View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Diposit Digital de la Universitat de Barcelona

PHYSICAL REVIEW C, VOLUME 63, 044310

Pairing with polarization effects in low-density neutron matter
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We study the properties of thtS, pairing gap in low-density neutron matter. Different corrections to the
lowest-order scattering length approximation are explored, resulting in a strong suppression with respect to the

BCS result.
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[. INTRODUCTION In this way we will be able to confirm numerically and to

go beyond the well-known asymptotic behavior of the gap,
The problem of the influence of the medium on the effec-namely within the BCS descriptior8,16,17
tive pairing interaction in nuclear matter is a long standing

one that still awaits satisfactory solution. This is true even ke—0 8 k2 -

for the simplest case of pairing in th&S, channel in pure A(ke) —— Aolke) =2 ﬁex;{ﬂ (1a
neutron matter, to which this article is restricted. A quantita- Fenn

tive control on this issue would be very useful in particular . . o

for the understanding of neutron star phydits where sev- and including polarization effecfs.6,18

eral physical phenomen@ooling, glitche$ are thought to

depend very sensitively on the size and the density depen- k=0 1

dence of the gap. A(kg) —— (46—)1/3A0(k':)’ (1b)

In several publicationg2—4] the gap equation is solved in

the simples{BCS) approximation 5—10], namely using the _ . .
bare neutron-neutron potential as interaction kernel. With ezgiﬁ apn=—18.8 fm Is the neutron-neutron scattering

realistic nucleon-nucleon potential, adapted to the scattering Note that this is a surprising result in that, even though the

Zrzis)e ng |I\f/t|se,vona<i c;btggr?s%/pIgzlrl?/esapg:%)ﬁ:gug; Tgh865 93Ratio of in-medium and bare interaction becomes unity in the
F)= F~U.

0 low-density limit, the ratio of the two corresponding gaps

fm™-. 13 ..
However, the use of the bare potential completely disre-does not, .bUt approachese 0.45. This is _due to _the
onanalytical dependence of the gap on the interaction, as

gards the influence of the surrounding neutron medium angxpressed in Eq1a), and will be explained in more detail

some authors_have a’;tempted t0 go bey_o nd this I_evel by €Ol ter on. Stated otherwise, the BCS approximatigsing the
sidering certain additional subsets of diagrams in the inter;

action kerne[3,11-19. Unfortunately, doing so the interac- bare potentla_ldoes not yield the correct low-density beha\(-
Jjor, but polarization effects are encountered at any density.

tion bepom_es rather complex, and therefore always_ certale)f course, Eqs(1) represent only the asymptotic behavior
approximations(phase space averages, weak-coupling APor ke—0, and the purpose of our report is to study numeri-

proximation, . . . ) have to be performed in order to arrive at . . . ) .
. . : cally the actual gap at finite density, using different approxi-
a numerically feasible level. It is well known, however, that 4 T i
mations for the polarization interaction.

the solution of the gap equation depends exponentially on the Let us finally mention that these considerations and Eqgs.

e a1y S ex2e2) apply ony t Systms wih negate scaterng lergth
. . . . such as neutron matter. In the case of a positive scattering
particular subseries of graphs has to be considered in th Shath. either there is no aa. or a transition from bairing to
light. Nevertheless, the previous works agree in predicting ap) 9 d1 ; . g P, : ; d pairing K
important suppression of the pairing gap. However, the pre- Ioun itat‘?f. o.rmt? tlclm ag BpseéEl_nster:n ﬁon ensa(;l_cfnfn takes
cise quantitative level of this suppression as well as its dengr?cchar(i:siger?olzjs()\i/xstgggngﬁ E](ql;;l) \EVZOI]C case a diter-
sity dependence vary substantially with the different ap- P '
proaches and must be considered unknown for the time
being. An overview of the previous results can be found in Il. FORMALISM
Ref.[3], for example.

