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Discrete Hopfield Neural Network in Restricted Maximum 
k-Satisfiability Logic Programming

(Rangkaian Neural Hopfield Diskret dalam Pengaturcaraan Logik Maksimum k-Kepuasan Terhad)

MOHD SHAREDUWAN MOHD  KASIHMUDDIN*, MOHD ASYRAF MANSOR & SARATHA SATHASIVAM

ABSTRACT

Maximum k-Satisfiability (MAX-kSAT) consists of the most consistent interpretation that generate the maximum number 
of satisfied clauses. MAX-kSAT is an important logic representation in logic programming since not all combinatorial 
problem is satisfiable in nature. This paper presents Hopfield Neural Network based on MAX-kSAT logical rule. Learning 
of Hopfield Neural Network will be integrated with Wan Abdullah method and Sathasivam relaxation method to obtain 
the correct final state of the neurons. The computer simulation shows that MAX-kSAT can be embedded optimally in 
Hopfield Neural Network.
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ABSTRAK

Maksimum k-Kepuasan (MAX-kSAT) terdiri daripada penyelesaian yang paling tekal untuk menghasilkan bilangan klausa 
yang betul secara maksimum. MAX-kSAT merupakan perwakilan logik yang penting dalam pengaturcaraan logik kerana 
tidak semua masalah kombinatori boleh dipuaskan. Kertas ini membentangkan Rangkaian Neural  Hopfield berdasarkan 
peraturan logik MAX-kSAT. Pembelajaran Rangkaian Neural Hopfield akan diintegrasikan dengan kaedah Wan Abdullah 
dan kaedah rehat Sathasivam untuk mendapatkan tahap akhir neuron yang betul. Simulasi komputer menunjukkan 
bahawa MAX-kSAT boleh diintegrasi secara optimum dalam Rangkaian Neural  Hopfield.

Kata kunci: Kaedah Wan Abdullah; maksimum k-Kepuasan; Rangkaian Neural Hopfield

INTRODUCTION

Recently, Maximum k-Satisfiability (MAX-kSAT) problem 
have drawn attention by scholars and produced a prolific 
amount of research in artificial intelligence (Pipatsrisawat 
et al. 2008; Raman et al. 1998). Basically, MAX-kSAT is 
the notable counterpart of the Boolean satisfiability (SAT) 
optimization problem, represented in Conjunctive Normal 
Form (CNF) form (Layeb et al. 2010). In theory, MAX-
kSAT problem can be defined as the maximum number of 
satisfied clauses achieved by any optimum interpretation 
(Borchers & Furman 1998; Madsen & Rossmanith 2004). 
Berg and Järvisalo (2015) proposed the implementation 
of MAX-kSAT incorporated with the data mining and 
constrained clustering. The recent work on MAX-kSAT 
by Bouhmala (2016) emphasized on the neighbourhood 
search as solver for MAX-kSAT problem. Nevertheless, in 
this research, MAX-kSAT will be embedded as a logical 
rule in Hopfield Neural Network. 
 The actual concept of contemporary artificial neural 
network inspired by the biological nervous system to 
abstract the computations employed by the human brain 
(Rojas 1996). Among a vast neural network, one of the 
well-known network implemented for optimization is 
the Hopfield Neural Network (Hopfield & Tank 1985). 
Hopfield Neural Networks have been attracted many 
momentous contributions to various applications, such 

