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Abstract

Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it

is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well

known that there is a correlation between Partial discharge (PD) and the insulation quality.

Although many works have been done on PD pattern recognition, it is usually performed in a

noise free environment. Also, works on PD pattern recognition in actual cable joint are less

likely to be found in literature. Therefore, in this work, classifications of actual cable joint

defect types from partial discharge data contaminated by noise were performed. Five cross-

linked polyethylene (XLPE) cable joints with artificially created defects were prepared based

on the defects commonly encountered on site. Three different types of input feature were

extracted from the PD pattern under artificially created noisy environment. These include

statistical features, fractal features and principal component analysis (PCA) features. These

input features were used to train the classifiers to classify each PD defect types. Classifica-

tions were performed using three different artificial intelligence classifiers, which include

Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and

Support Vector Machine (SVM). It was found that the classification accuracy decreases with

higher noise level but PCA features used in SVM and ANN showed the strongest tolerance

against noise contamination.

1. Introduction

Important power system equipment such as gas insulated switchgear, transformers and high

voltage (HV) power cables operation life span is highly dependent on the insulation quality.

They will be permanently damaged if insulation breakdown occurs. Failure in any part of the

power system will be detrimental to energy generation and transmission companies. Hence, it

is extremely important to check the insulation quality frequently. Partial discharge (PD)
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measurement is globally accepted as a useful diagnostic technique with the ability to assess

insulation material for its condition [1]. According to the IEC 60270 standard, PD is defined

as “localized electrical discharge that only partially bridges the insulation between conductors.”

[2]. PD is repetitive in nature and able to spread across the dielectric material. PD intensifies

existing insulation impairment and causes steady deterioration of insulating quality, ultimately

leading to electrical breakdown, hazard to personnel, environmental damage and costly equip-

ment failures [3]. Since PD events may lead to disastrous results with both safety and financial

consequences, detection of PD events are used as a key method in insulation system condition

monitoring [4].

PD classification is of interest because of the relationship between the PD activity and the

dielectric materials aging process. Since each defect has a unique deterioration behavior, it is

important to recognize the association between the PD patterns and the defect type in order to

determine the insulation quality. PD pattern recognition is crucial in determining substantial

risk of an imminent insulation breakdown and consequently whether the current component

requires servicing and replacement or not [5]. Many works have been performed on PD classi-

fication in various power system equipment, such as gas insulated switchgears and substations

[6, 7], power cables [8, 9] and transformers [10, 11]. Commonly used classifiers include neural

networks [7, 12], fuzzy logic [13, 14] and support vector machines [15, 16].

PD has a group of unique discriminatory attributes, which allows them to be recognized. In

order to perform PD classification, it is necessary to choose which discriminatory features to

be extracted and which feature extraction method to be used [17]. The purpose of feature

extraction is to extract meaningful input feature from the unprocessed PD data to represent

the PD pattern associated with a specific defect [18]. These extracted features are used as input

of the classifier during the training process. Feature extraction also helps to reduce the size of

raw PD data for quicker and simpler handling. PD classification requires some sort of data

reduction method, such as reducing the matrix size [19]. This is due to unprocessed PD data

which may contain thousands to millions of individual pulses are too huge to be used as input

to the classifiers as it will drastically increase the training time and cripple the performance of

the classifier [20, 21].

Most of PD classification works were performed in lab environment and under noise free

environment. However, in reality, on site PD measurement suffers from lower detection sensi-

tivity due to the interference of external noises [22]. PD measurement often faces interference

caused by radio transmissions, power electronics components, random noise from switching,

lightning, arcing, harmonics and interferences from ground connections [23]. A lot of research

work has been performed on denoising PD data. One of the methods involves setting a thresh-

old and ignoring PD data that are 10% of the maximum PD amplitude. However, it was found

to be insufficient as high threshold level might neglect real PD pulses with low magnitude and

low threshold level will include noise [24, 25]. Using the mean square error as a benchmark to

compare 28 types of denoising technique, wavelet based denoising was found to be the best

with good signal to noise ratio [26]. Numerous research works have also used wavelet trans-

form for denoising purposes, especially the Daubechies wavelet, which is capable of detecting

high frequency, fast decaying, short duration, and low amplitude signals [27, 28].

PD denoising techniques have improved over the years. However, a perfect and universal

denoising standard has yet to be achieved. Therefore, some researchers have included artificial

noise signals into PD data before evaluating the PD classification model in order to replicate

the practical scenario. For example, adding evenly distributed random number to phase and

charge of PD data [1, 29], adding white noise with zero mean and fluctuating power [23],

including random numbers with various standard deviation and zero mean [30] and merging

randomly distributed noise that are within 10 to 30% of the test data [31–37]. The effect of
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adding noise are summarized as follows; in [1], the accuracy of ANN reduces from 79% under

noise free condition to 42.2% with 10% added noise, in [36, 37], the accuracy of ANN reduces

from 100% under noise free condition to 80% with 30% random noise, in [34, 38], when 30%

noise was introduced, the accuracy of ANN reduces from 100% to between 70 and 80%

depending on the input feature used. In [31], ANN accuracy reduces from 93.7% to 83.3%.

