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ABSTRACT

Microbial adherence to plant root is the initial step in a beneficial plant-microbe interaction. Quantitative RT-PCR analysis
deduced the Avin_16040 gene showed upregulated expression when Azotobacter vinelandii was adhered to the rice root. By
transforming the full-length Avin_16040 gene into a heterologous host Escherichia coli, the recombinant clones displayed
filamentous cell shapes in contrast to the rod-shape of wild type cells. Besides full-length gene insert, some E. coli clones
were detected to contain truncated Avin_16040 gene inserts but still shape-shifted to filamentous cells. Further analysis by
DNA sequencing revealed the shape-shifting E. coli clones contained 3’-end truncated Avin_16040 gene, while E. coli clones
containing the 5’-end truncated Avin_16040 gene remained rod-shaped. The cell surface topographies of 4. vinelandii and E.
coli cells in the presence and absence of Avin_16040 gene and in association with rice root adherence were analysed using

atomic force microscopy.
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INTRODUCTION

Azotobacter vinelandii is a plant-growth-promoting
bacterium commonly found in soil. It is well known
as a dinitrogen fixer, as well as a plant growth
hormone producer. Besides, A. vinelandii has a
long research history of biosynthesizing the
extracellular polysaccharide alginate, the intra-
cellular polyester poly-B-hydroxybutyrate (PHB)
and siderophores which are compounds that were
reported to have multiple biotechnology and
biomedical applications. These applications include
alginate for control release of medical drugs (Yao
et al., 2009) and as food additives (thickener,
stabilizer, gelling agent and emulsifier), poly-
hydroxybutyrate (PHB) for development of
biodegradable and biocompatible thermoplastics
(Diaz-Barrera & Soto, 2010), and siderophores as
drug delivery (Mollmann et al., 2009), antimicrobial
(Upadhyay & Srivastava, 2008) and soil bio-
remediation agents (Braud et al., 2009).

* To whom correspondence should be addressed.

Plant-growth-promoting rhizobacteria (PGPR)
can improve the overall development of plants by
increasing its root and shoot yields (Zakry et al.,
2010). As a PGPR, A. vinelandii’s N, fixation has
been extensively studied since 1960s. Other PGPR
characteristics most commonly researched into are
its ability to produce plant growth hormone and
amino acids. Torres-Rubio et al. (2000) reported that
A. vinelandii isolated from a rice rhizosphere
produced the highest concentration of indole-3-
acetic acid (IAA) in comparison to the other isolates
residing at the same rhizosphere, namely 4.
chroococcum, Pseudomonas aeruginosa, P. putida
and Serratia sp. Rodelas et al. (1999) and Pozo et
al. (2000) discussed the production of plant-growth-
promoting amino acids by 4. vinelandii and A.
chroococcum. A. vinelandii ATCC 12837 was also
reported to colonize the rhizospheres of cereal
(Shimshick & Hebert, 1979), rice (Maudinas et al.,
1981; Torres-Rubio et al., 2000), wheat (Naz et al.,
2012) and hot pepper (Husen, 2005). This non-
endosymbiont root association has brought about
supply of biologically fixed N, to the plant,
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enhanced soluble P availability, antibiosis against
pathogenic microorganisms, as well as supplies of
plant-growth-promoting hormones, vitamins and
amino acids to the plant (Okon & Itzigsohn, 1995;
Gonzalez Lopez et al., 1999; Revillas et al., 2005).
Concomitantly, root-colonizing 4. vinelandii can
incorporate readily the plant root exudates which
may contain sugars and organic acids.

Recently, we reported that a surface layer
protein Avin_16040 was involved in the adherence
of A. vinelandii ATCC 12837 cells to rice root (Liew
et al., 2015). In the same study, we observed that
the heterologous host E. coli showed increased
adherence to rice root after it was transformed with
Avin_16040 gene. This paper aims to impart
differing cell surface topographies of A. vinelandii
and E. coli cells in the presence and absence of
Avin_16040 gene in relation to root adherence. For
this purpose, atomic force microscopy (AFM) was
used. Besides, DNA cloning of Avin_16040 gene in
E. coli will be discussed by emphasizing that the
E. coli clones which contain 3’-end truncated
Avin_16040 gene also displayed “filamentous cell”
effect as the E. coli clones which contained full-
length Avin_16040 gene.