as combinatorial optimization, pattern recognition, 
scheduling and data mining (Kumar & Singh 1996; 
Sulehria & Zhang 2007). The momentous breakthrough 
is the integration of neuro symbolic which combine 
the logic programming and Hopfield Neural Network. 
Kowalski (1979) introduced the main concept of logic 
as a programming language to represent and interpret a 
problem. Thus, the logic programming can be interpreted 
as a problem in combinatorial optimization standpoint. 
Pinkas (1991) expanded the idea of logic program by 
integrating the competent propositional knowledge or 
logical mapping system via symmetric connectionist 
network. Hence, the proposed symmetric connectionist 
network (SCN) has attracted researchers to revive many 
domains of artificial neural network such as Hopfield 
Neural Network, Boltzmann Machine, Harmony Theory 
and Mean Field Theory. Pursuing that, Wan Abdullah 
(1992) proposed a method to compute the synaptic 
weight of the network correspond to the propositional 
logic entrenched to the system. Hence, the synaptic 
weight computing method proposed by Wan Abdullah 
is still relevant especially when dealing with recurrent 
neural network. Following that, Hölldobler et al. (1999) 
proved that the logic program can work effectively with 
recurrent neural network. Sathasivam (2008) deployed 
the Wan Abdullah method in order to compute the 
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synaptic weights for the Horn logic programming in 
Hopfield Neural Network. In this work, the retrieved 
neuron states are computed by using Lyapunov energy 
function. Furthermore, Sathasivam (2010) upgraded the 
Horn logic programming in Hopfield Neural Network 
by incorporating the effective relaxation method in 
generating the optimum final neuron states. Sathasivam 
(2011) further developed the stochastic method for 
logic programming in Hopfield Neural Network. This 
stochastic approach has reduced the neuron oscillations 
during retrieval phase deployed by Hopfield Neural 
Network. Hamadneh et al. (2012) presented the logic 
programming in Radial basis function neural network in 
single operator logic. Inevitably, the Radial basis function 
worked well with logic programming. Consequently, 
Velavan et al. (2016) portrays the flexibility of logic 
programming in HNN with Mean Field Theory. In addition, 
Mansor and Sathasivam (2016) introduced the application 
of activation function in Horn logical rules with Hopfield 
Neural Network. Kasihmuddin et al. (2017) has fruitfully 
implemented the k-SAT logical rule in Hopfield neural 
network. The proposed non-horn logical rules bind very 
well with the HNN. In another development, Alzaeemi et 
al. (2017) has successfully applied logic programming in 
Kernel Hopfield Neural Network (KHNN). Thus, KHNN is 
an existing method in MAX-kSAT logic programming. In 
term of MAX-kSAT, there is no recent effort to combine 
the advantages of insatisfiable logic programming with 
Hopfield Neural Network. 
 In this paper, we will combine the benefits of the 
Hopfield Neural Network, logic programming, MAX-
kSAT, Wan Abdullah method and Relaxation method. 
The proposed hybrid model will be developed based on 
MAX-2SAT and MAX-3SAT clauses. Hence, the main focus 
of this paper was to analyze the effectiveness of Hopfield 
Neural Network based on the proposed MAX-kSAT logical 
rule. Thus, the effectiveness of the proposed model in 
doing MAX-kSAT logic programming, HNN-MAXkSAT 
will be compared with Kernel Hopfield network, KHNN-
MAXkSAT. 

RESTRICTED MAXIMUM K-SATISFIABILITY

Restricted Maximum k-Satisfiability problem (MAX-
kSAT) is a vital generalization of Satisfiability problem. 
Given a Boolean formula P in conjunctive normal form 
(CNF) with n clauses containing variable each and positive 
integer g where g ≤ n. MAX-kSAT can be defined implicitly 
as a pair (λ, θ) where λ is the set of all possible solution 
{1, –1}n and θ is a mapping of λ → T which denotes the 
score of the assignments (Layeb et al. 2010). T is scored 
based on true clauses (Satisfied clause). Therefore, 
MAX-kSAT problem consists of defining the best bipolar/
binary assignments to the k variables per clause in P that 
simultaneously satisfies at least g of the n clauses (Madsen 
& Rossmanith 2004). 
 In other words, the task is to determine the 
‘optimized’ assignment that can satisfy the maximum 

number of clauses containing k variables. Basically, there 
are 2n potential solutions to this problem. There are many 
variances of the MAX-kSAT such as weighted MAXSAT 
(Borchers & Furman 1998) and Partial MAX-kSAT (Menaï 
& Batouche 2005). Hence, MAX-kSAT is one of the 
constrained optimization problem that can be include in 
maximization problem. In our case, we considered k = 2 
and k = 3. Consider the following MAX-2SAT formula:

 P = (x ˅ y) ˄ (x ˅¬ y) ˄ (¬ x ˅ y)˄(¬ x ˅¬ y) (1)

 Equation (1) comprise of variables x and y. P is 
unsatisfiable since there is no specific inteerpretation that 
make constraint P become true. By assigning x = 1 and y 
= 1, P will obtain 3 out of 4 satisfied clauses. According 
to several studies (Liu & de Melo 2017; Santra et al. 2014; 
Yannakakis 1994), any of MAX-kSAT formula that has 0.7 
≤ RSC < 1 is considered similar to one another. Note that 
RSC is given as the ratio of satisfied clauses in MAX-kSAT 
logic. This studies can only be applied to the respective 
counterpart of MAX-2SAT and MAX-3SAT. 