However, artificially generated noise using software, as applied in previous works may not

represent real world scenario. Therefore, in this work, classifications of cable joint defect types

from PD measurement under noisy environment were performed. Real life noise obtained

from ground interference instead of software generated noise as commonly used in past works

was used in this work. This is a better representation of noise encountered on-site. Five cross-

linked polyethylene (XLPE) cable joints with artificially created defects were prepared. After

PD measurement was performed on each cable joint sample, different input features were

extracted from the PD pattern under artificially created noisy environment. These include sta-

tistical features, fractal features and principal component analysis (PCA) features. The input

features were used to train the classifiers to classify the PD defect types using Artificial Neural

Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector

Machine (SVM). At the end of the work, comparison between different combinations of fea-

ture extraction and classifiers was made to determine which method has the highest classifica-

tion accuracy result or highest noise tolerance.

Time series analysis is a very useful tool. The directed weighted complex network method

can be used to distinguish and characterize different dynamical regimes associated with unsta-

ble periodic orbits from time series signals [39]. For nonlinear dynamic behavior in gas—liq-

uid two-phase flow, the multivariate weighted complex network can be used [40]. On the

other hand, multivariate pseudo Wigner distribution allows uncovering local flow behavior

revealing different oil—water flow patterns [41]. Gao et al. proposed a multiscale limited pene-

trable horizontal visibility graph to analyze nonlinear time series [42] and then developed a

novel AOK-TFR based visibility graph to classify epileptic EEG signals [43].

The rest of the paper is organized as follows. Section 2 describes the test samples prepara-

tion. In section 3, the measurement setup is outlined. Section 4 elaborates on the feature

extraction methods used. The classifiers used are explained in Section 5, followed by the results

in Section 6. Lastly, the conclusion can be found at Section 7.

2. Sample Preparation

Five 11 kV XLPE cable joint with different artificial defects were prepared. The total length of

each cable sample is 3 meters with a cable joint located in the centre. The details of the defect

nature of all cable joint samples are shown in Table 1.

Insulation incision defect was prepared by creating a shallow cut at the XLPE surface using

a blade. Axial direction shift defect was prepared by inserting the cable at a shifted angle. Semi-

conductor layer tip defect was made by making numerous sharp edges at the semiconductor

Table 1. XLPE cable joint defect samples.

Sample XLPE Cable Joint Defect

C1 Insulation incision defect

C2 Axial direction shift

C3 Semiconductor layer tip

C4 Metal particle on XLPE

C5 Semiconductor layer air gap

doi:10.1371/journal.pone.0170111.t001
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tip. Metal particle on XLPE defect was prepared by spreading metal bits on the XLPE layer

while semiconductor layer air gap defect was prepared by wrapping insulation tape at the

boarder of the semiconductor layer and XLPE insulation layer. All cable defects were created

on the cable prior to the cable joints installation.

3. PD Measurement Setup

Fig 1 shows the block diagram of the PD measurement system that was used in this work. The

measurement setup comprises of a step-up transformer that serves as a high voltage source, a

coupling device, a test object, a coupling and measuring capacitor, a USB controller and a PD

detector connected to a personal computer. A personal computer (PC) was used to store the

measured PD data. A commercial PD detector MPD600 from Omicron was used in this work.

All measurements were performed at 9 kV, which is slightly less than the 11 kV rated volt-

age of the cable. This is because operating at higher applied voltage will significantly increase

the likelihood of insulation breakdown at cable joint defect, which will cause permanent dam-

age to the test sample. Each cable joint was energized to 9 kV and allowed to be idle for 1 hour

for the PD to reach a steady state before PD measurement was taken. Each PD measurement

was taken for 1 minute with a time gap of 15 seconds between every measurement. A total of

100 measurements were performed on each cable joint sample. The results are shown in term

of phase resolved partial discharge (PRPD) patterns, a 3D plot with phase, charge magnitude

and pulse count as the main axis.

4. Feature Extractions

In this work, three different feature extractions method were used to obtain relevant identifiers

from the PD data; they are statistical features, fractal features and principal component analysis

(PCA) features. These features are chosen because they are the most commonly used features

in PD classification. They are then combined together to enhance the performance of

Fig 1. Block diagram of PD measurement setup.

doi:10.1371/journal.pone.0170111.g001
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classifiers using multiple features instead of individual features. These input features were used

to train the ANN, ANFIS, and SVM to classify defect types.

