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Abstract

This work focuses on model order reduction for parabolic partial differential
equations with parametrized random input data. The input data enter the model
via model coefficients, external sources or boundary conditions, for instance. The
outcome of the model problem is not only the solution, but also a quantity of
interest (or output). The output is determined by a functional which maps the
solution to a real number. Random data cause randomness of the outcomes of
the model problem and, hence, statistical quantities are of interest. In particular,
this work studies the expected value of the solution and the output. In order
to approximate the expectation, a Monte Carlo estimator is utilized. For high
accuracy Monte Carlo requires many evaluations of the underlying problem
and, hence, it can become computationally infeasible. In order to overcome this
computational issue, a reduced basis method (RBM) is considered. The RBM
is a Galerkin projection onto a low-dimensional space (reduced basis space).
The construction of the reduced basis space combines a proper orthogonal
decomposition (POD) with a greedy approach, called POD-greedy algorithm,
which is state of the art for the RBM for parabolic problems. The POD-greedy
uses computationally cheap error estimators in order to build a reduced basis.

This thesis proposes efficient reduced order models regarding the expected
value of the errors resulting from the model order reduction. To this end, the
probability density function of the random input data is used as a weight for
the reduced space construction of the RBM, called weighted RBM. In the past,
a weighted RBM has been successfully applied to elliptic partial differential
equations with parametrized random input data. This work combines the ideas
of a RBM for parabolic partial differential equations Grepl and Patera (2005)
and a weighted RBM for elliptic problems Chen et al. (2013) in order to extend
the weighted approach also for the RBM for parabolic problems.

The performance of a non-weighted and a weighted approach are compared
numerically with respect to the expected solution error and the expected output
error. Furthermore, this work provides a numerical comparison of a non-weighted
RBM and a weighted RBM regarding an optimum reference. The reference is
obtained by an orthogonal projection onto a POD space, which minimizes the
expected squared solution error.

iii



iv



Zusammenfassung

In dieser Arbeit wird die Modellreduktion von parabolischen partiellen Differen-
tialgleichungen mit parametrisierten zufilligen Eingangsdaten betrachtet. Die
Eingangsdaten gehen zum Beispiel durch physikalische Koeffizienten im Modell,
externe Quellen oder Randbedingungen in die partielle Differentialgleichung ein.
Die gesuchte Variable des Problems ist nicht nur die Lésung, sondern auch ein
Output. Dieser Output wird durch ein Funktional, welches die Losung auf eine
reelle Zahl abbildet, berechnet. Durch die Zuféalligkeit der Eingangsdaten sind
auch die gesuchten Variablen des Problems Zufallsgrofien. Aus diesem Grund
sind statistische Groflen von Interesse, wobei diese Arbeit den Erwartungswert
der Losung und des Outputs untersucht. Um den Erwartungswert zu approxi-
mieren, wird ein Monte Carlo Schétzer verwendet. Monte Carlo benétigt viele
Auswertungen des zugehorigen Problems, um eine hohe Genauigkeit zu erzielen,
und kann deshalb zu groflem Rechenaufwand fiihren. Mit Hilfe der Reduzierte-
Basis-Methode (RBM) wird der Rechenaufwand reduziert. Die RBM ist eine
Galerkin-Projektion auf einen niedrigdimensionalen Raum. Die Konstruktion die-
ses reduzierten Raumes erfolgt durch eine Kombination einer Proper Orthogonal
Decomposition (POD) und eines Greedy Verfahrens (POD-greedy Algorithmus).
Der POD-greedy Algorithmus ist Stand der Technik im Kontext der RBM fiir
parabolische Probleme. Fiir die Konstruktion des reduzierten Raumes werden
Fehlerschétzer verwendet, welche unter einem geringen Rechenaufwand bestimmt
werden kénnen. Die Fehlerschitzer werden als Kriterium fiir die Wahl der Basis
des reduzierten Raumes verwendet.

Diese Arbeit entwickelt effiziente reduzierte Modelle hinsichtlich des Erwar-
tungswertes der Fehler, welche aus der Modellreduktion resultieren. Dazu wird
die Wahrscheinlichkeitsdichtefunktion der zufélligen Eingangsdaten als Gewichts-
funktion fir Konstruktion des reduzierten Raumes verwendet (gewichtete RBM).
In der Literatur wurde die gewichtete RBM erfolgreich fiir elliptische partielle
Differentialgleichungen mit parametrisierten zufélligen Eingangsdaten angewen-
det. Diese Arbeit kombiniert die Ideen einer RBM fir parabolische partielle
Differentialgleichungen Grepl and Patera (2005) und einer gewichteten RBM fiir
elliptische Probleme Chen et al. (2013), um die gewichtete RBM auf parabolische
Probleme zu erweitern.

Numerische Tests vergleichen eine nicht-gewichtete RBM und eine gewichtete
RBM beziiglich des erwarteten Fehlers der Losung und des erwarteten Fehlers
des Outputs. Dariiber hinaus liefert diese Arbeit einen numerischen Vergleich der
nicht-gewichteten RBM und der gewichteten RBM hinsichtlich eines Optimums.
Das Optimum wird durch eine Orthogonalprojektion auf einen POD Raum
bestimmt und minimiert den Erwartungswert des quadratischen Fehlers der
Losung.
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Chapter 1

Introduction

Mathematical models can describe many different physical phenomena in applied
sciences such as, for instance, heat conduction in mechanical devices, velocity of
a liquid through a pipe or pressure in a blood vessel. These phenomena can be
approximated by numerical simulations of partial differential equations (PDEs).
Numerous applications require many degrees of freedom in order to obtain
accurate computational results and thus lead to high-dimensional problems.
Solving these high-fidelity models demands powerful hardware and entails time
consuming computations. In practice the interest might not only be in the
solution itself, but also in a quantity of interest (or output). The output is
evaluated by an output functional that maps the solution of the underlying
problem to a real number. It can model heat loss over a boundary of the domain
or lift and drag in computational fluid dynamics, for instance.

Specific applications demand solutions for different input parameters, for
instance changing model coefficients, various boundary conditions or varying
geometry. Such problems are described by parametrized partial differential
equations (PPDEs). The parametrization of the PDEs entails parametrized
solutions and parametrized outputs.

Usually the input data is not known exactly and, hence, the input parameters
are random variables. A broad overview on such problems can be found in
LeMaitre and Knio (2010); Xiu (2010); Lord et al. (2014); Gunzburger et al.
(2014). These uncertainties are modeled as random variables or random vectors
that are fully characterized by a given probability density function (pdf). The
input uncertainties are passed on the unknowns of the PPDE and hence statistical
quantities are of interest. In particular, this work studies the expectation of the
solution and the output of the underlying problem. The expectation is estimated
by the well-known Monte Carlo (MC) method, which averages the evaluations
of the PPDE (snapshots) for randomly sampled parameters. However, due to
the moderate error convergence rate of MC, the method requires solutions for a
large number of parameter realizations. Especially for an accurate statistical
approximation the computation becomes infeasible.

To reduce the computational effort, a low-dimensional surrogate of the high-
fidelity model is obtained by means of model order reduction (MOR) techniques.
A reduced order model (ROM) yields approximations for the high-fidelity solution
and the output for any element of the parameter domain. This work utilizes the
reduced basis method (RBM), introduced in Almroth et al. (1978); Noor and

5



6 CHAPTER 1. INTRODUCTION

Peters (1980) for nonlinear structural analysis. A recent overview of the RBM
can be found in Quarteroni et al. (2016); Hesthaven et al. (2016); Haasdonk
(2017). The RBM is a Galerkin projection onto a low-dimensional space, called
reduced basis space. In order to construct the reduced space, a greedy algorithm,
introduced in Veroy et al. (2003) for the RBM, is the method of choice for
elliptic PPDEs. However, focusing on parabolic PPDEs, the space construction
combines a proper orthogonal decomposition (POD) with a greedy procedure,
called POD-greedy. The POD-greedy algorithm was introduced in Haasdonk
and Ohlberger (2008) and is state of the art for the reduced space construction
for parabolic problems in an RBM framework. This work uses computationally
cheap error estimators, derived in Grepl and Patera (2005), in order to build a
reduced basis.

The idea of a weighted RBM method was introduced in Chen et al. (2013)
for elliptic PPDEs. It assigns different weights to the parameters in the stage of
the reduced space construction. In the stochastic framework the pdf is utilized
as the weight, which gives more probable parameters higher priority. Numerical
results (Chen et al., 2013, section 5) have shown that the weighted RBM for
elliptic problems needs less basis functions than the non-weighted RBM in order
to obtain the same accuracy of the expected output error.

This thesis develops efficient reduced spaces regarding the expected value
of the solution error and the output error. To this end, the thesis combines
the ideas of the RBM for parabolic problems Grepl and Patera (2005) and the
weighted RBM for elliptic problems Chen et al. (2013) and, hence, extends the
weighted RBM to parabolic PPDEs.

The work compares the performance of a non-weighted RBM and a weighted
RBM for a two dimensional heat conduction test example. Therefore, the
expected value of the squared solution error and the expected value of the
absolute output error are demonstrated. Furthermore, this thesis compares the
non-weighted and the weighted approach to an optimum. The optimum can be
accomplished by a POD in terms of the MC approximation of the root mean
square error. The MC snapshots are projected onto the reduced POD space
and, hence, the expected squared solution error becomes minimal. It is assessed
whether the solution obtained by a weighted approach is significantly closer to
the optimum than the solution obtained by a non-weighted equivalent.

The thesis is structured as follows: In chapter 2 the strong formulation of
a linear parabolic PDE is introduced. A linear output functional is defined,
which maps the solution to the quantity of interest. The un-parametrized
weak formulation is stated in section 2.1, followed by the parametrized weak
formulation in section 2.2. The stochastic framework is set up, which characterizes
the random input data. Conditions for existence and uniqueness of a solution for
the parametrized problem are stated. In order so solve the model problem, in
sections 2.2.1 and 2.2.2 the PPDE is discretized at first in time and then in space.
The time discretization is achieved by an implicit Euler method and a linear finite
element method is used as a space discretization method. The error quantities,
e.g. the residual in each time step, regarding the discretization are introduced.
The resulting system of linear algebraic equations are defined in section 2.2.3. In
section 2.3, by means of a standard primal-dual approach, the dual problem of
the PPDE is derived. It allows higher accuracy for the output computation and
yields sharper error bounds. The dual problem is discretized in time and space
in sections 2.3.2 and 2.3.3, respectively, using the same discretization methods



as the primal problem. Analogously to the primal problem, error quantities for
the dual problem are defined. The corresponding algebraic equations of the dual
problem are stated in section 2.3.4.

Chapter 3 starts with a short overview of previous and recent work on the
RBM. In section 3.1 the reduced primal problem and the reduced dual problem
are introduced. An adjoint-corrected reduced output computation, which uses
the solution of the reduced dual problem, is described. In order to guarantee an
efficient computation of the reduced quantities independently of the high-fidelity
dimension, the property of an affine parameter dependence is assumed. The
algebraic equations of the reduced primal and the reduced dual problem are stated
in section 3.1.1. In section 3.2 the discretization error between the high-fidelity
model and the reduced model is considered. In particular, section 3.2.1 states
rigorous error bounds for the solution error measured in a parameter dependent
norm and the absolute output error. Weighted error estimators, utilizing the
probability density function, are defined in section 3.2.2. Furthermore, in
section 3.2.1 it has been shown that the error estimators can be extended to the
time continuous setting as well. The error bounds require the dual norm of the
primal and the dual residuals. The corresponding computations are explained in
section 3.2.3. In section 3.3 the reduced space construction is discussed. The space
construction is based on a POD-greedy algorithm utilizing an error estimator of
section 3.2 as a selection criterion for the reduced basis functions. If the algorithm
utilizes a non-weighted error estimator of section 3.2.1 the (non-weighted) POD-
greedy results whereas the use of a weighted error estimator of section 3.2.2
yields the weighted POD-greedy. The differences between these two approaches
regarding the reduced space construction are described in sections 3.3.1 and 3.3.2,
respectively. Results on the error convergence rates of a greedy approximation
are briefly summarized in section 3.3.3. Scenarios are discussed where the
non-weighted approach and the weighted approach coincide.

Chapter 4 considers a reduced space construction by means of a POD in order
to assess the reduced spaces obtained from the non-weighted and the weighted
RBM regarding the expected value of the solution error. The expected value
is approximated by the MC method. A short overview of this method is given
in section 4.1. The reduced space construction utilizing the POD is explained
in section 4.2. The reduced POD solution is represented by the orthogonal
projection of a snapshot onto the POD space, such that the error becomes
minimal in a root mean square sense.

In chapter 5 numerical results of a two dimensional heat conduction with
Robin boundary conditions and random input data are shown. Section 5.1
describes the mathematical model and states the governing equations. The
input data enter the problem via the boundary conditions and is characterized
by a random field acting as a heat inflow and a random coefficient which acts
as a cooling parameter. The random field is approximated by a truncated
Karhunen-Loéve (KL) expansion. The random cooling coefficient follows a beta
distribution. The quantity of interest is determined by the average temperature
in the domain at the end point in time. In section 5.2, by means of a linear finite
element method, the plots of numerical simulations show the heat conduction in
the domain for different time steps and varying parameters. The set up of the
different ROMs is described in section 5.3. The reduced solutions for different
parameters are visualized and compared to a reference solution obtained by the
finite element method. The non-weighted and the weighted error bounds of
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the solution and the output, stated in section 3.2, are illustrated over a finite
parameter set. Furthermore, the error convergence between the high-fidelity
and the reduced solution for increasing the reduced space dimension is shown.
The performance of the non-weighted and the weighted RBM regarding the
root mean square error is assessed by an optimal reduced POD space. To this
end, the expected squared solution error is compared between these three MOR
techniques. In addition, the expected absolute output error of the non-weighted
approach and the weighted approach is compared for increasing dimension. The
different parameter selection of these two methods are illustrated. The thesis is
concluded in chapter 6.



Chapter 2

Linear parabolic PDE

The thesis considers model order reduction (MOR) for a second-order linear
parabolic model problem. In order to reduce the dimension of the underlying
parabolic problem, the reduced basis method (RBM) is applied. The RBM for
parabolic partial differential equations (PDEs) has been studied in, e.g. Grepl
and Patera (2005); Rovas et al. (2006); Nguyen et al. (2009, 2010). Further
investigations on the RBM, where time was treated in a space-time framework,
were done in Yano (2014); Urban and Patera (2014). In this work data un-
certainties enter the parabolic problem, which emerge from lack of knowledge
or imprecise input data. Once the parabolic PDE is solved, the solution of
the PDE is mapped to a quantity of interest. In order to obtain sharper error
bounds for the quantity of interest, a standard dual problem is derived. For the
discretization of the parabolic problem, a linear finite element method in space
and an implicit Euler method in time is used.

At first, in this chapter the time dependent parabolic PDE is stated. The
time interval I := [0,7] is determined by the finite final time 7' > 0. In the
following the spatial domain Q C R? is bounded and its boundary 95 is Lipschitz
continuous. Here A := Z?Zl 82—; denotes the Laplace operator and 0; the partial
derivative with respect to the time variable ¢. The right hand side f: @ x I — R
models a source term. Further, % denotes the normal derivative with respect
to the outer normal to the boundary. On the boundary a time independent
function g: 9 — R is defined. The solution u: Q x I — R satisfies

O —Au=f, in Q x (0,77, (2.1a)
% =g, ondQx(0,T], (2.1b)
u=20, onQx{0}, (2.1c)

where (2.1a) models instationary heat conduction, (2.1b) is an inhomogeneous
Neumann boundary condition modeling heat exchange at the boundary, and
(2.1¢) is the initial condition. In case of an inhomogeneous initial condition
u(0) = ug € C? (ﬁ), the condition can be homogenized, see appendix A.2. Here,
the space C? contains the functions with 2 continuous derivatives and € denotes
the closure of the domain Q. The solution field w(z,t) of (2.1) describes the
heat distribution for spatial points x € {2 and points in time ¢ € I. This work
considers the solution pointwise in time, meaning that for ¢t € I the solution

9



10 CHAPTER 2. LINEAR PARABOLIC PDE

u(t): © — R is sought for a certain point in time.

In practical applications the objective is not only the solution, but rather
an output (or quantity of interest) s € R, e.g. the average temperature in the
domain, the loss of temperature over the boundary etc. It maps the solution to
a real number, such that

where a linear output functional [ evaluates the solution at the end time T'.

2.1 Weak formulation

In this section the weak formulation of problem (2.1) is stated. However, first
standard spaces are introduced.

