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The Extra Zeros in Traffic Accident Data: A Study on 
the Mixture of Discrete Distributions

(Lebihan Sifar dalam Data Kemalangan Jalan Raya: Satu Kajian bagi Taburan Diskret Campuran)

ZAMIRA HASANAH ZAMZURI*, MOHD SYAFIQ SAPUAN & KAMARULZAMAN IBRAHIM

ABSTRACT

The presence of extra zeros is commonly observed in traffic accident count data. Past research opt to the zero altered 
models and explain that the zeros are sourced from under reporting situation. However, there is also an argument against 
this statement since the zeros could be sourced from Poisson trial process. Motivated by the argument, we explore the 
possibility of mixing several discrete distributions that can contribute to the presence of extra zeros. Four simulation 
studies were conducted based on two accident scenarios and two discrete distributions: Poisson and negative binomial; by 
considering six combinations of proportion values correspond to low, moderate and high mean values in the distribution. 
The results of the simulation studies concur with the claim as the presence of extra zeros is detected in most cases of 
mixed Poisson and mixed negative binomial data. Data sets that are dominated by Poisson (or negative binomial) with 
low mean show an apparent existence of extra zeros although the sample size is only 30. An illustration using a real data 
set concur the same findings. Hence, it is essential to consider the mixed discrete distributions as potential distributions 
when dealing with count data with extra zeros. This study contributes on creating awareness of the possible alternative 
distributions for count data with extra zeros especially in traffic accident applications. 
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ABSTRAK

Kehadiran lebihan sifar sering dicerap dalam data bilangan kemalangan jalan raya. Kajian lepas cenderung kepada 
penggunaan model dengan ubah suaian sifar dan menjelaskan bahawa lebihan sifar ini berpunca daripada keadaan 
kemalangan tidak terlapor. Walau bagaimanapun, terdapat tentangan terhadap pernyataan ini dengan kehadiran lebihan 
sifar ini boleh berpunca daripada campuran beberapa taburan diskret yang mewakili taburan bagi masa atau lokasi 
berbeza. Maka, kajian ini bermatlamat untuk meneroka teori bahawa taburan disket tercampur boleh menyumbang 
kepada lebihan sifar dalam data bilangan. Empat kajian simulasi dijalankan berdasarkan dua senario kemalangan 
dan dua taburan diskret: Poisson dan binomial negatif; dengan mengambil kira enam gabungan nilai perkadaran bagi 
nilai purata rendah, sederhana dan tinggi dalam taburan tersebut. Keputusan kajian bersetuju dengan teori tersebut 
dengan kehadiran lebihan sifar dapat dikenal pasti dalam kebanyakan kes data Poisson tercampur dan binomial negatif 
tercampur. Set data yang didominasi oleh Poisson (atau binomial negatif) dengan nilai purata rendah menunjukkan 
bilangan lebihan sifar yang ketara walaupun saiz sampel hanyalah 30. Oleh itu, adalah amat penting bagi pengkaji 
untuk mengambil kira taburan diskret tercampur ini apabila berhadapan data bilangan dengan lebihan sifar. Kajian 
ini menyumbang dalam mencetus kesedaran berkenaan potensi taburan alternatif untuk data bilangan terlebih sifar 
terutamanya dalam aplikasi kemalangan jalan raya.

Kata kunci: Binomial negatif; kajian simulasi; kemalangan jalan raya; model lebihan sifar; model terpangkas; 
perkadaran; Poisson

INTRODUCTION

Understanding factors that impact on the occurrence of 
traffic accidents is essential in traffic accident modelling. 
Finding an appropriate distribution for the accident 
frequency is crucial, as this will determine the accuracy 
of the traffic accidents model. The oldest work on the 
development of traffic accident models can be traced back 
to Tanner (1953). In the early work of this area, traffic 
flow is considered as the most influential factor on the 
occurrence of traffic accidents (Breunning & Boone 1959). 
Hauer (1988) and Maycock and Hall (1984) produced 

