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Abstract

Almost all drugs approved for use in humans possess potentially beneficial ‘off-target’ effects in addition to their principal activity. In some
cases this has allowed for the relatively rapid repurposing of drugs for other indications. In this review we focus on the potential for re-purpos-
ing FTY720 (also known as fingolimod, GilenyaTM), an immunomodulatory drug recently approved for the treatment of multiple sclerosis (MS).
The therapeutic benefit of FTY720 in MS is largely attributed to the immunosuppressive effects that result from its modulation of sphingosine
1-phosphate receptor signalling. However, this drug has also been shown to inhibit other cancer-associated signal transduction pathways in
part because of its structural similarity to sphingosine, and consequently shows efficacy as an anti-cancer agent both in vitro and in vivo. Here,
we review the effects of FTY720 on signal transduction pathways and cancer-related cellular processes, and discuss its potential use as an anti-
cancer drug.
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Introduction

2-Amino-2-[2-(4-octylphenyl)]-1,3-propanediol hydrochloride (FTY720
or fingolimod; commercially available as GilenyaTM) is an immuno-
suppressive drug developed by the modification of myriocin (ISP-
1), a metabolite of the fungus Isaria sinclairii [1, 2] (Fig. 1).
FTY720 was found to exert its immunosuppressive effects by mod-

ulating sphingosine-1-phosphate (S1P) receptor signalling leading
to sequestration of circulating lymphocytes in lymphoid tissues [3].
In 2010, FTY720 was approved by the FDA as a treatment for mul-
tiple sclerosis (MS) [2]. However, it has now become clear that
FTY720 has a multitude of other effects on cells, many of which
suggest it could be repurposed as an anti-cancer drug (Fig. 2). We
now briefly review the impact of FTY720 on S1P signalling and
other signal transduction pathways before considering its effects
on cancer-related cellular processes.
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‘On-target’ effects; FTY720 modulation
of sphingosine-1-phosphate signalling

Sphingosine-1-phosphate is a small bioactive lipid which exerts its
effects following binding to one or more of at least five G protein cou-
pled receptors, known as S1PR1-5. The consequences of S1P signal-
ling are also partly determined by the relative levels of the different
receptors on the cell surface. For example, S1PR1 couples to Gi to
activate Ras/ERK and PI3-kinase/Akt pathways, leading to mitogenic
and pro-survival signalling and cell migration [4]. In contrast, S1PR2
couples with multiple heterotrimeric G proteins, including G12/13
which exerts a potent inhibitory effect on Rac with consequent inhibi-
tion of cell migration [4]. S1P functions are also regulated in part by
the balance between S1P and the death-promoting sphingolipids,
ceramide and sphingosine [5, 6]. Key regulators of this rheostat
include: sphingosine kinase 1 (SPHK1) and SPHK2, which convert
sphingosine to S1P; and several lipid phosphatases, including S1P
phosphatase 1 and 2 (SGPP1 and SGPP2), which catalyse the conver-
sion of S1P to sphingosine and S1P lyase, which irreversibly
degrades S1P [5, 6] (Fig. 3).

The classic mode of action of FTY720 is the binding of the
drug to four of the S1PRs (S1PR1/3/4/5) after being phosphory-
lated (FTY720-P) principally by SPHK2 [7]. FTY720-P binds to

the S1PRs at concentrations lower than 0.1 lM [8]. Although
FTY720 has an initial agonist activity on the receptors, it subse-
quently causes their internalization thereby reducing receptor lev-
els on the cell surface [9, 10]. Because S1P-S1PR1 signalling is
essential for T lymphocyte egress, FTY720 potently induces lym-
phocyte retention in peripheral lymphoid organs resulting in
immunosuppression [11].

‘Off-target’ effects of FTY720

Apart from its classical ‘on-target’ action as a S1PR ligand, FTY720
also affects other signalling pathways when used at higher concentra-
tions (greater than 2 lM) and we refer to these effects as ‘off-target’
actions of the drug. In the following section, we describe the main
pathways that are affected by higher concentrations of FTY720.