Definition 2.1 (L*(Q) space). The space of square integrable functions on a
bounded domain Q C R? is defined by

L*(Q) = {f: Q — R : f measurable, / f(z)?dx < oo}.
Q
It is a Hilbert space, see definition A.1, with the inner product

(f, )2 = /Q f(2)g(2) da (2.3)
and the induced norm
12 = /(s Fr2@)-

Definition 2.2 (dual space). Let V be a normed vector space. The dual space
of V is defined by

V'={f:V =R : fiscontinuous and linear} .

Definition 2.3 (dual norm). Let V’ denote the dual space of V and g € V.
Then the dual norm of g is defined by

lgllyr o= sup S (2.4)
veV ||U||v

Proposition 2.4. Let g € V' and w € V, then it holds
g(w) < lglly lwlly - (2.5)
Proof. Equation (2.5) simply follows from

glw g(v
) iy, < sup 19
Tl AT

g(w) =

lwlly = llglly lwlly -

O

Definition 2.5 (H!(2) space). Let  C R? be a bounded domain. The Sobolev
space H(Q) C L?(Q) is defined by

HY(Q) ={ve L*(Q): v € L*(Q)}.
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The derivative v’ is understood in the weak sense, i.e. fQ vw = — fQ vw' and w
is infinitely differentiable function with compact support. The inner product

(f,9)m = (f,9)2) + (Vf,Vg)L2(0)

induces the norm

1l = 1120y + 19 2y

In order to derive the weak formulation, (2.1a) and (2.1c) are multiplied
by a test function of the Sobolev space X := H'(Q), see definition 2.5. The
equations are integrated over the spatial domain Q2. Integration by parts for the
Laplace term shifts the derivative to the test function and the Neumann boundary
condition (2.1b) enters the equation. For the sake of notational convenience, the
solution is written without the space dependence in the following. The weak
formulation of (2.1) is stated.

Problem 2.6 (weak formulation). Find the solution u(t) € X, such that

(Qpu(t),v) + a(u(t),v) =bv), WVwe X, te(0,T], (2.6a)
(u(t),’v)Lz(Q) =0, Yve X, t=0. (2.6b)

and evaluate the output
s =1l(u(T)). (2.6¢)

Here, (-, -) denotes a duality pairing between X’ and X. The time derivative
of the solution needs to lie in the dual space, i.e. Qu(t) € X’. The initial
condition (2.6b) contains the standard L? inner product given by (2.3). The
bilinear form a: X x X — R and the linear functional b: X — R in (2.6a) are
defined by a(w,v) := [, Vw - Vv and b(v) := [, fv+ [, gv, respectively. The
space dependence of the functions are omitted, i.e., e.g., f(z) = f and therefore
also the integration variable, i.e. [, f(z)dz = [, f. Equation (2.6b) results from
the homogeneous initial condition. The solution of (2.6a) and (2.6b) determines
the output (2.6¢).

2.2 Parametrized weak formulation

Many applications demand evaluations of a PDE for various input data. The given
data parameterizes the underlying PDE, which is called parametrized partial
differential equation (PPDE). Lack of knowledge regarding the input data causes
data uncertainties and hence the input parameters are modeled stochastically.
In order to describe the stochastic quantities, a complete probability space
(0, F,P) is introduced. The sample space © contains all possible outcomes
0 € ©. The sigma algebra F is given by a subset of all possible subsets of O,
i.e. F C 29, and the probability measure P: F — [0,1] maps an event to its
probability. Let £: © — I' denote a random parameter vector whose image is in
a bounded parameter domain I' C RP. The parameter domain is determined by
the support of the random variables, such that I' := [a1,b1] X - - - X [ap, by], with
—00 < ay < b, <oo,n=1,...,p. We assume that £ has a joint probability
density function (pdf) p: I' — R such that [y dP(0) = [ p(£)dE = 1.
Now the continuous parametrized problem is stated.
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Problem 2.7 (parametrized weak formulation). For given realization £ € T,
find the solution u(t; &) € X, such that

(Oeu(t; €),v) + a(u(t; €),v; §) = b(v; €), Yve X, te(0,T], (2.7a)
(u(t; €),v)p2() = 0, YveX,t=0, (2.7b)

and evaluate the output

s(§) = l(u(T;€); ). (2.7¢)

The parameter dependence can enter the problem by the parametrized bilinear
form a(-, -; £), the parametrized linear right hand side functional b(-;§) € X’ and
the parametrized linear output functional I(-;€) € X' for all £ € T'. Linearity
regarding the parameter domain I' does not necessarily hold. However, the
bilinear form and the functionals are bounded regarding I". The parameter
dependence is transferred to the output (2.7c), such that s: T' — R.

In order to guarantee existence and uniqueness of Problem 2.7 the following
assumptions have to hold.

Assumption 2.8. The bilinear form is uniformly coercive and uniformly bounded
and the functionals are uniformly bounded, i.e.

_ . a(v,v;€) a(u, v;€) _
— inf =% BN (€) <7, and (2.
s 0Avex Joll% osmnex Tl x ol 1) < 7o, and (28)
b(v; €)| 1(v;€)]

sup
0£veX ”UHX

=€) <7,  sup =8 <7, (2.9)
0#£vEX ”UHX

with 0 <@ and 7,,7;,7; < oo, forall £ € IT".

Assumption 2.9. The bilinear form is assumed to be symmetric, i.e.
a(u,v;+) = a(v,u; ), Yu,v € X. (2.10)

Equation (2.10) defines a parameter-dependent energy norm, such that

[v]le =/ (v,v)e = Va(v,v;§), Yve X, VEeT,. (2.11)

At this point Problem 2.7 is continuous in time and space. In order to get
rid of the time derivative, a time discretization method is applied.

2.2.1 Semi-discretized model problem

First, Problem 2.7 is discretized in time, also known as Rothe’s method. The
implicit Euler method is used as a time discretization method. The time interval
I is split into K € N equidistant time intervals with step size At := % The
solution is approximated at points in time {t* = kAt: k =0,..., K}, such that
u(tF; &) ~ uF(€). The (K 4+ 1)th power of the ansatz space is introduced by
XK+l .= X x --- x X. Due to the implicit Euler method the time derivative in
(2.7a) is discretized.
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Problem 2.10 (semi-discretized problem). For given realization £ € I, find
{uF (&)}, € XKFT, such that

(uF(£),v) r2(0) + Ata(uF(£),v;€)
= (uWFH(E),v) o) + Ath(v;€), Vo€ X, k=1,...,K, (2.12a)
(w*(€),v)12(0) = 0, Yo e X, k=0, (2.12b)

and evaluate the output

s(€) = 1w (€);6). (2.12¢)

The problem is solved iteratively, where the time index, starting with £ = 0,
is increasing. Since (2.12b) is zero for all v € X and due to the properties of the
L? norm, the solution at the initial point in time is zero. For an inhomogeneous
initial condition the right hand side of (2.12b) would be non-zero. The output
in (2.12¢) is computed by means of the solution at the end point in time
uf(¢) ~ u(T;¢), which is obtained from the last iteration step k = K solving
(2.12a) and (2.12b).

Problem 2.10 is continuous in space. In order to obtain a finite dimensional
problem, a space discretization method is used.

2.2.2 Fully discretized model problem

Problem 2.10 is discretized in space by a standard Galerkin method. Here, h de-
notes the spatial step size and the high dimensional space X, := span{¢1,...,dr}
C X, with dim(X}) = N, contains piecewise linear basis functions. Further,
Xfﬂ := Xp X -+ x Xp, denotes the (K + 1)th power of the discretized space.

Problem 2.11 (fully discretized problem). For given realization £ € T', find the
detailed solutions {uf (&)}, € X/ such that

(Uﬁ(f), U)LQ(Q) + At a(uﬁ(ﬁ), U3 f)
= (u571(£)7v)L2(Q) + At b(’U;g),V’U € Xh,k = 1, . .,K7 (213&)
(u’fl(f),v)Lz(Q) =0, Yv e Xp, k=0, (2.13b)

and evaluate the output

sn(€) = U(up (€);€). (2.13c)

The problem is solved iteratively with an increasing time index, starting with
k = 0. The output in (2.13¢) is computed by means of the detailed solution at
the end point in time u (¢), which is obtained from the last iteration step k = K
solving (2.13b) and (2.13c). A finite element method entails an N -dimensional
system of linear algebraic equations. Many applications demand A to be
rather large and hence the discretized primal problem becomes computationally
expensive to solve. The local support of the detailed basis functions implies
sparsity of the system matrix. Hence, for each time step the algebraic equations
can be solved with complexity O(N) in the best case using an iterative solver.
Solving the detailed problem with homogeneous initial condition, the total
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computational complexity is determined by O(KN). For an inhomogeneous
initial condition, the right hand side of (2.13b) becomes non-zero. Therefore,
it entails also a system of equations that has to be solved and hence the total
complexity of Problem 2.11 increases to O((K + 1)N).

The solution coefficients, resulting from the algebraic equations, uniquely
represent the detailed solution, for £ =0,..., K and £ € I', such that

N
uh(€) = > i (€)er (214)

Problem 2.11 is also referred to as the detailed model and (2.14) as the detailed
solution.

Definition 2.12 (detailed primal residual). For any £ € T', the detailed pri-
mal residual regarding the detailed primal problem (2.13) is defined by, for
k=1,...,Kandv e X,
1 _
rh(v;€) = b(v; €) — E(Uﬁ‘i(f) —uyy (€),0) 2 () — alup(€),v;€).  (2.15)

Furthermore, the detailed residual for the initial condition is determined by, for
k=0and v e X,

i (0;6) = = (uh(€), ) L2 (0 (2.16)
Remark 2.13. The detailed primal residual is zero for each function being an
element of the high dimensional discretization space, i.e., for k =0,..., K,

X}, C ker (15 (- €)). (2.17)

Definition 2.14 (detailed primal solution error). For any ¢ € T', the detailed
primal solution error is denoted by, for £k =0,..., K,

eh(€) = u* (&) — uj(€). (2.18)

Proposition 2.15. For any £ € T, it holds that
ek(€)=0, fork=0. (2.19)

Proof. The initial condition (u®(§),v)r2(q) = 0 has to hold for all v € X and
hence the solution at the inital point in time is zero, i.e. u°(¢) = 0. By analogy,
the initial condition of the detailed problem (u,({),v)r2(q) = 0 has to hold for
all v € X}, and hence the detailed solution at the initial point in time is zero, i.e.
u? (&) = 0. Tt follows, €2 (£) = u®(&) — ul(€) = 0. O

Proposition 2.16. Forany £ €', k= 1,..., K and v € X, the relation

Hh56) = 1 (eh(€) — b€ v ey +aleh(©)v:),  (2:20)

holds. Further, it holds that, for k =0 and v € X,

rh(v;€) =0. (2.21)
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Proof. Starting from the right hand side of (2.20) it follows

]. (2.18

aleh(€),v:€) + 5 (R () = 171 (€), v) () = a(u* (€), v:€) — a(up(€), v: )

(O — (@), 0 - S h©) — w7, Ve

PEb(0;€) — a(uf (&), v;€) — ( HE) —ur (), 0) @),

which equals the definition of the residual (2.15). Equation (2.21) simply follows
from (2.13b) and (2.16). O

2.2.3 Algebraic equations for detailed model

In this section Problem 2.11 is reformulated to a system of linear algebraic
equations. The solutions of the algebraic equations determine the representation
of the detailed solution (2.14). The detailed model problem tested for all basis
functions v = ¢; € Xp,, j =1,..., N, yields

N
Z ujy 4(€) [(d)i, ®5) L2 ) + At a(gq, ¢y 5)}
i=1
N
= Atb(¢]7£) + Zulfljzl(g)(d)lv ¢j)L2(Q)a k= ]-7 cee ,Kv
i=1
Zuhz d)ud)] L2(Q —O k‘:O,
and evaluate the output
N
sn() = D uh (Ui ).
i=1

The following matrices and vectors are defined

M = (65 6))r2(@)) ey € RVY, (2.23)
A(g) = (i, &5 >>“ , eRVAV, (2.24)
b(&) = (b5 )1 eRY, (2.25)
TG eRY. (2.26)

Then, the solution vectors uf(£) = (uﬁl(g)){il, k=0,...,K can be computed
from the N-dimensional systems of linear algebraic equations
(M + At A(E)) ufi(§) = Ath(§) + Muy (), k=1,...,K
Muj,(€) =0, k=0,

which determines (2.14). Utilizing the solution vector at the end point in time,
the output is computed by

L&) uy (€).
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2.3 Dual problem

A dual approach is a standard approach for a posteriori error estimation in
finite element theory in order to control the output computation or estimate
the output error, see, e.g., (Ainsworth and Oden, 2000, chapter 8). The dual
problem accomplishes a relation between the primal residual and the error that
arises from the output approximation, see (Oden and Prud’homme, 2001, section
3.1). By means of the solution of the dual problem, called dual solution, higher
accuracy for the output computation can be achieved and sharper error bounds
for the error can be derived.

2.3.1 Derivation for general output functional

In the following the dual problem regarding the primal problem (2.7a) and (2.7b)
for a general output functional is derived. The solution of the dual problem
allows to derive better error bounds for the output. A general quantity of interest
is considered by

T
/O g(u(t; §); §)dt + 1(u(T;6);6), (2.27)

where g: X xI' = R is a functional and g(-;£) € X’ for all £ € T'. The functional
[: X xT' = R uses the solution at the end point in time, cf. (2.7¢c). The choice
of such a functional is motivated from optimal control theory, e.g. (Meidner and
Vexler, 2012, page 323). Linearity for (2.27) holds. The dual approach is not
limited to linear functionals. However, in case of non-linear functionals a different
dual problem is obtained, see, e.g., (Ern and Guermond, 2004, section 10.3.2).
More details on non-linear functionals and a broad overview on a posteriori error
estimation for finite element methods can be found in Becker and Rannacher
(2001). The time continuous solution error is denoted by

en(t; €) = u(t; §) — un(t; §), (2.28)

where wuy, (t; €) solves Problem 2.7 on X},. Since the functionals g and [ are linear
in X, the error for the quantity of interest can be estimated by (2.5), such that

T
/O g(en(t:€); E)dt + U(en(T; €);€)

., (2.29)
< /0 19C5 ) Nen(t; Ol x dt + 11(5 )l xo llen(T5 ) 2 g -

The dual norm ||-|| y, is determined by (2.4). However, the objective is to improve
the convergence of the estimation for the output error in (2.29).

Definition 2.17 (time continuous primal residual). For any £ € I', the time
continuous primal residual is defined by, for ¢t € (0,7] and v € X,

rr(v;€) = b(v; &) — (Qpun(t;€),v) L2(q) — alun(t; €), v; ). (2.30)

Furthermore, the time continuous residual for the homogeneous initial condition
is determined by, for t =0 and v € X,

ma(v;€) == —(un(t;€),v) L2 () (2.31)
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Proposition 2.18. For any £ € I, ¢t € (0,7] and v € X, the relation
Th (U; 5) = <ateh(t; 5)7 U> + a(eh (t7 6)7 U3 5)7 (232)
holds. Further, it holds that, for t =0 and v € X,

rp(v; &) = 0. (2.33)
Proof. Starting from the right hand side of (2.32) it follows

(2.28)

(Oren(t;€),v) + alen(t; §),v;€) "= (Qru(t; €),v) + alu(t; €), v;§)
— (Ovun(t; €),v) — alun(t; §),v; )

CI b(0; €) — (Byun(t;€),v) — alun(t;€), v;€)

which equals the definition of the residual (2.30). Equation (2.33) simply follows
from (2.31) and up(0;&) = 0. O

For the derivation of the dual problem a function ¥ (t;&) € X, for t € I and
& € T is sought. It relates the time continuous primal residual (2.30) and (2.31)
and the quantity of interest for the time continuous error (2.28), such that

T

T
Th(¢(0;§);£)+/0 Th(¢(t;§);£)dt=/o g(en(t;:€); &) dt+1(en(T5€);€). (2.34)

The first term on the left hand vanishes due to (2.33), whereas the second term
is rewritten by (2.32). Integration by parts for time shifts the time derivative to
the unknown function ¥(¢; ), i.e.

(en(T; )W (T5€)) L2 () — (en(05€),1(0;€)) L2 ()
T
[ e, 00(60) + ot vEOw a0

T
:/0 glen(t:€);€) At + U(en (T3 €); €).

Due to the homogeneous initial condition, (2.28) is zero for ¢ = 0, hence
(en(05€),9(0;€)) L2(q) = 0. Equation (2.35) has to hold for all errors e (t;§) in
the infinite dimensional space X. Then, solving the equation pointwise for each
point in time, the continuous dual problem can be stated.

Problem 2.19 (continuous dual problem). Find the dual solution ¥(¢;¢) € X,
such that

— (0, 0pp(t;€)) + a(v,¥(t:€); &) = g(v;€), Yve X, (2.36a)
(0, (T3 €)) 120y = Uv;€), Vv € X. (2.36b)

Instead of the initial condition for the primal problem, the dual problem uses
a final condition (2.36b). The dual problem evolves backwards in time, denoted
by the minus sign in (2.36a).

