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Abstract—Cardiac MRI is important for the diagnosis and
assessment of various cardiovascular diseases. Automated
segmentation of the left ventricular (LV) endocardium at end-
diastole (ED) and end-systole (ES) enables automated
quantification of various clinical parameters including ejection
fraction. Neural networks have been used for general image
segmentation, usually via per-pixel categorization e.g.
“foreground” and “background”. In this paper we propose that
the generally circular LV endocardium can be parameterized
and the endocardial contour determined via neural network
regression. We designed two convolutional neural networks
(CNN), one for localization of the LV, and the other for
determining the endocardial radius. We trained the networks
against 100 datasets from the Medical Image Computing and
Computer Assisted Intervention (MICCAI) 2011 challenge, and
tested the networks against 45 datasets from the MICCAI 2009
challenge. The networks achieved 0.88 average Dice metric,
2.30 mm average perpendicular distance, and 97.9% good
contours, the latter being the highest published result to date.
These results demonstrate that CNN regression is a viable and
highly promising method for automated LV endocardial
segmentation at ED and ES phases, and is capable of generalizing
learning between highly distinct training and testing data sets.
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[. INTRODUCTION

Cardiac MRI is the current gold standard for the diagnosis
and assessment of various cardiovascular diseases [1]. A
standard cardiac MRI study usually begins with the assessment
of left ventricular (LV) structure and function from a stack of
steady state free precession (SSFP) short axis cine images
captured from the mitral valve plane through to the apex. These
images are non-isotropic, with in-plane resolutions of about
1.5 mm/pixel and slice thickness of 10 mm. The scans are
gated to cover a complete cardiac cycle, typically at =50 ms
temporal resolution which results in =20 cardiac phases [2].

Key LV parameters for the diagnosis of cardiac diseases
include ejection fraction and cardiac output. Quantification
requires the delineation of myocardial boundaries; most
crucially the endocardial wall at end-diastole (ED) and end-
systole (ES), whereby the heart is at rest and at its maximum
contraction respectively. Manual delineation of the boundaries
is time consuming and inconsistent among clinicians.
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Automated LV segmentation to facilitate delineation is
therefore desirable.

Petitiean and Dacher have performed a comprehensive
review of automated and semi-automated LV segmentation
algorithms [3]. In brief, the techniques used included pixel-
based methods (e.g. thresholding), pixel classification (e.g.
clustering), deformable models (e.g. active contours), shape
priors (e.g. PCA), and probabilistic atlases.

Neural networks for classification of data have seen
development dating back to the 1960s with a history of
alternate waxing and waning popularity. In recent years the
popularity of neural network techniques has dramatically
increased, largely due to its dominating performance in some
key image processing challenges [4]. The enabling factors
prompting this resurgence in popularity include the
introduction of convolutional neural networks (CNNs), the
availability of large quantities of training data, as well as the
advances in computational capability, particularly graphical
processing units (GPUs).

To date, CNN architectures are best known for whole
image categorization, e.g. labelling an entire image as
containing a “flower” or “car”. However, CNNs can also be
used for image segmentation. The standard approach is via per-
pixel categorization. For example, if a 100x100 image is to be
segmented into three labels: blood pool, myocardium, and
background, then the output of the CNN is a 100x100x3
matrix; a 3-element vector representing the individual label's
probability for each pixel.

Avendi et al. presented the most recent effort in applying
neural network per-pixel categorization to ED/ES LV
endocardium segmentation. They used three separate networks:
one for initial LV localization, one for segmentation at basal
and mid-LV slices, and one for segmentation at apical slices. A
separate deformable model was applied post-network to
moderate the contours [5].

In this work, we propose that the generally circular LV
endocardium can be readily parameterized into a polar radial
system. From there, LV boundary delineation was determined
via neural network regression of the radial distances as
opposed to the standard classification of each pixel. This
method reduces the dimensionality of the problem, enabling a
simpler network design while attaining good results without the
need for complicated post-processing.



[I. MATERIALS AND METHODS

A. Data

Multi-layer CNNs require large quantities of labelled data
to be adequately trained. They can require roughly 10,000 to
1,000,000 images depending on the variation within the data.
In this paper we focus on the segmentation of the LV
endocardial wall at the ED and ES cardiac phases, captured via
SSFP MRI. Contrast between the higher intensity blood pool
and lower intensity myocardium is relatively strong and
consistent, which helps in reducing the data required for
training.