MATERIALS AND METHODS

Bacterial strains, plasmid and culture conditions

Azotobacter vinelandii Lipman ATCC 12837
was obtained from the American Type Culture
Collection (ATCC). Deletion mutant A. vinelandii
AAvin_16040 was described previously by Liew et
al. (2015). Both bacterial strains were maintained
and grown in Burk’s medium containing 2% (w/v)
sucrose. Liquid cultures were agitated continuously
at 200 rpm, 25 + 2°C, for up to 5 days. Agar medium
was solidified with 2% Agar Bacteriological No.1
(Oxoid, UK). 4. vinelandii-root interaction was
performed in altered Murashige and Skoog (1967)
medium as described before (Liew et al., 2015). E.
coli DH5a was cultivated in Nutrient Broth (NB)
(Merck, USA) for overnight at 37 + 2°C.

Sample preparation and Quantitative Reverse
Transcription-Polymerase Chain Reaction (qQRT-
PCR)

O. sativa MR 219 seeds were surface sterilized
and germinated as described by Liew et al. (2015).
Axenic roots of O. sativa MR 219 were interacted
with A. vinelandii ATCC 12837 wild type in three
systems; (1) adventitious roots were aseptically
excised from the rice seedlings with scalpel blade
and cut into short fragments of approximately 1 cm
before they were mixed separately with ATCC
12837 cells at 107 CFU/mL concentrations in the
altered-MS medium, (2) adventitious roots were

shredded and vortexed vigorously in the altered-MS
medium, after which shredded roots were harvested
and re-suspended in fresh medium containing
ATCC 12837 cells as described for 1 cm root
fragments, (3) root extract (supernatant) was
interacted separately with ATCC 12837 cells. Root-
microbe interaction was performed for 2 hrs at static
condition. The positive control was constructed by
mixing the ATCC 12837 cells with the roots of the
rice seedlings. Root-adhered ATCC 12837 cells were
lysed immediately in cell lysis solution and
processed for RNA extraction. RNAs were also
prepared from the free-floating cells (not adhered to
roots) in the root-microbe interaction systems as
well as non-root-interacted bacterial culture
(negative control). To verify the expression of
Avin_16040, root-adhered ATCC 12837 cells were
analysed after 0 hr, 10 min, 20 min, 30 min, 1 hr, 2
hrs, 4 hrs, 8 hrs and 24 hrs of root-microbe
interaction. RNA extraction, reverse transcription
and qRT-PCR were performed according to Liew
et al. (2015).

DNA manipulations and analyses

The DNA fragment encoding the Avin_16040
gene was ligated to the plasmid vector pJET1.2/
blunt (Fermentas, Lithuania) before the mixture was
transformed into E. coli DH5a.. Bacterial cells were
smeared on glass slides and observed under Primo
Star upright microscope (Zeiss, USA). DNA inserts
were amplified by PCR. E. coli clones carrying
different DNA insert sizes were selected for
further analysis. DNA sequencing was performed
commercially.

AFM

Atomic force microscopy (AFM) was conducted
using JPKNanoWizard II system (JPK Instruments
AG, Germany) to display bacterial cell structure and
cell surface topography. Bacterial smears were used
for the purpose. The bacterial smears were prepared
according to Liew et al. (2015).

RESULTS AND DISCUSSION

The bacterial strain A. vinelandii ATCC 12837 was
studied during its interaction with O. sativa MR 219
root and a hypothetical protein Avin_16040 was
identified via a 2-dimensional gel electrophoresis —
tandem mass spectrometry (2DE-MS/MS) method
(Liew et al., 2015). The protein was found to show
an elevated expression level during close contact
with O. sativa MR 219 roots. An Avin_16040
deletion mutant was then generated, which revealed
some interesting aspects on the functions encoded
by the protein coding gene.