groundbreaking work in this field, by associating the 
relationship between the accident rate and explanatory 
variables, using generalized linear models. The most basic 
model used is the Poisson regression model (Miao & Lum 
1993; Miao et al. 1992). However, traffic accident data 
are typically over dispersed, hence attention shifted to the 
negative binomial regression model (Miao 2001, 1994; 
Vogt 1999; Zegeer et al. 2001). These are univariate models 
where the contributions of covariates are considered as 
fixed effects. Chin and Quddus (2003) and Kweon and 
Kockelman (2003) show that these univariate fixed effects 
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models are inadequate due to their inability to capture 
variation caused by unobserved covariates. A review on 
selected models applied in traffic accident analysis can be 
found in Zamzuri (2016).
	 In more recent studies, it is reported that accident 
counts display an excess presence of zeros than would 
be expected from either a Poisson or a negative binomial 
distribution (Chen et al. 2016; Dong et al. 2016; Kumara 
& Chin 2003; Qin et al. 2004). This raises the issue 
of finding a more suitable distribution. Zero-inflated 
distributions gained popularity in the traffic literature 
as they provide better fits compared to the two count 
distributions mentioned previously (Kim 2015; Li et al. 
2008; Roshandeh 2016). 
	 The fundamental property of zero-inflated distributions 
is that there are two processes that generate the zero counts 
in the distribution; namely the structural zeros process 
and the random zeros process. For example, in counting 
disease lesions on plants, a plant may have no lesions 
because of two reasons: It is resistant to the disease and 
no disease spores have landed on it. This is the distinction 
between structural zeros, which are unavoidable and 
random zeros, which occur by chance (Ridout et al. 1998). 
Martin et al. (2005) categorized different kinds of zeros 
that occur in ecological data. Another example is the study 
of species abundance by Welsh et al. (1996). In this study, 
the abundance data can be thought of as arising from 
two sources: Animal presence is not tenable since there 
are no source of foods on site (structural zeros) and zero 
occurrence by chance on site with foods (random zeros). 
The main reference for this paper is work by Warton 
(2005) that found the high frequency of zeros in abundance 
data is considered to arise from distribution where mean 
abundance is very low. Identifying the source of the extra 
zeros is considered necessary as it explains the nature of 
accident frequency. There are two different opinions about 
the source of excess zeros in accident data sets. 
	 The under-reporting theory is the most common 
explanation used in the literature to explain the presence 
of extra zeros in accident count data (Kumara & Chin 
2003; Qin et al. 2004; Shankar et al. 1997). This theory 
means that at the accident location, there were accidents 
that were not reported because they were minor, or non-
fatality accidents. Since the accident was not reported, it 
was not recorded and contributes to the zero count in the 
data set. Accident count data in Malaysia also experiencing 
such scenario in which up to 1400% of slight injury in 
motorcycle accidents were not reported (Manan & Varhelyi 
2012).
	 Most authors, for example, Miao (1994), Oh et al. 
(2006) and Shankar et al. (2003) define the dual states in 
a zero-inflated distribution as a structural zero accident 
state and a random zero accident state. The zeros from the 
structural zero accident state are attributable to unreported 
minor severity accidents, while zeros from the random 
zero accident state happen by chance and follow the count 
distribution. Parameter estimation of this distribution can 
be performed using maximum likelihood method. Zamzuri 

(2015) provides an alternative method to estimate the zero 
inflated distributions.
	 Lord et al. (2005) argued strongly against the use of 
zero-inflated models. The structural or true zeros state in 
zero-inflated distributions means that there is a totally 
safe situation, where an accident could not happen. They 
argue it is impossible to achieve such a scenario. They 
explained that fundamental to crash data is a process 
called Poisson trials. Poisson trials are Bernoulli trials 
with unequal probability of events. Each vehicle that enters 
the intersection has a different probability of experiencing 
accidents, resulting from a combination of the driver’s 
behaviour, the road condition and other factors; which 
describe the variability in time and locations. Hence, it is 
more sensible to consider different discrete distributions 
for different time periods or locations; and the data set is 
structured from the combined distributions. Few studies 
have been conducted on a mixture of discrete distributions 
in various applications such as insurance claim (Ismail et 
al. 2004), sudden infant death syndrome (Dalrymple et al. 
2003) and fall count data (Ullaha et al. 2010). However, the 
association between the mixture of discrete distributions 
with the presence of extra zeros is not extensively explored 
in the literature. 
	 Motivated by the latter discussion, we propose that 
the excess zeros in accident data could be sourced from 
a mixture of several discrete distributions with different 
mean values. To check on this statement, we conduct 
simulation studies and record the combinations of several 
discrete distributions that resulting on the extra zeros in 
the data set. By fitting two generalized linear model with 
discrete distributions (Poisson and negative binomial) 
and four zero augmented models (zero-inflated Poisson, 
zero-inflated negative binomial, hurdle Poisson and hurdle 
negative binomial), we record the model that appear as 
the best fit for the simulated data sets. This illustrates the 
danger of the normal practice in traffic accident modelling 
in which the zero augmented models become the best 
choice when the data has extra zeros. It is crucial to see that 
although the data do have extra zeros, it is not necessarily 
distributed as the zero augmented distribution but actually 
comes from the mixture of discrete distributions. The 
aim of this paper was to offer an alternative explanation 
to the extra zeros in traffic accident data, which should 
be considered as one of the options other than the zero 
augmented models.