4.1 Statistical Features

PD data can be characterized by two main distributions; pulse count distribution, which is the

number of PD vs. phase angle and pulse height distribution, which is the PD charge magnitude

vs. phase angle. These distributions can be further split into two separate distributions, which

are the negative and positive half cycles. Statistical features were extracted from these PD dis-

tributions, which include skewness, kurtosis, mean, variance and the Weibull parameter.

Skewness is the degree of asymmetry of the distribution with regard to the normal distribu-

tion. Positive skewness shows that the distribution is asymmetric with a bigger left side, zero

skewness shows that the distribution is symmetric and negative skewness shows that the distri-

bution is asymmetric with a larger right side [44].

Kurtosis is the degree of the sharpness of the distribution with regard to a normal distribu-

tion. Zero kurtosis shows that the distribution is a normal shape, positive kurtosis shows that

the distribution is a sharp shape and negative kurtosis shows that the distribution is flat shape

[45].

Variance is a measurement of how much a cluster of numbers is spread out. Zero variance

shows that all values in the distribution are identical. The standard deviation is acquired by cal-

culating the square root of the variance. A very detailed mathematical description of skewness

and kurtosis can be found in [46]. The mean, variance, skewness and kurtosis are calculated

using

Mean : m ¼

XN

i¼1
xif ðxiÞ

XN

i¼1
f ðxiÞ

ð1Þ

Variance : s2 ¼

XN

i¼1
ðxi � mÞ

2f ðxiÞ
XN

i¼1
f ðxiÞ

ð2Þ

Skewness : Sk ¼

XN

i¼1
ðxi � mÞ

3f ðxiÞ

s3
XN

i¼1
f ðxiÞ

ð3Þ

Kurtosis : Ku ¼

XN

i¼1
ðxi � mÞ

4f ðxiÞ

s4
XN

i¼1
f ðxiÞ

� 3 ð4Þ

where f(xi) is the function of interest, N is the size of the data and xi is discrete values of the

distribution.

Weibull analysis is a mathematical approach to characterize the pulse height analysis pat-

tern. The probability distribution of PD pulse rate, F can be expressed by the Weibull function

[20, 47] as

Fðq; a; bÞ ¼ 1 � exp �
q
a

� �b
� �

ð5Þ

where α and β represents each pulse height analysis curve and the PD pulse amplitude is repre-

sented by q. The features α+, β+, α- and β- are obtained from the negative and positive pulse
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height analysis curves [20]. The pulse height analysis pattern is then compacted using the Wei-

bull method for statistical analysis while keeping its relevant information. The values of α+,

β+, α- and β- are then used as the input to the intelligent classifiers along with variance, skew-

ness, kurtosis and mean.

4.2 Fractal Features

Fractal features are suitable for modeling complex shapes and natural phenomena where cur-

rent mathematical methods are found to be inadequate. Since PD can be treated as a natural

phenomenon that has complicated shapes and surfaces, fractal features can be used to model

it. The implementation of fractal features in PD recognition is interesting because it character-

izes the PRPD pattern directly [48].

Fractal features can also be used for pattern recognition [49]. PRPD pattern can be charac-

terized using two fractal features, fractal dimension and lacunarity, which are computed by

using box counting technique. Fractal dimension is one of the main fractal features that could

be computed from an image surface. In theory, fractal dimension is invariant to changes in

scale and has the potential to be used for measuring the coarseness of the surface. However,

fractal dimension alone is not enough to be a discriminatory feature because different surface

may have the exact same value of fractal dimension. In order to solve this problem, Mandel-

brot has introduced a new variable called lacunarity, which represents the compactness of the

fractal surface. Both fractal dimension (D) and lacunarity (Λ) are functions of the box size L.

The number of boxes N, of side L needed to cover a fractal set is governed by

NðLÞ ¼ KL� D ð6Þ

where D is the fractal dimension set and K is a constant [50]. The lacunarity Λ(L) relies on the

second order statistics of p(m,L). It can be defined after calculating M(L) and M2(L). Λ(L), M
(L) and M2(L) are calculated using [51]

^ðLÞ ¼
M2ðLÞ � ½MðLÞ�2

½MðLÞ�2
ð7Þ

MðLÞ ¼
XN

m¼1
mpðm; LÞ ð8Þ

M2ðLÞ ¼
XN

m¼1
m2pðm;LÞ ð9Þ

where m is the box number. In this work, PRPD patterns were converted into a binary image

and the software ImageJ was used to calculate the fractal dimension and lacunarity using the

box counting method [52].

