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Background
The subject of fractional calculus (integral and derivative of any arbitrary real or com-
plex order) has acquired significant popularity and major attention from several authors 
in various science due mainly to its direct involvement in the problems of differential 
equations in mathematics, physics, engineering and others for example Baskonus and 
Bulut (2015), Yin et  al. (2015) and Bulut (2016). The fractional calculus has gained an 
interesting area in mathematical research and generalization of the (derivative and inte-
gral) operators and its useful utility to express the mathematical problems which often 
leads to problems to be solved see Yao et al. (2015), Baskonus (2016) and Kumar et al. 
(2016). Specifically, it utilized to define new classes and generalized many geometric 
properties and inequalities in complex domain. In another words, these operators are 
play an important role in geometric function theory to define new generalized sub-
classes of analytic univalent and then study their properties. By using the technique of 
convolution or Hadamard product, Sălăgean (1981) defined the differential operator Dn 
of the class of analytic functions and it is well known as Sǎlǎgean operator. Followed by 
Al-Oboudi differential operator see Al-Oboudi (2004). Several authors have used the Sǎ
lǎgean operator to define and consider the properties of certain known and new classes 
of analytic univalent functions. We refer here some of them in recent years. Najafzadeh 
(2010) investigated a new subclass of analytic univalent functions with negative and fixed 
finitely coefficient based on Sǎlǎgean and Ruscheweyh differential operators. Aouf et al. 
(2012) gave some results for certain subclasses of analytic functions based on the defi-
nition for Sǎlǎgean operator with varying arguments. El-Ashwah (2014) used Sǎlǎgean 
operator to define a new subclass of analytic functions and derived some subordination 
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results for this subclass in open unit disk. Breaz et al. (2008) investigated a new general 
integral operator for certain holomorphic functions based on the Sǎlǎgean differential 
operator and studied some properties for this integral operator on some subclasses of 
univalent function. Also, Deniz et al. (2012) defined a new general integral operator by 
considering the Hadamard product and gave new sufficient conditions for this operator 
to be univalent in U. Breaz et al. (2014) defined two general integral operators F�(z) and 
G�(z) and investigated some geometric properties for these operators on subclasses of 
analytic function in open unit disk.

In this paper, we define a generalized mixed integro-differential operator Jm(z) based 
on the concept of Breaz integral operator as well as the fractional differential operator 
and study some their geometric properties on some new subclasses in open unit disk.

Preliminaries
Let A denote the class of all functions of the form

which are analytic function in the open unit disk U = {z : |z| < 1} and usually normal-
ized by f (0) = f ′(0)− 1 = 0. Also, let S be the subclass of A consisting of functions f of 
form (1) which are univalent in U. We denote by S∗(β) and K(β), 0 ≤ β < 1, the classes 
of starlike function and convex function in U, respectively. For f ∈ A, Esa et al. (2016a) 
introduced the following differential operator T α,δ : A → A,

for some (0 < α ≤ 1),  (0 < δ ≤ 1) and n ∈ N\{0, 1}. If α = δ in (2), then we get

for more details see Esa et al. (2016b). Now, let define a new fractional differential opera-
tor Dk

�
: A → A as follows

In general, we write

where

(1)f (z) = z +

∞
∑

n=2

anz
n

(2)T α,δ f (z) := z +

∞
∑

n=2

Ŵ(δ + 1)

Ŵ(α + 1)

Ŵ(n+ α)

Ŵ(n+ δ)
anz

n (z ∈ U),

T α,δ
z f (z) = f (z) (z ∈ U)

D0
�
f (z) = f (z)

D1
�
f (z) = (1− �)T α,δ f (z)+ �z

(

T α,δ f (z)
)′
,

Dk
�
f (z) = D�

(

D
k−1

�
f (z)

)

(k ∈ N, z ∈ U).