LOGIC PROGRAMMING IN DISCRETE 
HOPFIELD NEURAL NETWORK

The discrete Hopfield Neural Network (HNN) is a simple 
and powerful method to find high quality solution to hard 
optimization problem. HNN is an auto associative model 
and systematically store patterns as a content addressable 
memory (CAM) (Muezzinoglu et al. 2003). Theoretically, 
HNN comprises of interconnected units called neurons, 
forming a recurrent network (Sathasivam & Fen 2013). 
The network comprises of N recognized neurons, each 
is described by an Ising spin variable (Hopfield 1982). 
General updating rule in HNN is given as follows:

  (2)

where Wij is the synaptic weight from unit j to I; Sj is the 
state of unit j ; and ψi is the pre defined threshold of unit i. 
The connection in the HNN has no connection with itself, Wjj 
= Wii = 0 and connections are symmetrical or bidirectional 
(Sathasivam 2011). Neurons in HNN are bipolar. Si ∈{1, –1} 
in nature. In terms of MAX-kSAT representation, each 
variable in MAX-kSAT formula will be represented in 
terms of N neurons. The synaptic weight will represent 
the connection between the variable and the clauses 
in MAX-kSAT formula. The connection model can be 
generalized to embrace higher order connection. This 
modifies the field to:

 
 hi = … +   (3)
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The updating rule maintains as follows:

 Si (t + 1) = sgn[hi, (t)] (4)

where hi is the local field of the network. The final state of 
the neurons will be examined by using Lyapunov energy 
function which is given as follows:

 HP = …. – ,   k = 2 (5)

 
 HP = … – 

  ,    k = 3 (6)

 Worth mentioning that, the updating rule in (4) 
guarantees the energy will decrease monotonically with 
the network. In this paper, the learning MAX-kSAT in 
HNN can be abbreviated as HNN-MAXkSAT. Hence k = 
2 and k = 3 will be abbreviated as HNN-MAX2SAT and 
HNN-MAX3SAT, respectively. Equations (5) – (6) are vital 
to establish the degree of convergence of the neurons 
in HNN (Ioneschu et al. 2010; Mathias & Rech 2012). 
Thus, the energy value is vital to separate local minimum 
and global minimum solution. Global minimum energy 
supposed to be  can be pre-calculated because the total 
magnitude of the energy that corresponds to MAX-kSAT 
clauses is always constant (Pinkas 1991; Wan Abdullah 
1993). The retrieval power of HNN always depends on 
how the synaptic weights are computed. In this paper, 
we implemented the Wan Abdullah method to obtain the 
synaptic weights for our network.

WAN ABDULLAH METHOD IN LEARNING 
MAX-kSAT CLAUSES

Wan Abdullah method is one of the earliest learning 
method that extracted synaptic weight based on logical 
inconsistencies (Wan Abdullah 1992). This can be done by 
storing truth values of the atoms and creating a minimized 
cost function when maximum clauses are satisfied. 
Consider the following MAX-2SAT and MAX-3SAT formula 
with α and φ, respectively.

  (7)

 
  (8)

 Finding inconsistencies by taking into account the 
negation of (7) and (8)

 
(9)

 
  (10)

 Hence, the cost function for (9) and (10) are as 
followed: 

  

 (11)
  

 

  
(12)

 
 Since it is impossible to find consistent interpretation 
that leads to Eα = 0 and Eφ = 0, the focus of the network 
will be shifted by finding the least value Eα and Eφ. The 
corresponding synaptic weight of HNN-MAXkSAT can 
be computed by comparing the cost function (11) and 
(12) with (5) and (6), respectively. Synaptic weights from 
HNN-MAXkSAT are summarized in Tables 1 and 2. 

