
PHYSICAL REVIEW C, VOLUME 63, 044310

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de la Universitat de Barcelona
Pairing with polarization effects in low-density neutron matter
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We study the properties of the1S0 pairing gap in low-density neutron matter. Different corrections to the
lowest-order scattering length approximation are explored, resulting in a strong suppression with respect to the
BCS result.
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I. INTRODUCTION

The problem of the influence of the medium on the effe
tive pairing interaction in nuclear matter is a long stand
one that still awaits satisfactory solution. This is true ev
for the simplest case of pairing in the1S0 channel in pure
neutron matter, to which this article is restricted. A quanti
tive control on this issue would be very useful in particu
for the understanding of neutron star physics@1#, where sev-
eral physical phenomena~cooling, glitches! are thought to
depend very sensitively on the size and the density dep
dence of the gap.

In several publications@2–4# the gap equation is solved i
the simplest~BCS! approximation@5–10#, namely using the
bare neutron-neutron potential as interaction kernel. Wit
realistic nucleon-nucleon potential, adapted to the scatte
phase shifts, one obtains typically a maximum of the g
D(kF)'3 MeV at a density corresponding tokF'0.85
fm21.

However, the use of the bare potential completely dis
gards the influence of the surrounding neutron medium
some authors have attempted to go beyond this level by
sidering certain additional subsets of diagrams in the in
action kernel@3,11–15#. Unfortunately, doing so the interac
tion becomes rather complex, and therefore always cer
approximations~phase space averages, weak-coupling
proximation, . . . ) have to be performed in order to arrive
a numerically feasible level. It is well known, however, th
the solution of the gap equation depends exponentially on
strength of the interaction, so that any kind of approximat
has to be introduced with great care. Also the choice o
particular subseries of graphs has to be considered in
light. Nevertheless, the previous works agree in predicting
important suppression of the pairing gap. However, the p
cise quantitative level of this suppression as well as its d
sity dependence vary substantially with the different a
proaches and must be considered unknown for the t
being. An overview of the previous results can be found
Ref. @3#, for example.

This is the motivation to attempt in this article to face t
problem from a different viewpoint, namely a systemat
perturbative treatment valid at low density. The number
further approximations at this level should be kept to a st
minimum. In this article we present the first step within su
an approach. More precisely, we will extend the lowest-or
interaction kernel by the complete set of diagrams of sec
order in the interaction and containing one hole line.
0556-2813/2001/63~4!/044310~7!/$20.00 63 0443
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In this way we will be able to confirm numerically and t
go beyond the well-known asymptotic behavior of the ga
namely within the BCS description@3,16,17#

D~kF! ——→
kF→0

D0~kF!5
8

e2

kF
2

2m
expF p

2kFann
G ~1a!

and including polarization effects@16,18#

D~kF! ——→
kF→0 1

~4e!1/3
D0~kF!, ~1b!

where ann5218.8 fm is the neutron-neutron scatterin
length.

Note that this is a surprising result in that, even though
ratio of in-medium and bare interaction becomes unity in
low-density limit, the ratio of the two corresponding ga
does not, but approaches (4e)21/3'0.45. This is due to the
nonanalytical dependence of the gap on the interaction
expressed in Eq.~1a!, and will be explained in more deta
later on. Stated otherwise, the BCS approximation~using the
bare potential! does not yield the correct low-density beha
ior, but polarization effects are encountered at any dens
Of course, Eqs.~1! represent only the asymptotic behavi
for kF→0, and the purpose of our report is to study nume
cally the actual gap at finite density, using different appro
mations for the polarization interaction.

Let us finally mention that these considerations and E
~1! apply only to systems with negative scattering leng
such as neutron matter. In the case of a positive scatte
length, either there is no gap, or a transition from pairing
bound state formation and Bose-Einstein condensation ta
place at sufficiently low density@19#, in which case a differ-
ent expression holds instead of Eq.~1a! @20#.

II. FORMALISM

We begin with the four-dimensional gap equation@6–8#

D* ~K !5 i E d4K8

~2p!4
^K8uGuK&F†~K8! ~2!

with the four-vectorK5(k0 ,k) and the anomalous propaga
tor
©2001 The American Physical Society10-1
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F†~K !5
2D* ~K !

@k02e~1K !1 i0#@k01e~2K !2 i0#2uD~K !u2 ,

~3!

where e(K)5k2/2m1S(k0 ,k)2m, and m is the neutron
chemical potential.G in Eq. ~2! is the complete particle
particle irreducible interaction kernel, itself ultimately in
volving anomalous propagators. This level of se
consistency has never been achieved in practice, sinc
presents a formidable problem.