(3)Dk
�
f (z) = z +

∞
∑

n=2

�n,k(α, δ, �)anz
n k ∈= {0, 1, 2, . . .}

�n,k(α, δ, �) =

[

Ŵ(δ + 1)

Ŵ(α + 1)

Ŵ(n+ α)

Ŵ(n+ δ)
(1+ (n− 1)�)

]k

.
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When α = δ, � = 1 and k = 1, we get Sǎlǎgean operator see Sălăgean (1981) and when 
α = δ, we have Al-Oboudi differential operator see Al-Oboudi (2004). Afterwards, we 
introduce some new subclasses of A as follows.

Let Sk(�,φ) denote the class of functions f ∈ A which satisfies the following 
condition:

for some 0 ≤ φ < 1, � ≥ 0 and k ∈ {0, 1, . . .}. Let Kk(�,φ) denote the class of functions 
f ∈ A which satisfies the following condition

for some 0 ≤ φ < 1, � ≥ 0 and k ∈ {0, 1, . . .}. It is clear that, when k = 0 in (4) and (5), 
then we have the well known function classes

Further, let N k(�,ψ) the subclass of A, consisting of the functions f, which satisfies the 
following

and let Mk(�,ψ) be subclass of A consisting of the functions f which satisfies the 
following

for some ψ > 1, � ≥ 0 and k ∈ {0, 1, . . .}. It is obvious that, when k = 0 in (6) and (7), 
then we obtain the following classes

were interested by Owa and Srivastava (2002), Dixit and Chandra (2008) and recently 
studied by Porwal (2011). Let a function f is said to be in the class KkL(ρ,ϕ), if

for some ρ, � ≥ 0 and for all z ∈ U. When k = 0 in (8), we have the function class stud-
ied in Shams and Kulkarni (2004). For fj , gj ∈ A and νj , βj be positive real numbers, 
j = {1, 2, . . . ,m}, we define the integral operator Jm(z) : Am → A by

(4)R

{

zDk+1
�

f (z)

Dk
�
f (z)

}

> φ (z ∈ U)

(5)R

{

1+
zDk+2

�
f (z)

D
k+1
�

f (z)

}

> φ (z ∈ U)

S0(�,φ) = S∗(φ) and K0(�,φ) = K(φ).

(6)R

{

1+
zDk+2

�
f (z)

D
k+1
�

f (z)

}

< ψ (z ∈ U)

(7)R

{

zDk+1
�

f (z)

Dk
�
f (z)

}

< ψ (z ∈ U)

M0(�,ψ) = M(ψ) and N 0(�,ψ) = N (ψ)

(8)R

{

1+
zDk+2

�
f (z)

D
k+1
�

f (z)

}

≥ ρ

∣

∣

∣

∣

∣

zDk+2
�

f (z)

D
k+1
�

f (z)

∣

∣

∣

∣

∣

+ ϕ (0 ≤ ϕ < 1)
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Note that, this integral operator is generalization of the integral operator recently 
defined by Stanciu and Breaz (2014). Also, the integral operator Jm(z) is generalizes the 
following operators defined and investigated by several researchers:

Remark 1 For k = 0 and f ′j = g ′j , j = {1, 2, . . . ,m}, we have integral operator defined as 
follows:

studied and considered by Frasin (2011).

Remark 2 For k = 0 and νj = 0, j = {1, 2, . . . ,m}, we have the following integral 
operator

was considered by Breaz and Breaz (2002).

Remark 3 For k = 0, and βj = 0, j = {1, 2, . . . ,m}, we have the integral operator

which studied by Breaz et al. (2009). In particular, for m = 1, ν1 = ν,β1 = 0 and g1 = g, 
we have the integral operator

which was considered by Pascu and Pescar (1990).

Remark 4 For k = 0, m = 1, ν1 = 0,β1 = β and f1 = f , we have the following operator

(9)Jm(z) =

∫ z

0

m
∏

j=1

(

Dk
�
fj(t)

t

)βj
(

D
k+1
�

gj(t)
)νj dt.

Fν,β f (z) =

∫ z

0

m
∏

j=1

(

fj(t)

t

)βj(

f ′j (t)
)νj

dt.

Im(z) =

∫ z

0

m
∏

j=1

(

fj(t)

t

)βj

dt.

Iνm(z) =

∫ z

0

m
∏

j=1

(

g ′j (t)
)νj

dt.

