunehmenden

Digitalisierung von Services und Produkten und den damit sinkenden Wechselbarrieren und

steigender Markttransparenz gleichzeitig immer mehr Marktmacht. In Folge dessen ist es für

Firmen unabdingbar geworden, Informationssysteme zu entwickeln, welche dauerhaft

genügend Wert aus Sicht des Kunden bieten. Das ist einer der Hauptgründe, warum Firmen

regelmäßige Inkremente von agilen Informationssystemen ausliefern, um alte

Softwareversionen auf den neuesten Stand zu bringen. Auf diesem Weg versuchen Firmen

Kunden langfristig zu engagieren und zu binden, um gegenwärtige und zukünftige

Einnahmeströme zu sichern und damit konkurrenzfähig zu bleiben. Agile IS und Software

Updates (die Inkremente von agilen Informationssystemen an Nutzer ausliefern) wurden

vielfach erforscht, dennoch meistens nur aus technischer Sicht. Da Software Updates jedoch

ein Informationssystem verändern, während es benutzt wird, können Software Updates

möglicherweise auch die Überzeugungen, Einstellungen und Verhaltensweisen von Nutzern

und insbesondere die Loyalität zu einer Software in der Post-Adoptionsphase beeinflussen.

Obwohl es deshalb immens wichtig ist, besser zu verstehen, wie Nutzer auf Agile IS

reagieren, um ein zulängliches theoretisches Gerüst zu schaffen, gibt es jedoch nur wenig

Forschung aus der Nutzerperspektive zu agilen Informationssystemen und insbesondere

Software Updates.

Vor diesem Hintergrund zeigt diese Dissertation vier empirische Studien auf, welche

durchgeführt wurden, um zu ergründen, ob und wie Agile IS die Loyalität von Nutzern

bezüglich Informationssystemen beeinflussen können, welche möglichen Moderatoren für

einen Effekt existieren und wie Agile IS gestaltet werden sollten, um mögliche positive

Effekte zu fördern. In den vorliegenden Studien werden Inkremente von agilen

Informationssystemen durch Software Updates und die Loyalität von Nutzern durch die

Weiternutzungsabsicht bezüglich eines Systems operationalisiert. Die ersten beiden Studien

zeigen empirisch anhand des IS-Continuance-Modells in einem szenariobasierten Online-

Experiment, dass Agile IS das Potenzial haben, die Weiternutzungsabsicht des Nutzers zu

erhöhen. Es zeigt sich ein positiver Effekt, obwohl erst später Funktionalitäten im Vergleich

zu durchgängig funktionsvollständigen traditionellen IS bereitgestellt werden. Dieser Effekt

Zusammenfassung IV

wird etwas abgeschwächt, wenn die Anfangsausstattung der Software bezüglich Features

bereits sehr umfangreich ist. Der Umfang des Updates selbst scheint jedoch keinen

wesentlichen Einfluss auf den Effekt zu nehmen. Die zweite Studie zeigt, dass die positive

Wirkung von Updates nur dann auftritt, wenn sich der Nutzer weniger gut mit der Software

auskennt, da im Gegensatz zu Neulingen in diesem Fall Experten Agile IS schlechter

bewerten (ihre Weiternutzungsabsicht sinkt bei agilen IS im Vergleich zu traditionellen IS).

Zusätzlich zeigt die zweite Studie, dass das Entfernen von Features durch Updates die

Weiternutzungsabsicht absolut betrachtet sogar stärker reduziert, als ein entsprechender

Zugewinn an Features. Mit empirischen Daten aus einem Laborexperiment identifiziert die

dritte Studie die Häufigkeit von Updates und die Art des Updates als weitere Moderatoren des

Effekts und bestätigt den als Hypothese vermuteten Mediationsmechanismus, der auf Basis

des IS-Continuance-Modell unterstellt wird. Die vierte Studie untersucht, welche Rolle die

Bereitstellungsstrategie eines Updates spielt. Es wird geprüft, ob der Effekt auch dadurch

beeinflusst wird, ob und wann eine Benachrichtigung zu Updates gegeben wird und ob es eine

Wahlmöglichkeit zur Installation gibt. In dieser Studie werden Feature- und

Sicherheitsupdates unterschieden, da beide unterschiedliche Eigenschaften zu besitzen

scheinen (Im Allgemeinen „benötigen“ Nutzer Sicherheit, aber „wollen“ Funktionalitäten

erhalten). Die Ergebnisse zeigen, dass beide Arten von Updates den Nutzern kommuniziert

werden sollten, jedoch im Falle eines Sicherheitsupdates erst nach erfolgreicher Installation,

während eine Wahlmöglichkeit zur Installation einen positiven Effekt auf Nutzer für beide

Arten von Updates verhindert.

Insgesamt zeigt die Dissertation, wie wichtig es ist, Agile IS und Software-Updates aus der

Sicht des Nutzers zu verstehen. Erstens zeigen die Ergebnisse, dass Agile IS das Potenzial

haben, die Weiternutzungsabsichten von Nutzern zu beeinflussen, was mit Blick auf das Ziel,

möglichst vollständige theoretische Grundlagen zu Agilen IS zu schaffen, berücksichtigt

werden muss. Gleichzeitig wird der Nutzer durch die Erkenntnisse wieder mehr in den

Mittelpunkt der IS-Forschung gerückt. Zweitens liefern die empirischen Befunde Hinweise

auf ein notwendiges feingranulares Verständnis von IT-Artefakten als formbare

Kompositionen aus spezifischen Funktionen und Eigenschaften. Dieses Ergebnis folgt den

Forderungen mehrerer Forscher, das IT-Artefakt stärker in den Fokus der IS-Forschung zu

rücken (Benbasat und Zmud 2003). Drittens zeigen die Ergebnisse, dass Veränderungen in

einem Informationssystem die Einstellungen und Verhaltensweisen der Nutzer im Laufe der

Zeit verändern können, was die vorherrschende eher statische Sichtweise auf

Informationssystemen in der Post-Adoptions-Literatur in Richtung einer dynamischeren

Zusammenfassung V

Perspektive erweitert. Mit diesem Ergebnis wird der Forderung Rechnung getragen,

dynamische Veränderung von Informationssystemen in der IS-Forschung gründlicher zu

betrachten (Jasperson et al. 2005; Benbasat und Barki 2007). Für die Praxis schaffen die

Ergebnisse dieser Dissertation stichhaltige Argumente, um Managemententscheidungen

bezüglich des Einsatzes von Agilen IS zu begünstigen und bieten gleichzeitig Leitlinien zu

strategischen oder Design-Überlegungen in Bezug auf Agile IS. Die Ergebnisse zeigen

insgesamt, wie und wann der Wert von Informationssystemen aus der Sicht des Nutzers durch

den Einsatz von Agilen IS und Software Updates erhöht werden kann.

Zusammenfassung VI

Table of Contents VII

Table of Contents

Abstract .. I

Zusammenfassung ... III

Table of Contents ... VII

List of Tables ... XI

List of Figures .. XIII

List of Abbreviations .. XV

Chapter 1: Introduction .. 1

1.1 Motivation and Research Questions ... 1

1.2 Theoretical Foundations ... 5

1.2.1 Agile IS .. 5

1.2.2 Non-rational user .. 8

1.2.3 Software Updates and the IS Continuance Model ... 10

1.3 Thesis Positioning .. 14

1.4 Structure of the Thesis .. 16

Chapter 2: Effects of Updates and the Role of Update Size and Prior Endowment ... 23

2.1 Introduction .. 24

2.2 Theoretical Foundations ... 26

2.2.1 Feature Updates .. 26

2.2.2 Information Systems Continuance ... 27

2.3 Hypothesis Development ... 28

2.3.1 The Effect of Feature Updates on Users’ Continuance Intentions 30

2.3.2 The Role of Initial Feature Endowment ... 31

2.3.3 The Role of Update Size .. 32

2.3.4 The Mediating Effect of Disconfirmation .. 33

2.4 Method ... 33

2.4.1 Experimental Design .. 33

2.4.2 Manipulation of Independent Variables ... 36

2.4.3 Measures ... 38

2.4.4 Participants, Incentives and Procedures ... 39

2.5 Data Analysis and Results .. 40

2.5.1 Control Variables and Manipulation Check ... 40

2.5.2 Measurement Validation .. 41

Table of Contents VIII

2.5.3 Hypotheses Testing .. 42

2.6 Discussion .. 44

2.6.1 Implications for Research ... 46

2.6.2 Implications for Practice .. 47

2.6.3 Limitations and Future Research .. 48

2.6.4 Conclusion .. 49

Chapter 3: Effects of Gains or Losses through Updates on Experts or Novices 51

3.1 Introduction .. 52

3.2 Theoretical Foundations ... 54

3.2.1 Software Updates ... 54

3.2.2 Information Systems Continuance ... 56

3.2.3 Information Systems Expertise .. 57

3.3 Hypothesis Development ... 59

3.3.1 IS Novices’ Response to Gaining a Feature through a Software Update 59

3.3.2 IS Experts’ Response to Gaining a Feature through a Software Update 61

3.3.3 Novices’ and Experts’ Response to Losing a Feature through a Software Update

 61

3.3.4 The Mediating Effect of Disconfirmation .. 62

3.4 Method ... 63

3.4.1 Experimental Design .. 63

3.4.2 Manipulation of Independent Variables ... 64

3.4.3 Measures ... 66

3.4.4 Participants, Incentives and Procedures ... 67

3.5 Data Analysis and Results .. 67

3.5.1 Control Variables ... 67

3.5.2 Measurement Validation .. 68

3.5.3 Hypotheses Testing .. 69

3.6 Discussion .. 71

3.6.1 Implications for Research ... 73

3.6.2 Implications for Practice .. 74

3.6.3 Limitations and Future Research .. 75

3.6.4 Conclusion .. 76

Chapter 4: Updates and the Role of Update Frequency and Update Type 77

4.1 Introduction .. 78

Table of Contents IX

4.2 Theoretical Foundations ... 80

4.2.1 Software Updates ... 80

4.2.2 Information Systems Continuance ... 81

4.3 Hypotheses Development ... 83

4.3.1 The Effect of Feature Updates on Users’ Continuance Intentions 83

4.3.2 The Role of Frequency in the Delivery of Feature Updates 84

4.3.3 The Effect of Non-Feature Updates on Users’ Continuance Intentions 86

4.3.4 The Role of Frequency in the Delivery of Non-Feature Updates 87

4.3.5 The Mediating Roles of Disconfirmation, Perceived Usefulness and Satisfaction

 87

4.4 Method ... 89

4.4.1 Experimental Design .. 89

4.4.2 Manipulation of Independent Variables ... 90

4.4.3 Measures ... 93

4.4.4 Participants, Incentives and Procedures ... 94

4.5 Data Analysis and Results .. 95

4.5.1 Control Variables and Manipulation Check ... 95

4.5.2 Measurement Validation .. 96

4.5.3 Hypotheses Testing .. 98

4.6 Discussion .. 102

4.6.1 Implications for Research ... 104

4.6.2 Implications for Practice .. 105

4.6.3 Limitations and Future Research .. 106

4.6.4 Conclusion .. 107

Chapter 5: Updates and the Role of Delivery Strategy and Update Type 109

5.1 Introduction .. 110

5.2 Theoretical Foundations ... 112

5.2.1 Feature Updates and Security Updates ... 112

5.2.2 Information Systems Continuance ... 113

5.3 Hypotheses Development ... 114

5.3.1 Effects of Notifications for Security Updates .. 114

5.3.2 Effects of Notifications for Feature Updates .. 115

5.3.3 Effects of Non-Mandatory Security and Feature Updates 116

5.4 Method ... 117

Table of Contents X

5.4.1 Experimental Design .. 117

5.4.2 Manipulation of Independent Variables ... 119

5.4.3 Dependent variables, Control Variables and Manipulation Checks 120

5.4.4 Participants, Incentives and Procedures ... 121

5.5 Data Analysis and Results .. 122

5.5.1 Control Variables and Manipulation Check ... 122

5.5.2 Measurement Validation .. 122

5.5.3 Hypotheses Testing .. 123

5.6 Discussion .. 125

5.6.1 Implications for Research ... 126

5.6.2 Implications for Practice .. 127

5.6.3 Conclusion, Limitations, and Future Research .. 128

Chapter 6: Thesis Conclusion and Contributions .. 131

6.1 Theoretical Contributions ... 132

6.2 Practical Contributions ... 134

6.3 Limitations and Future Research .. 136

References ... 139

Eidesstattliche Erklärung .. 157

Appendix ... 159

List of Tables XI

List of Tables

Table 1-1: Overview of Update Types ... 12

Table 1-2: Overview of Articles ... 17

Table 2-1: Results of Confirmatory Factor Analysis for Core Variables................................. 41

Table 2-2: Means, Standard Deviations and Correlation Matrix for Core Variables............... 42

Table 3-1: Results of Confirmatory Factor Analysis for Core Variables................................. 68

Table 3-2: Means, Standard Deviations, and Correlation Matrix for Core Variables.............. 69

Table 3-3: Means, Mean Differences and Significance Levels for Continuance Intention 70

Table 3-4: Results from Serial Multiple Mediation Analysis of Novices in Groups B and C

(Bootstrapping Results for Indirect Paths) .. 71

Table 4-1: Results of Confirmatory Factor Analysis for Core Variables................................. 97

Table 4-2: Means, Standard Deviations, and Correlation Matrix for Core Variables.............. 98

Table 4-3: Mean Values for Dependent Variables ... 98

Table 4-4: Mean Differences from Baseline (No Updates, Control Group A) and Significance

Levels .. 99

Table 4-5: Direct Comparisons of Update Types ... 99

Table 4-6: Direct Comparisons of Update Frequencies ... 99

Table 4-7: Results from Serial Multiple Mediation Analysis, Groups A and E 101

Table 5-1: Experimental design and experimental groups (N: notification, F: feature added)

 ... 119

Table 5-2: Results of confirmatory factor analysis for core variables 122

Table 5-3: Mean values, differences and significance levels for security update groups 124

Table 5-4: Mean values, differences and significance levels for feature update groups........ 125

List of Tables XII

List of Figures XIII

List of Figures

Figure 1-1: Thesis Positioning ... 14

Figure 1-2: Overarching Article Contributions .. 16

Figure 1-3: Research Framework and Specific Article Contributions 17

Figure 2-1: Experimental Procedure .. 35

Figure 2-2: Average Continuance Intentions, Mean Differences and Significance Levels 42

Figure 2-3: Feature Updates Disconfirming prior Expectations Regarding Software 44

Figure 3-1: Experimental Setup, Groups, and Treatments ... 64

Figure 3-2: Expert and Novice Responses to Gaining and Loosing Features from an Update 70

Figure 3-3: Mediation Mechanism Behind Novices’ Positive Response to Gaining a Feature

through an Update ... 71

Figure 4-1: Research Model ... 88

Figure 4-2: Experimental Setup, Groups, and Treatments ... 90

Figure 4-3: Sample Screenshots of Text Editor. .. 92

Figure 4-4: Mediation Analysis for Groups A and E ... 101

Figure 5-1: IS Continuance Model (Following Bhattacherjee, 2001) 113

Figure 5-2: Sample screens of app with no, post-, pre-notification, and additional choice (l.t.r.)

 ... 119

Figure 5-3: Mean values, differences and significance levels for CI between groups 123

List of Figures XIV

List of Abbreviations XV

List of Abbreviations

ANOVA Analysis of Variance

AVE Average Variance Extracted

CFA Confirmatory Factor Analysis

CI Continuance Intentions

DevOps Development-Operations

DISC Positive Disconfirmation

ECT Expectation-Confirmation Theory

EVM Experimental Vignette Methodology

IS Information Systems

IT Information Technology

ISD Information Systems Development

LLCI Lower Limit of Confidence Interval

MANOVA Multivariate Analysis of Variance

PEoU Perceived Ease of Use

PU Perceived Usefulness

RQ Research question

SAT Satisfaction

SD Standard Deviation

SE Standard Error

TAM Technology Acceptance Model

TBP Travel Booking Platform

List of Abbreviations XVI

ULCI Upper Limit of Confidence Interval

XP eXtreme Programming

Introduction 1

Chapter 1: Introduction

1.1 Motivation and Research Questions

Worldwide, firms are continuously striving for more agility. Due to the ever increasing rate of

technological progress and increased market transparency, firms need to keep pace with

shifting user requirements in order to maintain relevance. For example, Microsoft who

formerly produced monolithic operating system versions every few years, in a huge effort

over a five-year period has transformed itself into an agile company that now produces a more

flexible and evolving operating system that is frequently updated (Denning 2015a; Denning

2015b). This transformation has allowed them to stay relevant in the market, especially with

respect to the emergence of new digital ecosystems, such as the mobile operating systems iOS

and Android. More recently, Microsoft along with many other firms is striving to design the

update process as unobtrusive and convenient for users as possible (e.g., Bowden 2017).

To account for these changes, over the past few decades, the understanding of markets as

balanced places where supply meets demand has changed. In a more recent understanding, the

customer has noticeably gained in power, and it is assumed that the access to customers might

play a much more central role than thought before. In the field of Information System

Development (ISD) this is reflected in continuous efforts to become more user centered (e.g.,

Fowler and Highsmith 2001; Hong et al. 2011). Moreover, the ability of a firm to capture and

maintain a user’s attention has dramatically increased in importance (Hong et al. 2004). Many

contemporary business models rely on recurring revenue streams from users or, in the

beginning, even only on potential future revenues from an expanded user base and the access

to the users’ attention (e.g., Google, Facebook, Snapchat, or Instagram). An example in IS

research in this respect is web-personalization that deals with engaging users more intensely

to tie their attention to a service (e.g., Benlian 2015b). However, considering the low

switching barriers of users due to a progressing digitalization of services and the success of

cloud solutions in many fields (e.g., Benlian and Hess 2011a; Harnisch and Buxmann 2013),

it has also become of crucial importance for firms to adapt and adjust to user requirements

quickly to keep their customers satisfied. Only by doing so are firms able to engage and bind

their customers successfully by providing a high value-to-customer. Quick responses to new

requirements are even more necessary due to the growing importance of providing safe and

stable solutions to users in times of substantial cybercrime and with increased privacy and

security demands (Ackermann and Buxmann 2010). Considering all these indications

Introduction 2

together, it becomes clear that firms need to put their users in a position where users

predominantly perceive themselves as ‘in good hands’ to ensure their own viability.

Out of this position, firms have developed more flexible development methods (e.g., Hirotaka

and Nonaka 1986). These development methods are collectively referenced to as agile

development methods (Maruping et al. 2009). Some prominent methods include eXtreme

Programming (XP) (Beck 1999), Kanban (Ohno 1988), and Scrum (Rising and Janoff 2000;

Schwaber and Beedle 2002), which are still the most prevalent ones today (Versionone 2017).

In general, agile methods propagate an iterative and self-governing development approach

that is aligned with customer and company goals. This offers flexibility in the ISD process

and enables firms to cope with dynamic and changing environments. Recently, agile methods

have once more received significant attention in the context of digital transformation of

classic industries, in the discussion of bimodal IT functions (Haffke et al. 2017), and

particularly in the field of operations. In operations, the cross-functional participation of

developers and operation engineers based on agile principles over the entire product lifecycle,

so called ‘DevOps’, has vastly benefited from previous insights on agile methods and shown a

significant increase in service quality (Juner and Benlian 2017; Banica et al. 2017). However,

although research has provided a significant theoretical foundation and profound

understanding of agile methods in many fields (e.g., Fowler and Highsmith 2001; Cockburn

2001; Conboy 2009; Maruping et al. 2009), the results are largely based on a firm’s

perspective. Yet, IS that are developed incrementally with the help of agile methods might be

perceived differently by users and even change users’ experiences (in the following IS

developed by agile methods are referenced as Agile Information Systems ‘Agile IS’).

However, despite the potential effects of Agile IS on users, this subject remains understudied

with little scholarly attention, only few scholars have researched this perspective (e.g., Hong

et al. 2011). Therefore, this thesis aims to extend the knowledge on Agile IS from the user’s

perspective to increase the explanatory power of IS theory on user responses to Agile IS and

potential moderators for an effect.

Nonetheless, a user’s evaluation of an Agile IS might be prone to potential biases. Research in

psychology has repeatedly shown that users, due to the limited cognitive resources, may

utilize rules of thumbs, thereby not assessing situations in an entirely objective manner (e.g.,

Simon 1959; Tversky and Kahneman 1973, 1974; Kahneman and Tversky 1979; Thaler

1979). Such simplifications – heuristics – and resulting cognitive biases have been studied

and incorporated in theorizing in IS research widely (e.g., Benlian 2013a; Benlian 2013b;

Introduction 3

Fleischmann et al. 2014; Benlian and Haffke 2016). In most of the cases, it could be shown

that due to the use of heuristics, users’ reactions and decisions are biased with systematic

errors (e.g., Rafaeli and Raban 2003; Vetter et al. 2011). Emanating from these findings,

recent research has shown that such biases can be used to carefully lead users to beneficial or

desired decisions by presenting little cues, so called ‘nudges’, that compensate for, or explore

biases (Weinmann et al. 2016; Thaler 2016). However, even if nudges are not considered

directly to utilize or compensate cognitive biases, research on Agile IS must consider that

users may not exhibit fully rational responses to Agile IS. When assessing Agile IS, and in

particular additionally delivered increments that change the previously installed software,

users may fall prey to systematic errors originating from such simplifications (Tversky and

Kahneman 1973, 1974; Kahneman and Tversky 1979). Therefore, this somewhat more

subjective and heuristic understanding of a user’s cognitive processes is incorporated into the

theoretical framework adopted by this thesis.

Out of the user’s point of view, increments of Agile IS are delivered through software

updates. An example of this is the ‘Creators Update’ of Windows 10 that delivered several

security features, a faster browser, and 3d painting capabilities to its users in 2017 (Ruiz-

Hopper 2017). Because software updates are delivered to users when the system is already in

use, they have the potential to change users’ experiences. However, despite the ubiquitous use

of software updates in practice to implement Agile IS, research on the impact of updates on

users’ beliefs, attitudes, and users’ loyalty to the updated software in particular is scarce

(Hong et al. 2011; Claussen et al. 2013). Also, there is no comprehensive understanding of the

mechanisms by which users perceive updates, which factors may strengthen or mitigate a

potential effect, and how Agile IS should be designed accordingly. This not only leaves

practitioners without guidance, but also without a solid theoretical framework on how update

processes should be designed specifically. Current research explores software updates mostly

from an engineering perspective and thus from the supply side. This includes research on

software engineering (Sommerville 2010), software product lines (Clements and Northrop

2002), software release planning (Svahnberg et al. 2010), and software evolution and

maintenance (Mens and Demeyer 2008). The user’s side, and in particular, users’ perceptions

of Agile IS which characteristics change over time, remains largely unexplored. Following

Karahanna et al. (1999) and Bhattacherjee (2001), such changes in IS during use, however,

may have the potential to alter users’ beliefs, attitudes, and behaviors in the post-adoption

stage. In particular, Bhattacherjee (2001) proposes the IS Continuance Model, which suggests

that users would compare pre-usage expectations of a system with post-adoption experiences

Introduction 4

to form their beliefs, attitudes, and behaviors regarding the system. In consequence, through

the lens of the IS Continuance Model, Agile IS might cause similar changes in users’ beliefs,

attitudes, and behaviors after initial adoption due to their changing nature. Therefore, a better

understanding of software updates as the medium to deliver Agile IS increments to users has

the potential to complement existing post-adoption research in significant ways.

Moreover, research on post-adoption phenomena still has the tendency to conceptualize IS as

static and monolithic systems, rather than as a dynamic assembly of specific features that can

be altered over time (Jasperson et al. 2005). Although some studies have explored IS usage at

a feature level (e.g., Benlian 2015), they usually do not consider changes in the available

feature set over time. Understanding the details and specifics of Agile IS and dynamic

changes in such IS through software updates may help to gain insights on to how user’s

beliefs, attitudes, and behaviors fluctuate over time, due to the flexible nature of Agile IS.

Moreover, there are several calls for research from IS scholars who criticize the negligence of

the IT Artifact in IS research (Orlikowski and Iacono 2001; Benbasat and Zmud 2003; Hevner

et al. 2004). They suggest that more research on the IT Artifact itself and on changes in

beliefs, attitudes, and behaviors emanating from the IT Artifact itself rather than from other

IT-unrelated stimuli is required. Summing up, due to the underexplored user perspective on

Agile IS, poor knowledge on potential user responses to software updates and potential

moderators, and a mostly monolithic view on IS that neglects the central role of the IT

Artifact and its specifics, this thesis addresses the following research questions:

RQ1: Do incrementally developed Information Systems (Agile IS) have the potential to

increase users’ loyalty and if so, how does an effect emerge?

RQ2: What are important moderators for the effect of Agile IS on users and how should Agile

IS be designed in consequence?

To answer the overarching research questions, existing research on Agile IS, non-rational user

behavior in IS, software updates, and the IS Continuance Model is drawn. Based on these

theoretical grounds, a research framework is posited to systematically investigate several

factors that may constitute and affect potential user responses to software updates. Moreover,

based on the IS Continuance Model (Bhattacherjee 2001) that originates from the

Expectation-Confirmation Theory (Oliver 1980), a potential mechanism on how users might

perceive software updates is set forth. With the help of this theoretical lens, users’ loyalty to

Introduction 5

Agile IS is operationalized as users’ intentions to continue using a system in the empirical

studies (i.e. continuance intentions).

To obtain valid and reliable answers to our questions, four empirical studies across different

contexts were conducted, which were operationalized with slightly different experimental

methods. This not only allows uncovering multiple facets of potential effects, but also

confirming and retesting core effects. The peer-reviewed articles that present the results of the

studies are included in this thesis. The articles have been published in established IS outlets

and provide causal evidence based on previous theoretical reasoning with respect to the

research questions. In the following, the theoretical foundation on which this reasoning is

based is presented. Subsequently, the thesis is positioned in the context of previous research

and the underlying framework and structure are outlined.

1.2 Theoretical Foundations

This section begins with a review of literature on Agile IS and agile methods to better

understand the nature and characteristics of Agile IS. Subsequently, to base the understanding

of potential user-reactions on a solid theoretical reasoning, literature on user behavior and

potential biases is summarized. Finally, current research on software updates and theory on

the IS Continuance Model is laid out to substantiate our reasoning about potential effects of

software updates on users based on previous theoretical knowledge.

1.2.1 Agile IS

IS have been evolving increasingly fast. And because traditional development methods show

persistent limitations in addressing rapidly emerging new requirements, engineers have sought

of new approaches to cope with constraints and changing environments effectively, while

producing tangible results quickly. These methods have the potential to transform the nature

of an IT Artifact, as they change the way how an IT Artifact is composed over time while it is

already in use. Most often, such methods are referred to as agile development methods

(Maruping et al. 2009). Frequently named examples for agile methods include eXtreme

Programming (XP) (Beck 1999), Crystal (Cockburn 2001), Lean Programming (Poppendeick

2001), Kanban (Ohno 1988) and Scrum (Rising and Janoff 2000; Schwaber and Beedle 2002).

Today, Scrum, XP, and Kanban are the most prominent agile methods and are employed

across different company functions and industry sectors, sometimes in hybrid or blended

variations (Versionone 2017).

Introduction 6

Collectively, agile methods are chosen over traditional approaches because they offer

flexibility in the Information Systems Development (ISD) process and enable firms to cope

with a volatile and changing environment, i.e., they can increase a firm’s agility (Beck 1999).

In the development context agility is the defined as “the continual readiness of an

Information System development method to rapidly or inherently create change, proactively

or reactively embrace change, and learn from change while contributing to perceived

customer value (economy, quality, and simplicity), through its collective components and

relationships with its environment.” (Conboy 2009, p. 338). Over the years, a precise

definition and formal taxonomy has been developed to better understand agility, but also has

the introduction, promotion and development of agile methods been researched in diverse

contexts such as management, project management, and ISD (Conboy 2009; Ågerfalk et al.

2009; Lee and Xia 2010). Most of research related to this topic provides a better

understanding on how to successfully implement agile methods and what factors are

important for the subsequent success of agile ISD efforts. For example, Lee and Xia 2010

empirically explore the impact of team autonomy and diversity in the context of software

development agility on software development performance (i.e., on-time completion, on-

budget completion, and software functionality). In another example, Mishra et al. 2012

explore the role of communication in agile systems development and find that co-location and

open offices improve communication quality, and thereby results.
1
 Other scholars advance a

more strategic understanding of a firm’s agility as a factor related to IT capabilities, IT

expenditures, and IT alignment (e.g., Lu and Ramamurthy 2011; Talon and Pinsonneault

2011). Surprisingly, they find that only expenditures directed to IT capabilities increases

agility while other expenditures do not, and that IT infrastructure flexibility increase firms’

performance in volatile markets in particular (Lu and Ramamurthy 2011; Talon and

Pinsonneault 2011). More recent approaches consider using a bimodal IT that uses both agile

and traditional modes contingent on the functions purpose and requirements (Haffke et al.

2017). Summing up, altogether, most research considers personal skills, culture,

infrastructure, resources, organizational design, and methods as fundamental factors that

moderate a firm’s ability to increase its agility, in particular with agile development

approaches (Salmela et al. 2015). Finally, given that such agile development approaches not

only support a firm to gain agility, but also, change the nature of IT Artifacts with potential

further consequences and the characteristics of such IS developed by agile methods need a

1 A structured literature review of research on agile development can be found in Hummel et al. 2013.

Introduction 7

better understanding. Therefore, theoretical perspectives on Agile IS are presented in the

following.

The recent body of research on the characteristics of Agile IS explains many fundamental

properties of Agile IS and benefits for the supply side very well; however it is still scarce with

respect to many aspects out of the user’s perspective. In this context, Hong et al. (2011) define

Agile IS as IS that are developed using agile methods. Such systems are implemented

incrementally, in each release only the smallest set of most valuable functionality is delivered

to the user (Hong et al. 2011). The particular requirements for each increment are prioritized

based on users’ input – and should represent the users’ most urging or valued requirements

(Lee and Xia 2010). Clearly, these requirements may change and fluctuate over time

(Maruping et al. 2009). However, fortunately, agile methods embrace such dynamic contexts

by design because of the constant and periodical re-evaluation of priorities and needs (Fowler

and Highsmith 2001; Cockburn 2001; Conboy 2009). Nevertheless, as a result, Agile IS

provide only a limited feature-set in the first release, and this feature-set will only

subsequently be extended in each release with additional, limited set of functionality.

Thereby, the system evolves periodically, most often with a preset release frequency (i.e.,

every few weeks or months depending on the development cycle length) (Hong et al. 2011).

Therefore, because the composition of IS changes with later increments of the software, Agile

IS have the potential to alter users’ perceptions of the IT Artifact, because the system’s nature

changes over time. This users’ perspective needs a better understanding, not only in the

context of Agile IS, but also in the overall field of IS, which is reflected in scholars

emphasizing the need to put the user and their perceptions more at the center of all

investigations (e.g., Brenner et al. 2014).

However, the existing body of knowledge on agile methods, implementation of agile methods,

and Agile IS has mainly focused on cultural, structural, processual, and technical facets that

all lie within the domain of a firm (e.g., Fruhling and Vreede 2006; Ågerfalk et al. 2009;

Harris and Collins 2009; Maruping et al. 2009; Vidgen and Wand 2009). Although this

developer’s perspective advances the understanding on how to implement and benefit from

agile methods, as well as how Agile IS should be composed, nevertheless, it does not consider

the user’s perspective. Most often, the user is only incorporated into the theorizing as a source

of input and feedback (Chan and Thong 2009). In contrast, Hong et al. 2011 are among of the

first to empirically study the impact of Agile IS from the user’s perspective. However, they do

not isolate the base effect as compared to Non-agile IS, nor do they consider the specifics of

Introduction 8

changing compositions of IS and related consequences. Overall, a recent review of literature

on agile ISD identifies only 6% of all studies in the field as somewhat considering the users’

perspective (Hummel 2014). Therefore, given the vast spread of Agile IS and the shift of

focus to the user, further research to close this existing gap is inevitable.

In the following, to better understand and predict user responses to Agile IS, research on

potential biases that might influence users’ perceptions is reviewed. Subsequently, software

updates and the IS Continuance Model are introduced. The IS Continuance Model will serve

as a theoretical framework to understand the implementation of Agile IS and potential user

responses in terms of continuance intentions (CI) better.

1.2.2 Non-rational user

Modern theory on behavioral economics suggests that subjects instead of being fully rational

economic actors are to some extend ‘more human’ making subjective choices. Simon (1959)

was one of the first to develop this idea by proposing that understanding subjects to make

somewhat irrational decisions would provide a more accurate tool for modeling human

behavior than classic economic theory does (Simon 1959). Even more, due to cognitive load

and the required mental efforts of decisions, humans overcome cognitive limitations by using

rules of thumbs – heuristics – that help them to reduce the amount of information that is

needed to be processed (Tversky and Kahneman 1973, 1974). Such simpler heuristics may

result in subjective biases and systematic errors that lead to decisions that are not congruent

with classic utilitarian theory (Tversky and Kahneman 1973, 1974; Kahneman and Tversky

1979; Evans 2006; Evans 2008). Given this stream of research, it has become clear that

although economic theory helps to understand what consumers should do; only theory that

takes both psychological and economic factors into account can help to understand what

consumers actually do (Thaler 1979).

Further research on heuristics and cognitive biases over the last decades has revealed several

situations in which outcomes of decisions are not in line with optimal predictions from

economic theory. Some of the very fundamental principles that may bias such decisions are

set forth in the Prospect Theory developed by Kahneman and Tversky (1979). First,

Kahneman and Tversky (1979) describe the subjective value function to reflect “changes in

wealth or welfare, rather than final states” (Kahneman and Tversky 1979, p. 277). They

assume most user responses to emerge relative to a prior adapted level, a subjective reference

point. As a result, this reference point may be biased and experiences may therefore not solely

Introduction 9

relate to an absolute magnitude of an event, but more to the perceived change with respect to

the status quo. Next, based on these findings, they introduce the principle of diminishing

utility. Because of this relative perception, if a value is already high, a fixed size change

seems relatively small compared to a small value that is changed by the same amount.

Therefore, “the marginal value of both gains and losses generally decreases with their

magnitude” (Kahneman and Tversky 1979, p. 278). Lastly, they expect losses to be weighted

more than gains: “The aggravation that one experiences in losing a sum of money appears to

be greater than the pleasure associated with gaining the same amount” (Kahneman and

Tversky 1979, p. 279). This suggests, for example, that users would pay more to not lose a

certain item they possess than what they would pay for the item to gain it in the first place

(Kahneman et al. 1991; Benartzi and Thaler 1995). Considered together, these and several

more related crucial findings have demonstrated that cognitive heuristics and biases need to

be accounted for to correctly understand user behavior. Therefore, this understanding is

incorporated into the theoretical framework related to the studies’ hypotheses.

Heuristics have been studied in IS research in various ways, most often offering interesting

new insights and providing explanations for somewhat irrational behaviors. For example,

Vetter et al. (2011) show that IT decision makers draw near targets of past decisions as

reference points for building future risk preferences. In another example, Rafaeli and Raban

(2003) show an endowment effect in an information trading situation. People would value

information they have more than information they do not have. Also, Gupta and Kim (2007)

show how in a transaction process perceived value and perceived convenience are evaluated

relative to previous anchors that are formed from previous expectations. They show that this

subjective perception affects changes in beliefs and attitudes. Many examples of IS research

exist, in which cognitive biases contribute significantly in explaining the observed results

(e.g., Benlian 2013a; Benlian 2013b; Benlian and Haffke 2016).
2
 These examples underline

empirically that cognitive biases may clearly enrich existing theories and models in IS, and

that potential cognitive biases therefore need to be considered thoroughly when theorizing

about users’ behaviors (Fleischmann et al. 2014).

Building on these rich findings related to cognitive biases in human behavior, present

research efforts are directed towards understanding how such biases may be reduced or

2
 A scientometric analysis by Fleischmann et al. (2014) provides a systematic overview on the role of cognitive

biases in IS research and suggests a categorization into specific classes of biases.

Introduction 10

exploited by using interface or product design elements to guide consumer behavior in

favorable ways (e.g., Weinmann et al. 2016). Such adjustments and informational cues

provided to users to remedy or facilitate biases are termed ‘nudges’ (Thaler 2008). The

beneficial use of nudges is currently receiving increasing research interest in diverse fields

(Thaler 2016). In line with this development, the amount of research on nudges in digital

choice environments is growing steadily (e.g., Schneider et al. 2017). Following this notion,

fostering a positive and considered behavior of users that are confronted with Agile IS can

play a major role. For example, if a system is vulnerable in its current state and should be

updated to close a security vulnerability quickly, guiding users to understand the benefits of

an update will become outstandingly important. Nonetheless, also without making explicit use

of them, understanding cognitive biases in the context of IS research has strongly contributed

to studies of IS usage and must therefore be accounted for.

Finally, to understand how Agile IS are delivered to users, the medium that delivers

increments of Agile IS to users – software updates – are thoroughly explored in the following

section. Subsequently, potential user responses to Agile IS in terms of their continuance

intentions are examined through the lens of the Expectation-Confirmation Theory and the IS

Continuance Model that is also introduced in the following section.

1.2.3 Software Updates and the IS Continuance Model

Software updates are self-contained modules of IS that are provided to users with the purpose

to extend or modify the system after its initial deployment when the software is already in use

(e.g., Dunn 2004). Software updates are most commonly used by firms to repeatedly roll out

new versions and recent increments of Agile IS to users who currently use a first or earlier

version of the system. Thereby, they constitute a fundamental component of Agile IS.

Software updates are usually provided for free, this distinguishes them from software

upgrades which are typically paid for. Moreover, a software update is not a stand-alone

program – it rather depends on the base software and modifies or extends the IS once it has

been applied.

Software updates are addressed in software engineering literature with a range of ambiguous

terms (e.g., update, upgrade, patch, bug fix, or hotfix) (Sommerville 2010). This technical

literature addresses software updates with respect to software release planning, software

maintenance, and evolution, as well as software product lines (Weyns et al. 2011). Following

Svahnberg et al. (2010), software updates fall within the strategic considerations as part of the

Introduction 11

software release planning process. Firms need to decide when to deliver what type of

functionality to the user. With the help of release plans they can either fix in advance what

will be developed next over longer timespans, or they can determine the scope for the next

release more dynamically for each individual release just in time. Such flexible practices are

inherent to most agile methods. Finally, research on software evolution and maintenance

addresses later stages in the software development lifecycle, where updates are used to adjust

systems to changing requirements or repair emerging flaws while the software is already in

use (Shirabad et al. 2001).

Similar to literature on Agile IS, technical literature has comprehensively dealt with software

updates from a developers’ perspective. However, in contrast, literature on users’ beliefs and

attitudes regarding updates is scarce. Only few IS studies have dealt with updates so far (e.g.,

Hong et al. 2011; Amirpur et al. 2015). While Benlian (2015) explores IT feature repertoires

and their impact on the task performance of users, however, the study does not consider

changes in functionality over time through updates. Hong et al. (2011) are among the first to

explorer user’s acceptance of IS that received additional new functionality after the initial

release. However, they do not compare the observed effects to comparable baseline software

(i.e., non-agile software with afull feature set) to understand the fundamental differences, nor

do they consider feature-level compositions of the software. Other studies explore different

feature sets, their use, valuation, consequences, and usage over time (e.g., Turoff 1981;

DeSanctis and Poole 1994; Hiltz and Kay and Thomas 1995; Benlian and Hess 2011b; Sun

2012; Leonardi 2013; Benlian 2015a), nevertheless, they do not consider changes in the

feature set after the initial release. Lastly, almost all other studies in the field have pushed

updates to the sidelines, only considering them as instrumental to study other phenomena

instead of investigating them to better understand the user’s perceptions of changes in an IT

Artifact (e.g., Claussen et al. 2013).

In the present thesis, three types of updates are distinguished: feature updates, non-feature

updates, and security updates. Table 1-1 provides an overview on how these types of updates

are defined. However, because all three update types occur during the use of a system and

manifest themselves in various ways, they have the potential to affect users’ post-adoption

beliefs, attitudes, and behaviors regarding IS, including continuance intentions. To better

understand this potential, a review of theory on IS continuance follows.

Introduction 12

Table 1-1: Overview of Update Types

Update Type Definition Examples

Feature update Feature updates are updates that

change the core functionality of

software by adding or removing

discernible functionality.

Functionality thereby refers to

features in the software which are

deliberately employed by users in

accomplishing the core task for

which the software is used.

E.g., the update of the popular

Instagram-App in 2016 that

enabled users to add personal

momentary stories to the feed in

addition to the possibility to add

permanent posts (Constine

2016).

Non-feature

update

Non-feature updates are updates that

do no change the core functionality

but correct flaws (e.g., bug fixes) or

change software properties that are

not directly related to its core

functionality (e.g., improvements in

stability or performance) (Popović et

al. 2001).

E.g., the regular ‘hot fixes’ that

Microsoft rolls out to the

windows platform via its

automatic update service to fix

minor bugs.

Security update
3
 Security updates are updates that

close vulnerabilities of a software or

enhance its protective powers against

security breaches (Dinev and Hu,

2007; Ng et al., 2009).

E.g., the firmware update rolled

out to Intel Processors to close

the security vulnerability in the

preload functionality of

processors that allows malicious

software to read and intercept all

processed data (Shenoy 2018).

One of the most mature fields in IS research is the field of ‘IS usage’ (Jasperson et al. 2005).