Remark 2.20. The quantity of interest can either be computed by the primal
solution inserted in the output functional, see (2.27), or by the dual solution
inserted in the right hand side of the primal problem, cf. (Pierce and Giles, 2000,
chapter 2). For further details see appendix A.3.
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Analogously to the discretization of the primal problem, the dual problem
continuous in time and discrete in space is stated.

Problem 2.21 (time continuous dual problem). Find the detailed dual solution
P (t;:€) € Xy, such that

—(v,0¢n(t;€)) + a(v, Yn(t:€);€) = g(v; ), Yo € X, (2.37a)
(0, V(T3 €))2(0) = L(v;€), Yo € Xp. (2.37D)

The time continuous dual solution error is denoted by
én(t;:€) =yt &) — Yn(t:6). (2.38)
The output error computation (2.29) is expanded by a “correction term”

- /0 i (n (£ €):€) = 0, (2.39)

cf. (2.17), such that
T T
| / glen(t:6);€)dt + Uen(T; €):) - / v (Un(£:€); €) ]
0 0
T T
"2 /O ra((t;€); €)dt — /0 r(n(t;€); €) dt|
) /T (en(t:£): )]
= r(én(t; €);
o h\€h

2.32 T
) /0 (Ouen(t:€),en(t:€)) + alen(t:6). n(t: €): €)d].

Compared to (2.29), this expression does not only contain the primal solution
error (2.28), but also the dual solution error (2.38). Assume that the dual
solution error is of the same order of magnitude as the primal solution error, i.e.
ep ~ €n, as h — 0. Then, the last expression asymptotically behaves like

| @rentts).entts) + aten(ts6).en(t:€)s
1 2 T
5 len(T:Ol + [ alentt€).en(t it (2.40)
0
LT + ) [ len(t Ol .

The first identity utilizes (9yv,v) = £, [|v]|> and e,(0;€) = 0. Compared to
(2.29), the convergence rate in (2.40) is doubled since the solution error ey
converges to zero for h tending to zero.

2.3.2 Semi-discretized dual problem

Utilizing the previous ideas, the dual problem for the semi-discretized problem
(2.12) can be derived. For the problem (2.7), the quantity of interest (2.27)
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simplifies to the second term I(u(T;&);£). Then, the following relation has to

hold
K

At Y rE@RT):6) = el (6): ), (2.41)

k=1

where the discrete residual and the discrete solution error are defined in (2.15)

and (2.18), respectively. The function ¥ (&) ~ ¥(t¥; ¢) denotes the discretized

dual solution at point in time t*, k = 0,..., K. The abbreviations ef (£) = ef,

YF(€) = ¥k and the identity (2.20) give

K

(ef —ef 1 P ) o) + Atalef, pF 1) = U(ef ;).
k=1

Using (2.19), the time indices for the first summand on the left hand side can be
reordered, such that

K
(er ™) L2y + D (eh 7 = %) a(q) + Ataef, vF 15 €) = 1(ef: €).
k=1

The equation is satisfied if the first term on the left hand side equals the right
hand side and the summands are zero for all time steps k. As for the time
continuous case, the equation needs to hold for all eﬁ. Then the time discretized
dual problem can be stated.

Problem 2.22 (semi-discretized dual problem). For given realization £ € T,
find {¢* (&)}, € XK+ such that
(0,95(€)) 120y + At a(v, 9" (€);€)
= (v, ") 12, W E X, k=0,..., K — 1, (2.42a)
(0,85 () L2() = 1(v;€), Voe X, k=K. (2.42b)
As for the time continuous case, the dual problem evolves backward in time.

Hence, Problem 2.22 is solved iteratively where the time index is decreasing,
starting with k = K.

2.3.3 Fully discretized dual problem

As for the primal problem, the dual problem (2.42) is spatially discretized by a
standard Galerkin method, cf. section 2.2.2.

Problem 2.23 (fully discretized dual problem). For given realization £ € T,
find {9 (€)1, € Xj ™, such that

(0,98 (E)) r2(0) + At a(v, 95(€); €)
= (v, () 12(), Y0 € X, k=0,...,K —1,  (2.43a)
(0,9 () L2 (0 = Uv; 6), Vo € Xp, k=K. (2.43b)
As in section 2.2.2, the discretized dual problem entails an N -dimensional

system of linear algebraic equations which for large N are computationally ex-
pensive to solve. The computational complexity over all time steps is determined
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by O((K + 1)) in the best case, cf. the complexity of the forward problem
(2.13). The solution coefficients, coming out of the algebraic equations, uniquely
represent the discretized dual solution, for £k =0,..., K and £ € T, such that

N
=2 V(&) (2.44)

Problem 2.23 is also referred to as the detailed dual problem and (2.44) as the
detailed dual solution. Existence and uniqueness of the detailed dual problem
follow from Assumption 2.8.

Remark 2.24. On the one hand the discretized dual problem can be derived
from the time discretized formulation, see (2.41) to (2.42). On the other hand the
discretized dual problem can be derived from the time continuous formulation
(2.37), followed by discretization in time. It is emphasized that both ways of the
derivation yield the same dual problem (2.43). Since the space discretization does
not change the equations of the weak formulation, cf. Problems 2.19 and 2.21, it
has no influence on the derivation of the dual problem.

Definition 2.25 (detailed dual residual). For any £ € T, the detailed residual
regarding detailed dual problem (2.43) is defined by, for k =0,..., K — 1 and
ve X,

(v €) = wh(&) FHE), v) 120y — a(YF(€),v;€). (2.45)

Furthermore, the detailed residual for the final condition is determined by, for
k=Kandve X,

h(0;€) == 1(v;€) = (v,9F) 120 (2.46)
Remark 2.26. The detailed dual residual is zero for each function being an
element of the high dimensional discretization space, i.e., for k =0,..., K,

X C ker (75(5€))-
Definition 2.27 (detailed dual solution error). For any £ € T, the detailed dual

solution error is denoted by, for £ =0,..., K,
& (€) =" (&) — v (9). (2.47)
Proposition 2.28. For any £ € I"and £k =0,..., K —1 and v € X, the relation
1 - .
h(0;€) = A7 ~—(Eh(8) = &1 (€),v) 120 + alv, 8 (€);6), (2.48)

holds. Further, it holds that, for Kk = K and v € X,

h(v;€) = (v,84(6))L2(0)- (2.49)
Proof. Starting from the right hand side of (2.48) it follows

al@5,(6), v €) + é(éﬁ(&) & (o), v)Lzm)”é”a(w’“(g) vi€) = a(¥y (), v;€)
i<wk<£>—wk+l<£> V) — 5 (WHEO) — ¥ O, V) sy
P2 _a(f(€),v;€) — wh(s) ’“+1<s),v>m<m,
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which equals the definition of the residual (2.45). Equation (2.49) simply follows
from

(2.47) (2.42b)

(v, 8 () p2) = (v, 0" (€))12(0) — (0, Y (E))r2() = Uv;€) — (v, ¥F(€)) L2(0)
which equals (2.46). O

Remark 2.29 (compliant case). Let the bilinear form be symmetric and the
right hand side of the forward problem equals the right hand side of the backward
problem, i.e., for example for a general quantity of interest (2.27) that b = g.
Then the dual solution coincides with the primal solution. Hence, for the
time continuous case the solution satisfies u(t;&) = (T — t; &), where for the
time discretized case it holds that u*(¢) = X ~k(¢). For further details see
appendix A 4.

2.3.4 Algebraic equations for detailed dual model

In this section Problem 2.23 is reformulated to a system of linear algebraic
equations. The solutions of the algebraic equations determine the representation
of the detailed dual solution (2.44). The detailed dual model problem tested for
all basis functions v = ¢; € X3, j =1,..., N, yields

N
Z Py (6 {(@% bi)r2(0) + Ata(oy, ds; f)]
i=1
N
Z k+1 (bj, )Lz(Q k:O,...,K—l,

Z¢hz ¢]7¢1 L2 Q)_l(¢]7€)7 k=K.

Using the deﬁmtlons (2.23), (2 24), and (2.26), the solution vectors of the
dual problem 1/) (E) (whz(f))l 1,k =0,...,K can be computed from the
N-dimensional systems of linear algebraic equatlons

(M + ALAE)T) 0 (€) = MyH(©), k=0, K — 1 (2510)
My (€) = 1(8), k=K, (2.51b)

which determines (2.44). If Assumption 2.9 is fulfilled, the stiffness matrix in
(2.51a) is symmetric, i.e. A(¢) = A(£)T. Here, AT denotes the transpose of the
matrix A.
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Chapter 3

A weighted reduced basis
method for parabolic PDEs

The reduced basis method (RBM) is a technique in the field of model order
reduction for PPDEs and applies if a PPDE needs to be solved for many different
parameters, solutions are required in real time or if the available memory is
limited, for instance. The objective is the approximation of the solution manifold,
containing the detailed solution for all parameters by a low dimensional reduced
space. The RBM has been developed extensively in the last decades. A recent
overview can be found in Quarteroni et al. (2016); Hesthaven et al. (2016);
Haasdonk (2017). Application of the RBM to parabolic PPDEs was considered
in Grepl (2005).

This work considers the RBM for a linear parabolic PPDE with parameter
uncertainties. A review for the RBM concerning PPDEs with random input
data can be found in Chen et al. (2017). Dealing with data uncertainties, a
weighted RBM equips more likely parameters with higher priority. The weighted
approach was introduced in Chen et al. (2013) for elliptic PDEs. A recent work
on weighted RBM for elliptic PDEs can be found in Venturi et al. (2018). It
allows to build up more efficient reduced spaces regarding an approximation of
statistical quantities. In this chapter, this idea is transferred to the parabolic case.
The primal reduced model and the dual reduced model is set up. By means of the
solution of the reduced dual problem, cf. section 2.3, the accuracy for the output
computation is increased. Non-weighted and weighted rigorous a posteriori error
estimators are stated and utilized for the reduced space construction.

3.1 Reduced model problem

In this section, the reduced order model (ROM) of the detailed model (2.13)
using the RBM is stated. The RBM is a Galerkin projection onto a reduced
space Xy := span{p1,...,on} C Xp, where @ := {p1,...,pn} is called the
reduced basis. The reduced basis is an orthonormal basis w.r.t. |[-||y, such
that (©n, ©m)x = Onm, where d,,, denotes the Kronecker delta. The reduced
dimension is denoted by dim(Xy) = N. Analogue to the detailed problem, the
(K + 1)th power of the reduced space is defined by Xﬁ“ = XNy X+ X Xn.
Then, the reduced forward problem can be stated.

23
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Problem 3.1 (reduced primal problem). For given realization £ € T, find the
reduced solutions {uf (€)}5 , € X5 T, such that

(ufs (€),v) r2(0) + At a(ufy (€),v;€)
= ( ?v_l(f)av)m(g) + Atb(v;€),Yv € Xn,k=1,..., K, (3.1a)

(uk (€),v) 1200y = 0, Yo € Xy, k= 0. (3.1b)

The solution of the reduced model approximates the detailed solution within

the time interval and parameter domain, i.e. uk (&) ~ uf(¢) for k =0,..., K
and £ €I

In order to obtain higher accuracy for the reduced output computation and an
improved reduced output error bound, the reduced dual problem is introduced,
cf. section 2.3. The corresponding reduced space XN = span{(y,...,(xy} C
X}, is spanned by an orthonormal basis w.r.t. |||y, such that (¢,,(n)x =
Snm- The reduced dimension is denoted by dim(Xy) = N. The (K + 1)th
power of the reduced space regarding the reduced dual problem is defined by

Xfé“ =Xz X -+ X Xg. Then, the reduced backward problem can be stated.

Problem 3.2 (reduced dual proplern). For given realization ¢ € T', find the
reduced solutions {1/)% (O, € Xfé“, such that

(0,95 () 12() + At alv,¥% (€);€)
= (0, ()2 @), Y e X, k=0,...,K -1, (3.2a)
(v, Y% ) r2(0) = U(v; €), Vo€ X, k= K. (3.2b)

The reduced spaces Xy and X x5 are spanned by a different basis and, in
general, they can have different dimensions, i.e. N # N. The reduced primal
problem and the reduced dual problem yield a system of linear equations with
dimensions N and N, respectively. In contrast to the detailed space, the reduced
spaces are spanned by global basis functions. Hence, the system matrices for
the reduced problems are full. Therefore the total computational complexity for
the reduced primal problem with homogeneous initial condition and the reduced
dual problem are O(KN?) and O((K + 1)N?), respectively. In order to obtain
the desired computational speed up by the RBM, it is required that N, N < N.

For each time step and each parameter, the solutions of the algebraic equa-
tions yield the primal solution coefficients {u’f\,’n(g)},]y:l and the dual solution

coefficients {1/)5“\7 (6 521- They determine a unique representation of the reduced

solutions, for k = 0,...,K and £ € T, such that

N

uk (€)= Y ukn(©¢n, (3.3)
N

VR (€) =D Ur (O (34)

In the following, the residuals for the primal problem and the dual problem are
introduced. The definitions of the residuals are taken from (Grepl and Patera,
2005, equations (21) and (34)) .
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Definition 3.3 (reduced primal residual). For any ¢ € T', the reduced pri-
mal residual regarding the reduced primal problem (3.1) is defined by, for
k=1,....K,
R (0:€) = b(v:€) — < (u (€) — ul ' (€),0)12(0) — aluk (€),v;€), Vv € X,
(3.5)

Additionally, for k& = 0, the reduced residual for the homogeneous initial condition
is determined by

rj]‘{,(v;f) = —(ulfv(f),v)Lz(Q), Yo € X, (3.6)
Definition 3.4 (reduced dual residual). For any ¢ € T, the reduced dual residual
regarding the reduced dual problem (3.2) is defined by, for k =0,..., K — 1,

_ 1
P (03) = = (0,05 (€) = VT (€)pae) — alv, ¥R () €), Yv € Xy (3.7)

Additionally, the reduced residual for the final condition is determined by, for
k=K,
P (0:€) = 1(v;€) — (1,95 (8)) L2(0), Yo € Xpn. (3.8)

Remark 3.5. The reduced primal residual and the reduced dual residual are
orthogonal onto their reduced spaces, i.e., for k=0,..., K, Xy C ker (1% (- €))
and X5 C ker(f%(g{)).

Definition 3.6 (reduced solution error). For any ¢ € T', the reduced primal

solution error and the reduced dual solution error is denoted by, for k =0, ..., K,
en(§) = uj,(€) —ui (9), (3.9)
ey (&) = vh(&) — ¥ (&), (3.10)
respectively.

Proposition 3.7. For any £ € T, it holds that
ek(€) =0, fork=0. (3.11)
Proof. Tt is shown analogue to the proof of Proposition 2.15. O

Proposition 3.8. Let £ € I'. For the primal residual, the following relation
holds, for k=1,..., K,

P 58) = (R (€) — kO )2y +aleh (€),158), Vo€ X (312)

Further, the residual for the initial condition fulfills, for £ = 0,
ri(v;6) = 0. (3.13)

For the dual residual it holds, k =0,..., K — 1,

Pl (058) = (PR €) — 57(0), )2y + (v, B (€:8), Vo € X (314)
Further, the residual for the final condition fulfills, for & = K,
E(038) = (v,8%(8))12(), Vv € X (3.15)

,]Z
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Proof. The proof is analogue to Proposition 2.16 and Proposition 2.28. O

As it was motivated in sections 2.3 and 2.3.1, the reduced output computation
is expanded by a “correction”, cf. (2.39), such that

K
sy (€) = Huf(€:€) + At Y rk (Wi1(€);9). (3.16)

k=1

For the reduced framework the “correction” is not zero compared to the detailed
“correction” (2.39). This is due to the fact that the detailed primal problem and
the detailed dual problem are solved on the same discretization space X. This
is not the case for the reduced spaces, i.e. Xy # XN- The “correction” uses
the reduced dual solutions {w%}kK:_Ol in order to achieve higher accuracy for the
output computation.

For computational efficiency, the computation is split into an offline phase and
an online phase, see, e.g., Prud’homme et al. (2001). The former is expensive to
compute and depends on the large dimension N, and it is related to the reduced
model construction. Once the reduced model exists, solutions are obtained very
fast in the online phase by calculations depending only on the reduced dimension
N. For such a splitting, the bilinear form a(-, -; £) and the functionals b(-; £), I(+;€)
need to be affine with respect to ¢ (also known as parameter separable).