We will also adhere to this approximation and adopt
this article an even stronger one, namely we disregard
energy dependence of the interaction kernelG as well as of
the neutron self-energyS. This difficult problem@7# will be
delayed to future work. Doing so, one arrives at the us
three-dimensional gap equation, involving an ‘‘on-shell’’ i
teraction kernel̂ k8uGuk& and neutron single-particle energ
e(k). Focusing on the1S0 partial wave, the resulting equa
tions are

D~k!5

2
1

4p2E
0

`

dk8k82G 1S0
~k,k8!

D~k8!

A@e~k8!2m#21D~k8!2
,

~4a!

r5
kF

3

3p2 5
1

p2E
0

`

dk k2
1

2 F12
@e~k!2m#

A@e~k!2m#21D~k!2G ,

~4b!

determining the gap functionD(k) and the chemical poten
tial m for a given neutron densityr or neutron Fermi mo-
mentum kF . It should be remembered that the consist
choice for the neutron single-particle energye(k) within the
mean-field BCS approach (G5V) is the Hartree-Fock ap
proximation@7,10#. However, at very low density the effec
is very small and a kinetic spectrume(k)5k2/2m can be
used instead. Also the two equations above can be decou
by settingm5e(kF) in this case~if the scattering length is
negative!.

Regarding the bare interactionV, we will use in this work
the ArgonneV18 @21# neutron-neutron potential, which i
very well fitted to theT51 scattering phase shifts. Fo
s-wave pairing it is sufficient to consider the central comp
nents of the potential acting in spinS50,1 channels:

Ṽ~r !5Ṽ0~r !
12s1•s2

4
1Ṽ1~r !

31s1•s2

4
. ~5!

The Fourier transforms in momentum space are thenS
50,1)

VS~q!54pE
0

`

dr r 2 j 0~qr !ṼS~r !, ~6!
04431
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and the interactionG 1S0
in Eq. ~4a! to lowest~first! order in

the potential is equal to the isotropic part of a partial wa
expansion:

V1S0
~k,k8!5

1

2E21

11

dẑ k8uVuk&S50 , z5 k̂8• k̂ ~7a!

5
1

2kk8
E

uk2k8u

k1k8
dqqV0~q!, q25k21k8222kk8z.

~7b!

Going now beyond the BCS approximation, we display
Fig. 1 the complete set of diagrams in the particle-parti
channel of second order in the interaction and containing
hole line @16,18,22#. The interaction appearing internally i
these diagrams is in the simplest case the freeT matrix, for
which we will in the following assume a composition int
spinS50,1 componentsT0 andT1 in analogy to Eq.~5!. The
diagrams of type~a! shown in the figure are the usual~ring!
polarization graphs, whereas~b! and ~c! are the results of
performing exchange on one or both potential lines appe
ing in ~a!, respectively. It is therefore clear that the comple
set is intrinsically connected and must be considered
gether. The neutron propagators appearing in those diagr
are bare propagators in order to strictly follow the concep
a perturbative low-density expansion and avoiding any s
consistency.

Denoting the diagrams byWa , Wb , andWc , and taking
care of the spin dependence of the interaction, one obt
explicitly:

FIG. 1. Diagrams of second order in the interaction~dashed
lines! and with one hole lineh contributing to the neutron-neutro
interaction kernel.
0-2
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^k8uWauk&S50512(
h

f h f̄ h1q

eh2eh1q
^h1q,2k8u~Tuh,2k&^h,k8uT!auh1q,k&, ~8a!

^k8uWbuk&S50524(
h

f h f̄ h1q

eh2eh1q
^h1q,2k8u~Tuh,2k&^h,k8uT!buk,h1q&, ~8b!

^k8uWcuk&S50522(
h

f h f̄ h1q

eh2eh1q
^h1q,2k8u~Tu2k,h&^h,k8uT!cuk,h1q&, ~8c!
i
-
b
le
a

rd

r

n-

ou
e

ing

.
c-
whereq5k82k, with the Fermi distributionf k5u(kF2k),
f̄ [12 f , andek5k2/2m. The notation

~TT!a5
1

4
@2T0T013T1T113~T0T11T1T0!#, ~9a!

~TT!b5
1

4
@1T0T013T1T113~T0T12T1T0!#, ~9b!