MICROSCOPIC OBSERVATION OF Avin_16040 IN Azotobacter vinelandii AND Escherichia coli 51

In this paper, we present additional data on the
hypothetical gene coding for Avin_16040 as well 33
as on the characteristics of its deletion mutant 4.
vinelandii AAvin_16040, especially in relation to 0
the root adherence function. Preliminarily, the in
vitro interaction between A. vinelandii and O. sativa o
was conducted by subjecting the bacterial cells to )
roots of the O. sativa seedlings. To explore whether g
the root (physical effect) or root exudates (chemical g2
effect) caused the eclevated expression of E
Avin_16040, A. vinelandii was interacted with roots £ 15
that were cut into short fragments of 1 cm in length,
shredded roots, and root extracts. Root extract was
obtained by separating the medium supernatant from "
the shredded root debris after vigorous vortexing.
Relative to the cells at 0 hour, Avin_16040 gene -
showed an upregulated expression in the bacterial
cells which resided on O. sativa roots of the o
seedlings, as well as on the root fragments of 1 cm A B c D E F G
in length (Figure 1). No significant change in
expression levels was detected in the interactions Fig. 1. Comparison of Avin_16040 gene expression
with root extract and shredded roots. The results extracted from different O. sativa roots — A. vinelandii
indicated that the elevated expression of interaction conditions. Bacterial cells were interacted with
Avin_16040 gene was caused by 4. vinelandii’s roots for 2 hrs at static condition. The results showed

Avin_16040 gene was upregulated in 4. vinelandii attached
to O. sativa roots. A, A. vinelandii cells at 0 hr, B, root-
attached bacterial cells after 2-hr interaction with O. sativa
root attached to seedlings, C, free-floating bacterial cells after
2-hr interaction with O. sativa root attached to seedlings,

adherence to root (physical effect). Further analysis
at selected time points revealed the Avin_16040
gene responded almost immediately to the root
(fragment)-microbe interaction. Figure 2 shows that

its expression started to escalate after only 10 min D, root-attached bacterial cells after 2-hr interaction with
interaction with roots. By supplementing nitrogen cut O. sativa root fragment, E, free-floating bacterial cells
(1.65 g L°' ammonium nitrate) to the interaction after 2-hr interaction with cut O. sativa root strands, F,
medium, Avin_16040 gene showed lower expression bacterial cells after 2-hr interaction with O. sativa root
level in general. The ability to colonize plant root extract, G, bacterial cells after 2-hr interaction with O. sativa

is an important characteristic of plant-beneficial roots shredded with scalpel blade.
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Fig. 2. Quantitative RT-PCR analysis of 4. vinelandii ATCC 12837 during root adherence in altered Murashige and Skoog
(1967) medium containing nitrogen (left) and devoid of nitrogen (right). The expression level of Avin_16040 gene was
normalized against the 16S rRNA gene (Liew et al., 2015). In the medium containing nitrogen, Avin_1I16040’s expression
fluctuated where it spiked upon 30 min of A. vinelandii — O. sativa root interaction before decreased, but detected slight
increase after 24 hrs of interaction. In contrast, the expression of Avin_16040 gene increased steadily after 30 min of interaction
until the experiment was stopped at 24-hr.
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bacteria. This close proximity between microbe and
plant root implied that the microbe could directly
affect the performance of plant via mutual exchange
of signal molecules such as phytohormones and
nutrients, as well as sugars and amino acids
(Brechenmacher et al., 2010). This association
resembles a symbiotic relationship.