Assumption 3.9 (parameter separability).
Qa
a(v,w; &) = Zeg(f)aq(v,w), Yo,we X, V€ €T,

q=1
Qb

D) =D 04(E)bg(v), Vv E X VEET,
q=1
Qu

H(v;6) =Y 6L ()lg(v), Yo e X, Ve el.
q=1

By means of the assumption, the bilinear form and the functionals are
computed by a linear combination of a parameter independent and a parameter
dependent part. It allows rapid evaluations for different parameters, since the
parameter independent quantities, which are computationally expensive, need
to be computed only once. If the assumption does not hold, an empirical
interpolation method (EIM), see Barrault et al. (2004), can be used instead.

3.1.1 Algebraic equations for reduced model

In this section, Problems 3.1 and 3.2 are reformulated to a system of linear
algebraic equations. The solutions of the algebraic equations determine the
representation of the reduced solution (3.3) and the reduced dual solution (3.4).

The reduced primal problem tested for all basis functions v = ¢, € Xy,
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m=1,...,N, yields

N
> k(9 [(wn, Om)r2(Q) + At a(n, Pm; /E)} = Atb(pm;§)

n=1
N
+Z“7VT;(£)(¢na90m)L2(SZ); k=1,... K,
> k1 (O, om)L2() =0, k=0.
1

The following matrices and vectors are defined,

N
MN = ((gpn’(pm)LZ(Q))mn 1 c RNXN’

( ) ( (@n’@m,g))mn 1 GRNXNv
b (8) = (b(#m; €))mey c RY.
Then, the solution vectors u; (&) = (u’f\,,n(f))gzl, k=0,..., K, can be computed

from the N-dimensional systems of linear algebraic equations

(My + At An(€) uf (€) = Atby (&) + Myuy ' (§), k=1,..., K, (3.18a)
Myuf(€) =0, k=0, (3.18b)

which determines (3.3). )
The reduced dual problem tested for all basis functions v = (¢, € Xy,
m=1,...,N, yield

N
S0k (O] (Gns G2y + At G, s 6)]
n=1

=

¢f€i(€)(<ma§n)L2(Q)v k= 0,.. '7K -1

n=1

=

w]k{z’n(g)(Cm7Cn)L2(Q) = Z(Cm;g)v k=K.

n=1

The following matrices and vectors are defined

N o
Mg = ((<n7Cm)L2(Q))m7n=1 e RV*N,

( ) ( (CnaCmag))mn 1 GRNXN,
L (€) == (UGm; ©))me cRY.
Then, the soluticgn vectors %(g) = ( %n(@)n 1, k=0,...,K, can be com-
puted from the N-dimensional systems of linear algebraic equations
(Mg + At A (6)T) 95 () = Mg (€), k=0,...,K =1, (3.20a)

Mg (§) = 15 (8), k=K, (3.20D)
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which determines (3.4). If Assumption 2.9 is fulfilled, the stiffness matrix in
(3.20a) is symmetric, i.e. Ag(€) = Ax(&)T.
The reduced output (3.16) is evaluated by

N
SN,N(g) Z (§ ©on; € +Atz Z 7/) Cmag)

n=1 k=1m=1
N
(3@2 2(E)en; € +AtZZ¢ [ (s ©)
n=1 k=1m=1 (321)
;N
=5 > (uhen(®) = WA 1O)) (s G 2o
n=1
N
_Zulfv,n@) (‘PmCmyf)}
n=1

Ly (&) = (lgn; ), eRY,

by (€) = (b(Cmi €y € RY,
= ((Pns Gmd 2oy € RIXY,
Ay <> ((pn G )N € RVXN,

Utilizing the solution vectors of the reduced primal problem (3.18) and the
reduced dual problem (3.20), the reduced output in (3.21) is approximated by

K

Ly(€)u () + At 3 GRG

= (57©) My (0 (©) ' (€)
—(y;;l@)) Ay 5 () (5)]

Definition 3.10 (Gramian matrix). The matrix induced by the inner product
is defined as

= (61, 8)x) )y, € RN, (3.22)

In the following, the discrete reduced spaces are introduced.

Definition 3.11 (discrete primal reduced basis space). Let ¢,, = Zf\il Pn,iti €
Xn,n=1,...,N, be the orthonormal basis functions w.r.t. ||-|| y, which span
the reduced space Xy = span{¢i,...,¢on}. Then the discrete orthonormal
reduced basis space Vi is defined by

Vi = (pni) o, = (wl, - ,QN) ERVN OTHp =6um,  (3.23)

where the inner product matrix is determined by (3.22).
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Definition 3.12 (discrete dual reduced basis space). Let ¢, = Zi\il Cn,iti €
Xp,n=1,..., N, be the orthonormal basis functions w.r.t. ||| which span the
reduced space XN = span{(i,..., (5. Then the discrete orthonormal reduced
basis space VN for the dual problem is defined by

Vi = GoilS = (CoenCy ) ERVYY CTHC = bume (3:24)

Remark 3.13. It may occur that the discrete primal reduced basis space Vi
and the discrete dual reduced basis space VN contain basis functions which are
almost linearly dependent of each other. Hence, the condition number of the
reduced matrices becomes large and possibly yields numerical instabilities. In
order to obtain algebraic stability, the primal reduced basis Vy and the dual
reduced spaces VN are orthonormalized w.r.t. to the discrete inner product
induced by the Hilbert space X. An orthonormalization can be achieved by a
Gram—Schmidt process (Quarteroni et al., 2007, section 3.4.3), for instance.

The discrete reduced basis space projects a reduced solution onto the high
dimensional space, which approximates the discrete high dimensional solution

Vnuk () ~uf(©) eRY, k=0,... K,

Vet (©) m ol (€ eRY, k=0,... K.

The discrete reduced matrices and reduced vectors can be expressed as

My =VEMVy e RNV,
AN(§) = VR A(E)VN € RVXN,
by(§) =Vab(§)  eRY,
In(€) =VylE)  eRY.

It is desired that the high dimensional quantities can be efficiently computed
for different parameter values. Therefore, it needs to be possible to separate
the parameter dependence from the space dependence. This is achieved by
Assumption 3.9. With this assumption, the high dimensional matrix and the
high dimensional vectors defined in (2.24)—(2.26) are determined by

Qa
A(E) =089 Ag, Ag = (ag(61,07))} -, € RV, (3.25)
b(E) = 08O, by = (by(e))),  €RV, (3.26)

WO =D 0O, =), RV (3.27)

Thus, the parameter dependent quantities are computed by a linear combi-
nation of parameter independent, precomputed matrices ~{141(1}~((I;“):"'1 and vectors

(oo, {133
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The parameter separated computation also applies for the parameter depen-
dent reduced quantities, such that

Qa
AN(&) = Zgg(g)AN,qa AN,q = (aq(@na @m))z’n:1 = VJ?/ﬂAqVN € RNXN’
q=1
b (€)= 08 (by g by = (bg(om)m_, =Vyb, €RY,

INE) =D 0 lng  Ing = Uglom))_, =Vil, €RY.

Here, {A]\;’q}qQ:“17 {QN’q}qQ:bl, {Uny qull are precomputed quantities.

3.2 Error estimation

The objective in this section is the a posteriori error estimation in order to assess
the accuracy of the reduced models. This work utilizes the error estimators for
the primal solution, the dual solution and the output from Grepl and Patera
(2005). In an RB-context the error is measured with respect to a high-fidelity
discretization. The detailed discretization can be arbitrarily accurate, hence
the error between the exact solution and the detailed solution is neglected
|lw — up|| = 0, such that

lu = unll < flu = unll + lun — un| = [Jun = unll.

In consequence and due to the linearity of the output functional, the same holds
for the output

Is = sy wl < s —snl+lsn— syl = [Hu—up)| +[sn — sy x|~ |sn — sy 5l

Reduced basis error estimation is related to a priori residual based error
analysis, meaning the error estimates depend on the unknown solution u. In
the framework of RBM, the reduced quantities uy and s N,N approximate the
detailed quantities up and sp, which are computable quantities. Hence, the a
priori analysis converts to a posteriori error estimation. The error bounds for
the solution error and the output error are rigorous, meaning they are provable
upper bounds over the parameter domain. By Assumption 3.9, an offline-online
decomposition allows to evaluate the error bounds computationally inexpensive,
compared to the exact error computation |[up, —un|| and [sp — sy x| These
error bounds are used as an optimality criterion in order to build up the reduced
space. It is shown that the error bounds can be extended to a time continuous
framework. The computation of the error bounds is based on the dual norm of
the residuals and the coercivity constant. The following error estimators do not
require symmetry of the bilinear form a(-,-;§).

3.2.1 Non-weighted error estimators

In this section, non-weighted error estimators are stated, which are rigorous
upper bounds for the primal solution error, the dual solution error and the output
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error for any parameter in the parameter domain. The results for the error
bounds are taken from (Grepl and Patera, 2005, section 4.1). Here, however, the
parameter £ is interpreted as a stochastic quantity.

The solution errors of the primal problem and the dual problem are estimated
in parameter-dependent energy norms.

Definition 3.14 (parameter-dependent energy norm). The primal parameter-

dependent energy norm and the dual parameter-dependent energy norm are
defined by

x 1/2
loll?" = (HUKHZL?( At Za P o€ > , Ve XK, (3.28)
k=1
K-1 1/2
|||v|||gu = (HUOHiQ(Q + At Z a(v®, vk &) ) , Yve XK. (3.29)
k=0

Remark 3.15. The parameter dependence of the norms (3.28) and (3.29) is
induced by the parameter dependent bilinear form a(-, -;£). Even though error
bounds can be derived for parameter independent norms, cf. (Haasdonk, 2017,
Proposition 2.80) or appendix A.5, the choice of these parameter dependent
norms yield better constants for the error bounds in the following.

Proposition 3.16 (primal solution error estimator). Let £ € T'. Then the error
for the primal solution ex (£) = up (&) — un(€) € X/ can be estimated by

K 1/2
llen ()IE" < AR (E) = (Z AW(@) ;
k=0

0, k=0,
k=1,....K.

(3.30)
with A (€) = {

a(f) |’"N ||x ’

The error is measured in the primal parameter-dependent energy norm (3.28).
The coercivity constant «(§) is determined by (2.8) and the primal residual
R (+;€) is defined in (3.5) and (3.6).

Proof. For the sake of notational convenience, the primal solution error (3.9) is
k

written without the parameter dependence, i.e. ek (&) = ek.. Multiplying the
identity (3.12) for v = ek, with At and estimating the residual with (2.5) gives
(ek; — e’f\fl,e]fv)Lz(Q) + Ata(el;, ek &) = Atk (eh; €)

3.31
< Atk (s¢ (3:31)

HX/ |6NHX

Using the Cauchy—Schwarz inequality, Young’s inequality ab < % (C%a2 + 021)2)7
a,b e R, ce R\ {0}, and (2.8) yields

IN

1R ] 2o llenl oy

1
(HeN 1HL2(Q) + HeNHL2 Q))

(ek el e

I /\
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and
I8l Nyl < s I 0] + 5 llex |l
N & N X—2a(£) X/ Nl x
1 1
S 20[(6 HTN HX/ + 2@(6?\[,6%,6‘)

Thus, (3.31) can be estimated by

1 _
) (||6§V||12(Q) — lex 1H2L2(Q)) +Ata(ely, ey €)
At At
< ol ol + Satck i)

Then, subtracting the bilinear form from the right hand side and multiplying
the inequality by the factor 2 yields

At
b ey = 1R 2@y + Ataleh ki ©) <

5 I GOl

Summing up the inequality for £k =1,..., K and utilizing (3.11), it results

K K

A K
HeNHL2 )+Atza(€lfva€lf\/§f) Sza(g) [l (5 ||X, ZA“J‘\[’V(@
k=1

k=1 k=1

Since A%° is zero, the sum can be extended for k& = 0, which finishes the
proof. [

Remark 3.17. The fact that A’]L\;O:O is based on the homogeneous initial
condition of the primal problem.

Proposition 3.18 (dual solution error estimator). Let £ € I'. Then the error
for the dual solution & (&) = 15(&) — ¥ 5 (€) € X/ can be estimated by

K 1/2
lles ©IlE" < A% () := (Z A}%’“(é))
k=0

At ~k
col RIS/

o)
SUP,ex, (TNU) , k=K.

k=0,...,K -1
with A%”“(g) =

H”HL2(Q)

The error is measured in the dual parameter-dependent energy norm (3.29). The
coercivity constant «(§) is determined by (2.8) and the dual residual is defined
n (3.7) and (3.8).

Proof. The proof is similar to the derivation of the primal solution error estimator.
Once more, for the sake of notational convenience, the dual solution error (3.10)

is written without the parameter dependence, i.e. éf\? &) = e " . Multiplying the

identity (3.14) for v = é% with At and estimating the re&dual with (2.5) gives

(e — e ) o) + Ata(ely, €5 €) = AL (éN §)
" (3.33)
1\7

< At |7

O Ml llx -
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Using the Cauchy—Schwarz inequality, Young’s inequality ab < % (C%a2 + chz),
a,b € R, ce R\ {0}, and (2.8) yields

i < [y 15
1 - ~
s2( o Y
and
N - L.
17 GOl N1Enllx < gagy 178 GO + 5 l1Enll
1 . 2 1 .
< 5 1P GOl + Satek i
Thus, (3.33) can be estimated by
1 (a2 k1 Atales &
(1~ 250 ) + ok s
At
< oot I + etk e

Then, subtracting the bilinear form on the right hand side and multiplying by
the factor 2 yields

H~k+1‘

+Ata(

|| N||L2(Q LQ(Q) H ||X’

Summing the inequality up for £ =0,..., K — 1, it results

, K—1 K—1 , K

~ A e

€51y~ o )+ 00 D (e, 2:6) < Z || 3l =D A%
k=0 k=0 k=0

The following inequality remains to be shown
_ 2
ey < sup ()
, .
‘iz = TR 1ol 2 N

Therefore, using (3.15) gives

111520y = (€5 E8) 12 = Th (€3 €)
and hence o B
roles; 5 (v;
I3 20y = 0 g MO
‘ €x veEX) ||UHL2(Q)
NllL2()
which verifies the statement (3.32). -

Remark 3.19. If the output functional is parameter independent, meaning
I(;€) = I(-), and the reduced space for the dual problem contains ¥ € Xy,
then the error estimator of the final condition is zero, i.e. A%’K =0.
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The error bounds (3.30) and (3.32) use the coercivity constant «(§) of (2.8).
If the constant cannot be determined analytically, it can be approximated by a
successive constraint method (SCM), see Huynh et al. (2007), for instance.

Proposition 3.20 (output error estimator). Let £ € I'. Then the error for the
output can be estimated by

[50(€) = sn ()] < A% 5(€) == AR (OAY (). (3.34)
The detailed output and the reduced output are determined by

sn(€) = U(uf (€); ),
K
sy (€) = HuR(€): &) + At Y ri(W51(€):€),

k=1
and the estimators A%, and A% are stated in (3.30) and (3.32), respectively.

Proof. For the sake of notational convenience, the primal solution error (3.9)
and dual solution error (3.10) is written without the parameter dependence, i.e.

ek (&) = ek, and é’j\?(f) = é%. From (2.41), it follows that

A ek (ETH€);€) = ek ©). (3.35)

M=

>
Il

1

Utilizing (3.35), estimating the primal residual with (2.5) and using Cauchy-
Schwarz inequality, the output error can be estimated by

K
[5n(€) = sy (O = 1AL > i (E: 9
k=1

K

< a3 kol o5

KAt SRS 2 1z
< <Za(§)||r§i,(.;g)||;> <z:Ata(§)H@l;\7 1HX>

k=1 k=1

K Ay /2 , g 1/2
<\ Sl Gol ) (Y ataE o)

= a(f) Pt

where the last estimate uses (3.13) and (2.8). The first term in the last inequality
already coincides with the primal error estimator in Proposition 3.16. The second
term in the inequality can be expanded by the L?-norm of the dual solution
error at the initial point in time, such that

K-1 1/2 K—1 1/2
(Z At“(é%f’fv?f)) = (H%Hi%m +2 Ata(é’fv,é'fv;@) :
k=0

k=0

By Proposition 3.18, the right hand side of the inequality can be further estimated
by A"’N(g), hence the statement (3.34) follows. O
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Remark 3.21 (uncorrected output error estimation). The fact that the output
error estimator is composed of the primal error estimator and the dual error
estimator is due to the expansion by the “correction term” in the reduced
output (3.16). If the correction for the output computation is omitted, i.e.
syn(§) = [(uk(€);€), then the following error bound can be stated

151(6) — 5.5 (O] = 1w (&) = wk(€): )] W) [ (€) — u (&) -

This inequality yields no benefit because of two aspects. First, once the solution
error Huf(f) - uﬁ(ﬁ)”x is known for the upper bound, there are no extra
computational cost to compute the exact output error. This means that this
inequality yields no advantage regarding the exact error computation. Second,
the error bound (3.34) tends to zero in a quadratic way, since A% and A% tend

to zero for increasing N and N, respectively. Whereas for the error bound above
only the error ’ uf (&) - u%(f)”X tends to zero for increasing N and the dual
norm ||I(+;€)|| x, is a constant. Hence, the last error bound has a lower error
convergence rate compared to (3.34). The same effect has observed in section 2.3,
where the uncorrected output error convergence (2.29) and the corrected output

error convergence (2.40) for the infinite dimensional framework were compared.