4.3 Principal Component Analysis

PCA, also known as the Karhunen-Loève (K-L) method is a data reduction method that can

filter out the important factors from a big group of data [53]. It is able to transform the data

from a very high dimension to a lower dimension. This is done without compromising data

information in the reduced space, with only minimal information loss. This is achieved by pro-

jecting data at a direction with the biggest variance at a lower dimension that will maximize

the scatter of the projected samples [54]. This linear subspace is found by solving an Eigen

problem,

covðXÞM ¼ lM ð10Þ
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where cov(X) is the covariance matrix of the dataset X, M is a linear mapping created by the d
principle eigenvectors of the covariance matrix and λ are the d principal eigenvalues. The low-

dimensional data yi of the data points xi are calculated using linear mapping Y = XM. The ele-

ments of Y will produce the feature sets [17]. This covariance matrix is able to determine

which direction contains the most significant variance in the dataset, making PCA an effective

tool for feature subset selection.

The most important concern in PCA is the amount of principal components required to

obtain an accurate representation of the original data. The best number of principal compo-

nents to represent the data can be found by using a scree plot. Scree plot is a graph of the eigen-

value magnitude vs. its number. The best number is chosen at a point where the graph has a

sudden change in a slope, where the slope on its left side is much higher than the right side.

[53].

The PD data were arranged into 3 column matrix of phase, magnitude and pulse count

which is similar to the PRPD format. Two situations were considered for PCA feature extrac-

tion. In the first situation, the PD matrix was split into four distributions, negative and positive

section of the charge magnitude while the phase was divided into two 180 degrees’ quadrants.

In the second situation, the PD matrix was arranged into six distributions, negative and posi-

tive section of the charge magnitude while the phase was divided into four 90 degrees’ quad-

rants. PCA was performed on these distributions to obtain the first and second principal

components.

5. Classifiers

Three intelligent classifiers were used; they are Adaptive Neuro-Fuzzy Inference System

(ANFIS), Artificial Neural Network (ANN) and Support Vector Machine (SVM). These classi-

fiers were trained and then used to classify defect types of the cable joint samples in this work.

5.1 Artificial Neural Network (ANN)

ANN is suitable for PD classification because it is insensitive to small input changes. ANN has

the ability to continue making correct decisions even when the input presented is slightly dif-

ferent from the input used during training process. This is very important for PD classification

where the discharge patterns are usually not the same [55].

ANN consists of one layer of input, a minimum of one hidden layer and one output layer

[1, 56]. The feed forward back propagation neural network is the most commonly used learn-

ing mode in ANN [57]. It is a supervised learning network that is trained in a forward back-

ward process. In the forward process, the biases and weights are initialized into random small

values. The feature vector that belongs to its correlating sample is then used to compute the

neurons output in each layer using an activation function that can be threshold using different

functions [12].

Every layer in the ANN is completely connected to the following layer. The main purpose

of the hidden layer is to obtain PD features from different sources and send the information to

the output layer. The amount of processing elements in the input layer relies on the amount of

PD fingerprint data. The amount of processing element within the output layer is dependent

on the number of defect types to be classified [45]. For PD classification purpose, a minimum

of two input features are required to avoid divergence during training [58]. In this work, a

multilayer feed forward ANN with 15 neurons at the hidden layer and the scaled conjugate

gradient back propagation training function were used. Sigmoid function was used as the acti-

vation function at the hidden layer and output layer.
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5.2 Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS uses neural networks and fuzzy systems to find the best fuzzy parameters [59]. The

usage of neural network omits the requirement to select the fuzzy parameters manually

because it will be done by the neural network. The fuzzy system must be built using fuzzy logic

prior to the fuzzy scheme training in ANFIS. ANFIS is based on a fuzzy Sugeno model intro-

duced by Takagi, Sugeno and Kang. ANFIS is a great tool to map PD patterns to the defect

type using If-Then rules formed by the decision tree and the stipulated input output data [60].

Rule 1 : If x is C1 and y is D1; then f1 ¼ p1x þ q1y þ r1;

Rule 2 : If x is C2 and y is D2; then f2 ¼ p2x þ q2y þ r2:

The ANFIS architecture has five important layers [61]. The first layer is filled with nodes

called adaptive nodes. The outputs of this layer are known as the fuzzy membership grade of

the inputs. In the second layer, it contains constant nodes that function as a multiplier for

incoming signal. The output of this layer is called the firing strength of the rules. The third

layer contains fixed nodes, which concentrates on normalizing the second layer’s triggering

strength. In the fourth layer, the nodes are adaptive nodes. It will produce output which is the

product of the first order polynomial and the firing strength that had been normalized. The

last layer contains only one fixed node, which does a summation of all output signals from the

previous layer.

