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Abstract— Samarium-153 (153Sm) are widely used in radia-

tion synovectomy and pain management for patients with bone 

metastases. However, its therapeutic application has not been 

fully explored. 153Sm has been proven to be useful for imaging 

purposes. This provides a beneficial alternative for therapy 

with pure beta emitter especially for liver radioembolization 

with Yttrium-90 (90Y). This study aimed to develop an alterna-

tive radioembolic agent using 153Sm and biocompatible resin 

microparticles for liver cancer therapy. The ion-exchange 

resin; Amberlite IR-120 H+ commercially available in large 

beads were crushed and sieved to 20 – 40 μm and labelled with 
152SmCl3 salt prior to neutron activation. Administered activity 

of 3 GBq 153Sm was aimed based on the standard activity used 

by the 90Y SIR-Spheres. 6 hours irradiation in 1.494 x 1012 

n.cm-2.s-1 flux produced 3.1 GBq.g-1 immediately after activa-

tion. Characterization of the microparticles, gamma spectros-

copy, and in-vitro radiolabelling studies were carried out and 

compared to a commercially available resin readily made in 20 

– 40 μm, Fractogel EMD SO3
- (S). 153Sm-Amberlite micropar-

ticles possess a superior and suitable characteristics for liver 

radioembolization with added imaging capabilities. 

Keywords— Samarium-153 (153Sm), liver cancer, neutron 

activation, radioactive microspheres, radioembolization. 

I. INTRODUCTION  

Liver radioembolization is a non-physiological targeted 

therapy where radiolabeled embolic particles are percutane-

ously delivered directly to the tumour. Liver malignancies 

i.e. hepatocellular carcinoma (HCC) is the third most com-

mon cause of death from cancer worldwide (1). HCC is 

often diagnosed at the later stages when curative approaches 

are no longer feasible (2). Radioembolization using 
90

Y-

microparticles are now increasingly used as palliative 

treatment for HCC. This approach may prolong patients’ 

survival and provide possibilities for curative intents by 

down-staging the tumours for possible resection or trans-

plantation (3-7).  

Currently two commercially available radioembolic 

agents; glass (TheraSphere
®
, Nordion, Canada) and resin 

(SIR-Spheres, SIRTex, Australia) microparticles, both la-

belled with 
90

Y. 
90

Y is produced by high-purity separation 

from Strontium-90 (
90

Sr), which is a nuclear fission product 

of Uranium-235 (
235

U) fuel in a nuclear reactor. The com-

plexity of 
90

Y production resulted in high cost 
90

Y-

microparticles. Since 
90

Y is a pure beta emitter, the distribu-

tion of 
90

Y-microparticles after each procedure is difficult to 

be verified. Technetium-99m macro-aggregated albumin 

(
99m

Tc-MAA) has been used prior to therapy for lung shunt-

ing quantification providing brief information of source 

distribution within the liver and lungs. However, this pre-

treatment planning method did not accurately reflect the 

intrahepatic distribution of 
90

Y-microparticles. This is due 

to resolution and partitioning dissimilarities between 
99m

Tc 

and 
90

Y images, as a result of different physical characteris-

tics and number of particles infused (8, 9). Bremsstrahlung 

imaging may be used, but with very poor spatial resolution. 

Radionuclides with both therapeutic beta and diagnostic 

range of gamma energies would be ideal for “theranostics” 

(therapy plus diagnostic) treatment. Ideal therapeutic radio-

nuclide has optimum physical half-life, suitable linear ener-

gy transfer (LET) and range in tissue, high ratio of non-

penetrating to penetrating radiation, short lived or stable 

daughter, good and selective concentration with prolonged 

retention in tumour and minimum uptake by normal tissue 

(10). Neutron activation is preferred in radionuclide produc-

tion due to wide availability of reactors and relatively sim-

pler process. 
153

Sm is potentially suitable as alternative to 
90

Y. The imaging properties of 
153

Sm has been proven feasi-

ble in a gastrointestinal scintigraphy by Yeong, Abdullah 

(11). Most important microparticles’ feature is size range of 

20 – 40 µm. Microparticles with resistivity to physical heat 

and body chemicals, near plasma density, biocompatible 

and easily labelled with radionuclides are highly preferred.  
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II. MATERIALS & METHODS 