Remark 3.22. The error estimators can be derived for the time continuous
case as well. Then, the primal solution error ey (t;€) = up(t;€) — un(t; &) € Xp
and the dual solution error ég(t; &) = ¥n(t;€) — Y (t;€) € X}, can be estimated
by

1/2

T
<||6N(T;f)||2Lz(Q) —I—/O a(eN(t;g),eN(t;g);g)dt> < Ap[O’T],

T 1/2
<||éN(0;5)|l2Lz(Q)+/O a(éN(t;g),éN(t;g);g)dt> SAwN,[O,T]7

where the error estimators are defined as

1/2

1 T
ALOT) —/ ra (6%, dt, 3.36
¥ 5 ) I ok (3.36)
.[0.7] L 2 w12 v
AL = In oIk de+ (a%7) ) o 337
a(§) Jo
T /..
and Aqf\if’T = SUp,cx, \||:; 1‘|" S;(i))l The proof is similar to the time discretized case,

cf. Propositions 3.16 and 3.18. For details see appendices A.6.1 and A.6.2. It
is observed that the sum over all time steps in (3.30) and (3.32) is replaced by
the integration over the time interval [0, 7]. The output for the time continuous
case is determined by

sn(€) = l(un(T5€);€),
sy (&) = Uun(T;€);6) + /0 r (Vg (t;€); §)dt.

)
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The primal and dual solution error estimators (3.36) and (3.37) determine the
output error estimator

T u,[0,T ,[0,T°
I5n(€) — sy m(€)] < AT = ARPTI AL,

The proof can be found in appendix A.6.3.
This section allows us to evaluate computationally inexpensive error bounds

for the computationally expensive primal solution error, dual solution error and
output error.

3.2.2 Weighted error estimators

In the case of random input parameters, each parameter configuration occurs
with a certain probability, hence statistical quantities are of interest. The thesis
studies the approximation of the expectation. Other statistical quantities like
the variance or higher moments were studied in (Haasdonk et al., 2013, section
4) for example.

For the statistical computations, the probability density function (pdf) p(-)
appears. Using the results from Grepl and Patera (2005), see section 3.2.1, the
expectation of the squared solution error can be further estimated by

B [(hun —unllZ)?] = [ lun(e) —ux @) p(e)e < [ (anie)pl6)a

just as the expectation of the absolute output error

(3.34)
Bllsn = sxnll = [ 150(6) = s 5 @lo©0 < [ a3 c(@p(e)ae.
In the following, weighted error estimators are defined. They were introduced in
Chen et al. (2013) for elliptic problems.

Definition 3.23 (weighted error estimators). Let p: R — R*. Then the
weighted primal solution error estimator and the weighted output solution error
estimator are defined as

AN(€) = AR (E)Vp(€), VEET, (3.38)
AL (€) =AY 5(©)p(€), VEET,, (3.39)

respectively. The error estimators AY;, A} o are determined by (3.30) and (3.34).
Additionally, the weighted dual solution error estimator is defined as

AL Vp(€), VEeT, (3.40)

where the error estimator AwN is determined by (3.32).

Remark 3.24. As for the non-weighted output error estimator (3.34), the
weighted output error estimator satisfies

AV (6) = AN (OAR’(€), VEET.

The pdf p(§) in (3.38) and (3.39) can be seen as a weight and gives higher
priority to more likely parameter values. The weighted estimators are still
computationally cheap and will be used as an optimality criterion for a weighted
reduced space construction.
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3.2.3 Dual norm computation

The error estimators in the previous sections are based on the dual norms of
the primal residual and the dual residual. The dual norms are computed by
means of the Riesz representation theorem, see, e.g., (Brenner and Scott, 2008,
Theorem 2.4.2). The theorem states that a linear functional can be represented
by a unique function of a Hilbert space. Furthermore, it establishes a relation
between the norm and the dual norm of the Hilbert space. The computation of
the dual norm of the primal residual and the dual norm of the dual residual are
stated in the following sections.

Dual norm of primal residual

The primal residuals are determined by the unique functions, for £k =0,..., K,

such that
rh(v;8) = (PR (€),v)x, Vv € Xy (3.41)

Additionally, the Riesz representation theorem states the following relation
between the norm and the dual norm

17X (5O = PR )]l - (3.42)
The primal residual for k£ = 0 is zero, hence
(&) = 0. (3.43)

For k =1,..., K, the primal residual is represented by (3.3) and (3.5) and As-
sumption 3.9

Q N
i (v:€) =) 05(€)by(v) — i > (u’fv,n(f) - u’jng(g)) (0ny0) 2302
. Qa N (3.44)
h Z Z Hq(g)ulfv,n(f)aq(@m V).
g=1n=1

The functionals, L? products (y,,v)2(q) =: m,(v) and bilinear forms can be
represented by unique functions

N
by = byidi € Xn, (3.45)

i=1

N
mn = Zmn,z¢1 S Xha (346)

i=1

N
g,n = Z&q,n,i¢i € X, (3.47)
i=1
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such that
bq(v) (B )X, Vo e Xy, q=1,.. ‘7va (348)
My (V) = (M, v)x, Y€ Xp,n=1,...,N, (3.49)
ag(pn,v) = (Ggn,v)x, YweEXp, g=1,...,Q4, n=1,...,N. (3.50)

Utilizing these identities for (3.44), then (3.41) gives

Qv N
(KO3 = D00 b v)x = 35 3 ()~ 01E)) ()
- Z Z 9(1 U’N n aq,na )X

Due to linearity of the inner product and since the equation holds for all
functions v € Xp,, the parameter dependent function of (3.41) is determined by,
k=1,....K,

Qb N 1 N
= 20000k = g 2 (1) ~ i (©))
g=1 n=1
. (3.51)
- Z Z UN ’rL anL.
g=1n—=1
Finally the dual norm of the primal residual in (3.30) is computed by
1% O % 25 = (@), 7 (©)x 20
and for k=1,..., K,
Ik GOl IR @y = (F (©). 7€) x
) Qb Qp o
SOOI AGLAGIOR P
q=1 q/—l
+ Z Z At ( UNn — u?\fti) (ulfv,n' - u?\fti’) (mnvmn’)x
n=1n'= 1

Qa Qa N N
+ Z Z Z Z ga Oq uN nullv\/'n (aq,na&q’,n/)X
=1q¢'=1n=1n'=1
Qy N A
Zzeb ( _UIICV71> (bgs M1n) x
q 1n=1
Qv Qa N
_222 Zeb uNn(B o)X
g=1¢'=1n=1
Qa N

N
a k—1 k A A
E E E 05 ( (uNn—uNn)uNyn,(mn,aqn/)X,

qln 1n'=1
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where for notational convenience the parameter dependence of the reduced primal
solution is omitted.

In the following, the algebraic equations of the dual norm computation for
the primal residual are stated. The vectors resulting from (3.48)—(3.50) are
defined as

N
m, :(mn(¢]))j:1 ERN’ ’I’L:L...,N,

N
Qq7n = (a’q(<p7l7¢J))J:l e RN’ q = 17""Q(I/7n = 17"'7N7

whereas b, = (bq,i)ﬁl was defined in (3.26). With the inner product matrix
defined in (3.22), (3.48)—(3.50) entail the algebraic equations

Hbq:bqv q:17°"7Qb7
Hm, =m,, n=1,...,N,

Moy

ng’n:Qq’n7q:]‘7"'7Qa’nzlﬂ"'7N7

which yield the coefficients éq = (bg)V,, i, = (Hn5)Y ., and Gy = (g,
for (3.45)—(3.47). The right hand side of the last system of equations can be
evaluated with (3.23) and (3.25), i.e. g, = Ay, .

The discrete formulation of (3.43) and (3.51) is given by

0 k=0,
N

Q
S 0h@b, — x5 3 (hin(©) — i} (©)
q=1

n=1

Qa N
DB AGI M. k=1.. . .K

g=1n=1
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Then, the dual norm of the primal residual in (3.30) is determined by
% O%, = R (©T HiR () = 0

and for k=1,..., K,

75 ()3, = o) T Hih (6)

Qv Qb
= 3> ()6 (O, Hb,
q= 1q’ 1
k k—1 k k—1 AT 7.4
+Z Z At (A2 (uN,n U’Nn) (U‘N,n’ uNn)mnHmn’
n=1n'= 1

a

Qa N N
a 92, k
+ E E E E 07 (§) uNnuNn,aanaq/ n

q¢'=1q¢'=1n=1n'=1

— A%ZZ&E;(Q (u’fv —uNn) b, Hrn,,

+ E Z Z Z 93(5) (uﬁc\/ n ulf\f 11) u?V,n’;ZHqu’v

g=1ln=1n'=1
where the parameter dependence of the reduced primal solution is omitted.
Dual norm of dual residual

The dual residuals are determined by the unique functions, for £k =0,..., K

)

ﬁz>

]\'] = Z’ﬁ ¢z S Xha
such that

T (v:€) = (P (€. v)x, Vv € Xy (3.52)

Additionally, the Riesz representation theorem states the following relation
between the norm and the dual norm

||F]1€\7(7§)HX/ = ||7% (f)Hx (3.53)

For k =0,..., K — 1, the dual residual is represented by (3.4) and (3.7) and As-
sumption 3.9

2

(036 = —

=
2

b (6 = VELO) (v, C) 2oy
(3.54)
¢N n(g)aq(v, <7L)-

usz i

K
fr
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The L? products (v, Cn)r2(0) =: My (v) and bilinear forms can be represented by
unique functions

M, € X, (3.55)

3o
Il
M=

1

o
Il

N
Ggn =Y lgmiti € Xn, (3.56)
i=1
(3.57)
such that
(V) = (M, v)x, Yo € Xp,n=1,...,N, (3.58)
aq(v,G,) = (aqm,v)x, Yoe Xy, g=1,...,Qqs,n=1,...,N. (3.59)

Utilizing these identities for (3.54), then (3.52) gives

GIGRIPSS 3 (¢ (0 ~ U71(O) ()

=1

—ZZQ“ ¢Nn aqna )X

qg=1n=1

Due to linearity of the inner product and since the equation holds for all
functions v € X}, the parameter dependent function of (3.52) is determined by,
k=0,...,K -1,

N

) == 1o 3 (0O — w57 ©))
Qa an (3.60)
=33 05k (g

For k = K, the dual residual is represented by (3.4) and (3.8) and Assumption 3.9

Qi N
=D 04l (v) = YUK (O, 6n) 2@ (3.61)
=1 n=1
The functionals can be represented by unique functions
R N
lg=) lgi¢i € Xn, (3.62)
i=1
such that
l,(w)=(pv)x, YweXn qg=1,...,Q; (3.63)
Utilizing this identity and (3.58) for (3.61), then (3.52) gives
Qu N
(FEE©),v)x =Y _ 05 (Ig,v)x Z ) (P, v)x -
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Due to linearity of the inner product and since the equation holds for all functions
v € X}, the parameter dependent function of (3.52) is determined by

500 = S0 3 i 61

Finally the dual norm of the dual residual in (3.32) is computed by, for k =
0,...,K—1,

7% (56| % N @)% = (75 (0, 75(9)x
3.60) 1 N
3.60 k ka1 ~ ~

9 Qa N N
a2 2 D 050 (W — UKL ) O it )
qg=1n,=1ln’,=
and
75 0% “ZFE @I = FE©). 7K ©)x
st Q. @ o N N ) A
( )Z Z 91 l lq/)X + Z Z ¢§’n¢gn,(mn,mn/)x
q=1q'=1 n=1n/=1 :
—2ZZ¢ VR G 1) x.
g=1n=1

where for notational convenience the parameter dependence of the reduced dual
solution is omitted.

In the following, the algebraic equations of the dual norm computation for
the dual residual are stated. The vectors resulting from (3.58), (3.59), and (3.63)
are defined as

m (%))j ., eRYn=1,...,N,
(d)jaCn))j:l ERN,q:1,...,Qa,n:1,...,N,

m,, ‘=

Qg

A,_\

whereas [, = (I, )N1 was defined in (3.27). With the inner product matrix
defined in’ (3. 22) (3.58), (3.59), and (3.63) entail the algebraic equations

Hm mn,nzl,...,N,
Héqﬂ’], :Qq7n7q: 1)""@0/7 n= 17"'7N’

Hl, =1, q=1,...,Q,

which yield the coefficients 1m,, = (11,4)71, @qm = (Agni)Y,, and Zq = (I,

for (3.55), (3.56), and (3.62). The right hand side of the second system of
equations can be evaluated with (3.24) and (3.25), i.e. a,, = AT(
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The discrete formulation of (3.60) and (3.64) is given by

1 N

> (k€ ~ v571(©) in,

|3

O =1 - ZZ@;(&)%W@)@W k=0,....,K—1,

qg=1n=1

Q ) N
> 6L, Z )i, k=K.

Then, the dual norm of the dual residual in (3.32) is determined by, for
kE=0,...,K—1,

7% (|13, = B ()T i (©)

! ZN: i (1/,12 _ lz+1) (1/1 wk+1) " i
(At)Q N,n N,n N,n/ o
£33 SN 0n©0n Ok WY g Hiy

Qa
F D0 D 0a(e) (h — UL ) Wk Hg

g=1n,=1n’,=1

and
75 O = ER(&THER(E)
Q Qi N N
= 33 0h©ek (oL HI, + ZZ R

g=1q'=1 n=1n’'=1
Q N T

=23 > 04U dy Hilu,
qg=1n=1

where the parameter dependence of the reduced dual solution is omitted.

This section stated computationally cheap and residual based error estimators
in order to assess the accuracy of the reduced solution. The definitions of weighted
error estimators aim for an efficient approximation of statistical quantities.
Furthermore, the equations for the error estimator computations were stated. The
error estimators are an essential ingredient for the reduced space construction.

3.3 Reduced space construction

In this section, the construction of the reduced space is discussed. The parametriza-
tion of the PDE entails a solution manifold

M= {{ul () Hizo: {uh(§)}io solves (2.13), € € T} € XH,

cf. Fig. 3.1. The objective is to construct a reduced space Xy C X} that
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up, (€M)
up (€M)

uj, (6N
uf (€M)
uf (€M)
uf (€M)

Figure 3.1: Solution manifold

approximates the solution manifold accurately, such that N < N. The Kol-
mogorov N-width is a measure as to how well the solution manifold can be
approximated, see, e.g., Pinkus (1985). The reduced space construction is based
on the POD-greedy algorithm, introduced in Haasdonk and Ohlberger (2008),
which utilizes an error estimator Ay over the parameter domain for the basis
selection. The procedure is stated in Algorithm 1.

Data: €], parameter training set I'tpain C T’

Result: reduced space Xy

N:=0,Xy:=0

while ey := maxeer,,,, An(§) > €10 do

ENFD = arg maxeep,,.. An(§)

compute uf (ENHTY) £k =0,..., K, using (2.13a) and (2.13b)
ep(ENTD) = uf (ENHY) — Pyyuf (€N ), k=0,... K
pn+1 = POD1({elp (€N HE )

Xny1 = Xn ®span{pni1}

N:=N-+1

end
Algorithm 1: POD-greedy algorithm

Note, the algorithm is formulated for the primal problem (2.13a), (2.13b),
(3.1a), and (3.1b). Analogously the algorithm can be utilized for the dual problem
(2.43) and (3.2).

The POD-greedy algorithm combines a greedy algorithm (Haasdonk, 2017,
Definition 2.46) for the parameter domain and a POD (Gubisch and Volkwein,
2017, section 1.2) for the time interval. The dimension of the reduced basis N
grows iteratively. As a stopping criterion for the iteration, an error estimator
of the previous section needs to fall below some given error tolerance €y, > 0.
Alternatively, a predefined reduced dimension can be given as a stopping criterion.
The parameter value £V*! is determined in each iteration by evaluating an
optimality criterion. Maximizing the exact errors over a large parameter domain
can be computationally infeasible. Instead, the computationally cheap error
estimators are maximized, which is often called weak POD-greedy. The maximum
is sought over a training parameter set [i;ain, which is a finite and uniformly
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sampled approximation set of the parameter domain. The training parameter set
is assumed to be large and to represent the infinite parameter domain well. Note,
for N, N = 0 the reduced solutions {uf }1, {w%}fzo are zero. This means that
the primal residual (3.5) and (3.6) reduces to the right hand side b(+; ) and the
dual residual (3.7) and (3.8) reduces to the functional I(-;£). Hence, for the first
iteration, the optimality criterion maximizes the dual norm of these functionals.
The solutions for the single time steps {uf ((V+D)}E_ | called snapshots,
are computed. In order to compress the information of the obtained solution
trajectory, the first POD mode of the projection error onto the reduced space is
computed and added to the reduced basis. If the eigenvalues obtained from the
POD decay slowly, it can be reasonable to choose more than one POD mode in
a single POD-greedy iteration, see (Hesthaven et al., 2016, section 6.1.2). The
spaces generated by the POD-greedy are hierarchical, i.e. Xy C Xn41. However,
the error convergence of the approximation obtained by the weak POD-greedy
is not necessarily monotonically decreasing. This means that, if the dimension
of the reduced basis space is increased, the error can possibly increase. If the
optimality criterion is replaced by the maximization of the orthogonal projection
error, it can be guaranteed that the error convergence of the POD-greedy is
monotonically decreasing, see (Haasdonk, 2017, Remark 2.47 (i)).