METHODS

As discussed in the previous section, the presence of excess 
zeros in accident data is an unavoidable situation and two 
possible explanations have been discussed. In this paper, 
we consider the theory for excess zeros that has not been 
considered in the literature, in which the accident counts 
might be collected from two or more different scenarios. 
For example, the data may come from three traffic periods: 
on peak, off peak and between peaks. We consider two 
scenarios that explains the mixture distributions:
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Scenario A
Let yi be the number of accidents on ith day. Consider a 
data set of daily number of accidents in a year, that are 
categorized into three groups: 

On peak: Days in which the traffic flows are seriously 
heavy, typically encountered during long weekend, festive 
season or the first and last day of school holidays. This 
part of the data is presented by distribution with high 
mean value. Off peak: Days in which the traffic flows 
are not heavy, presented by distribution with low mean 
value. Between peaks: days in which the traffic flows 
are in between (1) and (2). Typically encountered on 
normal working days. This part of the data is presented 
by distribution with moderate mean value.
	 Since the data in each category follows a certain 
Poisson distribution, hence this data set becomes a mixture 
of three Poisson distributions with different mean values. 
In a data set with size n, pH% of the data is distributed as 
Poisson with high mean value (μH), pM% of the data is 
distributed as Poisson with moderate mean value (μM) and 
pL% of the data distributed as Poisson with low mean (μL). 
The model specification is as follows:

		  yj ~ Po(μj)

	 μj = exp , j = H, M & L

	 Similar scenario is considered for the negative 
binomial distribution.

Scenario B 
Let yi be the number of accidents at the ith intersection in a 
day, and let yi is distributed as Poisson with mean μ. Since 
there are 24 h in a day, we categorize these hours into three 
groups, similarly as described in Scenario A. The difference 
here is the Poisson mean of the daily accident count is 
constructed by three categories of the hours; hence the 
incorporation is through the mean value as shown below,

		  yj ~ Po(μj)

	 μi = pH μH + pM μM + pL μL

	 μj = exp , j = H, M & L

where pH is the proportion (weightage) for Poisson with 
high mean value; pM is the proportion (weightage) for 
Poisson with moderate mean value; pL is the proportion 
(weightage) for Poisson with low mean value; Xj is the 
vector of explanatory variables for the jth group; βj is the 
vector of regression coefficients for the jth group. 
	 The same scenario is also considered for the negative 
binomial distribution.

THE SIMULATION STUDY

A simulation is the process of imitating the real process or 
subject on the study (Mahdavi & Mahdavi 2014). Based 

on the two accident scenarios described previously, we 
perform a simulation study to investigate further the 
existence of extra zeros in mixed Poisson data. The steps 
of the simulation study are as follows:
	 Generate y, the number of accidents based on 
two scenarios discussed in the previous section. Two 
explanatory variables considered which are minor (X1) 
and major traffic flow (X2); generated from the uniform 
distribution: 

	 X1 ~ Unif (100, 500)

	 X2 ~ Unif (500, 1000)
	