A. Preparation of 
152

Sm-labelled microparticles 

A commercially available ion-exchange resin; Amberlite 

IR-120 H
+
 (620 – 830 µm) was obtained from Fluka GmbH 

(Buchs, Switzerland). Samarium (III) chloride hexahydrate 

(
152

SmCl3·6H2O) with assay purity ≥99 % was obtained 

from Aldrich Chemical Co. (Wisconsin, USA). The Amber-

lite IR-120 resin was oven dried at 70
o
C for 12 h. The dried 

resin was ground using a grinding planetary ball mill ma-

chine (XQM-(2-6) L, ChangSha LangFeng Metallic Materi-

al Ltd., China) at 200 rpm for approximately 5 h. The resin 

powder was subsequently sieved using a mechanical sieve 

shaker (AS 200 Analytical Sieve Shaker, Retsch GmbH, 

Haan, Germany) attached with 20 and 40 µm wire mesh 

stainless steel test sieves (Endecotts Ltd., London, UK). 

Another commercial ion-exchange resin, Fractogel EMD 

SO3
-
 (S) (Merck Millipore, Massachusetts, USA) suspended 

in 20 % ethanol and 150 mmol.l
-1

 NaCl, ready made in 20 – 

40 µm was used for functional comparison. Using Büchner 

funnel filtration, Fractogel resin was thoroughly washed 

with distilled water to eliminate the ethanol and NaCl. 1 g 

of SmCl3.6H2O was dissolved in 10 ml distilled water. 5 g 

of washed Fractogel resin was poured into the SmCl3 solu-

tion and stirred for 5 min to allow binding of the Sm
3+

 ions 

to the resin. The 
152

Sm-Fractogel resin was washed by 

flushing distilled water through the resin to remove un-

bound Sm
3+

 ions. These steps were repeated for 
152

Sm-

Amberlite resin. Finally, both formulations were oven dried 

at 70
o
C for 12 h.  

B. Characterisation of 
152

Sm- microparticles  

Fourier transform infrared (FTIR) spectroscopy (600 – 

4000 cm
-1

 range) was carried out (Nicolet 6700, Thermo 

Fisher Scientific Inc., Massachusetts, USA) on the Amber-

lite resin. FTIR spectra of SmCl3 salt, fresh Amberlite resin 

beads, resin after grinding and sieving, resin after labelling, 

and resin after 6 h neutron activation were compared. Field 

emission scanning electron microscopy (FESEM) and ener-

gy dispersive X-ray (EDX) spectroscopy were carried out 

on both 
152

Sm-resins using a FESEM system (Quanta FEG 

250, FEI, Oregon, USA). The particle density, ρs of both 
152

Sm-microparticles were measured using a helium gas 

pycnometer (AccuPvc II 1340, Micromeritics Ins. Corp., 

Georgia, USA) at standard room temperature of 25°C. The 

ρs was incorporated into following equation to obtain parti-

cle concentration, PC (particles.ml
-1

) for each 
152

Sm-

microparticles in 0.9 % saline solution: 

                       (1) 

where, 

C : mass fraction (% w/w) 

Dp : mean diameter of the particles (cm) 

ρf : density of the solvent (g.cm
-3

) 

ρs : particle density (g.cm
-3

)  

C. Neutron activation 

Both 
152

Sm-microparticles were neutron activated in Ma-

laysian Nuclear Agency (MNA), Selangor, Malaysia. The 

TRIGA PUSPATI Reactor (RTP) (Triga Mark II, General 

Atomics, California, USA) is a pool type with solid en-

riched uranium (20 % weight, 235U). The samples were 

sealed in individual polyethylene vial and placed into poly-

ethylene ampoule. Two neutron activation methods (Table 

1); Pneumatic Transfer System (PTS) and Rotary Specimen 

Rack (RR), were studied to achieve 3 GBq of 
153

Sm. The 

irradiation time, t can be estimated using the formula: 

         At= σact φN(1-e
(-λt)

)              (2) 

where, 

At : activity (Bq) 

σact : thermal neutron activation cross-section (barns) 

φ : neutron flux (n.cm
-2

.s
-1

) 

N : number of parent atoms = (m / w) x θ x 6.023 x 10
23

;   

  m : mass of element in the sample  

  w : atomic weight of element  

  θ : isotopic abundance 

  λ : decay constant (s
-1

) = 0.693/ t1/2  

  t : irradiation time (s)  

Table 1. Neutron activation protocols to achieve 153Sm activity of 3 GBq. 