3.3.1 A non-weighted reduced space construction

A non-weighted reduced space construction is based on Algorithm 1. It is
distinguished if the objective is either the approximation of the solution uj or
the approximation of the output s,. The former uses the primal solution error
estimator Al in (3.30) for the optimality criterion in the POD-greedy procedure.
The latter uses the output error estimator A%, o in (3.34) for the optimality
criterion in the POD-greedy procedure. The outf)ut error estimator consists of a
primal error estimator A%, and dual error estimator AwN in (3.32). Therefore,
maximizing the output error estimator yields a reduced space regarding the
primal problem and a reduced space regarding the dual problem. A non-weighted
reduced space construction weights all parameter values £ € I' equally.

3.3.2 A weighted reduced space construction

As in the previous section, a weighted reduced space construction is based on
Algorithm 1. However, in this section, the objective is to build up a reduced space
that gives better error convergence regarding statistical quantities, compared
to the non-weighted approach. Since the input parameters are random, certain
parameters are more likely to appear. Highly probable parameters obtain
more importance incorporating the pdf. Hence, weighted error estimators of
section 3.2.2 are used for the reduced space construction. It is distinguished if
the objective is either the approximation of the expected solution E[uy] or the
approximation of the expected output E[s,]. The former uses the weighted primal
solution error estimator A% in (3.38) for the optimality criterion in the POD-
greedy procedure. The latter uses the weighted output error estimator A?\f o in

(3.39) for the optimality criterion in the POD-greedy procedure. The weighted
output error estimator is composed of the weighted primal error estimator AR

and the weighted dual error estimator A;%p in (3.40). Maximizing the weighted
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output error estimator yields a weighted reduced space regarding the primal
problem and a weighted reduced space regarding the dual problem. Therefore,
the primal reduced space construction uses A%;,/p, and the dual reduced space
construction uses A;%\/ﬁ as an optimality criterion.

The weighted approach uses the same uniformly sampled parameter set I'tyain
as the non-weighted approach. This means that the weighting comes in only by
the optimality criterion that maximizes the weighted error estimators.

3.3.3 Comparison non-weighted and weighted approach

In this section, a few remarks on a non-weighted and weighted reduced space
construction and its a priori convergence are given. In principal, the a priori
convergence of a greedy algorithm (Haasdonk, 2017, Definition 2.46) is based
on the previously mentioned Kolmogorov N-width. If the Kolmogorov N-width
converges polynomially O(N~%), the approximation obtained by a greedy al-
gorithm inherits the polynomial convergence rate O(N~%), see (Binev et al.,
2011, Theorem 3.1). In case of exponential convergence, the inheritance of the
convergence rate does not follow as for the polynomial case. However, if the Kol-
mogorov N-width converges with O(e~*N"), the approximation error of a greedy
algorithm converges where O(e=V ﬁ), with a,b and «, 5 are positive constants
independent of N, see (Binev et al., 2011, Theorem 3.2). Based on this work,
convergence results for the POD-greedy procedure were derived in Haasdonk
(2013). In case of polynomial convergence (Haasdonk, 2013, Proposition 4.3), as
well as for exponential convergence (Haasdonk, 2013, Proposition 4.4), of the
Kolmogorov N-width, the convergence results of the greedy procedure can be
carried over to the POD-greedy algorithm. Although the convergence rates of
the greedy algorithm and the POD-greedy are the same, the constants of the
greedy error bounds differ from the ones for POD-greedy.

The non-weighted approach and the weighted approach were explained in
sections 3.3.1 and 3.3.2, respectively. In essence, the methods differ in maximizing
a non-weighted error estimator (3.30) and (3.34) compared to a weighted error
estimator (3.38) and (3.39). If the parameter follows a uniform distribution,
the pdf is parameter independent and hence the non-weighted and the weighted
approach coincide. Both reduced space constructions are based on the POD-
greedy procedure, see Algorithm 1. The method iteratively constructs a reduced
space and terminates if the maximal error estimator falls below a certain error
tolerance. Assume the error tolerance is set to zero, i.e. €y := 0. Then the
POD-greedy algorithm yields a |T't;ain | K-dimensional reduced basis containing
the solutions at each time step, in case they are linearly independent, for all
parameters £ € I'i;ain- In this case the error between the detailed and the reduced
quantities becomes zero on |[Tipainl, see (Haasdonk, 2017, Proposition 2.78). This
means that once the reduced space contains all snapshots, the reduced quantities
reconstruct the detailed quantities exactly and the reduced spaces obtained from
a non-weighted and a weighted approach coincide. However, maximizing either
the non-weighted or the weighted error estimator influences the order for the
parameter selection £(N+1) | Incorporating the weight into the error estimator,
it is expected to obtain better error convergence for the approximation of the
expectation, but no better rate of error convergence. Still, from an analytical
point of view it is not clear how significant is the improvement regarding the
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statistical approximation using the weighted approach. A fundamental question
is what can be stated about the error convergence utilizing a weighted approach.
A priori convergence analysis for the weighted approach applied to elliptic PDEs
was studied in (Chen et al., 2013, section 4). The weighted approach for parabolic
PDEs were recently also considered in Spannring et al. (2017) and (Torlo et al.,
2017, section 4). However, for the weighted parabolic case, there are still no a
priori convergence results.
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Chapter 4

Model order reduction with
a POD projection

In this chapter the objective is to construct a reduced space that gives an approx-
imation which minimizes the expected solution error. Therefore, a pure POD is
utilized. This means that, compared to section 3.3, a POD for the parameter
domain and the time interval is applied. The POD (Volkwein, 2013) is a MOR
technique that extracts the most important information of a set of snapshots.
It is based on an eigenvalue problem, where the obtained eigenfunctions span
an orthonormal space. If the corresponding eigenvalues decay fast, only a few
eigenfunctions are needed in order to represent the snapshot set accurately. The
reduced space, obtained by a POD, is optimal in a least squares sense. In the
following the expected value is approximated by the Monte Carlo method.

4.1 Monte Carlo approximation

The Monte Carlo (MC) method is a sampling based method that allows to
approximate statistical quantities by solving Nyic deterministic problems, see,
e.g. (Fishman, 1996, section 2.7.3). Here, Nyc denotes the number of MC
samples. The computational complexity of the MC method is independent
of the stochastic dimension p compared to, e.g. a collocation method (Xiu,
2010, chapter 7) or a Galerkin method (Xiu, 2010, chapter 6). However, the
convergence rate of the MC method O(1/v/Nyc) is rather low. In order to
improve the convergence rate, several methods were studied, e.g. Quasi Monte
Carlo (QMC) (Niederreiter, 1978, Part I) or Multilevel Monte Carlo (MLMC)
(Cliffe et al., 2011, section 2.2). Therefore Nyjc is chosen to be large, such that
the MC error can be neglected,

Elun] — Emclun] = Elup] — Evclun] + Evclun] — Evclun]

~ Emclun — un]. L)
The MC estimator for the expected value is determined by,
PRI T o gt
welul = 7o D i€l (42)

49
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where the realizations {& <i>}iN;§C are independent and sampled by the correspond-
ing pdf. The computations of {u(¢ (i))}ﬁv{c are independent, hence the methods
allows parallelization techniques for the computation.

Recall, the parameter set [t ain is uniformly sampled. However, the MC esti-
mator can be also approximated by uniformly sampled realization £(*). Therefore,
denote pyy(€) as the uniform distribution and p(€) the actual distribution. Since

the parameter { = (1, ...,§,) is a p-dimensional random vector, introduced in
section 2.2, the uniform distribution is determined by,
D 1
T, el =lay,bi] x--- xap,,b,l,
pu(§> — anl (b —an) 5 [ 1 1] [ P P] (43)
0, else.

Then, the expected value can be approximated by,

_ [ _ [ p(§)
Efu] = /F ()plE)de = /F L2

an 1L p(ED)
"~ Nuc ;M& )Pu(f(i))’

with g,(f) ~U (an,by), n=1,...,p. Utilizing (4.3) for the last term in (4.4), the
MC estimator for the expected value using uniform samples is defined by,

] pu(§)dé
(4.4)

n) Nmc

P (b, —a , ,
EY{ o [u] = —Hn:l( n u(€@ (), 4.5
el Nare ; (€)p(E™) (4.5)
As in (4.1), the number of MC samples is assumed to be large, such that
Elup] - Efjclun] = Efjclun — un]-

4.2 Proper orthogonal decomposition

In order to represent a given set of snapshots {uf(¢): k = 1,...,K, £ € T'}
optimally, the POD is applied. As a crucial benefit, the POD yields an optimal
space regarding the mean square error. Hence, by means of the POD an optimal
reduced solution can be found, such that the expected solution error becomes
minimal, i.e.

K
i i k k|2
wl’mr,IBz{flEXh, 1m1nK A lAt; ||uh o uTHX] ’

Upyonny Uy,

€L?(Dispan{ws ...y })

(4.6)

subject t0 (Wi, Wr)x = Omn.

The snapshots {uf(¢)}X_ | are obtained from Problem 2.11, whereas the re-
duced solutions {u¥}£ | are sought. In order to guarantee that the expectation
of the reduced solution exists, the reduced solutions lie in a Bochner space
L?(T';span{wy, ..., wn}), see definition A.2. The error is measured in the norm
induced by the Hilbert space X. An optimal choice for the reduced unknown
functions {uf}f:l can be achieved by choosing their orthogonal projection onto
the N-dimensional POD space Xpop,n := span{ws, ..., wn} C X}, namely

N
Ull%OD,N(f) = Z(Uﬁ(f)»wn)an € Xpop,n, k=1,... K. (4.7)

n=1
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The orthogonal projection (Kunisch and Volkwein, 2002, equation (3.1)) yields
an equivalent formulation of the minimization problem (4.6), such that

2

min E | At Z

Wi ,..., wNEXp

N
uh E uh,wn)an
n=1

. (4.8)

subject to (Wi, Wn)x = Omn.

The expectation in (4.6) and (4.8) can not be determined analytically. Assuming
(4.1), the expectation is approximated by the MC method, see section 4.1. Then,
the minimization problem in (4.8) is approximated by

Nuce K N
k (7’) uk @ y Wn ) X Wy >
mm NMC ; ; up,(§ nz::l( R(§"), wn) x . (4.9)

subject to (Wi, Wn)x = dmn,

where the realizations {& <i>}f§;c are sampled by the pdf. However, the MC
approximation can be modified such that the statistical quantity is approximated
by uniformly sampled realizations, see (4.5). The minimization problem (4.9)
can be solved by an eigenvalue problem, see, e.g., (Gubisch and Volkwein,
2017, Theorem 1.8). The resulting eigenfunctions {w,}Y_; are the first N €
{1,..., NucK} orthogonal POD modes and the eigenvalues {o; }2% determine
the error in (4.9), such that

2

Nyve K N NycK
N LSS k€)= S b ), wxwa|| = Y o (410)
MC T k=1 n—1 x  I=N+1

The first N POD modes span the POD space Xpop,n = span{ws,...,wn}.

However, the optimality pays its price. It is emphasized that the reduced
space construction using a POD requires the snapshots over the parameter
domain differently from the RBM. Hence, for a large parameter set this can be
computationally challenging. Compared to the POD-greedy in section 3.3, the
evaluation of the error estimator for the parameter values are computationally
cheap and eventually only IV detailed solutions for the reduced space construction
need to be evaluated. Note, the comparison only can be done for the expectation
of the squared solution error. For the expected value of the absolute output error
E[|sn — sy x| an optimal reduced space cannot be found with a POD, since the
absolute value does not induce an inner product.

In this section optimality for the mean square error measured in the norm
|I-|lx could be stated. Therefore, the POD method determines an optimal
reduced POD space based on a finite set of snapshots. Moreover, the optimal
representation of the reduced solution is given by the orthogonal projection onto
the reduced POD space. The minimal mean square error can be easily computed
by the truncated eigenvalues coming out of the POD method.
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Chapter 5

Numerical Example

This chapter studies an instationary heat transfer (Grepl and Patera, 2005,
section 6) on a rectangular domain with random input parameter. The data
uncertainties enter the problem via the boundary conditions. In particular, a
random field acts as a stochastic heat inflow on the boundary of the domain.
Another random coeflicient acts as a cooling parameter on the boundary, which
is located inside the spatial domain. The quantity of interest (or output) is
determined by the average temperature in the domain. A deterministic finite
element solver determines the solution for a randomly sampled parameter in
the domain. The solution and the quantity of interest are random variables,
hence the expectation of these quantities is determined. The expectation is
approximated by a Monte Carlo (MC) method, see section 4.1. Since the MC
method requires many finite element solutions, it can be computational infeasible.
Hence, the computational costs are reduced by model order reduction. In order
to reduce the dimension of the algebraic equations obtained from the finite
element method, the reduced basis method from chapter 3 is used. Three
different approaches are utilized in order to construct a reduced model: a non-
weighted reduced basis approach from section 3.3.1, a weighted reduced basis
approach from section 3.3.2 and a POD from section 4.2. The goal is to quantify
the expectation of the solution error and the output error among those three
approaches. It is expected that the weighted RBM gives better error convergence
of the expected value compared to the non-weighted RBM. In order to quantify
the quality of the weighted approach, it is numerically verified how close the
expected error convergence is compared to the optimum obtained from the POD.

5.1 Mathematical model

This section states the governing equations for the time dependent heat con-
duction. The heat is considered on a rectangular domain Q C R? where three
squares are cut out, see Fig. 5.1. The boundary 02 contains the left boundary
Oyt (in blue) and the inner boundary 9, (in red). The end point in time
T > 0 determines the time interval I = [0,7] and ¢ € I denotes the time variable.
The mathematical model is parametrized by the random parameters £°4¢ and ¢,
which are acting on the domain boundaries 9., and 9y, respectively. The
parameter domain I' is determined by the supports ['°" 5 ¢°out and T'in 3 ¢in

33
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aQout aQin

Figure 5.1: Spatial domain 2

such that T' = [°ut x T,

The two-dimensional model problem is solved for the space, time and pa-
rameter dependent temperature field u: 2 x I x I' = R. The temperature field
determines the quantity of interest s, which describes the average temperature
in the domain at the end point in time. In the following the strong formulation
of the heat conduction is stated.

Problem 5.1 (2d heat transfer). For given random realization £ = (£°U¢, &™) € T,
the solution u satisfies

ou(§) — Au(é) = 0, in Q x (0,77,
) [MEII =), on 9 x (0.7
o —&my(g), on 00, x (0,77,
0, on 9N\ {0Q6ut U 0Qin}t x (0,77,
u = 0, on Q x {0}.

There is no external heat force acting in the domain, hence the right hand side
is zero. The boundary conditions are composed of a Robin boundary condition
on 9Nyt U0, and a Neumann boundary condition on the remaining boundary.
The stochastic parameters £°' and £ enter the model problem via the Robin
boundary condition. The Robin boundary condition can be seen as a Neumann
condition where the heat flux on the boundary in the normal direction also
depends on the solution. The heat inflow on 04y is parametrized by a random
field K: Oyt x T — R and ¢ € T parametrizes cooling of the domain on
0Qin. A homogeneous Neumann boundary condition governs on the remaining
boundary of the domain, which models heat insulation on this boundary. The
initial condition, meaning the temperature at point 0 in time, is zero. The
solution at final time 7" determines the quantity of interest s: I' — R

1
() = 7 /Q u(T5€).

The random field x(£°") is assumed to be a random process of second order
and hence can be represented by a Karhunen-Loéve expansion (Loéve, 1978,
section 37.5)

K2, 6" = ao(@) + Y Ve (2)g™,
=1
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see appendix A.7. Furthermore, the random parameters £ = (£P1) —; are
assumed to be independent. The KL expansion yields the advantage that the
spatial variable and the stochastic variable can be separated and hence fulfills
the affine parameter dependence in Assumption 3.9. In the following the random
field is approximated by the truncated Karhunen-Loéve expansion

Nk,

R, €M) & R, €M) = ag(@) + 3 Ve (@)E™, (5.1)
=1

see (A.11) and (A.12) for a possible choice of Nkr,. In order to satisfy existence
and uniqueness of the model problem, the random field has to be bounded from
below and above

Fmin < B(2, ") < Fmax, V2 € 0Qoug, VEOU € TOU (5.2)

with Kmin > 0 and Kpax < co. The error bounds Kpin, Kmax are derived in
appendix A.7.1.