This is the motivation to attempt in this article to face the
problem from a different viewpoint, namely a systematic,
perturbative treatment valid at low density. The number of
further approximations at this level should be kept to a strict A*(K)Zif
minimum. In this article we present the first step within such
an approach. More precisely, we will extend the lowest-order
interaction kernel by the complete set of diagrams of secondith the four-vectolK = (kq,k) and the anomalous propaga-

order in the interaction and containing one hole line. tor

We begin with the four-dimensional gap equat|@-§]

Ayt

i (€ TIOF (K 2
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_A*(K) +k'_f—> +K’ ——
P ) = [ TR 101 kg * €= K)<T0]—[A(KITZ" Chqu:‘ &q) (@)
®) R h
—kb—*—b—k' —_—
where e(K)=k?2m+3(ko,k)— &, and u is the neutron
chemical potentiall’ in Eq. (2) is the complete particle- w7 .
particle irreducible interaction kernel, itself ultimately in- ! ' h-q
volving anomalous propagators. This level of self- : h+q H
consistency has never been achieved in practice, since it . N
presents a formidable problem. (b)
We will also adhere to this approximation and adopt in . +—
this article an even stronger one, namely we disregard the hag | N\
energy dependence of the interaction kerieds well as of 9 F
the neutron self-energy. This difficult problem[7] will be P A a
delayed to future work. Doing so, one arrives at the usual —t

three-dimensional gap equation, involving an “on-shell” in-
teraction kernelk’|T'|k) and neutron single-particle energy
e(k). Focusing on the'S, partial wave, the resulting equa-
tions are

A(k)=
FIG. 1. Diagrams of second order in the interacti@ashed
B fxdk’k’zf‘ K A(k") lines) and with one hole lindn contributing to the neutron-neutron
47, 150( ' }\/[e(k’)—,u]2+A(k’)2’ interaction kernel.
(4a) and the interactiorfls0 in EqQ. (49 to lowest(first) order in
the potential is equal to the isotropic part of a partial wave
k1 "k [e(K)— u] expansion:
Pran o N2 e - w+ A7
(4b) 1 (+1 o
Vlso(k,k/):—f dz(k'|V|kyg—o, z=k'-k (79
2)-1

determining the gap functioA (k) and the chemical poten-
tial u for a given neutron density or neutron Fermi mo-

mentumkg . It should be remembered that the consistent NS 2 1212 ,
choice for the neutron single-particle enerfk) within the T oKk ‘k_k,‘dquO(Q)’ q°=k*+k’"—2kk’z.
mean-field BCS approacll’&V) is the Hartree-Fock ap- (7b)

proximation[7,10]. However, at very low density the effect
is very small and a kinetic spectrue(k) =k?/2m can be
used instead. Also the two equations above can be decoupled Going now beyond the BCS approximation, we display in
by settingu=e(kg) in this case(if the scattering length is Fig. 1 the complete set of diagrams in the particle-particle
negative. channel of second order in the interaction and containing one
Regarding the bare interactidf we will use in this work  hole line[16,18,23. The interaction appearing internally in
the ArgonneV,g [21] neutron-neutron potential, which is these diagrams is in the simplest case the Trewatrix, for
very well fitted to theT=1 scattering phase shifts. For which we will in the following assume a composition into
s-wave pairing it is sufficient to consider the central compo-spinS=0,1 component3, andT, in analogy to Eq(5). The
nents of the potential acting in spB=0,1 channels: diagrams of typda) shown in the figure are the usuaing)
polarization graphs, wheredb) and (c) are the results of
performing exchange on one or both potential lines appear-
(5) ing in (a), respectively. It is therefore clear that the complete
set is intrinsically connected and must be considered to-
gether. The neutron propagators appearing in those diagrams
The Fourier transforms in momentum space are then (&€ bare propagators in order to strictly follow the concept of
=0,1) a pe(turbative low-density expansion and avoiding any self-
consistency.
Denoting the diagrams bw,, W, , andW,, and taking
Vs(q)=4wfmdr r2j o(qf)vs(f), G carT qfl the spin dependence of the interaction, one obtains
0 explicitly:

l1-0y- 0o - 3toy 0y
2 + V(1) 2

V(r)=Vy(r)
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h h+q

(KWelKps-o=+ 23 S22+ 6, =K |(TIh ~ k(K T)olh+ .k (8a
fufh

(KWl -o= 43 S22+ 6, =K' I(Tlh, ~ K.k Tyl +a) (8b)
fiof e

(KWl s-o=—23 S ZC (n+,~K'|(TI = khy(hK'T)elkh o), (89

whereq=k’ —k, with the Fermi distributiorf,= (ke —k),  in the S=0,1 channels of th& matrix, namely the'S, and