Rules fuzzification is done by allocating fuzzy membership function (MF) to each condition

in the premise part of the rules. Each input variable is normalized between zero and one in

order to increase the training efficiency [62]. Utilizing these fuzzy rules, ANFIS is used to

train, test and analyze the Sugeno-type fuzzy inference system [63]. Every rule output works as

a linear combination of input variables and a fixed value. The final output is the output

weighted mean of each rule. These weights are automatically altered using the information

acquired during the training process. For ANFIS, Matlab command “genfis2” was used to gen-

erate a Sugeno type fuzzy inference system using subtractive clustering. “Genfis2” was used

instead of “genfis1” since it is more suitable for large amount of data used in this work. The

ANFIS used has 20 “epoc” and 1 “radii,” where “epoc” is the maximum number of times before

the training process is stopped. “Radii” is a vector that specifies a cluster center range of influ-

ence in each data dimensions, assuming the data falls within a unit hyperbox.

5.3 Support Vector Machine

SVM is a machine learning algorithm that stem from statistical learning theory. This learning

machine uses a main concept of SVM, which is kernel for a variety of learning tasks. Using ker-

nel methods, SVMs can be adjusted to multiple types of tasks by using different base algorithm

and kernel functions. SVM excels in pattern recognition problems involving nonlinear, small

sample size and high dimensionality [64].

SVM is a method for searching functions from a group of known as training data. Individ-

ual group of PD pattern data can be characterized by specific input features. Therefore, each

group of data can be designated by a vector whose size and dimension relies on the number

of input features selected to characterize it. The function can be either a regression function

or a classification function. It is commonly utilized to process classification and regression

problems.

SVM is initially intended to handle linearly separable cases. Unfortunately, not all practical

problems are linearly separated. When dealing with non-linear problems, conventional SVM

as a linear classifier will not function effectively. To overcome this problem, a technique
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known as kernel was presented to deal with non-linear problems using multiple linear classi-

fier. According to the pattern recognition theory, a lower dimensional space and non-linear

inseparable model are transformed into linear separable by mapping it nonlinearly into a

higher dimensional feature space. Therefore, the usage of kernel method will avoid the curse of

dimensionality [15].

SVM algorithm was initially intended for binary classification, which means they can only

classify inputs into two classes [65]. This is because SVM uses a hyper plane to split data into

two categories. If more than two groups of classification are required, multi-level SVM is

needed [66, 67]. Multi-level SVM is a one against all classifiers, where multiple binary SVM is

performed. During multi-level SVM training, a category sample will be classified as one class

while the other residual samples as other classes. In this work, a multilevel SVM with the radial

basis function kernel was used as the classifier.

6. Results

The measurement results from this study are shown in this section. The results include the PD

patterns measured and classification accuracy results of ANN, ANFIS, and SVM using statisti-

cal, fractal and PCA features. Next, the noise tolerance of each classifier was examined.

6.1 Measured PD in PRPD format

In order to determine the classification accuracy of each feature extraction and intelligence

classifier method under noisy environment, the classifiers are trained using uncontaminated

input but tested with inputs that are contaminated with noise. Feature extractions are per-

formed on the contaminated PD data and used as the test input to each classifier method. The

noise contamination is recorded from interference from the ground during lightning events.

The recorded noisy signals are added to the noise-free PD data for duration of between 5 and

60 seconds.

Four of the PRPD patterns of the recorded noisy signal are shown in Fig 2. It can be seen

that the noise pattern occurs randomly at every phase with a maximum amplitude of 250 pC

and the number of PD activity increases as the duration of noise increases. Since it is impossi-

ble to control the amplitude of the noise contamination, different duration of the noise con-

tamination was used to examine the classification accuracy of each classifier methods under

noisy environment.

The phase resolved partial discharge (PRPD) pattern of all cable joint samples that have

been measured is shown in a 3D plot in Fig 3. Based on visual inspection on the PRPD pat-

terns, the insulation incision defect has two tall peaks at the end of both positive and negative

cycles. The axial directional shift defect has more PD activities in the positive cycle, which

accumulate at the first quadrant. It has a very sharp peak at around 80 degrees. The semicon-

ductor layer tip defect has PD activities, which extend evenly between the positive and negative

cycles. It has 5 noticeable peaks, 3 at the negative cycle and 2 at the positive cycle. The metal

particle on XLPE defect has one main PD group at each positive and negative cycles and it has

a prominent peak at 260 degrees. The semiconductor layer air gap defect has two main PD

groups; one at the positive cycle and another at the negative cycle with a peak at 230 degrees.

Two small clusters of PD with high charge magnitude but low pulse count can also be seen,

where the negatively charged PD spread out between 180 to 360 degrees while the positively

charged PDs are distributed between 0 and 180 degrees.