It is constituted by research on the pre-adoption phase, the actual adoption decision, and the

post-adoption phase. With respect to research on the post-adoption phase (Karahanna et al.

1999; Bhattacherjee 2001; Benlian et al. 2011; Goldbach et al. 2017), the term information

systems continuance is defined as the “sustained use of an IT by individual users over the

long-term after their initial acceptance” (Bhattacherjee and Barfar 2011, p. 2). In the last

decade, the interest in IS continuance has nurtured a better theoretical and empirical

understanding of the post-adoption phase. Bhattacherjee (2001) for example, with the aim to

study users’ intentions to continue or discontinue the use of IS, has suggested the IS

Continuance Model.

3 Clearly, security updates can be classified as a sub group of non-features updates, however, because
of their distinct nature (i.e., they are not equally perceptible by users compared to performance or
stability improvements, but there is a strong need to apply them consistently), they are considered as
different types of updates for the sake of explicit research.

Introduction 13

The IS Continuance Model is based on Expectation-Confirmation Theory (ECT) (Locke

1976; Oliver 1980, 1993; Anderson and Sullivan 1993). Expectation-Confirmation Theory

posits that repurchase intention and post-purchase satisfaction are formed by a positive or

negative disconfirmation of beliefs that results from a comparison of prior expectations with

post-hoc performance. In its reasoning, ECT understands expectations as a relative and

subjective baseline that is not an objective value. Following Helson’s (1964) adaption level

theory and reasoning in prospect theory (Kahneman and Tversky 1979), this baseline to which

stimuli are compared to, is a subjective reference point. ECT however, though it has been

successfully applied in many IS research contexts, puts customers’ repurchase intentions at

the center of investigation. Therefore, to study the sustained use of IS, Bhattacherjee (2001)

replaces this repurchase intention in ECT by users’ intention to continue using an IS, the core

variable in the IS Continuance Model. In line with ECT the IS Continuance Model suggests

that users compare their pre-usage expectations of an IS with the perceived performance

regarding this IS during actual usage (Bhattacherjee 2001). The discrepancy manifests in

users experiencing positive or negative disconfirmation (DISC). Subsequently, this positive or

negative disconfirmation increases or decreases users’ satisfaction (SAT) regarding the IS

(Bhattacherjee and Barfar 2011). As a result, satisfied users intend to continue using the IS,

while dissatisfied users discontinue its subsequent use (Oliver 1980; Bhattacherjee 2001).

This relative mechanism in the IS Continuance Model allows the potential presence of a non-

rational response to feature updates that may challenge the idea of a ‘rational user’ in the IS

continuance literature (Ortiz de Guinea and Markus 2009; Bhattacherjee and Barfar 2011;

Ortiz de Guinea and Webster 2013).

Undoubtedly, the IS Continuance Model has contributed significantly to post-adoption

research (Bhattacherjee 2001). Yet, in its original form, the IS Continuance Model established

a static view on IS continuance decisions, thereby failing to consider changes in user’s beliefs

and attitudes over time, after initial adoption. Therefore, to compensate for this limitation,

Bhattacherjee and Premkumar (2004) propose a more dynamic view on the IS Continuance

Model that also considers changes in beliefs and attitudes during the ongoing usage of an IS

and not only from the pre-usage to the actual usage stage. In line with this proposal, several

scholars have found evidence that an IT Artifact itself can affect users’ beliefs and attitudes

during use and in later usage stages (e.g., Kim and Malhotra 2005; Kim and Son 2009; Ortiz

de Guinea and Markus 2009; Ortiz de Guinea and Webster 2013). Following Bhattacherjee

and Premkumar (2004), it is therefore reasonable to assume that a change in IS, due to an

update for instance, can also induce changes in users’ beliefs and attitudes towards it. Hence,

Introduction 14

to investigate the changing nature of Agile IS and its impact on users’ beliefs, attitudes and

behaviors during post-adoption use, software updates are studied through the lens of the IS

Continuance Model.

1.3 Thesis Positioning

While IS scholars have explored many aspects of IS in depth, nevertheless, additional

research is required in some areas, particularly related to core aspects of IS. This assessment

stems from a vital commentary by Benbasat and Zmud (2003) in which they analyze the

central identity of IS research. Comparing it to extant research in the field, they argue that

phenomena directly related to IT-based systems (i.e., IT managerial, methodological, and

technological capabilities, practices, the IT Artifact itself, its usage, and its impact) are under-

investigated and distantly associated phenomena that do not directly include the IT Artifact

(i.e., consumer behavior, trust-building, decision-making, and so forth) are over-investigated

(Benbasat and Zmud 2003). Moreover, Benbasat and Barki (2007) set forth that some of the

most accepted models in IS research while providing solid ground for many studies, have a

very narrow focus on user behaviors and do not accurately capture evolving IT contexts in

which a dynamic interplay in user behaviors occurs between various software states (Benbasat

and Barki 2007). Therefore, to account for this somewhat ambiguous shift of the discipline’s

central focus and the still mostly narrow and static view on IT Artifacts, this thesis is clearly

positioned to gain knowledge directly related to the core aspects of IS research, on the IT

Artifact itself (i.e., Agile IS), through a contemporary perspective, the IS Continuance Model,

and with a dynamic understanding of IS (see Figure 1-1).

Figure 1-1: Thesis Positioning

As discussed in the theoretical section, extant research on Agile IS, agile methods, and agile

practices has a strong focus on the supply side whereas research on the user’s perspective on

Agile IS is still scarce. Considering the established research in this field, most of the studies

only investigate aspects related to agile methods themselves (e.g., Fowler and Highsmith

Introduction 15

2001), the implementation of such practices (e.g., Chan and Thong 2009), technical aspects

(e.g., Fruhling and Vreede 2006), and the firm’s agility (e.g., Lu and Ramamurthy 2011;

Talon and Pinsonneault 2011). Considering this vast amount of knowledge, it seems

surprising that only little is known about the perceptions of Agile IS from the user’s

perspective. Given the clear call for more research from scholars that puts the user and his

needs at the center of all investigations (e.g., Brenner et al. 2014), this thesis aims to

contribute to this insufficient body of knowledge and focuses on understanding Agile IS from

the user’s perspective.

Bearing in mind that software updates are the vehicle through which Agile IS are changed

over time, it is surprising that only few IS studies have dealt with them (e.g., Hong et al. 2011;

Amirpur et al. 2015). And because software updates are applied during use, in the post-

adoption stage, they may have the potential to alter users’ beliefs, attitudes, and behaviors

regarding the software after initial adoption (Karahanna et al. 1999; Bhattacherjee 2001).

Nonetheless, still, researchers studying post-adoption phenomena often tend to conceptualize

IS as monolithic and static black boxes, rather than as collections of finer-grained features that

are alterable over time (Jasperson et al. 2005). Only few studies have explored IS usage at a

feature level (e.g., Benlian 2015). However, these studies do not consider changes in the

feature set over time, during usage, that may have the potential to impact user’s beliefs,

attitudes and behaviors after initial acceptance. Hence, the results of this thesis may help to

increase the explanatory and predictive power of existing post-adoption theory, by better

understanding dynamic changes in software through software updates and potential impacts

from a user’s perspective.

Summing up, this thesis aims to extending the limited understanding of user’s beliefs,

attitudes, and intentions with respect to an Agile IS. It is clearly positioned with a focus on the

IT Artifact itself, and in the field of IS post-adoption research within a dynamic context (see

Figure 1-1). Moreover, out of the user’s point of view, this thesis also provides new and

important insights that can be inferred for the supply side of Agile IS (i.e. firms).

Introduction 16

1.4 Structure of the Thesis

To answer the overarching research questions, four empirical studies were conducted. This

allows the identification of causal relationships with respect to our central questions on Agile

IS and their impact on users. All studies were published in peer-reviewed scientific IS outlets.

Overall, the thesis is organized into six chapters: an introductory chapter, four chapters that

present the published articles as shown in Table 1-2, and a final chapter that concludes with

key findings, contributions, and limitations. The articles included into the thesis were slightly

revised to achieve a consistent layout throughout the thesis.

Figure 1-2: Overarching Article Contributions

Primarily, the first two articles aim to identify the underlying effect of Agile IS on users in

comparison to traditional IS, and to understand basic principles. The following two articles

focus more on the tangible design of Agile IS and consequences for users. This embodies the

meta-structure of the thesis that is shown in Figure 1-2.

Introduction 17

Table 1-2: Overview of Articles
S

tu
d

y
 1

Chapter 2

Article 1

Effects of Updates and the Role of Update Size and Prior

Endowment

Fleischmann, M., Grupp, T., Amirpur, M., Benlian, A., and Hess, T.

2015. “When Updates Make a User Stick: Software Feature Updates

and their Differential Effects on Users’ Continuance Intentions,” Thirty

Sixth International Conference on Information Systems (ICIS), Fort

Worth, USA. VHB: A

S
tu

d
y
 2

Chapter 3

Article 2

Effects of Gains or Losses through Updates on Experts or Novices

Fleischmann, M., Grupp, T., Amirpur, M., Benlian, A., and Hess, T.

2015. “Gains and Losses in Functionality – An Experimental

Investigation of the Effect of Software Updates on Users’ Continuance

Intentions,” Thirty Sixth International Conference on Information

Systems (ICIS), Fort Worth, USA. VHB: A

S
tu

d
y
 3

Chapter 4

Article 3

Updates and the Role of Update Frequency and Update Type

Fleischmann, M., Amirpur, M., Grupp, T., Benlian, A., and Hess, T.

2016. “The Role of Software Updates in Information Systems

Continuance – An Experimental Study from a User Perspective,”

Decision Support Systems (83), pp. 83-96. VHB: B

S
tu

d
y
 4

Chapter 5

Article 4

Updates and the Role of Delivery Strategy and Update Type

Grupp, T., and Schneider, D. 2017. “Seamless Updates – How Security

And Feature Update Delivery Strategies Affect Continuance Intentions

With Digital Applications,” Proceedings of the 25th European

Conference on Information Systems (ECIS), Guimarães, Portugal.

VHB: B

Specifically, the introductory chapter motivates this research, presents the research questions,

lays the theoretical foundations for the subsequent studies, and provides an overview on the

thesis positioning and structure. Subsequently, the four studies are presented to answer our

research questions as outlined in the research framework’s detailed structure in Figure 1-3.

Figure 1-3: Research Framework and Specific Article Contributions

Introduction 18

First, article 1 (chapter 2) introduces software updates – the manifestation of Agile IS

increments from the user’s perspective – and investigates their impact on users’ continuance

intentions as compared to a feature-complete software. Also, the study evaluates two crucial

moderators for the identified effect: update size and prior software endowment. Second,

article 2 (chapter 3) extends this first understanding of a somewhat irrational effect of

software updates on users’ continuance intentions by distinguishing the reactions of experts

and novices. Furthermore, the second study evaluates the case where an update removes a

feature from the software. Both studies isolate and demonstrate the effect of how Agile IS

constitute a change in users’ perceptions of the IT Artifact in comparison to a traditional IS.

Third, article 3 (chapter 4) further evaluates software updates by considering update

frequency as an additional moderator for the identified update-effect, a factor, that can be

deliberately designed by the firm. In this study, to understand whether the effect applies in

this case or not, feature and non-feature updates are distinguished. All three studies examine

and confirm the hypothesized mediating mechanism that underlies the update-effect and this

third study in particular confirms the mediation mechanisms by thought-listing. Lastly, article

4 (chapter 5) evaluates the role of the delivery strategy of an update, i.e., the timing and

presence of a notification and an installation choice. In this study, feature and security updates

are distinguished, as both possess different characteristics with this respect. Finally, chapter 6

concludes the thesis by providing a summary of key findings, underlining theoretical and

practical contributions, and pointing out limitations and opportunities for further research.

In the following, each of the four articles is briefly summarized. The motivation and the main

contributions of each article are positioned within the context of the overall research

questions, and the relations of the articles are outlined. The summaries and the articles will

use the first-person plural (i.e., ‘we’), as the studies were conducted in cooperation with co-

authors.

Article 1 (Chapter 2):

When Updates Make a User Stick: Software Feature Updates and their

Differential Effects on Users’ Continuance Intentions.

Increments of Agile IS are usually delivered through software updates, which have been

researched in software engineering and development literature, but have been neglected in

research from the users’ perspective despite their prevalence in practice. This study soughs to

reduce this gap, thereby mainly contributing to the first overarching research questions of the

thesis. By drawing on theory of IS Continuance and the ECT, we hypothesize about the effect

Introduction 19

of updates on users’ continuance intentions as compared to a traditional IS and the role of

update size and initial feature endowment. We conducted a vignette-based online experiment

with 261 participants to identify causal relationships and thereby answer these questions. The

results of the study show that continuance intentions are increased in all update-conditions

compared to the non-update conditions. This increase in CI can be interpreted a as a

somewhat counter-intuitive finding because users had access to less functionality over the

total timespan compared to user who had all features right from the beginning. Despite this

objective disadvantage, participants in all update groups indicated significantly higher scores

in CI. Moreover, the experiment revealed that update size does not seem to constitute a

significant boundary condition for the positive effect of feature updates on users’ CI.

However, contrary to our hypothesis, feature endowment appears to moderate the effect of

feature updates on CI by decreasing its magnitude. This finding may be explained by the

concept of diminishing sensitivity (Tversky and Kahneman 1992; Nowlis and Simonson

1996). Additionally, we could demonstrate that the positive effect of feature updates on CI

was mediated by a serial chain of relations that originates from a positive disconfirmation of

previous expectations. Our results contribute to our overarching research questions in two

ways: first, the surprising results of this study underline the understanding that Agile IS are

able to increase users’ continuance intentions. Thereby the study reveals non-rational user

responses to updates and identifies a beneficial strategy for the firm. Second, it shows how

software updates are perceived by users; hence it strengthens the understanding of the user’s

perspective on Agile IS.

Article 2 (Chapter 3):

Gains and Losses in Functionality – An Experimental Investigation of the Effect

of Software Updates on Users’ Continuance Intentions.

Firms usually update Agile IS in order to correct flaws or extend functionality. However,

sometimes updates also remove functionality, for example when license deals run. Moreover,

as more and more people gain access to information technology, the amount of non-expert

users increases (Rogers 1995). To theoretically account for these developments, it becomes

important for IS research on Agile IS to explore the heterogeneity in users’ beliefs, attitudes

and behaviors contingent on the user’s expertise. Drawing on theory of IS Continuance and IS

Expertise, this study therefore extends the findings of the first study by considering both the

addition and removal of functionality through updates while simultaneously distinguishing

between experts and novices to better understand potential differences. In a scenario-based

online experiment with 178 participants we found that expert and novice users showed

Introduction 20

different responses to updates. In the case of experts, any type of update (e.g., loss or gain in

functionality) led to a decrease in CI compared to a feature-complete software. Probably,

experts are more likely to identify functionality as common features that should have been

available right from the beginning which explains this result. However, novices showed

different reactions. While they also had a lower CI when losing a feature, their CI was

significantly higher in the positive update condition, confirming the somewhat counter-

intuitive finding of the first study. When comparing the absolute values of the novices’

responses to gaining or losing a feature, their evaluations seem even less rational. The

perceived loss from removing a feature from the software through an update was higher in

magnitude than the perceived gain from receiving the exact same feature through an update.

This suggests the presence of loss aversion (Kahneman and Tversky 1979). Collectively, the

results from this study reveal two additional aspects that help answering our first overarching

research question. On the one hand, we find that only if the hold back functionality is not

expected to be available at first, updates have the potential to increases users’ continuance

intentions (which often is the case for users that are not very knowledgeable regarding the

software). On the other hand, we find that users devalue losses in functionality through

software update more than gains, which again demonstrates somewhat irrational user

reactions to software updates.

Article 3 (Chapter 4):

The Role of Software Updates in Information Systems Continuance – An

Experimental Study from a User Perspective.

With software updates firms roll out increments of Agile IS that either deliver specific

features that can be deliberately employed by the user, or they roll out technical

improvements that correct flaws, increase performance, or security. Moreover, several such

feature or non-feature functionalities can be gathered into one chunk to be released as one

capital update, or they can be distributed across multiple updates to be released separately.

The latter would lead to a higher update frequency, given a continuous development output.

Assuming a subjective and relative evaluation of the updates’ contents by users, the effect of

updates may change contingent on the update’s frequency. We therefore assume two

fundamental aspects to have a notable impact on our results of the previous studies: 1) update

type (feature or non-feature update), and 2) update frequency. Again drawing on the IS

Continuance Model, we investigated our hypotheses based on a controlled lab experiment

with 135 participants. For the purpose of the study we developed a fully functional text editor

application, to perfectly mimic a real-world scenario. The results of the experiment reveal that

Introduction 21

only in the feature-update conditions CI was significantly higher than in the non-update

condition. Non-feature updates could not increase users’ CI compared to the condition

without updates. This identifies update type as a distinct and crucial moderator for the effect

of software updates on CI. Moreover, we find that users prefer features to be delivered in

individual updates over a delivery of features in larger but less frequent update packages

comprising several features. Update frequency thus seem to clearly moderate the effect of

software updates on users’ continuance intentions. Lastly, by mediation-analysis and thought-

listing, we substantiate the understanding of users’ reactions and the hypothesized mediation

mechanism in detail. This study thereby contributes somewhat to our first overarching

research questions by deepening the understanding of the mediating mechanism of user

beliefs. However, it mainly contributes to our second overarching research question by

identifying a new crucial moderator that can be deliberately designed by firms – update

frequency – that impacts the effect of updates on users’ continuance intentions. Moreover, the

study extends our previous findings by demonstrating that users’ reactions are contingent on

the update type (i.e., feature vs. non-feature update).

Article 4 (Chapter 5):

Seamless Updates – How Security and Feature Update Delivery Strategies

Affect Continuance Intentions with Digital Applications.

If updates are rolled out to users, developers of applications or platforms have various options

to make them available to users. Updates may be applied consistently or only optional and

they may be announced before or after successful implementation. Regarding the choice of

delivery strategy, one must also think about the contents of an update. We distinguish two

major update types, delivering either additional functionality or security enhancements.

Feature updates are clearly noticeable by users because they provide specific functionality

that can be deliberately employed. Security updates however, remove potential vulnerabilities

or enhance the software’s security and only indirectly contribute to the value of the software

and thus cannot be observed directly. Drawing again on the Expectation-Confirmation Theory

(Oliver 1980), embedded in the IS Continuance Model (Bhattacherjee 2001), we conducted an

online experiment with 282 participants to understand the role of update delivery strategies.

The empirical results reveal surprising insights. In the case of a security update with post-

update notification, users showed a significant higher CI. However, in the case of a security

update with ex-ante notification, no significant change in CI could be observed. Regarding

feature updates, users receiving additional new functionality without further notification, did

not show a significant increase in CI, despite this increased value provided by the software.

Introduction 22

This somewhat unexpected result may be explained by the users’ attention bound to the task

users had to accomplish (Tversky and Kahnemann 1973), leaving the additional functionality

unnoticed. Only in both cases when the feature update was announced before or after

successful implementation, we found a significant increase in users’ CI. In addition, we could

evidence that updates that are delivered with a voluntary strategy do not increase users’ CI.

The diverse findings of this study help to answer the second overarching research questions in

considerable ways. We could differentiate, in which cases a positive update-effect can be

obtained, by identifying update notification, timing, and installation choice as crucial

moderators for the effect. Furthermore, we could show that user responses to updates

fundamentally depend on the update type and the user’s perceptions of the update’s delivery

process, which can be shaped by explicitly designing this experience.

Additional Articles (not included):

Moreover, in addition to the above articles, I co-authored the following study which is not

part of this thesis:

Schneider, D., Lins, S., Grupp, T., Benlian, A., and Sunyaev, A. 2017. “Nudging Users Into

Online Verification: The Case of Carsharing Platforms,” Proceedings of the 38th

International Conference on Information Systems (ICIS), Seoul, South Korea. VHB: A

Effects of Updates and the Role of Update Size and Prior Endowment 23

Chapter 2: Effects of Updates and the Role of

Update Size and Prior Endowment

Title: When Updates Make a User Stick: Software Feature Updates and their

Differential Effects on Users’ Continuance Intentions

Authors: Marvin Fleischmann, Ludwig-Maximilians-Universität München, Germany

Tillmann Grupp, Technische Universität Darmstadt, Germany

Miglena Amirpur, Technische Universität Darmstadt, Germany

Alexander Benlian, Technische Universität Darmstadt, Germany

Thomas Hess, Ludwig-Maximilians-Universität München, Germany

Published in: International Conference on Information Systems (ICIS 2015), Fort Worth,

USA.

Abstract

Although software updates are extensively used to enhance software while already being

used, their impact on users’ post-adoption beliefs and attitudes has received little attention.

Drawing on expectation-confirmation-theory and the IS continuance model, we investigate if

and how feature updates affect users’ continuance intentions (CI) and what role initial feature

endowment and update size play. In an online experiment, we find a positive effect of feature

updates on users’ CI. According to this effect, software vendors can increase users’ CI by

delivering features later, through updates instead of providing them right with the first

release. While this positive effect persists despite a small update size and high initial feature

endowment, the latter diminishes the effect. We also unveil positive disconfirmation of

previous expectations regarding the updated software as crucial mediating mechanism

between feature updates and CI. Implications for research and practice as well as directions

for future research are discussed.

Keywords: Feature updates, continuance intentions, feature endowment, update size,

expectation-confirmation-theory, IS post-adoption theory

Effects of Updates and the Role of Update Size and Prior Endowment 24

2.1 Introduction

In many cases, software vendors nowadays no longer sell their applications as monolithic

packages but instead constantly enhance and extend their products after their first release and

while the software is already in use by their customers. This is a phenomenon that is

particularly prevalent in the field of consumer software such as apps for smartphones and

tablet computers but also applies to desktop computer software and web services. For

example, Microsoft’s Office 365-Suite received 127 updates since its release in June 2011

(Microsoft 2015b). Another example is Facebook. The popular social network received over

ten major software feature enhancements (e.g., keyword search in all posts and read-it-later-

feature) only in 2014 (Facebook 2015). In the case of such ‘agile software’ (Hong et al. 2011),

vendors have to make two strategic decisions regarding the implementation of software

features. First, they have to decide what and how many functionalities the first release of the

software should comprise, i.e., at what stage of development the software should be released.

Second, after this first release, vendors have to decide how to deliver the new features that

result from the ongoing development. Functionality that is delivered after the first release is

usually delivered to users through free ‘feature updates’. These feature updates are no discrete

and standalone programs themselves but are rather integrated into the base software once they

are applied to it (e.g., Dunn 2004). In practice, features are sometimes delivered in individual

updates or in larger update-packages, containing several new features at once.

For vendors of agile software, it is important to understand how their customers perceive

these feature updates. Because they alter software during use, feature updates may impact

users’ post-adoption beliefs and attitudes regarding the software and thus even affect their

intentions to continue using the software (Hong et al. 2011). More specifically, the continued

use of software by users (i.e., customer loyalty) has become an important goal for vendors

because business models in the software industry increasingly rely on recurring revenues from

subscriptions or the sale of ads and therefore a large and active user base. However, despite

this common practice of extending and enhancing software during use and its potential impact

on vendors’ revenues, the effect of feature updates on users’ continuance intentions (CI)

remains largely unexplored. While there is an extensive body of research on software

engineering (Sommerville 2010), software product lines (Clements and Northrop 2002),

software release planning (Svahnberg et al. 2010) and software evolution and maintenance

(Mens and Demeyer 2008), this primarily addresses technical considerations. Post-adoption

research which explores the user’s perspective, on the other hand, often tends to conceptualize

information systems as a monolithic and coarse-grained black box, rather than as modular

Effects of Updates and the Role of Update Size and Prior Endowment 25

composition of specific and finer-grained features which may be altered after the software’s

first release (e.g., Bhattacherjee 2001). Even the few post-adoption studies that do consider

changes in the software’s functionality after its first release do not account for different ways

of delivering features (e.g., the number of features delivered in one update) and a potential

interaction with the initial feature endowment (i.e., a software’s level of functionality at its

first release) (Hong et al. 2011). To address these shortcomings, we will study the impact of

different feature delivery strategies on users’ continuance intentions regarding software in

non-mandatory usage settings (e.g., software use by consumers). Specifically, we address the

following research questions:

RQ1: How and why do feature updates impact users’ continuance intentions regarding

software?

RQ2: How do initial feature endowment and update size affect the potential impact of feature

updates on users’ continuance intentions?

To answer these questions, we conducted a vignette-based online experiment with 261

participants, allowing us to identify and isolate causal evidence of the effect of feature updates

on users’ CI. In doing so, our study contributes to post-adoption research in three considerable

ways. First, we identify a somewhat counter-intuitive, positive effect on user’s CI from a

deferred delivery of software features. Users who receive features through updates during

software use have higher CI than users who have access to all features right from the

beginning of their software usage. This phenomenon seems to be robust to manipulations of

update size (i.e., the number of features delivered in one update) and occurs even under a high

initial feature endowment. However, the positive effect seems to diminish with increasing

initial feature endowment. Second, by disclosing the relative nature of positive

disconfirmation of (subjective) previous expectations regarding the software as the mediating

mechanism behind this positive effect of updates, we find a possible empirical evidence for

reference point dependency in users’ perception of software (Kahneman and Tversky 1979).

Third, we advance the understanding of IS post-adoption behavior by conceptualizing and

exploring information systems as a fine-grained, malleable and dynamic collection of modular

features rather than a monolithic block which is static over time. From a practitioner’s

perspective, our study offers important implications for vendors of consumer software. First,

we describe how vendors might increase their customers’ loyalty by strategically deferring the

delivery of features through the use of software updates. Moreover, if holding back features is

strategically not feasible (e.g., due to competition) our findings also suggest that it still

Effects of Updates and the Role of Update Size and Prior Endowment 26

beneficial to release a software early on and only subsequently roll out additional features,

once they are developed. Our study also suggests that this measure should work with software

that has a low initial feature endowment as well as for more mature and feature-rich software.

Ruling out update size as potential boundary condition to this effect moreover implies that

vendors should deliver feature innovations individually, instead of bundling them in large

update packages.

2.2 Theoretical Foundations

2.2.1 Feature Updates

Consistent with previous research (e.g., Dunn 2004), software updates can be defined as self-

contained modules of software that are provided to the user for free in order to modify or

extend software after it has been rolled out and is already in use. Software updates are no

discrete and stand-alone programs themselves, but rather integrate into the software to which

they are applied. With varying terminology (e.g., update, upgrade, patch, bug fix, or hotfix),

the concept of software updates is repeatedly addressed throughout the software engineering

literature (Sommerville 2010). This includes software release planning, software maintenance

and evolution and software product lines (Shirabad et al. 2001; Svahnberg et al. 2010; Weyns

et al. 2011). In this context, software release planning or strategic release planning refers to

the “idea of selecting the optimum set of features or requirements to deliver in a release

within given constraints” (Svahnberg et al. 2010, p. 1). Following this definition, an update is

the delivery of features after the first release of a software and falls within a vendor’s strategic

considerations regarding when to deliver what type of functionality to the user. Literature on

software evolution and maintenance addresses the later stages in the software lifecycle, where

updates are utilized to adjust software to changing requirements or repair emerging flaws in

the software while it is already in use (Shirabad et al. 2001). In contrast to this rich stream of

technical literature dealing with software updates, research on user’s beliefs and attitudes

regarding updates has so far been very limited (Amirpur et al. 2015). Hong et al. (2011), for

example, explore users’ acceptance of information systems that frequently change through the

addition of new functionality. And while Benlian (2015) examines IT feature repertoires and

their impact on individual task performance, he does not consider changes in these repertoires

through updates. Other studies that investigate updates have often pushed them to the

sidelines, treating them as control variables for studying other phenomena (e.g., Claussen et

al. 2013). Existing IS research has, however, not explored the specific impact of updates on

users’ perceptions of an IS. Specifically, essential system characteristics such as the pre-

Effects of Updates and the Role of Update Size and Prior Endowment 27

update feature endowment of a software or the number of features in one update have so far

not been explored in this context.

For the purpose of this study, we distinguish two basic types of software updates: feature

updates and non-feature updates. Feature updates change the core functionality of the

software to which they are applied. Functionality thereby refers to distinct, discernible

features which are deliberately employed by the user in accomplishing the task or goal for

which he or she uses the software. In contrast to feature updates, technical non-feature

updates do not change the core functionality of software but only correct flaws or change

software properties. Non-feature updates usually do not directly affect the user’s interaction

with the software and are typically not even visible to the user (e.g., improvements in

stability, security or performance) (Popović et al. 2001). Because the core functionality is

frequently utilized for accomplishing the task for which the software is used, a change in the

software induced by feature updates is most often notable for users. If the software’s core

functionality is changed, the user’s interaction with the software may also change. As we will

outline later on, we argue that feature updates thus have the potential to influence users’

beliefs, attitudes, and behaviors regarding the updated software in the postadoption stage of IS

usage. This may even affect their decisions on continued use or discontinuation. Before

further substantiating this claim, we proceed by reviewing research on IS continuance.

2.2.2 Information Systems Continuance

Post-adoption research studies users’ beliefs, attitudes and behaviors after the initial adoption

of an IS (Benlian et al. 2011; Bhattacherjee 2001; Karahanna et al. 1999). One of the main

goals of post-adoption research is the exploration of users’ information system continuance,

which is defined as the “sustained use of an IT by individual users over the long-term after

their initial acceptance” (Bhattacherjee and Barfar 2011, p. 2). To explore users’ continuance

behaviors, Bhattacherjee (2001) adopts expectation confirmation theory (ECT) (Anderson and

Sullivan 1993; Locke 1976; Oliver 1980; Oliver 1993) and proposes a model to explain users’

intentions to continue using an information system as a result of satisfaction (SAT), perceived

usefulness (PU) which are in turn determined by a confirmation or disconfirmation of

previous expectations regarding the software (DISC). Following ECT, the IS continuance

model suggests that users compare their pre-usage expectations of an IS with their perception

of the performance of this IS during actual usage (Bhattacherjee 2001). This comparison of

expectations with usage experiences has also been shown to occur in later stages of use,

where expectations are sequentially updated through ongoing usage experiences Kim and

Effects of Updates and the Role of Update Size and Prior Endowment 28

Malhotra (2005). If perceived performance exceeds expectations, users experience positive

disconfirmation (DISC) which has a positive impact on their satisfaction with the IS. If, on the

other hand, perceived performance falls short of the expectations, negative disconfirmation

occurs and users are dissatisfied with the IS (Bhattacherjee and Barfar 2011). Positive

(negative) disconfirmation thus comprises two essential elements: unexpectedness and a

positive (negative) experience. ECT moreover posits expectations as a relative reference point

or baseline (i.e., not an absolute, objective one) upon which the user makes a comparative

judgment (Oliver 1980). This idea of a subjective, relative reference point is based on

Helson’s (1964) adaptation level theory, which proposes that human beings perceive stimuli

relative to or as a deviation from an ‘adapted level’ or baseline stimulus level. “This adapted

level is determined by the nature of the stimulus, the psychological characteristics of the

individual experiencing that stimulus, and situational context” (Bhattacherjee 2001, p. 354).

While applications of the continuance model have made valuable contributions in exploring

postadoption phenomena, IS researchers often tend to conceptualize the studied information

systems as a monolithic and coarse-grained black box, rather than as collection of specific and

finer-grained features that are alterable after the first release. However, accounting for the

granularity of software would help to explain how users respond to different compositions of

software features and how changes in this composition through e.g., software updates after the

first release might affect users’ beliefs, attitudes, and behaviors regarding an information

system (Benlian 2015). In addition, there are several calls for research from IS scholars who

criticize the negligence of the IT artifact’s role in IS research (Benbasat and Zmud 2003;

Hevner et al. 2004; Orlikowski and Iacono 2001). They advocate for focusing more on

changes in users’ beliefs, attitudes and behaviors, emanating from the IT artifact itself rather

than from other IT unrelated environmental stimuli. By studying the impact of software

updates on users’ continuance intentions, we account for this malleable nature of the IT

artifact and address these calls for research.

2.3 Hypothesis Development

Our study is motivated by the overarching idea that the interplay between initial feature

endowment and post-release update size may impact users’ continuance intentions regarding

an IS. The expectation confirmation mechanism (Oliver 1980) incorporated in the IS

continuance model (Bhattacherjee 2001) serves as theoretical lens through which we will

investigate the roles of feature endowment and update size and develop our hypotheses. When

receiving updates during use of an IS, ECT implies that users’ continuance intentions

Effects of Updates and the Role of Update Size and Prior Endowment 29

crucially depend on a comparison between pre-update expectations and post-update

experiences with the IS. Specifically, we theorize (1) how a deferred delivery of features

through updates can increase users’ continuance intentions, how this might be affected by (2)

initial (pre-update) feature endowment and (3) the number of features delivered in a post-

release update (i.e., update size). We also hypothesize how this proposed effect is mediated

through a chain of relations, initiated by a positive disconfirmation of previous expectations

(4).

As highlighted in the introduction, when considering software as a flexible combination of

modular functionalities, a vendor of an agile information system has to balance two crucial

design parameters and their reciprocal interaction: (1) the initial set of features (hereafter

called feature endowment) of a software at the time of its first release and (2) the set of

features which is added to the software through updates after its first release (hereafter called

update size). We investigate how a given set of features can be balanced between the initial

release of a software and the later delivery through updates and how this design choice affects

users’ continuance intentions regarding the software. The settings which we investigate are

widely used in practice (and promise interesting theoretical insights). They comprise (1) a low

initial feature endowment and large update size, (2) a high initial feature endowment and a

small update size and (3) a low initial feature endowment and a small update size.

Our theorizing about the differential allocation of features between the initial release and the

later delivery requires the assumption that each feature provides an equal value to the user.

This is necessary, because features with different levels of importance could interfere with our

attempts to conceptually isolate the effects of different feature allocations between initial

release and later update on users’ CI. While being restrictive, this is a necessary assumption

for identifying the proposed causal effects. In addition, we assume that the number of planned

features for a certain time period is predetermined. This time period may vary depending on

the planning period of a vendor in which release decisions are taken. Moreover, because we

investigate users’ perceptions during usage, we focus on feature updates with explicit user

notification and neglect silent, background updates which are unnoticed by the user. Lastly,

we will focus on updates for consumer software applications with an unobtrusive update

process (in contrast to e.g., some desktop operating system updates processes where system

usage may be severely disturbed by updates).

Effects of Updates and the Role of Update Size and Prior Endowment 30

2.3.1 The Effect of Feature Updates on Users’ Continuance Intentions

We argue that feature updates, which provide additional functionality that directly serves

users in accomplishing their IS-based tasks, will be perceived as a positive experience with

the software. Furthermore, it is reasonable to assume that feature updates are usually not

anticipated by users and are thus unexpected experiences with the software. According to

ECT, if feature updates are perceived as unexpected and positive experiences during usage,

they should consequently induce perceived positive disconfirmation (Anderson and Sullivan

1993). Following the IS continuance model (Bhattacherjee 2001), it is plausible to assume

that this perceived positive disconfirmation during software use will increase users’ CI

regarding the updated software. We will further elaborate on these arguments below.

In the context of software features, ECT also implies that positive disconfirmation from a

feature update results from a relative change in functionality compared to the user’s

subjective reference point (i.e., the pre-update configuration of the software) rather than an

absolute change (Helson 1964; Oliver 1980). A software vendor should thus be able to induce

positive disconfirmation and therefore increase the user’s CI by applying the strategy of

simply holding back features (functionality) in the first release of the software and delivering

this functionality only later on, through feature updates (Sen and Morwitz 1996). Under this

deferred feature delivery strategy, a feature-complete software package can be designed and

developed by the software vendor, but certain features might be removed from the initially

shipped version of the software. The user is usually unaware of the existence of these

remaining features. Once they are delivered through an update, they likely elicit positive

disconfirmation because the user may perceive them as a ‘gift’ from the vendor. Consistent

with the IS continuance model, this could then lead to an increase in CI (Bhattacherjee and

Barfar 2011). This deferred feature delivery strategy is thus to be distinguished from an all-at-

once feature delivery strategy under which all developed features are delivered in the first

release. Nonetheless, both feature delivery strategies are assumed to comprise the same type

and number of features overall.

Regarding our assumptions about feature updates, we acknowledge that in practice, there

might be cases, where feature updates are perceived negatively by users. For example, if

features are intentionally removed (e.g., because of expired licensing deals), software

functionality is unintentionally impaired or if updates bring major changes to the software

which necessitates users to learn and adjust (Polites and Karahanna 2012; Mukherjee and

Hoyer 2001). Nevertheless, we argue that in most cases, feature updates are intended to

Effects of Updates and the Role of Update Size and Prior Endowment 31

enhance the software with regard to its core purpose and are thus perceived positively (Larsen

et al. 2009). Furthermore, it is reasonable to assume that users perceive updates as unexpected

events during usage. In many cases, updates are not announced beforehand and even if

software vendors announce release plans about future updates, most end-users (and

consumers in particular) likely do not follow them in detail. Moreover, if a feature is delivered

through an update, it may ‘stick out’ more than if it is included in the first release where it is

one among many other features. The positive perception of this feature received through an

update and its effect on CI may thus be increased even further. To summarize, because of the

nature of the disconfirmation mechanism in ECT, which operates through an evaluation of

relative instead of absolute change (Oliver 1980), users who receive functionality through

feature updates will likely have a higher intention to continue using a software than users who

received all these features right with the first release. Accordingly, we propose our first

hypothesis:

H1: Software that receives functionality through feature updates induces a higher

continuance intention compared to software that includes all this functionality right with the

first release.

2.3.2 The Role of Initial Feature Endowment

As discussed before, vendors of agile software can decide what features to include in the first

release and what features to deliver only later on, after the first release. Thus, in the first

release, different levels of feature endowment are possible. A vendor might decide for a small

initial feature set or for a more comprehensive set of features. In both cases, additional

features may be added to the software through updates after its first release. Then, the

possibility arises that the previously proposed positive effect of feature updates on users’

continuance intentions might only occur under a low initial feature endowment and that it

might disappear under high initial feature endowment. One reason for this that the addition of

one feature to an already well-endowed software might be perceived as negligible by users.

As implied by ECT, the positive effect of feature updates on users’ continuance intentions

requires—in addition to unexpectedness—a positive experience (Oliver 1980). In the context

of software features, this experience is positive when it exceeds previous expectations

regarding the functional capabilities of the information system (i.e., the subjective reference

point) (Helson 1964). Users form this subjective reference point based on their overall pre-

update experience with the software. We acknowledge that competing software could serve as

objective reference for user’s evaluations of feature endowment. However, in practice,

Effects of Updates and the Role of Update Size and Prior Endowment 32

competing software is usually sufficiently differentiated with regard to functionality (i.e., does

not have identical functionality) to prohibit a direct and objective comparison of feature

endowment. Moreover, users (and consumers in particular) likely do not know about each

individual feature that is available in every other software product on the market.

Furthermore, feature updates usually provide functionalities which are unique and serve a

distinct purpose, making them different from any other feature that is already included in the

initial release of the software. Because disconfirmation is based on a relative comparison of

the pre-update and post-update state of the software, any feature update that improves the

functional capabilities of the software will likely induce positive disconfirmation—

independent from the factual feature endowment of the software in its pre-update state

(Anderson and Sullivan 1993). We thus suggest that even if software has a high initial feature

endowment and receives a feature update, users’ CI will nonetheless increase compared to

software that provides all these features right with the first release. To summarize, from the

perspective of an objective evaluation one might expect a different outcome, but the outlined

theory suggests that the positive effect from a deferred delivery of features through updates

persists despite a high initial feature endowment. We argue that this is the result of the

interplay between users’ subjective evaluations of feature endowment, the relative nature of

the ECT mechanism and the functional uniqueness of features. We thus hypothesize:

H2: The higher continuance intention induced by feature updates is independent of the initial

feature endowment of the software.

2.3.3 The Role of Update Size

From an objective point of view, one might also expect users to value larger update packages

that comprise many features (i.e., large update size) more than smaller update packages which

contain only a few features (i.e., small update size). However, as stated above, ECT implies

that positive disconfirmation depends on a relative change in functionality compared to the

user’s reference point rather than on an absolute change (Helson 1964; Oliver 1980). In the

ECT mechanism, this subjective evaluation does not only comprise the pre-update state of the

software which forms the baseline for the comparison (i.e., the reference point) but also the

post-update state of the software and the evaluation of the feature update itself (Oliver 1980).

We thus argue that while users will likely perceive a feature update as a ‘free gift’ from the

vendor, they are not likely to evaluate the magnitude of its functional value objectively.

Because users do usually not expect an update and have no objective comparison regarding

the comprised features, any update—irrespective of the number of contained features—will

Effects of Updates and the Role of Update Size and Prior Endowment 33

likely induce the positive effect as suggested in hypothesis 1. Moreover, we argue that an

objective evaluation of an update through the comparison with similar, competing software as

discussed in hypothesis 2 is even less likely to occur in practice. This is, because competing

software differs even more with regard to the timeframes and extent of feature delivery

through updates than it does with regard to initial feature endowment. Therefore, we argue

that it is likely that users will not be able to acknowledge the distinction between large and

small update sizes. We suggest that the magnitude of the effect of disconfirmation should thus

not depend on update size. To sum up, it is reasonable to assume that the number of features

in an update is likely to be neglected when users’ continuance intentions are formed after an

update. We thus hypothesize:

H3: The higher continuance intention induced by feature updates is independent of the update

size.