NETWORK RELAXATION

The quality of the final state obtained by HNN-MAXkSAT 
can be affected by various factors such as parameter setting 
in the energy function. According to Zeng and Martinez 
(1999), one of the important factors that influence the 
quality of the final state is the frequency of the information 
transferred and received by a particular neuron. In this 
view, neuron relaxation is one of the essences of getting the 
correct final state. In detail, the neuron is updated according 
to Sathasivam Relaxation method (Sathasivam 2010):

   (13)

where R denotes the relaxation rate; and hi is the local field 
computed by HNN-MAXkSAT. The relaxation rate R will 
reflect how fast the network relaxed. R is an adjustable 
parameter and can be determined empirically. Sathasivam 
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TABLE 1. Synaptic weight for α based on Wan Abdullah method

W C1 C2 C3 C4 C5

– – 0

– – 0

– – 0

0 0 0 0

0 0 0 0

0 0 0 0 – 

TABLE 2. Synaptic weight for φ based on Wan Abdullah method

W C1 C2 C3 C4 C5 C6 C7 C8 C9

– – – – 0

– – – – 0

– – – – 0

– – – – 0

– – – – 0

– – – – 0

– – – 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 – 

0 0 0 0 0 0 0 0 – 

0 0 0 0 0 0 0 0 – 

0 0 0 0 0 0 0 0

(2010) suggested that the best value to get the optimal 
solution is when R = 2.

COMPUTER SIMULATION

The simulations for HNN-MAXkSAT and KHNN-MAXkSAT 
were executed by using Dev C++ Version 5.11 in Windows 

10, Intel Core i3, 1.7 GHz processor with 8GB RAM. In 
order to comply with conventional studies (Alzaeemi et al. 
2017; Sathasivam & Abdullah 2007) the data set employed 
in this computer simulation is simulated data set. Initially, 
the state of the neurons will be randomized by the program. 
The main objective of the program was to find the optimum 
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‘model’ has that MAX-kSAT logical representation. The 
following algorithms depicts the implementation of the 
models in the program. 
 Translate the MAX-kSAT clauses into Boolean algebra 
form (if any); Assign neuron to each variable in MAX-
kSAT formula; Initialize all the synaptic weight; Check 
inconsistency of the MAX-kSAT logic; Derive cost function 

for MAX-kSAT by assigning X = (1 + SX) and  = (1 – SX). 
The state of the neuron learned true when SX = 1 and false 
when  SX = –1; Check clauses satisfaction of the neurons 
correspond to the MAX-kSAT logic. Maximum consistent 
interpretation will be stored as content addressable memory 
(CAM); Obtain synaptic weights correspond to the MAX-
kSAT logic; Compute the expected global minimum 
energy supposed to be  by using (5) or (6); Apply 
Sathasivam Relaxation method by using (13); Compute 
the corresponding local field for all neurons by using (3). 
The local field for KHNN has some modification as shown 
in Alzaeemi et al. (2017); Find the corresponding final 
energy by using (5) or (6). Verify whether the final energy 
is a local minimum energy of global minimum energy.
 Each simulation runs 100 trials with 100 neuron 
combinations in order to reduce statistical error. According 
to Sathasivam (2010), Tol = 0.001 is chosen as an ideal 
tolerance value for Lyapunov energy since it gives us a 
better filtering mechanism to distinguish the global minima 
or local minima solution effectively.

PERFORMANCE EVALUATION METRIC

Under this section, total of four performance evaluation 
metrics will be investigated in order to analyze the 
efficiency of the HNN-MAXkSAT model. Each of the 
HNN-MAXkSAT model will be evaluated based on global 
minima ratio, ratio of satisfied clauses, fitness evaluation 
and CPU time.

GLOBAL MINIMA RATIO

Global minima ratio, Zm is defined as the ratio between 
the total global minimum energy and total number of 
runs (Sathasivam 2010). Since HNN and KHNN model will 
produce 10000 solutions per execution, finding Zm will 
be relevant in this study. Each of the computed HP of the 
neurons in HNN will be filtered by specific value Tol . If the 
HP  of the model is within the Tol, HP  will be considered 
as global minimum energy. The equation of Zm is found 
to be as follows:

 
  (14)

where t is the number of trial; c is the neuron combination; 
and  is the number of global minimum energy of the 
proposed model. According to Sathasivam and Velavan 
(2014), a particular model is considered robust if the value 
of Zm tends to 1. 

RATIO OF SATISFIED CLAUSE

Since it is impossible for MAX-kSAT logical rule to be 
satisfied, ratio of satisfied clause (RSC) of the program will 
be evaluated. The equation of RSC is as follows (Feige & 
Goemans 1995):

 
 RSC =  (15)

where NC and fMAXkSAT are the total number of clauses and 
the fitness of MAXkSAT solution, respectively, in HNN-
MAXkSAT model. The capability of the model will be 
evaluated based on increasing number of variables (number 
of neurons). 