~TT!c5
1

4
@1T0T023T1T113~T0T11T1T0!# ~9c!

has been introduced for compactness.
The principal practical problem with these expressions

the three-dimensional integration(h that has to be per
formed. However, a strong simplification can be achieved
neglecting, in line with the low-density expansion, the ho
momentumh in the arguments of the interaction that appe
in the equations above. In this case theh integration can be
performed analytically, leading to the well-known Lindha
function at zero energy transfer,

4(
h

f h f̄ h1q

eh2eh1q
5P~q!52

mkF

p2 F1

2
1

12x2

4x
lnU11x

12xUG ,
x5q/2kF . ~10!

Now the Lindhard function cuts off also the momentumq
appearing in Eqs.~8!, so that finally the approximation fo
the complete second-order interaction kernel becomes

^k8uWa1b1cuk&S505
P~q!

2
@^p8u~Tup&^2p8uT!au2p&

22^p8u~Tup&^2p8uT!bup&

2^p8u~Tu2p&^2p8uT!cup&#, ~11!

where for brevity now only the relative momentap5k/2 and
p85k8/2 are indicated on the right-hand side~rhs!.

In order to obtain the polarization contribution to the i
teraction in the1S0 channel that we denote byW1S0

(k,k8),

an integration onz5 k̂8• k̂, or equivalently onq, as specified
in Eq. ~7!, has to be performed on this expression. For
analysis it is sufficient to consider the leading partial wav
04431
s

y

r

r
s

in the S50,1 channels of theT matrix, namely the1S0 and
3PJ states, respectively. We have then

^p8uT0up&5T0~p,p8!, ~12a!

^p8uT1up&5T1~p,p8!3z, ~12b!

and obtain the final result for the polarization interaction

W1S0
~k,k8!52

P0~k,k8!

2
T0S k

2
,
k8

2 D 2

118
P1~k,k8!

2
T0S k

2
,
k8

2 DT1S k

2
,
k8

2 D
127

P2~k,k8!

2
T1S k

2
,
k8

2 D 2

, ~13!

with the weight functions

P i~k,k8!5
1

2E21

11

dz ziP~q!. ~14!

These integrations can be carried out analytically, mak
use of the integrals

E
0

y

dx x2 j 11F1

2
1

12x2

4x
lnU11x

12xUG
5

1

12F2 lnu12y2u1~32y2!y lnU11y

12yU12y2G ,
~ j 50!, ~15a!

1

60F2 lnu12y2u1~523y2!y3 lnU11y

12yU12y216y4G ,
~ j 51!, ~15b!

1

140F2 lnu12y2u1~725y2!y5 lnU11y

12yU12y21y4110y6G ,
~ j 52!. ~15c!

The weight functionsP i(k,k8), i 50,1 are displayed in Fig
2, from which it can clearly be seen how the Lindhard fun
0-3
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H.-J. SCHULZE, A. POLLS, AND A. RAMOS PHYSICAL REVIEW C63 044310
tion cuts off the interaction in momentum space, so that w
vanishing density ultimately only the zero-range value~scat-
tering length! matters. The functions are all negative defini
so that the first and the last term on the rhs of Eq.~13! act
always repulsive and attractive, respectively, whereas the
fect of the second term depends on the relative sign ofT0
andT1.

We will now use effective range approximations for t
phase shifts in the two relevant partial waves,

TS~p!52
4p

mp
eidSsindS , ~16a!

tand0~p!'pS 2
1

ann
1

r nn

2
p2D 21

, ann5218.8 fm,

r nn52.8 fm, ~16b!

tand1~p!'2~bnnp!3, bnn'21 fm, ~16c!

with the relevant scattering lengthsann , bnn , and effective
ranger nn , respectively.1 For our purpose these on-shell p
rametrizations have to be extrapolated, which is done by
ting p25(k21k82)/8 for the use in Eq.~13!.

Since Eq.~16! constitutes an approximation to theT ma-
trix keeping terms up to momenta squared, for consiste
the first two terms on the rhs of Eq.~13! above should be
considered when constructing the polarization interacti
whereas the third term can be neglected. This is the appr
mation that we use in the following, although eventually
turns out that even the second term can be neglected as
We remark at this point that the imaginary part of theT
matrix ~16a! leads to an imaginary part of the polarizatio
interaction ~13!, which has to be neglected in the prese
approximation scheme, since from the beginning the ene
dependence of the gap equation was discarded.

1We use a characteristic value for thep-wave scattering length
bnn , in order to check the influence on the gap that turns out to
very small. The physical scattering lengths are different for
three 3PJ states:bnn'21.4,11.2,20.7 fm for J50,1,2, respec-
tively.