Sphingolipid metabolism

In part. because of a structural similarity to sphingosine, FTY720 also
influences other components of the sphingolipid pathway, [12].
FTY720 inhibits and reduces the expression of SPHK1 [10, 13–15];
as a sphingosine analogue, FTY720 is a competitive inhibitor of

Fig. 1 Chemical structures of sphingosine-
1-phosphate, myriocin, FTY720 and phos-

phorylated FTY720.

Fig. 2 Repurposing of FTY720 for cancer

therapy.
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SPHK1 and is also a non-competitive inhibitor of ATP binding to
SPHK1 [16]. FTY720 has also been reported to inhibit and reduce the
expression SPHK2 [17]. Further, FTY720 is a competitive inhibitor
of ceramide synthase [18, 19] and an inhibitor of S1P lyase [20].
Therefore, as a result of its multiple effects on sphingolipid metabo-
lism, FTY720 leads to dysregulation of ceramide, sphingosine and
S1P in vitro and in vivo [17, 21, 22].

SET nuclear proto-oncogene/protein phosphatase
2A

Protein phosphatase 2A (PP2A) is an enzyme with serine/threonine
phosphatase activity that participates in a range of cellular mecha-
nisms, including regulation of the cell cycle, apoptosis and cellular
metabolism. Pathogenic mutations which result in decreased PP2A
activity can lead to the development of colorectal and lung carcinomas
and, therefore, PP2A is widely accepted as a tumour suppressor [23,
24]. PP2A activity is inhibited following complex formation with the
SET nuclear proto-oncogene [25]. FTY720 directly interferes with SET/
PP2A complexes and also reduces the expression of SET, both of
which ultimately lead to the reactivation of PP2A [26, 27]. Interestingly,
although the interaction of FTY720 with SET/PP2A is independent of
S1PRs, FTY720-P can also suppress PP2A activity via S1PR1 [28, 29].

Phosphatidylinositol-3 kinase/Akt

The phosphatidylinositol-3 kinase (PI3K)/Akt pathway participates in
the regulation of cell metabolism, proliferation and survival, often via

extensive crosstalk with other signalling pathways (including S1P and
PP2A signalling) [30]. Upon activation, PI3K phosphorylates its
substrate PIP2 to generate PIP3, which then activates Akt (v-akt
murine thymoma viral oncogene homologue; protein kinase B). P13K
signalling is disrupted in cancer following mutation of the PI3K gene
itself or of other molecules that regulate its activity. One such mole-
cule is phosphatase and tensin homologue deleted on chromosome
10 (PTEN), a tumour suppressor that inhibits Akt activation [30].
FTY720 mediates many of its anti-cancer effects through inactivation
of the PI3K/Akt pathway [31–34] mediated via a variety of mecha-
nisms which include the inhibition of PI3K [35], increased PTEN
expression [36], activation of PP2A [37–39] and SPHK1 inhibition
[14, 33, 34]. It is important to note that as the PI3K/Akt pathway can
also be activated by S1P, it is likely that the inhibition of this pathway
by FTY720 could occur via both S1P-dependent and -independent
mechanisms.

Other pathways

14-3-3 proteins are a family of seven protein isoforms whose activi-
ties depend on the phosphorylation of serine/threonine residues.
Once activated, these molecules bind with a diverse group of proteins
that participate in signal transduction, which allows 14-3-3 proteins
to regulate a wide range of regulatory processes, such as cell cycle
[40] and apoptosis [41]. Similar to sphingosine, FTY720 directly
modulates 14-3-3 proteins to facilitate their phosphorylation by pro-
tein kinase A (PKA) and possibly protein kinase C d [42], thereby
influencing a vast array of cellular activities.

Reactive oxygen species (ROS) are generated as by-products of
normal metabolism and are important regulators of cell signalling
[43]. FTY720 has been shown to increase the permeabilization of
lysosomal membranes and augment ROS release into the cytoplasm
[21, 44]. Other studies showed that FTY720 can increase ROS pro-
duction [45–47] and this was found to be essential for the down-reg-
ulation of the anti-apoptotic protein, Mcl-1 in natural killer (NK)
leukaemia cells [21], as well as for the activation of pro-apoptotic
PKCd in hepatocellular carcinoma [34].