	 Four different sample sizes are considered: 30, 100, 
200 ans 500. Six possible combinations are considered for 
the proportion values (pH, pM,, pL): (0.1, 0.3, 0.6), (0.1, 0.6, 
0.3), (0.3, 0.1, 0.6), (0.3,0.6,0.1), (0.6, 0.1, 0.3) and (0.6, 
0.3, 0.1). 
	 The regression coefficients βj:βH = (–2, 0.5,  0.2), βM 
= (–2, 0.5, 0.2), βL = (–2, 0.5, 0.2). 
	 The number of data sets generated for the simulation 
based on mixed Poisson data is 2 scenarios × 4 sample 
sizes × 6 combinations = 48 sets of data. Fit the regression 
models based on the Poisson, negative binomial (NB), 
zero-inflated Poisson (ZIP), zero-inflated negative binomial 
(ZINB), Hurdle Poisson (HP) and Hurdle negative binomial 
(HNB) to each data set generated in (1).
	 For each model fitted, the Akaike Information Criterion 
(AIC) and the log likelihood values (LL) are recorded. The 
best models (whether it is a zero based model or not) is 
determined by these criterion values. Steps (1) - (3) are 
repeated for 100 times. Compute the average value for AIC 
and LL values for each fitted model. Repeat the simulation 
for the negative binomial based data. Next, we present 
the details on the models based on the six distributions 
considered in the simulation study.

THE GENERALIZED LINEAR MODELS

As mentioned previously, the generalized linear models 
based on Poisson and negative binomial distributions are 
commonly used in traffic accident modelling. Here we 
briefly explain the specification of six models fitted to the 
data set along with model validation criterions considered 
in the study.

Poisson Model:
Let yi be the numbers of accidents distributed as Poisson 
distribution with mean µi. The probability density function 
of yi, can be expressed as:

	 P(Yi = yi) =  yi = 0, 1, 2, 3 …

	 To specify the Poisson regression model, µi is 
expressed as a function of the explanatory variables 
through a log link function, as shown next:
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	 μi = exp(X´B)
 		   			    	  
Negative Binomial Model: 
The most common parametric model for over dispersion 
is negative binomial model, which is generalization of the 
Poisson regression model that allows differences between 
the variance and the mean. It assumes that the mean µi of 
Yi is determined not only by Xi but also by a heterogeneous 
component of ɛi that is unrelated to Xi. It can be expressed 
as follows:

	  = exp(X´β + εi) = exp(X´β)exp(εi)
			    				     

where exp(εi) ~ Gamma (α–1, α–1). As a result, the density 
function of Yi is:

	
		   			    

	 The negative binomial distribution is derived from 
a gamma mixture of Poisson random variables with a 
conditional mean and variance of E(yi|xi) = μi = exiβ and 
V ar (yi|xi) = μi + α , respectively. Parameter α caters 
for the over dispersion part in the data. When α = 0, the 
model reduces to the Poisson regression model. Therefore, 
the negative binomial model has greater flexibility in 
modeling the relationship between the expected value and 
the variance of Yi.

Hurdle Model:
In addition to overdispersion, many empirical count data 
sets exhibit more zero observations than would be allowed 
for by the Poisson model. One model class capable of 
capturing both properties is the Hurdle model. The Hurdle 
model combines a count data model fcount(y; x, β) that is 
left truncated at y =1 and a zero Hurdle model fcount(y; z, 
γ) right censored at y =1:

	 fcount(y; x, z, β, γ) = 

(7)

	 The model parameters β, γ, and potentially one or 
two additional dispersion parameters θ (if either fcount or 
fzero or both are negative binomial densities) are estimated 
by maximum likelihood, where the specification of 
the likelihood has the advantage that the count and the 
Hurdle component can be maximized separately. The 
corresponding mean regression relationship is given by:

	 log(μi) =	xiβ + log(1 – fzero(0; z, γ)) – 

		  log(1 – fcount (0; xi, β))
 		   

Zero-Inflated Model:
Zero-inflated models are another option that capable of 
dealing with excess zero counts. They are two component 
mixture models combining a point mass at zero with a 
count distribution such as Poisson and Negative Binomial. 
Zeros may come from both the point mass and from the 
count component. Let f(y) be the count distribution and be 
the proportion of structural zeros. The probability function 
of the zero-inflated distribution is given as:

	 P(y) = 
							        

Zero-inflated Poisson (ZIP) distribution is defined as:

	 P(y) = 
							        

	 Zero-inflated negative binomial (ZINB) distribution is 
defined as:

	 P(y) = 
					      

	 In terms of finding the best-fitted model to the 
simulated data sets, we use two common criterions for 
model diagnostic and validation: The Akaike Information 
Criteria (AIC) and log likelihood values.