Iν f (z) =

∫ z

0

(

g ′(t)
)ν
dt.

(10)Iβ f (z) =

∫ z

0

(

f (t)

t

)β

dt.
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investigated by Miller et al. (1978). In particular, for β = 1, we have the Alexander’s inte-
gral operator

which was studied by Alexander (1915).

Main results
We start our first result.

Theorem 1 Let νj , βj be positive real numbers, j = {1, 2, . . . ,m}. If fj ∈ Mk(�,ψj), ψj > 1 
and gj ∈ N k(�, ηj), ηj > 1, j = {1, 2, . . . ,m}, then the integral operator Jm(z) given by (9) 
is in the class N k(�, ρ), where

Proof On successive differentiation of Jm(z) defined in (9), we obtain

and

 By a calculation, we have

The Eq. (14) is equivalent to

(11)If (z) =

∫ z

0

f (t)

t
dt.

ρ = 1+

m
∑

j=1

[βj(ψj − 1)+ νj(ηj − 1)].

(12)J′m(z) =

m
�

j=1





�

Dk
�
fj(z)

z

�βj
�

D
k+1
�

gj(z)
�νj





(13)

J
′′
m(z) =

m
�

j=1

�

βj

�

D
k
�
fj(z)

z

�βj−1�
zDk+1

�
fj(z)−D

k
�
fj(z)

z2

�

�

D
k+1

�
gj(z)

�νj

�

×

m
�

ℓ = 1

ℓ �= j





�

D
k
�
fℓ(z)

z

�βℓ

(Dk+1

�
gj(z))

νℓ



+

m
�

j=1

��

D
k
�
fj(z)

z

�βj

νj
�

D
k+1

�
gj(z)

�νj−1

×D
k+2

�
gj(z)

� m
�

ℓ = 1

ℓ �= j

�

�

D
k
�
fℓ(z)

z

�βℓ

(Dk+1

�
gj(z))

νℓ

�

.

(14)
zJ′′m(z)

J′m(z)
=

m
∑

j=1

[

βj

(

zDk+1
�

fj(z)

Dk
�
fj(z)

− 1

)

+ νj
zDk+2

�
gj(z)

D
k+1
�

gj(z)

]

.

(15)
zJ′′m(z)

J′m(z)
+ 1 =

m
∑

j=1

[

βj

(

zDk+1
�

fj(z)

Dk
�
fj(z)

− 1

)

+ νj
zDk+2

�
gj(z)

D
k+1
�

gj(z)

]

+ 1.
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By calculating the real part of both expressions in (15), we have

Since fj ∈ Mk(�, ψj),ψj > 1 and gj ∈ N k(�, ηj), ηj > 1, j = {1, 2, . . . ,m}, we have

Therefore, Jm(z) ∈ N k(�, ρ), where ρ = 1+
∑m

j=1[βj(ψj − 1)+ νj(ηj − 1)]. �

Let k = 0,m = 1 in Theorem 1, we have

Corollary 1 Let β , ν be positive real numbers. If f ∈ M(ψ),ψ > 1 and 
g ∈ N (η), η > 1, then

is in the class N (ρ), where ρ = 1+ β(ψ − 1)+ ν(η − 1).

Theorem  2 Let βj , νj be positive real numbers, j = {1, 2, . . . ,m}. We assume that 
fj , j = {1, 2, . . . ,m} are starlike functions by order 1

βj
 and that is fj ∈ Sk(�, 1

βj
) and 

gj ∈ KkL(ρj , ηj), ρj ≥ 1, 0 ≤ ηj < 1, j = {1, 2, . . . ,m}. If

then Jm(z) given by (9) is in the class Kk(�,ω) where

Proof By following same methods as in Theorem 1, we have

R

{

zJ′′m(z)

J′m(z)
+ 1

}

=

m
∑

j=1

[

βjR
zDk+1

�
fj(z)

Dk
�
fj(z)

− βj + νjR
zDk+2

�
gj(z)

D
k+1

�
gj(z)

]

+ 1,

=

m
∑

j=1

[

βjR
zDk+1

�
fj(z)

Dk
�
fj(z)

− βj + νjR

(

zDk+2

�
gj(z)

D
k+1

�
gj(z)

+ 1

)

− νj

]

+ 1.