2.3.4 The Mediating Effect of Disconfirmation

As outlined before, we suggest that feature updates work through a disconfirmation of

previous expectations regarding the software (Oliver 1980; Anderson and Sullivan 1993). In

terms of the continuance model, disconfirmation should thus mediate the effect of feature

updates on continuance intentions (Bhattacherjee 2001). The IS continuance model further

posits that this disconfirmation in turn impacts perceived usefulness and satisfaction of an

information system (Bhattacherjee and Barfar 2011). Both, satisfaction and perceived

usefulness will furthermore drive users’ intentions to continue using an updated IS. We

therefore argue that the higher levels of CI regarding software that receives functionality

through feature updates compared to software that includes all features right with the first

release, will likely be the result of the mediating effect of DISC and in turn affect the

downstream variables of the IS continuance model (i.e., perceived usefulness and

satisfaction). We thus hypothesize:

H4: The positive effect of feature updates on continuance intentions is mediated by

disconfirmation of initial expectations regarding the software.

2.4 Method

2.4.1 Experimental Design

To examine the effect of feature updates on users’ CI and the roles of initial feature

endowment and update size as suggested by our hypotheses, we conducted a vignette-based

online experiment with manipulations of update size (small vs. large) and initial feature

Effects of Updates and the Role of Update Size and Prior Endowment 34

endowment (low vs. high). Additionally, we controlled for the user’s construal level.

Construal level is an individual’s mental mode of decision making and has been shown to

crucially influence decisions depending on the subject matter’s perceived levels of abstraction

and detail (Trope and Liberman 2003). According to construal level theory, individuals with

high construal levels think more abstractly, focus on bigger picture concerns and show less

myopia by pursuing long term goals compared to individuals with low construal levels. These

individuals are more focused on short term interests and are subject to myopia (Fujita et al.

2006; Mehta et al. 2014; Wan and Agrawal 2011). We deliberately controlled for these

different ways in thinking because we sought to show that our hypothesized negligence of

initial feature endowment (H2) and update size (H3) even holds true for these two modes of

thinking which seem likely to affect the perception of different allocations of features (i.e.,

software capabilities) between initial release and later updates. Specifically, individuals with

high construal levels and long term orientations might favor software that receives features

through updates over its usage cycle. A short term orientation from low construal levels, on

the other hand, might lead to a preference of high initial feature endowments because this

might satisfy short term goals.

To account for the different, feasible delivery strategies for a given set of features as proposed

in our hypotheses, we defined one control group and three incomplete factorials. The groups

had (A) all features right with the first release and no updates (control), (B) low initial feature

endowment and large update size, (C) high initial feature endowment and small update size,

(D) low initial feature endowment and small update size. For each of these groups, construal

level (low vs. high) was additionally manipulated though textual vignette treatments. The

used software and the task for which the software had to be used were deliberately held

constant across all conditions. Overall, this lead to the 4x2 between-subjects design depicted

in Figure 2-1. Subjects were randomly assigned to one of the eight groups. We realized the

manipulations of feature endowment, update size and construal level by presenting

participants with carefully constructed textual scenarios (vignettes) that precisely described a

person (user), task and software characteristics (vignette setting), software usage and a

conditional update during usage (vignette usage) (see Figure 2-1). The experimental vignette

methodology (EVM) (e.g., Aguinis and Bradley 2014) was used because it provided us with

the possibility to control for the user’s construal level, avoid social desirability bias and

eliminate undesired learning effects of participants. Even though this method comes with

some downsides such as simplifications and constructed hypothetical usage scenarios, it also

enabled us to isolate and precisely manipulate the dependent variables while nevertheless

Effects of Updates and the Role of Update Size and Prior Endowment 35

accurately identifying the hypothesized causal relationships. Compared to a laboratory

experiment that e.g., uses simplified prototype software as a treatment, we favored vignettes

to achieve a high external validity by being able to design a realistic scenario. Researchers in

IS and other disciplines have repeatedly shown that individuals respond quite similarly

whether they are presented with a hypothetical situation using vignettes or a hypothetical

situation in a traditional laboratory experiment. Therefore a scenario based manipulation can

be assumed to work appropriately if constructed carefully (De Cremer et al. 2007; Dennis et

al. 2012; Rahman 1996; Shaw et al. 2003). This makes the method suitable for our needs.

Figure 2-1: Experimental Procedure

The experiment proceeded in four major steps: First, upon arrival at the website, subjects

were told to read instructions carefully and to answer questions to the best of their knowledge,

followed by questions about subjects’ motivation to process information. Second, subjects

were randomly assigned to one of the eight experimental groups and then presented with the

corresponding vignettes (see Figure 2-1). We instructed subjects to carefully read the

vignettes and put themselves in the hypothetical setting described in the scenario, before

answering the subsequent questions. The vignettes described a user in a high or low construal

state of mind (person), a travel booking task (task) and a travel booking platform (TBP)

including its initial feature endowment depending on the experimental condition (software).

Third, on the next page, subjects were presented with part two of the vignette. This part

described how the person in the scenario uses the TBP to accomplish his task. Halfway

through the usage time, the availability of new functionality through an update was described

according to the respective experimental condition (not applicable for the control group).

After the update, this part of the vignette ended with further description of TBP usage up until

the task was completed. Finally, a post-experimental survey on the following pages asked

Effects of Updates and the Role of Update Size and Prior Endowment 36

subjects to respond to questions measuring their evaluation of the CI of the person described

in the scenario with regard to the TBP and all further variables (see Measures). On the last

page of the survey, subjects were debriefed and thanked for their participation.

2.4.2 Manipulation of Independent Variables

Regarding the described software, for our experiment we opted for an online travel booking

platform because we wanted to ensure that subjects had previous usage experience and would

thus understand the outlined scenario quickly and well. Moreover, we had the goal that the

findings regarding updates which we obtained from this exemplarily setting could be

generalized across a wide range of software types. The choice of an online service (i.e., the

travel booking platform) allowed us to isolate the effect of receiving features through updates

from other intervening factors such as waiting times or technical difficulties during the

installation of updates which might occur on e.g., desktop computers (Sykes 2011; Tyre and

Orlikowski 1994). These may have traditionally been issues associated with updates.

However, we argue that such technical downsides of software updates have been reduced over

time and have mostly disappeared in online services (e.g., Facebook), platforms for mobile

devices (e.g., Apple iOS) and modern desktop operating systems (e.g., Microsoft Windows

10) where updates are now mostly unobtrusive and frictionless. We are thus confident that

with the described travel booking platform, we can derive viable implications that are

generalizable across a large part of the modern software market.

The specific task was booking a two-week vacation including flight and hotel with a limited

monetary budget and further constraints which fostered the use of the individual features on

the TBP. The person described in the scenario was a student called ‘Tom’ and the travel

booking task was chosen to be typical for a student. To construct the different stimuli with

respect to update size and initial feature endowment, we identified features of a TBP that

satisfied three criteria: 1) they needed to be self-explanatory, 2) they had to be perceived as

useful for the task by participants, 3) when absent, the TBP still needed to be functional and

the general task—while being more difficult—could still be accomplished. Through

interviews and research, we compiled 22 features that meet these criteria. The importance of

each feature was evaluated in a pre-study
4
. Eventually, seven features were identified as

4 20 subjects participated in the pre-study. They resembled the demographics of the main study and rated 22

identified TBP features with regard to perceived importance on seven-point-Likert scales. Seven features with

similar but high levels of importance were selected for the main study. Holding the importance of features

constant within and across treatments allowed us to isolate the effects of initial feature endowment and

Effects of Updates and the Role of Update Size and Prior Endowment 37

appropriate and relevant to establish the different update and endowment stimuli. The features

were: rating an accommodation with stars (5 levels); viewing the average rating; filtering for

price, rating etc.; sorting for price, rating etc.; calendar functionality to plan arrival,

departure and duration of stay; viewing professional holiday reviews; a budget calculator to

find and plan fixed budget vacations. To implement our required assumption regarding an

equal value of the employed features (which we raised in our hypotheses), we deliberately

defined the task in a way so that it could—in principle—be accomplished without using any

of the manipulated features. Nonetheless, each feature made the accomplishment of one part

of the task or a specific constraint easier for ‘Tom’, thus providing approximately equal

benefits. The vignettes specifically described the usage of each available feature in each

condition in order to highlight the benefit of each feature. Regarding the assignment to initial

endowment and later update, the order of the seven features was random (as listed above) but

held constant across the experimental groups. Group A had all seven features right from the

beginning; group B had one feature right from the beginning (rating an accommodation with

stars) and the remaining six features were added through an update; group C had the first six

features right from the beginning and one feature was added through an update (budget

calculator to find and plan fixed budget vacations) and group D had one feature right from the

beginning (rating an accommodation with stars) and one feature was added through an update

(viewing the average rating). Figure 2-1 depicts this assignment of features.

To operationalize the manipulation, we constructed textual scenarios and presented them to

participants in an online based questionnaire that comprised several consecutive pages. On a

first page, we described Tom and his personality. For a high construal level mindset, we

described Tom as a person ‘who is considering the big picture for making decisions’, ‘who

establishes an overview on superior goals’, ‘who makes gut decisions and focuses on

essentials’, for a low construal level mindset we described Tom as a person ‘who wants to

consider all details before deciding’, ‘who establishes a broad information basis to consider

all facets of a problem’, ‘who wants to decide rational and therefore focuses on details’.

Subsequently, we introduced a task of finding a cheap 2-week vacation to Madrid, Spain, with

a price limit of 800 Euros, full board, clean restrooms and, among other things, a modern

ambience. Third, the software and its initial feature endowment were described as follows:

‘To find a suitable flight and hotel, he [Tom] uses the TBP Journey4You. In addition to the

update size on the dependent variables and avoid potential confounding effects that might result from
variations in the importance of features.

Effects of Updates and the Role of Update Size and Prior Endowment 38

simple search for flights and hotels, the platform offers the following functionalities:’

followed by the abovementioned features. On the second page—part two of the vignette—we

first described Tom’s repeated visits of the TBP over several days to find a suitable flight and

hotel including the usage of the currently available features. For the three groups which

received an update, we subsequently included a section that introduced the update after Tom

revisits the TBP one day (halfway through the described usage time) ‘… the website

Journey4You shows a message that Journey4You offers new functionality to its users:’

followed by a list of one or six of the features. After this conditional section describing the

update, a description of further usage including the use of the new features (only in the update

conditions) followed (see Figure 2-1): ‘Tom uses the new function in addition to available

functionality […]. Finally, Tom locates the most attractive offer and books his journey’.

Except for the manipulated text passages, all other parts of the scenario were kept constant

across the groups. After this second page, participants started to answer the questionnaire.

Participants could only proceed to the next page when all questions were answered and

returning to previous pages, including the vignettes, was not possible. Following common

vignette procedures (Aguinis and Bradley 2014), we ensured that our vignettes illustrated

realistic situations and that participants identified well with the character described by

conducting several revision cycles based on qualitative interviews. Furthermore, the so

designed vignettes were tested in a pilot study with ten subjects to ensure that our treatments

were manipulated according to the experimental design (Perdue and Summers 1986).

Specifically, subjects of the pilot study were asked about the comprehensiveness of the

instructions, the vignettes’ realism and their ability to put themselves in the hypothetical

scenario as well as the clarity of questions in the subsequent questionnaire. Feedback and

suggestions were obtained from participants and the vignettes and the questionnaire were

accordingly revised for the main experiment.

2.4.3 Measures

Dependent Variables

For the questionnaire that succeeded our vignettes, we used validated scales to measure

dependent variables with slight changes in wording to adapt the items to our experimental

setting. Unless stated otherwise all items were measured on seven-point-Likert scales

anchored at 1 = strongly disagree and 7 = strongly agree. CI was measured with items adapted

from (Hong et al. 2011): CI1. Tom intends to continue using the TBP rather than discontinue

its use; CI2. Tom’s intentions are to continue using the TBP than use any alternative means;

DISC was based on items adapted from Bhattacherjee (2001): DISC1. Tom’s experience with

Effects of Updates and the Role of Update Size and Prior Endowment 39

using the TBP were better than what he expected; DISC2. The service level provided by the

TBP was better than what Tom expected; DISC3. Overall, most of Tom’s expectations from

using the TBP were confirmed; While we did not explicitly hypothesize about SAT and PU,

we also included these variables in our measurement, to capture the entire continuance model.

PU and SAT were measured with items from Kim and Son (2009): PU1. Using the TBP

enhances Tom’s effectiveness; PU2. Using the TBP increases Tom’s productivity; PU3. Using

the TBP improves Tom’s performance; SAT1. Tom is content with the features provided by

the TBP; SAT2. Tom is satisfied with the features provided by the TBP; SAT3. What Tom

gets from using the TBP meets what he expects for this type of software.

Control Variables and Manipulation Check

In our study, we controlled for subjects’ expertise with regard to TBPs with an established

four item, seven-point semantic differential scale with the items know very little about/know

very much about, inexperienced/experienced, uniformed/informed, novice buyer/expert buyer

(Mishra et al. 1993). Furthermore, we also captured participants’ motivation to process

information with one item to control for motivational influences on response behavior (Suri

and Monroe 2003). Additionally, in the post experimental survey, we measured (1) subjects’

level of understanding of the scenario, (2) the scenario’s realism, (3) subjects’ ability to put

themselves in the hypothetical setting described in the scenario, (4) subjects’ level of

understanding of the instructions and questionnaire items. We further collected the

participants’ age, gender, education and profession to control for a homogeneous distribution

of participants across groups with regard to these core demographics.

2.4.4 Participants, Incentives and Procedures

The outlined online experiment was conducted between November 2014 and January 2015. In

line with best-practices of augmented number and diversity of participants for vignette studies

(Aguinis and Bradley 2014), we invited subjects to participate in an online survey about

software usage by consumers through several postings in social networks, via word-of-mouth

and emails. Overall, 386 subjects started the experiment. The rate of completion was 74%,

i.e., a total number of 285 subjects completed the questionnaire. 24 participants were excluded

from our final analysis because they either did not answer control questions correctly or

completed the experiment in less than five minutes (the average time to completion was about

ten minutes). Of the 261 remaining participants that were used in the following analysis, 107

were females and 153 were males (one not specified). Subjects’ average age was 28.47

(SD=9.08) years. On average, 78% of the subjects used TBPs less than one hour per month,

Effects of Updates and the Role of Update Size and Prior Endowment 40

20% one to five hours and 2% more than five hours per month. The average reported

expertise with a TBP was 4.26 (SD=1.63) on a seven-point semantic differential scale. 48% of

subjects were students, 29% employees, 8% self-employed and the remainder had various

occupations.

2.5 Data Analysis and Results

2.5.1 Control Variables and Manipulation Check

To confirm a successful randomization of participants to the different experimental

conditions, we searched for differences between groups with regard to the collected control

variables by performing a one-way MANOVA. The results showed no significant differences

between groups λ = 0.90, F[33,717]= 0.78, p>0.1. Neither control variable showed significant

differences: age (F=0.72, df=3, p>0.1), gender (F=1.40, df=3, p>0.1), occupation (F=1.38,

df=3, p>0.1), usage intensity (F=0.54, df=3, p>0.1), product expertise (F=0.91, df=3, p>0.1),

motivation to process information (F=1.21, df=3, p>0.1), understanding of story (F=0.24,

df=3, p>0.1), story’s realism (F=1.31, df=3, p>0.1), ability to put oneself in the scenario

(F=0.14, df=3, p>0.1), understanding questions (F=0.23, df=3, p>0.1) and instructions

(F=0.17, df=3, p>0.1). Hence, we conclude that subjects were distributed homogenously

across our experimental groups. As indicators for the external validity of our findings, we

reviewed the participants’ answers regarding their understanding, realism and adaption of the

vignettes. For all three measures, the participants reported high levels on the seven-point-

Likert-scales: understanding (M=6.32; SD=1.00), realism (M=5.84; SD=1.31) and adaption

(M=5.77; SD=1.36). Moreover, in qualitative open text questions we observed that subjects

described Tom’s instead of their own feelings and thoughts. It is therefore reasonable to

assume that our experimental manipulations using textual vignettes worked as intended and

that participants thought and acted like the fictitious character. To control for potential

differences in the effect of updates on CI from different construal levels, we ran two one-way

ANOVA tests. We assessed whether there were any differences in CI between high and low

construal conditions across the control group and three update groups. The results indicated

no significant differences for CI in the control group (F=1.16, df=1, p>0.1) and all three

update groups (F=0.06, df=1, p>0.1). We may therefore conclude that construal level did not

interact with the effect of feature updates on CI. In our subsequent analysis we thus combined

participants who received high and low construal level treatments.

Effects of Updates and the Role of Update Size and Prior Endowment 41

2.5.2 Measurement Validation

Because we adopted established constructs for our measurement, confirmatory factor analysis

(CFA) was conducted to test the instruments’ convergent and discriminant validity (Levine

2005). Table 2-1: Results of Confirmatory Factor Analysis for Core Variables reports the

CFA results regarding convergent validity using SmartPLS 3.0 (Chin et al. 2003; Ringle et al.

2014).

Table 2-1: Results of Confirmatory Factor Analysis for Core Variables

Latent Construct Items Range of std.

Factor

Loadings*

Cronbach’s

alpha

Composite

Reliability

(ρc)

Average

Variance

Extracted

Continuance intention

(CI)

2 0.925 - 0.929 0.836 0.924 0.859

Disconfirmation (DISC) 3 0.779 - 0.879 0.793 0.879 0.708

Perceived Usefulness

(PU)

3 0.783 - 0.870 0.796 0.879 0.709

Satisfaction (SAT) 3 0.772 - 0.920 0.840 0.905 0.761

* All factor loadings are significant at the p<0.01 level

Constructs were assessed for reliability using Cronbach’s alpha (Cronbach 1951). Values

above 0.70 are considered to provide adequate reliability (Nunnally 1994). The alphas for all

constructs were well above 0.7. Moreover, the composite reliability of all constructs exceeded

0.70, which is considered the minimum threshold (Hair et al. 2011). Values for AVEs for each

construct ranged from 0.708 to 0.859, exceeding the variance due to measurement error for

that construct (that is, AVE exceeded 0.50). Moreover, we examined cross correlations (see

Table 2-2: Means, Standard Deviations and Correlation Matrix for Core Variables). All

square roots of AVE exceeded inter-construct correlations, providing strong evidence of

discriminant validity. Hence, the constructs in our study represent concepts that are both

theoretically and empirically distinguishable. After ensuring the validity of our measured

constructs, summated scales based on the average scores of the multi-items were used to

calculate the constructs for our later analysis (Zhu et al. 2012).

Effects of Updates and the Role of Update Size and Prior Endowment 42

Table 2-2: Means, Standard Deviations and Correlation Matrix for Core Variables

Latent Construct M SD 1 2 3 4

(1) Continuance intention

(CI)

5.644 1.183 0.927

(2) Disconfirmation

(DISC)

5.450 1.028 0.458*** 0.841

(3) Perceived Usefulness

(PU)

5.393 1.159 0.484*** 0.549*** 0.842

(4) Satisfaction (SAT) 5.865 0.973 0.478*** 0.654*** 0.608*** 0.872

Note: Bolded diagonal elements are the square root of AVE. These values should exceed

inter-construct correlations (off-diagonal elements) for adequate discriminant validity;

***p<0.01, **p<0.05, *p<0.1.

2.5.3 Hypotheses Testing

In order to test our hypotheses H1 - H3, we conducted a one-way ANOVA with planned

contrast tests using IBM SPSS Statistics 22. A significant effect of feature updates on CI was

found (F=8.362, p<0.01). Post hoc contrast analysis revealed that participants in all three

update groups (B, C and D) showed significant higher levels of CI compared to the control

group (see Figure 2-2).

Note: ***p<0.01, **p<0.05, *p<0.1 (one-sided); ANOVA-test with planned contrast analysis

Figure 2-2: Average Continuance Intentions, Mean Differences and Significance Levels

Effects of Updates and the Role of Update Size and Prior Endowment 43

In hypothesis H1, we argued that software that receives additional functionality via feature

updates will induce higher CI compared to software that includes all these features right with

the first release. The results from our experiment indicate that participants’ CI in group B (one

initial feature, update adds six features) was on average significantly higher (+0.77) than in

group A (seven initial features, no updates). Hence, H1 is supported. Hypothesis H2 posits

that this effect would persist, regardless of the initial feature endowment. As hypothesized,

our results showed that participants’ CI in group C (six initial features, update adds one

feature) was on average significantly higher than in group A (+0.54). Furthermore, H2 implies

that the increase in user’s CI should not be lower when an update is applied to software with

high initial feature endowment (compared to software with low initial feature endowment).

However, the results from our experiment indicated that this idea is not supported, since

subject’s CI in group C was on average significantly lower (-0.40) than in group D (one initial

feature, update adds one feature). H2 is thus only supported partly. A discussion of this

finding follows in the next section. In hypothesis H3 we proposed that the positive effect of

feature updates on user’s CI (compared to software that includes all these features right from

the first release) persists regardless of the update size. Supporting this hypothesis, our results

showed that subject’s CI in group D was on average significantly higher (+0.94) than in the

control group A. Moreover, hypothesis H3 also implies that the increase in user’s CI should

not be higher for a feature update with large size compared to a small update size. Since

subject’s CI in group D (one initial feature, update adds on feature) was not significantly

different than in group B (one initial feature, update adds six features), we conclude that H3 is

fully supported.

Finally, to evaluate the explanatory mechanism behind the impact of feature updates on CI,

we conducted a mediation analysis using partial least squares structural equation modeling

with SmartPLS 3.0 with the bootstrapping resampling procedure (Ringle et al. 2014). In line

with previous post-adoption continuance studies (Bhattacherjee 2001; Bhattacherjee and

Premkumar 2004; Kim and Son 2009; Ortiz de Guinea and Webster 2013), a component

based structural equation modeling approach using SmartPLS was preferred over a

covariance-based one because it does not impose sample size restrictions or require

multivariate normality distributions of the underlying data. A complete bootstrapping with

10,000 samples was conducted, bias-correction was enabled and test type was set to two

tailed. The validation of the employed reflective measurement model is reported in Tables 2-1

and 2-2 (Chin et al. 2003). Following hypothesis H4, we included our experimental treatment

Effects of Updates and the Role of Update Size and Prior Endowment 44

(no update vs. feature update) as dichotomous independent variable and driver of DISC in the

continuance model (Bhattacherjee 2001) (see Figure 2-3).

Figure 2-3: Feature Updates Disconfirming prior Expectations Regarding Software

Following Hair et al. (2014), our analysis revealed significant paths between all core variables

of the continuance model (Bhattacherjee 2001). Overall, the continuance model was strongly

supported and explained about 28% of the variance in continuance intention (R²=0.282).

Moreover, the positive and highly significant path from feature update to DISC (β = 0.17,

p<0.01), supports our hypothesis H4 which suggested that the positive effect from feature

updates on CI is partially carried over by DISC to the downstream factors of the IS

continuance model to affect CI. In order to further examine the mediation by disconfirmation,

additional models were tested by including direct links from feature update to continuance

intention (Venkatesh 2000). The effect of feature update on continuance intention was

partially mediated by disconfirmation (and the subsequent variables perceived ease of use and

satisfaction) (Hair 2014).

2.6 Discussion

This study sought to achieve three main objectives: (1) examine the effects of feature updates

on users’ intentions to continue using an information system (i.e., whether there is a

discernible effect from updates), (2) to investigate two possible boundary conditions (i.e.,

when there is an effect from updates and when not), namely, update size and initial feature

endowment and (3) to unravel the explanatory mechanism through which such an effect

occurs (i.e., how and why such an effect from updates occurs). To achieve these objectives,

we drew on the IS continuance model that is embedded in the Expectation-Confirmation

theory and investigated our hypotheses based on a vignette-based online experiment.

Effects of Updates and the Role of Update Size and Prior Endowment 45

Drawing on the advantages of the experimental method, which allows to isolate the effects of

manipulated stimuli on user responses from other confounding variables to unveil causal

relationships, we found that CI was rated significantly higher in all update-conditions (groups

B, C and D) than in the non-update condition (A). This increase in CI can be interpreted as a

somewhat counter-intuitive finding because in the groups in which features were delivered via

updates only halfway through the described time span, users had access to less functionality to

accomplish their task compared to the user who had all features right at the beginning: They

had to use the software prior to the update with less features. In particular in group D, even

after the update, the user had in sum fewer features to accomplish his task compared to group

A. Despite this objective disadvantage, participants in all update groups, including D,

indicated significantly higher scores in CI. This suggests the presence of a positive, somewhat

non-rational user response to feature updates and challenges the idea of a ‘rational user’ in the

IS continuance literature (Bhattacherjee and Barfar 2011; Ortiz de Guinea and Markus 2009;

Ortiz de Guinea and Webster 2013).

Moreover, our experiment revealed that update size does not seem to constitute a boundary

condition to this positive effect of feature updates on users’ CI (groups B and D did not differ

significantly). However, contrary to our hypothesis and to what the continuance model and

the underlying ECT mechanism would suggest regarding the subjective and relative

evaluation of feature endowment and updates, groups C and D differed significantly with

regard to CI. Feature endowment therefore appears to moderate the effect of feature updates

on CI. While this finding partly contradicts our second hypothesis, the observed effect may be

explained by the concept of diminishing sensitivity (Tversky and Kahneman 1992). This

concept suggests that the characteristics of a product to which a new feature is added

determine the impact of this feature on e.g., the sales of the product. Specifically, a feature

that is added to a relatively superior product increases the overall perceived value of the

product less than the same feature that is added to a relatively inferior product (Nowlis and

Simonson 1996). Nonetheless, we suggest further research to substantiate our interpretation of

this finding. Additionally, we could demonstrate that the positive effect of feature updates on

CI was mediated by a serial effect chain of relations that originates in a positive

disconfirmation of previous expectations (DISC). This emphasizes the relative nature of

users’ evaluations of changes in software features and validates the IS continuance model for

IS that are conceived as a dynamic collection of features rather than one monolithic and static

block. These changes in beliefs and attitudes over time which are induced by changes in the

IT artifact may be explained by sequential belief updating (Kim 2009; Maier et al. 2015).

Effects of Updates and the Role of Update Size and Prior Endowment 46

Lastly, our experiment revealed that these findings even persist under different user’s

construal levels, which are modes of thinking that seemed likely to affect the perception of the

allocation of features between initial release and later updates.

2.6.1 Implications for Research

This study makes three contributions to literature. First, our main contribution lies in the

detection of a positive user reaction to feature updates. Specifically, delivering software

functionality through feature updates has a stronger and more positive impact on IS users’ CI

than providing the entire feature set at once and right with the first release. We reveal that

users evaluate software functionality not objectively and that evaluations of feature updates

are based on relative comparisons to a subjective baseline of functionality. While this effect

persists despite a high initial feature endowment, its magnitude diminishes with increasing

endowment. This diminishing sensitivity to new features is consistent with findings from

psychology and marketing research (Nowlis and Simonson 1996) and should be considered

when studying users’ perceptions of software features. With regard to update size, we find

that the positive effect of feature updates is independent from different update sizes. This

implies that users do not assess changes in an information system through updates objectively.

Moreover, in our study we could empirically demonstrate that the observed effects even

withstand different construal levels, a crucial user characteristic with respect to preferences of

initial over later benefits. The lack of a significant influence of construal level further

substantiates the robustness of our findings. Our second contribution lies in shedding light on

the explanatory mechanism behind the identified positive effect of feature updates on CI. In

particular, we find that this positive effect is mediated by a serial chain of relations which

originates in the positive disconfirmation of previous expectations. This finding highlights the

subjective and relative nature of users’ perceptions of IS changes which lead to somewhat

non-rational responses (Fleischmann et al. 2014). These results may also be interpreted as a

possible empirical evidence for reference point dependency in users’ perception of software

(Kahneman and Tversky 1979) and deserve further research. Our third and overarching

contribution lies in the extension of the predominant view of information systems in the post-

adoption literature from a mostly monolithic one to a finer-grained and dynamic perspective

by showing how modular features can be strategically combined by vendors and that the

specific composition of features and their changes over time can influence users’ beliefs and

attitudes regarding a software. In doing so, we answer calls of several IS scholars (e.g.,

Benbasat and Barki 2007; Jasperson et al. 2005) to consider the granularity of information

systems in IS research. Our study thus offers a complement to the existing IS post-adoption

Effects of Updates and the Role of Update Size and Prior Endowment 47

literature by showing that user beliefs and attitudes change alongside modifications of the IT

artifact during usage. Moreover, through this notion, our study also contributes to the stream

of IS research on belief updating (Kim 2009; Maier et al. 2015).

2.6.2 Implications for Practice

Our results also have important implications for practice. First, despite the extensive use of

feature updates by vendors to maintain, alter and extend their products after they have already

been rolled out, it is surprising that insights on how these updates are perceived by users are

still scarce. This leaves vendors without guidance when to provide which functionality to

customers. From the results of our experimental study we can conclude that it might be

advisable for vendors to deliver features over time, via updates, because feature updates can

induce a positive experience, which, in turn, increases users’ CI. For vendors, users with a

high CI are a particularly desirable goal because these are the loyal, returning customers who

ensure the long term profitability of their businesses in the highly competitive software

industry. Moreover, a high CI is particularly important for the increasing share of

subscription-based business models in the software industry (Veit et al. 2014). An incremental

delivery of features may also be beneficial to vendors, providing them with a competitive

advantage due to shorter times-to-market when developing new software. Instead of waiting

for the completion of all planned features, they could release their software with a smaller

feature endowment and deliver additional functionalities successively through incremental

feature updates when their development is completed. An additional benefit of this quicker

time-to-market strategy is that revenues start to flow earlier than under an all-at-once feature

delivery strategy with a later release. However, the identified positive effect of feature updates

needs to be well understood and correctly applied to achieve the desired outcomes. The

findings of this study reveal that this effect works only if users’ experiences exceed their prior

expectations when receiving an update (positive disconfirmation). Vendors should thus avoid

announcing feature updates in advance as this would annihilate the required element of

surprise. Our results regarding initial feature endowment show that while this positive effect

from updates decreases with endowment it still persists. A deferred delivery of features as

suggested by our hypothesis H1 may thus be applied for lean software as well as for software

with a high initial feature endowment. Vendors of advanced, mature software may therefore

also take advantage of this effect. Furthermore, because the size of updates was revealed to

not affect this positive effect, it is not necessary for vendors to pack several features into one

update in order to obtain this positive user response. However, vendors should not overdraw

holding back functionality. Starting out with a too small feature set might render the first

Effects of Updates and the Role of Update Size and Prior Endowment 48

release of a software almost useless and lead to discontinuation before the program can be

updated or even prohibit the adoption in the first place. Finally, our findings highlight the

benefit from using a modular software-architecture. Aside from an increased flexibility in the

development and maintenance, a modular architecture also facilitates the use of feature

updates. When features are encapsulated in discrete modules, they may be delivered in small

packages (updates) and can be integrated easily in existing systems that are already being

used.

2.6.3 Limitations and Future Research

Five limitations of this study are noteworthy and provide avenues for future research. First,

this study made some crucial assumptions that can be revisited in future research. We

conceptualized individual features to provide equal value to the user and thus held the relative

importance of features constant. This was also reflected in the design of our experiment. To

increase the external validity of our findings, future studies should investigate features with

varying relative importance and account for different valuations of features across users.

Second, our treatment was realized through vignettes in an online questionnaire. As such,

typical limitations of this methodology apply (Aguinis and Bradley 2014): the setting was

fictitious and demanded subjects to put themselves in the position of the person in the

scenario, while no instructor was available if questions arose. We thus controlled for

motivation to process information, understanding and realism of the scenario and have strong

reason to rule out bias in our results from these limitations. Nevertheless we encourage

researchers to conduct longitudinal field studies or experiments with real software usage to

further validate our findings. Third, we only observed a short usage time span and one update

in our experiment. Future studies could explore user responses to repeated updates to

understand the interplay between update size and update frequency as other possible boundary

conditions and thus also deepen the understanding of sequential belief updating triggered by

feature updates. Experiments conducted on longer time spans with users’ evaluations

measured at several points in time could also provide additional evidence for the robustness of

the positive effect of feature updates on users’ CI. Fourth, to control for the potential impact

of different construal levels on the perception of updates, we split our experimental groups,

resulting in reduced cell sizes for analysis. Although group sizes remained sufficiently large

for our thorough statistical analysis and were in line with other, comparable experimental IS

studies (e.g., Hong et al. 2004) we encourage future research to increase sample size.

Moreover, future research should also explore additional crucial control variables related to

users’ short term interests, such as propensity to resist change (Oreg 2003; Polites and

Effects of Updates and the Role of Update Size and Prior Endowment 49

Karahanna 2012), stress (Maier et al. 2015) or habit (Polites and Karahanna 2013). Fifth, the

positive effect of feature updates on users’ CI was shown to work for an online service.

However, the domain of online services the technical complexity of the update process and

potential downsides in the user experience are largely hidden from the user. While we believe

that this unobtrusiveness of updates applies to a wide and also increasing range of modern

software products and services (web services, platforms for mobile devices and modern

desktop operating systems) there might be types of software for which our results are not

generalizable (e.g., legacy software). Future research is encouraged to show the same effect

for other types of software.

2.6.4 Conclusion

Feature updates have become a pervasively used instrument of software vendors to maintain,

alter and extend their products over time. Despite their prevalence in private and business IT

usage contexts, their effects on crucial user reactions in the IS post-adoption context have

remained largely unexplored. This study is among the first to demonstrate that feature updates

have the potential to increase users’ CI above and beyond a level generated by monolithic

software packages that deliver the entire feature set at once. It also reveals the robustness of

this effect by ruling out update size and users’ construal level as potential boundary

conditions to this phenomenon. Nonetheless, we identified users’ valuations of feature

updates to slightly diminish with increasing feature endowment of the updated software.

Lastly, this study identified a positive disconfirmation of previous expectations as the

underlying mechanism by which feature updates influence users’ CI. In summary, this study

represents an important first step towards a better understanding of the nature of feature

updates and how they affect user reactions. It may therefore serve as a springboard for future

studies on feature updates in the IS post-adoption context.

Effects of Updates and the Role of Update Size and Prior Endowment 50

Effects of Gains or Losses through Updates on Experts or Novices 51

Chapter 3: Effects of Gains or Losses through

Updates on Experts or Novices

Title: Gains and Losses in Functionality – An Experimental Investigation of the

Effect of Software Updates on Users’ Continuance Intentions

Authors: Marvin Fleischmann, Ludwig-Maximilians-Universität München, Germany

Tillmann Grupp, Technische Universität Darmstadt, Germany

Miglena Amirpur, Technische Universität Darmstadt, Germany

Thomas Hess, Ludwig-Maximilians-Universität München, Germany

Alexander Benlian, Technische Universität Darmstadt, Germany

Published in: International Conference on Information Systems (ICIS 2015), Fort Worth,

USA.

Abstract

Although software updates are ubiquitous in professional and private IS usage, their impact

on user behaviors has received little attention in post-adoption research. Based on

expectation-confirmation-theory and the IS continuance model, we investigate the effects of

gaining and loosing features through updates on expert and novice users’ continuance

intentions (CI). In a vignette based experiment, we find that updates which add features to

software after its release increase novices’ CI above and beyond a level generated by a

monolithic software package that contains the entire feature set from the beginning. With

diminished CI, experts show a contrary reaction to the same update. Losing features through

an update, on the other hand, severely diminishes CI for experts and novices alike. Mediation

analysis reveals positive disconfirmation of previous expectations as psychological

mechanism behind novices’ counter-intuitive and somewhat non-rational responses to

gaining features through an update. Implications for research and practice are derived.

Keywords: Software updates, IT features, IS expertise, expectation-confirmation theory, IS

continuance model, IS post-adoption

Effects of Gains or Losses through Updates on Experts or Novices 52

3.1 Introduction

The software industry and its business models have changed over the last years. This

particularly applies to the market for consumer software. Traditionally, software vendors

developed discrete programs and sold them as pre-packaged software at fixed prices. During

the time of its use, this software remained largely unchanged and the user eventually replaced

it with a new generation of this software, once it became available. This new generation of

software was again sold at fixed prices. The popular office suites from Microsoft are a typical

example for this practice. Recently, however, many software vendors have adopted a different

practice. Often, a first, rudimentary version of an application is developed and sold. Then,

over the course of time, this initial application is frequently changed through software

updates. This practice is often (but does not have to be) accompanied by subscription based or

ad-based revenue models that require a large and active user base in order to generate

reoccurring revenues for vendors from renewed subscriptions or ad sales. This has not only

become common practice in the app economy for smart phones and tablet computers but has

also been adopted in the more mature field of software for desktop computers and web

services. For example, Microsoft recently announced that it planned to shift to this practice

with the version “10” of its operating system Windows, constantly enhancing and extending

the software through updates over time while their customers already use it (Myerson 2015).

As this example shows, vendors usually update their software in order to enhance it by

correcting flaws or extending its functionality (i.e. features). In practice, however, the quality

of software is sometimes also diminished by updates. A vendor can do this intentionally, for

strategic reasons or when licensing deals run out, for instance. One example for this is the

mapping functionality on the iPhone. In 2012, Apple updated its iOS operating system and,

amongst other changes, removed the access to Google’s maps service (Apple 2015). Mapping

functionality was replaced with a functional inferior, in-house developed service (Sherr 2012).

Another example is an update to Google’s Android operating system from 2013. It removed

privacy features which had previously allowed users to control the degree of personal data

that could be accessed by third party applications (Constantin 2013). In other cases, software

functionality is sometimes lost or diminished through updates unintentionally, when faulty

updates corrupt features or render them useless.

However, despite the ubiquitous use of software updates in practice and many vendors’

dependency on their customers’ loyalty (i.e. continued use), there is little research on the

impact of updates on users’ beliefs, attitudes and specifically their continuance intentions

regarding the updated software (Hong et al. 2011; Claussen et al. 2013). Most of the existing

Effects of Gains or Losses through Updates on Experts or Novices 53

research neglects the user perspective and explores software updates from a purely technical

perspective. This includes research on software engineering (Sommerville 2010), software

product lines (Clements and Northrop 2002), software release planning (Svahnberg et al.

2010) and software evolution and maintenance (Mens and Demeyer 2008). Because updates

are the means by which the characteristics of software are changed over time, during use, they

may have the potential to alter users’ beliefs, attitudes and behaviors regarding this software

in the post-adoption stage (Karahanna et al. 1999; Bhattacherjee 2001). A better

understanding of software updates from a user’s perspective thus has the potential to increase

the explanatory and predictive power of existing post-adoption theory. However, researchers

studying post-adoption phenomena often tend to conceptualize information systems (IS) as a

monolithic and coarse-grained black box, rather than as a collection of specific and finer-

grained features that are dynamic and alterable over time (Jasperson et al. 2005). Only few

studies have explored IS usage at a feature level (Benlian 2015). These studies have

considered that different users employ different feature sets (DeSanctis and Poole 1994;

Leonardi 2013), value them differently (Hiltz and Turoff 1981) and that the breadth and depth

of a feature set that is utilized may change over time (Kay and Thomas 1995; Sun 2012).

Nonetheless this stream of research does usually not consider changes in the available feature

set over time, during usage, such as the addition or removal of features through software

updates. Understanding the granularity of software and its changes through software updates

would help to explain how users’ beliefs, attitudes, and behaviors fluctuate over time as a

result of the flexible nature of information systems. Moreover, there are several calls for

research from IS scholars who criticize the negligence of the IT artifact’s role in IS research

(Benbasat and Zmud 2003; Hevner et al. 2004; Orlikowski and Iacono 2001). They suggest

focusing on changes in beliefs, attitudes and behaviors emanating from the IT artifact itself

rather than from other IT-unrelated environmental stimuli. Another issue that arises from the

increasing ubiquity of software (and consumer software specifically), is the potential diversity

in a software’s user base (Harrison and Klein 2007). As more and more people gain access to

information technology, it is increasingly also used by late adopters and non-experts (Rogers

1995). This can be seen as a contrast to the usage in organizations, where information systems

are often operated by specialists or employees who receive specific training. To theoretically

account for these developments, it becomes increasingly important for IS research to explore

the heterogeneity in different users’ beliefs, attitudes and behaviors regarding IT. Past IS

research has already accounted for this (e.g. Kim and Son 2009; Venkatesh et al. 2012) but

Effects of Gains or Losses through Updates on Experts or Novices 54

when investigating new phenomena or use cases, this issue has to be considered consistently.

This study therefore raises the following research questions:

RQ1: Does gaining or losing features through software updates impact users’ continuance

intentions?

RQ2: How and why do novices and experts differ in their responses to software updates?

Drawing on expectation-confirmation theory (Oliver 1980) which is embedded in the IS

continuance model (Bhattacherjee 2001), we conducted a vignette based online experiment

with 178 participants to answer these questions. This study contributes to prior research in

three important ways. First, we increase the understanding of users’ post-adoption behaviors

by identifying differential reactions of novice and expert users to software updates. While

experts show rational reactions, our findings regarding novices’ responses are counter-

intuitive and may be characterized as non-rational. We identify update type and user expertise

as crucial moderators for explaining the use of agile information systems. By investigating the

mediating role of disconfirmation of expectations, our second main contribution is shedding

light on the explanatory mechanism behind these different responses to updates. This has not

been explicated in such a nuanced way in previous continuance literature. Our third and

overarching contribution lies in the extension of the predominant view of information systems

in post-adoption literature from a mostly monolithic and static one to a finer-grained and more

flexible perspective by showing how an alterable information system might influence users’

attitudes and behaviors during use.