FIG. 2. The weight functions (p2/mkF)P i(k1 ,k2), Eq. ~14!, for
i 50 ~left! and i 51 ~right!.
04431
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So far we have discussed the construction of the inte
tion kernel using first-order polarization diagrams embod
ing the freeT matrix. The density dependence of the kern
is therefore solely due to the Lindhard function. Howev
the scattering matrixT that also determines the polarizatio
interaction, is by itself modified inside the medium. In pri
ciple, it is to be replaced by the full particle-hole interactio
to be determined within a fully self-consistent~Babu-Brown!
approach@23#. This, however, is at the moment not prac
cally feasible, leading to different approximation schem
found in the literature, as discussed in the Introduction.

In the low-density limit considered here, we can neverth
less try to estimate the consequences of this modificat
There are two principal physical effects. The first one is
action of Pauli-blocking in the intermediate states of theT
matrix, i.e., the replacement of theT matrix by the Brueckner
G matrix. We will attempt to take into account the maj
effect of this modification by using theG-matrix scattering
length instead of the bare one in Eq.~16b!. The change of the
momentum dependence of theT matrix will be neglected,
however. TheG-matrix scattering lengthann(kF) is dis-
played in the top panel of Fig. 3, and it can be seen that e
in the low-density interval considered, there is some imp
tant variation~reduction in size! with increasing density. For
details of theG-matrix calculation the reader is referred
Ref. @24#.

Besides these ladder correlations, the particle-hole in
action is modified by polarization contributions. The leadi
corrections of this kind carry one hole line~one polarization
‘‘bubble’’ ! and have to be considered together with the p
larization graphs in the particle-particle channel contain
two hole lines. To compute systematically the effect of the
polarization graphs in next-to-leading order in density~more
than one hole line! is a very hard task@25# and beyond the
aim of this paper. We can, however, try to estimate the e
that is made by neglecting these contributions.

First, one notes from Eqs.~10! and ~16! that the relevant
expansion parameter giving the relative magnitude of
polarization diagrams of (n11)th order, with respect to
those ofnth order is;kFann . Naively, this parameter can b
translated into an estimate of the relative accuracy of the
including only first-order polarization effects in the follow
ing manner: We extend in the analytical BCS result~1a! the
interaction by terms up to second-order polarization effec

D~kF! ——→
kF→0 8

e2

kF
2

2m
expF p/2

k1c1k2~16c2k!G , k5kFann ,

~17!

where

c152
2p

mkF
P0~kF ,kF!5

2

3p
~112 ln 2!'0.506 ~18!

accounts for the polarization effects to first order andc2 is
the unknown parameter~of order unity! corresponding to
second-order polarization effects. Expanding now the ar

e
e

0-4
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PAIRING WITH POLARIZATION EFFECTS IN LOW- . . . PHYSICAL REVIEW C 63 044310
ment of the exponential up to third order ink, one obtains
for the ratio relative to the BCS value,

D~kF!

D0~kF!
5expF2

p

2
c1@11~6c22c1!k1O~k2!#G ~19!

'F 1

~4e!1/3G (12c1k)

3F 1

~4e!1/3G6c2k

. ~20!

FIG. 3. Top panel: TheG-matrix scattering length as a functio
of Fermi momentum. Middle panel: The parameterR, Eq. ~21!,
measuring the relative accuracy of the results displayed in the p
below. Bottom panel:1S0 gap in neutron matter as a function o
Fermi momentumkF . Plotted are the ratiosD1 /D0 ~dashed curve
carrying markers! andD2 /D0 ~solid curves!, whereD0 is given in
Eq. ~1a!, D1 is the BCS gap obtained with the first-order bare
teraction, andD2 is the gap including first-order polarization con
tributions. In the latter case, different approximations for the int
action are used, as explained in the text. The horizontal dashed
solid lines indicate the values according to Eqs.~1a! and ~1b!, re-
spectively.
04431
Therefore, formula~1b! for the effect of first-order polariza
tion is recovered, while~assuminguc2u&1)

R~k!5~4e!2k/321 ~21!

is an estimate of the relative accuracy of this result w
respect to inclusion of second-order contributions. We rep
that this ‘‘derivation’’ is only a crude way to roughly est
mate the accuracy of our results.

Now that the construction of the interaction kernel h
been completed, we can proceed to the numerical evalua
and presentation of the results.