R

{

zJ′′m(z)

J′m(z)
+ 1

}

<

m
∑

j=1

[βjψj − βj + νjηj − νj] + 1

<

m
∑

j=1

[βj(ψj − 1)+ νj(ηj − 1)] + 1.

(16)J(z) =

∫ z

0

(

f (t)

t

)β

(g ′(t))νdt

(17)
m
∑

j=1

[νj(1− ηj)+ βj] −m < 1

ω = 1+m+

m
∑

j=1

[νj(ηj − 1)− βj].

(18)

zJ′′m(z)

J′m(z)
=

m
∑

j=1

[

βj

(

zDk+1
�

fj(z)

Dk
�
fj(z)

− 1

)

+ νj
zDk+2

�
gj(z)

D
k+1
�

gj(z)

]

=

m
∑

j=1

[

βj
zDk+1

�
fj(z)

Dk
�
fj(z)

− βj + νj
zDk+2

�
gj(z)

D
k+1
�

gj(z)

]

,
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we can see that, (18) is equivalent to

then by taking the real part of (19), we have

but fj ∈ Sk(�, 1
βj
), that means R

{

D
k+1
�

fj(z)

D
k
�
fj(z)

}

> 1
βj

 and gj ∈ KkL(ρj , ηj), ρj ≥ 0 and 

0 ≤ ηj < 1,  j = {1, 2, . . . ,m}, from (20), we have

Since,   νj ρj
∣

∣

zDk+2
�

gj(z)

D
k+1
�

gj(z)

∣

∣ > 0, we have

By using the condition in (17), we have that Jm(z) ∈ Kk(�,ω), where

 �

By setting k = 0 and m = 1 in Theorem 2, we have the following result.

Corollary 2 Let β , ν be positive real numbers, We assume that f ∈ S∗( 1
β
), 

g ∈ KL(ρ, η), ρ ≥ 0 and 0 ≤ η < 1. If

then the integral operator

is in the class K(ω) where  ω = 2+ ν(η − 1)− β .

(19)
zJ′′m(z)

J′m(z)
+ 1 =

m
∑

j=1

[

βj
zDk+1

�
fj(z)

Dk
�
fj(z)

− βj + νj
zDk+2

�
gj(z)

D
k+1
�

gj(z)

]

+ 1

(20)

R

{

zJ′′m(z)

J′m(z)
+ 1

}

=

m
∑

j=1

[

βjR
zDk+1

�
fj(z)

Dk
�
fj(z)

− βj + νjR

(

zDk+2
�

gj(z)

D
k+1
�

gj(z)
+ 1

)

− νi

]

+ 1,

R

{

zJ′′m(z)

J′m(z)
+ 1

}

>

m
∑

j=1

[

1− βj + νj

(

ρi

∣

∣

∣

∣

∣

zDk+2
�

gj(z)

D
k+1
�

gj(z)

∣

∣

∣

∣

∣

+ ηj

)

− νj

]

+ 1

> 1+m−

m
∑

j=1

βj +

m
∑

j=1

νjρi

∣

∣

∣

∣

∣

zDk+2
�

gj(z)

D
k+1
�

gj(z)

∣

∣

∣

∣

∣

+

m
∑

j=1

νj(ηj − 1).

R

{

zJ′′m(z)

J′m(z)
+ 1

}

> 1+m−

m
∑

j=1

βj +

m
∑

j=1

νj(ηj − 1),

> 1+m+

m
∑

j=1

[νj(ηj − 1)− βj].

ω = 1+m+

m
∑

j=1

[νj(ηj − 1)− βj].

β + ν(1− η) < 2

J(z) =

∫ z

0

(

f (t)

t

)β

(g ′(z))νdt
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Conclusion
In geometric function theory, we defined and studied a new integro -differential opera-
tor Jm(z), with a new classes of analytic and univalent functions. This operator is gener-
alized and modified recent various fractional differential operators.
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