f=1—f, ande,=k?/2m. The notation 3p, states, respectively. We have then
1 T =To(p,p’), (129
(TT)a= [~ ToTo+ 3Ty T+ 3(TeTy+ TyTo)l, - (98 (PITolP=Tolp.p)
(P'[Talpy=Ta(p,p")3z, (12b
(TT) :_[+-|-O-|—0+ 3T,T,+3(ToT;—T,Ty)], (9b)  @nd obtain the final result for the polarization interaction
o(k,k") _ [k k"\?
1 Wlso(k,k’):—T o055
(TT)C=Z[+T0T0—3T1T1+3(T0T1+T1T0)] (90
i1 Hl(k,k’)_l_ (k k’)_l_ (k k’)
has been introduced for compactness. 2 Ol2r2/) 22
The principal practical problem with these expressions is KK K\ 2
the three-dimensional integratiol, that has to be per- +27 115( ) ( ) (13)
formed. However, a strong simplification can be achieved by 2 22"

neglecting, in line with the low-density expansion, the hole

momentumh in the arguments of the interaction that appearVith the weight functions

in the equations above. In this case thitegration can be 1 (+1

performed analytically, leading to the well-known Lindhard Hi(k,k'):—f dz il‘[(q). (14)
function at zero energy transfer, 2)-1

fhf_h+q mkF[l 1—x2 1+x| These inte_grations can be carried out analytically, making
— 2 =TI(q)=— —| =+ use of the integrals
T eh—eniq 7|2 4x 1= x| ]’
y 1 1-x% |1+x
1

X=q/2K . (10) fo dx xI* 27 ax M1=x
Now the Lindhard function cuts off also the momentum 1 ) 5 +y
appearing in Eqs(8), so that finally the approximation for 5| 2 In|1-y?/+(3—y )yln Ty +2y?
the complete second-order interaction kernel becomes

(1=0), (153

I1(q)
(K Was e oK) 0=— (0| (TI) — 0/ T)al — )
2Inj1-y?|+(5-3y?)y? In

+y
+2y%+ 6y4},
=2(p'[(T|p){—p'[T)plp) 60 -y

—(P'[(T[=p}{—p'[T)P], (1D (j=1), (15b)

where for brevity now only the relative momerga k/2 and
p’ =k’/2 are indicated on the right-hand sittas).

In order to obtain the polarization contribution to the in-
teraction in thelS, channel that we denote lWlso(k,k’),

+y
2 2 6
1402In|1 y2|+(7-5y?)y° In y+2y +y +1OY}

. : s . . (1=2). (159

an integration orz=k’ -k, or equivalently org, as specified

in Eq. (7), has to be performed on this expression. For ourThe weight functiondT;(k,k"), i=0,1 are displayed in Fig.
analysis it is sufficient to consider the leading partial wave<2, from which it can clearly be seen how the Lindhard func-
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So far we have discussed the construction of the interac-
tion kernel using first-order polarization diagrams embody-
ing the freeT matrix. The density dependence of the kernel
is therefore solely due to the Lindhard function. However,
the scattering matriX that also determines the polarization
interaction, is by itself modified inside the medium. In prin-
ciple, it is to be replaced by the full particle-hole interaction,
to be determined within a fully self-consistg®Babu-Browr)
approach23]. This, however, is at the moment not practi-
cally feasible, leading to different approximation schemes
found in the literature, as discussed in the Introduction.

FIG. 2. The weight functions#t®/mkg)TT;(k k), Eq.(14), for In the low-density limit considered here, we can neverthe-
i=0 (left) andi=1 (right). less try to estimate the consequences of this modification.

There are two principal physical effects. The first one is the
tion cuts off the interaction in momentum space, so that withaction of Pauli-blocking in the intermediate states of The
vanishing density ultimately only the zero-range valseat-  matrix, i.e., the replacement of tHematrix by the Brueckner
tering length matters. The functions are all negative definite,G matrix. We will attempt to take into account the major
so that the first and the last term on the rhs of B@) act  effect of this modification by using th&-matrix scattering
always repulsive and attractive, respectively, whereas the efength instead of the bare one in E@6b). The change of the
fect of the second term depends on the relative sigff momentum dependence of tAematrix will be neglected,

andT,. however. TheG-matrix scattering lengtha,,(kg) is dis-
We will now use effective range approximations for the played in the top panel of Fig. 3, and it can be seen that even
phase shifts in the two relevant partial waves, in the low-density interval considered, there is some impor-