Effect of FTY720 on the malignant
phenotype

Cell death

FTY720 is cytotoxic and efficiently reduces the viability of cancer
cell lines in vitro (IC50s in the range 5-20 lM), such as those from
ovarian [13, 48], colorectal [31, 49, 50], breast [45, 50–52] prostate
[22, 53] and blood cancers [28, 38, 39, 46, 54–56], amongst others
[57]. In some in vitro studies, FTY720 shows selective killing of
neoplastic cells while having minimal effects on normal cells [35, 51,
52, 56, 58–61]; effects which can be recapitulated in cancer mouse
models in which FTY720 (used at 2.5–10 mg/kg) was shown to

Fig. 3 S1P signalling. S1P is generated by the sphingosine kinases,

SPHK1 and SPHK2, and can be converted back to sphingosine by the

S1P phosphatases, SGPP1 and SGPP2. Once secreted, S1P can act on

one of at least five known S1P receptors (S1PR1-5). Activation of these
receptors trigger downstream signalling, i.e. Rho, Rac, JNK (Jun N-ter-

minal kinase), Akt (alpha serine/threonine-protein kinase), ERK (extra-

cellular signal-regulated kinase), PLC (phospholipase C) and adenylate

cyclase pathways, to regulate survival, apoptosis and motility of cells.
FTY720 interferes with S1P signalling by binding to the S1PR1/3/4/5.
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reduce tumour burden and prolong survival without causing signifi-
cant damage to non-diseased organs [28, 39, 52, 60–64].

In the majority of studies, the cytotoxicity of FTY720 was shown to
be because of its ability to induce apoptosis. Cells treated with FTY720
frequently show caspase-3, -8 and -9 activation, implicating FTY720 in
both extrinsic and intrinsic apoptotic pathways [31, 33, 55, 65–67].
FTY720 differentially modulates the Bcl-2 family of regulatory proteins
to facilitate apoptosis. For example, FTY720 down-regulates the anti-
apoptotic proteins Bcl-2, Bcl-xL and Mcl-1 [60, 65, 68] and up-regu-
lates Bax and Bad which are pro-apoptotic [55, 60, 65]. FTY720 also
down-regulates the apoptotic inhibitor, survivin [65, 68] and up-regu-
lates the pro-apoptotic BH3-only proteins, Bim and Bid [33, 36, 69].

Protein phosphatase 2A activation appears to be essential in
mediating the apoptosis induced by FTY720 in several haematological
cancers, because inhibition of PP2A activity by okadaic acid rescued
cell death induced by FTY720 [32, 38, 39]. ROS generation also con-
tributes to apoptosis as FTY720 induced apoptosis can be partially
rescued with a ROS scavenger [34, 45, 68]. Furthermore, 14-3-3
phosphorylation was shown to be important in mediating FTY720-
induced apoptosis, because cell death was attenuated following trans-
fection with a non-phosphorylatable 14-3-3zeta mutant [42]. FTY720
interactions with the S1PRs appear not to be involved in the apoptotic
response because FTY720-P (which binds to S1PRs) did not kill a
variety of cancer cell types that were sensitive to FTY720 [17, 50, 59,
69]. Moreover, pre-treatment of B-cell chronic lymphocytic leukemia
(B-CLL) cells with S1P failed to alter the cytotoxic effects of FTY720
[38]. Nevertheless, the sphingolipid pathway may play a role in medi-

ating the cytotoxic effects of FTY720 in some circumstances via the
inhibition of SPHK1 by FTY720. For example, overexpression of
SPHK1 rescued prostate cancer cells from FTY720-induced cell death,
however, this effect was not observed in cells with silenced S1PRs
[22]. These results suggest that SPHK1 inhibition, but not the interac-
tion with S1PRs, may be important in mediating the cytotoxic effects
of FTY720.