RESULTS AND DISCUSSION

In this section, we discuss the main findings from the 
simulation study conducted. Through the obtained results, 
we wish to identify the combinations of proportion and 
the Poisson mean values in which the zero based model 
appear to be the best fit. When the zero altered model is 
the best fit to these combinations of mixed Poisson data, 
it illustrates the potential of alarming situation; in which a 
zero altered model is wrongly fitted to a data set generated 
based on a mixed Poisson distribution. Hence, it is essential 
to consider the possibility of the mixture of discrete 
distributions when dealing with extra zeros in count data.
The first simulation result is the accident count data yi that 
follows Poisson distribution; based on the specification as 
explained in Scenario A, in which the are three Poisson 
distributions in the data set with certain proportion values 
given as pH, pM and pL. Table 1 displays the results for the 
first combination of the proportion values: (0.6, 0.3, 0.1). 
It is observed that when the sample size is 30, the best-
fitted model is Poisson regression model since it has the 
lowest value of AIC= 103.05 and Log likelihood= -46.52 
compared to the other models. When the sample size 
increases to 100 and 200, the best-fitted model is negative 
binomial regression. It shows that over dispersion exists in 
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the dataset when the sample size increases. For the largest 
sample size considered (n=500,) the best-fitted model is 
zero-inflated Poisson. Since 60% of the sample in this data 
set distributed as Poisson with high mean; it is expected 
that the existence of extra zeros is not apparent in small size 
data sets. As the sample size gets to 500, then only we can 
observe that the extra zeros do exist as the best model is 
shifted to the zero altered model, in this case the ZIP model.

that the zero augmented models are best fitted to the data 
for the corresponding combination of the proportion 
values. Based on this figure, the proportion combinations 
that consistently show the presence of extra zeros in the 
data set event though the sample size is small (n=30) is 
(0.1, 0.3, 0.6). As predicted, when most of the data (in this 
case, 60%) come from a Poisson distribution with low 
mean, the existence of extra zeros is apparent although the 
sample size is only 30. The second possible combination 
is (0.3, 0.1, 0.6) in which the zero augmented models 
appear to be the best fit here starting at n=100. As for 
other possible combinations, when the sample size gets 
larger, the presence of extra zeros is detected since the zero 
augmented models appear to be the best fit model for any 
combinations when n=500. 
	 Figure 2 summarizes the findings for simulation A 
for the negative binomial distribution. The results are 
not strikingly different from Poisson based data. The two 
possible combinations of the proportions values are the 
sane with Figure 1, that 60% of the data come from a 
Poisson distribution with low mean. A slight difference 
is observed in which all combinations start to tend to the 
zero based models when the sample size is 200.
	 The next two figures (Figures 3 & 4) summarize results 
from Scenario B simulation study for both Poisson and 
negative binomial distributions. Recall that in Scenario B, 
the proportion values represent the hours in a day and are 
induced through the mean value of the count distribution. 

TABLE 1. Results of Simulation A for data based on Poisson 
distribution with the combination of proportion 60% high, 

30% moderate and 10% low

Size Model AIC Loglik
n=30

 
PM*
NBM

HP
ZIP

HNB
ZNB

103.0459
105.0476
105.9387
105.589
107.9389
107.581

-46.5229
-48.5238
-46.96936
-46.7945
-46.9694
-48.7899

n=100
 

PM
NBM*

HP
ZIP

HNB
ZNB

254.2411
253.2457
255.3513
255.631
257.3515
257.6315

-120.6206
-120.0029
-121.6756
-121.8155
-121.6757
-121.8157

n=200
 

PM
NBM*

HP
ZIP

HNB
ZNB

589.846
588.8621
592.261
592.5486
594.2634
594.5489

-291.923
-289.9311
-290.1305
-290.2743
-290.1317
-290.2745

n=500
 

PM
NBM

HP
ZIP*
HNB
ZNB

1440.452
1442.48
1441.701
1437.854
1443.702
1439.855

-717.2258
-717.2402
-714.8506
-712.9269
-714.8508
-712.9273

TABLE 2. Results for simulation A for data based on Poisson 
distribution with the combination of proportions (10% high, 

30% medium and 60% low)