tant variation(reduction in sizgwith increasing density. For
47 details of theG-matrix calculation the reader is referred to
Ts(p)=-— m—pe' ’ssinds, (168 Ref.[24].
Besides these ladder correlations, the particle-hole inter-
1 action is modified by polarization contributions. The leading
1, . o . o
-+ ) ., a,,——18.8 fm, corrections of this kind carry one hole liiene polapzaﬂon
2 “bubble”) and have to be considered together with the po-
larization graphs in the particle-particle channel containing
r..=2.8 fm, (16b) two hole lines. To compute systematically the effect of these
polarization graphs in next-to-leading order in densgitore
than one hole lingis a very hard task25] and beyond the
tand;(p)=—(bnap)%,  bpy~—1 fm, (160  aim of this paper. We can, however, try to estimate the error
that is made by neglecting these contributions.
with the relevant scattering lengtlas,, b,,, and effective First, one notes from Eq$10) and(16) that the relevant
ranger,,,, respectivelyt For our purpose these on-shell pa- expansion parameter giving the relative magnitude of the
rametrizations have to be extrapolated, which is done by sepolarization diagrams of n(+1)th order, with respect to
ting p?= (k?+k’?)/8 for the use in Eq(13). those ofnth order is~kga,,. Naively, this parameter can be
Since Eq.(16) constitutes an approximation to tiema-  translated into an estimate of the relative accuracy of the gap
trix keeping terms up to momenta squared, for consistencincluding only first-order polarization effects in the follow-
the first two terms on the rhs of E¢L3) above should be ing manner: We extend in the analytical BCS reglifj the
considered when constructing the polarization interactioninteraction by terms up to second-order polarization effects:
whereas the third term can be neglected. This is the approxi-

mation that we use in the following, although eventually it ke—0 2
turns out that even the second term can be neglected as Weg.(k ) E F ex;{ /2 c=kea
We remark at this point that the imaginary part of the F e’ 2m | k+ciki(1Ecyk) | Fenno
matrix (163 leads to an imaginary part of the polarization 17)
interaction (13), which has to be neglected in the present
approximation scheme, since from the beginning the energyhere
dependence of the gap equation was discarded.
2 2
C1=— ﬂﬂo(kF Kp)= §(1+ 21In2)~0.506 (18)

We use a characteristic value for tpevave scattering length
b,n, in order to check the influence on the gap that turns out to be
very small. The physical scattering lengths are different for theaccounts for the polarization effects to first order apds
three 3P; states:b,,~—1.4+1.2-0.7 fm for J=0,1,2, respec- the unknown parametefof order unity corresponding to
tively. second-order polarization effects. Expanding now the argu-
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p [fm3) Therefore, formuld1b) for the effect of first-order polariza-
o 197 107 10° tion is recovered, whilgassumingc,|<1)
; G-matrix
= 15 \ R(x)=(4e) -1 (21)
S or0f
< I is an estimate of the relative accuracy of this result with
" sF respect to inclusion of second-order contributions. We repeat
- that this “derivation” is only a crude way to roughly esti-
ofp——— v b Lo b mate the accuracy of our results.
o8 b Now that the construction of the interaction kernel has
s been completed, we can proceed to the numerical evaluation
06| and presentation of the results.
- 04
02l Ill. RESULTS
0 P T For the numerical solution of the gap equati@a), care
------ AJA, must be taken in the choice of a suitable grid in momentum
1 e T space, because the integrand becomes more and more peaked
""" RERREAT EETERRY atk’ =kg when approaching smaller densities. A good test is
0s L the comparison of the numerical result in BQ$sing the
! interaction kernel7)] with the analytical limit(1a). This is
[ shown in the lower panel of Fig. &lashed curve denoted
06 | A,/Ag), and indeed the limit is properly approached.
< . . . .
5 I We can the_refore proceed to the inclusion of p_o_lanzaﬂon
effects according to Eq13). The results for the pairing gap
0.4 with different approximations for the polarization interaction
I \\‘\_‘_G_‘___‘ are displayed in the same pl@¢Solid lines denoted,/A.)
- The simplest approximatiofturve denote@,,,) corresponds
02 to completely neglecting the momentum dependence of the
matrix, replacing it by a constant,;(0,0)=4ma,,/m. The
Y i momentum dependence of the polarization interaction is then
0 001 002 003 004 0.05 solely due to the Lindhard function, EQL4) with i =0, dis-
Ke [fm™] played in the left part of Fig. 2. This approximation corre-

sponds most closely to the spirit of the analytical result, Eq.