Although different defect types of cable joint have different PRPD patterns, classification of

different defect types in the cable joint samples can be hardly done based on visual inspection

Classification of Partial Discharge Measured under Different Levels of Noise Contamination
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Fig 2. PRPD patterns of different noise duration; (a) 15 seconds, (b) 30 seconds, (c), 45 seconds, and

(d) 60 seconds.

doi:10.1371/journal.pone.0170111.g002
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Fig 3. PRPD patterns from samples of different defects; (a) Insulation incision defect (b) axial

direction shift defect, (c), semiconductor layer tip defect (d) metal particle on XLPE defect and (e)

semiconductor layer air gap defect.

doi:10.1371/journal.pone.0170111.g003
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on these PRPD patterns alone. Therefore, feature extractions from PD data and intelligent

classifiers were used in this work to classify different defect types in the cable joint.

6.2 Feature extraction results

Using the feature extraction method of statistical features, fractal features and PCA features,

eight groups of input feature data were obtained. Statistical features are split into three groups,

the first group consist of variance, skewness, kurtosis and mean (var, skew, kur, mean), the sec-

ond group consists of Weibull parameters while the third group is the combination of the first

two groups. Fractal features were also split into three groups, which are fractal dimensions,

lacunarity and a combination of fractal dimensions and lacunarity. PCA features were split

into two groups and PCA features from 4 and 6 distributions are extracted. These input fea-

tures were used as the input for the classifiers to determine the classification accuracy of each

method. Sample input features extracted using each method are shown in Tables 2, 3 and 4.

Table 2. Extracted statistical features.

Sample C1 C2 C3 C4 C5

Mean Hn
+(φ) 41.2944 548.2333 73.8111 45.3944 35.6944

Mean Hn
-(φ) 43.3833 293.5556 107.9278 108.9667 52.8833

Stdev Hn
+(φ) 78.4387 690.5267 105.5642 83.9630 46.7474

Stdev Hn
-(φ) 69.3773 384.3038 147.7483 184.3328 81.0928

Skewness Hn
+(φ) 2.2340 0.7831 1.5270 1.7639 1.1117

Skewness Hn
-(φ) 1.4984 0.9107 1.6990 1.5827 2.0038

Kurtosis Hn
+(φ) 7.1230 1.9383 4.1013 4.7041 2.8598

Kurtosis Hn
-(φ) 3.9166 2.3737 5.2176 4.1422 6.5342

Mean Hqn
+(φ) 29.8984 60.3932 36.7744 24.8165 239.9170

Mean Hqn
-(φ) -46.9201 -70.9458 -50.7191 -33.0217 -168.3107

Stdev Hqn
+(φ) 14.8031 355.9565 60.3246 44.6759 390.1542

Stdev Hqn
-(φ) 32.0612 231.3776 72.4628 47.5718 337.4364

Skewness Hqn
+(φ) 1.3793 16.4857 5.3307 8.0583 1.5959

Skewness Hqn
-(φ) -0.7037 -25.4588 -5.8096 -6.9205 -2.4466

Kurtosis Hqn
+(φ) 8.2998 278.1250 42.6534 78.3225 3.9256

Kurtosis Hqn
-(φ) 2.5962 722.1208 76.0322 68.9398 7.5861

Weibull α+ Hqn
+(φ) 33.8424 47.5005 49.1166 45.9543 54.6889

Weibull β+ Hqn
+(φ) 2.1356 0.8096 1.0378 1.0411 0.8202

Weibull α- Hqn
-(φ) 52.2874 67.0304 58.0309 55.3513 60.2303

Weibull β- Hqn
-(φ) 1.5167 0.9212 0.9392 0.9421 0.8430

doi:10.1371/journal.pone.0170111.t002

Table 3. Extracted PCA features.

Sample C1 C2 C3 C4 C5

1st Principal component 15466.92 53812.19 28191.27 22645.52 24781.90

-10023.63 -86101.03 -18434.80 -13376.07 -36949.43

-5443.29 32288.85 -9756.46 -9269.45 12167.53

2nd Principal component 396.12 23468.59 -1368.24 -513.11 9458.52

1808.37 4266.60 -5982.90 -3987.69 2429.16

-2204.49 -27735.19 7351.14 4500.80 -11887.68

Latent 184664096 5675854466 614888988 388830821 1063725994

4143434 669109687 45853246 18211088 118340647

doi:10.1371/journal.pone.0170111.t003
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6.3 Classification results

In this work, 10-fold cross validation method was used. The data was randomly partitioned

into 10 equal sized subsamples. One subsample was used for testing and the remaining nine

subsamples were used for training. The process was repeated for a total of 10 times with each

subsample taking turns to be the test sample and the mean accuracy was calculated. The classi-

fication results of ANN, ANFIS and SVM using different feature extraction methods are

shown in Table 5.