Medical Image Computing and Computer Assisted
Intervention (MICCALI) is a large medical image processing-
focused conference. It often hosts public image processing
challenges as part of the conference activities. In 2009, one of
the MICCAI challenges was for LV segmentation. In this
challenge, 45 datasets were provided with manually drawn
gold standard endocardial contours at the ED and ES phases.
This matched our requirements, but with only around 900
labelled images, we felt it would be insufficient even if used
completely as a training set.

In 2011, MICCALI held another similar challenge, this time
for full 4D LV segmentation. A hundred labelled datasets were
provided, with gold standard endo- and epicardial contours at
all cardiac phases. This represented a much larger training set
of around 20,000 images. The cardiac images of both the 2009
and 2011 challenges are of a similar nature; we thus were able
to utilize the MICCAI 2011 data to train our CNN, and we then
tested it against the MICCAI 2009 data.

The MICCAI 2009 images were obtained with a 1.5T GE
Signa MRI and the following imaging parameters: image
matrix 256x256, 1.25 mm/pixel in-plane resolution, slice
spacing 8 mm, and 20 cardiac phases [6]. The MICCAI 2011
images were obtained from multiple scanners, with varying
parameters: image matrix 156x192 to 512x512, 0.7 to
2.1 mm/pixel in-plane resolution, slice spacing 7 to 10 mm,
and 18 to 35 cardiac phases [7].

B. Network Architecture

Our network operates on 2D images. To segment the
endocardial wall, we performed a two-step process: step one
localizes the (x, y) position of the LV centroid within the slice,
and step two determines the endocardial contour in the form of
96 points evenly spaced radially around the LV centroid. This
required two separate CNNs: the first for LV center point
localization (referred to as the CPL network), and the second
for delineation of the endocardial border (referred to as the EB
network).

The SSFP image acquisition is gated, and the resulting
image sequence covers a single cardiac cycle. We thus
included temporal data by calculating a 1D Fast Fourier
Transform (FFT) across the temporal dimension, and extracting
the magnitude image of the 1% harmonic, /». This FFT image
suppresses static regions, and was stacked together with the
corresponding SSFP intensity image frame, /i, to form the
input to the CPL and EB networks. To elaborate, for a
particular LV slice, there are two different intensity images,

Ivepy) and Iyes) at the ED and ES phases respectively, but only
one [ FFT image; /- is used as the input twice, once for each
phase.

To recap, for a single, stacked Iy, + /i image input, the final
output is a single (x, y) position indicating the LV centroid
(from the CPL network), and 96 values representing radial
distances from the centroid (from the EB network). We did not
determine all 96 values simultaneously. Rather, the image was
first remapped into a polar coordinate system centered at the
LV centroid, and 96 overlapping segments were fed into the
CPL network separately as detailed in the following section.

C. Data Preprocessing and Augmentation

1) LV Centroid— CPL Network

The /), and I images were first resampled to 2 mm/pixel to
provide consistency across data from different scanners, and
cropped to 84x84 pixels centered at the image midpoint. The
cropped images were normalized to a mean of 0 and standard
deviation (SD) of 1. The resulting images were fed into the
CPL network, which outputs the estimated LV center point,
Cr.

During training, we artificially augmented the data by
randomly shifting the crop window up to £35mm (simulating
translation), scaling the images up to +15%, rotating the images
up to £180°, and distorting the image mean and SD by up to
£0:15

2) Endocardial Border — EB Network

For detection of the LV boundary, the source /s and I
images were resampled to 1 mm/pixel, then cropped and
remapped to a 96 angular sector polar space centered around
Cry. Specifically, a radial coordinate map was interpolated
from the source images to form polar images of 56x96 pixels
(radius x angular sector) (Fig. 1). The cropped and remapped
images were normalized to a mean of 0 and standard deviation
(SD) of 1. The resulting images were fed into the EB network
in 96 wrapped and overlapping 56x64 sections. This means the
EB network is run 96 times to output 96 radius values for a
single image, analogous to the sliding window operation in
standard convolution.