Software vendors can learn from this study’s results that holding back functionality in the first

release of a software to deliver it only later on through updates has the potential to please

customers and increase their loyalty. This measure, however, may not work for expert users

and even be counterproductive. Vendors should thus be well aware of their customer base’s

software specific expertise. Moreover, vendors should avoid removing features from software

after its first release by any means. It may severely raise their customers’ likelihood to stop

using the software and switch to a competitor’s product.

3.2 Theoretical Foundations

3.2.1 Software Updates

Software updates can be defined as self-contained modules of software that are provided to

the user for free in order to modify or extend software after it has been rolled out and is

Effects of Gains or Losses through Updates on Experts or Novices 55

already in use (e.g. Dunn 2004). Software updates are no discrete and stand-alone programs

but rather integrate into the base software once they are applied to it. In practice, software

updates are applied to different types of software (e.g. operating systems, drivers, office

suites) and on different platforms (e.g. desktop computers, mobile devices). With varying

terminology (e.g. update, upgrade, patch, bug fix, or hotfix), the concept of software updates

is repeatedly addressed throughout the software engineering literature (Sommerville 2010),

such as software release planning, software maintenance and evolution and software product

lines (Weyns et al. 2011). In this context, software release planning or strategic release

planning refers to the “idea of selecting the optimum set of features or requirements to deliver

in a release within given constraints” (Svahnberg et al. 2010, p. 1). Following this definition,

an update is the delivery of features after the first release of a software and also falls within

the strategic considerations regarding when to deliver what type of functionality to the user.

Literature on software evolution and maintenance addresses the later stages in the software

lifecycle, where updates are utilized to adjust software to changing requirements or repair

emerging flaws in the software while it is already in use (Shirabad et al. 2001). In contrast to

this rich stream of technical literature dealing with software updates from the developers’

perspective, the users’ beliefs and attitudes regarding updates have so far been explored only

sparsely. This reflects in few IS studies dealing with updates (Amirpur et al. 2015). Hong et

al. (2011), for example, explore user’s acceptance of information systems that change through

the addition of new functionality. Benlian (2015), on the other hand, explores different IT

feature repertoires and their impact on users’ task performance, but does not consider changes

in functionality through updates. This also applies to other studies at the feature level which

have considered that different users employ different feature sets (DeSanctis and Poole 1994;

Leonardi 2013), value individual features differently (Hiltz and Turoff 1981) and that the

breadth and depth of the utilized feature set may change over the time of usage (Kay and

Thomas 1995; Sun 2012). And while other IS studies have found updates to influence usage

behaviors, they have often pushed them to the sidelines, treating them as control variables for

investigating other phenomena (e.g. Claussen et al. 2013).

In the present study which investigates the user perspective, we distinguish two basic types of

software updates: feature updates and non-feature updates. Feature updates change the core

functionality of software to which they are applied. Functionality can be added to or removed

from the original version of the software and refers to distinct, discernible features which are

deliberately employed by the user in accomplishing the task for which he uses the software.

The popular Facebook app for smartphones and tablet computers provides an example for this

Effects of Gains or Losses through Updates on Experts or Novices 56

type of update. In a 2013 update, it received a comprehensive instant messaging feature

(Etherington 2013). In contrast to feature updates, technical non-feature updates do not

change the core functionality of software but only correct flaws (e.g. bug fixes) or change

software properties that are not directly related to its core functionality (e.g. improvements in

stability, security or performance) (Popović et al. 2001). Examples for this type of update are

the prominent ‘hot fixes’ that Microsoft regularly distributes via its Windows Update service.

Because they occur during the use of software and are usually recognized by users through

notifications, required actions during installation and new or changed functionality,

specifically feature updates have the potential to affect users’ post-adoption beliefs, attitudes

and behaviors regarding software, including continuance intentions.

3.2.2 Information Systems Continuance

Together with research on users’ pre-adoption activities and the adoption decision, post-

adoption research constitutes the research field IS usage—one of the most mature fields in IS

(Jasperson et al. 2005). In the context of post-adoption research (Karahanna et al. 1999;

Bhattacherjee 2001; Benlian et al. 2011), the term information systems continuance refers to

the “sustained use of an IT by individual users over the long-term after their initial

acceptance” (Bhattacherjee and Barfar 2011, p. 2). To explore IS users’ intentions to continue

or discontinue using an IS, Bhattacherjee (2001) adopts expectation-confirmation theory

(ECT) (Locke 1976; Oliver 1980, 1993; Anderson and Sullivan 1993). ECT puts customers’

repurchase intentions at the center of investigation. In Bhattacherjee’s (2001) model,

repurchase intention is replaced by a user’s intention to continue using an IS (CI)—the core

dependent variable in his model. Following ECT, the IS continuance model suggests that

users compare their pre-usage expectations of an IS with their perception of the performance

of this IS during actual usage (Bhattacherjee 2001). If perceived performance exceeds their

initial expectations, users experience positive disconfirmation (DISC) which has a positive

impact on their satisfaction regarding the IS. If perceived performance falls short of the initial

expectations, negative disconfirmation occurs and users’ satisfaction with the IS is reduced

(Bhattacherjee and Barfar 2011). Satisfied users intend to continue using the IS, while

dissatisfied users discontinue its subsequent use (Oliver 1980; Bhattacherjee 2001).

The concept of positive (negative) disconfirmation thus has two prerequisites—

unexpectedness and a positive (negative) experience. Moreover, ECT posits expectations as a

relative, subjective reference point or baseline (i.e. not an absolute, objective value) upon

which the user makes his comparative judgment (Oliver 1980). This idea of a subjective,

Effects of Gains or Losses through Updates on Experts or Novices 57

relative reference point is based on Helson’s (1964) adaptation level theory. It proposes that

human beings perceive stimuli relative to or as a deviation from an ‘adapted level’ or baseline

stimulus level. “This adapted level is determined by the nature of the stimulus, the

psychological characteristics of the individual experiencing that stimulus, and situational

context” (Bhattacherjee 2001, p. 354).

The IS continuance model has made valuable contributions to post-adoption research

(Bhattacherjee 2001). However, in its original form, the IS continuance model has a static

perspective on the IS continuance setting, failing to account for changing user believes and

attitudes during use. In response to this limitation, Bhattacherjee and Premkumar (2004)

introduce a more dynamic perspective by showing that beliefs and attitudes do not only

change from pre-usage to actual usage but also during the ongoing usage of an IS. Kim and

Malhotra (2005), Kim and Son (2009), Ortiz de Guinea and Markus (2009) and Ortiz de

Guinea and Webster (2013), for instance, have provided evidence that the IS itself can shape

users’ beliefs, attitudes and even their affect regarding the IT in later usage stages. Following

Bhattacherjee and Premkumar (2004), it is reasonable to assume that a change in the IT

artifact can also induce changes in users’ beliefs and attitudes towards it. To investigate the

changing nature of the IT artifact and its impact on users’ beliefs, attitudes and behaviors

during post-adoption use, we explore software updates through the lens of the disconfirmation

mechanism in ECT.

3.2.3 Information Systems Expertise

Due to superior knowledge and abilities regarding a subject matter, experts make better

decisions and perform tasks more successfully than novices (Alba and Hutchinson 1987).

Individuals’ expertise has been explored in various research fields such as auditing (Shanteau

and Steward 1992) and political science (Voss et al. 1983). Expertise is, however, not a

general trait but specific to a certain subject or domain (Anderson 1982). Chess experts, for

instance, “do not appear to be better general thinkers for their genius in chess” (Nelson et al.

2000, p. 477). Research on consumer decision making, for example, has repeatedly identified

an individual’s product related expertise to significantly influence product choices (e.g. Lynch

et al. 1991) and the use of products (e.g. Blackler et al. 2010). One major finding of this

stream of research is that past experience and knowledge about a product or class of products

allows experts to make comparisons with previous evaluations when making decisions

(Ghoshal et al. 2014). This can lead to more objective evaluations and make experts less

prone to bias regarding product choice and use. In experiments, experts have been found to

Effects of Gains or Losses through Updates on Experts or Novices 58

rely on extra experimental information retrieved from their memory to supplement the

experimentally supplied information. Novices, on the other hand, are more stimulus-bound in

their decision making (Lynch et al. 1991). Due to a lack of experience and knowledge

regarding a product, novices’ decisions are more bound to the immediate situation or product

at hand. As a result, their decisions are often more subjective and they may fall prone to bias

in their product related decision making more easily (Mishra et al. 1993).

Expertise has also been shown to affect beliefs, attitudes and behaviors in IS usage. Research

has repeatedly found users’ expertise with an information system to moderate the relationship

between independent and dependent IS usage variables, significantly affecting their strength

or direction (Venkatesh and Davis 1996, 2000; Szajna 1996; Venkatesh et al. 2003; Kim and

Malhotra 2005). In IS research, there have been various conceptualizations of expertise,

emphasizing its different dimensions such as knowledge or abilities. These conceptualizations

include IS expertise (Nelson et al. 2000), IS competency (Huff et al. 1992; Munro et al. 1997;

Marcolin et al. 2000; Eschenbrenner and Nah 2014) and computer self-efficacy (Marakas et

al. 1998; 2007; Rhee et al. 2009). According to Munro et al. (1997, p. 45), user competence

“is composed of an individual's breadth and depth of knowledge of end user technologies, and

his or her ability to creatively apply these technologies”. The concept of computer self-

efficacy is related to expertise with an information system and has been found to be a strong

predictor of end-user performance (Marakas et al. 2007). In particular, past use and the

resulting user experience are known to play important roles as moderators in IS post-adoption

phenomena (Venkatesh and Davis 2000; Jasperson et al. 2005; Kim and Malhotra 2005; Kim

and Son 2009). In the case of continued use, a user’s earlier evaluations of an information

system affect later evaluations because knowledge gained from experience with an IS is

utilized in the decision making on its continuation (Hogarth and Einhorn 1992, Bolton 1998;

Kim and Malhotra 2005). Eschenbrenner and Nah (2014, p. 1366) moreover point out that

“competency in the domain of IS is unique considering IS are continuously evolving, in

development, and periodically upgraded (i.e., being updated, replaced, and modified)”.

However, despite its important role for understanding how users’ beliefs, attitudes and

behaviors might change over time, as the IT artifact’s nature and composition evolves through

software updates, user expertise has only been explored sparsely in post-adoption research so

far. Especially in the consumer domain of IS usage, this constitutes a research gap,

considering the abovementioned insights from consumer decision making research which

highlight significant differences between experts’ and novices’ product related choice and use

Effects of Gains or Losses through Updates on Experts or Novices 59

behaviors. This study thus addresses the moderating role of expertise in users’ post-adoption

perceptions of software updates and their potential impact on continuance intentions.

3.3 Hypothesis Development

In this section, we develop our hypotheses about how and under which conditions updates can

influence users’ beliefs and attitudes in post-adoption software usage. Specifically, we explore

decisions on continued use or discontinuance in settings where use is not mandated, such as

consumer software. We therefore focus on feature updates which are recognized by the user

during usage through explicit notification and ignore updates that are implemented ‘behind

the scenes’. Within this scope, we further distinguish between feature updates that add

functionality and feature updates that remove functionality. We also distinguish expert and

novice users. In our theorizing, we assume updates to deliver common features with

functional equivalence across the hypothesized conditions. We make this assumption to

properly reflect the practice (free updates do usually not deliver uniquely extraordinary

features) and because previous research has found that uncommon, unique features may bias

decisions and thus interfere with our attempt to conceptually isolate the psychological

mechanism through which software updates might influence users’ continuance intentions

(e.g. Dhar and Sherman 1996).

3.3.1 IS Novices’ Response to Gaining a Feature through a Software

Update

We argue that receiving feature updates during the post-adoption use of an IS can induce

positive disconfirmation and increase a novices’ CI (Bhattacherjee 2001). According to ECT,

the occurrence of positive disconfirmation requires an unexpected and positive experience

(Oliver 1980). Overall, the experience must constitute an unanticipated, relative improvement

compared to a baseline, i.e. it must exceed an individual’s subjective reference point (Helson

1964). In the context of software updates this means that a surprising update must lead to a

perceived improvement in the functionality of a software compared to its pre-update state.

Following research on product expertise, it is reasonable to assume that due to a lack of

knowledge and past experiences (Alba and Hutchinson 1987), novices do usually not

anticipate feature updates, making them surprising, unexpected experiences with the software.

Even if a vendor provides release plans about future updates, in practice, novices are unlikely

to follow such update plans in detail for each software product they use. Moreover, when

assessing the value of gaining a feature through an update, novices simply compare a

software’s functionality after the update to the functionality before the update, using the

Effects of Gains or Losses through Updates on Experts or Novices 60

software at hand as primary reference point. According to research on product expertise and

IS user competence, novices’ evaluations are bound to this immediate stimulus because they

lack other reference points from domain specific knowledge or previous use experience

(Lynch et al. 1991; Eschenbrenner and Nah 2014). Novices cannot assess if the received

feature might be overdue, if it is maybe already available in competing software products, if

the vendor has developed the feature long before and delivered it only later, with an

intentional delay and if it took the vendor much effort to develop. In sum, it is thus likely that

novices will perceive a feature update as unexpected and positive experience during use,

inducing positive disconfirmation in the sense of ECT (Oliver 1980).

According to this logic, a software vendor should be able to create positive disconfirmation

and thus increase IS novices’ CI by applying the strategy of holding back features

(functionality) in the first release of a software package and delivering this functionality only

later on, through free software updates. Under this deferred feature delivery strategy, a

feature-complete software package might be designed and developed by the vendor, but

certain features might not be included in the initially shipped software version. As outlined

above, the novice user is assumed to be unaware of the existence of these remaining features.

Once these remaining features are subsequently delivered through updates, they likely elicit

positive disconfirmation. Consistent with the IS continuance model, this could then lead to an

increase in CI. This deferred feature delivery strategy is thus to be distinguished from an all-

at-once feature delivery strategy under which all developed features are delivered in the first

release
5
. To summarize, because of the subjective nature of the disconfirmation mechanism in

ECT, which operates through an evaluation of relative instead of absolute change, and a lack

of software specific knowledge and past experiences, novice users of software that receives

functionality via feature updates will likely have a higher intention to continue using this

software than novice users who received all these features right with the first release. We

accordingly derive our first hypothesis:

H1a: IS novices have a higher continuance intention regarding software that receives

features through updates compared to software that includes the complete and equivalent set

of features right with the first release.

5 Nonetheless, we assume that both feature delivery strategies overall comprise the same type and
number of features. We also assume that under both strategies, the user’s evaluation of the software
regarding CI takes place at the same point in time, which is after the incremental feature delivery
strategy has been executed (i.e. when users are endowed with the same set of features as if they had
received them right with the first release).

Effects of Gains or Losses through Updates on Experts or Novices 61

3.3.2 IS Experts’ Response to Gaining a Feature through a Software

Update

We moreover argue that while ECT also applies to IS experts, it implies a different response

to receiving feature updates. Following again research on product expertise and IS user

competence, in contrast to novices, IS experts have more knowledge and past use experience

about the updated software or this class of software (Alba and Hutchinson 1987;

Eschenbrenner and Nah 2014). First, experts are thus more likely to anticipate updates or

follow release plans if available. This reduces the likelihood that experts are surprised by an

update and perceive it as unexpected event. Second, even if experts are surprised by a feature

update, when evaluating this gain of functionality, they will use a different baseline against

which they compare the post-update state of the software. Due to their superior knowledge

and past usage experience with the software or type of software, experts do not only compare

the new functionality to the pre-update state of the immediate software at hand, but also

consider information about other, competing or similar software products or general

technological developments to assess the value of the added feature. Overall, compared to

novices, experts’ evaluations of a feature update will be more objective, making them less

subject to a biased perception of the new functionality (Lynch et al. 1991). Therefore, we

argue that experts do not fall prey to a vendors’ deferred feature delivery strategy of holding

back functionality in order to deliver it only later on and increase users’ CI as easy as novices

would. In practice, experts may even show a negative response to such a strategy of deferring

features, when they identify the delivered functionality as common feature that is not a true

innovation by the vendor but was developed long before and only held back intentionally. We

therefore derive the following hypothesis:

H1b: Experts have a lower continuance intention regarding software that receives features

through updates compared to software that includes the complete and equivalent set of

features right with the first release.

3.3.3 Novices’ and Experts’ Response to Losing a Feature through a

Software Update

Hypotheses 1a and 1b proposed different user reactions to gaining a held back feature through

an update for experts and novices due to different levels of experience and knowledge

regarding the functionality of a software or class of software. We argue that this different

reaction of experts and novices will, however, not be present when losing a feature through an

update. When losing a feature through an update during the use of a software, the formation

Effects of Gains or Losses through Updates on Experts or Novices 62

of CI will also be influenced by the ECT mechanism (Oliver 1980; Bhattacherjee 2001).

However, in this case, the functional baseline against which the updated software with

reduced (lost) functionality will be compared includes the removed (lost) feature for experts

and novices (Kim and Malhotra 2005). In their pre-update use of the software, they both have

experienced the feature and are thus assumed to be aware of its presence and helpfulness in

task completion. When a feature is removed from the software through an update, this leads to

a perceived deterioration of the software for experts and novices. The updated software then

lacks a specific feature which may previously have served as a tool for accomplishing a

certain task. Assuming that this task can still be accomplished using the deteriorated software,

its completion should become more difficult or time consuming. The user might have to

substitute the lost functionality with another feature in the software or compensate for the lost

feature by conducting previously automated steps of his task manually. As a consequence of

this loss of functionality, the updated software should be perceived as comparatively less

valuable by experts and novices. This should subsequently reduce their satisfaction with the

software and intention to continue using it. We thus propose the following joint hypothesis for

experts and novices:

H2: Both, experts and novices, have a lower continuance intention regarding software that

loses features through updates after the first release compared to software that keeps these

features.

3.3.4 The Mediating Effect of Disconfirmation

As pointed out before, we argue that the difference in IS novices’ and experts’ responses

regarding CI from gaining a feature through an update originates in their different evaluations

of the software through the ECT mechanism (i.e. different subjective baselines or reference

points). According to the continuance model, compared to losing a feature, the novice’s

positive response should thus be mediated by a positive disconfirmation of their subjective,

previous expectations regarding the software, i.e. DISC (Bhattacherjee 2001). Moreover, the

ECT mechanism also suggests that such a positive disconfirmation of previous expectations

(DISC) would not directly affect CI but in turn be mediated by SAT, which ultimately leads to

the proposed change in CI. Due to their different response to gaining a feature through an

update, experts should not show this mediating effect. We thus propose the following

mediation hypothesis:

H3: The positive response of novices to gaining a feature through an update compared to

losing a feature is mediated by DISC and SAT.

Effects of Gains or Losses through Updates on Experts or Novices 63

3.4 Method

3.4.1 Experimental Design

With the goal to examine the effects of software updates on users’ CI as suggested by our

hypotheses, we opted for a vignette based online experiment. It allowed us to investigate and

isolate the causal mechanisms that operate between software updates and attitudinal user

reactions. We presented participants with carefully constructed textual scenarios (vignettes)

that precisely described a person (user), task, software, software usage and a conditional

update (see Figure 3-1). We opted for the experimental vignette methodology (EVM) because

it provides consistent and identical treatments for all participants and reduces unwanted

effects such social desirability bias (Aguinis and Bradley 2014). Even though this method

comes with downsides such as a fictitious setting, it also allows for an accurate identification

of the hypothesized effects. By being able to design a quasi-real scenario, the vignettes

allowed us to ensure a high external validity, compared to a laboratory experiment.

Nonetheless, researchers have shown that individuals respond quite similarly to hypothetical

situations in vignettes compared to traditional laboratory experiments, making this method

suitable for our needs (Rahman 1996; Shaw et al. 2003; De Cremer et al. 2007; Dennis et al.

2012).

We thus conducted a 1 x 3 between-subjects experiment (see Figure 3-1) with manipulations

of update (no update vs. retained feature gained through update vs. feature lost through

update). 178 participants from a large public university in Germany evaluated the impact of

software updates on the user’s continuance intentions. The participants read textual vignettes

which described usage scenarios of a fictitious word-processing program (‘xText’) used by a

fictitious student (‘Tom’) who had to write a term paper in group work together with

classmates. Participants were randomly assigned to one of the three groups. Depending on the

experimental condition, halfway during the described overall eight week use of the program,

Tom received a feature through an update (group B) or lost a feature through an update (group

C). In the control group, he used the software without any update (group A). Using a student

sample was appropriate for this study, because students are likely to be familiar with word-

processing programs, collaboration in group work tasks and software updates. They should

also show similar attitudes and beliefs toward the treatments offered in our experiment

compared to non-student samples (Jeong and Kwon 2012).

Effects of Gains or Losses through Updates on Experts or Novices 64

Figure 3-1: Experimental Setup, Groups, and Treatments

3.4.2 Manipulation of Independent Variables

In our experiment, we used a word-processing program for two reasons: We sought to ensure

a basic familiarity with the program for all participants. Because nowadays almost any young

person, especially students, needs to work with word-processing programs, we considered this

criterion to be met. Second, for the update, we were looking for a software feature that was

easily understandable through a textual description, preferably value-free and directly helpful

in achieving the task but not indispensable so that the task could be completed also without

the feature. Moreover, our hypothesis also required the update to deliver a feature that could

technically be held back in the vendors’ deferral strategy and was not an extraordinarily

unique feature (Dhar and Sherman 1996). To identify this common feature for our treatment,

we conducted a pre-study. In this pre-study, 52 subjects rated the relative importance of the 54

text editing features that are provided by the open source online text editor TinyMCE on

seven-point-Likert scales (TinyMCE 2015). The subjects for this pre-study were recruited

using WorkHub, a crowdsourcing platform similar to Amazon Mechanical Turk and

participated online for a small payment (Paolacci et al. 2010). As a result, a feature for spell

checking and grammar correction was selected. It met the requirements for our study best.

In the main study, the textual scenarios were presented to the participants in an online

questionnaire that comprised several consecutive pages. On a first page, we described Tom,

his task and the software with which he had to accomplish this task (see vignette setting,

Figure 3-1). Tom had to write a term paper and work “together with three classmates in a

team. Their professor demands to write their term paper in English [which is not their native

language].” They had eight weeks to complete the paper. “Because two team members are

abroad during the entire working time, personal meetings are not possible”. Therefore, they

Effects of Gains or Losses through Updates on Experts or Novices 65

“use the text editing program xText.” The program only had “a basic [yet sufficient] set of

functionality but allows for collaboration in one text document by several users over the

internet which is necessary…”. Based on the information provided in the vignettes, the use of

‘xText’ was thus mandatory for this specific project. Depending on the experimental

condition, the described software included—among other features which were listed in the

vignette —the feature for English spell checking and grammar correction (groups A and C) or

not (group B). The use of this spell checking and grammar correction feature, however, was

not mandated. Like any other feature in ‘xText’ its utilization was optional but—if

available—obviously helpful for achieving the task. On a second page, we described Tom’s

experience with the software during the entire time of the task completion, i.e. from starting to

work on the term paper to handing in the final paper (see vignette use, Figure 3-1). Depending

on the experimental condition, the description included an update of the software that added

(group B) or removed (group C) the feature for English spell checking and grammar

correction or no update at all (group A). In group B, after four weeks of working on the paper,

when opening the program, “Tom is notified about an update that is automatically executed

[…] and adds [for free] a feature for spell checking and grammar correction to the

program.” The new feature is described to save time for Tom because “now he does not need

to check the text word for word.” In group C, after four weeks of working on the paper, when

opening the program, “Tom is notified about an update that is automatically executed […]

and removes [for free] the feature for spell checking and grammar correction from the

program.” As an explanation, it was stated that the vendor of ‘xText’ had only licensed this

feature and it had to be removed because “the licensing deal was not renewed“. “After the

feature is removed, Tom has to check the text word for word for errors which costs time.”

Except for the description of the update, the usage of the program was described identically in

group A. Except for the manipulated parts, we kept the scenario identical across the three

groups. Each vignette ended with the group handing in the term paper after eight weeks. After

this second page, participants started to answer the questionnaire. This included their

evaluation of the protagonist’s intention to continue using ‘xText’ for future term papers when

its use would no longer be mandated. Participants could only proceed to the next page when

all questions were answered and returning to previous pages, including the vignettes, was not

possible.

A pilot test with six subjects was conducted to ensure that the treatments were manipulated

according to the experimental design (Perdue and Summers 1986). Specifically, subjects were

asked about the comprehensiveness of the instructions, the vignettes and the questions in the

Effects of Gains or Losses through Updates on Experts or Novices 66

following questionnaire. Suggestions were obtained from the participants and the vignettes

and the questionnaire were revised accordingly for the main experiment.

3.4.3 Measures

Dependent Variables

We used validated scales with minor wording changes for all constructs. Measures for CI

were adapted from Bhattacherjee (2001). Participants were asked to evaluate what they

thought Tom would do, if after the completion of this term paper, he would have to write

another paper in the future: ci1. Tom intends to continue using xText rather than discontinue

its use; ci2. Tom’s intentions are to continue using xText than use any alternative means; ci3.

If Tom could, he would like to discontinue his use of xText (reverse coded). DISC was also

adopted from Bhattacherjee (2001): disc1. Tom’s experience with using the word-processing

program xText was better than what he expected; disc2. The functionality provided by the

word-processing program xText was better than what Tom expected; disc3. Overall, most of

Tom’s expectations from using the word-processing program xText were confirmed. Measures

for SAT were based on Kim and Son (2009): sat1. Tom is content with the features provided

by the word-processing program xText; sat2. Tom is satisfied with the features provided by

the word-processing program xText; sat3. What Tom gets from using the features of the word-

processing program xText meets what he expects for this type of programs. Because

constructs were measured with multiple items, summated scales based on the average scores

of the multi-items were used in group comparisons (Zhu et al. 2012). Unless stated otherwise,

the questionnaire items were measured on seven-point-Likert-scales anchored at (1)=strongly

disagree and (7)=strongly agree.

Control Variables

In our study, we examined participant’s motivation to process information with one item (Suri

and Monroe 2003), because this variable may also influence the response behavior of the

participants and, thus, the validity of the results. Moreover, after conducting the experimental

task, participants were asked to what extent they had understood the items’ formulation, to

what extent they were able to put themselves in the hypothetical setting described in the

vignette, if the setting in the described story was realistic and if they knew what the goals of

this survey were. We included these control variables as well as the subjects’ demographics as

covariates to isolate the effects of the manipulated variables. The participants’ expertise

regarding word-processing programs was captured on an established four item, seven-point

semantic differential scale with the items know very little about/know very much about,

Effects of Gains or Losses through Updates on Experts or Novices 67

inexperienced/experienced, uniformed/informed, novice buyer/expert buyer (Mishra et al.

1993).

3.4.4 Participants, Incentives and Procedures

Participants for the final experiment were members of a large, public university in Germany.

In December 2014, 6039 members of the university received an email, inviting them to

participate in "an online survey about software usage”. The email contained a link to the

online experiment and stated that ten Amazon vouchers worth 10 € and one Amazon voucher

worth 50 € were drawn in a lottery among all participants, once the study had been completed.

Overall, 254 subjects started the experiment. 76 participants did not complete the experiment.

They were excluded from our analysis. We thus used a sample of 178 subjects in the

following analysis. Of these 178 subjects, 60 were males. The participants’ average age was

25.12 (σ=6.80). 148 participants were students, 27 were employees or self-employed and

three were seeking work. The educational backgrounds of the participants were diverse,

including management, medical science, law, education, biology, physics, philosophy etc.

Across the four seven-point semantic differential items, the mean score of the self-stated

expertise with word-processing software was 3.96 (σ=0.45) on average. Based on this mean

value across the four items for each participant, a median split was performed to classify

subjects as experts and novices for the later hypothesis testing regarding expertise (Lynch et

al. 1991). This resulted in the following group sizes: group A, no update, n=57 (30 experts, 27

novices); group B, feature gained, n=63 (42 experts, 21 novices); group C, feature lost, n=58

(31 experts, 27 novices). Across all groups, the participants indicated that they were able to

put themselves in the hypothetical setting described in the vignette (x̅=5.40, σ=1.57) and that

they thought the described setting was realistic (x̅=5.23, σ=1.49). Participants also indicated a

high motivation to process information (x̅=6.42, σ=1.03) and understood the questionnaire

items well (x̅=6.11, σ=1.36). On average, they stated that they did not know what the goals of

this survey was (x̅=3.37, σ=1.75). This indicates that we were successful in designing the

experiment according to its purpose.

3.5 Data Analysis and Results

3.5.1 Control Variables

Based on the results of Fisher’s exact tests, it can be concluded that there was no significant

difference across the three experimental conditions in terms of gender (p>0.1) and profession

(p>0.1). Furthermore, based on ANOVA tests, no significant differences were found across

the six experimental conditions regarding age (F=0.14, p>0.1), and Mishra et al.’s (1993) self-

Effects of Gains or Losses through Updates on Experts or Novices 68

evaluation of expertise on the seven-point semantic differentials (F=0.88, p>0.1).

Furthermore, there was no significant difference across the three experimental conditions

regarding the task-relevant control variables motivation to process information (F=0.15,

p>0.1), the extent to which subjects were able to put themselves in the hypothetical situation

described in the experimental task (F=0.47, p>0.1), the evaluation of the vignette’s realism

(F=1.83, p>0.1), the comprehensiveness of the items’ phrasing (F=0.74, p>0.1), and knowing

what the goals of the survey were (F=1.11, p>0.1). It is therefore reasonable to conclude that

participants’ demographics and task-relevant controls were homogeneous across the three

conditions and did not confound the effects of our experimental manipulations.

3.5.2 Measurement Validation

Because we adopted established constructs for our measurement, confirmatory factor analysis

(CFA) was conducted to test the instrument’s convergent and discriminant validity (Levine

2005). Table 3-1 reports the CFA results using SmartPLS version 3.0 (Chin et al. 2003;

Ringle et al. 2014) for the core constructs.

Table 3-1: Results of Confirmatory Factor Analysis for Core Variables

Latent construct Number

of

Indicators

Range of

Standardized

Factor Loadings*

Cronbach’s

Alpha

Composite

Reliability

(ρc)

Average

Variance

Extracted

(AVE)

Continuance Intention (CI) 3 0.792-0.906 0.833 0.901 0.753

Satisfaction (SAT) 3 0.805-0.951 0.885 0.930 0.816

Disconfirmation (DISC) 3 0.782-0.920 0.844 0.907 0.766

Note: *All factor loadings are significant at least at the p<0.01 level

All items loaded on the target factors and scored above the threshold of 0.7, indicating proper

construct validity (Cook and Campbell 1979; Bartholomew et al. 2008). AVE values for each

construct ranged from 0.753 to 0.818, exceeding the variance due to measurement error for

that construct (AVEs exceeded 0.5). The constructs were assessed for reliability using

Cronbach’s alpha (Cronbach 1951). A value of at least 0.7 is suggested to indicate adequate

reliability (Nunnally et al. 1994). The alphas for all constructs were well above 0.8. The

composite reliability of all constructs exceeded 0.7, which is considered the minimum

threshold (Hair et al. 2011). Thus, all of the constructs met the norms for convergent validity.

For satisfactory discriminant validity, the square root of AVE from the construct should be

greater than the variance shared between the construct and other constructs in the model

Effects of Gains or Losses through Updates on Experts or Novices 69

(Fornell and Larcker 1981). As seen from the factor correlation matrix in Table 3-2, all square

roots of AVE exceeded inter-construct correlations, providing strong evidence for

discriminant validity. Hence, the constructs in our study are both theoretically and empirically

distinguishable.

Table 3-2: Means, Standard Deviations, and Correlation Matrix for Core Variables

Latent construct M SD 1 2 3

(1) Continuance Intention (CI) 4.118 1.626 0.868

(2) Satisfaction (SAT) 4.642 1.537 0.512*** 0.875

(3) Disconfirmation (DISC) 4.541 1.525 0.564*** 0.756*** 0.903

Note: Bolded diagonal elements are the square root of AVE. These values should exceed inter-

construct correlations (off-diagonal elements) for adequate discriminant validity; ***p<0.01,

**p<0.05, *p<0.1.

3.5.3 Hypotheses Testing

In order to test our hypotheses, we conducted one-way analyses of variance (ANOVA) with

contrast analyses using StataCorp Stata 12. Continuance intention (CI) was analyzed as

function of update and expertise. There was a significant main effect for update (F=25.94,

p<0.01) but not for expertise (F=2.01, p>0.1). However, the interaction between expertise and

update had a significant effect on CI (F=2.73, p<0.05). Contrast analysis revealed that experts

and novices showed different reactions to gaining a feature. Novices showed a significant

higher CI when gaining the feature (x̅’s = 5.24 vs. 4.44, p<0.05). This supports our hypothesis

1a. Experts, on the other hand exhibited a significant lower CI when gaining the same feature

through an update (x̅’s = 4.31 vs. 4.77, p<0.1), supporting our hypothesis 1b. When losing a

feature during use, both novices and experts had a significant lower CI (x̅’s = 3.21 vs. 4.44,

p<0.01 and x̅’s = 2.88 vs. 4.77, p<0.01). This supports our hypothesis 2. Table 3-3 provides

an overview over the effects of different update types and expertise on CI. Figure 3-2

visualizes the different user reactions to software updates, indicating mean values of CI for

experts and novices across groups.

Effects of Gains or Losses through Updates on Experts or Novices 70

Table 3-3: Means, Mean Differences and Significance Levels for Continuance Intention

Expertise with
Software

Mean Values for Groups Mean Differences and
Significance Levels

Experts /

Novices

No Update

(A)

n=57

Feature Gained

through Update

(B)

n=63

Feature Lost

through Update

(C)

n=58

B-A C-A

Experts 4.77 4.31 2.88 -0.46* -1.89***

Novices 4.44 5.24 3.21 0.80** -1.23***

Note: *** p<0.01, ** p<0.05, * p<0.1 (one-sided); ANOVA-tests with contrast analyses

Figure 3-2: Expert and Novice Responses to Gaining and Loosing Features from an Update

In order to investigate hypothesis 3 and explore the psychological mechanism behind the

novices’ different responses to gaining and losing a feature, a mediation analysis of the

continuance model’s core variables (Bhattacherjee 2001) was performed for novices in groups

B (gaining a feature) and C (losing a feature). To analyze the mediating effects of DISC and

SAT, we used PROCESS, a regression-based approach developed by Hayes (2013).

PROCESS uses bootstrapping procedures for estimating direct and indirect effects. Figure 3-3

provides an overview of the analyzed conceptual model with direct and indirect paths. As

recommended by Hayes (2013), path coefficients are unstandardized because the independent

variable (software update) is dichotomous.

Effects of Gains or Losses through Updates on Experts or Novices 71

Note: Dashed lines indicate non-significant paths; *** p<0.01, ** p<0.05, * p<0.1

Figure 3-3: Mediation Mechanism Behind Novices’ Positive Response to Gaining a Feature

through an Update

The results from bootstrapping analysis in Table 3-4 revealed that only the (unstandardized)

indirect effect path (2) from gaining a feature through an update via DISC and SAT to CI was

significant. Moreover, the direct effect of gaining a feature though an update on users’ CI

became insignificant after including DISC and SAT, suggesting full mediation (Hayes 2013).

This mediation analysis was also performed separately for experts. As also expected from

hypothesis 3, due to their different response to gaining a feature through an update, this

mediation was not found for experts. Hence, hypothesis 3 is supported.

Table 3-4: Results from Serial Multiple Mediation Analysis of Novices in Groups B and C

(Bootstrapping Results for Indirect Paths)

Indirect effect paths Effect z Boot SE LLCI ULCI

(1) Feature Gained DISC CI 0.735 0.596 -0.210 2.211

(2) Feature Gained DISC SAT CI 0.432 0.257 0.093 1.207

(3) Feature Gained SAT CI 0.280 0.319 -0.133 1.086

Note: Inferential tests for indirect effect paths based on 1.000 bootstrap samples generating

95% bias-corrected bootstrap confidence intervals (LLCI=Lower Limit/ULCI=Upper Limit

of Confidence Interval)

3.6 Discussion

This study sought to achieve three main objectives: (1) to examine the effects of different

types of software updates on users’ intentions to continue using an information system

compared to monolithic software (i.e. whether there are discernible effects from gaining or

losing features through updates), (2) to investigate the moderating role of IS expertise (i.e. if

novices perceive updates differently than experts) and (3) to unravel the explanatory

mechanism behind such different responses to updates (i.e. how and why such an effect from

Effects of Gains or Losses through Updates on Experts or Novices 72

updates occurs). To achieve these objectives, we drew on the IS continuance model, the

underlying expectation-confirmation theory and theory on IS user expertise and investigated

our hypotheses based on a vignette based online experiment with 178 participants.

Drawing on the advantages of the experimental method, which allows to isolate the effects of

manipulated stimuli on user responses from other confounding variables and thus to unveil

causal relationships, we found that expert and novice users showed different reactions to

updates. In the case of experts, any type of update led to a decrease in CI (groups B and C).

Not only losing a feature through an update (group C) but even gaining a feature (group B)

significantly lowered their intention to continue using the software. The response to losing a

feature is comprehensible. Halfway through task completion, the user is deprived of a helpful

functionality in the utilized program. This reduction in functionality makes his present task

more difficult and the program less valuable for any future use. Consequently, the user’s

intention to continue using the program beyond the current project (CI) is diminished. The

experts’ response to gaining a feature, on the other hand, may seem surprising at first, because

it seemingly increases the value of the program to the user. However, the gained feature was

artificially held back and intentionally delivered only later on, through an update. As

suggested in hypothesis 1b, theory on product expertise (Alba and Hutchinson 1987) and

information systems expertise (Eschenbrenner and Nah 2014) implies that expert users are

likely to identify the delivered functionality as common feature that is not a true innovation by

the vendor but was developed before and only held back on purpose. In line with this

reasoning, experts in group B did not fall prey to the deferred feature delivery strategy, overall

showing a rational behavior.

Novices on the other hand showed different reactions. While they also had a lower CI when

losing a feature through an update (group C), their CI was significantly higher in the positive

update condition (group B) than in the non-update condition (group A). This increase of

novices’ CI in group B compared to group A can be interpreted as being a somewhat counter-

intuitive finding because the user described in the vignette with a feature gained through an

update (group B) was objectively disadvantaged compared to the user who had all

functionalities right with the first release (group A): during the time span of usage as

described in the vignette, the user in group B had in sum fewer features per time to

accomplish his text-formatting task compared to group A. Despite this objective disadvantage,

novice participants in group B showed significantly higher scores in CI. This suggests the

presence of a somewhat non-rational effect (Fleischmann et al. 2014). When comparing the

Effects of Gains or Losses through Updates on Experts or Novices 73

absolute values of the novices’ responses to gaining and losing a feature, their evaluations

seem even less rational. Considering the non-update condition (group A) as reference point,

the perceived loss from removing a feature from the software through an update (mean

difference between responses by novices in group A and C) was higher in magnitude than the

perceived gain from receiving the exact same feature through an update (mean difference

between responses by novices in group A and B). This suggests the presence of loss aversion

in novices (Kahneman and Tversky 1979). As such, both findings of novices’ responses to

updates challenge the idea of a ‘rational user’ in the IS continuance literature (Ortiz de Guinea

and Markus 2009; Bhattacherjee and Barfar 2011; Ortiz de Guinea and Webster 2013).

Finally, we could demonstrate that the positive response to gaining a feature through an

update regarding CI (novices in group B) is fully mediated by the ECT core variables DISC

and SAT. Due to a lack of experience and outside knowledge, novices seem to be unable to

objectively evaluate the gain of a retained feature from an update. In terms of ECT, novices

only use their immediate, subjective perception of the software’s functionality before the

update as reference point. Exceeding this subjective reference point induces positive

disconfirmation of previous expectations (DISC) which initiates a psychological process by

which increases in SAT eventually lead to a higher CI.

3.6.1 Implications for Research

The paper makes three main contributions to the literature. First, we identify different user

reactions to software updates. These responses crucially depend on the type of update and the

users’ expertise regarding the updated software. Losing a feature through an update decreases

CI for experts and novices. Gaining a retained feature through an update, on the other hand,

induces a positive reaction in novices. This has even a stronger and more positive impact on

novices’ continuance intentions compared to situations in which the entire feature set is

provided at once and with the first release. Expert users, however, do not show this positive

response. The gain of a feature can therefore be seen as necessary and the lack of expertise

with the software as sufficient condition for this positive response to software updates that

deliver features which have been held back at the initial release of software. Conceptually,

update type and expertise regarding the updated software thus seem to moderate the effect of

updates on CI. This interaction emphasizes the importance of a joint consideration of IT

artifacts’ and the users’ characteristics when investigating usage behaviors. Our second main

contribution is shedding light on the explanatory mechanism behind the identified positive

effect of updates on CI for IS novices, which could not be ascertained for IS experts.

Effects of Gains or Losses through Updates on Experts or Novices 74

Specifically, we find that this positive effect for IS novices is fully mediated by a positive

disconfirmation of previous expectations regarding the software due to the update (DISC) and

SAT. This finding once again highlights the pivotal role of ECT within the IS continuance

model. Our third and overarching contribution lies in showing how a malleable information

system might influence users’ attitudes and behaviors during post-adoption use. This answers

the calls of several IS researchers by extending the still predominant view of post-adoption

literature on the IT artifact as a static and monolithic block to a more flexible and finer-

grained perspective which considers information systems as a modular composition of

features that may change over time (Jasperson et al. 2005; Benbasat and Barki 2007 etc.). We

complement existing IS post-adoption literature through the notion that users’ beliefs and

attitudes might fluctuate over time, in conjunction with changes in the used information

system.