From Table 5, SVM has the highest overall classification accuracy. ANFIS performed better

than ANN when using statistical features but is the worst when using fractal features and PCA

features. ANFIS is weak when using PCA features because ANFIS requires normalizing the

input data during the training process to improve its efficiency [63]. PCA component contains

of a different weighting; hence normalization will change the relative significance between

each components, causing higher error rate in ANFIS [68].

It can be seen that for all three classifiers, using the combination of all statistical features

and fractal features rather than splitting them results in higher classification accuracy. For

PCA features, all classifiers are able to achieve higher classification accuracy when PCA is per-

formed on 6 distributions instead of 4 distributions. Therefore, for classification accuracy test

using noisy signals, only the full set of statistical parameters (variance, skewness, kurtosis,

mean, Weibull parameters), fractal features (fractal dimension and lacunarity) and PCA fea-

tures for 6 distributions were considered.

Table 4. Extracted fractal features.

Sample C1 C2 C3 C4 C5

Fractal dimensions 1.0194 1.1832 1.2625 1.1153 1.4403

1.0216 1.2099 1.2707 1.1323 1.4284

1.0165 1.2239 1.2939 1.1385 1.4472

1.0312 1.1872 1.2455 1.0955 1.4237

0.9945 1.1593 1.2234 1.0693 1.3844

0.9807 1.1614 1.2184 1.0679 1.3809

0.9745 1.1518 1.2207 1.0687 1.3734

0.9800 1.1530 1.2161 1.0611 1.3819

0.9801 1.1496 1.2143 1.0539 1.3809

0.9793 1.1584 1.2269 1.0711 1.3822

0.9774 1.1593 1.2245 1.0652 1.3759

0.9754 1.1524 1.2124 1.0641 1.3757

Lacunarity 3.2030 2.8662 3.6734 4.3090 2.1689

3.1826 2.7053 3.6556 4.2790 2.1232

3.1259 2.6616 3.4191 4.1019 2.1006

3.1382 2.7285 3.7433 4.4175 2.1653

3.3055 2.9040 3.9493 4.7882 2.3764

3.5426 2.8755 3.9130 4.7669 2.3790

3.4176 2.8940 3.8376 4.6951 2.4244

3.5118 2.9119 3.8289 4.7892 2.4159

3.3419 2.8563 3.7805 4.5176 2.3105

3.5261 2.9234 3.9009 4.7871 2.3782

3.4471 2.8645 3.8581 4.7480 2.4381

3.4664 2.7786 3.8659 4.7270 2.4359

doi:10.1371/journal.pone.0170111.t004
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The effect of increasing feature size on the training duration for all classifiers is shown in

Fig 4. From this figure, SVM has the fastest training speed, followed by ANN and ANFIS.

SVM and ANN training speed is not directly affected by the size of the input feature and

remains relatively consistent when the feature size is increased. ANFIS, on the other hand,

experiences increased training duration when the input feature size is increased.

After the performance of ANN, ANFIS and SVM with noise-free PD data has been evalu-

ated, the classifiers were tested using features extracted from PD data that have been over-

lapped with noise contamination of different durations. The classification accuracy results of

these classifiers are shown in Table 6. From Table 6, it can be seen that the classification accu-

racy generally decreases for all classifiers and input feature combinations when more noise is

added.

The plot of classification accuracy against the duration of noise contamination added to PD

data for all classifiers is shown in Fig 5. From this figure, it can be seen that although statistical

features and fractal features suffer from significant reduction in classification accuracy, statisti-

cal features still achieve higher classification rate than fractal features for ANN and ANFIS

when the noise duration is increased. ANFIS performs slightly better with fractal features as

the input was used in noise-free PD data but its performance with the statistical features is bet-

ter than fractal features.

When each classifier was tested with noisy PD data, classifier with PCA features as the

input data performs better than with fractal features and statistical features. Although the

Table 5. Classification accuracy results using noise-free PD data.