During training, we artificially augmented the data by
randomly shifting the LV center point by +50% of the
endocardial radius, scaling the images up to +15%, and
distorting the image mean and SD by up to +0.15.

Fig. 1. (Left) Example LV at ED phase. (Right) polar remapped image:
vertical axis is endocardial radius (blood pool at top), and horizontal axis
is angular sector. Yellow dotted lines are the endocardial boundaries.



D. Network Design and Training

The network design for the CPL and EB networks are
summarized in Table [ and Table II respectively.

For the EB network, we utilized a two-resolution fine and
coarse parallel design in the CNN layers. One sub-section of
the network worked on an overall, coarse view of the image,
while the other sub-section worked on a narrow, fine view of
the image. To do this, the input polar image of 56x64 pixels in
size were cropped to a single central 56x3 strip for the fine
sub-network, whereas every other pixel along the angular
dimension was omitted to form a 56x32 down-sampled image
for the coarse sub-network.

Maxout activations with 3 maxout units are used in all
cases except the output layers. Dropout with 0.33 dropout
probability was used for regularization in the fully connected
layers. Valid padding was used for all convolutional layers in
the CPL network. We use the Adam stochastic optimization
algorithm to minimize the mean-squared error loss function.
The mini-batch size was 24 and the initial learning rate was
0.001. Training was stopped when the cross-validation loss was
manually observed to have plateaued.

The network design was implemented using the
TensorFlow r0.8 machine learning framework (Google Inc.,
California, U.S.). The network was trained and executed on a
NVIDIA GeForce GTX 980 4 GB GPU.

E. Post-processing
For each slice, the 96 endocardial radius output values were

TABLE I. CPL NETWORK DESIGN. CN[1,2,3] ARE CONVOLUTIONAL
LAYERS, FC[1,2,3] ARE FULLY CONNECTED LAYERS.
Layer In Weights Pool Out
CNI1 84x84x2  5x5x72  2x2  40x40x24
CN2 40x40x24 5x5x72 2x2 18x18x24
CN3 . 18XE8%24 5% 5%]2  742XD 7xT7%24
FC1 TxTx24  TxTx768 - 1x1x256
FC2 256 256x768 - 256
FC3 256 256x768 - 256
Out 256 256x2 - 2
TABLE I1. EB NETWORK DESIGN. CN[1,2,3] ARE CONVOLUTIONAL

LAYERS, FC[1,2,3] ARE FULLY CONNECTED LAYERS. ...-C IS THE COARSE
SUB-NETWORK, WHEREAS. . .-F IS THE FINE SUB-NETWORK. THE RESULTS
OF BOTH SUB-NETWORKS ARE CONCATENATED IN FC2.

Layer In Weights  Pool Out
CNl-c 56x32x2  3x3x18  2x2 28x16%6
CN2-c 28x16x6  3x3x18  2x2  14x8x6
CN3-c  14x8x6 3x3x18  2x2  Tx4x6
FCl-c  7x7x24  7x7x768 - 1x1x256
CNI-f 56x3x2 3x3x54 —  56x3x18
CN2-f 56x3x18  3x3x54 —  56x3x18
CN3-f 56x3x18  3x3x54 - 56x3x18
FC1-f 56x3x18 56x3x576 — 1x1x192
FC2 64+192  256x768 - 256
FC3 256 256x768 - 256
Out 256 256x%1 - 1

filtered to exclude erroneous results. We excluded points which
differed by >2 mm from their neighbors, and replaced them via
linear interpolation.

F.. Evaluation

The MICCAI 2009 dataset is divided by the challenge
organizer into three groups: 15 for training, 15 for testing
(validation), and 15 for the final contest (online). Since we
exclusively trained our CNN against the MICCAI 2011
datasets, we thus utilized all 45 MICCAI 2009 datasets for
final testing and evaluation.

Performance was assessed via the Dice metric and average
perpendicular distance (APD) between the automatically
delineated and gold standard manual contours. Additionally, a
segmentation (per slice or per subject) was classified as “good”
if the mean APD was less than 5 mm [6], corresponding to an
offset of 4 pixels at 1.25 mm/pixel in-plane resolution.