Method PTS RR 
Thermal neutron flux, θth 

(n.cm-2.s-1) 

4.813 x 1012 1.494 x 1012 

Irradiation time  5 minutes 6 hours 

Location in the reactor Near to the core Peripheral to the core 

Sample entrance and exit  Automatic Manual 

D. Gamma spectroscopy 

After 48 h of cooling, gamma spectroscopy was carried 

out for each sample to determine presence of long-lived 

radionuclide impurities. Hyper-pure germanium detector 

(Canberra, Meriden, USA) and gamma spectrum analysis 

software (GenieTM 2000 Ver. 3.2, Canberra, Meriden, 

USA) were used. Each sample was counted for 5 min at a 

distance so that detection yield do not exceed 20 %. 
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E. Optimum formulation and radiolabelling efficiency  

1 g of SmCl3.6H2O was labelled to 1, 2, 3, 4, 5, and 6 g 

of each resin to determine optimum formulation with best 

labelling efficiency. All samples were activated via PTS for 

5 min. Each sample was equally separated into three 10 ml 

test tubes followed by addition of 10 ml distilled water. The 

samples were mixed using a roller mixer (Movil-Rod, J.P. 

Selecta, Barcelona, Spain) at 50 rpm for 1 h. Next, the sam-

ples were centrifuged at 1200 rpm for 5 min. 1 ml of super-

natant was pipetted from each tube and transferred into 

gamma assay tubes. These steps were repeated until a total 

of 8 ml supernatants were obtained from each sample within 

48 h. All supernatant samples were assayed using gamma 

scintillation counter (2470 Wizard2, PerkinElmer Inc., Mas-

sachusetts, USA). All steps were repeated in human blood 

plasma. Labelling efficiency of each formulation was calcu-

lated using equation previously used (12):  

Retained activity (%) =  (Asus-Asup)/Asus   x 100 % 

where, 

Asus: Activity of suspension before supernatant extraction 

Asup: Activity of supernatant 

III. RESULTS  

 In Figure 1, the functional groups (1000 – 1200 cm
-1

) of 

the resin were still present despite harsh physical process 

during sample preparation. No major differences between 

peaks in spectra shown in Figure 1 (b) – (e).  

 

Figure 1. (a) SmCl3.6H2O salt. (b) Fresh Amberlite IR-120 H+ beads. (c) 
Amberlite IR-120 H+ ground and sieved to size 20 – 40 µm. (d) Amberlite 

microparticles labelled with SmCl3.6H2O salt. (e) 153Sm-Amberlite micro-

particles after 6 h neutron activation.  

In Figure 2 (a), 
152

Sm-Amberlite microparticles were ob-

served to be irregular in shapes, however the size are in the 

acceptable range of 20 – 40 µm. EDX spectra of both resins 

showed that they comprised mostly of C, O, Sm and S. 

However, for 
152

Sm-Fractogel, Cl was also found present in 

a significant amount (1.66 % atomic). 

(a)   (b)  

Figure 2. FESEM images of (a) 152Sm-Amberlite and (b) 152Sm-Fractogel 

microparticles. 

 The particle density of 
152

Sm-Amberlite and 
152

Sm-

Fractogel is 2.538 ± 0.012 and 2.283 ± 0.002 g.cm
-3

 respec-

tively. These correspond to 27.7 and 30.7 million micropar-

ticles respectively. The specific activity per 1 g of 
153

Sm-

resins immediately after 5 min activation via PTS was 0.148 

± 0.004 GBq. This correspond to only 0.072 GBq after 48 h. 