Classifier Input type Cable joint default type Total

C1 C2 C3 C4 C5

ANN Var, skew, kur, mean 90 98 86 85 93 90.4

Weibull Parameters 96 80 73 82 91 84.4

Statistical features 95 88 90 93 100 93.2

Fractal dimensions 78 77 54 59 89 71.4

Lacunarity 80 96 90 78 91 87.0

Fractal features 88 87 88 78 100 88.2

PCA (4 distributions) 89 95 72 84 93 86.6

PCA (6 distributions) 90 91 82 88 95 89.2

ANFIS Var, skew, kur, mean 96 96 99 92 100 96.6

Weibull Parameters 92 24 90 89 92 77.4

Statistical features 96 95 99 95 100 97.0

Fractal dimensions 42 89 76 58 82 69.4

Lacunarity 47 95 90 69 96 79.4

Fractal features 73 99 86 67 100 85.0

PCA (4 distributions) 43 86 71 55 88 68.6

PCA (6 distributions) 61 86 74 66 90 75.4

SVM Var, skew, kur, mean 99 99 98 87 100 96.6

Weibull Parameters 100 57 95 0 89 68.2

Statistical features 100 99 98 97 100 98.8

Fractal dimensions 95 94 69 19 97 74.8

Lacunarity 93 100 86 78 98 91.0

Fractal features 95 99 94 75 100 92.6

PCA (4 distributions) 96 97 89 48 98 85.6

PCA (6 distributions) 98 96 93 85 100 94.4

doi:10.1371/journal.pone.0170111.t005
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classification accuracy by using PCA features is not the best for noise-free PD data for all clas-

sifiers, the classification accuracy is better than other feature extractions when being tested

with noisy data. This is due to the changes to the original PD data due to noise are minimized

during the process of transforming the PD data from a higher dimension to a lower dimen-

sion. Thus, this causes classification accuracy using PCA features and intelligent classifiers to

be less affected by different durations of noise contamination compared to statistical and frac-

tal features.

Referring to Table 6, the best classification method is PCA combined with SVM, where the

highest classification accuracy is 93.6% under 5-second noise duration and 75.6% under

60-second noise duration. Comparing with previous works in [1], the accuracy of ANN

reduces from 79% under noise free condition to 42.2% with 10% added noise while in [34, 38],

when 30% noise was introduced, the accuracy of ANN reduces from 100% to between 70 and

80%. Hence, this shows that the proposed method in this work is reasonable and has an

improvement over the previous methods used for PD classification under noisy condition.

This is due the classification accuracy reduction is smaller than the previous works when noise

contamination was added to PD signals.

Table 6. Classification accuracy results using PD data added with noise.

Classifier Input type Duration of noise contamination (s)

5 10 15 20 25 30 35 40 45 50 55 60

ANN Statistical 91.8 92.6 85.2 75.6 67.6 62.6 49.8 50.6 44.4 45.4 42.4 42.0

Fractal 62.6 60.0 44.8 40.8 36.2 34.8 30.2 28.4 30 27.4 30.8 28.0

PCA 89.0 89.0 88.0 89.2 84.2 81.4 78.2 73.2 71.4 70.2 70.4 70.4

SVM Statistical 91.6 95.2 80.4 55.8 58.2 45.8 49.4 42.8 51 43 52.2 48.2

Fractal 69.8 69.4 65.4 65.0 64.4 62.8 60.8 59.8 59.0 58.2 58.0 58.4

PCA 93.6 93.0 89.6 89.2 82.8 81.6 77.8 77.0 74.8 74.6 76.2 75.6

ANFIS Statistical 91.4 92.8 61.4 54.8 56.2 46.8 26.2 23.6 22.4 20.6 16.8 21.4

Fractal 20.6 21.6 19.0 23.2 22.4 20.4 19.6 20.8 20.0 19.8 20.4 19.8

PCA 73.4 73.8 68.0 62.0 60.0 64.4 67.4 64.4 66.4 57.6 58.2 53.0

doi:10.1371/journal.pone.0170111.t006

Fig 4. Training time vs feature size for PD classifiers.

doi:10.1371/journal.pone.0170111.g004
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Fig 5. Noise tolerance of; (a) ANN, (b) ANFIS, and (c) SVM.

doi:10.1371/journal.pone.0170111.g005
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7. Conclusions

Classifications of real cable joint defect types from partial discharge measurement under noisy

environment have been successfully performed. Feature extractions were performed on the

PD data and used as the input data for artificial intelligence classifiers to classify cable joint

defect types. From the classification accuracy results, feature extraction using principal compo-

nent analysis (PCA) features and Artificial Neural Networks (ANN) and Support Vector

Machine (SVM) classifiers show the highest classification accuracy when being tested with

noisy PD data. Adaptive Neuro-Fuzzy Inference System (ANFIS) classifier is not suitable to be

used with PCA features due to the design of the classifier which requires normalization during

training. Classification accuracy by using feature extractions of fractal features and statistical

features with the classifiers is better than using PCA features for noise-free PD data but is

worse for noisy PD data. If computational time is not an important factor, it is recommended

that the three input features (include statistical features, fractal features and principal compo-

nent analysis) are used together to complement each other. However, if only one type of classi-

fier and input feature is to be used in a highly noisy environment, PCA features and SVM or

ANN is recommended for PD classification.
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