III. RESULTS

For the numerical solution of the gap equation~4a!, care
must be taken in the choice of a suitable grid in moment
space, because the integrand becomes more and more p
at k85kF when approaching smaller densities. A good tes
the comparison of the numerical result in BCS@using the
interaction kernel~7!# with the analytical limit~1a!. This is
shown in the lower panel of Fig. 3~dashed curve denote
D1 /D0), and indeed the limit is properly approached.

We can therefore proceed to the inclusion of polarizat
effects according to Eq.~13!. The results for the pairing gap
with different approximations for the polarization interactio
are displayed in the same plot.~Solid lines denotedD2 /D0.!
The simplest approximation~curve denotedann) corresponds
to completely neglecting the momentum dependence of thT
matrix, replacing it by a constant,T0(0,0)54pann /m. The
momentum dependence of the polarization interaction is t
solely due to the Lindhard function, Eq.~14! with i 50, dis-
played in the left part of Fig. 2. This approximation corr
sponds most closely to the spirit of the analytical result, E
~1b!, in which only the scattering length appears, and inde
the correct asymptotic behavior can be observed forkF→0,
as it should. However, due to the fact that this interaction
unrealistically repulsive in momentum space, the gap
creases rapidly and finally disappears with increasing d
sity. It is nevertheless worth mentioning that this type
contact interaction can be used without problems in the
larization part of the interaction, whereas it leads to div
gencies when used naively as bare interaction in the B
gap equation.

The result changes significantly when including the c
rect momentum dependence of theT matrix to lowest order,
according to Eq.~16!: the gap~curve labeledT) remains now
finite, but it is still strongly suppressed with respect to t
BCS result. Only when further reducing the interaction
replacing theT matrix scattering length with the result ob
tained from theG matrix ~curve labeledG), the ratioD2 /D0
comes closer to thekF→0 result, yet still remaining substan
tially below that limit at finite density.

Concerning the effect of thep waves, we find that
whether or not including the second~and third! term on the
rhs of Eq.~13!, the corresponding change of the result in F
3 would be not discernible by the bare eye. Separate cu
are therefore not shown. In the end, our final result is

el

-
nd
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reduction of the gap due to first-order polarization effects
the low-density regionkF,0.05 fm21 by about a factor of 3
relative to the BCS value.

In the previous section we gave an estimate of the un
tainty of the present results with respect to the inclusion
higher-order polarization diagrams. The relative errorR was
estimated in Eq.~21!, and it is plotted in the middle panel o
Fig. 3. It can be seen that this estimate becomes larger
60% at the maximum Fermi momentum displayed,kF
50.05 fm21, rapidly limiting the utility of the present ap
proximation.

IV. CONCLUSIONS

We studied the effects of correlations beyond the me
field ~BCS! approximation on the1S0 pairing in low-density
(kF&0.05 fm21) neutron matter. We performed an analys
of the in-medium interaction kernel to second order in
interaction and leading order in density~one hole line!. The
importance of considering the complete set of diagrams~di-
rect and exchange! was demonstrated; in fact, the repulsi
nature of the polarization interaction at low density resu
from the dominance of the exchange graphs compared to
direct polarization bubbles, see Eq.~11!.

The analytically known low-density limit, Eq.~1b! ~sup-
pression of the BCS gap by a factor'2.2 whenkF→0) was
correctly reproduced, the numerical results indicating
even stronger suppression with increasing density. We fo
a surprisingly large effect due to the inclusion of Pau
blocking when replacing theT-matrix scattering length by
the one obtained with theG matrix. On the contrary, the
influence of thep waves turned out completely negligible
this density range.
s.

ll,

.
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The resulting net effect was a suppression of the gap r
tive to the BCS result by about a factor of 3 over the who
density region considered. One has therefore to conclude
the commonly used BCS approximation is not even relia
at very low density. The situation is different in the case
pairing with a positive scattering length, where at low de
sity the BCS approximation describes the transition fro
pairing to the formation and Bose-Einstein condensation
bound states@19#.

Unfortunately the present approach is limited to very lo
density, where the gap is actually extremely small@e.g.,
D0(kF50.01 fm21)'0.531026 MeV#, and cannot easily be
extrapolated to more relevant higher density, where
modification of the gap could be very different, as is inde
predicted in some publications@3,15#. Even in the presen
work we were forced to make a number of approximatio
that are not well controlled. Apart from the approxima
treatment of the integration appearing in Eq.~8!, we com-
pletely neglected contributions to the interaction kernel
higher orders in the interaction and/or density, as well as
dispersive effects~energy dependence of interaction kern
and self-energy@26#! in the gap equation. All these are ver
difficult problems for the future, however.
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