3.6.2 Implications for Practice

Our results also have important implications for practice. First, despite the extensive use of

software updates by vendors to maintain, alter and extend their products after they have

already been rolled out, it is surprising to find that insights on how these updates are

perceived and evaluated by users are still scarce. This leaves practitioners without guidance.

From the results of our experimental study we can conclude that vendors should avoid

removing features from software after its release. This also includes well-intentioned updates

which unintentionally damage the software and render certain features useless. When vendors

remove functionality from their software, they significantly increase their customers’

likelihood to discontinue using their product (and perhaps switch to a competitor’s product).

In the already highly competitive market for consumer software, vendors may want to avoid

this by any means.

Adding helpful features through free updates, on the other hand, might seem as a

straightforward measure for vendors to please customers and increase their loyalty (i.e. CI).

More specifically, our findings suggest, that it could even be advisable for vendors to hold

back software functionality and distribute it over time via updates, instead of delivering all

features right with the first release of a software. Feature updates have the potential to

increase users’ CI above and beyond a level generated by software packages that are delivered

with the entire feature set at once. However, the findings of this study reveal that this effect

seems to work only for novice users. Software vendors can learn from this study’s results that

they should be well aware of their customer base and its expertise regarding the software.

Effects of Gains or Losses through Updates on Experts or Novices 75

Utilizing customer data or conducting market research can be helpful in this regard. It should

also be noted that vendors should not overdraw the holding back of functionality when

applying the deferred feature delivery strategy. Starting out with a too small feature set might

render the first release of a software almost useless and lead to discontinuation before the

program can be updated or even prohibit the adoption in the first place. Especially vendors

who face direct competition from other, similar software products should carefully evaluate

what type and number of features they can afford to hold back under this strategy and which

ones ought to be provided immediately in order to win or retain customers. In practice, each

vendor will have to determine this sufficient amount of features for his own, specific case.

Finally, when maintaining their software after its first release, software vendors should not

only focus on their own product but also keep track of connected or compatible programs

from other vendors. In today’s interconnected but quickly changing software industry, many

programs rely on interoperability through interfaces, plug-ins and compatibility. When other

connected or compatible software is changed through updates, the own interfaces and plug-ins

may stop working and compatibility may vanish, rendering some features useless. In order to

avoid losing customers’ from such a loss in functionality (even if only temporary), vendors

should closely monitor the integrity and functionality of these interfaces, plug-ins and

compatibility and quickly respond to restore or repair them if necessary.

3.6.3 Limitations and Future Research

Four limitations of this study are noteworthy and provide avenues for future research. First,

our experiment utilized textual vignettes to describe software usage scenarios. While this is a

proven methodology, it also has some limitations (Aguinis and Bradley 2014). Our

constructed setting was fictitious and it required subjects to put themselves in the position of

the scenario’s protagonist. Moreover, because the study was conducted online, there was no

instructor who could have answered any questions regarding the described vignette scenario.

We thus controlled for motivation to process information, perceived realism of the scenario

and how well participants understood the questions and thought that they were able to put

themselves in the hypothetical setting. Based on the results regarding these measures, we are

confident that our vignettes worked as intended and our study’s implications are applicable to

real usage settings. Nonetheless, future studies could investigate actual usage experiences

with real software to validate our findings. Second, we identified update type and user

expertise as crucial moderators for the effect of updates on users’ CI. Future studies are

encouraged to further differentiate update types (e.g. several features in one update) and

Effects of Gains or Losses through Updates on Experts or Novices 76

explore additional user characteristics (e.g. different cultural backgrounds). Furthermore,

complementary qualitative studies (e.g. thought-listing) could further substantiate our

theoretical reasoning behind the identified moderators e.g., why experts disliked the deferred

delivery of features through an update (Ma and Roese 2014). Third, the demonstrated effects

of updates on users’ CI were shown to work for productivity (word-processing) software.

Future research could show whether the same effects also occur for hedonic (e.g.

entertainment) software. Finally, we conducted a controlled experiment with the purpose of

presenting results with a high internal validity. This required some reasonable but strict

assumptions, such as exploring a common feature, an identical and linear course of events for

all users and ex-post measurement of variables. Future studies are encouraged to complement

the findings of this study by investigating different types of features (e.g. extraordinary

features) and conducting longitudinal field experiments, to advance the external validity of

our findings. Also settings with repeated updates over longer time spans with participants

evaluations measured at several points in time could provide additional evidence for the

robustness of our findings. Specifically, a field experiment using an online service similar to

Google Docs or Microsoft Office Online would be well suited to collect panel data from real

usage over a longer period of time.

3.6.4 Conclusion

Software updates have become a pervasively used instrument for vendors to maintain, alter

and extend their products over time. Despite this prevalence, their effects on crucial post-

adoption user reactions have remained largely unexplored. This study’s diverse findings

highlight the importance of a profound understanding of updates for both researchers and

practitioners. Updates that add features to a software after its first release, while it is already

in use, have the potential to increase users’ CI above and beyond a level generated by a

monolithic software package that is released with the entire feature set at once. However, this

only applies for novice users but not for experts. Losing a feature through an update, on the

other hand, severely diminishes CI and raises a user’s likelihood of switching to a

competitor’s product. Furthermore, this study explains the psychological mechanism behind

the different user responses to updates. It works through disconfirmation of previous

expectations regarding the updated software.

Updates and the Role of Update Frequency and Update Type 77

Chapter 4: Updates and the Role of Update

Frequency and Update Type

Title: The Role of Software Updates in Information Systems Continuance –

An Experimental Study from a User Perspective

Authors: Marvin Fleischmann, Ludwig-Maximilians-Universität München, Germany

Miglena Amirpur, Technische Universität Darmstadt, Germany

Tillmann Grupp, Technische Universität Darmstadt, Germany

Alexander Benlian, Technische Universität Darmstadt, Germany

Thomas Hess, Ludwig-Maximilians-Universität München, Germany

Published in: Decision Support Systems (83), pp. 83-96.

Abstract

Although software updates are a ubiquitous phenomenon in professional and private IT

usage, they have to date received little attention in the IS post-adoption literature. Drawing

on expectation-confirmation theory and the IS continuance literature, we investigate whether,

when and how software updates affect users' continuance intentions (CI). Based on a

controlled laboratory experiment, we find a positive effect of feature updates on users' CI.

According to this effect, software vendors can increase their users' CI by delivering features

through updates after a software has been released and is already used by customers. We also

find that users prefer frequent feature updates over less frequent update packages that bundle

several features in one update. However, the positive effect from updates occurs only with

functional feature updates and not with technical non-feature updates, disclosing update

frequency and update type as crucial moderators to this effect. Furthermore, we unveil that

this beneficial effect of feature updates operates through positive disconfirmation of

expectations, resulting in increased perceived usefulness and satisfaction. Implications for

research and practice as well as directions for future research are discussed.

Keywords: Software updates, IT features, IS continuance, IS post-adoption, Expectation-

confirmation theory

Updates and the Role of Update Frequency and Update Type 78

4.1 Introduction

In recent years, software vendors have increasingly leveraged software updates as a measure

to modify and enhance their software products, while they are already being used by their

customers. This phenomenon is particularly prevalent in the area of mobile applications and

operating systems, but updates have also been used long before in the desktop space. Apple

iPhone users, for instance, regularly receive updates for their apps. On the desktop, web

browsers such as Google Chrome and Mozilla Firefox continuously receive updates, which

extend their functionalities. Other examples include Microsoft Windows, the Adobe Reader

and Sun’s Java platform which all regularly receive updates to close security gaps or fix

minor flaws.

This ubiquitous use of updates by software vendors in practice reflects in a large body of

research on the technical design of software, its maintenance and management. Research on

software engineering (Sommerville 2010), including software product lines (Clements and

Northrop 2002), software release planning (Svahnberg et al. 2010) and software evolution and

maintenance (Mens and Demeyer 2008) explores how and when software functionality should

be developed and delivered in order to maintain the technical integrity of the software and

optimize the vendor’s production process. While this stream of research does account for

customer needs, its primary focus lies on the supply side, exploring technical design aspects

of software. There is as yet, however, little understanding of the user’s perspective on

software updates—the demand side. In particular, the behavioral dimension, i.e., how updates

are perceived by users is still an under-explored area that has so far received only minimal

research attention (Hong et al. 2011; Sandberg and Alvesson 2011). Investigating the effect of

software updates on users’ beliefs, attitudes and behaviors regarding an information system

(IS), however, might be beneficial for software vendors and of particular interest in the

postadoption context, because users’ continuance decisions (i.e., customer loyalty) are

strongly influenced by their experiences made during actual IS use (Bhattacherjee and Barfar

2011). For software vendors, shedding light on the role of software updates for the IS

continuance decision can thus result in a better understanding of how to deliver updates to

users in order to achieve desirable performance outcomes such as higher user loyalty and

sustained revenue streams.

From a research perspective, a better understanding of software updates from a user’s

perspective has the potential to increase the explanatory and predictive power of existing

postadoption theory. In conjunction with pre-adoption and adoption, post-adoption research

Updates and the Role of Update Frequency and Update Type 79

constitutes IS usage, one of the most mature fields in IS (Jasperson et al. 2005). However,

compared to research on pre-adoption and adoption decisions, post-adoption studies still

remain sparse. Many scholars have thus called for studies that explicitly focus on post-

adoptive phenomena (e.g., Benbasat and Barki 2007). Furthermore, researchers studying IS

post-adoption phenomena often tend to conceptualize information systems as a monolithic

and coarse-grained black box, rather than as collection of specific and finer-grained features

that are dynamic and alterable over time. However, understanding the granularity of software

and its changes through software updates would help explain how users’ beliefs, attitudes, and

behaviors fluctuate over time as a result of the dynamic nature of information systems. In

addition, the focus on changes in beliefs, attitudes and behaviors, emanating from the IT

artifact itself rather than from other IT-unrelated environmental stimuli, is a response to

several calls for research from IS scholars who criticize the negligence of the IT artifact’s role

in IS research (Benbasat and Zmud 2003; Hevner et al. 2004; Orlikowski and Iacono 2001).

From a theoretical perspective, it is not only important to explore whether software updates

have an effect on users’ beliefs, attitudes and behaviors towards the software and their

continuance intentions (CI) in particular. It is equally important to examine when and how

these effects might occur, thus providing a profound theoretical explanation as well as the

possibility to predict user reactions towards software updates. Against this backdrop, our

objective is to study software updates as a measure by which a vendor can provide

maintenance for or extend the functionality of its software over time, while it is already being

used by customers. To the best of our knowledge, software updates and their effects on users’

IS continuance decisions are thus far still underexplored in the IS post-adoption context. We

therefore seek to address this research gap by examining the questions of whether, when and

how software updates influence users’ IS continuance intentions.

In line with the mentioned research gaps, we contribute to prior research in three important

ways. First, our overarching contribution is to advance the predominant view of information

systems in post-adoption literature from a mostly monolithic and static to a finer-grained and

more dynamic perspective by showing how a functionally malleable information system

might influence users’ beliefs, attitudes and behaviors over time. As such, we also accentuate

the changing nature of the IT artifact for users’ CI and thus explicitly consider the software

product lifecycle in our theorizing. Second, we identify substantially different user reactions

to different update types and modes of delivery. While feature updates increase users’

continuance intentions, technical non-feature updates (e.g. bug fixes) have no effect on the

intention to continue using the software. Moreover, we find that users prefer features to be

Updates and the Role of Update Frequency and Update Type 80

delivered in individual updates over a delivery of features in larger but less frequent update

packages comprising several features. Update type and frequency thus seem to moderate the

effect of software updates on users’ continuance intentions. Third, we not only investigate the

direct effect of software updates on CI; we also open up the theoretical black box of how

software updates influence IS continuance intention by highlighting the complementary roles

of cognition and affect. From a practitioner’s perspective, our study offers implications for

software vendors on how to deliver software updates in order to increase their customers’

loyalty (i.e., CI). We not only provide guidelines on which actions to take, but also on which

measures to avoid in order to benefit from the positive effect of feature updates on users’ CI.

4.2 Theoretical Foundations

4.2.1 Software Updates

Consistent with previous research (e.g., Dunn 2004), we consider software updates to be self-

contained modules of software that are provided to the user for free in order to modify or

extend software after it has been rolled out and is already in use. Software updates are thus

not discrete and stand-alone programs but rather integrate into the base software once they are

applied to it. In practice, software updates are applied to different types of software, such as

system software (e.g., operating systems, drivers) or application software (e.g., office suites)

and on different platforms (e.g., desktop computers, mobile devices). With varying

terminology (e.g. update, upgrade, patch, bug fix, or hotfix), the concept of software updates

is repeatedly addressed throughout the software engineering literature (Sommerville 2010),

such as software release planning, software maintenance and evolution and software product

lines (Svahnberg et al. 2010; Shirabad et al. 2001; Weyns et al. 2011).

In contrast to this rich stream of technical literature dealing with software updates from the

developers’ perspective, the customer perspective has received less attention (Morgan and

Ngwenyama 2015). Specifically users’ perceptions of updates have so far been explored only

sparsely. This reflects in few IS studies dealing with updates. Hong et al. (2011), for example,

explore user’s acceptance of information systems that change through the addition of new

functionality. Benlian (2015), on the other hand, explores different IT feature repertoires and

their impact on users’ task performance, but does not consider changes in functionality

through updates. Other IS studies that found updates to influence usage behaviors, have often

pushed them to the sidelines, treating them as control variables for investigating other

phenomena (e.g., Claussen et al. 2013). Existing IS research has, however, not explored the

specific impact of updates on users’ beliefs and attitudes regarding an IS. Specifically, the

Updates and the Role of Update Frequency and Update Type 81

impact of different modes of delivery (e.g., frequency of updates) and different update types

have so far not been explored.

Concerning the present study, we distinguish between two basic types of software updates:

feature updates and non-feature updates (e.g., Microsoft 2015a). Feature updates change the

core functionality of software to which they are applied. Functionality can be added to or

removed from the original version of the software and refers to distinct, discernible features

which are deliberately employed by the user in accomplishing the task for which he uses the

software. The Facebook app for smartphones and tablet computers provides an example for

this type of update. In a 2013 update, it received a comprehensive instant messaging feature

(Etherington 2013). An example from the desktop space example is the ‘tab sync’

functionality, which was added to the browser Google Chrome in 2012 via a feature update. It

enabled users to synchronize websites (tabs) across different computers and mobile devices to

seamlessly continue browsing when switching devices (Mathias 2012). In contrast to feature

updates, technical non-feature updates do not change the core functionality of software but

only correct flaws (e.g., bug fixes) or change software properties that are not directly related

to its core functionality (e.g., improvements in stability, security or performance) (Popović et

al. 2001). Thus non-feature updates usually do not directly affect the user’s interaction with

the software and therefore the changes in the software are often not even evident to the user.

Moreover, non-feature updates often fix problems that concern only a small number of users,

use cases or setups but have no consequence for the majority of users. Examples for this type

of update are the ‘hot fixes’ that Microsoft regularly distributes via its Windows Update

service.

4.2.2 Information Systems Continuance

Together with research on users’ pre-adoption activities and the adoption decision,

postadoption research constitutes the research field IS usage—one of the most mature fields in

IS (Jasperson et al. 2005). Post-adoption research explores users’ beliefs, attitudes, and

behaviors around the continued use of an IS (Karahanna et al. 1999; Bhattacherjee 2001). In

this regard, the term information systems continuance refers to “sustained use of an IT by

individual users over the long-term after their initial acceptance” (Bhattacherjee and Barfar

2011, p. 2). To explore users’ intentions to continue or discontinue using an IS, Bhattacherjee

(2001) adopts expectation-confirmation theory (ECT) (Locke 1976, Oliver 1980, 1993,

Anderson and Sullivan 1993). In Bhattacherjee’s (2001) model, a user’s intention to continue

using an IS (CI) is the core dependent variable. It is positively influenced by satisfaction

Updates and the Role of Update Frequency and Update Type 82

(SAT) and perceived usefulness (PU). PU captures the expectations about future benefits from

IS usage (Bhattacherjee and Barfar 2011) and has a positive impact on SAT and CI

(Bhattacherjee 2001). While SAT represents the affective part of the continuance model, PU

rather represents the cognitive one. The concept of PU has been carried over from adoption

theory (Davis et al. 1989). Perceived ease of use (PEoU), which is the second main driver of

technology adoption is, however, not part of the IS continuance model. While ease of use is

an important determinant of individual technology adoption decisions (i.e., at earlier stages of

use), research has found ambiguous results regarding its effect on continuance decisions

(Davis et al. 1989; Bhattacherjee 2001; Hong et al. 2006). Studies even suggest that its

influence on usage decisions disappears in later stages of use, once users gain experience with

the information system (Karahanna et al. 1999).

The IS continuance model moreover suggests that users compare their pre-usage expectations

of an IS with their perception of the performance of this IS during actual usage (Bhattacherjee

2001). If perceived performance exceeds their initial expectations, users experience positive

disconfirmation which increases their PU and SAT. If perceived performance falls short of the

initial expectations, negative disconfirmation occurs and users’ PU and SAT are reduced

(Bhattacherjee and Barfar 2011). The concept of positive (negative) disconfirmation thus has

two prerequisites—unexpectedness and a positive (negative) experience (Oliver 1980;

Bhattacherjee 2001). ECT moreover posits expectations as a relative, subjective reference

point or baseline (i.e., not an absolute, objective value) upon which the user makes his

comparative judgment (Helson 1964; Oliver 1980).

In its original form, the IS continuance model (Bhattacherjee 2001) has a static perspective on

the IS continuance setting, failing to account for a change in user believes and attitudes over

time. In response to this limitation, Bhattacherjee and Premkumar (2004) introduced a more

dynamic perspective, showing that beliefs and attitudes do not only change from pre usage to

actual usage but also during the ongoing usage of an IS (Kim and Malhotra 2005). While this

dynamic perspective already provides valuable insights into the drivers of post-adoption

behavior, it still neglects the IT artifact’s changing and malleable nature. Evidence from

practice shows, however, that information systems are constantly modified over time, for

example, when vendors update and change their software or introduce new software

generations. Considering the fact that beliefs and attitudes change over time during the

ongoing use as a result of users’ experience with the IT (Bhattacherjee and Premkumar 2004),

it is reasonable to assume that a change in the IT artifact may also induce a change in users’

Updates and the Role of Update Frequency and Update Type 83

beliefs and attitudes toward it. Kim and Malhotra (2005), Kim (2009), Ortiz de Guinea and

Markus (2009) and Ortiz de Guinea and Webster (2013), for instance, have provided strong

evidence that external factors such as IS-related tasks as well as the IS itself can shape users’

beliefs, attitudes and even their affect regarding the IT in later usage stages. In order to

investigate the changing nature of the IT artifact and its effect on users’ beliefs, attitudes and

behaviors during post-adoption use, we explore software updates through the lens of the

disconfirmation mechanism in ECT.

4.3 Hypotheses Development

In this section, we develop our hypotheses about how and under which conditions updates can

influence users’ beliefs and attitudes in post-adoption software usage. Specifically, we explore

decisions on continued use or discontinuance in settings where use is not mandated, such as

consumer software. To this end, we focus on software updates which are recognized by the

user during usage through explicit notification and ignore software updates that are

implemented ‘behind the scenes’. Within this scope, we further distinguish between two

different types of software updates (feature updates and non-feature updates) and two modes

of delivery (low and high frequency).

4.3.1 The Effect of Feature Updates on Users’ Continuance Intentions

Research on information system characteristics in post-adoption user behavior has repeatedly

identified system design features to affect users’ beliefs and attitudes regarding an

information system (Saeed and Abdinnour-Helm 2008; Nicolaou and McKnight 2011). We

thus argue that a change in information systems characteristics has the potential to also affect

a user’s beliefs and attitudes regarding this information system. Specifically, we suggest that

receiving a free feature update that provides additional functionality which directly serves

users in accomplishing their IS-based tasks will be perceived as a positive experience with the

software (Goodhue and Thompson 1995; Larsen et al. 2009).

Furthermore, it is reasonable to assume that feature updates are usually not anticipated by

users and can thus be perceived as unexpected experiences with the software. Even if a

software vendor does provide release plans about future feature updates, we suggest that in

practice, most users—and especially consumers—are unlikely to follow such update plans in

detail for each and every individual software product they have in use. If feature updates are

perceived as unexpected and positive experiences during usage, according to ECT, they

should induce perceived positive disconfirmation (Oliver 1980). Drawing on ECT and the IS

Updates and the Role of Update Frequency and Update Type 84

continuance model (Bhattacherjee 2001), it is thus plausible that this perceived positive

disconfirmation will increase users’ CI regarding the updated software.

Regarding our assumptions about feature updates, we acknowledge that in practice, there

might be cases, where feature updates are perceived negatively by users. For example, if

features are intentionally removed (e.g. because of expired licensing deals), software

functionality is unintentionally impaired or updates bring major changes to the software

which necessitate users to learn and adjust. Nevertheless, we argue that in most cases, feature

updates are intended to enhance the software, help users and are thus perceived positively.

We also acknowledge that receiving feature updates might lead to interruptions in the

workflow through notifications or required installations. While previous research on IT events

in post-adoption use (Tyre and Orlikowski 1994; Ortiz de Guinea and Webster 2013) and

interruptions in human computer interaction (Hodgetts and Jones 2007; Sykes 2011) has

found negative impacts from update notifications on users’ workflow and their beliefs and

attitudes towards the updated system, we suggest that vendors are aware of this and

deliberately try to minimize these inconveniences. Moreover, even if updates result in

undesired interruptions of workflow, these are one-time events that should be are outweighed

by the benefits of receiving new, helpful features and their repeated use and contribution to

task accomplishment. We thus derive our first hypothesis:

H1a: Receiving functionality through feature updates after the first release of a software

increases users’ continuance intentions.

4.3.2 The Role of Frequency in the Delivery of Feature Updates

New features are often the result of subsequent, incremental software development. When

vendors want to deliver new features to their users through updates, they can often choose

between different delivery-strategies. A vendor may deliver each individual feature in a

separate update, once the feature is developed. Another option is to accumulate a certain

number of features and deliver them bundled together in a larger update-package. (Under the

latter strategy, the user is assumed to be unaware when individual features are developed and

that they might be held back some time until delivery.) Over the course of time, the former

option would result in a high update frequency, while the latter results in a low update

frequency. Nonetheless, under both strategies, the same amount of features is delivered to

users.

Updates and the Role of Update Frequency and Update Type 85

While both feature delivery strategies ultimately lead to the same feature endowment for the

user, theory implies that these strategies might be perceived differently by the users. More

specifically, ECT implies that the positive disconfirmation from a feature update depends on a

relative change in functionality compared to a user’s subjective reference point (i.e., the pre-

update configuration of the software) rather than an absolute change (Helson 1964; Oliver

1980).

Once features are subsequently delivered through updates, each update is likely to elicit

positive disconfirmation. Following Adaptation Level Theory (Helson 1964) and ECT (Oliver

1980) which build the basis for the IS continuance model (Bhattacherjee 2001), this high-

frequency feature delivery strategy could then lead to a higher level of CI than the low

frequency delivery strategy which provides users with the same type and amount of features

but bundled in larger update packages. Moreover, if features are delivered through individual

updates, they may ‘stick out’ more than if they are one among many, bundled in a larger

update package. The positive contribution of an individual feature may thus be highlighted

more and increase CI even further.

A drawback of the high-frequency delivery strategy is that it is accompanied by more frequent

interruptions in the workflow by the previously outlined update notifications and installations,

for example. However, we suggest, that in practice, the benefits from receiving features

outweigh the drawbacks from the interrupted workflow even under the high-frequency

delivery strategy where features are delivered individually, accompanied by notifications and

other associated drawbacks.
6

To summarize, because of the nature of the disconfirmation mechanism in ECT, which

operates through an evaluation of relative instead of absolute change, users of software that

receive functionality via incremental feature updates under a high-frequency update delivery

strategy will likely have a higher intention to continue using this software than under a low

6
 We acknowledge that once frequency increases to a certain point, updates may no longer be perceived

beneficial. In this extreme case, a decreasing marginal utility from additional features (Nowlis and Simonson

1996) in combination with overly frequent workflow interruptions from notifications and installations, may

outweigh the benefits from the feature updates and no longer increase CI or even diminish it. However, the

update frequencies which can usually be observed in practice should not reach this point.

Updates and the Role of Update Frequency and Update Type 86

frequency delivery strategy even though users receive the same set of features under both

strategies.
7
 We thus hypothesize:

H1b: Users have a higher continuance intention regarding software that receives features in

individual updates compared to software that receives the same set of features in one update

package.

4.3.3 The Effect of Non-Feature Updates on Users’ Continuance Intentions

In addition to unexpectedness, the second key component that is required for the positive

effect of software updates to occur is the positive experience from an increase in functionality

of the software. While non-feature updates are also unexpected events during usage (see

hypothesis 1a), they lack the added functionality of their feature update counterparts and are

thus unlikely to exert similar positive effects on CI. While such non-feature updates

technically alter the software through bug fixes or security improvements, these changes do

not directly serve users in accomplishing their IS-based tasks by offering useful functionality.

In terms of ECT, this means that non-feature updates do not lead to the necessary perceived

relative change in functionality compared to the reference point (i.e., the pre-update

configuration of the software) (Helson 1964; Oliver 1980). In sum, we argue that software

that receives non-feature updates instead of feature updates will not exert positive

disconfirmation. This will, in turn, result in a lower CI compared to the scenarios suggested in

hypothesis 1a and 1b. Furthermore, non-feature updates do not only fail to deliver

functionality that directly serves users in accomplishing their IS-based tasks. They may even

be perceived as unsolicited interruptions in the workflow without being accompanied by any

direct benefit for accomplishing the immediate IS-based task (i.e., without additional helpful

functionality). This might even diminish CI. We thus hypothesize:

H2a: Receiving software fixes through non-feature updates after the first release of a

software does not increase users’ continuance intentions.

7
 In our theorizing regarding hypothesis 1b and 2b, we assume software updates of one type to deliver common

(non-)features with equivalence regarding their content across the hypothesized conditions. We make this

assumption to properly reflect the practice (free updates do usually not deliver uniquely extraordinary content)

and because previous research has found that uncommon, unique product attributes may bias consumer decisions

and thus interfere with our attempt to conceptually isolate the psychological mechanism through which software

updates might influence users’ continuance intentions (e.g. Dhar and Sherman 1996).

Updates and the Role of Update Frequency and Update Type 87

4.3.4 The Role of Frequency in the Delivery of Non-Feature Updates

Following the logic as outlined above, non-feature updates should not increase CI,

independent from their frequency of delivery. Moreover, non-feature updates which are

delivered with high frequency may even diminish CI since they interrupt users’ workflow

even more frequently without any direct and immediate benefit. However, we argue that the

delivery of updates has nowadays become mostly seamless, minimizing the interruptions in

workflow and other downsides from applying updates. Therefore, we suggest that unless non-

feature updates reach extreme levels of frequency, the will not affect users’ CI. We thus

hypothesize:

H2b: Users have the same continuance intention regarding software that receives fixes in

individual updates as regarding software that receives the same set of fixes in one update

package.

4.3.5 The Mediating Roles of Disconfirmation, Perceived Usefulness and

Satisfaction

As outlined in the theoretical foundations, ECT (Oliver 1980) applied to the context of the IS

continuance model (Bhattacherjee 2001) implies that unexpected feature updates should be

perceived by users as helpful ‘gifts’ from the vendor that exceed their expectations regarding

the software. Feature updates thus lead to positive disconfirmation (DISC). Due to their lack

of directly helpful content, non-feature updates, however, fail to exceed the users’

expectations. The mediating effect of DISC on CI from receiving updates during use is thus

conditional to the type of the received update. The relationship between software updates,

positive disconfirmation and continuance intentions is therefore one of a moderated mediation

where DISC is only increased by updates that contain features (Hayes 2013). Furthermore,

according to the IS continuance model, the conditionally increased DISC from feature updates

subsequently leads to higher PU and SAT.

PU, which represents the cognitive component of the IS continuance model is a forward-

looking construct and captures the future benefits from using the software (Bhattacherjee and

Barfar 2011). Feature updates increase PU because they provide a relative improvement of the

software by extending its functionality compared to the pre-update state. After the

disconfirming feature update, the software thus becomes more useful to achieve present and

future tasks. Consequently, this will increase users’ intentions to continue using the updated

software (CI).

Updates and the Role of Update Frequency and Update Type 88

Being a welcomed and surprising ‘gift’ from the vendor, the positive disconfirmation from

feature updates will also reflect in the affective component of the IS continuance model. Users

who receive a free update that improves the software with which they work will be more

satisfied (SAT) than users who do not receive such a pleasant update (Bhattacherjee and

Barfar 2011). These higher levels of satisfaction will also make it more likely that users will

return to the updated software for future tasks (CI).

The previously discussed PEoU should, however, not be involved in this mediation

mechanism. While additional features from updates extend the functionality of a software and

thus increase its usefulness, added features do usually not change the user interface or the

overall interaction with the program. They are thus not expected to affect the ease of use of

the updated program (Karahanna et al. 1999). To summarize, software updates affect users’

continuance intentions (CI) through a causal chain of effects that conditionally originates

from the positive disconfirmation of unexpectedly receiving additional functionality during

usage (DISC) and is subsequently mediated by perceived usefulness (PU) and satisfaction

(SAT). We thus derive our moderated mediation-hypotheses:

H3a: Software updates increase continuance intentions because they positively disconfirm

users’ expectations regarding the software only when they deliver additional functionality.

H3b: Positive disconfirmation from receiving additional features through updates leads to

higher continuance intentions by increasing perceived usefulness and satisfaction.

Our theorizing about the impact of software updates on users’ continuance intentions is

summarized by the moderated multiple-mediation model shown in Figure 4-1.

Figure 4-1: Research Model

Updates and the Role of Update Frequency and Update Type 89

4.4 Method

4.4.1 Experimental Design

With the goal to examine the effects of software updates on users’ CI as suggested by our

hypotheses, we opted for a laboratory experiment that allowed us to investigate and isolate the

causal mechanisms that operate between software updates and attitudinal user reactions. Even

though this laboratory setting comes with the downsides of a simplified experimental task and

a limited time span of observable usage, it also allows for an accurate identification of the

hypothesized effects which we consider as crucial given that this study is the first to explore

the effect of software updates on users’ continuance intentions. A second reason for choosing

an experiment was the indication from theory that, working through affect, the core

mechanism behind our proposed effect of feature updates might be outside of their awareness,

which made a cross-sectional survey with self-reported measures less suitable. Third, the

experimental setting enabled us to account for the claims of numerous continuance

researchers to put the IT artifact more at the center of investigation in post-adoption research

by using an IS as basis for manipulations.

We thus conducted a posttest-only 2x2 full-factorial between-subjects laboratory experiment

with manipulations of update type (feature update vs. non-feature update), update frequency

(low frequency vs. high frequency) and a hanging control group (no update) (Malaga 2000;

Irmak et al. 2005; Hoffmann and Broekhuizen 2009). 135 participants were recruited at a

large public university in Germany to evaluate the impact of software updates on the user’s

DISC, PU, SAT and CI. The participants used a word-processing program (‘eWrite’) with a

simplified user interface that was developed and tailored to the purposes of this experiment to

complete a text formatting task. All experimental groups started with the same software

configuration including one feature. The hanging control group (group A) did not receive any

updates during the time of the experiment. The first treatment group (B) received three non-

features in one update package in the same time span. The second treatment group (C)

received three features in one update package. The third treatment group (D) received the

same non-features as group B, only spread out over the experimental time span in three

individual updates. Lastly, the fourth treatment group (E) received three features in three

individual updates spread out over the experimental time span. Figure 4-2 illustrates the

experimental implementation.

Updates and the Role of Update Frequency and Update Type 90

Figure 4-2: Experimental Setup, Groups, and Treatments

4.4.2 Manipulation of Independent Variables

In our experiment, we used a word-processing program for two reasons: Our first criterion

was ensuring a basic familiarity with the program of choice for all participants. Because

nowadays almost any young person, especially students, needs to work with word-processing

programs, we considered this criterion to be met.
8
 Second, to minimize unwanted variance in

our response data, we were looking for software features that are preferably value-free,

equivalent
9
, and independent (i.e., modular). We used a total of four text formatting features

in our word-processing system context: 1) font size, 2) font style, 3) font, and 4) text

alignment, and three non-feature updates: 1) improvement of program stability, 2) elimination

of a security gap in the program, and 3) improvement of program speed. By adding new text-

formatting functionalities the feature updates were directly related to the experimental task. In

contrast, the non-feature updates were not related to the task. They did not change the

program at all but only consisted of a notification explaining their alleged content. This

implementation was chosen to properly resemble the experience that many users have in

8
 Section 4.4.4 shows that this assumption is clearly met in our sample, as the vast majority of our participants

indicated a regular use of word-processing programs and reported high levels competence in the use of word-

processing programs.

9
 The scope and importance of the four text formatting functionalities in groups A, C and E for completing the

experimental task were held constant in order to avoid potential confounding effects emerging from the nature of

the updates’ contents. The functional equivalence of the individual feature updates for the text formatting task

had been validated in a pre-test study with 52 subjects that were recruited using WorkHub, a crowdsourcing

platform similar to Amazon Mechanical Turk (Paolacci et al. 2010). The subjects participated online for a small

payment. No significant differences emerged among the four text-formatting features (all t < 1).

Updates and the Role of Update Frequency and Update Type 91

practice when receiving non-feature updates (section 4.2.1). The available time for task

completion was 20 minutes. In condition B, participants simultaneously received the three

non-features in one update ten minutes after having started to work on the task. In condition

C, participants simultaneously received features 2, 3, and 4 after ten minutes. In the condition

D, participants received the first non-feature update after five minutes, the second non-feature

update after ten minutes and the third non-feature update after fifteen minutes. In the

condition E, participants received the first feature update (with feature 2) after five minutes,

the second feature update (with feature 3) after ten minutes and the third feature update (with

feature 4) after fifteen minutes. Participants in each group were informed about updates via a

pop-up notification window at the center of the screen. It contained a brief explanation of the

update’s content and required them to confirm the update by clicking an ‘Ok’ button before

they could proceed with their experimental task. After confirming the notification,

participants in the feature-update conditions (C and E) could immediately use the new

features. The notification had been included in order to ensure awareness of the software

update. Figure 4-3 provides examples of the user interface.

 Non-feature Update Feature Update

L
o

w
 U

p
d

at
e

F
re

q
u

en
cy

Group B (1 Update with 3 Non-features) after 10 min.

Group C (1 Update with 3 Features) after 10 min.

Updates and the Role of Update Frequency and Update Type 92

Figure 4-3: Sample Screenshots of Text Editor.

The simplifications in functionality and user interface of our experimental software were

made on purpose and followed similar IS studies (e.g., Murray and Häubl 2011). This

simplified setting enabled us to establish a controlled environment and unmistakably ascribe

any observed changes in the dependent variables (DISC, PU, SAT, CI) directly to our

experimental treatments. Nonetheless, such simplifications might also have some downsides.

In our case, the participants’ evaluations of the experimental word-processing program might

have been diminished by associations with widely known, real programs such as Microsoft

Word, which are much more refined and feature-rich. In order to mitigate this unwanted

effect, we confronted the participants with a hypothetical scenario. Participants were asked to

imagine that they were in 1980 and only word-processing programs with similar, basic

functionalities were available. To support participants’ imagination of this hypothetical

scenario, an image of an old computer was positioned below the instructions, since images

attract attention and are remembered better than just text (Levin 1981).
10

The text which had to be formatted in the experimental task was a historical text about the

Industrial Revolution. We consider this type of text, just like the program features, to be a

‘neutral’, objective one, compared for example to a newspaper article about a current event,

which is often an emotive one. Furthermore, the text was long enough—as a pilot test

showed—to keep the participants busy throughout the entire twenty minutes. Thus, we

ensured that the participants could not complete their task too quickly and might have had to

wait, which could have confounded our results. The participants were also instructed that they

10

 As the experiment’s results show (see 4.5.1), the application of this vignette-like scenario seems to have been

successful because the majority of subjects reported that they were able to put themselves into this hypothetical

setting.

H
ig

h
 U

p
d

at
e

F
re

q
u

en
cy

Group D (3 Non-Feature Updates) after 5 min.

Group E (3 Feature Updates) after 5 min.

Updates and the Role of Update Frequency and Update Type 93

did not need to format the entire text, but to focus on the formatting quality, which in turn

fostered the comprehensive use of all available program features.

A pilot test with 12 subjects was conducted to ensure that all of the treatments were

manipulated according to the experimental design (Perdue et al. 1986). Specifically, subjects

were asked about the functional equivalence of the individual updates, ease of use of the text-

formatting editor and comprehensibility of instructions and items. Feedback and suggestions

were obtained from participants after they had completed the pre-test experiment. The word-

processing program and the questionnaire were accordingly revised for the main test.

4.4.3 Measures

Dependent Variables

We used validated scales with minor wording changes for all constructs, capturing the core

part of the IS continuance model (DISC, PU, SAT, CI) (Bhattacherjee 2001). Measures for CI

and DISC were adapted from Bhattacherjee (2001). Measures for PU and SAT were based on

Kim and Son (2009). The questionnaire items are provided in Appendix A. Because

constructs were measured with multiple items, summated scales based on the average scores

of the multi-items were used in group comparisons (Zhu et al. 2012). Unless stated otherwise,

the questionnaire items were measured on 7-point-Likert-scales anchored at (1)=strongly

disagree and (7)=strongly agree.

To better understand the nature of disconfirmation from receiving the software updates in the

four experimental conditions, we additionally applied a qualitative approach. This was done,

in order to understand not only if expectations regarding software updates were confirmed or

disconfirmed, but also for what reason. We asked participants in group B, C, D and E to first

describe (i.e., to typewrite) how they felt when they received updates and, second, what they

thought at that moment. We consider this combination of quantitative and qualitative

measurement in this initial experimental study important to get a more complete picture of

how updates may influence users’ DISC, PU, SAT and CI by using the advantages of both

measurement types (Venkatesh et al. 2013).

Control Variables

In our study, we included a set of control variables as well as the subjects’ demographics as

covariates to isolate the effects of the manipulated variables. Specifically, we controlled for

the impact of usage intensity of word-processing programs in real life, frequency of updates

in real life for productivity software/entertainment software and desktop

Updates and the Role of Update Frequency and Update Type 94

computer/smartphone/tablet and computer self-efficacy (Marakas et al. 2007) on CI. We did

this because previous research has repeatedly shown that past experiences and expertise with

an information system can affect post-adoption beliefs, attitudes and behaviors (Venkatesh

and Davis 2000; Jasperson et al. 2005; Kim and Malhotra 2005; Kim and Son 2009) and we

wanted to avoid cofounding effects to our results from this. We also controlled for PEoU. As

outlined before, PEoU has been identified as major driver of usage intentions but should lose

its impact in the later stages of usage which we investigate (post-adoption). Nonetheless we

sought to ensure that none of our results were cofounded by this variable. Furthermore, we

examined participant’s motivation to process information with one item (Suri and Monroe

2003), because this variable may also influence the response behavior of the participants and,

thus, the validity of the results. After conducting the experimental task, participants were

asked to what extent they had understood the items’ formulation and to what extent they were

able to put themselves in the hypothetical situation described in the experimental task.

Finally, we included three control questions about the experimental treatments (Appendix B).

4.4.4 Participants, Incentives and Procedures

135 participants were recruited from the campus of a large public university at Germany.

Each subject received 5€ for participating in the lab experiment. In order to align their

motivations to properly fulfil the experimental task, 3 x 50€ Amazon vouchers and an iPad

Mini were announced as rewards for the four most appealingly edited texts. Three participants

were excluded from the sample based on the control questions. We therefore used a sample of

132 subjects in the following analysis. Of the 132 subjects, 70 were females. The participants’

age ranged from 19 to 56, with an average value of 23.47 (σ=4.20). 125 participants were

university students, five were employees and one was self-employed. One participant refused

to state his occupation. The educational backgrounds of the participants were diverse,

including physics, education, journalism, law, medical science, biology, engineering,

sociology etc. 6.1% of the subjects (n=8) use word-processing programs less than one hour

per month, 31.8% from one up to five hours (n=42), 40.9% between five and 30 hours (n=54),

and 20.5% more than 30 hours per month (n=27). One participant refused to state his word-

processing program usage.

When participants arrived at the laboratory, they were randomly assigned to a

treatment/control group. All instructions were presented on the computer screen in order to

reduce the interaction with the supervisor of the experiment. In order to ensure comparable

initial conditions, participants were further presented with a program tutorial (a program

Updates and the Role of Update Frequency and Update Type 95

screen similar to that of the actual experimental task). In this tutorial, the initially available

features (depending on the experimental condition) were presented and each one was

explained in a text bubble. Before they could proceed, all participants had to try out each

available feature at least once by formatting a short sample text, ensuring that each participant

had understood the program’s functionality. On the next two screens, the actual experimental

scenario and task, the time available to complete the task, and the results-based incentives

were introduced. After having read these instructions, the participants could manually start the

actual experimental task by clicking on a button. After having worked 20 minutes on the

experimental task, participants had to complete a paper based questionnaire, which contained

the measurement of all dependent variables (quantitative and qualitative), all control variables

such as motivation to process information and perceived ease of use, the control questions and

demographic variables such as gender and age. Finally, they were compensated for their

participation and debriefed.