FIG. 3. Top panel: Th&-matrix scattering length as a function (1b), in which only the scattering length appears, and indeed
of Fermi momentum. Middle panel: The parameRrEq. (21), the correct asymptotic behavior can be observedkfor 0,
measuring the relative accuracy of the results displayed in the panels it should. However, due to the fact that this interaction is
below. Bottom panelS, gap in neutron matter as a function of unrealistically repulsive in momentum space, the gap de-
Fermi momenturke . Plotted are the ratiod, /A, (dashed curve creases rapidly and finally disappears with increasing den-
carrying markersand A, /A, (solid curves, whereA is given in  sity. It is nevertheless worth mentioning that this type of
Eqg. (1a), A, is the BCS gap obtained with the first-order bare in- contact interaction can be used without problems in the po-
teraction, and\; is the gap including first-order polarization con- |arization part of the interaction, whereas it leads to diver-
tributions. In the latter case, different approximations for the imer'gencies when used naively as bare interaction in the BCS
action are used, as explained in the text. The horizontal dashed a%p equation.
solid _Iines indicate the values according to E(s) and (1b), re- The result changes significantly when including the cor-
spectively. rect momentum dependence of fRenatrix to lowest order,

according to Eq(16): the gap(curve labeled’) remains now

ment of the exponential up to third order iy one obtains finite, but it is still strongly suppressed with respect to the
for the ratio relative to the BCS value, BCS result. Only when further reducing the interaction by
replacing theT matrix scattering length with the result ob-
tained from theG matrix (curve labeleds), the ratioA,/A,
comes closer to thie.— 0 result, yet still remaining substan-
tially below that limit at finite density.

Concerning the effect of thep waves, we find that
whether or not including the secoridnd thirg term on the

A(kg)
Ao(ke)

a
=ex;{ - §c1[1+(ic2—cl);<+ O(«?1| (19

1 |@-ew 1 ]Eex rhs of Eq.(13), the corresponding change of the result in Fig.
~| —— x| — (20) 3 would be not discernible by the bare eye. Separate curves
(4e)'3 (4e)1 are therefore not shown. In the end, our final result is a
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reduction of the gap due to first-order polarization effects in The resulting net effect was a suppression of the gap rela-
the low-density regiorkg<0.05 fmi ! by about a factor of 3 tive to the BCS result by about a factor of 3 over the whole
relative to the BCS value. density region considered. One has therefore to conclude that
In the previous section we gave an estimate of the uncethe commonly used BCS approximation is not even reliable
tainty of the present results with respect to the inclusion ofat very low density. The situation is different in the case of
higher-order polarization diagrams. The relative eRavas  pairing with a positive scattering length, where at low den-
estimated in Eq(21), and it is plotted in the middle panel of sjty the BCS approximation describes the transition from
Fig. 3. It can be seen that this estimate becomes larger thashjring to the formation and Bose-Einstein condensation of
60% at the maximum _Ferml mgmentum displaydd, bound state§19].
=0.05 fm *, rapidly limiting the utility of the present ap- Unfortunately the present approach is limited to very low
proximation. density, where the gap is actually extremely snjallg.,
Ao(ke=0.01 fm 1)~0.5x 10~ MeV], and cannot easily be
extrapolated to more relevant higher density, where the

We studied the effects of correlations beyond the meanmodification of the gap could be very different, as is indeed
field (BCS approximation on thé'S, pairing in low-density ~ Predicted in some publicatior{8,15]. Even in the present
(ke=0.05 fm %) neutron matter. We performed an analysiswork we were forced to make a number of approximations
of the in-medium interaction kernel to second order in thethat are not well controlled. Apart from the approximate
interaction and leading order in densigne hole ling. The  treatment of the integration appearing in Ef), we com-
importance of considering the complete set of diagrédits  pletely neglected contributions to the interaction kernel of
rect and exchangevas demonstrated; in fact, the repulsive higher orders in the interaction and/or density, as well as any
nature of the polarization interaction at low density resultsdispersive effect§energy dependence of interaction kernel
from the dominance of the exchange graphs compared to thend self-energy26)) in the gap equation. All these are very

direct polarization bubbles, see EdJ). difficult problems for the future, however.
The analytically known low-density limit, Eq1b) (sup-

pression of the BCS gap by a facter2.2 whenk:—0) was
correctly reproduced, the numerical results indicating an
even stronger suppression with increasing density. We found
a surprisingly large effect due to the inclusion of Pauli- We acknowledge useful discussions with M. Baldo, J.
blocking when replacing th@-matrix scattering length by Clark, G. Rgke, and P. Schuck. This work was supported in
the one obtained with th€& matrix. On the contrary, the part by the programs “Estancias de cidicbs y tecntogos
influence of thep waves turned out completely negligible in extranjeros en Espari’ SGR98-11(Generalitat de Catalu-
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