The random parameters £°U% = (fl"ut)l]\;? are distributed with uniform
distribution U (ay, by), —00 < ay < by < 0o. The random parameters have
zero mean and are mutually uncorrelated, see (A.9), hence a;y = —v/3 and
by = V3. The random parameter £™ is distributed with beta distribution
B (p,q,ap,bg) where p,q > 1 are scaling parameters and 0 < ag < bg < 0o are
the interval bounds of the support. The probability density function (pdf) of
the beta distribution is given by

I'(p+q)
L'(p)I'(q) (bg — ap)

where I'(p) = (p — 1)! is the gamma function. For p = ¢ = 1 the pdf of
the beta distribution coincides with the uniform distribution and hence the
non-weighted and the weighted approach coincides. Therefore, these scaling
parameters are chosen such that p,q > 1. Furthermore, the parameters £ and
£°U% are independent as well.

As described in section 2.1, the weak formulation of the parabolic problem is
stated. For given realization £ = (£°U%,¢™) € T and for ¢ € I, find the solution
u(t;€) € X = HY(Q), such that

)qil, z e [aB,bB],

pi(z) = (=)’ (2 —bs

/Q Dyult: v + /Q Vu(t;€) - Vo + /6 e

£ u(t; &)v = / k(£ ), Yo € X, t € (0,7,
Q Q

in out

/u(t;f)v:(), Yve X, t=0,
Q
and evaluate the output
1
() = 7 | w(:e)

As in section 2.1, since the space variables are omitted, the integrals are written
without the integration variable regarding the space. The weak formulation
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Figure 5.2: Mesh of the spatial domain

determines the bilinear form, right hand side and linear output functional

a(w,v; €) = / Vuw - Vo +/ k(") wo + £ wv, Yw,v e X, (5.3)
Q 0t 0Qn

b(v;ﬁ)z/m k(M )v, Z(U):Iﬁll/nv’ YoeX.  (54)

Regarding existence and uniqueness of the weak formulation, Assumption 2.8
has to hold. Usually coercivity (2.8) of the bilinear form is shown by the
Poincaré-inequality (Brenner and Scott, 2008, Proposition 5.3.5). However, the
inequality only applies if there is a Dirichlet boundary condition. Since the stated
problem has no Dirichlet boundary condition, a modified Poincaré-inequality
can show coercivity, see (Brenner and Scott, 2008, Proposition 5.3.2). Using
that the random field is positive and bounded (5.2) and that the parameter £
is positive, then Assumption 2.8 holds and it exists a unique solution of the weak
formulation.

5.2 Finite element simulations

In this section numerical simulations of the heat conduction, see Problem 5.1,
are illustrated. A few remarks on the expected solution behavior are given.
Since the right hand side in Problem 5.1 is zero, the domain is not heated by an
external source. However, the domain is only heated on the left boundary of the
domain by a Robin boundary condition. The heat inflow on the left boundary is
given by (1 — ). Due to the homogeneous initial condition, the temperature u
at initial point in time is zero and hence at initial time the domain is heated
by the random field x > 0. Evolving in time the temperature u increases by
the heat inflow k(1 — u). Once the temperature becomes one, there is no more
heating and hence the temperature fulfills 0 < v < 1. In consequence the Robin
boundary condition on 0Qyt is positive, i.e. k(1 —wu) > 0. Since the temperature
u and the parameter ¢™ is positive, the Robin boundary condition acting on the
inner boundary 9, is negative, i.e. —£Mu < 0. The minus sign models cooling.
Starting at initial time with zero temperature, there is no cooling on 9€;;,. Once
the temperature increases up to one, the domain is cooled by &™.

The heat conduction in Problem 5.1 is solved in the spatial domain 2 =
{10,10] x [0,4} \ {{(1,3) x (1,3)} U{(4,6) x (1,3)} U{(7,9) x (1,3)}}. The
domain is meshed by 1980 triangles, see Fig. 5.2. The numerical solutions are
obtained by a finite element method using piecewise linear basis functions, see,
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0 1 2 3 4 5 6 7 8 9 10

Figure 5.3: Pdf of beta distribution on [0.1,10] and scaling parameter 50

e.g., (Brenner and Scott, 2008, section 0.4). Further notations regarding the
finite element discretization are stated in section 2.2.2. The space discretization
uses A = 1132 degrees of freedom. For the time discretization an implicit Euler
method is applied with time step size At = 0.2 and K = 100. In consequence,
the heat conduction is considered up to final time 7' = 20, i.e. the time interval
is determined by I = [0, 20].

The eigenpairs (A, ¢;) l]i Kt of the random field (5.1) are obtained from the
integral equation (A.10) with covariance kernel C(z,y) = exp(—|z — y|/a) and
correlation length a = 2. The random field is truncated for a tolerance exy, = 0.1,
see (A.12), which determines the truncation index Nk, = 9. In order to fulfill
positivity and boundedness (5.2) of the truncated random field, the expectation
of the field ag = 10 is chosen.

The stochastic parameters £°%¢ = (5?‘“);1? € T°U and ¢ € T'™ are ele-

ments of T = [ay, by ]V and '™ = [ag, bg]. Recall, the interval bounds
of the uniform distribution are determined by ay; = —v/3 and by = V3. The
beta distribution B (p, ¢, ag, bg) is determined by the positive interval bounds
ag = 0.1, bg = 10 and the scaling parameters p = ¢ = 50. The choice of the
scaling parameters guarantee that the probability density function (pdf) is far
from the uniform distribution and hence the weighted approach is expected
to have more impact on a different reduced basis selection compared to the
non-weighted approach. The corresponding pdf is shown in Fig. 5.3.

By means of section 2.2.3 the finite element algebraic equations of the weak
formulation for Problem 5.1 are derived using the corresponding bilinear form
(5.3) and functionals (5.4). The solution of the algebraic equations gives the
temperature in each grid point of the mesh. In order to illustrate the behavior of
the temperature, the heat conduction is computed for the interval bounds of the
cooling parameter £ at different time points ¢ = 1 and ¢ = 20. Therefore, denote
61 — (Eout,17£in,1) and 52 — (gout,2’£in,2)7 where {in,l —=0.1 and gin,2 —10. The
parameters £oU1 = (&' VKL ang gout2 — (P"9?)NKL are two uniformly
distributed random samples. The associated results can be seen in Fig. 5.4.
Indeed, the figures show that the heat distributes in a larger part of the domain for
the parameter £ containing the smaller cooling parameter (first row) compared
to the parameter £2 containing the larger cooling parameter (second row).
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5.3 Reduced order modeling

In this section the model order reduction techniques from chapters 3 and 4 are
utilized. By means of a non-weighted RBM, a weighted RBM and a POD reduced
spaces are constructed. The different reduced spaces yield approximations of the
finite element solution. The non-weighted and the weighted RBM constructs the
reduced space based on the POD-greedy algorithm, see section 3.3, whereas the
POD yields a reduced space obtained by an eigenvalue problem, see section 4.2.
However, the differences of the non-weighted and the weighted reduced space
construction is explained in sections 3.3.1 and 3.3.2, where section 3.3.3 discusses
differences from a theoretical point of view. The objective of this section is the
comparison of these MOR methods regarding the expected solution error and
the expected output error. The approximation obtained from a weighted RBM
should yield better error convergence for the expected value of the solution error
and output error compared to the approximation obtained from a non-weighted
RBM. In order to assess the accuracy of the weighted approach compared to the
best possible approximation, a comparison to the reduced solution obtained by
the POD is drawn, which is optimal in a least squares sense, see (4.6).

The reduced spaces obtained from the POD-greedy procedure, see Algo-
rithm 1, uses a finite parameter set I't;ain,. This parameter set approximates the
parameter domain I' = [,\/g’ \/ﬂNKL x [0.1,10] with |T¢ain| = 500 independent
uniformly distributed parameter samples. As a stopping criterion a predefined
reduced space dimension N,,q; = 30 is chosen. Depending on whether the
non-weighted or the weighted approach is utilized, non-weighted error estimators
(3.30) and (3.34) or weighted error estimators (3.38) and (3.39) are chosen as
basis selection criterion in the POD-greedy. Further details regarding the non-
weighted and weighted reduced space construction can be found in sections 3.3.1
and 3.3.2. With these reduced spaces, the reduced solutions can be computed by
a Galerkin method in section 3.1 with the corresponding bilinear form af(-, ;&)
(5.3) and functional b(-;§) (5.4). By means of section 3.1.1 the reduced algebraic
equations of the weak formulation for Problem 5.1 are derived. The solution
of the algebraic equations gives the coefficients of a linear combination of the
reduced basis which approximates the finite element solution.

t=1 t=20
08 08
06 06
El 04 04
02 02
08 038
06 06
52 04 0.4
02 02

Figure 5.4: 2d heat conduction for different parameters and points in time
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Figure 5.5: Pointwise relative error convergence of true error and error bounds

The reduced space obtained from the POD is based on the snapshots
{uﬁ({) k= 17"‘7K7 5 S Ftrain}c (55)

Since the parameter set I';,iy is uniformly distributed, the snapshots are equipped
with the pdf. This means that the eigenvalue problem based on (4.9) is solved
for the snapshots

{ p(f)uﬁ(é’): k=1,...,K, £ € Ttrain}-

Once the eigenvalue problem is solved and the obtained eigenfunctions span the
reduced space, the reduced solution is computed by the orthogonal projection,
see (4.7).

In the following the results from section 3.2 are illustrated. The error
estimators are based on the coercivity constant and the dual norm of the
residuals in each time step. Therefore, the coercivity constant «(§) in (2.8)
is computed for each £ € TI'i;ain by a generalized eigenvalue problem, see, e.g.,
(Quarteroni et al., 2016, section 2.4.3). The computation of the dual norms of
the primal residual and the dual norms of the dual residual are described in
section 3.2.3. In Fig. 5.5 a pointwise comparison between the rigorous error
estimators A% in (3.30), A" in (3.38), N (3.34) and Aj\’,’?]\? in (3.39) (in
blue) and the exact errors (in red) is drawn. The exact error is measured in the
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Figure 5.6: Comparison of different solutions at final time T' = 20

parameter-dependent energy norm ||||||§p]r defined in (3.28). The figures contain
eight different errors. The top left figure compares

AY v
(ax AR(E) llun(€) — un (€12 656)
pr pr o .
ez, MO el Tl

whereas the numerator of the second term is determined for the parameter
§ = argmaxgcp, . AR (£). The bottom left figure compares

max AY’()

€€  main llun (&) — un (E)IE (5.7)
(Lo VA lun (I (Lasx Vo llun(©IE

whereas the numerator of the second term is determined for the parameter

§ = argmaxgcp,  ARP(€). The top right figure compares

iR AT R, &
3 m?ia(in |Sh(£)| 1S mi}:in |Sh(£)| | |

whereas the numerator of the second term is determined for the parameter
§ =argmaxgcp, . AL N(g). The bottom right figure compares

el AV () I51(6) = s 5 (€]

max p©lsn @ " Tmax p©lsn (@)

€T train €T train

(5.9)

whereas the numerator of the second term is determined for the parameter
§ =argmaxecp, A% < (£). It is observed that the exact error is closer to the

error bounds for the solution approximation (Figs. 5.5a and 5.5b) compared to the
output approximation (Figs. 5.5¢ and 5.5d). This coincides with results obtained
from elliptic theory, e.g. (Haasdonk, 2017, Proposition 2.21 and Example 6).
However, analogue results for the parabolic case are not available. Furthermore,
considering the y-axis in Fig. 5.5, double accuracy of the output approximation
compared to the solution approximation is observed. This is based on the output
correction (3.16). The figures show that the error bounds are reliable. Especially
for the solution error, effective bounds are obtained for this example.

In Fig. 5.6 solutions for different parameters are compared. The solutions
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Figure 5.7: Comparing non-weighted, weighted POD-greedy and POD

are evaluated at the end point in time 7. The different columns show the
solutions obtained from a finite element method, a non-weighted RBM and a
weighted RBM, respectively. The RBM in column two and three uses N =1
basis function, albeit the non-weight and weighted basis differs. The first row
states the solutions for a sampled parameter £* = (£°U6* ¢%*) & Ty, with
¢im* = (.1143 € [0.1,10] close to the left bound of its support. It is observed
that the non-weighted approach approximates the parameter £* better than the
weighted approach. However, since the pdf gives p(¢*) = 1.5876 * 107110 an
accurate representation of the parameter £* is not necessary for the approximation
of the expected value. The second row states the solutions for the expectation of
the parameter E[¢] = (E[¢°"], E[¢™]) ¢ T'yrain. Based on the stated probability
distributions of £°"* and ¢, it follows E[¢°%] = (0,...,0) and E[¢] = 5.05,
respectively. The plots show that the finite element solution for parameter
E[¢] is better approximated by the weighted reduced solution compared to the
non-weighted reduced solution. This is a first insight that indicates a better
approximation of the expected value by a weighted approach.

In the following different ROMs are compared regarding the root mean square
solution error and the mean absolute output error. The error convergence of these
errors for the first N,,., = 30 basis functions are shown in Fig. 5.7. Fig. 5.7a
illustrates the relative root mean square solution error

1/2
Efic {At Y fluf — “?\7”?{}

(5.10)
K 5 11/2
Efic {At k=1 Hué:lHX:|
and Fig. 5.7b shows the relative mean absolute output error
E (lsn — sn x
MCH h N,N” (5'11)

Efic[Isnl]

The Monte Carlo estimator EY| is defined in (4.5), which uses the samples from
the training parameter set I'iyain. The snapshots uf(€) in (5.10) are defined
in(5.5) and computed by Problem 2.11. They determine the finite element
output sp,(§), see (2.13¢) and (5.4). There are three different reduced solutions
uk (€): the non-weighted, the weighted and the POD reduced solution. The non-
weighted and the weighted RB solutions are determined by Problem 3.1 using
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Figure 5.8: Parameter selection for solution and output approximation

the non-weighted reduced space (see section 3.3.1) and the weighted reduced
space (see section 3.3.2), respectively. The POD reduced solution is given by
(4.7). Recall, the POD cannot construct a reduced solution, which minimizes the
expected output error in (5.11). Hence, for the expected output error only the
non-weighted and weighted RBM are compared. In Fig. 5.7a the optimal error
convergence for the expectation obtained by the POD is observed. The weighted
approach yields better error results compared to the non-weighted approach.
Furthermore, the plot shows that the expected solution error obtained from the
weighted POD-greedy is closer to the optimum than to the expected solution
error obtained from the non-weighted POD-greedy. As for the expected solution
error, Fig. 5.7b shows that in each iteration of the POD-greedy the weighted
approach gives better error results regarding the expected output error compared
to the non-weighted approach.

In Fig. 5.8 the parameter selection for the non-weighted and the weighted
approach for the first V,,,, = 30 parameters are compared. The left figure shows
the parameter selection obtained by maximizing the non-weighted and weighted
solution error estimator (3.30) and (3.38), respectively. The right figure states
the parameter selection obtained by maximizing the non-weighted and weighted
output error estimator (3.34) and (3.39), respectively. Both figures clearly show
that the weighted approach chooses parameter samples around the peak of the
pdf. For the non-weighted case also parameters far from the peak, whose pdf is
almost zero, are chosen.

The numerical results in Fig. 5.7 show that the weighted approach gives
better error convergence if the objective is the approximation of the expected
solution error or the expected output error in this example. This behavior is also
illustrated in Fig. 5.6. It has been shown that the error estimators of section 3.2
are upper bounds for the exact errors over a finite dimensional parameter set.
By means of the POD, the optimal error convergence of the expected solution is
stated. Furthermore, it has been shown that the weighted reduced solution is
closer to the optimum than to the non-weighted reduced solution.



Chapter 6

Conclusion

The Focus of this thesis was on parabolic parametrized partial differential
equations (PPDEs) with random input data. Reduced order models of the
parabolic PPDE were stated applying different model order reduction techniques.
The goal of this work was to construct efficient reduced order models regarding
statistical quantities of errors, which resulted from model order reduction. To
this end, this work extends a weighted reduced basis method (RBM) to parabolic
problems with random input data.