FITNESS LANDSCAPE EVALUATION

When one of the stored pattern ξv is given to the HNN-
MAXkSAT as an initial state, the state of neurons may 
oscillate. In order for the network to function as an 
associative memory, the final states false of  the neuron N 
must be similar to the initial state. The similarity function 
of time is defined as (Imada & Araki 1998), 

 mv(t) =  (16)

 The fitness function is obtained by averaging the 
values over all the given MAX-kSAT pattern. The fitness 

  (17)

where, t0 is fixed to twice the number of neurons (2N); and 
p is based on the state of neurons. In this study, different 
number of neurons are used to test the performance of the 
network.

CPU TIME

CPU time is defined as a time acquired by a particular model 
to complete one execution. CPU time signifies the efficiency 
and the stability of the HNN models. Good HNN-MAXkSAT 
model can complete the whole execution in a shorter period 
of time. In that sense, each HNN model will be executed 
with equivalent processor to cancel off the effect of bad 
sector and memory buildup. Equation of the CPU time is 
given by Sathasivam (2010),
   
 CPU_Time = Learning_Time + Retrieval_Time (18)

RESULTS AND DISCUSSION

The performance of simulated program for HNN-MAXkSAT 
models and existing KHNN-MAXkSAT models will be 
compared in terms of global minima ratio, ratio of satisfied 
clauses, fitness energy landscape and CPU time.



1332 

TABLE 3. Global Minima Ratio (Zm) of the models

NN KHNN-MAX2SAT HNN-MAX2SAT KHNN-MAX3SAT HNN-MAX3SAT

10
20
30
40
50
60

0.9385
0.9070
0.8911
0.8742
0.8446

-

0.9720
0.9452
0.9285
0.9007
0.8994
0.8744

0.9208
0.9004
0.8829
0.8640
0.8375

-

0.9650
0.9399
0.9103
0.8835
0.8760
0.8559

 Table 3 delineates the obvious variation in the Zm 
obtained by HNN-MAX2SAT, HNN-MAX3SAT, KHNN-
MAX2SAT and KHNN-MAX3SAT. Performance of HNN-
MAXkSAT can be determined by checking the quality of the 
energy obtained from the network. Zm = 0.9720 for global 
minima ratio is defined as 9720 global minimum energy and 
280 local minimum energy. If the Zm of proposed network 
closer to one, almost all neurons reached the correct final 
state during retrieval phase. Effective relaxation method 
by Sathasivam relaxation method stabilize the neuron state 
during retrieval phase. Stable neuron’s state produced by 
HNN-MAXkSAT cause the computed energy to converge to 
global minimum energy. HNN-MAX2SAT is shown to give a 
better Zm ratio compared to HNN-MAX3SAT due to higher 
number of variable in MAX-3SAT compared to MAX-2SAT. 
As the number of neuron increased (number MAX-kSAT 
constraint increased), some of the neuron states retrieved 
might trapped at local minimum solution (suboptimal 
solution). HNN-MAXkSAT requires more computation time 
to avoid ‘inconsistencies’ of MAX-kSAT before the network 
can enter the relaxation phase. Without proper relaxation, 
neuron is shown to oscillate with their assigned states. 
The implementation of HNN-MAXkSAT has enhanced the 
quality of the solutions compared to conventional KHNN-
MAXkSAT. HNN-MAXkSAT can stabilize the state of neurons 
by squashing the collective output from the neurons. 
This cause the states of the neurons converge to global 