Necrotic cell death induced by FTY720 has also been observed.
FTY720-treated ovarian and melanoma cells showed no evidence of
caspase activation and the cells were not able to bind to Annexin V
[48, 62]. Similarly, death induced in the cell lines of neuroblastoma,
acute lymphoblastic leukaemia cells, mantle cell lymphoma, other and
B cell malignancies were also caspase-independent, although necro-
sis was not proven [17, 38, 46, 47]. Further, in an interleukin (IL)-3
dependent murine haematopoietic cell line, FL5.12, in which apopto-
sis was disabled by overexpressing Bcl-2, FTY720 down-regulated
nutrient transporter proteins which resulted in starvation-induced
necrosis [59]. ROS production has also been identified as an impor-
tant mechanism for FTY720-induced necrosis [46, 47, 62] FTY720
can also induce receptor interacting protein kinase 1-dependent nec-
roptosis following the activation of PP2A [29]. Together, these find-
ings demonstrate the ability of FTY720 to kill cancer cells by different
mechanisms in a variety of cellular settings.

Some cancer cells that are resistant to conventional chemotherapy
appear to be sensitive to FTY720. For example, FTY720 can kill imati-
nib-resistant gastrointestinal stromal tumour [70] and myeloid cells
harbouring c-KIT mutations. Similarly, FTY720 was cytotoxic towards

Table 1 Combinatorial effects of FTY720 and chemotherapy drugs

Chemotherapy Type of study Type of malignancy Proposed mechanism(s) References

5-Fluorouracil, SN-38,
and oxaliplatin

In vitro Colorectal SET/PP2A, PI3K/Akt [31]

Cisplatin In vivo Lung SET/PP2A, NDRG1 [85]

Doxorubicin and
etoposide

In vitro Colon Inhibition of P-glycoprotein (P-gp)
and multidrug resistance protein 1 (MRP1)

[49]

Doxorubicin In vivo Leukaemia SET/PP2A [110]

Topotecan In vitro and in vivo Neuroblastoma SK2, PI3K/Akt [17]

Cetuximab In vitro and in vivo Colorectal SK1 [14]

Temozolomide In vivo Brain tumour stem cell – [69]

Milatuzumab In vitro and in vivo Mantle cell lymphoma Lysosomal membrane
permeabilization

[44]

Nanoliposomal
C6-ceramide

In vitro NK-cell leukaemia ROS, sphingolipid pathway [21]

Sunitinib malate In vivo Breast S1PR1/3 antagonizm [88]

Cisplatin In vitro Gastric PTEN/PI3K/Akt [36]

Rapamycin In vitro Pancreas – [111]
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leukaemic cells that demonstrate resistance to tyrosine kinase
inhibitors [33, 39]. FTY720 could also kill ovarian cancer cells indepen-
dent of their sensitivity towards cisplatin, paclitaxel or other chemo-
therapy [13, 48]. Studies using FTY720 in combination with a variety of
conventional chemotherapy agents have demonstrated additive or syn-
ergistic effects (Table 1). FTY720 has also shown a convincing ability
to sensitize cancer cells to radiation; FTY720 reduced the activation of
Akt and down-regulated survivin, both of which were induced by radia-
tion and were implicated in the radio-resistance of a breast cancer cell
line [71]. In addition, FTY720 increased the radio-sensitivity of prostate
cancer cells overexpressing miR-95, a microRNA associated with
resistance to radiation) [72]. Similarly, the combination of FTY720 and
radiation showed enhanced SK1 inhibition and tumour suppression in
a mouse xenograft model of prostate cancer [22].

Proliferation

At cytotoxic concentrations, FTY720 has also been shown to induce
G1 arrest by modulating key cell cycle regulators. For example,
FTY720 down-regulates cyclin D1, cyclin E [35, 47, 65] and cyclin-
dependant kinase (CDK)2/4, and up-regulates the CDK inhibitors,
p16, p21, p27, [35, 36, 65, 67]. In addition, the retinoblastoma pro-
tein (pRb) was found to be in its inactive dephosphorylated state in
FTY720 treated cells [73]. Both PP2A [29, 32] and PTEN/PI3K/Akt
[35, 36] signalling pathways have been shown to mediate FTY720-
induced growth suppression.