4.5 Data Analysis and Results

4.5.1 Control Variables and Manipulation Check

Based on the results of a series of Fisher’s exact tests, we could conclude that there was no

significant difference across the four experimental conditions and the hanging control group

in terms of gender (p>0.1), age (p>0.1), intensity of using word-processing programs (p>0.1),

as well as frequencies of the received updates (desktop/productive: p>0.1;

desktop/entertainment: p>0.1; smartphone/productive: p>0.1; smartphone/entertainment:

p>0.1; tablet/productive: p>0.1; tablet/entertainment: p>0.1). Furthermore, based on a series

of ANOVA tests, we found no significant differences across the four experimental conditions

and the control group regarding the task-relevant control variables perceived ease of use

(F=1.395, p>0.1), motivation to process information (F=1.233, p>0.1) and items’

formulations (F=0.783, p>0.1), the extent to which subjects were able to put themselves in the

hypothetical situation described in the experimental task (F=0.382, p>0.1), understanding of

the goals of the experiment (F=0.998, p>0.1) and liking of the utilized text (F=0.603, p>0.1).

It is therefore reasonable to conclude that participants’ demographics and task-relevant

controls were homogeneous across the four conditions and the control group and thus did not

confound the effects of our experimental manipulations.

To examine whether our experimental treatments worked as intended, a separate manipulation

check study was performed with 27 other participants from the same population (Shu and

Carlson 2014; Zhang et al. 2014). The subjects performed the identical experimental task as

Updates and the Role of Update Frequency and Update Type 96

the participants of the main study, but answered questions regarding the manipulations instead

of the questionnaire of the main study (Yin et al. 2014; Appendix C). Participants in the

frequent update conditions indicated significantly higher levels of perceived frequency

(Mhigh=5.272) than in the low update frequency conditions (Mlow=2.500; F=16.204, p<0.01).

Moreover, participants in the feature update conditions indicated significantly higher levels of

perceived helpfulness for task completion (Mvery=5.000) than in the non-feature update

condition (Mnot=1.364; F=44.693, p<0.01). Overall, the results from our manipulation checks

suggest that our experimental treatments were successful.

Prior to testing the hypotheses, we also evaluated the control questions of the main study. As

mentioned above, in three observations wrong conditions were stated. This led to the

exclusion of those cases from the final sample (one subject had wrongly ticked all control

questions, one subject had stated the wrong frequency of updates and one subject claimed to

have received an update despite being in a group that did not receive any updates).

4.5.2 Measurement Validation

Because we adopted established constructs for our measurement, confirmatory factor analysis

(CFA) was conducted to test the instrument’s convergent and discriminant validity for the

dependent variables (Levine 2005). Table 4-1 reports the CFA results using SmartPLS,

version 2.0 M3 (Chin et al. 2003; Ringle et al. 2005) for the core constructs.
11

11

 For brevity, we omitted items and/or detailed scale characteristics for computer self-efficacy and other control

variables. These scales also satisfied the criteria regarding Cronbach’s Alpha, AVE and Cross Loadings. Items

and respective scale specifications can be obtained from the authors upon request.

Updates and the Role of Update Frequency and Update Type 97

Table 4-1: Results of Confirmatory Factor Analysis for Core Variables

Variables Number

of

Indicators

Range of

Standardized

Factor

Loadings*

Cronbach’s

Alpha

Composite

Reliability

(ρc)

Average

Variance

Extracted

(AVE)

Continuance Intention (CI)
3

0.826 –

0.904
0.850 0.909 0.770

Satisfaction (SAT)
3

0.920 –

0.965
0.937 0.960 0.889

Perceived Usefulness (PU)
3

0.910 –

0.916
0.902 0.938 0.835

Disconfirmation (DISC)
3

0.837 –

0.887
0.823 0.894 0.738

Perceived Ease of Use

(PEOU)
3

0.673 –

0.866
0.736 0.840 0.640

Note: * All factor loadings are significant at least at the p<0.01 level

The constructs were assessed for reliability using Cronbach’s alpha (Cronbach 1951). A value

of at least 0.7 is suggested to indicate adequate reliability (Nunnally et al. 1994). The alphas

for all constructs were well above 0.7. Moreover, the composite reliability of all constructs

exceeded 0.7, which is considered the minimum threshold (Hair et al. 2011). Values for AVEs

for each construct ranged from 0.738 to 0.889, exceeding the variance due to measurement

error for that construct (that is, AVE exceeded 0.5). Thus, all of the constructs met the norms

for convergent validity. In addition, for satisfactory discriminant validity, the square root of

average variance extracted (AVE) from the construct should be greater than the variance

shared between the construct and other constructs in the model (Fornell and Larcker 1981).

As seen from the factor correlation matrix in Table 4-2, all square roots of AVE exceeded

inter-construct correlations, providing strong evidence of discriminant validity. Hence, the

constructs in our study represent concepts that are both theoretically and empirically

distinguishable.

Updates and the Role of Update Frequency and Update Type 98

Table 4-2: Means, Standard Deviations, and Correlation Matrix for Core Variables

Latent construct M SD 1 2 3 4 5

(1) Continuance

Intention (CI)

5.690 1.448 0.877

(2) Satisfaction (SAT) 4.112 1.829 0.499*** 0.888

(3) Perceived

Usefulness (PU)

4.130 1.569 0.495*** 0.741*** 0.835

(4) Disconfirmation

(DISC)

3.822 1.450 0.471*** 0.630*** 0.673*** 0.859

(5) Perceived Ease of

Use (PEoU)

5.631 1.364 0.327*** 0.461*** 0.617*** 0.361*** 0.800

Note: Bolded diagonal elements are the square root of AVE. These values should exceed inter-

construct correlations (off-diagonal elements) for adequate discriminant validity; ***p<0.01,

**p<0.05, *p<0.1.

4.5.3 Hypotheses Testing

In order to test our hypotheses, we conducted one-way ANOVAs with planned contrast

analyses with IBM SPSS Statistics 23. Table 4-3 presents the mean values of the dependent

variables for groups A, B, C, D and E.

Table 4-3: Mean Values for Dependent Variables

 No Update,

One Feature

(A), n=26

(Control)

One Non-

Feature

Update (B),

n=26

One Feature

Update (C),

n=27

Three Non-

feature

Updates (D),

n=26

Three

Feature

Updates (E),

n=27

DISC 3.141 3.295 4.383 3.269 4.852

PU 3.603 3.731 4.321 3.795 5.062

SAT 3.718 2.923 4.716 3.500 5.506

CI 5.256 5.141 5.876 5.795 6.395

Table 4-4 presents the deviations of the mean values of these dependent variables from the

hanging control group (A), which received no update during usage.

Updates and the Role of Update Frequency and Update Type 99

Table 4-4: Mean Differences from Baseline (No Updates, Control Group A) and Significance

Levels

 B-A C-A D-A E-A

DISC 0.154 1.242*** 0.128 1.711***

PU 0.128 0.719** 0.192 1.459***

SAT -0.795* 0.998** -0.218 1.788***

CI -0.115 0.620* 0.539 1.139***

Table 4-5 provides the mean differences between feature and non-feature update treatment

groups with low update frequency (C-B) and high update frequency (E-D).

Table 4-5: Direct Comparisons of Update Types

 C-B E-D

DISC 1.088*** 1.583***

PU 0.590* 1.267***

SAT 1.793*** 2.006***

CI 0.735** 0.600**

Correspondingly, Table 4-6 presents the mean differences between low-frequency updates

and high-frequency updates for feature updates (E-C) and non-feature updates (D-B).

Table 4-6: Direct Comparisons of Update Frequencies

 E-C D-B

DISC 0.469* -0.026

PU 0.741* 0.064

SAT 0.790** 0.577

CI 0.519* 0.654**

Because participants were randomly assigned to one of the experimental groups and

everything except the treatment was held constant across the groups, any of the observed

differences between the groups regarding the dependent variables can be ascribed to our

update treatments. In hypothesis 1a, we claimed that software that receives additional

functionality via feature updates will induce higher user CI compared to software that does

not receive updates. The experiment’s results indicate that on average, participants’ CI in

Updates and the Role of Update Frequency and Update Type 100

groups C (one feature update) and E (three feature updates) was significantly higher than

participants’ CI in group A (no updates). This can be seen from Table 4-4 (C-A, E-A). This

result is further supported by the significant differences between the different update types

found from the comparisons between groups B and C (C-B) as well as D and E (E-D). Table

4-5 shows these. Hence, hypothesis 1a is supported.

Moreover, hypothesis 1b posits that users prefer a high-frequency delivery of feature updates

over a low-frequency delivery. As hypothesized, our results in Table 4-6 (see E-C) show that

a high update frequency (i.e., three individual feature updates in the given timeframe; group

E) was perceived more positively than the low update frequency condition (i.e., group C with

one update comprising three features) in terms of CI. Hence, hypothesis 1b is supported.

With hypothesis 2a, we addressed the impact of non-feature updates on CI, claiming that

users in these conditions (groups B and D) would not have a significantly higher CI compared

to users in the no update condition (group A). In support of hypothesis 2a, the experiment’s

results in Table 4-4 indicate that on average, participants’ CI in groups B and D was not

significantly different from group A (B-A, D-A).

Hypothesis 2b claims that there is no difference in the users’ perception between low-

frequency and high-frequency non-feature updates terms of CI. Contrary to hypothesis 2b,

participants showed on average higher levels of CI in the high-frequency non-feature update

condition, compared to the corresponding low-frequency non-feature update condition (Table

4-6, D-B). It should however be noted that this does not mean that high-frequency non-feature

updates have an overall positive effect (see supported hypothesis 2a). Moreover, other mean

differences in CI that were found significant (Tables 4-6) were accompanied by significant

changes in DISC, PU and SAT. This is not the case here (Table 4-6, D-B).

In order to test our mediation hypotheses (hypothesis 3a and 3b) a serial multiple mediator

analysis (Hayes 2013) was performed on a sub-sample that comprised groups A and E
12

(n=53). To analyze the mediating effects of DISC, PU and SAT, we used PROCESS, a

regression-based approach developed by Hayes (2013). PROCESS uses bootstrapping

procedures for estimating direct and indirect effects. Figure 4-4 and Table 4-7 provide an

overview of the analyzed conceptual model with direct and indirect paths. As recommended

12

 Group E was selected for analysis over group B because the condition (with three updates) better resembles a

real world situation of repeatedly and frequently updated software.

Updates and the Role of Update Frequency and Update Type 101

by Hayes (2013), path coefficients are unstandardized because the independent variable

(feature updates) is dichotomous. The results reveal that only the two indirect effect paths (1,

4) from high-frequency feature updates via DISC to CI and via DISC, PU and SAT to CI were

significant. Moreover, the direct effect of feature updates on users’ CI became insignificant

after inclusion of the complete path, suggesting at least partial mediation (Hayes 2013).

Hence, hypothesis 3a is fully supported. The significant effects of PU and SAT moreover

support hypothesis 3b. The existence of path 1 (i.e., the direct connection between DISC and

CI) was, however, not predicted by theory.

Figure 4-4: Mediation Analysis for Groups A and E

Table 4-7: Results from Serial Multiple Mediation Analysis, Groups A and E

Indirect effect paths Effect z Boot SE LLCI ULCI

(1) Feature Updates DISC CI 0.709 0.444 0.053 1.885

(2) Feature Updates DISC PU CI 0.014 0.266 -0.451 0.657

(3) Feature Updates DISC SAT CI 0.166 0.159 -0.012 0.660

(4) Feature Updates DISC PU SAT

 CI

0.159 0.126 0.037 0.555

(5) Feature Updates PU CI 0.002 0.074 -0.145 0.186

(6) Feature Updates PU SAT CI 0.021 0.056 -0.053 0.217

(7) Feature Updates SAT CI 0.094 0.144 -0.076 0.564

Note: Bootstrapping results for indirect paths; We conducted inferential tests for the indirect

effect paths based on 1.000 bootstrap samples generating 95% bias-corrected bootstrap

confidence intervals (LLCI=Lower Limit/ULCI=Upper Limit of Confidence Interval), n=53.

Finally, and complementary to the quantitative data, results from the collected qualitative data

revealed that participants in group B reported the following feelings: “I was confused and felt

unsure. I did not know what to do”, “I was confused because the update did not bring evident

changes”, while participants in group D reported the following: “[…] At first I was surprised

and happy, but then every time I hoped for new features. That was very disappointing then”,

Updates and the Role of Update Frequency and Update Type 102

“surprised, annoyed and disturbed”. In contrast participants in group C and E felt “pleasantly

surprised”, “happy, that now more options are available to edit the text”, and also “confused,

delighted, overstrained, satisfied”, as well as “surprised, because of unexpectedness”. This

difference in the perception of updates between the treatments is also reflected in what

participants thought. While participants’ predominant statements in group B were mirrored by

the following statements: “[…] Bug fixing is mostly not evident to me as a user. Therefore the

question of meaningfulness rises. Was the update necessary?” and in group D by the

following: “They interrupted my work and only security issues were fixed. No new

functionality was added”. A different opinion tendency could be observed in group C and E:

“The use of new features provides better results, but requires somewhat more time” and “Now

I can better structure the text, what will be the next update?” These qualitative findings

confirm and further illustrate the reported quantitative results regarding the positive effect of

feature updates on DISC, PU and SAT and the disturbing effect of non-feature updates that

fail to deliver useful functionality. Such updates seem to leave participants confused,

particularly in low frequency settings. These participants’ statements can be considered as

representative for groups B, C, D and E respectively, as our detailed analysis of all statements

has revealed.

4.6 Discussion

This study sought to achieve three main objectives: (1) to examine the effects of software

updates on users’ intentions to continue using an information system (i.e., whether there is a

discernible effect from updates), (2) to investigate crucial moderators of this effect (i.e., when

there is an effect from updates and when not), and (3) to unravel the explanatory mechanism

through which such an effect occurs (i.e., how such an effect from updates operates). To

achieve these objectives, we drew on the IS continuance model that is embedded in the

expectation-confirmation theory and investigated our hypotheses based on a controlled lab

experiment.

Drawing on the advantages of the experimental method, which allows to isolate the effects of

manipulated stimuli on user responses from other confounding variables and thus to unveil

causal relationships, we found that receiving software updates during usage can significantly

alter users’ intentions to continue or discontinue using an IS—a finding that complements

existing post-adoption research that has previously often assumed monolithic IS which remain

static over time (Bhattacherjee and Premkumar 2004; Kim and Malhotra 2005). However, our

analysis also revealed that not all software updates exert this effect. Only in the feature-update

Updates and the Role of Update Frequency and Update Type 103

conditions (groups C and E) CI was significantly higher than in the non-update condition

(control group A). Non-feature updates (groups B and D) could not increase users’ CI

compared to the no-update condition (control group A). This significant increase in CI in

groups C and E also persisted when compared to the non-feature update conditions (groups B

and D), identifying update type as a distinct and crucial moderator to the effect of software

updates on CI.

Receiving a helpful feature through an update was viewed by participants in groups C and E

as direct benefit, enabling them to better accomplish their text formatting task. This positive

response persisted despite the drawbacks which were associated with the updates. Update

notifications interrupted the participants in their workflow and since they received these

additional features only during use (5, 10 or 15 minutes after they had started their text-

formatting task), some of the formatting work which they had done prior to the update had to

be redone to apply the new features. Since they were unrelated to the text-formatting task and

did not have any direct or immediate relevance, non-feature updates were not viewed as

beneficial by participants.

Furthermore, our experiment also found significant differences between the two feature-

update conditions (groups C and E), identifying update frequency as second crucial moderator

to the effect of software updates on users’ CI. Participants in group E showed significant

higher scores of CI compared to group C, despite the fact that both groups received the same

type and amount of features through updates. This particular finding seems counter intuitive

at first. Even though participants in group E received the first additional feature 5 minutes

earlier than group C, they received their third additional feature 5 minutes later than group C,

eradicating any advantage from earlier access to some functionality. Participants in group E

were even interrupted in their workflow more often (three times, i.e. every 5 minutes) than

group C (only once, i.e. after 10 minutes) and additionally had to repeatedly cope with

changes in the text-editing software (three times, i.e. every 5 minutes).

In our further analysis of the participants’ positive response to feature updates, we could

demonstrate that this effect was mediated by user’s DISC, PU and SAT. Groups C and E

seemingly perceived the feature updates as unexpected, positive events during their usage,

which exerted a positive disconfirmation of their initial expectations regarding the used text-

editing software. These additional features subsequently also lead to a higher perceived

usefulness. This in turn increased user satisfaction and ultimately concluded this causal chain

of effects by leading to higher intentions to continue using the program for future text-

Updates and the Role of Update Frequency and Update Type 104

formatting tasks. Considering the previously discussed roles of update type and update

frequency, we thus identified a moderated mediation mechanism through which updates that

deliver additional features increase users’ continuance intentions. Our mediation analysis

confirms the explanatory power of Bhattacherjee’s (2001) IS continuance model—even in

complex post-adoption settings where users’ beliefs and attitudes fluctuate over time

alongside changes in the system characteristics of the employed IS.

4.6.1 Implications for Research

The paper makes three primary contributions to the literature. First, our overarching

contribution lies in the extension of the predominant view of information systems in

postadoption literature from a mostly monolithic and static one to a finer-grained and more

dynamic perspective by showing how an alterable and malleable information system might

influence users’ attitudes and behaviors over time. In doing so, we answer several calls of IS

scholars (e.g., Jasperson 2005; Benbasat and Barki 2007 etc.) to consider the granularity of

information systems in research studies and how IS evolve over time. As such our study

offers a novel complement to the existing IS post-adoption literature by showing that user

attitudes and behaviors change, as the IT artifact’s nature and composition evolves over time

through software updates. Our second main contribution lies in the detection of a positive user

reaction to software updates. Specifically, delivering software features to users through

updates during usage can increase their intentions to continue using the information system.

We investigate this effect in great detail by identifying update type and update frequency as

crucial moderators. Regarding update type, our findings imply that only feature updates can

exert this effect. Due to their insufficient level of usefulness for task completion, non-feature

updates cannot induce a similar positive user response. Aside from update type, we found that

update frequency is a crucial moderator to the identified positive effect of feature updates

such that users prefer the frequent delivery of individual features over bundling them in larger

update packages and delivering them less frequently. Our third contribution consists in

shedding light on the explanatory mechanism behind the identified effect of software updates

on CI. Specifically, we found that the positive effect of feature updates on CI involves both,

the cognitive (PU) and the affective component (SAT) of the IS continuance model and

originates from a positive disconfirmation of expectations (DISC). DISC, which starts this

causal mediation chain, furthermore consists of two crucial components: unexpectedness and

a positive experience. While unexpectedness is the necessary condition, its occurrence alone

is not enough for DISC to occur (see non-feature update conditions, groups B and D). In order

to initiate the mediation chain which leads to an increase in CI, software updates need to be

Updates and the Role of Update Frequency and Update Type 105

perceived as helpful by the users (see feature update conditions, groups C and E). This makes

a positive experience the second crucial component of DISC and identifies it as the sufficient

condition for initiating this mediation mechanism.

4.6.2 Implications for Practice

Our results also have important implications for practice. First, despite the extensive use of

software updates by vendors to maintain, alter and extend their products after they have

already been rolled out, it is surprising to find that insights on how these updates are

perceived and evaluated by users are still scarce. This apparently leaves practitioners puzzled

and without guidance. From the results of our experimental study we can conclude that it

might be advisable for vendors to distribute software functionality over time via updates,

because feature updates can induce a positive state of surprise, which, in turn, increases users’

CI. For vendors, users with a high CI are a particularly desirable goal because these are the

loyal, returning customers who ensure the long term profitability of their businesses in the

highly competitive software industry. Moreover, a high CI is particularly important for the

increasing share of subscription-based business models in the software industry (Veit et al.,

2014). However, while the identified positive effect of feature updates seems to be a useful

measure for software vendors to keep their customers satisfied and ‘on board’, it also needs to

be well understood and correctly applied in order to achieve the desired outcomes. Software

vendors should be aware of the fact that the discussed positive effect of updates can only be

achieved with feature updates. Updates must deliver actual useful functionality for users.

Non-feature updates may even have the potential to diminish CI, when they are perceived as

unsolicited interruptions in the workflow. Vendors should therefore have a clear

understanding which updates are perceived as really useful by users and which ones not. The

findings of this study also reveal that vendors should spread the delivery of features over

several individual updates instead of bundling them in one larger update package that delivers

them all at once. Each individual update that delights users with new functionality can induce

its own unexpected, positive experience. In sum, these individual experiences seem to

supersede the impact of a larger update package containing the same set of features. Finally,

for vendors, our findings highlight an additional benefit from using a modular architecture for

their software. Aside from flexibility in the development, a modular architecture is beneficial,

because features that are encapsulated in discrete modules are technically easier to deliver as

updates and can be integrated easily in existing systems that are already being used.

Updates and the Role of Update Frequency and Update Type 106

4.6.3 Limitations and Future Research

Four limitations of this study are noteworthy and provide avenues for future research. First, in

our experiment, we utilized a self-developed, simplified word-processing program with

homogeneous and functionally equivalent features and a single measurement at the end of a

predefined usage time in order to reduce confounding effects and isolate the impact of

updates. Nevertheless, research settings with repeated updates and participants’ evaluations

measured at several points in time could help to understand the identified user reactions even

better. Moreover, to increase generalizability and to better resemble real-world update

practices of software vendors, future studies could investigate more complex word-processing

programs and specify the identified moderators (e.g., tipping points in frequency) even more

precisely. They could further distinguish between different types of feature updates (e.g.,

common features, extraordinary features), different types of update notifications (e.g., no

notification, unobtrusive notifications, obtrusive notifications), different initial feature

endowments, if information about updates already plays a role in the software selection

decision (e.g., before usage vs. after usage) or what effect update packages consisting of

features and non-features and the specific composition of such bundles could have. Second, to

avoid that an existing positive effect of feature updates on CI might remain undiscovered due

to our experimental program’s simplified feature set, we put participants in the hypothetical

situation of a market where feature-rich and refined programs such as Microsoft Word or

Open Office were not available. Although our subjects could reportedly put themselves well

into this scenario, future research should replicate our findings by using a research design

without a hypothetical scenario.
13

 Third, the positive effect of feature updates on users’ CI

was shown to work for productivity software (word-processing). Future research is

encouraged to show whether the same effect occurs also for hedonic (e.g., entertainment)

software. Because this positive effect of feature updates occurred in software with a low

affective quality (word-processing), we are confident that it might have an even stronger

impact on CI for entertainment software, which is per se more emotionally charged. Finally,

we conducted a controlled laboratory experiment with the purpose to make a first step

towards exploring the causal effect of software updates for information systems continuance,

thus presenting results with a high internal validity. Future studies are encouraged to

13

 It should, however, also be noted that in the case of this study, these simplifications with regard to task and

time are not necessarily a disadvantage for the generalizability of its results: As participants showed the

hypothesized positive responses to updates even in our artificial setting, they might be even more likely to show

these responses in a real world usage scenario.

Updates and the Role of Update Frequency and Update Type 107

complement the initial findings of this study by conducting longitudinal field experiments or

case studies, in order to advance the external validity of our findings.

4.6.4 Conclusion

Software updates have become a pervasively used instrument of vendors to maintain, alter

and extend their products over time. However, despite their prevalence in private and business

IT usage contexts, software updates’ effects on user reactions in the IS post-adoption context

have remained largely unexplored. This study is not only the first to demonstrate that software

updates have the potential to increase users’ CI; it also reveals update type and update

frequency as crucial moderators. Specifically, the identified positive effect on CI can be

elicited only by functional feature updates and users prefer a high update frequency.

Furthermore, this study explains the underlying mechanism of why and how software updates

influence users’ CI. In summary, it represents an important first step towards better

understanding how software updates affect user reactions over time and may therefore serve

as a springboard for future studies on software updates in the context of IS post-adoption

research.

Updates and the Role of Update Frequency and Update Type 108

Updates and the Role of Delivery Strategy and Update Type 109

Chapter 5: Updates and the Role of Delivery

Strategy and Update Type

Title: Seamless Updates – How Security and Feature Update Delivery Strategies

Affect Continuance Intentions with Digital Applications

Authors: Tillmann Grupp, Technische Universität Darmstadt, Germany

Schneider, David, Technische Universität Darmstadt, Germany

Published in: European Conference on Information Systems (ECIS 2017), Guimarães,

Portugal.

Abstract

Although updates have become the rule rather than the exception in modern digital

ecosystems, to date they have received little attention in the IS post-adoption literature. We

therefore draw on the IS continuance literature and expectation-confirmation theory to

investigate, how different delivery strategies of security and feature updates impact users’

continuance intentions (CI). Based on an online-experiment with 282 participants, we find a

positive effect of security updates on users’ CI only if users are notified after successful

implementation. Feature updates, in contrast, elicit a positive effect on users’ CI if they are at

least announced before or after successful implementation. We also find that this positive

effect of ex-ante announced feature updates diminishes if users have the choice to consume

the update or not. In essence, our findings contribute to IS research by extending the mostly

monolithic view of information systems by showing how an alterable information system

might influence users’ attitudes and behaviors during use. For practitioners, we show that it

seems to be beneficial to inform users about updates, even though a silent integration has

become possible with modern digital ecosystems, and that updates should be applied

consistently. Directions for further research are discussed.

Keywords: Feature Updates, Security Updates, Delivery Strategies, IS continuance, IS post-

adoption, Expectation-Confirmation Theory

Updates and the Role of Delivery Strategy and Update Type 110

5.1 Introduction

In most modern software ecosystems, where updates have become the rule rather than the

exception, providers have strived for making the update process as integrated and unobtrusive

as possible. Recently, with its newest release of the multi-device platform Android, Google

has even announced to introduce ‘seamless updates’ (Samat, 2016). This is an update strategy,

where updates are downloaded and installed completely in the background, without affecting

application usage. Software updates, in this context, are no discrete and standalone programs

themselves but are rather integrated into the base software to modify, extend or alter it, once

they are applied to it (e.g., Dunn, 2004). From a user’s perspective, two major update types

delivering either additional functionality or security enhancements may be distinguished.

Feature updates deliver additional functionality that extends the software with respect to its

core purpose and are thus noticeable by users. Security updates remove potential

vulnerabilities or enhance the software’s security and only indirectly and unobservable add

value to the software (Ng et al., 2009). Fostering and maintaining secure behavior is a major

topic in IS (Steinbart et al., 2016; Liang and Xue, 2010), which includes promoting the

application of such updates. If updates are rolled out to users, developers of applications or

platforms have various options to make them available to users. Updates may be applied

consistently or only optional and they may be announced before or after successful

implementation. In the near future, they may even be completely implemented in the

background. From a software provider perspective, it thus becomes crucial to understand how

their users perceive such distinct update delivery strategies.

Though updates are ubiquitously used and digital businesses heavily depend on their

customers’ loyalty (i.e., continued use), there is little research on the impact of their delivery

strategies on users’ beliefs, attitudes, and specifically continuance intentions regarding the

updated software (Hong et al., 2011; Claussen et al., 2013). This understanding is essential to

fully grasp individual behaviors in digital ecosystems (e.g., Carillo et al., 2014; Liu et al.,

2016). Current research often neglects the user perspective and explores software updates

mostly from a technical perspective. This includes research on software engineering

(Sommerville, 2010), software product lines (Clements and Northrop, 2002), release planning

(Svahnberg et al., 2010), and software maintenance (Mens and Demeyer, 2008). Updates may

change the software during use and over time, and therefore may have the potential to alter

users’ beliefs, attitudes, and behaviors in the post-adoption stage (Karahanna et al., 1999;

Bhattacherjee, 2001). Increasing the understanding of updates and their delivery strategies

Updates and the Role of Delivery Strategy and Update Type 111

from a user’s perspective has the potential to significantly increase the body of knowledge of

existing post-adoption theory.

However, existing research often tends to conceptualize information systems as monolithic

black boxes, rather than as a collection of functionalities and characteristics that are alterable

over time (Jasperson et al., 2005; Benlian, 2015). Moreover, there are several calls for

research from IS scholars who criticize the negligence of the IT artifact’s role in IS research

and suggest focusing on changes in beliefs, attitudes, and behaviors emanating from the IT

artifact itself rather than from other IT-unrelated environmental stimuli (Benbasat and Zmud,

2003; Hevner et al., 2004; Orlikowski and Iacono, 2001). Understanding the granularity of

software, the changes triggered by updates and the effects of distinct strategies of delivering

such updates to users, would help to explain how beliefs, attitudes, and behaviors may

fluctuate over time because of the evolving nature of information systems that may be

permanently advanced by providers. This study therefore raises the following two research

questions:

RQ1: Does the delivery strategy affect an update’s impact on users’ continuance intentions?

RQ2: Do potential effects of delivery strategies differ between feature and security updates?

Drawing on the expectation-confirmation theory (Oliver, 1980), that is embedded in the IS

continuance model (Bhattacherjee, 2001), we conducted an online experiment with 282

participants to answer these questions. This study thereby contributes to prior research in

three important ways. First, we find somewhat different user reactions to major update

delivery strategies for security and feature updates. Thereby, we identify update type and

notification strategy as crucial moderators for explaining the ongoing use of agile information

systems. Our second main contribution is shedding light on the effects of a non-mandatory

delivery of updates on the identified effect of updates on users’ CI. The finding of a

diminished positive effect in the feature update case highlights the pivotal role of ECT and its

central effect on IS continuance. Our third and overarching contribution lies in the extension

of the predominant view of information systems in post-adoption literature. Here we show

how an alterable information system might influence users’ attitudes and behaviors during

use. Software application developers and platforms may also benefit from this study’s results

in practice. We find that in most cases, users should be notified of updates (for security

updates only after successful implementation), even though a seamless and silent integration

of updates has become possible with modern digital eco-systems. Moreover, in situations

Updates and the Role of Delivery Strategy and Update Type 112

where the user is involved in accomplishing a task, software providers should avoid rolling

out non-mandatory updates. Doing so may wipe out any positive effects and may leave the

software in a vulnerable or inferior state.

The remainder of the paper is organized as follows. First, we review relevant literature and

develop our hypotheses. We then discuss our research methodology and outline the

operationalization of our study. We subsequently present empirical results of our analysis.

Finally, we conclude and discuss limitations of this research.

5.2 Theoretical Foundations

5.2.1 Feature Updates and Security Updates

Consistent with previous research (e.g., Dunn, 2004), software updates can be defined as self-

contained modules of software that are provided to the user for free, to modify or extend

software after it has been rolled out and is already in use. With various terms, software

updates have been the subject throughout software engineering literature from a technical

perspective (Shirabad et al., 2001; Svahnberg et al., 2010; Weyns et al., 2011). In this context,

software release planning refers to the “idea of selecting the optimum set of features or

requirements to deliver in a release within given constraints” (Svahnberg et al., 2010, p. 1),

thus falling within the strategic considerations of a service provider on how and when to

deliver which software enhancements to users. In contrast to this rich stream of technical

literature dealing with software updates, research on users’ beliefs and attitudes regarding

updates has so far been very limited (e.g., Fleischmann et al., 2016). Specifically, essential

characteristics of the update’s delivery process such as update notifications or consumption

choices in context with different types of updates have so far not been explored.

For this study, we distinguish two basic types of software updates for which user perceptions

are quite different (Dinev and Hu, 2007), namely feature and security updates. Feature

updates change the core functionality of a software by adding distinct features that are

deliberately utilized by users to accomplish the task for which the software is used. In

contrast, security updates, falling in the broader category of non-feature updates, do not

change the core functionality of software and cannot be directly observed by users, but

enhance the software’s protective powers or close vulnerabilities (Ng et al., 2009). Because

the user’s interaction with the software may change when the software’s perceived value

changes, updates have the potential to influence users’ beliefs, attitudes, and behaviors in the

post-adoption stage of IS usage. This may even affect users’ decisions on continued use.

Updates and the Role of Delivery Strategy and Update Type 113

5.2.2 Information Systems Continuance

In the context of post-adoption research (Karahanna et al., 1999; Bhattacherjee, 2001), the

term information systems continuance refers to the “sustained use of an IT by individual users

over the long-term after their initial acceptance” (Bhattacherjee and Barfar, 2011, p. 2).

Bhattacherjee (2001) has adopted the expectation-confirmation theory (ECT) (Locke, 1976;

Oliver, 1980, 1993; Anderson and Sullivan, 1993) to explore IS users’ intentions to continue

or discontinue using an IS. ECT posits, that customers compare their initial expectations with

perceived product performance. The discrepancy determines their level of satisfaction. The

level of satisfaction further impacts repurchase intention (Oliver, 1980, 1993). Bhattacherjee

(2001) has replaced repurchase intention of the ECT model by users’ intention to continue

using an IS (CI), suggesting that users compare pre-usage expectations with their experience

during IS usage. If perceived performance exceeds (falls short) initial expectations, users

experience positive (negative) disconfirmation (DISC), which has a positive impact on their

satisfaction (SAT) regarding the IS (Bhattacherjee and Barfar, 2011). Satisfied users intend to

continue using the IS, while dissatisfied users discontinue its subsequent use (Oliver, 1980;

Bhattacherjee, 2001). Perceived usefulness (PU) captures the expectations about future

benefits from IS usage (Bhattacherjee and Barfar, 2011) and has a positive impact on both

SAT and on CI (Bhattacherjee, 2001).

Figure 5-1: IS Continuance Model (Following Bhattacherjee, 2001)

While the IS continuance model has made valuable contributions to post-adoption research

(Bhattacherjee, 2001) it has a static perspective on the IS continuance setting, failing to

account for changing user beliefs and attitudes during use. In response to this limitation,

several authors have introduced a more dynamic perspective, showing that beliefs and

attitudes change from pre-usage to actual usage and during the ongoing usage of an IS

(Bhattacherjee and Premkumar, 2004; Kim and Malhotra, 2005; Kim and Son, 2009; Ortiz de

Guinea and Markus, 2009; Ortiz de Guinea and Webster, 2013). To investigate this changing

nature of the IT artifact and its impact on users’ beliefs, attitudes, and behaviors during post-

adoption use, we therefore explore software updates and their delivery strategies through the

lens of the disconfirmation mechanism in ECT and the IS continuance model.

Updates and the Role of Delivery Strategy and Update Type 114

5.3 Hypotheses Development

In the following section, we will develop our hypotheses on how different update types and

delivery strategies in software ecosystems might influence users’ post-adoption beliefs and

attitudes in non-mandatory or individual use settings. To isolate the core effects, we will focus

on a seamless update experience, setting aside notable downsides like download and

installation delays. In doing so, we limit ourselves to feasible delivery strategies in modern

digital platforms, with either a ‘silent’ update or a notification given either before or after the

update is run. Moreover, we distinguish between the most prevalent and important update

types from a user’s perspective, those that provide either additional functionality or security

enhancements, setting aside minor stability fixes. Finally, to complete our hypotheses, we will

posit whether an option to consume an update should be given to the user or not.

5.3.1 Effects of Notifications for Security Updates

We argue that receiving software updates during post-adoption use can induce positive

disconfirmation and increase users’ CI (Bhattacherjee, 2001; Hong et al., 2011). According to

ECT, the occurrence of positive disconfirmation requires a positive experience compared to

prior expectations, i.e. a relative improvement compared to a baseline (Helson, 1964; Oliver,

1980). In the context of software updates, this baseline is formed by the software’s pre-update

state. An update must therefore exceed this subjective reference point to increase users’ CI by

leading to a perceived improvement of the software (Hong et al., 2011).

Following research on IT security, it is reasonable to assume that users’ awareness of the

‘protective enhancements’ provided by an update plays a major role (i.e. the user has to be

aware that something has changed in his favor to feel positively about it). Security updates

manifest themselves quite differently than updates providing additional functionality (Ng et

al., 2009). They only “contribute to the wellbeing of their users indirectly and subtly” (Dinev

and Hu, 2007, p. 387). The benefits resulting from security updates cannot be observed

directly within the software, as such updates do not add any usable features. Consequently,

their value may be derived only from the information provided on the update’s intent. A

notification of added benefits may therefore substitute the users’ experience of an actual

change in the software, that the user may otherwise not be aware of (Darby and Karni, 1973).

Such information about an update’s intent may be provided to users through notifications

either before or after the update is successfully implemented. A notification before the

execution of the update, however, leaves the user in considerable doubt, as to whether or not

Updates and the Role of Delivery Strategy and Update Type 115

the security update was indeed successfully applied (Hoxmeier, 2000; Hong et al., 2011).

There is no actual confirming experience on the software’s enhancement. Therefore, due to

the absent information on successful completion, it will most likely not be perceived as an

actual improvement, failing to induce positive disconfirmation and to increase users’ CI. In

contrast, a notification after the successful application of an update clearly conveys the

message that the update was completed successfully and that the software therefore, com-

pared to its status quo, may indeed have improved (Hoch and Ha, 1986). Therefore, it is likely

that a security update, if announced after successful implementation, will be perceived as an

improvement during use, inducing positive disconfirmation in the sense of ECT (Oliver,

1980). Through an increase in SAT and PU it will thereby increase users’ CI eventually

(Bhattacherjee, 2001; Hong et al. 2011). We accordingly derive our first two hypotheses:

H 1.1: Users who receive a notification before the implementation of a security update will

exhibit similar continuance intentions compared to users who did not receive the security

update.

H 1.2: Users who receive a notification after the successful implementation of a security

update will exhibit higher continuance intentions compared to users who did not receive the

security update.

5.3.2 Effects of Notifications for Feature Updates

Moreover, we argue that ECT also applies to the potential effects of feature updates. As

reasoned above, to induce positive disconfirmation and to increase CI, an update must lead to

a perceived improvement of the software. Feature updates can directly contribute to the

productivity of the user, and thus elicit a positive experience compared to the software’s un-

updated state (Hong et al. 2011). However, although feature updates deliver such functionality

that directly improves the software with respect to its core purpose, users are often unaware of

newly delivered functionality available in the software (Alba and Hutchinson, 1987; Brucks,

1985; Jasperson et al., 2005; Sun, 2012; Benlian, 2015). The user’s capacity of attention is

limited, and the user’s main task and other interferences will compete for the user’s cognitive

processing capacity necessary to perceive all available functionality (Kahnemann, 1973;

Norman and Bobrow, 1975; Van der Heijden, 1992). Hence, the functionality gains through

feature updates may remain unnoticed, if not explicitly presented to users (Sun, 2012).

However, again, the newly available functionality can be made more apparent to users by

providing notifications, either before or after the update’s successful implementation. In the

Updates and the Role of Delivery Strategy and Update Type 116

case of a feature update, though, we posit that the announcement of additional functionality

before the update can be confirmed by actual experiences of the specific software

enhancements afterwards (Hoxmeier, 2000; Hong et al., 2011). Therefore, notifications before

the implementation do not leave users in doubt about the update’s success, and thus also have

the potential to facilitate a positive experience deriving from the additional new functionality.

Summing up, feature updates that are not explicitly announced, may not be recognized by

users and therefore may fail to induce positive disconfirmation and eventually increase users’

CI. In contrast, feature updates that are announced either before or after successful

implementation will be perceived as improvements during use, inducing positive

disconfirmation in the sense of ECT (Oliver, 1980). Thereby, in this case, through an increase

in SAT and PU, users’ CI will increase eventually (Bhattacherjee, 2001; Hong et al. 2011).

Accordingly, we derive the following three hypotheses:

H 2.1: Users who receive additional functionality through a feature update without

notification will exhibit similar continuance intentions compared to users who did not receive

the feature update.

H 2.2 Users who receive a notification before the implementation of a feature update will

exhibit higher continuance intentions compared to users who did not receive the feature

update.

H 2.3 Users who receive a notification after the successful implementation of a feature update

will exhibit higher continuance intentions compared to users who did not receive the feature

update.

5.3.3 Effects of Non-Mandatory Security and Feature Updates

From conventional practice, one could think that in addition to a pre-update notification, it

might be beneficial to provide the option to users on whether to consume an update or not,

because doing so would offer more control over the process (Iyengar and Lepper, 2000;

Scheibehenne et al., 2010). However, we argue that such a strategy will most likely foster a

different result in our case. When users are engaged in using the software to complete a task

(Jenkins et al., 2016), the update seems to provide appropriate benefits and, due to our

assumption of seamless integration, the update comes with no or only very few downsides,

the option to consume an update increases necessary efforts and weakens the potential

positive perception of benefits received from an update (Iyengar and Lepper, 2000; Jenkins et

al., 2016). Not enhancing the software in the first place, but questioning the update’s necessity

Updates and the Role of Delivery Strategy and Update Type 117

may leave users in doubt of the update’s advantages. As a result, the choice to update may be

deferred and the update may therefore fail to exceed prior expectations, as compared to

situations where the update is always applied (Jenkins et al., 2016). An obligatory choice can

thereby make an update fail to elicit positive disconfirmation through the mechanisms of ECT

(Oliver, 1980) and fail to increase users’ CI as outlined in our hypothesizing above

(Bhattacherjee, 2001; Hong et al. 2011). Summing up, we argue that providing a consumption

choice for an update will impair a perceived improvement resulting from the functionality

gains in cases where the update would otherwise increase users’ CI (as argued in hypotheses

H2.2). By weakening the update’s necessity, a choice to either consume or to dismiss an

update will diminish users’ potential positive experiences emanating from the update’s

content. However, in cases where the update does not elicit positive disconfirmation (as

argued in our hypotheses H1.2), providing a choice does not harm users’ CI. We therefore

hypothesize:

H 3.1 Users who have the choice to optionally consume a security update before its

conditional implementation will exhibit similar continuance intentions compared to users who

consistently receive the update with a notification given beforehand.