minimum. Conventional KHNN-MAXkSAT is not able to 
withstand the complexity of 50 neurons. Generally, HNN-
MAXkSAT is still able to produce more than 80% global 
minimum solution (correct solution).
 Figure 1 shows the RSC value for all HNN-MAXkSAT 
and KHNN-MAXkSAT models. The higher the RSC value, 
the more clauses will be satisfied in any randomized MAX-
kSAT. Effective neuron’s state during retrieval phase by 
HNN-MAXkSAT helps the network to retrieve more correct 
states. In this case, the amount of satisfied MAX-kSAT 
clauses will be maximized during states retrieval. HNN-
MAXkSAT integrated is proven to reduce the unforeseen 
changes in neuron states (spurious states) that may lead to 
false clauses compared to existing model, KHNN-MAXkSAT. 
The quality of the RSC dropped as the number of clauses 
increased since the solution of MAXkSAT might trapped 
at suboptimal solution. Suboptimal solution will produce 
neuron state that has less number of satisfied clauses. 
Despite that, HNN-MAXkSAT managed to produce most 
of the correct clauses in MAX-kSAT. However, KHNN-
MAXkSAT produced lower RSC value due to the complexity 
in Kernel Hopfield network. 
 Table 4 examines the CPU time recorded for all 
models. HNN-MAXkSAT is expected to consume more 
time compared to other studies such as Kasihmuddin and 
Sathasivam (2016) and Mansor and Sathasivam (2016). 
This is due to the fact that MAXkSAT representation will 

FIGURE 1. Comparison of ratio of satisfied clauses (RSC) for the 
HNN-MAXkSAT and KHNN-MAXkSAT
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never be fully satisfied. During the learning phase, HNN-
MAXkSAT requires time to search the most consistent 
interpretation for MAX-kSAT representation. Higher 
number of neurons will increase the search space of 
HNN-MAXkSAT. Hence, the probability of HNN-MAXkSAT 
to avoid logical inconsistencies will reduce dramatically 
(Abdul Rahman 2017). During retrieval phase, CPU 
time in HNN-MAXkSAT has a slight edge compared to 
KHNN-MAXkSAT. KHNN-MAXkSAT only able to compute 
up to 50 neurons due to the complexity of the network. 
HNN-MAXkSAT is able to reduce neuron oscillation 
and stabilize the neuron to reach the final state faster. 
Reduction in neuron oscillation reduce the computation 
time during retrieval phase. Overall, the HNN remains 
competent in minimizing the MAXkSAT inconsistencies 
and compute the global solution within the acceptable 
CPU time.
 Figure 2 depicts the fitness energy evaluation 
obtained for KHNN-MAX2SAT, HNN-MAX2SAT, KHNN-
MAX3SAT and HNN-MAX3SAT with different NN. In this 
study, the fitness energy evaluation is computed based on 
(16) and (17). According to Figure 2, the fitness energy 
for the HNN-MAX2SAT and HNN-MAX3SAT are closer to 
zero for both models. Hence, it indicates the effectiveness 
of HNN-MAXkSAT in synaptic weight computation via the 
Wan Abdullah method. Thus, the well-defined synaptic 
weight of HNN-MAXkSAT will drive the final state of 
neuron to the non-oscillatory neuron state. The flatness 

of the energy landscape in HNN-MAXkSAT will reduce the 
probability of the network to stuck at suboptimal energy 
(local minima solution). Another point to ponder is as the 
number of neurons increased, the fitness energy landscape 
will be higher due to the complexity of the network. This 
will lead to some solutions to be trapped at spurious states. 
However, the HNN-MAXkSAT is still maintain lower fitness 
of the neuron states during retrieval phase compared to 
KHNN-MAXkSAT.

CONCLUSION

The work, reported in this paper, showed solid 
performances of Hopfield Neural Network (HNN) 
in doing MAX-kSAT programming compared to the 
existing method Kernel Hopfield neural network (KHNN). 
According to the experimental results, the HNN-MAXkSAT 
outperformed the KHNN-MAXkSAT. The proposed HNN-
MAXkSAT model gives us an acceptable Zm, lower 
CPU time, higher RSC value and lower fitness energy 
evaluation. For future work, the HNN provides protractile 
platform for evaluating different variant of satisfiability 
logic such as majority satisfiability, quantified maximum 
satisfiability and weighted maximum satisfiability. 
Additionally, robust metaheuristic techniques such as 
swarm intelligence and evolutionary algorithms can be 
added to reduce the complexity of HNN-MAXkSAT model 
during learning phase.

TABLE 4. CPU time for the models

NN KHNN-MAX2SAT HNN-MAX2SAT KHNN-MAX3SAT HNN-MAX3SAT

10
20
30
40
50
60

78
332
1909
8400
25336

-

24
108
357
2880
11452
88562

92
384
2661
9235
29544

-

32
159
482
3461
13708
99350

FIGURE 2. Comparison of the fitness energy evaluation for 
HNN-MAXkSAT and KHNN-MAXkSAT
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