The specific activity achieved via RR method immediately 

after 6 h activation was 3.104 ± 0.029 GBq. The corre-

sponded activity of 1.513 GBq after 48 h was closer to the 

initial target of 3 GBq. Hence, specific activity per micro-

particle for 
153

Sm-Amberlite and 
153

Sm-Fractogel were 55 

Bq and 49 Bq respectively. 

Figure 3. Percentage retention of 153Sm in both resin suspended in distilled 

water (DW) and blood plasma over 48 h. 

 The most dominant photopeak observed in both sam-

ples was the 103.1 ± 0.2 keV, associated with principle 

gamma energy of 
153

Sm. In the 
153

Sm-Fractogel
 
samples, 

two other peaks were consistently observed; 1368.4 ± 0.2 

and 2753.1 ± 0.2 keV, associated with 
24

Na. No significant 

impurities were observed in 
153

Sm-Amberlite
 
samples. 

153
Sm-Amberlite

 
shows significantly better labelling effi-

ciency with 8.42 ± 0.86 % higher compared to 
153

Sm-
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Fractogel. The optimum formulations determined for both 
153

Sm-Amberlite and 
153

Sm-Fractogel was 1:3 and 1:4 re-

spectively. 
153

Sm-Amberlite showed better retention over 48 

h in both distilled water and blood plasma (Figure 3). 

IV. DISCUSSION  

 Ion exchange resins were chosen due to its relatively 

easy labelling and commercial availability. Resins are gen-

erally chemically inert hence results in minimal radionu-

clide leaching. Due to its insoluble characteristic, it is not 

absorbed by the body thus, are extremely safe to be use in 

medicinal products with limited side effects (13). Amberlite 

IR-120 H
+
 was chosen due to its excellent labelling effi-

ciency as reported in an earlier study (12).  

 Chlorine (Cl) in the Fractogel resin may be activated 

into radioactive chlorine (
38

Cl) during neutron activation. 

The presence of Cl in the Fractogel resin is due to the NaCl 

suspension in its commercial packing. From gamma spec-

troscopy, only 
24

Na we found in the samples because 
38

Cl 

may already been fully decay because of its short half-life. 

However, if the concentration is higher, 
38

Cl may still be 

present. This issue may be overcome with more thorough 

resin washing during preparation. 

  The particle densities of the 
152

Sm-microparticles de-

veloped in this study was in between the density of the 

commercial SIR-Sphere (1.6 g.cm
-3

) and TheraSphere (3.2 

g.cm
-3

) particles. Since 
153

Sm-Amberlite are slightly dense, 

this resulted in lower number of microparticles per gram 

which eventually contribute to higher specific activity per 

microparticles compared to 
153

Sm-Fractogel. 

 Despite being non-spherical as a result of grinding, 
153

Sm-Amberlite possess much better functional quality in 

all aspects compared to 
153

Sm-Fractogel. The labelling effi-

ciency and retention of 
153

Sm-Amberlite showed that shape 

irregularity may not be a huge problem since 
153

Sm are still 

mostly intact and the capacity of binding is significantly 

higher than the other resin. 

 

 

V. CONCLUSION 

 We have prepared 20 – 40 µm microparticles using ion 

exchange resin labelled with 
153

Sm produced via neutron 

activation. It is easy to prepare and does not involve unnec-

essary radiation exposure during the labelling process. Am-

berlite IR-120 resin was chosen rather than Fractogel EMD 

SO
3-

 because of its excellent labelling efficiency with strong 

retention of 
153

Sm tested over 48 h, no radioactive impuri-

ties produced from neutron activation, and lower production 

cost. 
153

Sm-microparticles has the potential to be an optimal 

option as an alternative to 
90

Y-microparticles, with added 

advantage of gamma radiation for imaging of source distri-

bution. Dosimetric studies to estimate total 
153

Sm activity 

needed to deliver equivalent tumour dose and therapeutic 

response from 3 GBq 
90

Y shall be carried out. Further ani-

mal studies for in-vivo distribution, biochemical stability 

and labelling efficacy should also be carried out prior to 

clinical studies. 
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