Autophagy

Autophagy is a physiological process in which damaged organelles
form an autophagosome which is subsequently digested by lysosomal
enzymes. The resulting metabolites are either recycled or used as a
short-term energy supply in times of cellular stress. Autophagy plays
an ambiguous role in cancer progression, as it can induce prolonged
survival of cancer cells by conserving energy or lead to cell death
[74]. FTY720 can increase the accumulation of autophagosomes in
many malignancies either by inducing autophagosome formation [46,
48, 59, 68] or by blocking the fusion of autophagosomes and lyso-
somes (autophagic flux) [44]. FTY720-induced autophagy was found
to be protective against the cytotoxic nature of FTY720, which was
demonstrated by the ability of 3-methyladenine, an autophagy inhibi-
tor, to enhance the cell death induced by FTY720 [46, 48, 62]. In addi-
tion, autophagy-deficient murine embryonic fibroblasts were more
sensitive to FTY720-induced cytotoxicity [59]. Interestingly, FTY720-
P was also found to induce autophagy [46], implying the involvement
of S1P and the S1PRs. In acute lymphoblastic leukaemia cells,
FTY720 was shown to mediate autophagy by down-regulating Mcl-1,
which inhibits Beclin-1 [46], an important inducer of autophagy [74].
Similarly, Beclin-1 was up-regulated by FTY720 in ovarian cancer cells
[48]. By contrast, FTY720-induced autophagy promoted apoptosis in
multiple myeloma cells in which both autophagy and apoptosis were
mediated through ROS generation, an effect that was attributed to the
degradation of anti-apoptotic protein, Mcl-1 and survivin [68].

Motility, invasion and metastasis

At concentrations below those that cause cytotoxicity, FTY720 treat-
ment decreased the migration and invasive ability of glioblastoma and
prostate cancer cells in in vitro assays [53, 75, 76]. The anti-migra-
tory and/or anti-invasive effects of FTY720 have also been reported in
other cancer cell lines, such as those from ovarian cancer [13], hepa-
tocellular carcinoma [77–79], pancreatic cancer [80] and cholangio-
carcinoma [65]. These results are supported by observations that
FTY720 induced cytoskeletal disorganisation in prostate cancer cells
[53] and also decreased and deformed microfilaments, filopodia and
microvilli on the cell surface of murine breast cancer cell lines [52]. In
addition, FTY720 has been shown to suppress lymph node and organ
metastasis in many in vivo cancer models [45, 52, 65, 69, 79, 81],
indicating that FTY720 might be effective in managing late stage
disease.

The concentration of FTY720 needed for the drug to inhibit
tumour cell migration/invasion is lower than that required to induce
cytotoxicity in both in vitro (2 lM or less) [13, 53, 61, 75, 78] and
in vivo studies (2 mg/kg) [52]. This suggests, therefore, that the
SPHK1/S1P/S1PR signalling pathway is important in mediating the
effects of FTY720 on migration/invasion and metastasis. FTY720-P
inhibited S1P-induced migration of classical Hodgkin lymphoma cells
by modulating S1PR1 [82] and SK1 inhibition with FTY720 reduced
the migration of ovarian cancer cells [13]. FTY720 affects a number
of pathways that are known to be downstream of the S1PRs, such as
the Rho family of small GTPases, which are important regulators of
cell mobility [83]. FTY720 down-regulated the active form of RhoA in
pancreatic cancer cells [53], reduced levels of active Rac in hepato-
cellular carcinoma [78, 79] as well as decreasing levels of ROBO1
and ROCK1 (targets of RhoA) in glioblastoma cells. FTY720 also
decreased the expression of metalloproteinases (MMP-2 and MMP-9)
and increased tissue inhibitors of metalloproteinases (TIMP-1 and
TIMP-2) [13, 75]. The PI3K/Akt pathway has been implicated in
FTY720-induced motility [75, 78], although this could also be the
downstream of S1PRs.