H 3.2 Users who have the choice to optionally consume a feature update before its

conditional implementation will exhibit lower continuance intentions compared to users who

consistently receive the update with a notification given beforehand.

5.4 Method

5.4.1 Experimental Design

With the goal to examine the effects of security and feature updates and their delivery

strategies on users’ CI, we conducted a 2 x 4 between-subjects online-experiment with

manipulations of update type (security update vs. feature update) and delivery strategy (no

update notification vs. post-update notification vs. pre-update notification vs. pre-update

notification and update consumption choice). The design may also be considered as a

combined 2 x 3 (update type vs. notification and timing) and 2 x 2 (update type vs. choice)

experiment. We carefully developed this design, because an update consumption choice can

only be provided by simultaneously notifying users about the upcoming update. However, the

chosen design allowed us to both separate the effects of the two factors and to subsequently

put them into relation. We opted for an online experiment because it allowed us to investigate

and clearly isolate the causal mechanisms that operate between delivery strategies, update

Updates and the Role of Delivery Strategy and Update Type 118

types and changes in user attitudes, beliefs, and intentions. We consider this as crucial given

that this study is one of the first to explore the effect of different update delivery strategies on

users’ CI. It also enabled us to account for the claims of numerous researchers to put the IT

artifact more at the center of investigation of post-adoption research by using actual changes

in an IS as basis for manipulations. The software and the task for which the software had to be

used were held constant across all conditions.

The experiment proceeded in four major steps: First, subjects were randomly assigned to one

of the eight groups. Second, subjects were instructed to make use of a banking app to check

for an outstanding bank transfer (i.e., our cover story) and were then transferred to a fully

functional click dummy of a banking app. The app provided an account statement that listed

several realistic but random payments, but did not contain the transfer in question. Third,

subjects were told, that, on the next day, they would reuse the app to once more check for the

outstanding transfer and were then forwarded to the banking app again. In this second usage

period the transfer in question was contained towards the end of the list (to equally engage the

user in the app). According to the experimental group (see Table 5-1), for a security update,

the app was kept constant in both usage periods (because the security update does not

manifest in the user interface) (Group A), only in the second period a ‘successfully updated’

notification was given (Group B), in the first period an update announcement was given

(Group C), and in the first period an update announcement including the option to either

dismiss or to install the update in the background was given (Group D). For a feature update,

in the second period a feature was added (Group E), in the second period a feature was added

including a ‘successfully updated’ notification (Group F), in the first period and update

announcement was given and then a feature was added in the second period (Group G), and in

the first period an update announcement including the option to either dismiss or to install the

update in the background was given and then, according to the user’s choice, a feature was

conditionally added to the app in the second period (Group H). Subsequently, after the two

usage periods of the banking app, a post-experimental survey was conducted to assess the

subjects’ CI with respect to the software and all further variables (see Measures).

Updates and the Role of Delivery Strategy and Update Type 119

Table 5-1: Experimental design and experimental groups (N: notification, F: feature added)

Update type: Security update Feature update

Delivery

strategy:

 Usage period

1

Usage

period 2

 Usage period

1

Usage period 2

No notification A - - E - F

Post-notification B - N F - N, F

Pre-notification C N - G N F

Pre-not. and

choice
D N (choice) - H N (choice) F

(conditionally)

5.4.2 Manipulation of Independent Variables

To realize our manipulations, we opted for the software context of a banking app running on a

mobile application platform to ensure that subjects had previous usage experience and that

both security and feature updates would provide relevant value. By choosing a mobile

software ecosystem, we could realistically mimic the forthcoming behavior of such platforms

(Samat, 2016) and separate the effects of receiving updates from interfering factors like

performance or technical issues (Sykes, 2011; Tyre and Orlikowski, 1994). While such

downsides have been traditionally associated with updates, however, we argue that modern

platforms integrate software updates increasingly frictionless and we are thus confident that

we can develop viable implications for many contemporary software ecosystems.

Figure 5-2: Sample screens of app with no, post-, pre-notification, and additional choice (l.t.r.)

Manipulations of the update type were realized as follows: for the subject of the security and

feature update, we first asked 49 participants to rate a list of distinct features of banking apps

on perceived importance, which we had compiled through interviews and desk research.

Given these insights, we subsequently established the feature ‘search account statement’ and

the security enhancement ‘256 Bit encryption’ as subjects for the corresponding feature and

Updates and the Role of Delivery Strategy and Update Type 120

security updates. Because enhancements of security do not directly manifest in the user

interface other than by a conditional notification (the experimental group without notification

may thereby serve as a control group), only the feature update would also actually add a

distinct functionality to the software by providing a search slot above the account statement.

Manipulations of the delivery strategy (i.e., notification and conditional choice) were

implemented by (1) providing no notification, (2) providing a confirmation layer that

describes the successfully installed update and its content after the user revisits the app, (3)

providing an announcement layer that describes the pending update and its content when the

user first visits the app (the layer comes up with several seconds delay), and (4) providing the

aforementioned layer and additionally giving the option to either accept or to defer the

update’s installation (see Figure 5-2).

A qualitative pilot test with five subjects was conducted to ensure that the treatments were

manipulated according to the experimental design, that participants would assess the setting as

realistic, and that they would understand it well (Perdue and Summers, 1986). Specifically,

subjects were asked about the comprehensiveness of the instructions, the effects of the

manipulations through the app and the questions in the following questionnaire. In an

additional pre-study (n=48), we confirmed the successful manipulation based on measures of

control questions. Suggestions were obtained from the participants and the app and the

questionnaire were accordingly revised for the main experiment.

5.4.3 Dependent variables, Control Variables and Manipulation Checks

We used validated scales with minor wording changes for all constructs. Measures for CI and

DISC were adapted from Bhattacherjee (2001): CI1. I intend to continue using the app rather

than discontinue its use; CI2. My intentions are to continue using the app than use any

alternative means (traditional banking); CI3. If I could, I would like to discontinue my use of

the app (reverse coded). DISC1. My experience with using the app was better than what I

expected; DISC2. The functionality provided by the app was better than what I expected;

DISC3. Overall, most of my expectations from using the app were confirmed. Measures for

PU and SAT were based on Kim and Son (2009): PU1. Using the app enhanced my

effectiveness in completing the task; PU2. Using the app enhanced my productivity in

completing the task; PU3. Using the app improved my performance in completing the task.

SAT1. I am content with the features provided by app; SAT2. I am satisfied with the features

provided by the app; SAT3. What I get from using the app meets what I expect for this type of

programs. Because constructs were measured with multiple items, summated scales based on

Updates and the Role of Delivery Strategy and Update Type 121

the average scores of the multi-items were used in group comparisons (Zhu et al., 2012).

Unless stated otherwise, the questionnaire items were measured on a seven-point-Likert-scale

anchored at (1)=strongly disagree and (7)=strongly agree. To ensure successful manipulations

we captured whether participants thought that they had received an update, what the subject

of the update was, and if they had been notified before or after. Also, in groups with non-

mandatory updates, we measure actual confirmations and dismissals of updates and the

participants’ intentions to install or to not install such an update. Participants were further

asked to what extent they had understood the items’ formulation, whether they were able to

put themselves in the given situation, if the scenario was realistic, and if they knew what the

goals of the survey were. The participants’ expertise regarding online banking was captured

on an established four item scale developed by Mishra et al. (1993). We included this control

variable as well as the participant’s online banking usage intensity, perceived common update

frequency, and finally the subjects’ demographics (age, gender, profession), to isolate the

effects from other possible covariates.

5.4.4 Participants, Incentives and Procedures

Participants were recruited over Clickworker, a German crowdsourcing platform similar to

Amazon Mechanical Turk (Paolacci et al., 2010). We offered a small payment for the

participation in our online experiment. Overall, 312 subjects started the experiment. The rate

of completion was 96%, i.e., a total number of 301 subjects completed the questionnaire. We

excluded 19 participants from our final analysis because they did not pass our quality check

questions. The average time needed for the completion of the experiment and questionnaire

was 9.10 minutes. Of the 282 remaining German speaking participants used in the following

analyses, 142 were females and 140 were males. Subjects’ average age was 36.42 (σ=11.28)

years. On average, in one month, 14% of the subjects use online banking up to one time, 20%

up to four times, 21% up to eight times, and 45% more than eight times. The average reported

expertise with online banking was 5.42 (σ=1.36) on a seven-point semantic differential scale.

More than 40% of the subjects were employees, 21% self-employed, 13% students, and the

remainder had various or no occupation. The educational backgrounds of the participants

were diverse, including psychology, law, educational sciences, chemistry, computer science,

economics, design, agriculture and marketing.

Updates and the Role of Delivery Strategy and Update Type 122

5.5 Data Analysis and Results

5.5.1 Control Variables and Manipulation Check

To confirm a successful randomization, we first searched for differences of the control

variables between groups. However, the results of a one-way MANOVA showed no

significant differences between groups (λ=0.83, F[49,1365]=1.03, p>0.05). Neither of the

control variables were significant: age (F=1.42, df=7, p>0.05), gender (F=0.61, df=7, p>0.05),

profession (F=0.87, df=7, p>0.05), usage intensity (F=1.62, df=7, p>0.05), update frequency

(F=1.26, df=7, p>0.05), and product expertise (F=1.39, df=7, p>0.05). Hence, we concluded

that participants’ demographics and relevant controls were homogeneous across conditions

and did not confound the effects of our manipulations. Finally, we confirmed successful

manipulations by performing a Fisher’s exact test finding significant differences between

conditions in terms of the reported software delivery design type (p<0.01) and the reported

subject of the update (p<0.01). As indicators for the external validity of our findings, we

further reviewed participants’ answers regarding the realism and adaption of the scenario. For

both measures, participants reported high levels on a seven-point-Likert-scale (realism

x̅=6.32; σ=1.09; adaption x̅=6.35; σ=1.04). It is therefore reasonable to assume that our

manipulations worked as intended, that participants acted typically, and that the setting was

realistic.

5.5.2 Measurement Validation

Because we adopted established constructs for our measurement, a confirmatory factor

analysis (CFA) was conducted to test the instruments’ convergent and discriminant validity

(Levine, 2005), using SmartPLS 2 (Chin et al., 2003; Ringle et al., 2005). Table 5-2 reports

the results for the core constructs.

Table 5-2: Results of confirmatory factor analysis for core variables

Latent construct Number

of

indicators

Range:

standardized

factor loadings*

Cronbach’s

alpha

Comp.

reliability

(ρc)

Avg. variance

extracted

(AVE)

Disconfirmation

(DISC)

3 0.869-0.922 0.889 0.931 0.818

Perceived Usefulness

(PU)

3 0.930-0.953 0.939 0.961 0.892

Satisfaction (SAT) 3 0.934-0.966 0.948 0.967 0.906

Continuance Intention

(CI)

3 0.783-0.936 0.847 0.908 0.768

Note: *All factor loadings are significant at least at the p<0.01 level

Updates and the Role of Delivery Strategy and Update Type 123

All items loaded on the target factors and scored above the threshold of 0.7, indicating proper

construct validity (Cook and Campbell, 1979; Bartholomew et al., 2008). AVE values for

each construct ranged from 0.768 to 0.906, exceeding the variance due to error (0.5). The

constructs were also assessed for reliability using Cronbach’s alpha (Cronbach, 1951). A

value of at least 0.7 is suggested to indicate adequate reliability which we could confirm for

all constructs (Nunnally et al., 1994). Furthermore, the composite reliability of all constructs

exceeded 0.7, which is considered the minimum threshold (Hair et al., 2011). Thus, all

constructs met the norms for convergent validity. For satisfactory discriminant validity, the

square root of the constructs’ AVE should be greater than the variance shared between the

constructs in the model (Fornell and Larcker, 1981). All square roots of AVE exceeded inter-

construct correlations, indicating proper discriminant validity. Hence, the constructs in our

study are theoretically and empirically distinguishable.

5.5.3 Hypotheses Testing

In order to test our hypotheses, we conducted a one-way ANOVA with planned contrast

analyses. We found significant differences between groups for DISC (F=4.023, p<0.01), PU

(F=3.349, p<0.01), SAT (F=2.959, p<0.01), and CI (F=2.511, p<0.05). Figure 5-3

summarizes the results for our main dependent variable CI for both security and feature

updates.

Figure 5-3: Mean values, differences and significance levels for CI between groups

Regarding security updates, the contrast analysis revealed that users who received a pre-

update notification for the security update showed indifferent reactions in terms of DISC, PU,

Updates and the Role of Delivery Strategy and Update Type 124

SAT, and CI compared to users who did not receive any notification (CI: x̅’s = 4.07 vs. 4.26,

p>0.1) (see Table 5-3). This supports our hypothesis 1.1. However, users who received a post-

update notification on a security update exhibited significantly higher DISC, PU, SAT, and CI

compared to users who did not receive any notification, supporting our hypothesis 1.2 (CI: x̅’s

= 4.93 vs. 4.26, p<0.05).

Table 5-3: Mean values, differences and significance levels for security update groups

 Security update delivery strategy (n) DISC PU SAT CI

G
ro

u
p
s

A. No notification / control (32) 4.59 5.00 4.88 4.26

B. Post-notification (35) 5.19 5.63 5.48 4.93

C. Pre-notification (36) 4.48 4.61 4.78 4.07

D. Pre-notification and choice (34) 4.59 4.91 5.05 3.91

D
if

f.
 B-A.

14
 0.60** 0.63** 0.60** 0.67**

C-A.
14

 -0.11 -0.39 -0.10 -0.19

D-C.
14

 0.11 0.30 0.27 -0.16

Investigating feature updates, the contrast analysis revealed that users who received the

update but were not notified at all showed indifferent reactions in terms of DISC, PU, SAT,

and CI compared to users who did not receive any update (CI: x̅’s = 4.59 vs. 4.26, p>0.1) (see

Table 5-4). This supports our hypothesis 2.1. However, users who received a pre-update

notification on the feature update exhibited significantly higher DISC, PU, SAT, and CI

compared to users who did not receive any update, supporting our hypothesis 2.2 (CI: x̅’s =

5.05 vs. 4.26, p<0.05). Likewise, users provided with a post-update notification exhibited

significantly higher DISC, PU, SAT, and CI compared to users who did not receive any

update, which supports our hypothesis 2.3 (CI: x̅’s = 4.84 vs. 4.26, p<0.1).

14

ANOVA-tests with planned contrast analyses; *** p<0.01, ** p<0.05, * p<0.1 (one-sided).

Updates and the Role of Delivery Strategy and Update Type 125

Table 5-4: Mean values, differences and significance levels for feature update groups

 Feature update delivery strategy (n) DISC PU SAT CI

G
ro

u
p
s

E. No notification (36) 4.84 4.78 5.05 4.59

F. Post-notification (39) 5.61 5.50 5.74 4.84

G. Pre-notification (37) 5.62 5.68 5.79 5.05

H. Pre-notification and choice (33) 4.65 4.91 4.91 4.19

D
if

f.

E-A.
14

 0.25 -0.22 0.17 0.33

F-A.
14

 1.01*** 0.50* 0.89*** 0.58*

G-A.
14

 1.03*** 0.68** 0.92*** 0.79**

H-G.
14

 -0.98*** -0.78*** -0.88*** -0.86**

Finally, regarding non-mandatory updates, the results of the contrast analysis revealed that for

security update there was no significant difference in terms of DISC, PU, SAT, and CI (Group

D-C) between users who had the choice to either consume the security update or not,

compared to users who received the security update in any case (CI: x̅’s = 3.91 vs. 4.07,

p>0.1). This supports our hypothesis H 3.1. On the contrary, users who had the choice to

either consume the feature update or not (Group H-G) exhibited significantly lower DISC,

PU, SAT, and CI, compared to users who received the feature update in any case, as predicted

by our hypothesis H 3.2. Further inspecting the actual decisions of update installations, based

on a chi-square test, we could not find a significant difference between security updates

(Confirmed vs. dismissed: 11 vs. 23) and feature updates (Confirmed vs. dismissed: 10 vs. 23)

(χ²=0.033, p>0.1). However, in the reported intentions to dismiss or confirm such an update,

we could find a difference between security updates (Confirmed vs. dismissed: 65 vs. 1) and

feature updates (Confirmed vs. dismissed: 52 vs. 14) (χ²=12.711, p<0.001).

5.6 Discussion

This study sought to achieve two main objectives: (1) to examine the effects of different

software update delivery strategies on users’ continuance intentions, and (2) to investigate

potential distinctions between the natures of security and feature updates. To achieve these

two objectives, we drew on the IS continuance model and we investigated our hypotheses

based on an online-experiment with 282 participants in the context of a banking app, operated

on a mobile platform.

Our results reveal that users who receive a security update show divergent reactions to being

notified of the update before or after its successful implementation. In the case of a post-

update notification (Group B), users showed a significantly higher CI. This finding

Updates and the Role of Delivery Strategy and Update Type 126

strengthens the notion that for security updates a notification on the update’s successful

implementation may serve as a proxy for its actual realization (which is not observable from a

user’s perspective). However, in the case of an ex-ante notification (Group C), no significant

change in CI could be observed. Given our first finding, this may seem somewhat counter-

intuitive at first. However, it may be explained by the fact that the results of a security update

are not physically observable in the software (Ng et al., 2009). Thus, users are being left in

vagueness about the update’s actual implementation. Regarding feature updates, users

receiving additional new functionality without further notification (Group E), did not show a

significant increase in CI, despite this increased value provided by the software. This

somewhat unexpected result may be explained by the users’ attention bound to the task users

had to accomplish (Kahnemann, 1973), leaving the additional functionality unnoticed. Only in

both cases when the feature update was announced before or after successful implementation

(Group F and G), we found a significant increase in users’ CI. In those cases, the noticeable

‘gift’ of additional functionality was then able to elicit positive disconfirmation, thereby

increasing users’ CI.

In addition, we could evidence that updates that are delivered with a non-mandatory strategy

do not increase users’ CI. In case of a security update (Group D), providing the update to

users as an optional alternative did not increase users’ CI, compared to the ex-ante

announcement and a mandatory rollout. In case of a feature update (Group H), a consumption

choice even perhaps significantly decreased users’ CI compared to an ex-ante announcement

and a mandatory installation. Probably by questioning the necessity of an update and thereby

preventing the consumption in many cases, such an option inhibited a potential positive

experience. Inspecting the numbers of actual confirmations and dismissals for both update

types, surprisingly, we could observe that they were more often dismissed than consumed

with a rate that did not differ significantly between the two types. On the contrary, the

intention of users to install security updates was significantly higher than for feature updates,

which stresses the users’ perception of importance of security updates. This finding again

highlights a gap between intentions and actual behavior and thereby provides avenues for

further research (Jenkins et al., 2016).

5.6.1 Implications for Research

The paper makes three main contributions to the literature. First, we identify update type and

delivery strategy as crucial moderators for the positive effect of an update on users’ CI. We

find that providing a security update increases users’ CI by disconfirming previous

Updates and the Role of Delivery Strategy and Update Type 127

expectations only if it is announced after successful implementation. A feature update, on the

other hand, induces a positive reaction in all situations in which it is announced in addition to

its rollout (i.e., before or after implementation), while it does not have such a potential if it is

silently implemented in the background. This interaction emphasizes the importance of a joint

consideration of the IT artifacts’ and the update’s characteristics when investigating user

behavior. Our second main contribution is shedding light on the effects of a non-mandatory

update on the identified effect of updates on users’ CI. Specifically, we find that a positive

effect of feature updates on CI, by positively disconfirming previous expectations, is

diminished when the update is provided only optionally. Nevertheless, CI remains unaffected

for security updates in this case. These findings once again highlight the pivotal role of ECT

and its central effect on IS continuance compared to other factors. Both findings add to the

body of knowledge on software updates. Our third and overarching contribution lies in

showing how a malleable information system might influence users’ attitudes and behaviors

during post-adoption use. We answer the calls of several IS researchers by extending the still

predominant view of post-adoption literature on the IT artifact as a monolithic block to a more

flexible perspective that considers information systems as a modular composition of

functionality that may change over time (Jasperson et al., 2005; Benbasat and Barki, 2007;

etc.). We complement existing IS post-adoption literature and research on digital ecosystems

(Carillo et al., 2014; Liu et al., 2016) through the notion that users’ beliefs and attitudes might

change with the advancement of the system.

5.6.2 Implications for Practice

Our results have important and viable implications for practice, particularly for contemporary

software ecosystem settings, where updates are integrated increasingly frictionless. First,

despite the extensive use of updates by organizations to enhance and progress their services

on digital platforms, it is surprising that insights on how these updates and their delivery are

perceived by users are still scarce. This leaves practitioners without guidance. From the

results of our experimental study we can conclude that developers of applications and

platforms should rather announce feature and security enhancements instead of implementing

them silently. However, for security enhancements, the only helpful measure for developers in

terms of the user’s loyalty (i.e., CI) is to announce such updates only after the successful

implementation. More specifically, our findings suggest, that only in cases when the user is

notified after successful implementation of a security update, it has the potential to increase

users’ CI above and beyond a level generated by software where the security update was

communicated before implementation or not communicated at all. With respect to feature

Updates and the Role of Delivery Strategy and Update Type 128

updates, developers can learn from this study’s results that they can increase their users’

loyalty by announcing them before or after successful implementation. Both strategies should

be preferred over not at all communicating such enhancements, as updates won’t be always

noticed by users in the software itself.

Finally, it is not advisable for developers of applications and platforms to provide users the

option to either consume or to defer an update. It is better to apply updates consistently.

Providing such an option may not only diminish an update’s positive effect, but may leave the

software in an inferior state. In today’s interconnected and quickly changing multi-device and

multi-platform environments, users heavily rely on security and on a comparable feature set

with respect to competitors’ solutions. To avoid losing customers from vulnerabilities or

major disadvantages (even if only temporary), platform and application providers should thus

quickly respond to such needs and roll out according changes consistently. It should be noted,

however, that these findings only apply to situations where the update process does not come

with major downsides and the update’s contents are unquestionably helpful.

5.6.3 Conclusion, Limitations, and Future Research

In modern digital ecosystems, software updates have become a pervasively used instrument

for businesses to enhance their digital services over time. Despite this prevalence, the effects

of update delivery strategies on crucial post-adoption user reactions have remained largely

unexplored. This study’s diverse findings highlight the importance of a profound

understanding of update delivery strategies in evolving software ecosystems for both

researchers and practitioners. Security updates have the potential to increase users’ CI only if

they are communicated after implementation, while feature updates have such a potential if at

least communicated at any time. Providing an option to defer an update however seems to be

unfavorable or even harmful, as it may diminish any positive effects elicited by an update, and

in the end, because users tend to dismiss them considerably, may leave the application in an

inferior or even vulnerable state.

Three limitations of this study are noteworthy and provide avenues for future research. First,

in our experiment, we utilized a self-developed, simplified click dummy of a banking app

with a homogeneous feature set. This quasi-realistic setting of a digital ecosystem’s software

required subjects to adapt to the software and setting. Hence, we controlled for adaption and

perceived realism of the scenario. Based on the convincing results for these controls, we are

confident that our study’s implications are applicable to real usage settings. Nonetheless,

future studies could investigate actual usage experiences with real software to validate our

Updates and the Role of Delivery Strategy and Update Type 129

findings. Second, we identified security and feature updates in the banking context as crucial

update types for examining the effects of update delivery strategies on users’ CI. Also,

subjects were recruited in Germany. Since security plays a major role in the banking context

and attitudes towards security might differ between countries, future studies are encouraged to

validate our findings in different contexts and cultural settings. Furthermore, complementary

qualitative studies (e.g., thought-listing) could substantiate our theoretical reasoning and could

uncover additional mediating mechanisms. Finally, we conducted a controlled experiment

with the purpose of obtaining results with a high internal validity. This required some

reasonable but strict assumptions, such as a limited observation period, an identical and linear

course of events, a determined task and ex-post measurement of variables. Future studies are

encouraged to complement our findings by conducting longitudinal field experiments to

advance the external validity of our findings over longer timespans and to account for

learning effects. Also, settings with repeated updates with participants’ evaluations measured

at several points in time could provide additional evidence for the robustness of our findings.

In the further course, research should seek to deepen the understanding of how dynamic

software ecosystems need to be shaped to both satisfy and protect users by considering

individual behaviors.

Updates and the Role of Delivery Strategy and Update Type 130

Thesis Conclusion and Contributions 131

Chapter 6: Thesis Conclusion and Contributions
This thesis was motivated by three primary concerns regarding the current understanding of

users and their relationships to IT Artifacts and Agile IS. First, despite the prevalence of Agile

IS in today’s software landscapes the understanding of user perspectives of Agile IS is still

very limited. Second, despite the recent shift in focus to the user, little is known on how

updates that deliver changes in Agile IS to users may affect users’ loyalty. Lastly, the current

predominant scholarly view of IT Artifacts is still that of monolithic and static systems, which

is not reflective of the prevailingly dynamic and malleable nature of most IS contexts today.

Conversely, considering the rapid advances in information technology and the barriers to

users switching between IT systems that are diminished by the widespread diffusion of digital

technologies, understanding users’ loyalty to Agile IS has become increasingly important.

Surprisingly, only few studies of the subject have been conducted is this field of research

(e.g., Hong et al. 2011), leaving many central questions unanswered. Against this backdrop,

this thesis sought to answer two overarching questions: First, whether Agile IS can positively

affect users’ loyalty and how a potential effect occurs. Secondly, which factors moderate a

potential effect, and as a consequence how Agile IS can be designed to foster positive

outcomes. To address these questions and to obtain empirical answers, four major studies

were conducted, each investigating distinct subjects of the questions to refine our knowledge

and isolate any relevant factors.

The results of the first and the second study demonstrated that in terms of an increase in

continuance intentions users generally prefer Agile IS over monolithic software, which is

somewhat irrational. Users appear to prefer software with a limited feature set that delivers

additional features incrementally than having feature-complete software right from the outset.

However, this effect only exists if users are not too knowledgeable regarding the software;

experts devalue software that receives features later on (compared to feature-complete

software). In addition we could demonstrate that the loss of features decreases continuance

intentions. Surprisingly, the absolute magnitude of the effect when losing a feature exceeded

the increase related to a gain of exactly the same feature. Also we found that the magnitude of

the positive effect of additional functionality provided by an update diminishes, if the

software is already feature rich. The update size however, does not appear to change the

magnitude of the effect significantly. In the first, second and third study we could further

confirm that the effect of software updates on user’s continuance intentions is mediated by a

Thesis Conclusion and Contributions 132

mechanism of disconfirmation, perceived usefulness, and satisfaction as hypothesized before.

These findings address the first research question.

The results of the third and fourth study further revealed that the frequency of updates

moderates the positive effect of feature updates on users. In particular, more frequent updates

will increase the positive effect. This should be considered together with the finding of the

first study that the update size does not change the magnitude of the effect significantly.

Moreover, in this setting, we found that for non-feature updates a positive effect does not

emerge (i.e. performance improvements, bug fixes etc.). Finally, it could be shown that an

update only has the potential to increase user’s continuance intentions if it is announced either

before or after the update’s implementation in the case of a feature update, and only if it is

announced after successful implementation in the case of a security update. Moreover, if a

choice of installation was provided to users of the software, the positive effect was canceled

out. This uncovers further crucial moderator for the effect of Agile IS on users. These

additional moderators and partially malleable factors answer our second research question.

Overall, by answering the research questions, the limited understanding of software updates

including non-rational responses of users to changes in the feature level composition of IT

Artifacts is extended. Considered jointly, the results of the studies thereby contribute to a

better understanding of Agile IS and provide several crucial theoretical and practical

contributions that are outlined in the following section.

6.1 Theoretical Contributions

The thesis makes three main contributions to the literature that highlight whether, how, and

why Agile IS affect users’ continuance intentions and – more generally speaking – loyalty.

First, understanding Agile IS from a user’s perspective is crucially important both to build a

comprehensive theoretical foundation on Agile IS and to put the user and his needs more at

the center of all investigations (Brenner et al. 2014). Only few studies have explored this

perspective thus far (e.g., Hong et al. 2016). While most of the studies in this field have

pushed the user to the sidelines (e.g., Chan and Thong 2009), this thesis clearly contributes to

a better understanding of how modifications of software compositions may change users’

perceptions. In particular, we could demonstrate that Agile IS with a limited feature-set at the

first release have the potential to increase user’s continuance intentions through successive

feature releases compared to monolithic and static IS. We could replicate and confirm this

effect in several studies. These findings provide evidence that the user should be thoroughly

Thesis Conclusion and Contributions 133

considered in research on Agile IS. However, the results do not only underline the central role

of the user in IS research. Also they suggest that some user responses to changes in software

appear non-rational. Considering that users in most cases respond with higher continuance

intentions to Agile IS despite being deprived of features some way through the usage period

(compared to users of a feature-complete and monolithic software), the results may be

interpreted as possible empirical evidence for a reference point dependency (Kahneman and

Tversky 1979). This adds to the notion that users in IS research do not always act fully

rational, but may be prone to heuristics and biases (Fleischmann et al. 2014). Finally, our

results once again confirm the pivotal role of ECT and the IS Continuance Model in IS

research. The results of our studies repeatedly demonstrate a mediation of the positive effect

of updates on users’ continuance intentions through the mediation mechanism of

disconfirmation with previous expectations, satisfaction, and perceived usefulness. The

discovered effect therefore requires an unexpected and positive surprise compared to a

previous baseline. This subjective evaluation is clearly in line with theory on bounded

rationality of users and therefore again questions the concept of a rational user in IS.

Second, our findings provide evidence in support of the necessity of a fine-grained

understanding of IT Artifacts and the joint consideration of users in IS research. This answers

the call of several researchers to put the IT Artifact more at the focus of IS research (Benbasat

and Zmud 2003). Our findings show that the particular composition of features, changes in

the feature-set, and the characteristics of the change have the potential to affect user responses

and must be considered when theorizing on IT Artifacts. For example, our results indicate,

that the previous endowment of software in terms of the available number of features seems to

act as a moderator on the effect of updates on users, by diminishing its magnitude. Also, we

could demonstrate that the removal of a specific feature is valued more in absolute (negative)

magnitude than the equivalent acquisition of the same feature. This indicates a possible loss-

aversion (Kahneman and Tversky 1979). In this setting, we found evidence that the positive

effect of updates is only elicited, if users have less expertise regarding the software (i.e., they

are novices). These findings again underline the somewhat non-rational nature of user

responses in IS research, although experts come closer to rational actors. However, the

findings also emphasize the important role of specific feature level compositions of IT

Artifacts and changes in it to increase the predictive power of IS theory (Benlian 2015).

Adding to this finding, we could demonstrate that the size of an update (i.e., number of

features contained in the update) does not play a significant role for the magnitude of the

Thesis Conclusion and Contributions 134

effect. However, the frequency of updates does: more frequent updates stimulate an even

stronger positive response than less frequent updates do. As a result, features spread over

several distinct and thus more frequent updates increase the positive effect even further.

Finally, we could show that deliberate design of the update delivery process has the potential

to moderate the effect of updates on users. In the case of feature updates, a positive effect was

only established when the user was notified of the update before or after the update. In the

case of a security update, only the notification after successful installation established a

positive effect. Providing a choice to only optionally consume the update diminished any

positive effect. Considering all these findings collectively, the results of our studies add to the

predominantly monolithic understanding of software by providing a more modular

understanding of software as specific compositions of features at a certain point in time that

may be subject to change. Moreover, in sum, our findings highlight the necessity to join

consideration of the malleable nature of IT Artifacts and the characteristics of its users to fully

understand potential consequences.

Third, our overarching contribution lies in the extension of the predominant view of IS in

post-adoption literature from a mostly static to a more dynamic perspective by showing how

an evolving IS might change users’ attitudes and behaviors over time. Thereby we

complement existing IS post-adoption literature and research on digital ecosystems (e.g.,

Carillo et al., 2014; Liu et al., 2016) through the notion that users’ beliefs and attitudes may

change with the advancement of a system. With this finding, we answer the call of several IS

scholars to consider the evolution of IS more thoroughly (e.g., Jasperson et al. 2005; Benbasat

and Barki 2007). In particular, our results show how changes in IS due to updates, induce

changes in users’ beliefs and attitudes towards a system. This result confirms the previous

findings of other scholars that an IT Artifact itself can affect users’ beliefs and attitudes

during use in later usage stages (e.g., Kim and Malhotra 2005; Kim and Son 2009; Ortiz de

Guinea and Markus 2009; Ortiz de Guinea and Webster 2013). Hence our thesis highlights the

consequences of the evolving nature of IS. Next, after outlining our theoretical contributions,

we continue by highlighting practical and managerial contributions.

6.2 Practical Contributions

Our results also have important implications for IS practice. Particularly for firms that are

discussing the implementation of Agile IS and are looking for empirically backed rationales to

inform management decisions can benefit from our findings. But also firms that are already

Thesis Conclusion and Contributions 135

providing Agile IS to users and are looking for guidance on strategic or design considerations

can benefit from our findings.

First, despite the prevalence of updates in modern software ecosystems to roll out increments

of Agile IS, it is surprising that there is little managerial guidance on how firms can benefit

from the potential for such updates to increase users’ loyalty. Our results offer strategic advice

on when and how to deliver which functionality to users. From the results of our experimental

studies we can generally conclude that firms should plan to deliver additional features to users

successively, after the initial release of a software instead of providing a feature-complete

software package right from the beginning. This will increase users’ continuance intentions

above and beyond levels generated by a monolithic software. This effect is particularly strong

for software that has a small feature-set and diminishes somewhat for software with many

features. However, firms should not overdraw holding back features, as this might result in

the software being discontinued before a positive effect can even be elicited. In particular,

firms must also consider their customer base. Experts will not fall prey to held back features.

They are more likely to know common feature sets and are more aware of the available

feature-set in software. Thus, firms should first investigate the sociodemographic structure of

their customer base, e.g. through market research, before implementing an appropriate

strategy. Finally, firms should under no circumstances remove features from software if not

absolutely necessary. Users will perceive the loss in functionality significantly more

negatively than a comparable gain in functionality.

Second, the manifold results of our studies offer many specifics for practitioners on how to

design and communicate increments of Agile IS. Our findings suggest that the update’s size

does not play a significant role in its reception, however the frequency of updates does.

Therefore, firms should roll out features distributed across more frequent but smaller update

packages. Such smaller packages will delight the user each with a positive and unexpected

surprise of additional functionality, inducing higher intentions to continue using the Agile IS.

Nonetheless, users should always be notified about updates. In the case of feature updates

either before or after the successful implementation, and in the case of security updates only

after the successful implementation. This is because the update is only a necessary condition

for a positive effect, while a notification is the sufficient condition that helps the update to be

noticed which establishes the positive effect. However, in no case should updates be offered

to users as voluntary choices. This will not only discard any positive effect, but also reduce

the installation rate drastically. In the case of security updates this could increase the risk of

Thesis Conclusion and Contributions 136

users being victims of security attacks and should be avoided in any case (if for example the

update closes a critical security breach). In sum, our studies provide many details on how to

design Agile IS for the benefit of both users and also firms.

Third, our studies provide an overarching and strong rationale for practitioners in favor of

establishing Agile IS from the user’s perspective. Many practitioners still struggle internally

with the deployment and acceptance of Agile IS. Often, despite clear indications of better and

more effective development results, less wasted resources, and increased agility; in many

cases firms are still not able to adapt to agile methods. Reasons often lie within unsuitable

established cultures, fixed processes, and planning horizons, and in regulatory requirements.

However, markets are still becoming increasingly more customer centric. The findings of our

studies show that even if not required out of an internal perspective, Agile IS have the

potential to increase user’s loyalty. In times of strong competition and with the growing

number of business models that are based on reoccurring revenue streams from customers and

their engagement, this characteristic gains vital importance. This applies even more so,

because an increase in agility drastically decreases the firm’s time-to-market. Practitioners

can therefore benefit from this thesis by adding the evident gains in value-to-customer

through Agile IS to their cost-benefit analysis when assessing agile methods and Agile IS.

6.3 Limitations and Future Research

Three limitations of this thesis are noteworthy and provide avenues for future research. First,

in our studies, we conducted either controlled laboratory experiments or online experiments.

The manipulations of the experiments were realized through self-developed, fully-functional

software mock-ups, comprehensive click dummies, and textual scenarios. This allowed us to

identify causal relations, while accurately controlling for potential cofounding variables.

Hence we obtained not only results with a high internal validity, even more, with the help of

these studies on the effect of Agile IS on users, we could clearly isolate the primary effects

and mechanisms. However, the settings are only approximations of real-world usage scenarios

and, for the sake of clarity, reduced to capture only all relevant core aspects. Taking this into

account, we deliberately controlled for the participants’ perceptions of the setting as realistic

and other control variables, and carefully pre-tested our experiments in several cycles. Based

on the results derived from these measures, we are confident that our experiments worked as

intended and that our implications are applicable to real-usage settings. And since we could

confirm our results in several usage contexts and with different manipulation methods, even

more, we have reasons to believe that they are relevant to a wide range of settings.

Thesis Conclusion and Contributions 137

Nonetheless, future studies could investigate actual usage experiences with real software to

validate our findings. Moreover, such studies could employ software with more diverse

compositions of features and a higher complexity of interaction, to extend and validate our

findings even further.

Second, for this fundamental study of Agile IS from the user’s perspective, we imposed a

linear and uniform course of events and a limited observed timespan to obtain a feasible

setting. Though this allows us to compare monolithic, full-featured software to Agile IS and

derive precise implications for both strategies, nevertheless, the external validity of our

findings can be improved by increasing the duration of observations timespans and increasing

the complexity of the scenarios. In our studies, we considered these aspects by carefully

constructing the scenarios in a way that each task, the procedure, and the observed timespan

were evaluated as natural by participants. However, future studies are encouraged to

complement the findings of our work by conducting longitudinal field experiments, to

advance the external validity of our findings. Additionally, settings with repeated updates

over longer time spans with participants’ evaluations measured at several points in time could

provide additional evidence for the robustness of our findings and address any questions of

the consistency of the effect on users over long timespans.

Finally, IS theory suggests that due to limited cognitive resources and the interfering nature of

updates, there might be a boundary condition for the amount of updates that are perceived as

beneficial by users leading to a potential saturation of the effect. Although we have found the

first indications that allow for assumptions in this direction (i.e., by thought-listing in the third

study), we could not show an explicit saturation or even a negative effect caused by an

overload of changes in Agile IS through updates to users. Admittedly, modern Agile IS

implements update processes that are as unobtrusive to the user as possible, which generally

decreases the interference of updates. Such new seamless processes and their consequences

were investigated in study four. However, future studies should investigate potential

downsides of excessive changes in IT Artifacts due to updates from the user’s perspective.

Only by gaining a better understanding of the range of potential negatively influencing

factors, can IS theory help firms to develop increasingly seamless update delivery processes

and thereby increase the acceptance of Agile IS and the perceived value of Agile IS to the end

user.

In conclusion, Agile IS have become an integral part of today’s IT landscapes. Although their

characteristics have been widely studied from a firm’s perspective, their nature and

Thesis Conclusion and Contributions 138

consequences from a user’s perspective have remained underexplored so far. Although this

thesis is only a first step to extend the understanding from this perspective, we were able to

demonstrate in four distinct empirical experiments that the effects of Agile IS on users are

salient, diverse, and shapeable and thus cannot be neglected. Only with an integrated, human

focused, and finer-grained view of Agile IS we can fully understand its value-to-customers

and build a solid theoretical foundation of user experience of IT systems. Thereby we can

empower companies with the knowledge of how to increase customer loyalty and ultimately

the perceived value to their customer base. Following this notion, we hope that this substantial

perspective shift and our somewhat surprising results will foster further research by other IS

scholars into this direction.

References 139

References
Ackermann, T., and Buxmann, P. 2010. “Quantifying Risks in Service Networks: Using

Probability Distributions for the Evaluation of Optimal Security Levels,” Sixteenth

Americas Conference on Information Systems (AMCIS), Lima, Peru.

Ågerfalk, P. J., Fitzgerald, B., and Slaughter, S. A. 2009. “Introduction to the Special Issue—

Flexible and Distributed Information Systems Development: State of the Art and

Research Challenges,” Information Systems Research (20:3), pp. 317-328.

Aguinis, H., and Bradley, K. J. 2014. “Best Practice Recommendations for Designing and

Implementing Experimental Vignette Methodology Studies,” Organizational

Research Methods (17:4), pp. 351-371.

Alba, J. W., and Hutchinson, J. W. 1987. “Dimensions of Consumer Expertise,” Journal of

Consumer Research (13:4), pp. 411-454.

Amirpur, M., Fleischmann, M., Benlian, A., and Hess, T. 2015. “Keeping Software Users on

Board—Increasing Continuance Intention Through Incremental Feature Updates,”

Proceedings of the 23rd European Conference on Information Systems, Münster,

Germany, pp. 1-16.

Anderson, E. W., and Sullivan, M. W. 1993. “The Antecedents and Consequences of

Customer Satisfaction for Firms,” Marketing Science (12:2), pp. 125-143.

Anderson, J. R. 1982. “Acquisition of Cognitive Skill,” Psychological Review (89:4), pp. 369-

406.