Size Model AIC Loglik

n=30
 

PM
NBM

HP
ZIP*
HNB
ZNB

65.85108
67.8522
69.4536
64.8993
71.4538
71.1755

-29.9255
-29.9261
-28.72682
-28.4497
-28.72688
-28.5878

n=100
 

PM
NBM

HP
ZIP*
HNB
ZNB

200.2008
202.205
200.7037
195.5247
202.7043
197.5215

-97.1004
-97.1025
-94.3519
-90.7624
-94.3522
-91.7607

n=200
 

PM
NBM

HP
ZIP*
HNB
ZNB

312.5165
314.528
306.9555
303.0771
308.9563
315.0746

-153.2583
-153.264
-147.4777
-145.5386
-147.4781
-150.5373

n=500
 

PM
NBM

HP
ZIP*
HNB
ZNB

846.6711
848.6917
813.4631
808.2555
815.4636
840.2559

-420.3355
-420.3458
-400.7015
-400.0077
-400.7318
-413.1279

	 Next, we look at the exact opposite combinations of 
the one found in Table 1, in which the combination is (0.1, 
0.3, 0.6). This means that 60% of the data comes from 
Poisson distribution with low mean, that contributes many 
zeros in the data set. By observing Table 2, we can see a 
different pattern compared to the one in Table 1. In Table 
2, the best fitted models is always the zero augmented 
model, means that the extra zeros do exist in the data sets 
even though for the smallest size, n=30. Recall that the true 
distribution for these data sets is actually a mixed Poisson 
distributions, this signify the potential danger in which 
researchers might fit a zero altered model to the data set 
with extra zeros that actually not distributed as one.
	 There are four more possible combinations of 
proportions of the Poisson mean values that are not 
displayed in this paper due to the space limitation. Figure 1 
summarizes this result for simulation based on scenario A 
for Poisson generated data sets. Red shaded cells signify 
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Sample size
Proportions of NB mean

(High, Moderate, Low) 30 100 200 500

(0.6, 0.3, 0.1)      
(0.6, 0.1, 0.3)        
(0.3, 0.6, 0.1)      
(0.3, 0.1, 0.6)        
(0.1, 0.6, 0.3)      
(0.1, 0.3, 0.6)        
FIGURE 2. Summary of the results for simulation A (data based on the negative binomial distribution)

Sample size
Proportions of Po mean 

(High, Moderate, Low) 30 100 200 500

(0.6, 0.3, 0.1)  

(0.6, 0.1, 0.3)    

(0.3, 0.6, 0.1)        

(0.3, 0.1, 0.6)      

(0.1, 0.6, 0.3)        

(0.1, 0.3, 0.6)        

FIGURE 3. Summary of the results for simulation B (data based on Poisson distribution)

Sample size
Proportions of Po mean 

(High, Moderate, Low) 30 100 200 500

(0.6, 0.3, 0.1)  

(0.6, 0.1, 0.3)    

(0.3, 0.6, 0.1)    

(0.3, 0.1, 0.6)      

(0.1, 0.6, 0.3)    

(0.1, 0.3, 0.6)        

FIGURE 1. Summary of the results for simulation A (data based on Poisson distribution)

By inspecting Figure 3, the combinations that contribute to 
the presence of extra zeros in the data set are the ones with 
pM=0.6. The moderate mean value represents the mean of 
the accident counts occurred in between peaks hour. This is 
realistic and consistent with most real-life data, since most 
hours in a day are in the between peaks periods. Meanwhile 
for the negative binomial based data, the combinations 
identified are the ones with pH=0.1, which means that the 
negative binomial distribution with high mean value has 
the lowest weightage here. 

ILLUSTRATION

For an illustration purpose, we consider fitting the models 
in the simulation study to a real data sourced from Bruin 
(2006). The data set consists of 250 observations on visitors 
to a fishing park with the following variables recorded: 
fishing status, camping status, number of child in the group 
and the number of fish caught. As can be seen in Figure 
5, the data has a large zero count, hence zero-augmented 
models may be suitable options here. 
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Sample size
Proportions of NB mean 

(High, Moderate, Low) 30 100 200 500

(0.6, 0.3, 0.1)  

(0.6, 0.1, 0.3)    

(0.3, 0.6, 0.1)        

(0.3, 0.1, 0.6)      

(0.1, 0.6, 0.3)        

(0.1, 0.3, 0.6)        

FIGURE 4. Summary of the results for simulation A (data based on the negative binomial distribution)