In the first part of the thesis the model problem was introduced. The strong
formulation of a linear parabolic partial differential equation was stated and
the corresponding weak formulation was derived. The random input data were
represented by random parameters and the stochastic framework was established.
Assumptions for the existence and uniqueness of a solution to the parametrized
weak formulation were stated. A quantity of interest (or output) was determined
by a linear functional which mapped the solution to a real number. An adjoint
correction, obtained by a standard primal-dual approach, was utilized in order
to improve error bounds for the output error and increase the accuracy of the
output computation. Hence, the dual problem of the model problem was derived.
The primal problem and the dual problem were discretized by an implicit Euler
method in time and a finite element method in space.

The second part of this work focused on model order reduction techniques
for parabolic PPDEs with random input data. In order to replace the high-
dimensional finite element model by a low-dimensional surrogate, an RBM was
used. The reduced order models were stated for the primal and the dual problem,
which provided approximations for the finite element solution and the finite
element output for each element of the parameter domain. The solution of the
reduced dual problem was used to improve the accuracy of the reduced output
computation. Assuming an affine parameter dependence led to an efficient
computation of the reduced solution and the reduced output independent of the
dimension of the finite element discretization. The reduced space construction
was based on a POD-greedy algorithm, introduced in Haasdonk and Ohlberger
(2008). In this work the POD-greedy used rigorous a posteriori error bounds for
parabolic PPDEs, derived in Grepl and Patera (2005), as a selection criterion for
the basis functions. The error estimators assess the accuracy of the approximation
obtained by the RBM with respect to the finite element approximation and are
computationally cheap compared to the exact error computations. These error
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estimators were extended to a time-continuous framework.

Inspired by Chen et al. (2013), where the idea of a weighted RBM was
introduced for elliptic problems, the idea of a weighted RBM was transferred
to parabolic PPDEs with random input data. Weighted error estimators used
the probability density function as a weight function in order to assign higher
priority to input data which are more probable. These computationally cheap
weighted error estimators were combined with the POD-greedy algorithm, called
weighted POD-greedy, in order build a weighted reduced space.

In addition to the non-weighted RBM and the weighted RBM, a POD was
utilized in order to obtain an optimal reduced space in a root mean square
sense. The expected value was approximated by a Monte Carlo (MC) estimator
using uniformly distributed random variables. The reduced POD solution was
determined by an orthogonal projection of an MC snapshot onto the reduced
POD space, such that the resulting expected squared solution error becomes
minimal.

Numerical results for a two dimensional heat conduction with random input
data were illustrated. The input data entered the model problem via the
boundary conditions and were characterized by a random field and a random
model coefficient. The random field was approximated by a truncated Karhunen-
Loéve (KL) expansion using uniformly distributed random variables. It was
shown that for this example a weighted RBM yields better error convergence
regarding the expected errors than a non-weighted RBM. It was observed that
the convergence of the expected error regarding a weighted RBM was closer to
the optimum than to the non-weighted approach.

The aim of this work was to find efficient reduced solutions with respect to
the expected value of the solution error and the expectation of the output error.
This work showed that a weighted POD-greedy outperforms a POD-greedy in the
context of parabolic PPDEs with random input data for a numerical example.



Appendix A

A.1 Spaces

Definition A.1 (Hilbert space). A Hilbert space X is a complete space endowed
with an inner product (-,-)x: X X X — R, which induces the norm

1fllx = V(£ Px.

Definition A.2 (Bochner space). Let A be a nonempty and compact subset of
RP, p € N, and X be a Hilbert space. The Bochner space L?(A; X) is defined by

LY (A; X) = {f: A — X : f measurable, / Hf(a)||§( da < oo}
A
with the inner product

(f,9) 2y = /A (f(a), 9(a))xda

and the induced norm

Hf||L2(A;X) =/ (fs frz(ax).

A.2 Derivation of homogeneous initial condition

The linear parabolic PDE in (2.1) with inhomogeneous initial condition is
considered. In the following the problem is transformed, such that the initial
condition becomes homogeneous. Therefore, let ug: 2 — R. The linear parabolic
PDE for an inhomogeneous initial condition reads as follows: Find the solution
w: 2 x I — R, such that

Ou—Au=f, inQxI,
@:g, on 0N x I,
on

u=1ug, on x {0}
The solution u is composed of a homogeneous part 4 and an inhomogeneous
part ug, i.e.

u:ﬁ—i—ﬂo,
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with ug(x,t) = ug(x), Vt € I. Solving the problem for the homogeneous solution
yield: Find the solution @: Q x I — R, such that
dhu—Au=f, inQxI,
% =g, ondQxI,
on
=0, onQ x {0},

where f = f —0¢(tup) + Aug and §:= g — %'

A.3 Output evaluation

The output can be computed by either using the primal solution u(¢;£) or the
dual solution (¢;£). This is accomplished by, starting with (2.27),

T
/Og(U(t;ﬁ);E)dtJrZ(U(T;f);O

(2.

g

“A (s €), it €)) + alult ), b(t: €): )t + Uu(T: €): €)

(2.

g

T
b)/0 —(u(t; ), 0p(t:€)) + alu(t; §), (¢ §): §)dt + (w(T;€), Y(T;€)) r2(a)
T
- A (Bru(t: ), B(1:6)) + alut; €), (t:€): )t

T
<ﬁﬁA (i (1:€): €)dt,

where the third equality uses integration by parts and (2.7b). Due to the
homogeneous initial condition the output evaluation, utilizing the dual solution,
reduces to the computation of the integral.

This equality can be of special interest, if the quantity of interest has to be
computed for many different right hand sides b. Without the dual approach
the computationally expensive primal problem needs to be solved for each right
hand side. Afterwards the corresponding primal solutions are inserted into the
functional. However, utilizing the dual approach, the computationally expensive
dual solution is computed only once and it is inserted into each single right hand
side.

A.4 Compliant case

For the trivial case where the primal problem (2.7) and the dual problem (2.36)
satisfy b = g. Then, for t € (0,T), there exists a t* € (0,7'), such that

(Oru(t; §),v) + a(u(t; §),v; ) = —(v, O (t7;§)) + alv, Y(t*;€);€), Vv e X.

If the bilinear form is symmetric, see (2.10), and since the equation has to hold
for all v € X, it holds that

u(t; §) = ("),
Opu(t; €) = —00(t*;€).
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Choosing t* := T — t fulfills these equations. Hence, the solution of the back-
ward problem coincides with the solution of the forward problem, such that
u(t; &) = P(T —:€), t € (0,T). Additionally, if the right hand sides of the initial
condition and the final condition coincide, then u(0;¢) = (T €).

A similar relation for the time discretized equations is observed. If the right
hand side of the time discretized primal problem and the right hand side of the
time discretized dual problem coincides, it holds, for £k = 1,..., K — 1, there
exists a k = 1,...,K — 1, such that

(uF(€) — u" (&) 0) L2 + Ata(uﬁ(@, v;€) )
= (0, 9" (&) — PFTL(€)) 12 () + At alv, ¥F(€);€), Vv e X.

For a symmetric bilinear form, see (2.10), and since the equation has to hold for
all v € X, it holds that

Choosing k := K — k fulfills these equations. Hence the solution of the back-
ward problem coincides with the solution of the forward problem, such that
uF (&) =K+ (¢), k=1,...,K — 1. Additionally, if the right hand sides of the
initial condition and the final condition coincide, then u®(¢) = ¥ (&).

This means that for the compliant case, where the right hand sides of the
primal and the dual problem coincide, the dual solution coincides with the primal
solution.

A.5 Error bounds for parameter independent
norm

In section 3.2 error bounds for parameter dependent norms were derived. Further-
more, error bounds for parameter independent norms can be stated. However,
estimating the solution error in a parameter independent norm entails larger
constants for the error bounds. This follows from the inequality, see Proposi-
tion 3.16,

K 1/2
<||e§(f>|lizm) + At Za(em»eﬁv(o;s)) <A
k=1

and using (2.8) for the left hand side gives

K 1/2
(l!emuiz(m +AEY Heﬂ%(&)Hi) < CAR (),

k=1

with the constant C' := 1/ min{1, \/a(£)} > 1. Here the left hand side of the
inequality does not depend on the parameter dependent norm ||-|| ¢ anymore.
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Further, this idea applies for the dual solution error estimation as well. Taking
the inequality, see Proposition 3.18,

Kol 1/2
(100 80 Suchio.here) 2 sz

k=0

and using (2.8) for the left hand side gives

K—1 1/2
<Hé?v(€)f|iz(g) fary ||e§%<s>||§) <oave
k=0

with the constant C' = 1/min{1, /a(§)} > 1. Again, the left hand side of the
inequality does not depend on the parameter dependent norm ||-[|; anymore.

If the solution error for time index k can be estimated by the previous
time step, then the coefficient in the error bound obtains the time index as an
exponent, cf. (Haasdonk, 2017, Proposition 2.80).

A.6 Time continuous error estimators

As it was done in section 3.2.1, the error estimators can be derived for the
time continuous case as well. For the sake of notational convenience the time
continuous primal solution error en(t; &) = up(t;€) —un(t;€) € Xj, and the
time continuous dual solution error ég(t;§) = ¥ (t;€) — Y (&) € X, are
abbreviated by en(t;§) = en and €y (t;€) = €5 respectively.

A.6.1 Primal solution error estimator

The time continuous primal error estimator is derived using the time continuous
residual

rn(v;€) = b(v; &) — (Orun (t;€),v) L2(0) — alun(t;€), v;€)
= (Oren(t;€),v)12(0) + alen(t;€),v;€).

Insert en(t;€) = en in (A.3) and integration over time yields

(A.3)

T T
/ ry(en;§)dt = / (Oren,en)r2(q) + alen, en; §)dt.
0 0

The estimation follows the steps as in the proof of Proposition 3.16. The left hand
side is estimated by Proposition 2.4, ab < % (c%a2 + 02b2), a,b e R, ce R\ {0}
and (2.8), such that

T

a5 )%+ 2 aen exs €)dt.

T
1
/0 (8t61v76N)L2<Q)+“(6N’€N;€)dtS/0 2a(€) 2

Multiplying this inequality by two and using ey (0;&) = 0 gives

2 r 1 T 2 w,[0,7] 2
lex (D) + [ alewsenide < o [ ()l de = (85°7).
0 a(§) Jo
(A4)
The left hand side represents the squared primal parameter-dependent energy
norm (3.28) for continuity in time.
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A.6.2 Dual solution error estimator

The time continuous dual error estimator is derived using the time continuous
residual

P (v;€) = (0,0 (6:€)) L2 () — alv, Y (8 £); )

A.
(0, Ouy () oy + (v, (1): ). (4-5)

Insert €5 (t;€) = €5 in (A.5) and integration over time yields

T T
/ (e )t = / (e D) aey + aleg B €L,
0 0

The estimation follows the steps as in the proof of Proposition 3.18. The left hand
side is estimated by Proposition 2.4, ab < 1 (C%a2 +c?b?), a,b € R, c € R\ {0}
and (2.8), such that

T

T ) o T ,
/0 _(eﬁvateN)L2(Q)+a(eNa€N);§)dt§/0 m”ﬁv(ﬁf)”x

Multiplying this inequality by two and integrating the L?-norm on the left hand
side gives

T T
IenO)u+ | atewemiedt < = [ IO dt+ ey (Dl
(A.6)
The left hand side represents the dual parameter-dependent energy norm (3.29)
for continuity in time. Furthermore, it is observed that the sum over all time
steps in (3.32) is replaced by the integration over the time interval [0,T]. The
solution error at the end point in time || (T)| 2o, is estimated by the residual

Frwi&) =1(v;€) — (v, Y5 (T;€)) 12
= (v,e5(T;6))L2()-

It holds that

IEx (T 720y = Ex(T), 65 (T))12() = T (Ex(T); €)
and hence

PP (T I L
NIRRT le g (T))| 2y — wexn [0llp2gy N
Using that inequality in (A.6) yields the time continuous dual solution error
estimator

T 1 T
15 O] + / e e < o / 7 (5 )% dt

, , (A7
& (a57)’ = (anomy?,
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A.6.3 Output error estimator

The time continuous output error estimator is evaluated by
T
Isn(§) — sy x ()] = \l(ew(T;f);f)—/O (Vg (:€); €)dt]
T T
= t;£);€)dt — o (t;€);€)dt
| rvtneerga— [ vyt eroal

= \/O rn(Ex(t:€); €)dt|.

The expression can be estimated as in Proposition 3.20, hence

2.5 T
I51(6) — sy 5 (€)' < / I (5 )0 18l dt
0
1/2
T e (5630 T a2
<</ e dt) (/ @) Nnxdt)

1/2
28 ,[0,7] r
A [ atesexigpa
0

T
< AX/’[O’T] (”éN(O)iz(Q) +/0 a(éNaéN§§)dt>

A1 w,[0,T] A ,[0,T] . A ,[0,T]
<Ay AN =: AN,N ,

1/2

1/2

where the second inequality uses Cauchy-Schwarz.

A.7 Karhunen-Loéeve expansion

By means of a Karhunen-Loéve (KL) expansion (Ghanem and Spanos, 1991,
section 2.3) a second order random process can be represented by an infinite
linear combination of orthogonal basis functions. It is strongly related to the
POD of section 4.2. In this section a short overview of the KL expansion is
given. If a stochastic process is of second order, meaning the second moment is
finite, the process can be represented by

A, Y (9)) = aole) + 3 v/ heu(@)Yi(6). (A8)
=1

The random process depends on the space variable z € ) and the random outcome
0 € ©, which was introduced in section 2.2. The expectation ag:  — R of the
random field can depend on the space and the random variables are determined
by

1
Y(0) = —/ (k(z,0) — ap(z)) e (x)d.
VAL Ja
They are centered and mutually uncorrelated with unit variance, i.e.

E[}/l] =0, E[Y—lYm] = Oim. (AQ)
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For the case that the random field k is a Gaussian field, and since the random
variables are uncorrelated, the random variables are independent. The eigenvalues
{)\l}?il are stored in decreasing order \; > Ao > ... and the eigenfunctions
{c;}$2, are orthonormal, i.e.

/ c()em(x)de = Oy,
Q

The eigenvalues and eigenfunctions are obtained from a eigenvalue problem
which is given by the following integral equation

/Q Cle,y)e(y)dy = Mer(x) (A.10)

where C(x,y) is the covariance kernel. In case of an exponential covariance
kernel C(z,y) = exp(—|z — y|/a), with correlation length a > 0, the eigenvalues
and eigenfunctions in (A.10) can be determined analytically, see (Xiu, 2010,
example 4.1).

In order to make (A.8) computable the series is truncated (Papadopoulos and
Giovanis, 2018, page 31) at Nkr, < oo such that the random field is approximated
by

Nk

k(.Y (0)) ~ Rz, Y (0)) = ao(x) + Y _ vV e()Yi(0). (A.11)
=1

Similar to (4.10), the error of the truncated expansion can be determined by the
decreasing sequence of eigenvalues above the truncation

[ee]
>
I=Nkr+1
This can be used in order to determine the truncation index. For a given tolerance
€xL, the index Nki, can be evaluated by
oo
Zz:NKLH Al <1

Z?; Al ’

see (Lord et al., 2014, equation (7.46)). The denominator is computed by a sum
that is truncated at Nki, > Nk, where the decreasing subsequent eigenvalues
can be neglected.

ek < (A.12)

A.7.1 Boundedness of Karhunen-Loéve expansion
For the numerical example in chapter 5 the truncated Karhunen Loéve expansion

Nk

R(e,€) = aola) + 3 VAa(@)G
=1

is utilized. In order to show that the random field & is positive and bounded, it
is assumed that ag € L*°(Q) and ap(z) > 0 for all spatial points, the eigenvalues
¢; € L*™(Q) and the random variables & ~ U (f\/ﬁ, \/3) are independent identi-
cally distributed random variables for { = 1,..., Nkr,. In order to satisfy (2.8)
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and hence guarantee existence and uniqueness of a weak solution of Problem 5.1,
the Karhunen Loeéve expansion has to satisfy

Kmin < F(2,€) < Kmax, Yz €Q,VEET, (A.13)

with Kmin > 0 and Kpax < 0o. Finding a lower bound of the KL field it needs to
be guaranteed that &(x,&) > 0 and hence

Nk
R(x,6) > aol) = V3D VA lletll oo ) A4
=1 (A.14)
>y —V3E>0
with aq 1= mingeq ag(z) > 0 and £ := Y08 VA 1]l oo (o) This inequality is
equivalent to
1 S 1
— > —k.
V3T oagT
In order to find a lower bound for x, it holds
1—e€ 1
> —kK A.15
V3 T ag ( )

for an € € (0,1). Bringing (A.14) and (A.15) together, it gives
R(x, &) > eqq

and hence the lower bound in (A.13) is defined as kpmin = €.
The upper bound in (A.13) simply follows by

Nk

R, €) < llaoll oo ) + VB D VAl (g -
=1

Thus, the upper bound in (A.13) is defined as rmax := [|@0| oo () + V35, with
N
£=3320 Vel o -
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