Epithelial to mesenchymal transition

Epithelial to mesenchymal transition (EMT) is a process by which epi-
thelial cells undergo molecular and morphologic changes to resemble
the mesenchymal phenotype, which leads to the acquisition of migra-
tory and invasive capacity, evasion of apoptosis and senescence, as
well as ability to resist chemotherapy [84]. The growth of xenografts
derived from cisplatin resistant lung cancer cells showing features of
EMT was suppressed by FTY720, both alone or in combination with
cisplatin [85]. These effects were attributed to the ability of FTY720 to
modulate the PP2A/SET interaction together with a concomitant
increase in E-cadherin and the Snail transcription factor, as well as a
decrease in vimentin expression [85]. Similar observations were
made in cholangiocarcinoma [65] and glioblastoma [75], where
FTY720-treated cells showed higher expression of E-cadherin and
reduced expression of N-cadherin, vimentin and Twist1 [65, 75]. In
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androgen-independent prostate cancer cells, Runx2 modulates EMT
by switching of E-cadherin to N-cadherin and FTY720 down-regulated
Runx2 thereby reversing the cadherin switch [76].

Angiogenesis

Angiogenesis is the process by which new blood vessels are formed
to sustain nutrient and oxygen requirements of actively proliferating
cells and is important for the sustained growth of most tumours [86].
FTY720 has been reported to inhibit angiogenesis in several xenograft
cancer models [61, 65, 79, 81]. Similarly, FTY720 attenuated both
S1P- and VEGF-driven angiogenesis in an agar chamber model
in vivo [81] and a Matrigel plug in vivo assay for Lewis lung carci-
noma [87]. Furthermore, FTY720 normalized the vasculature within
mammary tumours in rats [88] and abrogated increased vascular per-
meability [61, 81], both of which can promote the cytotoxic effects of
chemotherapy and radiotherapy [89, 90]. In addition, low doses of
FTY720 did not kill B16/BL6 melanoma cells in vitro but reduced the
growth of these cells and inhibited neovascularization in vivo,
suggesting the indirect killing of tumour cells by reducing tumour
vascularity [81].

FTY720 has been shown to inhibit angiogenesis by a number of
mechanisms. For example, FTY720 was found to reduce the migration
of human umbilical vein endothelial cells (HUVEC) [61, 63, 81, 87]
and to block the recruitment of vascular smooth muscle cells (VSMC)
by S1P, endothelial cells or tumour cells [88]. S1PR antagonizm by
FTY720 is important in mediating these anti-angiogenic effects as
they are induced at low doses [61, 81, 87] and by FTY720-P [81]. In
support of these observations, FTY720 reversed the effect of S1P on
VSMC/HUVEC migration and the formation of blood vessels by a
mechanism involving S1PR1/3 [81, 88, 91]. In addition, FTY720
down-regulates VEGF, an important angiogenic inducer [63, 92] as

well as reduces the expression of chemokines, i.e. CXCL10, CXCR3
and CXCR4 [92].

Cancer-associated inflammation

It is now recognized that inflammation can promote tumourigenesis
[93]. FTY720 suppressed azoxymethane-induced colonic inflamma-
tion in mice and suppressed the subsequent development of tumours
by down-regulating SPHK1 and S1PR1, which is important for persis-
tent NF-jB and STAT3 activation, as well as IL-6 production in this
model [10]. In addition, FTY720 has been reported to down-regulate
the pro-inflammatory mediators CXCL10, VEGF, CXCR4 and CXCR3
and reduce hepatic ischaemia-reperfusion injury, which otherwise
contributes to metastasis in rats with hepatic tumours [92].

Second-generation FTY720 derivatives
and targeting strategies

FTY720 derivatives that lack S1PR binding
capability

As many of the anti-cancer effects of FTY720 are independent of
S1PRs and there are possible side effects associated with antago-
nizing S1P signalling, a non-immunosuppressive FTY720 analogue,
OSU-2S was developed that cannot be phosphorylated by SPHK2
and does not induce S1PR1 internalization [98]. Compared to
FTY720, OSU-2S demonstrated more cytotoxicity and selectivity
(in relation to normal liver cells) in hepatocellular carcinoma, both
in vitro and in vivo, [98]. OSU-2S was also shown to induce

Fig. 4 Effects of FTY720 on cancer cells.
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cytotoxicity in CLL [99]. Two other FTY720 derivatives, (S)-
FTY720-OMe, (S)-FTY720-regioisomer, were found to reduce sur-
vival of chronic myeloid leukemia (CML) haematopoietic stem cells
(HSC) but not normal HSCs [58] and caused PP2A activation
without stimulating S1PR1 internalization and B cell lymphopenia
[58]. Both OSU-2S and (S)-FTY720-regioisomer were also found
to be more potent than FTY720 in reducing the clonogenic sur-
vival of Jak2-driven haematological malignancies [28].