FIGURE 5. Histogram of the fish data

	 We also want to consider the mixture of discrete 
distributions as discussed extensively in the simulation 
study. We consider zero-inflated Poisson and zero inflated 
negative binomial for zero adjusted models. Note that the 
hurdle model is not considered here as it is unrealistic to 
claim that the zeros only come from one source. To consider 
the mixture distributions, we partitioned the data into four 
sets based on fishing status and camping status variables, as 
given in Table 3. We can see that these sets are analogous to 
the different periods of time (on peak, off peak and between 
peak) as discussed in traffic accident scenario.
	 Figure 6 exhibits four histograms correspond to the 
four sets of data as given in Table 3. We can see that 

Sets 1 and 2 have higher count of zeros, around 50 - 60; 
compared to Sets 3 and 4 which the frequency of zero 
count is around 20 - 30. This shows that there are two 
distinct groups based on the fishing status, in which the 
visitors who do not fish contribute to the extra zeros in 
Sets 1 and 2. If we compare the dispersion between these 
four data sets, Set 2 is the most overdispersed, with the 
highest number of fish caught, around 150. To consider 
the mixture of discrete distribution, which is four different 
Poisson distributions and four different negative binomial 
distributions. We fit both Poisson and negative binomial 
distributions individually to these four data sets. 

TABLE 3. The four partitions of the fish data

Set Fishing status (1=Yes, 0=No) Camping status (1=Yes, 0=No) Sample size
1
2
3
4

0
0
1
1

0
1
0
1

72
31
104
43
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	 Table 4 displays the AIC values for the fitted models. 
Since the data is overdispersed, the mixture of four Poisson 
model recorded the highest value of AIC. When we fit the 
ZIP model, the AIC value drops by 708.2, indicates that 
the ZIP is a better fit to the data compared to the mixture 
four Poisson. Although ZIP does cater the extra zeros part, 
the data is still overdispersed; hence when we consider 
the mixture of four negative binomial and ZINB models, 
it is apparent that the value of AIC dropped significantly. 
Furthermore, between the two negative binomial based 

models, the mixture of four negative binomial distributions 
fits better to the data set compared to the ZINB model. This 
concludes the importance on considering the mixture of 
several discrete distributions to count data with extra zeros.

CONCLUSION

This paper aimed to explain the existence of extra zeros 
commonly observed in accident count data through the 
mixed discrete distributions. Most research in traffic 

FIGURE 6. Histogram of the four sets of fish data

TABLE 4. Comparison on the AIC values for the fitted models

Fitted model AIC

Mixture of four Poisson distributions
Zero-inflated Poisson
Mixture of four negative binomial distributions
Zero-inflated negative binomial

2966.239
2258.046
918.735
934.879
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accident literature is too focusing on the zero-augmented 
models, in which could not explain the true zero state 
realistically. Hence, it is very essential to explore the 
possibility of other potential models that can explain 
the presence of extra zeros in the count data in a more 
realistic manner.
	 To achieve this aim, a simulation study is conducted 
based on two possible scenarios for Poisson and negative 
binomial distributions. The scenarios consider three 
Poisson distributions with different mean values. Each 
of the distribution’s contribution is reflected through 
the proportion values either as a percentage in the 
data sample size or weightage in the distribution mean 
value. By fitting Poisson, negative binomial and four 
zero augmented models (ZIP, ZINB, HP and HNB), we 
identified the combinations of proportion and mean 
values that resulting in existence of extra zeros in the 
data set. Consistent results are obtained in which the 
higher contribution from Poisson with low mean values 
(or negative binomial), the more apparent extra zeros 
count observed. The findings from this study verify the 
claim to that the mixture of discrete distributions can 
have extra zeros in the data sets. A reminder is launched 
to the researchers especially those in accident modelling 
analysis, to consider the mixed discrete distributions as 
possible alternative distribution when dealing with the 
extra zeros. We include an illustration using a real data set 
to describe the capability of mixed discrete distribution 
dealing on count data with extra zeros.
	 We conclude this paper with several suggestions 
for directions in future research. Since the mixed 
discrete distribution has been identified as an alternative 
distribution for extra zeros count data, the next step is 
to develop the generalized linear model based on these 
distributions. Bayesian framework can be considered in 
the model development since there is more parameters 
need to be estimated. With the advent in technology, 
aligned with popularity of data science; a number of 
unsupervised learning algorithms can also be used for the 
estimation procedure. The next suggestion is to enhance 
the results of the simulation study conducted. In this 
study, the proportion and the regression coefficients are 
fixed at certain values. A more thorough result can be 
obtained if we let these parameter values to be random 
in the next simulation study.
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