Apple. 2015. iOS 6 Software-Update, https://support.apple.com/kb/DL1578, 01.05.2015.

Bartholomew, D. J., Steele, F., Moustaki, I., and Galbraith, J. 2008. Analysis of Multivariate

Social Science Data (2nd ed.), London: CRC Press.

Beck, K. 1999. “Embracing Change with Extreme Programming,” IEEE Computer (32:10),

pp. 70-77.

Benartzi, S., Thaler, R. H. 1995. “Myopic Loss Aversion and the Equity Premium Puzzle,”

The Quarterly Journal of Economics (110:1), pp. 73-92.

Benbasat, I., and Barki, H. 2007. “Quo vadis, TAM?,” Journal of the Association for

Information Systems (8:4), pp. 211-218.

References 140

Benbasat, I., and Zmud, R. W. 2003. “The Identity Crisis within the IS Discipline: Defining

and Communicating the Discipline's Core Properties,” MIS Quarterly (27:2), pp.

183-194.

Benlian, A. 2013a. “Are We Aligned… Enough? The Effects of Perceptual Congruence

Between Service Teams and Their Leaders on Team Performance,” Journal of

Service Research (17:2), pp. 212-228.

Benlian, A. 2013b. “Effect Mechanisms of Perceptual Congruence Between Information

Systems Professionals and Users on Satisfaction with Service,” Journal of

Management Information Systems (29:4), pp. 63-96.

Benlian, A. 2015a. “IT Feature Use Over Time and its Impact on Individual Task

Performance,” Journal of the Association for Information Systems (16:3), pp. 144-

173.

Benlian, A. 2015b. “Web Personalization Cues and Their Differential Effects on User

Assessments of Website Value,” Journal of Management Information Systems

(32:1), pp. 225-260.

Benlian, A., and Haffke, I. 2016. “Does Mutuality Matter? Examining the Bilateral Nature

and Effects of CEO–CIO Mutual Understanding,” The Journal of Strategic

Information Systems (25:2), pp. 104-126.

Benlian, A., and Hess, T. 2011a. “Opportunities and Risks of Software-as-a-service: Findings

from a Survey of IT Executives,” Decision Support Systems (52), pp. 232-246.

Benlian, A., and Hess, T. 2011b. “The Signaling Role of IT Features in Influencing Trust and

Participation in Online Communities,” International Journal of Electronic

Commerce (15:4), pp. 7-56.

Benlian, A., Koufaris, M., and Hess, T. 2011. “Service Quality in Software-As-a-Service:

Developing the Saas-Qual Measure and Examining Its Role in Usage Continuance,”

Journal of Management Information Systems (28:3), pp. 85-126.

Bhattacherjee, A. 2001. “Understanding Information Systems Continuance: An Expectation

Confirmation Model,” MIS Quarterly (25:3), pp. 351-370.

Bhattacherjee, A., and Barfar, A. 2011. “Information Technology Continuance Research:

Current State and Future Directions,” Asia Pacific Journal of Information Systems

(21:2), pp. 1-18.

References 141

Bhattacherjee, A., and Premkumar, G. 2004. “Understanding Changes in Belief and Attitude

toward Information Technology Usage: A Theoretical Model and Longitudinal

Test,” MIS Quarterly (28:2), pp. 229-254.

Blackler, A., Popovic, V., and Mahar, D. 2010. “Investigating Users’ Intuitive Interaction

with Complex Artefacts,” Applied Ergonomics (41:1), pp. 72-92.

Bolton, R. N. 1998. “A Dynamic Model of the Duration of the Customer's Relationship with a

Continuous Service Provider: The Role of Satisfaction,” Marketing Science (17:1),

pp. 45-65.

Bowden, Z. 2017. How Microsoft improved Windows Update in the Creators Update,

https://www.windowscentral.com/windows-update-less-pain-butt-creators-update,

04.03.2018.

Brenner, W., Österle, H., Petrie, C., Uebernickel, F., Winter, R., Karagiannis, D., Kolbe, L.,

Krüger, J., Leifer, L., Lamberti, H-J., Leimeister, J., , Schwabe, G., and Zarnekow,

R. 2014. “User, Use & Utility Research,” Business & Information Systems

Engineering (2014:1), pp. 55-61.

Brucks, M. 1985. “The Effects of Product Class Knowledge on Information Search

Behavior,” Journal of Consumer Research. (12:2), pp. 1-16.

Carillo, K. D. A., Scornavacca, E., and Za, S. 2014. “An Investigation of the Role of

Dependency in Predicting Continuance Intention to Use Ubiquitous Media Systems:

Combining a Media System Perspective with Expectation-Confirmation Theories,”

ECIS 2014 Proceedings. Münster: Germany.

Chan, F. K. Y., and Thong, J. Y. L. 2009. “Acceptance of Agile Methodologies: a Critical

Review and Conceptual Framework,” Decision Support Systems (46:4), pp. 803-814.

Chin, W. W., Marcolin, B. L., and Newsted, P. R. 2003. “A Partial Least Squares Latent

Variable Modeling Approach for Measuring Interaction Effects: Results from a

Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study,”

Information Systems Research (14:2), pp. 189-217.

Claussen, J., Kretschmer, T., and Mayrhofer, P. 2013. “The Effects of Rewarding User

Engagement: The Case of Facebook Apps,” Information Systems Research (24:1),

pp. 186-200.

References 142

Clements, P., and Northrop, L. 2002. Software Product Lines: Practices and Patterns (3rd

ed.), Boston, MA: Addison-Wesley Reading.

Conboy, K. 2009. “Agility from First Principles: Reconstructing the Concept of Agility in

Information Systems Development,” Information Systems Research (20:3), pp. 329-

354.

Constantin, L. 2013. EFF criticizes Google for removing 'vital privacy feature' with Android

4.4.2 | PCWorld, http://www.pcworld.com/article/2080241/eff-criticizes-google-for-

removing-vital-privacy-feature-with-android-442.html, 04.09.2015.

Constine, J. 2016. Instagram launches “Stories,” a Snapchatty feature for imperfect sharing,

https://techcrunch.com/2016/08/02/instagram-stories/, 04.02.2018.

Cook, T. D., and Campbell, D. T. 1979. Quasi-Experimentation: Design & Analysis Issues for

Field Settings, Boston, MA: Houghton Mifflin.

Cronbach, L. J. 1951. “Coefficient Alpha and the Internal Structure of Tests,” Psychometrika

(16:3), pp. 297-334.

Darby, M. R., and Karni, E. 1973. “Free Competition and the Optimal Amount of Fraud,”

Journal of Law and Economics (16:1), pp. 67-88.

Davis, F. D. 1989. “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of

Information Technology,” MIS Quarterly (13:3), pp. 319-340.

De Cremer, D. D., Van Dijke, M. V., and Bos, A. E. R. 2007. “When Leaders Are Seen as

Transformational: The Effects of Organizational Justice,” Journal of Applied Social

Psychology (37:8), pp. 1797–1816.

Denning, S. 2015a. Surprise: Microsoft Is Agile,

https://www.forbes.com/sites/stevedenning/2015/10/27/surprise-microsoft-is-agile/,

03.02.2018.

Denning, S. 2015b. Why Do Managers Hate Agile?,

https://www.forbes.com/sites/stevedenning/2015/01/26/why-do-managers-hate-

agile/, 03.02.2018.

Dennis, A. R., Robert Jr, L. P., Curtis, A. M., Kowalczyk, S. T., and Hasty, B. K. 2012.

“Research Note-Trust Is in the Eye of the Beholder: A Vignette Study of Postevent

Behavioral Controls' Effects on Individual Trust in Virtual Teams,” Information

Systems Research (23:2), pp. 546-558.

References 143

DeSanctis, G., and Poole, M. S. 1994. “Capturing the Complexity in Advanced Technology

Use: Adaptive Structuration Theory,” Organization science (5:2), pp. 121-147.

Dhar, R., and Sherman, S. J. 1996. “The Effect of Common and Unique Features in Consumer

Choice,” Journal of Consumer Research (23:3), pp. 193-203.

Dinev, T., and Hu, Q. 2007. “The Centrality of Awareness in the Formation of User

Behavioral Intention toward Protective Information Technologies,” Journal of the

Association for Information Systems (8:7), pp. 386-408.

Dunn, K. 2004. “Automatic Update Risks: Can Patching Let a Hacker in?,” Network Security

2004 (7), pp. 5-8.

Eschenbrenner, B., and Nah, F. F.-H. 2014. “Information Systems User Competency: A

Conceptual Foundation,” Communications of the Association for Information

Systems (34:1), pp. 1363-1378.

Etherington, D. 2013. Chat Heads Coming To iOS Facebook App Via Update Pushing Out

Anytime Now, http://techcrunch.com/2013/04/16/chat-heads-coming-to-ios-

facebook-app-via-update-pushing-out-anytime-now/, 01.05.2014.

Evans, J. S. 2006. “The Heuristic-analytic Theory of Reasoning: Extension and Evaluation,”

Psychonomic Bulletin & Review (13:3), pp. 378-395.

Evans, J. S. 2008. “Dual-processing Accounts of Reasoning, Judgment, and Social

Cognition,” Annu. Rev. Psychol. (59), pp. 255-278.

Facebook 2015. Facebook Product News, http://newsroom.fb.com/news/category/product-

news/, 23.04.2015.

Fleischmann, M., Amirpur, M., Benlian, A., and Hess, T. 2014. “Cognitive Biases in

Information Systems Research: A Scientometric Analysis,” Proceedings of the 22nd

European Conference on Information Systems (ECIS), Tel Aviv, Isreal.

Fleischmann, M., Amirpur, M., Grupp, T., Benlian A., and Hess, T. 2016. “The Role of

Software Updates in Information Systems Continuance – An Experimental Study

from a User Perspective,” Decision Support Systems (83), pp. 83-96.

Fornell, C., and Larcker, D. F. 1981. “Evaluating Structural Equation Models with

Unobservable Variables and Measurement Error,” Journal of Marketing Research

(18:1), pp. 39-50.

References 144

Fowler, M., and Highsmith, J. 2001. “Agile Methodologists Agree on Something,” Software

Development (9), pp. 28-32.

Fruhling, A., and Vreede, G.-J. 2006. “Field Experiences with Extreme Programming:

Developing an Emergency Response System,” Journal of Management Information

Systems (22:4), pp. 39-68.

Fujita, K., Trope, Y., Liberman, N., and Levin-Sagi, M. 2006. “Construal Levels and Self-

Control,” Journal of Personality and Social Psychology (90:3), pp. 351–367.

Ghoshal, T., Yorkston, E., Nunes, J. C., and Boatwright, P. 2014. “Multiple Reference Points

in Sequential Hedonic Evaluation: An Empirical Analysis,” Journal of Marketing

Research (51:5), pp. 563-577.

Goldbach, T., Benlian, A., and Buxmann, P. 2017. “Differential effects of formal and self-

control in mobile platform ecosystems: Multi-method findings on third-party

developers’ continuance intentions and application quality,” Information &

Management.

Goodhue, D. L., and Thompson, R. L. 1995. “Task-technology fit and individual

performance,” MIS Quarterly (19:2), pp. 213–236.

Gupta, S., and Kim, H.-W. 2007. “The Moderating Effect of Transaction Experience on the

Decision Calculus in On-Line Repurchase,” International Journal of Electronic

Commerce (12:1), pp. 127-158.

Haffke, I., Kalgovas, B., and Benlian, A. 2017. “Options for Transforming the IT Function

Using Bimodal IT,” MIS Quarterly Executive (16:2), pp. 101-120.

Hair, J. F., Hult, G. T. M., Ringle, C. M., and Sarstedt, M. 2014. A Primer on Partial Least

Squares Structural Equation Modeling (PLS-SEM), Thousand Oaks, CA: Sage

Publications.

Hair, J. F., Ringle, C. M., and Sarstedt, M. 2011. “PLS-SEM: Indeed a Silver Bullet,” Journal

of Marketing Theory and Practice (19:2), pp. 139-151.

Harnisch, S., and Buxmann, P. 2013. Evaluating Cloud Services Using Methods of Supplier

Selection. In: Business Information Systems. BIS 2013. Heidelberg: Springer.

Harris, M. L., Collins, R. W., and Hevner, A. R. 2009. “Control of Flexible Software

Development Under Uncertainty,” Information Systems Research (20:3), pp. 400-

419.

References 145

Harrison, D. A., and Klein, K. J. 2007. “What's the difference? Diversity constructs as

separation, variety, or disparity in organizations,” Academy of Management Review

(32:4), pp. 1199-1228.

Hayes, A. F. 2013. Introduction to Mediation, Moderation, and Conditional Process

Analysis: A Regression-Based Approach, New York, NY: Guilford Publications, Inc.

Helson, H. 1964. Adaptation-Level Theory: An Experimental and Systematic Approach to

Behavior, New York: Harper & Row.

Hevner, A. R., March, S. T., Park, J., and Ram, S. 2004. “Design Science in Information

Systems Research,” MIS Quarterly (28:1), pp. 75-105.

Highsmith, J., and Cockburn, A. 2001. “Agile Software Development: The Business of

Innovation,” IEEE Computer (34:9), pp. 120-122.

Hiltz, S. R., and Turoff, M. 1981. “The Evolution of User Behavior in a Computerized

Conferencing System,” Communications of the ACM (24:11), pp. 739-751.

Hirotaka, T., and Nonaka, I. 1986. The New New Product Development Game,

https://hbr.org/1986/01/the-new-new-product-development-game, 03.02.2018.

Hoch, S. J., and Ha, Y.-W. 1986. “Consumer Learning: Advertising and the Ambiguity of

Product Experience,” Journal of Consumer Research (13:3), pp. 221-233.

Hodgetts, H. M., and Jones, D. M. 2007. “Reminders, alerts and pop-ups: The cost of

computer-initiated interruptions,” in Human–computer interaction, J. Jacko (ed.).

Berlin/Heidelberg: Springer-Verlag, pp. 818-826.

Hoffmann, A. O., and Broekhuizen, T. L. 2009. “Susceptibility to and impact of interpersonal

influence in an investment context,” Journal of the Academy of Marketing Science

(37:4), pp. 488-503.

Hogarth, R. M., and Einhorn, H. J. 1992. “Order Effects in Belief Updating: The Belief-

Adjustment Model,” Cognitive Psychology (24:1), pp. 1-55.

Hong, S., Thong, J. Y., and Tam, K. Y. 2006. “Understanding continued information

technology usage behavior: A comparison of three models in the context of mobile

internet,” Decision Support Systems (42:3), pp. 1819-1834.

Hong, W., Thong, J. Y. L., and Tam, K. Y. 2004. “Does Animation Attract Online Users’

Attention? The Effects of Flash on Information Search Performance and

Perceptions,” Information Systems Research (15:1), pp. 60-86.

References 146

Hong, W., Thong, J. Y., Chasalow, L. C., and Dhillon, G. 2011. “User Acceptance of Agile

Information Systems: A Model and Empirical Test,” Journal of Management

Information Systems (28:1), pp. 235-272.

Hoxmeier, J. A. 2000. “Software Preannouncements and Their Impact on Customers'

Perceptions and Vendor Reputation,” Journal of Management Information Systems

(17:1), pp. 115-139.

Huff, S. L., Munro, M. C., and Marcolin, B. 1992. “Modelling and measuring end user

sophistication,” Proceedings of the 1992 ACM SIGCPR Conference, Cincinnati: OH,

pp. 1-10.

Hummel, M. 2014. “State-of-the-Art: A Systematic Literature Review on Agile Information

Systems Development,” 47th Hawaii International Conference on System Science

(HICSS), Hawaii.

Hummel, M., Rosenkranz, C., and Holten, R. 2013. “The Role of Communication in Agile

Systems Development – an Analysis of the State of the Art,” Business & Information

Systems Engineering (5), pp. 343-355.

Irmak, C., Block, L. G., and Fitzsimons, G. J. 2005. “The placebo effect in marketing:

Sometimes you just have to want it to work,” Journal of Marketing Research (42:4),

pp. 406-409.

Iyengar, S. S., and Lepper, M. R. 2000. “When Choice is Demotivating: Can One Desire Too

Much of a Good Thing?” Journal of Personality and Social Psychology (79:6), pp.

995-1006.

Jasperson, J. S., Carter, P. E., and Zmud, R. W. 2005. “A Comprehensive Conceptualization

of Post-Adoptive Behaviors Associated with Information Technology Enabled Work

Systems,” MIS Quarterly (29:3), pp. 525-557.

Jenkins, L., Anderson, B. B., Vance, A., Kirwan, C. B., and Eargle, D. 2016. “More Harm

Than Good? How Messages That Interrupt Can Make Us Vulnerable,” Information

Systems Research (27:4), pp. 880-896.

Jeong, H. J., and Kwon, K.-N. 2012. “The Effectiveness of Two Online Persuasion Claims:

Limited Product Availability and Product Popularity,” Journal of Promotion

Management (18:1), pp. 83-99.

References 147

Juner, C., and Benlian, A. 2017. “Praxisbasierte Capability-Modelle Für DevOps-Einsätze in

Unternehmen," HMD Praxis der Wirtschaftsinformatik (54:2), pp. 230-243.

Kahneman, D., and Tversky, A. 1979. “Prospect Theory: An Analysis of Decision Under

Risk,” Econometrica: Journal of The Econometric Society (47:2), pp. 263-291.

Kahneman, D., Knetsch, J. L., and Thaler, R. H. 1991. “Anomalies: The endowment effect,

loss aversion, and status quo bias,” The journal of economic perspectives (5:1), pp.

193-206.

Kahnemann, D. 1973. Attention and effort. Englewood Cliffs: Prentice-Hall.

Karahanna, E., Straub, D. W., and Chervany, N. L. 1999. “Information Technology Adoption

Across Time: A Cross-Sectional Comparison of Pre-Adoption and Post-Adoption

Beliefs,” MIS Quarterly (23:2), pp. 183-213.

Kay, J., and Thomas, R. C. 1995. “Studying Long-Term System Use,” Communications of the

ACM (38:7), pp. 61-69.

Kim, S. S. 2009. “The integrative framework of technology use: an extension and test,” MIS

Quarterly (33:3), pp. 513-537.

Kim, S. S., and N. K. Malhotra 2005. “A Longitudinal Model of Continued IS Use: An

Integrative View of Four Mechanisms Underlying Postadoption Phenomena,”

Management Science (51:5), pp. 741-755.

Kim, S. S., and Son, J.-Y. 2009. “Out of Dedication or Constraint? A Dual Model of Post-

Adoption Phenomena and its Empirical Test in the Context of Online Services,” MIS

Quarterly (33:1), pp. 49-70.

Larsen, T. J., Sørebø, A. M., and Sørebø, Ø. 2009. “The role of task-technology fit as users’

motivation to continue information system use,” Computers in Human Behavior

(25), pp. 778-784.

Lee, G., and Xia, W. 2010. “Toward Agile: an Integrated Analysis of Quantitative and

Qualitative Field Data on Software Development Agility,” MIS Quarterly (34:1), pp.

87-114.

Leonardi, P. M. 2013. “When does Technology Use Enable Network Change in

Organizations? A Comparative Study of Feature Use and Shared Affordances,” MIS

Quarterly (37:3), pp. 749-775.

References 148

Levin, J. R. 1981. “On Functions of Pictures in Prose,” in Neuropsychological and Cognitive

Processes in Reading, P. F. J and W. M. C (eds.). New York: Academic Press, p.

344.

Levine, T. R. 2005. “Confirmatory Factor Analysis and Scale Validation in Communication

Research,” Communication Research Reports (22:4), pp. 335-338.

Liang, H., and Xue, Y. 2010. “Understanding Security Behaviors in Personal Computer

Usage: A Threat Avoidance Perspective,” Journal of the Association for Information

Systems (11:7), pp. 394-413.

Liu, J., Abhishek, V., and Li, B. 2016. “The Impact of Mobile Adoption on Customer Omni-

Channel Banking Behavior,” ICIS 2016 Proceedings. Dublin: Irland.

Locke, E. A. 1976. “The Nature and Causes of Job Satisfaction,” in Handbook of Industrial

and Organizational Psychology, Ed. by M.D. Dunnette. Chicago: Rand McNally

College Pub. Co., pp. 1297-1349.

Lu, Y., and Ramamurthy, K. 2011. “Understanding the Link Between Information

Technology Capability and Organizational Agility: An Empirical Examination,” MIS

Quarterly (35:4), pp. 931-954.

Lynch Jr, J. G., Chakravarti, D., and Mitra, A. 1991. “Contrast Effects in Consumer

Judgments: Changes in Mental Representations or in the Anchoring of Rating

Scales?,” Journal of Consumer Research (18:3), pp. 284-297.

Ma, J., and Roese, N. J. 2014. “The maximizing mind-set,” Journal of Consumer Research

(41:1), pp. 71-92.

Maier, C., Laumer, S., Weinert, C., and Weitzel, T. 2015. “Resistance to Change: Developing

an Individual Differences Measure,” Information Systems Journal (25), pp. 275-308.

Malaga, R. A. 2000. “The effect of stimulus modes and associative distance in individual

creativity support systems,” Decision Support Systems (29:2), pp. 125-141.

Marakas, G. M., Johnson, R. D., and Clay, P. F. 2007. “The Evolving Nature of the Computer

Self-Efficacy Construct: An Empirical Investigation of Measurement Construction,

Validity, Reliability and Stability Over Time,” Journal of the Association for

Information Systems (8:1), pp. 16-46.

Marakas, G. M., Yi, M. Y., and Johnson, R. D. 1998. “The Multilevel and Multifaceted

Character of Computer Self-Efficacy: Toward Clarification of the Construct and an

References 149

Integrative Framework for Research,” Information Systems Research (9:2), pp. 126-

163.

Marcolin, B. L., Compeau, D. R., Munro, M. C., and Huff, S. L. 2000. “Assessing User

Competence: Conceptualization and Measurement,” Information Systems Research

(11:1), pp. 37-60.

Maruping, L. M., Venkatesh, V., and Agarwal, R. 2009. “A Control Theory Perspective on

Agile Methodology Use and Changing User Requirements,” Information Systems

Research (20:3), pp. 377-399.

Mathias, R. 2012. “Google Chrome Blog: Keeping tabs on your tabs,”

http://chrome.blogspot.de/2012/05/keeping-tabs-on-your-tabs.html, 01.05.2014.

Mehta, R., Zhu, R., and Meyers-Levy, J. 2014. “When Does a Higher Construal Level

Increase or Decrease Indulgence? Resolving the Myopia versus Hyperopia Puzzle,”

Journal of Consumer Research (41), pp. 475-488.

Mens, T., and Demeyer, S. 2008. Software Evolution. Berlin and Heidelberg: Springer.

Microsoft 2015a. Windows lifecycle fact sheet – Windows Help,

http://windows.microsoft.com/en-us/windows/lifecycle, 21.07.2015.

Microsoft 2015b. Office 365 Roadmap, http://roadmap.office.com/, 23.04.2015.

Mishra, D., Mishra A., and Ostrovska, S. 2012. “Impact of Physical Ambiance on

Communication, Collaboration and Coordination in Agile Software Development: an

Empirical Evaluation,” Information Software Technology (54:10), pp. 1067-1078.

Mishra, S., Umesh, U. N., and Stem, D. E. J. 1993. “Antecedents of the Attraction Effect: An

Information-Processing Approach,” Journal of Marketing Research (30:3), pp. 331-

349.

Morgan, H. M., and Ngwenyama, O. 2015. “Real Options, Learning Cost and Timing

Software Upgrades: Towards an Integrative Model for Enterprise Software Upgrade

Decision Analysis,” International Journal of Production Economics (168), pp. 211-

223.

Mukherjee, A., and Hoyer, W. D. 2001. “The effect of novel attributes on product

evaluation,” Journal of Consumer Research (28:3), pp. 462-472.

Munro, M. C., Huff, S. L., Marcolin, B. L., and Compeau, D. R. 1997. “Understanding and

measuring user competence,” Information & Management (33:1), pp. 45-57.

References 150

Murray, K. B., and Häubl, G. 2011. “Freedom of Choice, Ease of Use, and the Formation of

Interface Preferences,” MIS Quarterly (35:4), pp. 955-976.

Myerson, T. 2015. The next generation of Windows: Windows 10,

http://blogs.windows.com/bloggingwindows/2015/01/21/the-next-generation-of-

windows-windows-10/, 01.05.2015.

Nelson, K. M., Nadkarni, S., Narayanan, V., and Ghods, M. 2000. “Understanding Software

Operations Support Expertise: A Revealed Causal Mapping Approach,” MIS

Quarterly (24:3), pp. 475-507.

Ng, B.-Y., Kankanhalli, A., and Xu, Y. 2009. “Studying users’ computer security behavior: A

health belief perspective,“ Decision Support Systems (46), pp. 815-825.

Nicolaou, A. I., and McKnight, D. H. 2011. “System design features and repeated use of

electronic data exchanges,” Journal of Management Information Systems (28:2), pp.

269-304.

Norman, D. A., and Bobrow, D. G. 1975. “On Data-limited and Resource-limited Process,”

Cognitive Psychology (7:1), pp. 44-64.

Nowlis, S. M., and Simonson, I. 1996. “The Effect of New Product Features on Brand

Choice,” Journal of Marketing Research (33), pp. 36-46.

Nunnally, J. C. 1994. Psychometric Theory, (3rd ed.). New York, NY: McGraw-Hill.

Ohno, T. 1988. Toyota Production System - beyond large-scale production, New York, NA:

Productivity Press.

Oliver, R. L. 1980. “A Cognitive Model of the Antecedents and Consequences of Satisfaction

Decisions,” Journal of Marketing Research (17:4), pp. 460-469.

Oliver, R. L. 1993. “Cognitive, Affective, and Attribute Bases of the Satisfaction Response,”

Journal of Consumer Research (20:3), pp. 418-430.

Oreg, S. 2003. “Resistance to Change: Developing an Individual Differences Measure,”

Journal of Applied Psychology (88:4), pp. 680-693.

Orlikowski, W. J., and Iacono, C. S. 2001. “Research Commentary: Desperately Seeking the

‘IT’ in IT Research - A Call to Theorizing the IT Artifact,” Information Systems

Research (12:2), pp. 121-134.

References 151

Ortiz de Guinea, A., and Markus, M. L. 2009. “Why Break the Habit of a Lifetime?

Rethinking the Roles of Intention, Habit, and Emotion in Continuing Information

Technology Use,” MIS Quarterly (33:3), pp. 433-444.

Ortiz de Guinea, A., and Webster, J. 2013. “An Investigation of Information Systems Use

Patterns: Technological Events as Triggers, the Effect of Time, and Consequences

for Performance,” MIS Quarterly (37:4), pp. 1165-1188.

Paolacci, G., Chandler, J., and Ipeirotis, P. G. 2010. “Running Experiments on Amazon

Mechanical Turk,” Judgment and Decision Making (5:5), pp. 411-419.

Perdue, B. C., and Summers, J. O. 1986. “Checking the Success of Manipulations in

Marketing Experiments,” Journal of Marketing Research (23:4), pp. 317-326.

Polites, G. L., and Karahanna, E. 2012. “Shackled to the Status Quo: the Inhibiting Effects of

Incumbent System Habit, Switching Costs, and Inertia on New System Acceptance,”

MIS Quarterly (36:1), pp. 21-42.

Polites, G. L., and Karahanna, E. 2013. “The Embeddedness of Information Systems Habits in

Organizational and Individual Level Routines: Development and Disruption,” MIS

Quarterly (37:1), pp. 221-246.

Popović, M., Atlagić, B., and Kovačević, V. 2001. “Case Study: a Maintenance Practice Used

with Real-Time Telecommunications Software,” Journal of Software Maintenance

and Evolution: Research and Practice (13:2), pp. 97-126.

Poppendeick, M. 2001. “Lean Programming,” Software Development (9), pp. 71-75.

Rafaeli, S., and Raban, D. R. 2003. “Experimental Investigation of the Subjective Value of

Information in Trading,” Journal of the Association for Information Systems

(4:2003), pp. 119-139.

Rahman, N. 1996. “Caregivers’ Sensitivity to Conflict: The Use of Vignette Methodology,”

Journal of Elder Abuse & Neglect (8:1), pp. 35-47.

Rhee, H.-S., Kim, C., and Ryu, Y. U. 2009. “Self-efficacy in information security: Its

influence on end users' information security practice behavior,” Computers &

Security (28:8), pp. 816-826.

Ringle, C. M., Wende, S., and Becker, J.-M. 2014. SmartPLS 3.0, Hamburg: SmartPLS

GmbH (http://www.smartpls.com).

References 152

Ringle, C. M., Wende, S., and Will, A. 2005. “Smart PLS 2.0 (M3),” University of Hamburg,

Hamburg, http://www.smartpls.de.

Rising, L., and Janoff, N. S. 2000. “The Scrum software development process for small

teams,” IEEE Software (17:4), pp. 26-32.

Rogers, E. M. 1995. Diffusion of Innovations (4th ed.), New York: Free Press.

Ruiz-Hopper, M. 2017. What’s new in the Windows 10 Creators Update,

https://blogs.windows.com/windowsexperience/2017/04/11/whats-new-in-the-

windows-10-creators-update/#Duc0u5I7ugceijYY.97, 03.02.2018.

Saeed, K. A., and Abdinnour-Helm, S. 2008. “Examining the effects of information system

characteristics and perceived usefulness on post adoption usage of information

systems,” Information & Management (45:6), pp. 376-386.

Salmela, H., Tapanainen, T., Baiyere, A., Hallanoro, M., and Galliers, R. 2015. “IS Agility

Research: An Assessment and Future Directions,” 23nd European Conference on

Information Systems (ECIS), Münster, Germany.

Samat, S. (2016). Android 7.0 Nougat: a more powerful OS, made for you,

https://blog.google/products/android/android-70-nougat-more-powerful-os-made/,

14.11.2016.

Sandberg, J., and Alvesson, M. 2011. “Ways of Constructing Research Questions: Gap-

spotting or Problematization?,” Organization (18:1), pp. 23-44.

Scheibehenne, B., Greifeneder, R., and Todd, P. M. 2010. “Can There Ever Be Too Many

Options? A Meta-Analytic Review of Choice Overload,” Journal of Consumer

Research (37:3), pp. 409-425.

Schneider, D., Lins, S., Grupp, T., Benlian, A., and Sunyaev, A. 2017. “Nudging Users Into

Online Verification: The Case of Carsharing Platforms,” Thirty Eighth International

Conference on Information Systems (ICIS), Seoul, South Korea.

Schwaber, K., and Beedle, M. 2002. Agile Software Development with Scrum, New Jersey:

Prentice-Hall.

Sen, S., and Morwitz, V. G. 1996. “Is It Better to Have Loved and Lost Than Never to Have

Loved at All? The Effect of Changes in Product Features over Time,” Marketing

Letters (7:3), pp. 225-235.

References 153

Shanteau, J., and Stewart, T. R. 1992. “Why Study Expert Decision Making? Some Historical

Perspectives and Comments,” Organizational Behavior and Human Decision

Processes (53:2), pp. 95-106.

Shaw, J. C., Wild, R. E., and Colquitt, J. A. 2003. “To justify or Excuse? A Meta-Analytic

Review of the Effects of Explanations,” Journal of Applied Psychology (88:3), pp.

444-458.

Shenoy, N. 2018. Firmware Updates and Initial Performance Data for Data Center Systems,

https://newsroom.intel.com/news/firmware-updates-and-initial-performance-data-

for-data-center-systems/, 04.02.2018.

Sherr, I. 2012. Apple Makes a Wrong Turn as Users Blast Map Switch – WSJ,

http://www.wsj.com/articles/SB10000872396390443890304578008712527187512,

01.05.2015.

Shirabad, J. S., Lethbridge, T. C., and Matwin, S. 2001. “Supporting Software Maintenance

by Mining Software Update Records,” Proceedings of the IEEE International

Conference on Software Maintenance, Florence, Italy, pp. 22-31.

Shu, S. B. and Carlson K. A. 2014. “When Three Charms but Four Alarms: Identifying the

Optimal Number of Claims in Persuasion Settings,” Journal of Marketing (78:1), pp.

127-139.

Simon, H. 1959. “Theories of Decision-Making in Economics and Behavioral Science,” The

American Economic Review (49:3), pp. 253-283.

Sommerville, I. 2010. Software Engineering: International Version (9th ed.), Boston, MA:

Pearson.

Steinbart, P. J., Keith, M. J., and Babb, J. 2016. “Examining the Continuance of Secure

Behavior: A Longitudinal Field Study of Mobile Device Authentication,”

Information Systems Research (27:2), pp. 219-239.

Sun, H. 2012. “Understanding User Revisions When Using Information System Features:

Adaptive System Use and Triggers,” MIS Quarterly (36:2), pp. 453-478.

Suri, R., and Monroe, K. B. 2003. “The Effects of Time Constraints on Consumers’

Judgments of Prices and Products,” Journal of Consumer Research (30:1), pp. 92-

104.

References 154

Svahnberg, M., Gorschek, T., Feldt, R., Torkar, R., Saleem, S. B., and Shafique, M. U. 2010.

“A Systematic Review on Strategic Release Planning Models,” Information and

Software Technology (52:3), pp. 237-248.

Sykes, E. R. 2011. “Interruptions in the workplace: A case study to reduce their effects,”

International Journal of Information Management (31:4), pp. 385-394.

Szajna, B. 1996. “Empirical Evaluation of the Revised Technology Acceptance Model,”

Management Science (42:1), pp. 85-92.

Tallon, P., and Pinsonneault, A. 2011. “Competing Perspectives on the Link Between

Strategic Information Technology Alignment and Organizational Agility: Insights

From a Mediation Model,” MIS Quarterly (35:2), pp. 463-486.

Thaler, R. 1979. “Towards a Positive Theory of Consumer Choice,” Journal of Economic

Behavior and Organization (l), pp. 39-60.

Thaler, R. H. 2016. Misbehaving: The Making of Behavioral Economics, New York: W. W.

Norton & Company.

Thaler, R. H., and Sunstein, C. R. 2008. Nudge: Improving Decisions About Health, Wealth,

and Happiness, New Haven: Yale University Press.

TinyMCE. 2015. TinyMCE – Home, http://www.tinymce.com/, 01.05.2015.

Trope, Y., and Liberman, N. 2003. “Temporal Construal,” Psychological Review (110:3), pp.

403-421.

Tversky, A., and Kahneman, D. 1973. “Availability: A Heuristic for Judging Frequency and

Probability,” Cognitive Psychology (5:2), pp. 207-232.

Tversky, A., and Kahneman, D. 1974. “Judgment Under Uncertainty: Heuristics and Biases,”

Science (185:4157), pp. 1124-1131.

Tversky, A., and Kahneman, D. 1992. “Advances in Prospect Theory: Cumulative

Representation of Uncertainty,” Journal of Risk and Uncertainty (5:4), pp. 297-323.

Tyre, M. J., and Orlikowski, W. J. 1994. “Windows of Opportunity: Temporal Patterns of

Technological Adaptation in Organizations,” Organization Science (5:1), pp. 98-118.

Van der Heijden, A. H. C. 1992. Selective Attention in Vision. New York: Routledge.

References 155

Veit, D., Clemons, E., Benlian, A., Buxmann, P., Hess, T., Kundisch, D., Leimeister, J. M.,

Loos, P., and Spann, M. 2014. “Business Models - An Information Systems Research

Agenda,” Business & Information Systems Engineering (6:1), pp. 45-53.

Venkatesh, V. 2000. “Determinants of Perceived Ease of Use: Integrating Control, Intrinsic

Motivation, and Emotion into the Technology Acceptance Model,” Information

Systems Research (11:4), pp. 342-365.

Venkatesh, V., and Davis, F. D. 1996. “A Model of the Antecedents of Perceived Ease of

Use: Development and Test,” Decision Sciences (27:3), pp. 451-481.

Venkatesh, V., and Davis, F. D. 2000. “A Theoretical Extension of the Technology

Acceptance Model: Four Longitudinal Field Studies,” Management Science (46:2),

pp. 186-204.

Venkatesh, V., Brown, S. A., and Bala, H. 2013. “Bridging the Qualitative-Quantitative

Divide: Guidelines for Conducting Mixed Methods Research in Information

Systems,” MIS Quarterly (37:1), pp. 21-54.

Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. 2003. “User Acceptance of

Information Technology: Toward a Unified View,” MIS Quarterly (27:3), pp. 425-

478.

Venkatesh, V., Thong, J. Y., and Xu, X. 2012. “Consumer Acceptance and Use of

Information Technology: Extending the Unified Theory of Acceptance and Use of

Technology,” MIS Quarterly (36:1), pp. 157-178.

Versionone 2017. 11
th

 Annual State of Agile Report, http://stateofagile.versionone.com/,

11.11.2018.

Vetter, J., Benlian, A. and Hess, T. 2011. “Setting Targets Right! How Non-Rational Biases

Affect the Risk Preference of IT-Outsourcing Decision Makers-An Empirical

Investigation,” Proceedings of 19th the European Conference of Information

Systems, Helsinki, Finnland.

Vidgen, R., and Wang, X. 2009. “Coevolving Systems and the Organization of Agile

Software Development,” Information Systems Research (20:3), pp. 355-376.

Voss, J. F., Greene, T. R., Post, T. A., and Penner, B. C. 1983. “Problem-Solving Skill in the

Social Sciences,” in The Psychology of Learning and Motivation, Vol. 17, G.H.

Bower (ed.), New York, NY: Academic Press, pp. 165-213.

References 156

Wan, E. W., and Agrawal, N. 2011. “Carryover Effects of Self-Control on Decision Making:

A Construal-Level Perspective,” Journal of Consumer Research (38:1), pp. 199-214.

Weinmann, M., Schneider, C., and vom Brocke, J. 2016. “Digital Nudging,” Business &

Information Systems Engineering (58:6), pp. 433-436.

Weyns, D., Michalik, B., Helleboogh, A., and Boucke, N. 2011. “An Architectural Approach

to Support Online Updates of Software Product Lines,” Proceedings of the 9th

Working IEEE/IFIP Conference on Software Architecture, Boulder, CO, pp. 204-

213.

Weyns, D., Michalik, B., Helleboogh, A., and Boucke, N. 2011. “An Architectural Approach

to Support Online Updates of Software Product Lines,” WICSA 2011, Boulder, CO,

pp. 204-213.

Yin, D., Bond, S. D. and Zhang, H. 2014. “Anxious or Angry? Effects of Discrete Emotions

on the Perceived Helpfulness of Online Reviews,” MIS Quarterly (38:2), pp. 539-

560.

Zhang, Y., Feick, L., and Mittal, V. 2013. “How Males and Females Differ in Their

Likelihood of Transmitting Negative Word of Mouth,” Journal of Consumer

Research (40:6), pp. 1097-1108.

Zhu, M., Billeter, D. M., and Inman, J. J. 2012. “The Double-Edged Sword of Signaling

Effectiveness: When Salient Cues Curb Postpurchase Consumption,” Journal of

Marketing Research (49:1), pp. 26-38.

Eidesstattliche Erklärung 157

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig angefertigt

habe. Sämtliche aus fremden Quellen direkt und indirekt übernommenen Gedanken sind als

solche kenntlich gemacht.

Die Arbeit wurde bisher nicht zu Prüfungszwecken verwendet und noch nicht veröffentlicht.

––

Tillmann Grupp

Eidesstattliche Erklärung 158

Appendix 159

Appendix
Appendix 4.A

Continuance Intention (7-point Likert scale adapted and modified from Bhattacherjee 2001)

CI1 I intend to continue using eWrite rather than discontinue its use.

CI2 My intentions are to continue using eWrite than use any alternative means.

CI3 If I could, I would like to discontinue my use of eWrite. (reverse coded)

Satisfaction (7-point Likert scale adapted and modified from Kim and Son 2009)

SAT1 I am content with the features provided by the word-processing program eWrite.

SAT2 I am satisfied with the features provided by the word-processing program eWrite.

SAT3 What I get from using the word-processing program eWrite meets what I expect for

this type of programs.

Perceived Usefulness (7-point Likert scale adapted and modified from Kim and Son 2009)

PU1 Using eWrite enhanced my effectiveness in completing the task.

PU2 Using eWrite enhanced my productivity in completing the task.

PU3 Using eWrite improved my performance in completing the task.

Perceived Ease of Use (7-point Likert scale adapted and modified from Kim and Son 2009)

PEoU1 Interacting with eWrite does not require a lot of mental effort.

PEoU2 I find it easy to get eWrite to do what I want it to do.

PEoU3 I find eWrite easy to use.

Disconfirmation (7-point Likert scale adapted and modified from Bhattacherjee 2001)

DISC1 My experience with using eWrite was better than what I expected.

DISC2 The service level provided by eWrite was better than what I expected.

DISC3 Overall, most of my expectations from using eWrite were confirmed.

Appendix 160

Appendix 4.B

Control Questions (Self developed)

1) What was the experimental task? (To format the entire text; to format the text as

appealingly as possible)

2) How many updates did you receive during the experiment? (no updates; one update

containing three features; three updates each containing one feature; one update containing

three non-features; three updates each containing one non-feature)

3) How many features did you have at the end of completion time? (one feature; four

features)

Appendix 4.C

Questions for Manipulation Check Study (Self developed)

1) As how frequent did you perceive the updates that you received during the experiment? (7-

point Likert scale; 1=not frequent at all, 7=very frequent, I did not receive any updates)

2) As how helpful did you perceive the updates that you received during the experiment? (7-

point Likert scale; 1=not helpful at all, 7=very helpful, I did not receive any updates)