Another FTY720 analogue devoid of the ability to be phosphory-
lated is AAL-149 [59]. This drug demonstrated the same potency and
mechanism of selective cytoxicity as FTY720 in patient-derived leu-
kaemic cells [59]. In 2013, Fransson and colleagues designed novel
stereochemically constrained analogues of FTY720 and showed that
one of these analogues had an enhanced anti-leukaemic activity com-
pared to FTY720 [100]. However, the same enhanced potency was
not observed for prostate cancer cells [100].

FTY720 derivatives with enhanced sphingosine
kinase inhibition

Efforts have also been made to chemically modify FTY720 to improve
its efficacy as a SPHK inhibitor. This has resulted in the generation of
two compounds; (S)-FTY720 vinylphosphonate and (R)-FTY720
methyl ether (ROME). (S)-FTY720 vinylphosphonate inhibits and
reduces the expression of SPHK1 [15, 16, 101, 102], resulting in
apoptosis of prostate cancer cells [101] and human pulmonary
smooth muscle cells [15]. In addition to inhibiting SPHK1, (S)-
FTY720 vinylphosphonate abrogated the S1P-stimulated rearrange-
ment of actin in breast cancer cells [103]. ROME, on the other hand,
is a derivative which selectively inhibits and down-regulates SPHK2
[104, 105] in turn inhibiting DNA synthesis and preventing S1P-medi-
ated rearrangement of actin in MCF-7 cells [105]. However, ROME
did not induce apoptosis in androgen-sensitive LNCaP prostate
cancer cells [106].

FTY720 with improved targeting

To reduce unwanted toxicity, recent studies have also examined the
feasibility of improved targeting of FTY720. Liposomal formulation of
FTY720 improved the stability of FTY720 in aqueous buffer without
affecting the cytotoxicity of CLL cells [107]. When this formulation
was coupled to an antibody (i.e. CD19, CD20 and CD37), a superior
specificity against CLL cells was observed [107]. Similarly, liposo-
mal-antibody packaging of OSU-2S allowed this drug to selectively
target CLL cells, sparing normal B cells [99]. Dual antibody immuno-
liposomes have been developed as vehicles for targeted delivery
[108], which resulted in enhanced delivery of FTY720 and increased

apoptosis in CLL cells compared to the single antibody liposomal
targeting [108].

Conclusions and future perspectives

The ability of FTY720 to target multiple signalling pathways which
control cell proliferation, death, motility, angiogenesis and inflam-
mation (Fig. 4), suggests that this drug is not only likely to be use-
ful against a wide range of tumours containing different molecular
abnormalities, but also that it could reduce the likelihood of resis-
tance resulting from the activation of other compensatory pathways
[94]; using a single drug that targets multiple pathways would
seem to be an attractive alternative to the use of combinations of
drugs with narrower specificity to reduce the likelihood of develop-
ing resistant disease [94]. The toxicity profile of FTY720 is well
described in MS patients and includes immunosuppression, brady-
cardia and increased risk of melanoma [95–97]. However, it is diffi-
cult to predict the toxicity associated with the use of FTY720 in
cancer patients, because dose and duration of treatment may be
different; there is already evidence from in vitro studies that the
dose required to achieve an anticancer effect is higher than that
necessary to antagonize S1PR signalling. The long-term adverse
effects of FTY720 treatment are still to be fully determined, but will
obviously be important considerations for the potential future use
of this drug in cancer patients.

By targeting a range of processes implicated in tumourigenesis,
FTY720 is a promising anticancer agent across a broad range of
malignancies that has the potential and meets a number of
accepted criteria for drug repurposing [109] (Fig. 2). The second-
generation derivatives of FTY720 have higher efficacy, lower toxicity
and better selectivity (Table 2). However, as the precise effects of
FTY720 on molecular signalling pathways and clinical phenotypes
appear to be cell-type dependent, further studies are required to
fully evaluate the utility of FTY720 and its derivatives in different
cancer settings.
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