Using AFM, the cell shapes and structures of
A. vinelandii during interaction with O. sativa roots
were observed (Figure 3). In general, both
AAvin_16040 deletion mutant and ATCC 12837
strains showed the formation of “thread-like”
networks during root adherence. However, the
deletion mutant displayed “grainy” motif which is
narrower in width than the “filamentous” motif of
the ATCC 12837 wild type. In addition to the
“grainy” motif, the root-adhered deletion mutant
also displayed “patches” motif which were most
possibly amassed from groups of cells as viewed
under the compound microscope (Fig. 3E). The
different motif formation directly reflected the
decreased root adherence capacity of Advin_16040
which was reported previously by Liew et al (2015).
AFM analysis of the non-root-interacted A.
vinelandii cells revealed AAvin_16040 cells were
generally bigger than the ATCC 12837 cells. By
performing electron microscopy analysis, Shimshick
and Hebert (1979) reported that 4. vinelandii ATCC
12837 colonizes plant root in both monolayer and
multilayer formats until 10° cells per g root. Even
though the majority of ATCC 12837 cells adhered
to root individually, some adhered in patches of
several hundred cells with considerable overlaps
(Shimshick & Hebert, 1979).

The DNA fragment of Avin_16040 gene was
cloned in pJET1.2/blunt plasmid vector and
transformed into E. coli DH5a. By performing PCR
analyses, recombinant £. coli clones were found to
contain several DNA insert sizes and were further
analysed. DNA sequencing analysis showed that
partial Avin_16040 genes with 3’-end truncation and
5’-end truncation were cloned (Figure 4). The cause
and mechanism that brought about the insert size
variation was unknown. However, it provided
additional information which was useful in the
genetic mapping of S-layer proteins. Translation of
a recombinant protein especially by a high copy
number plasmid might impose a metabolic burden
that decreases the growth rate of bacterial host and
affects plasmid instability (Bentley et al., 1990;
Birnbaum & Bailey, 1991). In such an occurrence,
truncation of the recombinant gene might be a
successive effect. The recombinant clones carrying
different Avin_16040 gene fragments were selected
for cell morphology analysis using a compound
microscope. The E. coli clones (represented by clone
58) which were transformed with the full-length
Avin_16040 gene (1,368 bp) had cell shapes which

were filamentous (Figure 5). Interestingly, the E. coli
clones containing 3’-end truncated Avin_16040
genes of 1,256 bp (clone 84) and 346 bp (clone 27)
in length were also displaying filamentous cell
morphology. In contrast, an E. coli clone (clone 10)
which contained 5’-end truncated Avin_16040 genes
showed no change in its cell morphology. Cloning
of 5’- and 3’-end truncated surface layer gene
fragments and the expression of N-terminal protein
segment (C-terminal or 3’-end gene truncation) are
crucial for cell surface display of functional
polypeptides (Knobloch et al., 2012). The same
study also showed that insertion of functional
peptide sequences or single amino acids had no or
only slight effect on the formation of S-layer protein
sheets. In contrast, the C-terminally truncated S-layer
protein has lost its cell surface display function.
Typically, the S-layer structural protein consisted of
two functional regions. The N-terminal region was
involved in the attachment of S-layer subunit to the
underlying cell wall (transmembrane) while the
middle and C-terminal region was involved in S-
layer assembly (Avall-Jiiskelidinen et al., 2008). Our
observation matches that of Knobloch et al. (2012)
showing that the 5’ gene segment of Avin_16040
was crucial for its expression as implicated by the
formation of filamentous cells. It is also worth
mentioning that a 5’ gene fragment of as small as
346 bp was able to impose E. coli with the shape-
shifting effect. Finally, we used AFM to display the
cell surface topography of E. coli cells which
acquired the complete Avin_16040 gene of 1,368
bp. The images in Figure 6 are in agreement with
previous report (Liew et al., 2015) that Avin_16040
over-expresses during its adherence to the rice root.
Both Figure 6C and 6D demonstrated elongated E.
coli cells expressing the Avin_16040 gene relative
to the untransformed cells. However, the over-
expression of Avin_16040 were particularly
demonstrated by the thickened cell as displayed by
the recombinant E. coli cells adhering to rice root
(Figure 6D). Besides, the root-adhered recombinant
cells were enlarged due to its association with rice
root. It is interesting to observe that the non-
transformed E. coli DH5a cells were enlarged and
thickened during association with rice root (Figure
6B). Wheeler et al. (2015) has provided evidence
that peptidoglycan hydrolases play important role
in bacterial cell enlargement through hydrolysis
and expansion of the peptidoglycan in the bacterial
cell wall, exemplified by Staphylococcus aureus.
Overall, our study provides additional information
for use in the future research works involving
biosynthesis, assembly and genetic inferences of the
S-layer proteins. Besides, our findings may
contribute to its design and applications as cell
surface display for the various S-layer fusion
proteins.
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Fig. 3. Observation of A. vinelandii AAvin_16040 and ATCC 12837 cells adhered to rice roots. A-D showed the cell
surface topographies of A4vin_16040 and ATCC 12837 as displayed by AFM, while E-F showed the compound
microscopic observation of root-adhered A4vin_16040 and ATCC 12837 cells observed at 400x magnification. In
general, the “non-root-interaction” deletion mutant A4vin_16040 cells (A) displayed bigger cells than the wild type
ATCC 12837 cells (B). During root adherence, the mutant cells showed grain-like network and patches (C, E), different
from the filament structures of the wild type cells (D, F). The different root-adherence ability of A4vin_16040 and
ATCC 12837 cells that was previously reported by Liew et al (2015) could be coincided with the observation. A,
AAvin_16040 cells (non-root-interaction), B, ATCC 12837 cells (non-root-interaction), C, A4vin_16040 cells adhered
to rice root surface, D, ATCC 12837 cells adhered to rice root surface. Scale bar = 10 um.