I1I. RESULTS AND DISCUSSION

Fig. 2 and Fig. 3 show results from the best and worst cases
as measured by the average Dice metric. Fig. 2 shows that our
proposed CNN is able to provide reasonable delineation of
endocardial contours, mimicking expert contours with the
inclusion of papillary muscles and trabeculae within the LV
blood pool. In the worst case (Fig. 3), the network appears to
have difficulty returning lower endocardium radius values at
ES; possibly being confounded by the relatively small size of
the heart as well as the thick myocardium. There are multiple
other cases within the MICCAI 2009 datasets with similar
characteristics (smaller heart or blood pool), but Fig. 3 was the
only case where the average Dice metric fell below 0.8.

Table Il compares our results against other published
work. Using two of the assessment criteria, the Dice metric and
APD, the results are competitive or superior to most published
methods, although the approaches of Avendi et al. [S] and
Queiros et al. [8] reported slightly higher values. In contrast,

TABLE III. COMPARISON OF RESULTS AGAINST OTHER PUBLISHED

WORKS EVALUATED USING MICCAI 2009 DATASET. VALUES FOR DICE

METRIC AND APD ARE MEAN (STANDARD DEVIATION). RESULTS FROM
OTHER PUBLISHED WORKS ADAPTED FROM TABLE 2 OF AVENDI ET AL.[6]

Method #  Good® Dice APD®

(%) (mm)
This paper 45" 979 - ".88(:10)s 2:30(1.11)
Avendi et al. 30 96.7 .94(.02) 1.81(0.44)
Queiros et al. 45 92.7 .9 (.05) 1.76(0.45)
Ngo et al. 30 93.2 .89(.03) 2.26(0.46)
Hu et al. 45 91.1 .89(.03) 2.24(04 )
Constantinides et al. 45 80 .86(.05) 2.44(0.56)
Liu et al. 45 91.2 .88(.03) 2.36(0.39)
Huang et al. 45 79.2 .89(.04) 2.16(0.46)
Schaerer et al. 45 - .87(.04) 2.97(0.38)
Jolly et al. 30 95.6 .88(.04) 2.26(0.59)

% Number of d d. 30 - validation and online d 45-alld

b Good contours, where per slice average perpendicular distance < $ mm

¢ Average perpendicular distance (APD)
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Fig. 2. Good results from apex (left) to base (right) at ED phase. Yellow and red contours are gold standard and network results, respectively.

Fig. 3. Bad results from apex (left) to base (right) at ES phase. Yellow and red contours are gold standard and network results respectively. The network
appears to have difficulty returning lower endocardium radius values, especially near the apex.

we reported 97.9% good contours (averaged per slice) or 100%
good contours (averaged per subject). This is the best reported
result to date, which suggests that the slightly deficient Dice
and APD results reflect different conditions in the training data
as opposed to actual deficiencies in the algorithm. To elaborate,
even amongst human experts there is variance in the exact
definition of the endocardial boundary. E.g., how best to
encapsulate the papillary muscles and trabeculae at the
endocardial wall. As our network was trained against the
MICCAI 2011 dataset, the results will reflect the assumptions
made by the gold standard assessors in that set as opposed to
the assessors in the MICCAI 2009 set. Importantly, these
results demonstrate that the algorithm is highly transferable
across varying datasets.

We make special comparison to Avendi et al., who utilized
CNNs for per-pixel categorization [5]. Avendi et al. manually
filtered out apical slices for separate processing, and integrated
a comprehensive deformable model for post-processing. We
did neither, while still retaining highly competitive
performance (superior in the case of good contour percentage).

The network performs weaker at end-systole (ES) and at
the apex (Fig. 4). If we omit the most apical slices, the Dice
metric and APD improves to 0.90 and 2.27 mm, respectively.
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Fig. 4. Dice metric at ED and ES phases, from apex to basal slices.
Performance is noticeably weaker at ES and at the LV apex.

This is notable, as the most apical slice is usually negligible in
the calculation of clinical parameters such as ejection fraction
(EF), due to its small volume relative to the other slices.

In conclusion, we have demonstrated that CNN regression
is a viable and highly promising method for automated LV
endocardial segmentation at ED and ES phases, and is capable
of generalizing learning between highly distinct training and
testing data sets.
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