53



54

MICROSCOPIC OBSERVATION OF Avin_16040 IN Azotobacter vinelandii AND Escherichia coli

gRaRggQcRsne

TCRCTACCTHOC
e LT TETTHE TASET TTICGTACAGGEEATACTRAAGCEIGACGT TT TOGGACT




MICROSCOPIC OBSERVATION OF Avin_16040 IN Azotobacter vinelandii AND Escherichia coli 55

Cont.

w = 3 40 s %] w (1] m 1an 110 1 e 140

I R T () S (RS (S SR iy (R S NI RSNy () (R (SR (A (R (e R (RS P ey (U (e O PR i |
C3 T TAG ARG OGS MG e TE T TGE G T O T T AR G IO A G T TG D6 N GG T GG A T TGO T T AL CA OO GG OB AGC T TR CC T TEGC DG TCAGGGOGA NECCT T TEG TAAC G OGACGACATAGA TETTCE
L

P Y TR, DR P o PP PPy 1O PPNy - JOO PO 1SNy SR P PP POy SO PO =|“I Ay oo e P Py
€2 TOHATBOBCATCTOaET OO TERABGOBON 00BN CART TOBG00GRE THOCT TTECADGTORE
€7

iﬂ )Ln 1‘29 L] EIL] E1 2] awe o ama awe IHD a9 e -
e e L an aTa anc 4o mea m1a e man L L] aea o e L L
£ CRANTOT A A AR A T AT T A T O T A A TG A A KT A0 T T D0 AR SO AT O BT T A A T G T AR T CA T BT
S mma ans e ean & waa lllll an em lllﬂ II.I e o 1Il'u
oz -Iumc&mc} . IWmc Tlﬂm'!'ml I._.I”_ﬁ_”. vaaalesa ..II cci-_m . Immmll:'l ol .-r. «
e I':! " ?lﬂ FII 1I|.l H! L 1IIH lﬂ |I‘| o .-lju - -:n lnl -u IIIB
a AT A T OO AT T GG BT T oA T T GGG A TG T T T T B0 0 T T oA OO TG AT A TG T T OO A TN oA RGNS S TCT T TR G AACCt

L L] L] e e e o o o e e L] to8g a3
1

|« Jsssalsssalassafocsafascsfaccsfasaafosncfasaalfssssasaafoacaleosasffuana) sscslaaaclascalassclssaalossalasasslaocsalacaslocaslssas
o] nwmmmcmmwwxm mwamm’wmumwmmnmmmmmmm
<7

Ll L] ELITT nss )., me g T 1m R L e a9 e 12se 1ime I 1388
c rl'mr"m‘n—n_—"m-rmmr_"rccm|um.ucnwmacltmmm-mmwwammmnwwum
c7 AGATCACGTATTTCT TATTOG TGO T AT COACTOOGaRAA CT TOGA OGS TGT AGTCGRTGTC GAGGAT CRG0 T OO0 GO C TG T CRGC OO CT ADGACGCTRT COOTAT CRARCT CTGORCCCOT I
15 e 1190 am a1 1329 e 130 LRI . N T 1aps
-

i mmrmmm mmmummmmmm’mmmmmmlmmmrmmh

€27 GACATAGCEARIT TEOCAD Co0T oA TOEAGA AR OO TT TC GACA T oA T O T T T O TGO D00 CAGAST T A TCAS T O e OO TODOTA T T OGAR T TTEA TT TCOOAADCOTACT TEARGAC DOARTCOOTACC CAOTTCA
e , e 1338 | e O, o ;

o Mmmmmmmncnmnm—rr

b

Fig. 4. Multiple alignments of Avin_16040 gene sequences (gene direction 3’ — 5’) maintained in the recombinant E. coli
DHS5a clones. Results showed truncated Avin_16040 genes as indicated by discrepancy in the DNA insert sizes. The start
and stop codons are indicated by the black striped boxes and black lines, respectively. a, clones C10 and C84 maintained 3’-
and 5’-terminal sequences of Avin_16040 gene; b, clone C27 maintained a short fragment of Avin_16040 gene at the 5’-
terminal. Complete Avin_16040 gene consisted of 1,368 nucleotide bases.

C58 (full Avin_16040 gene) E eoli ECOS 101 (no DNA insert) C1 (few nucleotide bases
difference at 3'-end)

C84 (partial sequence at 5'- C27 (partial sequence at 5'- C10 (partial sequences at 3’
end of Avin_16040 gene) end of Avin_16040 gene) end of Avin_16040 gene sequence)

Fig. 5. Compound microscopic images of recombinant clones (Gram stained) at 1000x magnification. The block and black
arrows indicate the filamentous cells and “transparent” tube-like structures resulted from the expression of Avin_16040 gene
sequences. The results suggested that the filamentous cell structure was not necessarily caused by complete gene sequence of
Avin_16040. Instead, some recombinant £. coli DH5a clones were found to maintain smaller DNA fragment of the Avin_16040
gene but still able to acquire the filamentous cell shapes. The lost nucleotide sequences could have been caused by self-
deletion or repair mechanism of the heterologous E. coli host. Based on the results obtained, the 5’-end of Avin_16040 gene
most possibly consisted of DNA sequence which caused the filamentous cell structures. Scale bar = 10 pm.
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Fig. 6. Cell surface topography of E. coli DH5a as displayed by AFM. The images showed recombinant E. coli clones
transformed with full gene of Avin_16040 (C, D) have developed elongated as well as bigger cells than the untransformed
wild type E. coli cells (A, B). During root interaction, both the non-transformed E. coli cells (B) and E. coli cells containing
Avin_16040 gene (D) displayed thicker cell wall appearances. The effect was particularly apparent for the E. coli clones
containing Avin_16040 gene. A, non-transformed E. coli cells (non-root-interaction), B, non-transformed £. coli cells (root-
interaction), C, recombinant E. coli cells containing Avin_16040 gene (non-root-interaction), D, recombinant £. coli cells
containing Avin_16040 gene (root-interaction). White arrows showed the elongated morphology of E. coli cell containing

Avin_16040 gene. Scale bar = 10 um.
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